WO2020030046A1 - 液晶移相器及其操作方法、液晶天线和通信设备 - Google Patents

液晶移相器及其操作方法、液晶天线和通信设备 Download PDF

Info

Publication number
WO2020030046A1
WO2020030046A1 PCT/CN2019/099798 CN2019099798W WO2020030046A1 WO 2020030046 A1 WO2020030046 A1 WO 2020030046A1 CN 2019099798 W CN2019099798 W CN 2019099798W WO 2020030046 A1 WO2020030046 A1 WO 2020030046A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
phase
phase adjustment
phase shifter
substrate
Prior art date
Application number
PCT/CN2019/099798
Other languages
English (en)
French (fr)
Inventor
王瑛
丁天伦
武杰
曹雪
李亮
贾皓程
蔡佩芝
车春城
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/641,444 priority Critical patent/US11563260B2/en
Priority to JP2020530340A priority patent/JP7433229B2/ja
Priority to EP19847245.8A priority patent/EP3835852A4/en
Publication of WO2020030046A1 publication Critical patent/WO2020030046A1/zh
Priority to US17/990,001 priority patent/US11876275B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/181Phase-shifters using ferroelectric devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element

Definitions

  • the present disclosure belongs to the field of communication technology, and particularly relates to a liquid crystal phase shifter, a liquid crystal antenna, a communication device, and a method of operating a liquid crystal phase shifter.
  • phase shifter is a device used to change the phase of an electromagnetic wave signal.
  • the ideal phase shifter has a small insertion loss, and has almost the same loss in different phase states to achieve amplitude balance.
  • phase shifters There are several types of phase shifters, such as electrical control, light control, magnetic control, and mechanical control.
  • the basic function of the phase shifter is to change the transmission phase of the microwave signal by controlling the bias voltage.
  • Phase shifters are divided into digital phase shifters (the phase shift amount of which is discretely adjustable) and analog phase shifters (the phase shift amount of which is continuously adjustable).
  • the digital phase shifter is an important part of the phased array antenna. It is used to control the phase of each signal in the antenna array, so that the radiation beam can be scanned electrically.
  • Digital phase shifters are also commonly used in digital communication systems as phase modulators.
  • Embodiments of the present disclosure provide a liquid crystal phase shifter, a liquid crystal antenna, a communication device, and a method of operating a liquid crystal phase shifter.
  • a first aspect of the present disclosure provides a liquid crystal phase shifter, including:
  • the phase adjustment structure includes a plurality of phase adjustment units
  • the plurality of phase adjustment units are configured to change a dielectric constant of the liquid crystal layer according to a voltage applied thereto and a voltage applied to the microwave transmission structure to adjust a phase of a microwave signal;
  • phase shift amounts adjusted by the plurality of phase adjustment units are different from each other.
  • the microwave transmission structure includes:
  • the plurality of phase adjustment units are configured to change a dielectric constant of the liquid crystal layer according to a voltage applied thereto and a voltage applied to the microstrip line to adjust the phase of the microwave signal.
  • the phase adjustment structure includes a second substrate; wherein,
  • the plurality of phase adjustment units are disposed on a side surface of the second substrate close to the liquid crystal layer;
  • Each of the plurality of phase adjustment units includes a plurality of electrode strips arranged on the side of the second substrate near the liquid crystal layer and spaced apart, and each of the electrode strips and the microstrip line The orthographic projections on the first substrate at least partially overlap, and the number of electrode strips in the plurality of phase adjustment units is different.
  • a length direction of each of the electrode strips and a length direction of the microstrip line are perpendicular to each other.
  • the microwave transmission structure includes:
  • a coplanar waveguide layer is located on a side of the first substrate close to the liquid crystal layer.
  • the coplanar waveguide layer includes:
  • the plurality of phase adjustment units are configured to change a dielectric constant of the liquid crystal layer according to a voltage applied thereto and a voltage applied to the center band to adjust a phase of a microwave signal.
  • the phase adjustment structure includes a second substrate; wherein,
  • the plurality of phase adjustment units are disposed on a side surface of the second substrate close to the liquid crystal layer;
  • Each of the plurality of phase adjustment units includes a plurality of electrode strips disposed on a side of the second substrate adjacent to the liquid crystal layer and spaced apart from each other. Each of the electrode strips is in contact with the center band.
  • the orthographic projections on the first substrate at least partially overlap, and the number of electrode strips in the plurality of phase adjustment units is different.
  • a length direction of each of the electrode strips and a length direction of the center strip are perpendicular to each other.
  • a plurality of bias lines corresponding to the plurality of phase adjustment units are provided in a peripheral region of a side surface of the second substrate near the liquid crystal layer, each of the biases A line connects each electrode strip in the phase adjustment unit corresponding thereto.
  • the distance between any two adjacent electrode strips is constant.
  • the material of the electrode bar includes any one of aluminum, silver, gold, chromium, molybdenum, nickel, and iron.
  • each of the two ground strips and the center strip are spaced apart from each other, and a length direction of each of the two ground strips and a length direction of the center strip are parallel to each other.
  • the plurality of phase adjustment units are connected in series with each other.
  • the first substrate is made of at least one of glass, ceramic, and high-purity quartz glass.
  • the liquid crystal layer includes positive liquid crystal molecules, and an included angle between a long axis direction of each positive liquid crystal molecule and a plane on which the first substrate is located is greater than 0 degrees and less than or equal to 45 degrees. .
  • the liquid crystal layer includes negative liquid crystal molecules, and an included angle between a long axis direction of each of the negative liquid crystal molecules and a plane on which the first substrate is located is greater than 45 degrees and less than 90 degrees.
  • the liquid crystal phase shifter is a digital phase shifter
  • the number of bits N of the digital phase shifter is equal to the number of the plurality of phase adjustment units
  • the digital phase shifter is configured to Achieve 2 N different phase shift amounts.
  • a second aspect of the present disclosure provides a liquid crystal antenna including the liquid crystal phase shifter according to any one of the above embodiments of the present disclosure.
  • a third aspect of the present disclosure provides a communication device including the liquid crystal antenna according to the above embodiment of the present disclosure.
  • a fourth aspect of the present disclosure provides a method of operating a liquid crystal phase shifter, wherein the liquid crystal phase shifter is the liquid crystal phase shifter according to any one of the above embodiments of the present disclosure, and the method includes :
  • FIG. 1 is a cross-sectional view of a liquid crystal phase shifter according to an embodiment of the present disclosure
  • FIG. 2 is a top perspective view of a liquid crystal phase shifter according to an embodiment of the present disclosure
  • FIG. 3 is an enlarged view of a portion A of the liquid crystal phase shifter shown in FIG. 2;
  • FIG. 4 is a cross-sectional view of a liquid crystal phase shifter according to an embodiment of the present disclosure
  • FIG. 5 is a top perspective view of a liquid crystal phase shifter according to an embodiment of the present disclosure.
  • FIG. 6 is an enlarged view of a portion B of the liquid crystal phase shifter shown in FIG. 5.
  • An embodiment of the present disclosure provides a digital liquid crystal phase shifter, which includes a microwave transmission structure and a phase adjustment structure disposed oppositely, and a liquid crystal layer located between the microwave transmission structure and the phase adjustment structure.
  • the phase adjustment structure includes a plurality of phase adjustment units; the plurality of phase adjustment units are used to change the dielectric constant of the liquid crystal layer according to the voltage applied to it and the voltage applied to the microwave transmission structure to adjust the phase of the microwave signal.
  • the phase shift amounts adjusted by the plurality of phase adjustment units are different from each other.
  • the number of phase shifters determines the number of phase adjustment units, or the number of phase shifters depends on the number of phase adjustment units. That is, if the number of phase shifters is N, it can be determined that the number of phase adjustment units is N, and vice versa.
  • the phase shifter 2 N different phase shift amount can be realized (referred to as phase or state).
  • the minimum amount of phase shift that can be achieved by the phase shifter may be 360 ° / 2 N.
  • the phase adjustment structure includes a plurality of phase adjustment units, and each phase adjustment unit and the microwave transmission structure drive the liquid crystal layer to deflect after the voltage is applied to form an electric field, and change the dielectric of the liquid crystal layer. Electrical constant. Therefore, the phase of the microwave signal can be changed, and different phase adjustment units and microwave transmission structures have different phase shift amounts adjusted after being applied with a voltage. That is, each phase adjustment unit adjusts a corresponding phase shift amount. Therefore, when adjusting the phase shift amount, a voltage can be applied to the corresponding phase adjustment unit according to the magnitude of the phase shift amount to be adjusted without applying voltage to all the phase adjustment units, thereby making the phase shifter in this embodiment convenient. Control and low power consumption.
  • FIG. 1 is a cross-sectional view of a liquid crystal phase shifter according to an embodiment of the present disclosure
  • FIG. 2 is a top perspective view of the liquid crystal phase shifter.
  • FIG. 1 is a cross-sectional view of the liquid crystal phase shifter taken along a line I-I 'shown in FIG. 2.
  • an embodiment of the present disclosure provides a digital liquid crystal phase shifter, which includes a microwave transmission structure 1 and a phase adjustment structure 2 which are oppositely disposed, and is located between the microwave transmission structure 1 and the phase adjustment structure 2.
  • the microwave transmission structure 1 in the liquid crystal phase shifter includes a first substrate 10, a microstrip line 11 disposed on a side of the first substrate 10 close to the liquid crystal layer 3, and a side of the first substrate 10 facing away from the liquid crystal layer 3. ⁇ ⁇ electrode 12.
  • Each of the plurality of phase adjustment units 21 in the phase adjustment structure 2 includes a plurality of electrode strips 211 (see FIG. 2 and FIG. 3) provided on the side of the second substrate 20 near the liquid crystal layer 3 and having different phases. The number of the electrode strips 211 in the adjustment unit 21 is different. For example, the orthographic projection of the microstrip line 11 and each electrode strip 211 on the substrate at least partially overlaps.
  • the microstrip line 11 may be disposed in the middle of the side of the first substrate 10 close to the liquid crystal layer 3, and the ground electrode 12 may completely cover the side of the first substrate 10 facing away from the liquid crystal layer 3, as shown in FIG. 1.
  • the plurality of phase adjustment units 21 are connected to each other in series.
  • the microstrip line 11 is not only a part of the structure of the microwave transmission structure 1 but also a part of the structure of the phase adjustment structure 2.
  • the microstrip line 11 can be loaded with voltage, and can also receive or send microwave signals.
  • the microstrip line 11 and the ground electrode 12 are used to form the microwave transmission structure 1.
  • most of the microwave signals will be the first between the microstrip line 11 and the ground electrode 12. Transmission is performed in the substrate 10.
  • the first substrate 10 may be made of materials such as glass and ceramics. In this way, the microwave signal will not be absorbed when transmitted in the first substrate 10, so the microwave loss can be effectively reduced.
  • all electrode strips 211 in each phase adjustment unit 21 may be controlled using the same bias line 22.
  • a six-digit liquid crystal digital liquid crystal phase shifter is taken as an example for illustration.
  • the phase shifter has six phase adjustment units 21, and the number of electrode strips 211 in different phase adjustment units 21 is different; each phase adjustment unit 21 independently controls it through a bias line 22 to achieve 64 different The phase shift of a phase quantity.
  • the six phase adjustment units 21 and the six bias lines 22 may correspond one-to-one.
  • the six phase adjustment units 21 shown in FIG. 2 from top to bottom can be used to achieve phase shifts of 0.9 °, 1.5 °, 3.1 °, 6.1 °, 11.5 °, and 23.1, respectively. °.
  • the present disclosure is not limited to this.
  • each phase adjustment unit 21 can be related to the material and size of the phase adjustment unit 21 (or the electrode strip 211), and can be determined through experiments or simulations.
  • the six phase adjustment units 21 shown in FIG. 2 are the first to sixth phase adjustment units 21 to 21 from top to bottom, respectively.
  • the fifth phase adjustment unit 21
  • the microwave signal is to achieve a phase shift amount of 0.9 °
  • only the bias line connected to the first phase adjustment unit 21 (for example, the uppermost phase adjustment unit 21 in FIG. 2) corresponding to the phase shift amount is required.
  • 22 loads a second voltage, so that the bias line 22 outputs the second voltage to the electrode strip 211 connected thereto, and simultaneously loads the microstrip line 11 with a first voltage different from the second voltage.
  • an electric field is generated between the microstrip line 11 and the voltage-carrying electrode bar 211 to drive the liquid crystal molecules 31 of the liquid crystal layer 3 to deflect, thereby changing the dielectric constant of the liquid crystal layer 3, so that the phase of the microwave signal has a phase of 0.9 °. shift.
  • first phase adjustment unit 21 and the second phase adjustment unit 21 (for example, the uppermost part in FIG. 2) need to be controlled.
  • the phase adjustment unit 21 and the bias line 22 connected to the adjacent phase adjustment unit 21) are both loaded with a second voltage to control the electrode strips 211 in the two phase adjustment units 21 to be loaded with a second voltage, and A first voltage is applied to the microstrip line 11.
  • phase adjustment unit 21 that can implement the phase shift amount individually or in combination.
  • all the electrode strips 211 on the second substrate 20 may be arranged periodically.
  • the interval between any two adjacent electrode strips 211 can be set to be the same (ie, constant).
  • each electrode strip 211 may also be set so that the interval between any two adjacent electrode strips 211 is distributed according to a certain rule. This is provided to facilitate the control of the electrode strip 211.
  • the length direction of the electrode strip 211 (for example, the horizontal direction in FIG. 2) and the length direction of the microstrip line 11 (for example, the vertical direction in FIG. 2) are perpendicular to each other. It should be noted here that the longitudinal direction of the electrode strip 211 and the longitudinal direction of the microstrip line 11 refer to the respective major axis directions.
  • each electrode strip 211 and the microstrip line 11 is large enough so that when a voltage is applied to the electrode strip 211 in each phase adjustment unit 21, the electrodes in the phase adjustment unit 21
  • the electric field formed between the strip 211 and the microstrip line 11 is large enough to drive the liquid crystal molecules 31 between them to deflect and change the dielectric constant of the liquid crystal layer 3 to achieve the desired phase shift amount.
  • the first substrate 10 and the second substrate 20 can be a glass substrate with a thickness of 100-1000 microns, a sapphire substrate, or a polyethylene terephthalate substrate with a thickness of 10-500 microns, Triallyl cyanate substrate and polyimide transparent flexible substrate.
  • the first substrate 10 and the second substrate 20 may be high-purity quartz glass with extremely low dielectric loss. Compared with ordinary glass substrates, the use of high-purity quartz glass in the first substrate 10 and the second substrate 20 can effectively reduce the loss of microwaves, so that the phase shifter has low power consumption and high signal-to-noise ratio.
  • high-purity quartz glass refers to quartz glass in which the weight percentage of SiO 2 is greater than or equal to 99.9%.
  • the material of the microstrip line 11, the ground electrode 12, and each electrode bar 211 may be made of metal such as aluminum, silver, gold, chromium, molybdenum, nickel, or iron.
  • the microstrip line 11 may also be made of a transparent conductive oxide.
  • the liquid crystal molecules 31 in the liquid crystal layer 3 may be positive liquid crystal molecules or negative liquid crystal molecules. It should be noted that when the liquid crystal molecules 31 are positive liquid crystal molecules, the included angle between the long axis direction of each liquid crystal molecule 31 and the plane on which the first substrate 10 is located is greater than 0 degrees and less than or equal to 45 degrees. When the liquid crystal molecules 31 are negative liquid crystal molecules, the included angle between the long axis direction of each liquid crystal molecule 31 and the plane on which the first substrate 10 is located is greater than 45 degrees and less than 90 degrees. In this way, it is ensured that after the liquid crystal molecules 31 are deflected, the dielectric constant of the liquid crystal layer 3 is changed to achieve the purpose of phase shifting.
  • the phase adjustment structure 2 includes a plurality of phase adjustment units 21, and each phase adjustment unit 21 and the microstrip line 11 drive a liquid crystal layer after being applied with different voltages to form an electric field.
  • the liquid crystal molecules 31 of 3 are deflected, and the dielectric constant of the liquid crystal layer 3 is changed. Therefore, the phase of the microwave signal can be changed, and the electrode strips 211 and the microstrip line 11 in different phase adjustment units 21 have different phase shift amounts adjusted after being applied with different voltages.
  • each phase adjustment unit 21 adjusts a corresponding phase shift amount, so when the phase shift amount is adjusted, a voltage can be applied to the corresponding phase adjustment unit 21 according to the magnitude of the phase shift amount to be adjusted without having to apply voltage to all
  • the phase adjustment unit 21 applies a voltage, so that the phase shifter in this embodiment is convenient to control and has low power consumption.
  • the microstrip line 11 and the ground electrode 12 are used as the microwave transmission structure 1. At this time, most of the microwave signals will be transmitted in the first substrate 10 between the microstrip line 11 and the ground electrode 12, and the first substrate 10 It can be made of glass, ceramics or high-purity quartz glass. The microwave signal transmitted in the first substrate 10 will not be absorbed, so the microwave loss can be effectively reduced.
  • FIG. 4 is a cross-sectional view of a liquid crystal phase shifter according to another embodiment of the present disclosure
  • FIG. 5 is a top perspective view of the liquid crystal phase shifter.
  • FIG. 4 is a cross-sectional view of the liquid crystal phase shifter taken along a line II-II 'shown in FIG. 5.
  • this embodiment provides another digital liquid crystal phase shifter, which includes a microwave transmission structure 1 and a phase adjustment structure 2 which are oppositely disposed, and is located between the microwave transmission structure 1 and the phase adjustment structure 2.
  • the microwave transmission structure 1 in the phase shifter includes a first substrate 10 and a coplanar waveguide layer on a side of the first substrate 10 near the liquid crystal layer 3.
  • the coplanar waveguide layer may include: a center band 13 on the first substrate 10, for example, a middle portion of the side of the first substrate 10 near the liquid crystal layer 3; two ground bands 14, which are located on the center band 13 on both sides.
  • each of the two grounding strips 14 and the center strip are spaced apart from each other, and a length direction of each of the two grounding strips 14 and a length direction of the center strip 13 Parallel to each other, as shown in Figures 5 and 6.
  • the center strip 13 may be the same as the microstrip line 11 in the above embodiment.
  • the phase adjustment structure 2 includes a second substrate 20 and a plurality of phase adjustment units 21 located on the second substrate 20 near the liquid crystal layer 3.
  • each phase adjustment unit 21 includes a plurality of electrode strips 211 disposed on the side of the second substrate 20 near the liquid crystal layer 3 and spaced apart from each other.
  • the orthographic projections on a substrate 10 at least partially overlap, and the number of the electrode strips 211 in the plurality of phase adjustment units 21 is different.
  • the plurality of phase adjustment units 21 may be connected in series with each other.
  • the microwave signal is transmitted in a limited area between the center band 13 and the ground band 14 of the coplanar waveguide layer.
  • the The thickness will be designed to be relatively thin, approximately 4-5 ⁇ m, so the microwave signal will be transmitted in the liquid crystal layer 3, but the loss of the microwave signal is also relatively small.
  • each electrode strip 211 in each phase adjustment unit 21 may be controlled using the same bias line 22.
  • a six-digit liquid crystal digital liquid crystal phase shifter is taken as an example.
  • the phase shifter has six phase adjustment units 21 in total.
  • the phase adjustment units 21 independently control them through a bias line 22 to achieve phase shifts of 64 different phase quantities.
  • the six phase adjustment units 21 and the six bias lines 22 may correspond one to one.
  • the six phase adjustment units 21 shown in FIG. 5 from top to bottom can be used to achieve phase shifts of 0.9 °, 1.5 °, 3.1 °, 6.1 °, 11.5 °, and 23.1, respectively. °.
  • the microwave signal is to achieve a phase shift amount of 0.9 °
  • only the bias line connected to the first phase adjustment unit 21 (for example, the uppermost phase adjustment unit 21 in FIG. 5) corresponding to the phase shift amount is required.
  • 22 loads a second voltage, so that the bias line 22 outputs the second voltage to the electrode strip 211 connected thereto, and at the same time loads the center band 13 with a first voltage different from the second voltage.
  • an electric field is generated between the center band 13 and the voltage-carrying electrode strip 211 to drive the liquid crystal molecules 31 of the liquid crystal layer 3 to deflect, thereby changing the dielectric constant of the liquid crystal layer 3, thereby causing a phase shift of 0.9 ° in the phase of the microwave signal. .
  • first phase adjustment unit 21 and the second phase adjustment unit 21 (for example, the uppermost part in FIG. 5) need to be controlled.
  • the phase adjustment unit 21 and the bias line 22 connected to the adjacent phase adjustment unit 21) are both loaded with a second voltage to control the electrode strips 211 in the two phase adjustment units 21 to be loaded with a second voltage, and A first voltage different from the second voltage is applied to the center band 13.
  • phase shift amount is achieved (for example, at least one of the above 6 phase shift amounts 0.9 °, 1.5 °, 3.1 °, 6.1 °, 11.5 °, and 23.1 °, phase shifts other than 0.9 ° and 2.4 °
  • phase adjustment unit 21 that can implement the phase shift amount individually or in combination.
  • all the electrode strips 211 on the second substrate 20 may be arranged periodically.
  • the interval between any two adjacent electrode strips 211 can be set to be the same (ie, constant).
  • each electrode strip 211 may also be set in such a manner that the interval between any two adjacent electrode strips 211 is distributed according to a certain rule. This is provided to facilitate the control of the electrode strip 211.
  • each electrode strip 211 and the length direction (for example, the vertical direction in FIG. 5) of the center strip 13 are perpendicular to each other.
  • the length direction of each electrode strip 211 and the length direction of the center band 13 refer to the respective long axis directions. The reason for this is that the overlapping area of each electrode strip 211 and the center band 13 is large enough so that when a voltage is applied to the electrode strip 211 in each phase adjustment unit 21, the electrodes in the phase adjustment unit 21 The electric field formed between the strip 211 and the center band 13 is large enough to drive the liquid crystal molecules 31 to deflect and change the dielectric constant of the liquid crystal layer 3 to achieve a desired phase shift amount.
  • the first substrate 10 and the second substrate 20 can be a glass substrate with a thickness of 100-1000 microns, a sapphire substrate, or a polyethylene terephthalate substrate with a thickness of 10-500 microns, Triallyl cyanate substrate and polyimide transparent flexible substrate.
  • the first substrate 10 and the second substrate 20 may be high-purity quartz glass with extremely low dielectric loss. Compared with ordinary glass substrates, the use of high-purity quartz glass in the first substrate 10 and the second substrate 20 can effectively reduce the loss of microwaves, so that the phase shifter has low power consumption and high signal-to-noise ratio.
  • the material of the center strip 13, the ground strip 14, and each electrode strip 211 may be made of metal such as aluminum, silver, gold, chromium, molybdenum, nickel, or iron.
  • the liquid crystal molecules 31 in the liquid crystal layer 3 may be positive liquid crystal molecules or negative liquid crystal molecules. It should be noted that when the liquid crystal molecules 31 are positive liquid crystal molecules, the included angle between the long axis direction of each liquid crystal molecule 31 and the plane on which the first substrate 10 is located is greater than 0 degrees and less than or equal to 45 degrees. When the liquid crystal molecules 31 are negative liquid crystal molecules 31, the included angle between the long axis direction of each liquid crystal molecule 31 and the plane on which the first substrate 10 is located is greater than 45 degrees and less than 90 degrees. In this way, it is ensured that after the liquid crystal molecules 31 are deflected, the dielectric constant of the liquid crystal layer 3 is changed to achieve the purpose of phase shifting.
  • phase shifter of this embodiment may be the same as those of the phase shifter of the embodiment corresponding to FIG. 1 to FIG. 3, and details are not described herein again.
  • the phase adjustment structure 2 includes a plurality of phase adjustment units 21, and each phase adjustment unit 21 and the center band 13 drive the liquid crystal layer 3 after being applied with different voltages to form an electric field.
  • the liquid crystal molecules 31 are deflected, and the dielectric constant of the liquid crystal layer 3 is changed. Therefore, the phase of the microwave signal can be changed, and the electrode strips 211 and the center band 13 in different phase adjustment units 21 are adjusted with different phase shift amounts after being applied with different voltages.
  • each phase adjustment unit 21 adjusts a corresponding phase shift amount, so when the phase shift amount is adjusted, a voltage can be applied to the corresponding phase adjustment unit 21 according to the magnitude of the phase shift amount to be adjusted without having to
  • the phase adjustment unit 21 applies a voltage, so that the phase shifter in this embodiment is convenient to control and has low power consumption.
  • This embodiment provides a liquid crystal antenna including a liquid crystal phase shifter according to any one of the above embodiments.
  • a liquid crystal phase shifter for example, on the side of the second substrate 20 facing away from the liquid crystal layer 3, at least two patch units (not shown in the figure) may also be provided, for example, a gap between each two adjacent patch units and an electrode strip. The gaps are set accordingly. In this way, the microwave signals that have undergone phase adjustment by the phase shifter in the foregoing embodiment can be radiated from the gap between the patch units.
  • the liquid crystal antenna also includes a feeding interface (not shown in the figure), which is used to feed the microwave signal in the cable to the microwave transmission structure 1 (for example, the microstrip line 11 shown in FIG. 1). Or the center band 13) shown in FIG. 4.
  • a feeding interface (not shown in the figure), which is used to feed the microwave signal in the cable to the microwave transmission structure 1 (for example, the microstrip line 11 shown in FIG. 1). Or the center band 13) shown in FIG. 4.
  • the phase adjustment structure in the liquid crystal phase shifter includes a plurality of phase adjustment units, and each phase adjustment unit After different voltages are applied to the microwave transmission structure to form an electric field, the liquid crystal molecules of the liquid crystal layer are driven to deflect and the dielectric constant of the liquid crystal layer is changed. Therefore, the phase of the microwave signal can be changed, and after different voltages are applied to different phase adjustment units and microwave transmission structures, the adjusted phase shift amounts are different from each other.
  • each phase adjustment unit adjusts a corresponding phase shift amount, so when the phase shift amount is adjusted, a voltage can be applied to the corresponding phase adjustment unit according to the magnitude of the phase shift amount to be adjusted without having to adjust all the phases.
  • the unit applies a voltage, so that the liquid crystal antenna in this embodiment is convenient to control and has low power consumption.
  • An embodiment of the present disclosure provides a communication device, which may include a liquid crystal antenna according to the above-mentioned embodiments of the present disclosure.
  • the communication device can have low power consumption.
  • An embodiment of the present disclosure provides a method for operating a liquid crystal phase shifter, wherein the liquid crystal phase shifter is the liquid crystal phase shifter described in any one of the embodiments shown in FIG. 1 to FIG. 6.
  • the method may include the steps of: applying a first voltage to the microwave transmission structure 1 (for example, a microstrip line 11 shown in FIG. 1 or a center band 13 shown in FIG. 4); and applying the first voltage to the microwave transmission structure 1 according to a desired amount of phase shift.
  • At least one of the plurality of phase adjustment units 21 applies a second voltage different from the first voltage to generate an electric field between the microwave transmission structure 1 and the at least one phase adjustment unit 21 such that
  • the long axis of the liquid crystal molecules 31 of the liquid crystal layer 3 is substantially parallel to the direction of the electric field (this is for positive liquid crystal molecules) or substantially perpendicular (this is for negative liquid crystal molecules).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Liquid Crystal (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

液晶移相器、液晶天线、通信设备和操作液晶移相器的方法。一种液晶移相器包括:相对设置的微波传输结构(1)和相位调整结构(2),以及位于微波传输结构(1)与相位调整结构(2)之间的液晶层(3);其中,相位调整结构(2)包括多个相位调整单元(21);多个相位调整单元(21)用于根据其上施加的电压和微波传输结构(1)上施加的电压,改变液晶层(3)的介电常数,以调整微波信号的相位;以及多个相位调整单元(21)调整的相移量彼此不同。

Description

液晶移相器及其操作方法、液晶天线和通信设备
相关申请的交叉引用
本申请要求于2018年8月10日提交的中国专利申请No.201810910040.8的优先权,该专利申请的全部内容通过引用方式合并于此。
技术领域
本公开属于通信技术领域,具体涉及一种液晶移相器、一种液晶天线、一种通信设备和一种操作液晶移相器的方法。
背景技术
移相器是用来改变电磁波信号相位的器件。理想的移相器有很小的插入损耗,而且在不同的相位状态有几乎相同的损耗,以达到幅度的平衡。移相器的类型有电控、光控、磁控、机械控制等几种类型。移相器的基本功能是借助于控制偏压来改变微波信号的传输相位。移相器分为数字式移相器(其相移量离散可调)和模拟式移相器(其相移量连续可调)。数字式移相器是相控阵天线中重要部件,用于控制天线阵中各路信号的相位,可使辐射波束进行电扫描。数字式移相器也常用于在数字通信系统,作为相位调制器。
发明内容
本公开的实施例提供了一种液晶移相器、一种液晶天线、一种通信设备和一种操作液晶移相器的方法。
本公开的第一方面提供了一种液晶移相器,包括:
相对设置的微波传输结构和相位调整结构,以及位于所述微波传输结构与所述相位调整结构之间的液晶层;其中,
所述相位调整结构包括多个相位调整单元;
所述多个相位调整单元用于根据其上施加的电压和所述微波传输结构上施加的电压,改变所述液晶层的介电常数,以调整微波信号的相位;以及
所述多个相位调整单元调整的相移量彼此不同。
在一个实施例中,所述微波传输结构包括:
第一基底;
微带线,其位于所述第一基底靠近所述液晶层的侧面上;以及
地电极,其位于所述第一基底背离所述液晶层的侧面上;
其中,所述多个相位调整单元用于根据其上施加的电压和所述微带线上施加的电压,改变所述液晶层的介电常数,以调整所述微波信号的所述相位。
在一个实施例中,所述相位调整结构包括第二基底;其中,
所述多个相位调整单元设置在所述第二基底靠近所述液晶层的侧面上;以及
所述多个相位调整单元中的每一个包括设置在所述第二基底的靠近所述液晶层的侧面上的、间隔设置的多个电极条,每一个所述电极条与所述微带线在所述第一基底上的正投影至少部分重叠,且所述多个相位调整单元中的电极条的数量不同。
在一个实施例中,每一个所述电极条的长度方向与所述微带线的长度方向互相垂直。
在一个实施例中,所述微波传输结构包括:
第一基底;以及
共面波导层,其位于所述第一基底靠近所述液晶层的侧面上。
在一个实施例中,所述共面波导层包括:
中心带,其位于所述第一基底靠近所述液晶层的侧面上;以及
两条接地带,它们分设于所述中心带的两侧;
其中,所述多个相位调整单元用于根据其上施加的电压和所述中心带上施加的电压,改变所述液晶层的介电常数,以调整微波信号的相位。
在一个实施例中,所述相位调整结构包括第二基底;其中,
所述多个相位调整单元设置在所述第二基底靠近所述液晶层的侧面上;以及
所述多个相位调整单元中的每一个包括设置在所述第二基底的靠近所述液晶层的侧面上的、间隔设置的多个电极条,每一个所述电极条与所述中心带在所述第一基底上的正投影至少部分重叠,且所述多个相位调整单元中的电极条的数量不同。
在一个实施例中,每一个所述电极条的长度方向与所述中心带的长度方向互相垂直。
在一个实施例中,在所述第二基底的靠近所述液晶层的侧面的周边区还设置有与所述多个相位调整单元一一对应的多条偏置线,每一条所述偏置线连接与之对应的所述相位调整单元中的各电极条。
在一个实施例中,任意相邻两个所述电极条之间的间距恒定。
在一个实施例中,所述电极条的材料包括铝、银、金、铬、钼、镍、铁中的任意一种。
在一个实施例中,所述两条接地带中的每一条与所述中心带彼此间隔开,并且所述两条接地带中的每一条的长度方向与所述中心带的长度方向彼此平行。
在一个实施例中,所述多个相位调整单元彼此串联连接。
在一个实施例中,所述第一基底采用玻璃、陶瓷和高纯度石英玻璃中的至少一种制成。
在一个实施例中,所述液晶层包括正性液晶分子,并且每一个所述正性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于0度小于等于45度。
在一个实施例中,所述液晶层包括负性液晶分子,并且每一个所述负性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于45度小于90度。
在一个实施例中,所述液晶移相器为数字移相器,所述数字移相器的位数N等于所述多个相位调整单元的个数,并且所述数字移相器被配置为实现2 N个不同的相移量。
本公开的第二方面提供了一种液晶天线,该液晶天线包括根据 本公开的上述实施例中的任一个的液晶移相器。
本公开的第三方面提供了一种通信设备,该通信设备包括根据本公开的上述实施例所述的液晶天线。
本公开的第四方面提供了一种操作液晶移相器的方法,其中,所述液晶移相器为根据本公开的上述实施例中的任一个所述的液晶移相器,所述方法包括:
向所述微波传输结构施加第一电压;
根据相移量向所述多个相位调整单元中的至少一个相位调整单元施加不同于所述第一电压的第二电压以在所述微波传输结构和所述至少一个相位调整单元之间产生电场,使得所述液晶层的液晶分子的长轴与所述电场的方向实质上平行或实质上垂直。
附图说明
图1为根据本公开的实施例的液晶移相器的截面图;
图2为根据本公开的实施例的液晶移相器的俯视透视图;
图3为图2中所示的液晶移相器的部分A的放大图;
图4为根据本公开的实施例的液晶移相器的截面图;
图5为根据本公开的实施例的液晶移相器的俯视透视图;以及
图6为图5中所示的液晶移相器的部分B的放大图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和示例性实施方式对本公开作进一步详细描述。
除非另有定义,否则本公开的实施例和权利要求中使用的技术术语或者科学用语应当为本公开所属技术领域内具有一般技能的人士所能理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同物,而不排除其他元件或者物件的存在。“连接”或者“相连”等类 似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的连接。“上”、“下”、“左”、“右”等仅用于表示附图中的相对位置关系,当被描述的对象的绝对位置改变后,这些相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基底之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
本公开的实施例提供一种数字型液晶移相器,包括:相对设置的微波传输结构和相位调整结构,以及位于微波传输结构与所述相位调整结构之间的液晶层。相位调整结构包括多个相位调整单元;所述多个相位调整单元用于根据其上施加的电压和微波传输结构上施加的电压,改变液晶层的介电常数,以调整微波信号的相位。所述多个相位调整单元调整的相移量彼此不同。
在此需要说明的是,移相器的位数决定了相位调整单元的个数,或者移相器的位数取决于相位调整单元的个数。也即,如果移相器的位数为N,则可以确定相位调整单元的个数为N个,反之亦然。在此情况下,所述移相器可以实现2 N个不同的相移量(或者称之为相位状态)。在一个实施例中,所述移相器可以实现的最小相移量可以为360°/2 N
由于在本实施例的液晶移相器中,相位调整结构包括多个相位调整单元,且每个相位调整单元和微波传输结构在被施加电压形成电场后,驱动液晶层偏转,改变液晶层的介电常数。因此,可以改变微波信号的相位,而且不同的相位调整单元和微波传输结构在被施加电压后,调整的相移量彼此不同。也即每一个相位调整单元调整一个对应的相移量。故可以在相移量调整时,根据要调整的相移量的大小来向相应的相位调整单元施加电压,而无需对所有的相位调整单元施加电压,从而使得本实施例中的移相器方便控制,且功耗较小。
图1为根据本公开的实施例的液晶移相器的截面图,图2为该液晶移相器的俯视透视图。例如,图1为该液晶移相器的沿着图2中所示的线I-I’的截面图。如图1所示,本公开的实施例提供一种 数字型液晶移相器,包括:相对设置的微波传输结构1和相位调整结构2,以及位于微波传输结构1与所述相位调整结构2之间的液晶层3。该液晶移相器中的微波传输结构1包括:第一基底10,设置在第一基底10靠近液晶层3的侧面上的微带线11,以及位于第一基底10背离液晶层3的侧面上的地电极12。相位调整结构2中的多个相位调整单元21中的每一个均包括设置在第二基底20靠近液晶层3的侧面上的多个电极条211(参见图2和图3),且不同的相位调整单元21中的电极条211的数量不同。例如,微带线11和每一个电极条211在基底上的正投影至少部分重叠。在一个实施例中,微带线11可以设置在第一基底10靠近液晶层3的侧面的中部,并且地电极12可以完全覆盖第一基底10背离液晶层3的侧面,如图1所示。在一个实施例中,所述多个相位调整单元21彼此串联连接。
例如,在该种移相器中微带线11在作为微波传输结构1中的部分结构同时,还作为相位调整结构2中的部分结构。也就是说,微带线11即可以被加载电压,还可以接收或者发送微波信号。例如,在图1所示的实施例中,采用微带线11和地电极12来形成微波传输结构1,此时,大部分微波信号将在微带线11和地电极12之间的第一基底10中进行传输。为了有效地降低微波的损耗,第一基底10可以采用玻璃、陶瓷等材料制成。这样,微波信号在第一基底10中传输是不会被吸收的,故可以有效的降低微波的损耗。
例如,为了方便控制,以及布线简单,每个相位调整单元21中的全部电极条211可以采用同一偏置线22控制。
例如,如图2和3所示,以六位液晶数字型液晶移相器为例来说明。该移相器共有6个相位调整单元21,不同相位调整单元21中的电极条211的数量不同;每个相位调整单元21通过一个偏置线22对其进行独立控制,以实现64个不同的相位量的相移。在图2中,6个相位调整单元21和6条偏置线22可以一一对应。例如:在一个实施例中,图2中所示的6个相位调整单元21从上至下用于实现的相移量可以分别为0.9°、1.5°、3.1°、6.1°、11.5°和23.1°。但是,本公开不限于此。例如,每一个相位调整单元21(或者每一 个电极条211)能实现的相移量可以与相位调整单元21(或该电极条211)的材料和尺寸有关,并且可以通过实验或仿真来确定。例如,在一个实施例中,图2中所示的6个相位调整单元21从上至下分别为第一相位调整单元21至第六相位调整单元21。第一相位调整单元21用于实现的相移量可以为360°/2 6=5.625°,1.5°,第二相位调整单元21用于实现的相移量可以为第一相位调整单元21的相移量的2倍,即为5.625°×2=11.25°,第三相位调整单元21用于实现的相移量可以为第二相位调整单元21的相移量的2倍,即为11.25°×2=22.5°,第四相位调整单元21用于实现的相移量可以为第三相位调整单元21的相移量的2倍,即为22.5°×2=45°,第五相位调整单元21用于实现的相移量可以为第四相位调整单元21的相移量的2倍,即为45°×2=90°,并且第六相位调整单元21用于实现的相移量可以为第五相位调整单元21的相移量的2倍,即为90°×2=180°。可替换地,每一个相位调整单元21(或者每一个电极条211)能实现的相移量可以根据实际用于来进行设计,以实现其他的相移量。
假若要使微波信号实现0.9°相移量时,只需给该相移量所对应的第一个相位调整单元21(例如,图2中最上面的相位调整单元21)所连接的偏置线22加载第二电压,以使偏置线22将该第二电压输出给与其连接的电极条211,同时给微带线11加载不同于第二电压的第一电压。此时,微带线11和被加载电压的电极条211之间产生电场驱动液晶层3的液晶分子31偏转,从而改变液晶层3的介电常数,从而使得微波信号的相位产生0.9°的相移。而假若要使微波信号实现的相移量为2.4°(=0.9°+1.5°)时,则需要控制第一个相位调整单元21和第二个相位调整单元21(例如,图2中最上面的相位调整单元21和与其相邻的相位调整单元21)所连接的偏置线22均被加载第二电压,以控制这两个相位调整单元21中的电极条211被加载第二电压,同时给微带线11加载第一电压。此时,微带线11和被加载电压的电极条211之间产生电场驱动液晶层3的液晶分子31偏转,从而改变液晶层3的介电常数,从而使得微波信号的相位 产生2.4°的相移。同理,若实现其它相移量(例如,上述6个相移量0.9°、1.5°、3.1°、6.1°、11.5°和23.1°中的至少一个中除了0.9°和2.4°以外的相移量)时,则需要控制可以单个或组合来实现该相移量的相位调整单元21,按照上述方法工作,以改变微波信号的相位。
例如,在该种移相器中,第二基底20上所有电极条211可以呈周期性排布。具体的,可以将任意相邻两个电极条211之间的间距设置为相同的(即,恒定的)。可替换地,也可以如此设置各个电极条211使得任意相邻两个电极条211之间的间距按照一定的规律分布。之所如此设置是为了方便电极条211的控制。
例如,电极条211的长度方向(例如,图2中的水平方向)与微带线11的长度方向(例如,图2中的竖直方向)互相垂直。在此需要说明的是,电极条211的长度方向和微带线11的长度方向均是指各自的长轴方向。之所以如此设置是,为了让每个电极条211与微带线11的交叠面积足够大,以使在对每个相位调整单元21中电极条211施加电压时,该相位调整单元21中电极条211能够和微带线11之间形成的电场足够大,以驱动它们之间的液晶分子31偏转,改变液晶层3的介电常数,以实现期望的移相量。
例如,第一基底10和第二基底20可以采用厚度为100-1000微米的玻璃基底,也可采用蓝宝石衬底,还可以使用厚度为10-500微米的聚对苯二甲酸乙二酯基底、三聚氰酸三烯丙酯基底和聚酰亚胺透明柔性基底。例如,第一基底10和第二基底20可以采用介电损耗极低的高纯度石英玻璃。相比于普通玻璃基底,第一基底10和第二基底20采用高纯度石英玻璃可以有效减小对微波的损耗,使移相器具有低的功耗和高的信噪比。例如,高纯度石英玻璃指的是其中SiO 2的重量百分比大于或等于99.9%的石英玻璃。
例如,微带线11、地电极12、每个电极条211的材料均可以采用铝、银、金、铬、钼、镍或铁等金属制成。可替换地,微带线11还可以采用透明导电氧化物制成。
例如,液晶层3中的液晶分子31可以为正性液晶分子或负性液 晶分子。需要说明的是,当液晶分子31为正性液晶分子时,每个液晶分子31的长轴方向与第一基底10所在的平面之间的夹角大于0度小于等于45度。当液晶分子31为负性液晶分子时,每个液晶分子31长轴方向与第一基底10所在的平面之间的夹角大于45度小于90度。这样,保证了液晶分子31发生偏转后,改变液晶层3的介电常数,以达到移相的目的。
由于在本实施例的液晶移相器中,相位调整结构2包括多个相位调整单元21,且每个相位调整单元21和微带线11在被施加不同的电压以形成电场后,驱动液晶层3的液晶分子31偏转,改变液晶层3的介电常数。因此,可以改变微波信号的相位,而且不同的相位调整单元21中电极条211和微带线11在被施加不同的电压后,调整的相移量彼此不同。也即每一个相位调整单元21调整一个对应的相移量,故可以在相移量调整时,根据要调整的相移量的大小来向相应的相位调整单元21施加电压,而无需对所有的相位调整单元21施加电压,从而使得本实施例中的移相器方便控制,且功耗较小。而且采用微带线11和地电极12作为微波传输结构1,此时,大部分微波信号的将在微带线11和地电极12之间的第一基底10中进行传输,而第一基底10可以采用玻璃、陶瓷或高纯度石英玻璃来制成,微波信号在第一基底10中传输是不会被吸收的,故可以有效的降低微波的损耗。
图4为根据本公开的另一实施例的液晶移相器的截面图,图5为该液晶移相器的俯视透视图。例如,图4为该液晶移相器的沿着图5中所示的线II-II’的截面图。如图4所示,本实施例提供另一种数字型液晶移相器,包括:相对设置的微波传输结构1和相位调整结构2,以及位于微波传输结构1与所述相位调整结构2之间的液晶层3;该种移相器中的微波传输结构1包括:第一基底10,以及位于第一基底10靠近液晶层3的侧面上的共面波导层。例如,该共面波导层可以包括:中心带13,位于第一基底10上,例如,位于第一基底10靠近液晶层3的侧面的中部;两条接地带14,它们分设于所述中心带13的两侧。在一个实施例中,所述两条接地带14中的每一条与 所述中心带彼此间隔开,并且所述两条接地带14中的每一条的长度方向与所述中心带13的长度方向彼此平行,如图5和图6所示。在一个实施例中,所述中心带13可以与上述实施例中的微带线11相同。相位调整结构2包括:第二基底20,以及位于第二基底20靠近液晶层3上多个相位调整单元21。例如,每个相位调整单元21包括:设置在所述第二基底20的靠近液晶层3的侧面上的、间隔设置的多个电极条211,每一个电极条211与中心带13在所述第一基底10上的正投影至少部分重叠,且所述多个相位调整单元21中的电极条211的数量不同。例如,所述多个相位调整单元21可以彼此串联连接。
例如,在该种移相器中微波信号在共面波导层的中心带13和接地带14之间所限定的区域传输,而将共面波导层应用至移相器中时,液晶层3的厚度会设计的相对较薄一些,大致在4-5μm,因此微波信号会在液晶层3中传输,但是微波信号的损耗也是相对较少的。
例如,为了方便控制,以及布线简单,每个相位调整单元21中的各个电极条211可以采用同一偏置线22控制。
例如,如图5和6所示,以六位液晶数字型液晶移相器为例,该移相器共有6个相位调整单元21,不同相位调整单元21中的电极条211的数量不同;每个相位调整单元21通过一个偏置线22对其进行独立控制,以实现64个不同相位量的相移。在图5中,6个相位调整单元21和6条偏置线22可以一一对应。例如:在一个实施例中,图5中所示的6个相位调整单元21从上至下用于实现的相移量可以分别为0.9°、1.5°、3.1°、6.1°、11.5°和23.1°。
假若要使微波信号实现0.9°相移量时,只需给该相移量所对应的第一个相位调整单元21(例如,图5中最上面的相位调整单元21)所连接的偏置线22加载第二电压,以使偏置线22将该第二电压输出给与其连接的电极条211,同时给中心带13加载不同于第二电压的第一电压。此时,中心带13和被加载电压的电极条211之间产生电场驱动液晶层3的液晶分子31偏转,从而改变液晶层3的介电常数,从而使得微波信号的相位产生0.9°的相移。而假若要使微波信号实现的相移量为2.4°(=0.9°+1.5°)时,则需要控制第一个相位 调整单元21和第二个相位调整单元21(例如,图5中最上面的相位调整单元21和与其相邻的相位调整单元21)所连接的偏置线22均被加载第二电压,以控制这两个相位调整单元21中的电极条211被加载第二电压,同时给中心带13加载不同于第二电压的第一电压。此时,中心带13和被加载电压的电极条211之间产生电场驱动液晶层3的液晶分子31偏转,从而改变液晶层3的介电常数,从而使得微波信号的相位产生2.4°的相移。同理,若实现其它相移量(例如,上述6个相移量0.9°、1.5°、3.1°、6.1°、11.5°和23.1°中的至少一个中除了0.9°和2.4°以外的相移量)时,则需要控制可以单个或组合来实现该相移量的相位调整单元21,按照上述方法工作,以改变微波信号的相位。
例如,在该种移相器中,第二基底20上所有电极条211可以呈周期性排布。具体的,可以将任意相邻两个电极条211之间的间距设置为相同的(即,恒定的)。当然,也可以如此设置各个电极条211使得任意相邻两个电极条211之间的间距按照一定的规律分布。之所如此设置是为了方便电极条211的控制。
例如,每一个电极条211的长度方向(例如,图5中的水平方向)与中心带13的长度方向(例如,图5中的竖直方向)互相垂直。在此需要说明的是,每一个电极条211的长度方向和中心带13的长度方向均是指各自的长轴方向。之所以如此设置是,为了让每个电极条211与中心带13的交叠面积足够大,以使在对每个相位调整单元21中电极条211施加电压时,该相位调整单元21中的电极条211能够和中心带13之间形成的电场足够大,以驱动液晶分子31偏转,改变液晶层3的介电常数,以实现期望的移相量。
例如,第一基底10和第二基底20可以采用厚度为100-1000微米的玻璃基底,也可采用蓝宝石衬底,还可以使用厚度为10-500微米的聚对苯二甲酸乙二酯基底、三聚氰酸三烯丙酯基底和聚酰亚胺透明柔性基底。例如,第一基底10和第二基底20可以采用介电损耗极低的高纯度石英玻璃。相比于普通玻璃基底,第一基底10和第二基底20采用高纯度石英玻璃可以有效减小对微波的损耗,使移相器具 有低的功耗和高的信噪比。
例如,中心带13、接地带14,以及每一个电极条211的材料均可以采用铝、银、金、铬、钼、镍或铁等金属制成。
例如,液晶层3中的液晶分子31可以为正性液晶分子或负性液晶分子。需要说明的是,当液晶分子31为正性液晶分子时,每个液晶分子31的长轴方向与第一基底10所在的平面之间的夹角大于0度小于等于45度。当液晶分子31为负性液晶分子31时,每个液晶分子31的长轴方向与第一基底10所在的平面之间的夹角大于45度小于90度。这样,保证了液晶分子31发生偏转后,改变液晶层3的介电常数,以达到移相的目的。
本实施例的移相器的其它方面可以与图1至图3所对应的实施例的移相器的那些相同,在此不再赘述。
由于在本实施例的液晶移相器中,相位调整结构2包括多个相位调整单元21,且每个相位调整单元21和中心带13在被施加不同的电压以形成电场后,驱动液晶层3的液晶分子31偏转,改变液晶层3的介电常数。因此,可以改变微波信号的相位,而且不同的相位调整单元21中电极条211和中心带13在被施加不同电压后,调整的相移量彼此不同。也即每一个相位调整单元21调整一个对应的相移量,故可以在相移量调整时,根据要调整的相移量的大小来向相应的相位调整单元21施加电压,而无需对所有的相位调整单元21施加电压,从而使得本实施例中的移相器方便控制,且功耗较小。
本实施例提供一种液晶天线,该液晶天线包括根据上述各个实施例中的任意一个的液晶移相器。例如,在第二基底20的背离液晶层3的一侧还可以设置有至少两个贴片单元(图中未示出),例如,每相邻两个贴片单元之间的间隙与电极条之间的间隙对应设置。这样一来,可以使得经过上述实施例中的移相器进行相位调整后的微波信号从贴片单元之间的间隙辐射出去。
此外,在液晶天线中还包括馈电接口(图中未示出),该馈电接口用于将电缆中的微波信号馈入至微波传输结构1(例如,图1所示的微带线11或图4所示的中心带13)上。
由于本实施例中的液晶天线包括根据本公开的上述各个实施例中的任意一个的液晶移相器,该液晶移相器中的相位调整结构包括多个相位调整单元,且每个相位调整单元和微波传输结构在被施加不同的电压以形成电场后,驱动液晶层的液晶分子偏转,改变液晶层的介电常数。因此,可以改变微波信号的相位,而且不同的相位调整单元和微波传输结构在被施加不同的电压后,调整的相移量彼此不同。也即每一个相位调整单元调整一个对应的相移量,故可以在相移量调整时,根据要调整的相移量的大小来向相应的相位调整单元施加电压,而无需对所有的相位调整单元施加电压,从而使得本实施例中的液晶天线方便控制,且功耗较小。
本公开的实施例提供了一种通信设备,该通信设备可以包括根据本公开的上述实施例的液晶天线。该通信设备可以具有低功耗。
本公开的实施例提供了一种操作液晶移相器的方法,其中,所述液晶移相器为图1至图6所示的实施例中的任意一个所述的液晶移相器,所述方法可以包括以下步骤:向所述微波传输结构1(例如,图1所示的微带线11或图4所示的中心带13)施加第一电压;并且根据期望的相移量向所述多个相位调整单元21中的至少一个相位调整单元21施加不同于所述第一电压的第二电压,以在所述微波传输结构1和所述至少一个相位调整单元21之间产生电场,使得所述液晶层3的液晶分子31的长轴与所述电场的方向实质上平行(这是针对正性液晶分子而言的)或实质上垂直(这是针对负性液晶分子而言的)。
应当理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也属于本公开的保护范围。

Claims (20)

  1. 一种液晶移相器,包括:
    相对设置的微波传输结构和相位调整结构,以及位于所述微波传输结构与所述相位调整结构之间的液晶层;其中,
    所述相位调整结构包括多个相位调整单元;
    所述多个相位调整单元用于根据其上施加的电压和所述微波传输结构上施加的电压,改变所述液晶层的介电常数,以调整微波信号的相位;以及
    所述多个相位调整单元调整的相移量彼此不同。
  2. 根据权利要求1所述的液晶移相器,其中,所述微波传输结构包括:
    第一基底;
    微带线,其位于所述第一基底靠近所述液晶层的侧面上;以及
    地电极,其位于所述第一基底背离所述液晶层的侧面上;
    其中,所述多个相位调整单元用于根据其上施加的电压和所述微带线上施加的电压,改变所述液晶层的介电常数,以调整所述微波信号的所述相位。
  3. 根据权利要求2所述的液晶移相器,其中,所述相位调整结构包括第二基底;其中,
    所述多个相位调整单元设置在所述第二基底靠近所述液晶层的侧面上;以及
    所述多个相位调整单元中的每一个包括设置在所述第二基底的靠近所述液晶层的侧面上的、间隔设置的多个电极条,每一个所述电极条与所述微带线在所述第一基底上的正投影至少部分重叠,且所述多个相位调整单元中的电极条的数量不同。
  4. 根据权利要求3所述的液晶移相器,其中,每一个所述电极 条的长度方向与所述微带线的长度方向互相垂直。
  5. 根据权利要求1所述的液晶移相器,其中,所述微波传输结构包括:
    第一基底;以及
    共面波导层,其位于所述第一基底靠近所述液晶层的侧面上。
  6. 根据权利要求5所述的液晶移相器,其中,所述共面波导层包括:
    中心带,其位于所述第一基底靠近所述液晶层的侧面上;以及
    两条接地带,它们分设于所述中心带的两侧;
    其中,所述多个相位调整单元用于根据其上施加的电压和所述中心带上施加的电压,改变所述液晶层的介电常数,以调整微波信号的相位。
  7. 根据权利要求6所述的液晶移相器,其中,所述相位调整结构包括第二基底;其中,
    所述多个相位调整单元设置在所述第二基底靠近所述液晶层的侧面上;以及
    所述多个相位调整单元中的每一个包括设置在所述第二基底的靠近所述液晶层的侧面上的、间隔设置的多个电极条,每一个所述电极条与所述中心带在所述第一基底上的正投影至少部分重叠,且所述多个相位调整单元中的电极条的数量不同。
  8. 根据权利要求7所述的液晶移相器,其中,每一个所述电极条的长度方向与所述中心带的长度方向互相垂直。
  9. 根据权利要求3、7所述的液晶移相器,其中,在所述第二基底的靠近所述液晶层的侧面的周边区还设置有与所述多个相位调整单元一一对应的多条偏置线,每一条所述偏置线连接与之对应的所述 相位调整单元中的各电极条。
  10. 根据权利要求3、4、7和8中任一项所述的液晶移相器,其中,任意相邻两个所述电极条之间的间距恒定。
  11. 根据权利要求3、4、7和8中任一项所述的液晶移相器,其中,所述电极条的材料包括铝、银、金、铬、钼、镍、铁中的任意一种。
  12. 根据权利要求6所述的液晶移相器,其中,所述两条接地带中的每一条与所述中心带彼此间隔开,并且所述两条接地带中的每一条的长度方向与所述中心带的长度方向彼此平行。
  13. 根据权利要求1至12中任一项所述的液晶移相器,其中,所述多个相位调整单元彼此串联连接。
  14. 根据权利要求1至13中任一项所述的液晶移相器,其中,所述第一基底采用玻璃、陶瓷和高纯度石英玻璃中的至少一种制成。
  15. 根据权利要求1至14中任一项所述的液晶移相器,其中,所述液晶层包括正性液晶分子,并且每一个所述正性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于0度小于等于45度。
  16. 根据权利要求1至14中任一项所述的液晶移相器,其中,所述液晶层包括负性液晶分子,并且每一个所述负性液晶分子的长轴方向与所述第一基底所在的平面之间的夹角大于45度小于90度。
  17. 根据权利要求1至16中任一项所述的液晶移相器,其中,所述液晶移相器为数字移相器,所述数字移相器的位数N等于所述多个相位调整单元的个数,并且所述数字移相器被配置为实现2 N个不 同的相移量。
  18. 一种液晶天线,包括根据权利要求1至17中任一项所述的液晶移相器。
  19. 一种通信设备,包括根据权利要求18所述的液晶天线。
  20. 一种操作液晶移相器的方法,其中,所述液晶移相器为根据权利要求1至17中任一项所述的液晶移相器,所述方法包括:
    向所述微波传输结构施加第一电压;
    根据相移量向所述多个相位调整单元中的至少一个相位调整单元施加不同于所述第一电压的第二电压以在所述微波传输结构和所述至少一个相位调整单元之间产生电场,使得所述液晶层的液晶分子的长轴与所述电场的方向实质上平行或实质上垂直。
PCT/CN2019/099798 2018-08-10 2019-08-08 液晶移相器及其操作方法、液晶天线和通信设备 WO2020030046A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/641,444 US11563260B2 (en) 2018-08-10 2019-08-08 Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
JP2020530340A JP7433229B2 (ja) 2018-08-10 2019-08-08 液晶移相器及びその操作方法、液晶アンテナ及び通信装置
EP19847245.8A EP3835852A4 (en) 2018-08-10 2019-08-08 LIQUID CRYSTAL PHASE SHIFTER AND METHOD OF OPERATION THEREOF, LIQUID CRYSTAL ANTENNA AND COMMUNICATION DEVICE
US17/990,001 US11876275B2 (en) 2018-08-10 2022-11-18 Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810910040.8A CN110824734A (zh) 2018-08-10 2018-08-10 液晶移相器及液晶天线
CN201810910040.8 2018-08-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/641,444 A-371-Of-International US11563260B2 (en) 2018-08-10 2019-08-08 Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
US17/990,001 Continuation US11876275B2 (en) 2018-08-10 2022-11-18 Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2020030046A1 true WO2020030046A1 (zh) 2020-02-13

Family

ID=69413972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099798 WO2020030046A1 (zh) 2018-08-10 2019-08-08 液晶移相器及其操作方法、液晶天线和通信设备

Country Status (5)

Country Link
US (2) US11563260B2 (zh)
EP (1) EP3835852A4 (zh)
JP (1) JP7433229B2 (zh)
CN (1) CN110824734A (zh)
WO (1) WO2020030046A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490672A (zh) * 2020-10-30 2021-03-12 南京邮电大学 一种基于微波液晶衬底的电调谐天线
CN113809491A (zh) * 2021-08-27 2021-12-17 苏治国 枝节加载的快速响应型电调谐液晶移相器
CN114614245A (zh) * 2020-12-04 2022-06-10 上海中航光电子有限公司 一种天线及其制作方法
CN114824698A (zh) * 2021-01-19 2022-07-29 京东方科技集团股份有限公司 一种移相器

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824734A (zh) * 2018-08-10 2020-02-21 北京京东方传感技术有限公司 液晶移相器及液晶天线
CN110197939B (zh) * 2019-06-03 2024-04-19 北京华镁钛科技有限公司 一种超材料可调电容器结构
CN112448105B (zh) * 2019-08-29 2022-02-25 京东方科技集团股份有限公司 移相器及天线
CN113140878B (zh) * 2020-01-19 2022-07-05 京东方科技集团股份有限公司 一种移相器及天线
CN111176036B (zh) * 2020-02-26 2023-06-02 京东方科技集团股份有限公司 一种调谐器及其制备方法和控制方法、电子装置
CN113728512B (zh) 2020-03-24 2022-09-09 京东方科技集团股份有限公司 移相器及天线
CN111273470B (zh) * 2020-03-26 2023-04-18 京东方科技集团股份有限公司 液晶移相器及电子装置
WO2021189409A1 (zh) 2020-03-27 2021-09-30 京东方科技集团股份有限公司 移相器及其制备方法、天线
CN113690633A (zh) * 2020-05-18 2021-11-23 北京道古视界科技有限公司 一种基于二元全息编码的液晶阵列天线波束合成与控制方法
CN113871864A (zh) * 2020-06-30 2021-12-31 成都天马微电子有限公司 液晶天线及其制作方法
CN114063324B (zh) * 2020-08-06 2024-01-16 成都天马微电子有限公司 液晶移相器和液晶天线的测试方法和测试装置
TWI749987B (zh) * 2021-01-05 2021-12-11 友達光電股份有限公司 天線結構及陣列天線模組
CN115036658A (zh) * 2021-03-05 2022-09-09 上海天马微电子有限公司 移相单元及其制作方法、移相器、天线
DE112021001202T5 (de) * 2021-03-15 2022-12-22 Boe Technology Group Co., Ltd. Antenne und Temperatursteuersystem für die Antenne
CN113571909B (zh) * 2021-06-30 2024-02-09 上海中航光电子有限公司 天线单元、天线装置以及电子设备
CN113437495B (zh) 2021-06-30 2022-11-29 上海天马微电子有限公司 一种天线
CN113611991B (zh) * 2021-07-28 2022-12-23 北京华镁钛科技有限公司 一种液晶移相器、液晶天线和移相方法
CN115693156B (zh) * 2021-07-29 2024-02-27 北京京东方技术开发有限公司 天线、天线阵列及通信系统
CN113675551B (zh) * 2021-09-03 2023-07-04 上海天马微电子有限公司 液晶移相器和液晶天线
CN113889757B (zh) * 2021-11-16 2022-11-01 电子科技大学 一种基于液晶的多重极化可重构贴片天线
WO2023240396A1 (zh) * 2022-06-13 2023-12-21 京东方科技集团股份有限公司 天线、天线阵列及电子设备
CN115621687A (zh) * 2022-10-08 2023-01-17 中信科移动通信技术股份有限公司 移相控制系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103201A (ja) * 1997-09-29 1999-04-13 Mitsui Chem Inc 移相器、移相器アレイおよびフェーズドアレイアンテナ装置
US6842148B2 (en) * 2001-04-16 2005-01-11 Skycross, Inc. Fabrication method and apparatus for antenna structures in wireless communications devices
CN106450765A (zh) * 2016-09-08 2017-02-22 电子科技大学 一种毫米波可重构天线
CN106532200A (zh) * 2016-12-16 2017-03-22 合肥工业大学 一种基于石墨烯电极的反射式液晶移相单元
CN106684551A (zh) * 2017-01-24 2017-05-17 京东方科技集团股份有限公司 一种移相单元、天线阵、显示面板和显示装置
CN208654481U (zh) * 2018-08-10 2019-03-26 北京京东方传感技术有限公司 液晶移相器及液晶天线

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60026388T2 (de) * 1999-08-24 2006-11-30 Paratek Microwave, Inc. Spannungsgesteuerte koplanare Phasenschieber
DE10009453A1 (de) * 2000-02-29 2002-04-04 Daimler Chrysler Ag Phasenschieber und Anordnung aus mehreren Phasenschiebern
JP3830848B2 (ja) 2002-03-29 2006-10-11 英久 塩見 位相変調装置
EP2768072A1 (en) * 2013-02-15 2014-08-20 Technische Universität Darmstadt Phase shifting device
CN106773338B (zh) 2017-01-16 2020-02-18 京东方科技集团股份有限公司 一种液晶微波移相器
US10862219B2 (en) * 2017-10-30 2020-12-08 Wafer Llc Multi-layer liquid crystal phase modulator
CN110824734A (zh) * 2018-08-10 2020-02-21 北京京东方传感技术有限公司 液晶移相器及液晶天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103201A (ja) * 1997-09-29 1999-04-13 Mitsui Chem Inc 移相器、移相器アレイおよびフェーズドアレイアンテナ装置
US6842148B2 (en) * 2001-04-16 2005-01-11 Skycross, Inc. Fabrication method and apparatus for antenna structures in wireless communications devices
CN106450765A (zh) * 2016-09-08 2017-02-22 电子科技大学 一种毫米波可重构天线
CN106532200A (zh) * 2016-12-16 2017-03-22 合肥工业大学 一种基于石墨烯电极的反射式液晶移相单元
CN106684551A (zh) * 2017-01-24 2017-05-17 京东方科技集团股份有限公司 一种移相单元、天线阵、显示面板和显示装置
CN208654481U (zh) * 2018-08-10 2019-03-26 北京京东方传感技术有限公司 液晶移相器及液晶天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3835852A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490672A (zh) * 2020-10-30 2021-03-12 南京邮电大学 一种基于微波液晶衬底的电调谐天线
CN112490672B (zh) * 2020-10-30 2024-04-19 南京邮电大学 一种基于微波液晶衬底的电调谐天线
CN114614245A (zh) * 2020-12-04 2022-06-10 上海中航光电子有限公司 一种天线及其制作方法
CN114614245B (zh) * 2020-12-04 2023-10-13 上海中航光电子有限公司 一种天线及其制作方法
CN114824698A (zh) * 2021-01-19 2022-07-29 京东方科技集团股份有限公司 一种移相器
CN114824698B (zh) * 2021-01-19 2024-04-16 京东方科技集团股份有限公司 一种移相器
CN113809491A (zh) * 2021-08-27 2021-12-17 苏治国 枝节加载的快速响应型电调谐液晶移相器
CN113809491B (zh) * 2021-08-27 2023-02-14 苏治国 枝节加载的快速响应型电调谐液晶移相器

Also Published As

Publication number Publication date
JP7433229B2 (ja) 2024-02-19
JP2021535631A (ja) 2021-12-16
CN110824734A (zh) 2020-02-21
EP3835852A1 (en) 2021-06-16
US11876275B2 (en) 2024-01-16
US20230079873A1 (en) 2023-03-16
US20200203827A1 (en) 2020-06-25
US11563260B2 (en) 2023-01-24
EP3835852A4 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
WO2020030046A1 (zh) 液晶移相器及其操作方法、液晶天线和通信设备
CN208654481U (zh) 液晶移相器及液晶天线
JP7424977B2 (ja) 液晶移相器およびその操作方法、液晶アンテナ、通信機器
WO2019228213A1 (zh) 液晶移相器和天线
JP7307070B2 (ja) フェーズドアレイアンテナ、表示パネル及び表示装置
US11233301B2 (en) Liquid crystal phase shifter and antenna
WO2021259142A1 (zh) 移相器及天线
US20200343634A1 (en) Liquid crystal phase shifter and antenna
CN206349494U (zh) 一种液晶天线及通信设备
JP7433909B2 (ja) アンテナ構造及びその変調方法
US20220006165A1 (en) Feeding structure, microwave radio frequency device and antenna
CN110658646A (zh) 移相器及液晶天线
WO2021037132A1 (zh) 馈电结构、微波射频器件及天线
WO2021189238A1 (zh) 移相器及天线
CN112164875B (zh) 微带天线、通信设备
US20240085746A1 (en) Intelligent reflecting surface and intelligent reflecting device
US11189920B2 (en) Control substrate, liquid crystal phase shifter and method of forming control substrate
US10665932B2 (en) Control panel and radiation device using the same
US20220021094A1 (en) Liquid crystal phase shifter and antenna
TWI829947B (zh) 接地平面加熱器
US11799179B2 (en) Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
CN112198688A (zh) 液晶装置
WO2023181614A1 (ja) リフレクトアレイ
US20240006762A1 (en) Liquid Crystal Phase Shifter, Method for Operating the Same, Liquid Crystal Antenna, and Communication Apparatus
US20240186668A1 (en) Feeding structure, microwave radio frequency device and antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019847245

Country of ref document: EP

Effective date: 20210310