WO2022087872A1 - 相控阵天线系统及电子装置 - Google Patents

相控阵天线系统及电子装置 Download PDF

Info

Publication number
WO2022087872A1
WO2022087872A1 PCT/CN2020/124264 CN2020124264W WO2022087872A1 WO 2022087872 A1 WO2022087872 A1 WO 2022087872A1 CN 2020124264 W CN2020124264 W CN 2020124264W WO 2022087872 A1 WO2022087872 A1 WO 2022087872A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
phased array
array antenna
impedance
coplanar waveguide
Prior art date
Application number
PCT/CN2020/124264
Other languages
English (en)
French (fr)
Inventor
吴倩红
郭景文
李春昕
方家
曲峰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/426,651 priority Critical patent/US20220320750A1/en
Priority to CN202080002504.0A priority patent/CN114698406A/zh
Priority to PCT/CN2020/124264 priority patent/WO2022087872A1/zh
Publication of WO2022087872A1 publication Critical patent/WO2022087872A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/12Auxiliary devices for switching or interrupting by mechanical chopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM

Definitions

  • This article relates to, but is not limited to, the field of communication technology, especially a phased array antenna system and an electronic device.
  • Phased array antenna is the most important antenna form in satellite mobile communication systems. Compared with traditional mechanical scanning antennas, phased array antennas do not need to mechanically rotate the antenna plane, and mainly rely on phase changes to achieve antenna beam pointing in space. Moving and scanning, it has many advantages such as small size, low profile, fast response speed, wide scanning range and high scanning accuracy. The application range of phased array antennas is extremely wide. For example, it can be used in communication between vehicles and satellites, array radars for unmanned driving, or array radars for safety protection.
  • Embodiments of the present disclosure provide a phased array antenna system and an electronic device.
  • an embodiment of the present disclosure provides a phased array antenna system, including: a feeding structure and at least one phased array antenna element.
  • the at least one phased array antenna element includes: a first impedance transformation unit, a MEMS phase-shift multi-unit, and an antenna.
  • the first impedance transformation unit is connected between the feeding structure and the MEMS phase-shifting multi-unit, and the MEMS phase-shifting multi-unit is connected between the first impedance transformation unit and the antenna.
  • embodiments of the present disclosure provide an electronic device including the phased array antenna system as described above.
  • FIG. 1 is a schematic structural diagram of a phased array antenna system according to at least one embodiment of the disclosure
  • FIG. 2A is a schematic diagram of a feeding structure according to at least one embodiment of the disclosure.
  • 2B is another schematic diagram of a feeding structure according to at least one embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a phased array antenna element according to at least one embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of a MEMS phase-shifting multi-unit according to at least one embodiment of the disclosure.
  • 5A is a schematic structural diagram of a first impedance transformation unit according to at least one embodiment of the disclosure.
  • 5B is another schematic structural diagram of the first impedance transformation unit according to at least one embodiment of the disclosure.
  • FIG. 6A is a schematic structural diagram of a first switching unit according to at least one embodiment of the disclosure.
  • 6B is another schematic structural diagram of the first switching unit according to at least one embodiment of the disclosure.
  • 6C is another schematic structural diagram of the first switching unit according to at least one embodiment of the disclosure.
  • 6D is still another schematic structural diagram of the first switching unit according to at least one embodiment of the disclosure.
  • FIG. 7 is another schematic structural diagram of a phased array antenna element according to at least one embodiment of the disclosure.
  • FIG. 8 is a top view of the phased array antenna element shown in FIG. 7;
  • FIG. 9 is another schematic structural diagram of a phased array antenna element according to at least one embodiment of the present disclosure.
  • FIG. 10 is a top view of the phased array antenna element shown in FIG. 9;
  • FIG. 9 are schematic diagrams of simulation results of the phased array antenna element shown in FIG. 9;
  • FIG. 12 is another schematic structural diagram of a phased array antenna element according to at least one embodiment of the disclosure.
  • FIG. 13 is another schematic structural diagram of a phased array antenna element according to at least one embodiment of the disclosure.
  • FIG. 14 is another schematic structural diagram of a phased array antenna element according to at least one embodiment of the disclosure.
  • 15 is another schematic structural diagram of a phased array antenna element according to at least one embodiment of the disclosure.
  • FIG. 16 is a schematic diagram of an electronic device according to at least one embodiment of the disclosure.
  • ordinal numbers such as “first”, “second”, and “third” are set to avoid confusion of constituent elements, rather than to limit the quantity.
  • "Plurality” in this disclosure means a quantity of two or more.
  • the terms “installed”, “connected” and “connected” should be construed broadly unless otherwise expressly specified and limited. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • installed should be construed broadly unless otherwise expressly specified and limited. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • electrically connected includes the case where constituent elements are connected together by elements having some electrical function.
  • the "element having a certain electrical effect” is not particularly limited as long as it can transmit and receive electrical signals between the connected constituent elements.
  • Examples of “elements having some electrical function” include not only electrodes and wirings, but also switching elements such as transistors, resistors, inductors, capacitors, other elements having one or more functions, and the like.
  • parallel refers to a state in which the angle formed by two straight lines is -10° or more and 10° or less, and thus can include a state in which the angle is -5° or more and 5° or less.
  • perpendicular refers to a state in which the angle formed by two straight lines is 80° or more and 100° or less, and therefore can include a state in which an angle of 85° or more and 95° or less is included.
  • a Micro Electromechanical System refers to a high-tech device with a size of several millimeters or even smaller, and its internal structure is generally in the order of micrometers or even nanometers, and is an independent intelligent system.
  • Coplanar Waveguide refers to a structure formed by fabricating a center conductor strip on one surface of a dielectric substrate, and fabricating conductor planes on both sides of the center conductor strip, which is also called a coplanar waveguide. surface microstrip transmission line.
  • a microstrip refers to a microwave transmission line composed of a single conductor strip supported on a dielectric substrate.
  • At least one embodiment of the present disclosure provides a phased array antenna system, including: a feeding structure and at least one phased array antenna element.
  • At least one phased array antenna element includes: a first impedance transformation unit, a MEMS phase-shifting multi-unit, and an antenna.
  • the first impedance transforming unit is connected with the feeding structure, and the MEMS phase-shifting multi-unit is connected between the first impedance transforming unit and the antenna.
  • a phased array antenna system is formed by combining MEMS phase-shifting multi-units and an antenna, so as to realize a phased array antenna system with the advantages of short response time (for example, reaching the microsecond level), low loss, and no temperature limitation. Impedance matching between the feeding structure and the MEMS phase-shifting multi-unit can be achieved through the first impedance transforming unit.
  • the MEMS phase-shifting multi-cell includes a CPW structure with a characteristic impedance greater than 50 ohms.
  • the characteristic impedance of the CPW structure comprised by the MEMS phase-shifting multi-cell may be 100 ohms.
  • this embodiment does not limit this.
  • the present exemplary embodiment supports increasing the phase-shifting degree of a single phase-shifting unit in the MEMS phase-shifting multi-unit, thereby reducing the single phase-shifting unit in the MEMS phase-shifting unit. The number of elements, thereby reducing the loss of the phased array antenna system.
  • the at least one phased array antenna element further includes: at least one switching unit. At least one switching unit is connected to the first impedance transforming unit or the MEMS phase-shifting multi-unit, and is configured to realize the switching between the microstrip structure and the coplanar waveguide structure. By using the switching unit, the phased array antenna system of the present exemplary embodiment supports various types of feeding forms and antenna forms.
  • the at least one switching unit includes: a first switching unit.
  • the first switching unit is connected between the feeding structure and the first impedance transforming unit, and is configured to realize the transformation from the microstrip structure to the coplanar waveguide structure.
  • various types of feeding forms such as direct feeding or slot coupling feeding, can be supported.
  • the at least one switching unit includes: a second switching unit.
  • the second switching unit is connected between the MEMS phase-shifting multi-unit and the antenna, and is configured to realize the conversion from the coplanar waveguide structure to the microstrip structure.
  • various types of antenna forms can be supported.
  • the at least one phased array antenna element further includes: a second impedance transformation unit.
  • the second impedance transforming unit is connected between the MEMS phase-shifting multi-unit and the antenna. By arranging the second impedance transforming unit, impedance matching between the MEMS phase-shifting multi-unit and the antenna can be realized.
  • the first impedance transformation unit includes at least: a first impedance transformation structure connected between two CPW structures with different characteristic impedances.
  • the characteristic impedance Z 1 of the first impedance transformation structure and the characteristic impedances Z 2 and Z 3 of the two CPW structures connected to the first impedance transformation structure satisfy the following relationship:
  • the first impedance transformation structure is a gradual transition structure connected between two CPW structures with different characteristic impedances. In this exemplary embodiment, 1/4 wavelength impedance transformation or a gradual transition structure can be used to realize impedance transformation.
  • the at least one transit unit includes a transit structure connected between the MS structure and the CPW structure.
  • the switching structure includes a signal switching wire arranged on a first surface of the dielectric substrate, and a first switching ground wire arranged on a second surface of the dielectric substrate opposite to the first surface.
  • the signal transfer line is connected between the MS signal line of the MS structure and the CPW signal line of the CPW structure, the first transfer ground line is formed by extending the MS ground line of the MS structure, and the projection of the signal transfer line on the dielectric substrate is located in the first transfer line.
  • the ground wire is in the projection on the dielectric substrate.
  • the transition structure includes: a signal transition line and a second transition ground line disposed on a first surface of the dielectric substrate, and a second surface of the dielectric substrate opposite to the first surface the first transfer ground wire.
  • the signal transfer line is connected between the MS signal line of the MS structure and the CPW signal line of the CPW structure.
  • the first transfer ground line is formed by extending the MS ground line of the MS structure, and the second transfer ground line is formed by the CPW ground line of the CPW structure. extended formation.
  • the projection of the signal transfer line on the dielectric substrate is located within the projection of the first transfer ground line on the dielectric substrate.
  • the signal transition lines of the transition structure have stepped changing edges along the extension direction, the first transition ground line has a stepped change edge on the side close to the CPW structure, and the second transition ground line has a stepped change edge on the side close to the MS structure. Change edge; or, the signal switching line of the switching structure has a gradually changing edge along the extension direction, the first switching ground line has a gradually changing edge on the side close to the CPW structure, and the second switching ground line is close to the MS structure.
  • One side has a gradient edge.
  • the at least one transit unit includes a transit structure connected between the MS structure and the CPW structure, the transit structure including a grounded coplanar waveguide (GCPW) structure.
  • GCPW grounded coplanar waveguide
  • the phased array antenna system further includes: a slot coupling structure.
  • the slot coupling structure is connected to the power feeding structure, and is configured to feed power to the first switching unit in a slot coupling manner.
  • the slot coupling feeding can be realized.
  • the feeding structure includes: a feeding unit.
  • the feeding unit includes: DC power supply, vector network analyzer, DC blocker, T-type biaser and RF coaxial connector SMA; the DC blocker is connected to the vector network analyzer, and the T-type biaser is connected to the DC blocker Between the DC power supply and the SMA, the DC power supply is connected with the T-type biaser, and the SMA is connected with the phased array antenna element.
  • the feeding unit includes: a DC power supply, a vector network analyzer, a control circuit, a flexible circuit board and SMA; the control circuit is connected with the DC power supply, the flexible circuit board is connected between the control circuit and the phased array antenna element, and the SMA is connected between the vector network analyzer and the phased array antenna elements.
  • the feeding structure further includes: a power division network connected between the feeding unit and the plurality of phased array antenna elements.
  • the MEMS phase-shifting multi-cell includes at least sixteen phase-shifting cells.
  • At least one phase-shifting unit includes a CPW signal line and a CPW ground line on the same surface of the dielectric substrate, an insulating layer covering the CPW signal line, and a metal bridge on the side of the insulating layer away from the dielectric substrate, the metal bridge straddles the CPW signal on-line.
  • the CPW signal lines of the sixteen phase shifting units are connected in sequence.
  • phased array antenna system of this embodiment is described below by using a plurality of examples.
  • FIG. 1 is a schematic structural diagram of a phased array antenna system according to at least one embodiment of the present disclosure.
  • the phased array antenna system of this exemplary embodiment includes: a feeding structure 10 and a plurality of phased array antenna elements. Only four phased array antenna elements 20a, 20b, 20c and 20d are illustrated in FIG. 1 . However, this embodiment does not limit the number of phased array antenna elements.
  • the feeding structure 10 includes a feeding unit 101 and a power division network 102 .
  • the power division network 102 is connected between the feeding unit 101 and the plurality of phased array antenna elements.
  • the feeding unit 101 can feed multiple phased array antenna elements through the power division network 102 .
  • multiple phased array antenna elements are combined to form a linear array and an area array through a power division network, which can improve the gain of the phased array antenna system.
  • FIG. 2A is a schematic diagram of a feeding structure according to at least one embodiment of the present disclosure.
  • the feeding unit of this exemplary embodiment may include: a DC power supply 111 , a vector network analyzer 112 , a DC blocker 113 , a T-bias device 114 and a radio frequency coaxial connector SMA 115 .
  • the DC blocker 113 is connected with the vector network analyzer 112
  • the T-type biaser 114 is connected between the DC blocker 113 and the SMA 115
  • the DC power supply 111 is connected with the T-type biaser 114
  • the SMA 115 is connected with the power division network.
  • the DC blocker 113, the T-bias device 114, the SMA 115, the power division network and the phased array antenna elements are placed in the microwave anechoic chamber to eliminate external electromagnetic interference.
  • the DC power supply 111 can provide a DC signal
  • the vector network analyzer 112 can provide a radio frequency signal.
  • the DC block 113 may include a DC blocking circuit.
  • the T-biaser 114 can inject a DC signal into the RF circuit without affecting the RF signal passing through the main transmission path.
  • the bias tees can be directly connected to the phased array antenna elements via SMA.
  • the radio frequency signal provided by the vector network analyzer and the DC signal provided by the DC power supply can be combined into one channel and then input to the phased array antenna element.
  • FIG. 2B is another schematic diagram of a feeding structure according to at least one embodiment of the present disclosure.
  • the feeding unit of this exemplary embodiment may include: a DC power supply 111 , a vector network analyzer 112 , a control circuit 116 , a flexible printed circuit (FPC, Flexible Printed Circuit) 117 and an SMA 118 .
  • FPC 117, SMA 118, power division network and phased array antenna elements are placed in a microwave anechoic chamber to eliminate external electromagnetic interference.
  • the DC power supply 111 can provide a DC signal
  • the vector network analyzer 112 can provide a radio frequency signal.
  • the control circuit 116 is connected to the DC power supply 111 , and can control the DC signal provided by the DC power supply 111 .
  • the FPC 117 is connected between the control circuit 116 and the power division network, and can realize electrical connection between the control circuit 116 and the power division network.
  • the vector network analyzer 112 may provide radio frequency signals.
  • the SMA 118 is connected between the vector network analyzer 112 and the power division network.
  • the control circuit 116 can directly connect the phased array antenna elements through the FPC 117, and the vector network analyzer 112 can directly connect the phased array antenna elements through the SMA 118.
  • the radio frequency signal provided by the vector network analyzer and the DC signal provided by the DC power supply can be separately input to the phased array antenna element.
  • FIG. 3 is a schematic structural diagram of an array element of a phased array antenna according to at least one embodiment of the present disclosure.
  • the phased array antenna element of this exemplary embodiment includes: a MEMS phase-shifting multi-unit 21 , an antenna 22 , a first impedance transforming unit 23 , a first switching unit 24 , and a second impedance transforming unit 25 and the second switching unit 26 .
  • the first switching unit 24 is connected between the feeding structure 10 and the first impedance transforming unit 23
  • the MEMS phase-shifting multi-unit 21 is connected between the first impedance transforming unit 23 and the second impedance transforming unit 25, and the second switching unit 21
  • the unit 26 is connected between the second impedance transformation unit 25 and the antenna 22 .
  • the MEMS phase-shifting multi-cell 21 includes a CPW structure with a characteristic impedance greater than 50 ohms.
  • the characteristic impedance of a CPW structure in a MEMS phase-shifted multi-cell may be 100 ohms. However, this embodiment does not limit this.
  • FIG. 4 is a schematic structural diagram of a MEMS phase-shifting multi-unit according to at least one embodiment of the disclosure.
  • the MEMS phase-shifting multi-unit may include n phase-shifting units, where n is a positive integer. As shown in FIG. 4, n can be 1, 2, 4, or 8, etc. This embodiment does not limit this.
  • a single phase shift unit may include a CPW signal line 211 and a CPW ground line 212 disposed on the same surface of the dielectric substrate 200 , an insulating layer covering the CPW signal line 211 , and an insulating layer disposed on the insulating substrate 200 .
  • the CPW ground lines 212 are located on opposite sides of the CPW signal lines 211 , and the metal bridges 213 span the CPW signal lines 211 .
  • the projection of the metal bridge 213 on the dielectric substrate 200 overlaps with both the CPW signal line 211 and the CPW ground line 212 .
  • the suspended part of the metal bridge 213 is deformed to the side close to the CPW signal line 211 under the action of electrostatic force.
  • the relationship between the metal bridge 213 and the CPW is changed.
  • the distance between the signal lines 211 causes the load capacitance between the CPW signal line 211 and the metal bridge 213 to change, thereby causing the transmission speed of the microwave signal transmitted on the CPW signal line 211 to change.
  • the transmission rate of the microwave signal changes, its phase also changes with the transformation of the transmission speed, so as to realize the phase shift of the microwave signal.
  • the phase shift degree of a single phase shift unit is 27.89 degrees, and the insertion loss is -0.29dB.
  • the coupling between the multiple phase-shifting units can be ignored.
  • the average phase-shifting degree of a single phase-shifting unit is 27.01 degrees, and only about 16 phase-shifting units can complete a 360-degree phase-shifting change.
  • the MEMS phase-shifting multi-cell includes 16 phase-shifting cells connected in sequence, and the characteristic impedance of the CPW structure of the MEMS phase-shifting multi-cell may be 100 ohms.
  • this embodiment does not limit the connection manner of the plurality of phase-shifting units in the MEMS phase-shifting multi-unit.
  • the first impedance transformation unit 23 is configured to realize impedance matching between the feeding structure 10 and the MEMS phase-shifting multi-unit 21
  • the second impedance transformation unit 25 is configured to realize the MEMS Impedance matching between the phase-shifted multi-element 21 and the antenna 22 .
  • the characteristic impedance of the CPW structure in the MEMS phase-shifting multi-unit is 100 ohms
  • the first impedance transformation unit can convert the characteristic impedance of 50 ohms into 100 ohms to realize the impedance between the feeding structure and the MEMS phase-shifting multi-unit.
  • the second impedance transformation unit can convert the characteristic impedance of 100 ohms into 50 ohms to realize impedance matching between the MEMS phase-shifting multi-unit and the antenna.
  • this embodiment does not limit this.
  • the first switching unit 24 is configured to effect the conversion from the MS structure to the CPW structure, so that the feeding structure 10 communicates with the first switching structure through the SMA corresponding to the MS structure pin. connection unit 24.
  • the second switching unit 26 is configured to effect the conversion from the CPW structure to the MS structure in order to feed the antenna 22 through the MS structure.
  • FIG. 5A is a schematic structural diagram of a first impedance transformation unit according to at least one embodiment of the disclosure.
  • FIG. 5A is a top view of the first impedance transformation unit.
  • the first impedance transformation unit of this exemplary embodiment at least includes: a first impedance structure 232 and a first impedance transformation structure 231 .
  • Both the first impedance structure 232 and the first impedance transformation structure 231 are CPW structures.
  • the first end of the first impedance transformation structure 231 is connected to the CPW structure of the MEMS phase-shift multi-unit 21
  • the second end of the first impedance transformation structure 231 is connected to the first impedance structure 232 .
  • the first impedance structure 232 may be directly connected to the power feeding structure, or connected to the power feeding structure through the first switching unit.
  • the first end of the first impedance structure 232 is connected to the first impedance transformation structure 231
  • the second end of the first impedance structure 232 is connected to the SMA of the corresponding CPW structure pin of the feeding structure, or the first impedance structure 232
  • the second end of the feed structure is connected to the SMA of the corresponding MS structure pin of the feeding structure through the first switching unit.
  • the first impedance transformation unit may implement 1/4 wavelength impedance transformation.
  • the characteristic impedance of the first impedance transformation structure 231 is denoted as Z 1
  • the characteristic impedance of the first impedance structure 232 is denoted as Z 2
  • the characteristic impedance of the CPW structure of the MEMS phase-shifting multi-unit 21 is denoted as Z 3
  • the characteristic impedances Z 1 , Z 2 and Z 3 satisfy the following relationship:
  • the first impedance structure 232 includes: a first CPW signal line 232 a and two first CPW ground lines 232 b on the dielectric substrate 200 .
  • the first CPW signal line 232a and the two first CPW ground lines 232b are located on the same surface of the dielectric substrate 200, and the two first CPW ground lines 232b are located on opposite sides of the first CPW signal line 232a.
  • Both the first CPW signal line 232a and the first CPW ground line 232b extend along the first direction X.
  • the two first CPW ground lines 232b are symmetrical with respect to the center line of the first CPW signal line 232a along the second direction Y.
  • the first direction X and the second direction Y are located in the same plane, and the first direction X is perpendicular to the second direction Y.
  • the first impedance transformation structure 231 includes: a second CPW signal line 231 a and two second CPW ground lines 231 b located on the dielectric substrate 200 .
  • the second CPW signal line 231a and the two second CPW ground lines 231b are located on the same surface of the dielectric substrate 200, and the two second CPW ground lines 231b are located on opposite sides of the second CPW signal line 231a. Both the second CPW signal line 231a and the second CPW ground line 231b extend along the first direction X.
  • the two second CPW ground lines 231b are symmetrical with respect to the center line of the first CPW signal line 231a along the second direction Y.
  • the second CPW ground wire 231b is connected to the first CPW ground wire 232b in a one-to-one correspondence, and the second CPW signal wire 231a is connected to the first CPW signal wire 232a.
  • the average length of the second CPW signal line 231a along the second direction Y is smaller than the average length of the first CPW signal line 232a along the second direction Y, and greater than the CPW signal line 211 of the CPW structure of the MEMS phase-shifting multi-unit 21 along the second direction Y Average length in direction Y.
  • the average length of the second CPW ground wire 231b along the second direction Y is smaller than the average length of the first CPW ground wire 232b along the second direction Y, and is greater than the CPW ground wire 212 of the CPW structure of the MEMS phase-shifted multi-unit 21 along the second direction Y Average length in direction Y.
  • the projection of the end of the first CPW signal line 232a connected to the second CPW signal line 231a on the dielectric substrate 200 has two symmetrical cut corners, which are relative to the first CPW signal line 231a.
  • the CPW signal line 232a is symmetrical parallel to the center line of the first direction X.
  • the projection of one end of the CPW signal line of the CPW structure of the second CPW signal line 231 a connected to the CPW structure of the MEMS phase-shifting multi-unit 21 on the dielectric substrate 200 has two symmetrical cut angles relative to the second CPW signal line 231 a Symmetrical to the center line parallel to the first direction X.
  • this embodiment is not limited to this.
  • the projections of the second CPW signal line and the first CPW signal line on the dielectric substrate may both be rectangular.
  • FIG. 5B is another schematic structural diagram of the first impedance transformation unit according to at least one embodiment of the disclosure.
  • FIG. 5B is a top view of the first impedance transformation unit.
  • the first impedance transformation unit of this exemplary embodiment at least includes: a first impedance structure 232 and a first impedance transformation structure 231 . Both the first impedance structure 232 and the first impedance transformation structure 231 are CPW structures.
  • the first impedance transformation structure 231 is a transition structure between the first impedance structure 232 and the CPW structure of the MEMS phase-shift multi-unit 21 .
  • the length of the second CPW signal line 231 a of the first impedance transformation structure 231 along the second direction Y gradually decreases along the direction away from the first impedance structure 232 .
  • the length of the second CPW signal line 231a of the first impedance transformation structure 231 along the second direction Y is along a direction away from the first impedance structure 232, from the first CPW signal line 232a of the first impedance structure 232 along the second direction
  • the length of Y gradually decreases to the length of the CPW signal line 211 of the CPW structure of the MEMS phase-shifted multi-cell 21 along the second direction Y.
  • the length of the second CPW ground line 231b of the first impedance transformation structure 231 along the second direction Y gradually increases along the direction away from the first impedance structure 232, thereby realizing the gradual transition of impedance.
  • the length of the second CPW ground line 231b of the first impedance transformation structure 231 along the second direction Y is along a direction away from the first impedance structure 232, from the first CPW ground line 232b of the first impedance structure 232 along the second direction
  • the length of Y gradually decreases to the length of the CPW ground line 212 of the CPW structure of the MEMS phase-shifted multi-cell 21 along the second direction Y.
  • the impedance transformation is achieved by the gradient structure of the first impedance transformation structure.
  • the remaining structures of the first impedance transformation unit reference may be made to the embodiment shown in FIG. 5A , and thus will not be repeated here.
  • FIG. 6A is a schematic structural diagram of a first switching unit according to at least one embodiment of the present disclosure.
  • FIG. 6A is a top view of the first switching unit.
  • the first switching unit is connected between the MS structure and the CPW structure, and realizes the conversion from the MS structure to the CPW structure.
  • the first switching unit includes: a first switching structure 241 , and the first switching structure 241 is connected between the MS structure and the CPW structure.
  • the MS structure connected to the first switching structure 241 may be connected to the feeding structure
  • the CPW structure connected to the first switching structure 241 may be the CPW structure of the first impedance transformation unit. .
  • the MS structures connected by the first transition structure 241 include: MS ground lines 242b located on the second side of the dielectric substrate and MS signal lines located on the first side of the dielectric substrate 242a.
  • the first surface and the second surface are two opposite surfaces of the dielectric substrate.
  • the CPW structure connected by the first transition structure 241 includes: a CPW signal line 232a and two CPW ground lines 232b located on the first surface of the dielectric substrate.
  • the two CPW ground lines 232b are located on opposite sides of the CPW signal line 232a.
  • the first transition structure 241 includes: a signal transition line 241a located on the first surface of the dielectric substrate and a first transition ground line located on the second surface of the dielectric substrate. Two ends of the signal transfer line 241a are respectively connected to the MS signal line 242a of the MS structure and the CPW signal line 232a of the CPW structure, and the first transfer ground line is formed by extending the MS ground line 242b of the MS structure.
  • the length of the signal transition line 241a along the second direction Y is smaller than the length of the MS signal line 242a of the MS structure along the second direction Y, and may be equal to the length of the CPW signal line 232a of the CPW structure along the second direction Y.
  • FIG. 6B is another schematic structural diagram of the first switching unit according to at least one embodiment of the present disclosure.
  • FIG. 6B shows a top view of the first switching unit.
  • the first switching unit includes: a first switching structure 241 connected between the MS structure and the CPW structure.
  • the first transition structure 241 includes: a signal transition wire 241a and a second transition ground wire on the first surface of the dielectric substrate, and a first ground wire on the second surface of the dielectric substrate.
  • the length of the signal transfer line 241a of the first transfer structure 241 in the second direction Y decreases in a stepwise manner along the direction away from the MS structure until it is the same as the length of the CPW signal line 232a of the CPW structure in the second direction Y.
  • the signal transition line 241a extends along the first direction X, and has a step-like changing edge along the extending direction.
  • the first transition ground wire of the first transition structure 241 is formed by extending the MS ground wire 242b of the MS structure, and a side of the first transition ground wire close to the CPW structure has a stepped change edge.
  • the length of the first transition ground line in the second direction Y decreases in a stepwise manner along a direction away from the MS structure.
  • the second transition ground line is formed by extending the CPW ground line 232b of the CPW structure, and the side of the second transition ground line close to the MS structure has a stepped change edge.
  • the length of the second transition ground line in the second direction Y increases stepwise along the direction away from the MS structure.
  • the projection of the signal transition wire 241a on the dielectric substrate is located within the projection of the first transition ground wire on the dielectric substrate.
  • the boundary of the projection of the first transition ground line and the second transition ground line on the dielectric substrate is stepped.
  • the first switching unit provided in FIG. 6B can avoid the sudden change of the electric field from the MS structure to the CPW structure, thereby reducing the differential loss.
  • FIG. 6C is another schematic structural diagram of the first switching unit according to at least one embodiment of the present disclosure.
  • FIG. 6C shows a top view of the first switching unit.
  • the signal transition wire 241a of the first transition structure 241 has a gradually changing edge along the first direction X, and the side of the first transition ground wire close to the CPW structure has Gradual change edge, the side of the second transition ground line close to the MS structure has a gradual change edge.
  • FIG. 6B For the rest of the structure of the first switching unit in this exemplary embodiment, reference may be made to the embodiment shown in FIG. 6B , and thus will not be repeated here.
  • FIG. 6D is another schematic structural diagram of the first switching unit according to at least one embodiment of the present disclosure.
  • FIG. 6D shows a top view of the first switching unit.
  • the first transit structure 241 may include a grounded coplanar waveguide (GCPW) structure.
  • the first transfer structure 241 includes: a signal transfer wire 241a and a second transfer ground wire on the first surface of the dielectric substrate, and a first transfer ground wire on the second surface of the dielectric substrate.
  • the first transition ground wire is formed by extending the MS ground wire 242b of the MS structure
  • the second transition ground wire is formed by extending the CPW ground wire 232b of the CPW structure.
  • the second switching ground wires are located on opposite sides of the signal switching wires 241a.
  • the length of the signal transition line 241a along the second direction Y is greater than the length of the MS signal line 242a of the MS structure along the second direction Y, and is greater than the length of the CPW signal line 232a of the CPW structure along the second direction Y.
  • the projection of the signal transition wire 241a on the dielectric substrate is located within the projection of the first transition ground wire on the dielectric substrate. The present exemplary embodiment can better realize the transition between the CPW structure and the MS structure by using one GCPW.
  • the second switching unit is connected between the CPW structure and the MS structure, and realizes the conversion from the CPW structure to the MS structure.
  • the second switching unit and the first switching unit may have mirror image structures along the center line of the first direction X with respect to the MEMS phase-shifting multi-unit. However, this embodiment does not limit this.
  • the second impedance transforming unit and the first impedance transforming unit may be in a mirror image structure along the center line of the first direction X with respect to the MEMS phase-shifting multi-unit.
  • this embodiment does not limit this.
  • FIG. 7 is another schematic structural diagram of a phased array antenna element according to at least one embodiment of the present disclosure.
  • FIG. 8 is a top view of the phased array antenna element shown in FIG. 7 .
  • the dielectric substrate of the array element of the phased array antenna is glass, and the feeding method of the feeding structure is a slot coupling feeding method.
  • this embodiment does not limit the material of the dielectric substrate.
  • the phased array antenna element of this exemplary embodiment includes: a first switching unit 24 , a first impedance transforming unit 23 , a MEMS phase-shifting multi-unit 21 , and a second impedance transforming unit 25 , the second switching unit 26 , the antenna 22 and the slot coupling structure 27 .
  • the first switching unit 24 realizes the conversion from the MS structure to the CPW structure, and may include, for example, a first switching structure 241 and an MS structure 242 .
  • the second switching unit 26 realizes the conversion from the CPW structure to the MS structure.
  • the first impedance transformation unit 23 includes a first impedance structure 232 and a first impedance transformation structure 231 .
  • the second impedance transformation unit 25 includes a second impedance unit 252 and a second impedance transformation structure 251 .
  • the first impedance transforming unit 23 and the second impedance transforming unit 25 are mirror images with respect to the center line of the MEMS phase-shifting multi-unit 21 .
  • the antenna 22 may be a patch antenna (Patch Antenna).
  • the antenna 22 includes an antenna signal line 221 and an antenna ground line 222 .
  • the antenna 22 and the second switching unit 26 may share the MS ground (GND) provided on the first circuit substrate (for example, a printed circuit board (PCB, Printed Circuit Board)).
  • the first switching unit 24 and the slot coupling structure 27 may share the MS ground wire provided on the second circuit substrate.
  • slot coupling structures 27 connect the feed structures.
  • the slot coupling structure 27 is an MS structure, and feeds the first switching unit 24 in a slot coupling manner.
  • the first switching unit 24 includes a first switching structure 241 and an MS structure 242 .
  • the MS structure 242 includes MS signal lines 242 a on the first side of the dielectric substrate 200 and MS ground lines 242 b on the second side of the dielectric substrate 200 .
  • the MS ground wire 242b is disposed on the second circuit substrate, and the MS ground wire 242b has a slit 30, and the slit 30 is, for example, a rectangle.
  • the slot coupling structure 27 includes the MS signal line 271 on the side of the second circuit substrate away from the MS ground line 242b.
  • the MS signal line 271 and the MS signal line 242a share the MS ground line 242b.
  • the projection of the MS signal line 271 on the dielectric substrate 200 overlaps with the projection of the MS signal line 242 a on the dielectric substrate 200 , and the overlapping portion of the two is located within the projection of the gap 30 on the dielectric substrate 300 .
  • the slot coupling feeding is realized through the coupling action between the MS signal line 271 and the MS signal line 242a.
  • FIG. 9 is another schematic structural diagram of a phased array antenna element according to at least one embodiment of the present disclosure.
  • FIG. 10 is a top view of the phased array antenna element shown in FIG. 9 .
  • the dielectric substrate 200 of the phased array antenna element may be glass, and the feeding method of the feeding structure is a direct feeding method.
  • the phased array antenna element of this exemplary embodiment includes: a MEMS phase-shifting multi-unit 21 , an antenna 22 , a first impedance transforming unit 23 , a second impedance transforming unit 25 , and a second transforming unit 25 .
  • Connect unit 26 The second switching unit 26 realizes the conversion from the CPW structure to the MS structure.
  • the first impedance transformation unit 23 includes a first impedance structure 232 and a first impedance transformation structure 231 .
  • the second impedance transformation unit 25 includes a second impedance unit 252 and a second impedance transformation structure 251 .
  • the first impedance transforming unit 23 and the second impedance transforming unit 25 are mirror images with respect to the center line of the MEMS phase-shifting multi-unit 21 .
  • the antenna 22 may be a patch antenna (Patch Antenna).
  • the antenna 22 and the second switching unit 26 may share the MS ground wire provided on the first circuit substrate.
  • the first impedance structure 232 may be directly connected to the SMA corresponding to the pin of the CPW structure to realize direct power feeding.
  • FIGS. 11B and 11D are schematic diagrams of simulation results of the phased array antenna element shown in FIG. 9 .
  • the abscissa is the pitch angle ⁇ , which represents the angle formed with the z-axis
  • the ordinate is the actual gain.
  • the solid lines in FIGS. 11B and 11D represent the azimuth angle In degrees, the actual gain value curve of the phased array antenna element corresponding to different values of ⁇ , that is, the xoz plane radiation pattern.
  • the dashed lines in Figures 11B and 11D represent azimuth angles In degrees, the actual gain value curve of the phased array antenna element corresponding to different values of ⁇ , that is, the yoz plane radiation pattern.
  • FIGS. 11A and 11B are graphs of the S11 parameters and plane radiation directions of the direct-feed port when the metal bridges in the MEMS phase-shifted multi-unit in FIG. 9 are all in the Up state (ie, no driving voltage is applied to the metal bridges). picture.
  • the metal bridges in the MEMS phase-shifted multi-unit are all in the open (Up) state
  • the S11 parameter is less than -6dB and -10dB
  • the impedance bandwidth of the phased array antenna element is both From 15.7GHz to 19.7GHz, a practical gain of -0.52dB can be achieved, and the 3dB beamwidth of the xoz plane and yoz plane is 94 degrees and 86 degrees, respectively.
  • FIGS. 11C and 11D are graphs and plane radiation patterns of the S11 parameters of the direct-feed port when the metal bridges in the MEMS phase-shifted multi-unit in FIG. 9 are all in the Down state (ie, a driving voltage is applied to the metal bridges). .
  • FIG. 12 is another schematic structural diagram of a phased array antenna element according to at least one embodiment of the disclosure.
  • the phased array antenna element of this exemplary embodiment includes: a MEMS phase-shifting multi-unit 21 , an antenna 22 , a first impedance transforming unit 23 , a first switching unit 24 and a second switching unit 26 .
  • the first switching unit 24 is connected between the feeding structure 10 and the first impedance transforming unit 23
  • the MEMS phase-shifting multi-unit 21 is connected between the first impedance transforming unit 23 and the second switching unit 26, and the second switching unit 21
  • the unit 26 is connected between the MEMS phase-shifted multi-unit 21 and the antenna 22 .
  • the MEMS phase-shifting multi-cell 21 includes a CPW structure with a characteristic impedance greater than 50 ohms.
  • the characteristic impedance of a CPW structure in a MEMS phase-shifted multi-cell may be 100 ohms.
  • this embodiment does not limit this.
  • the structures of the MEMS phase-shifting multi-unit, the first impedance transforming unit, the first switching unit, and the second switching unit reference may be made to the foregoing embodiments, and thus will not be repeated here.
  • FIG. 13 is a schematic structural diagram of a phased array antenna element according to at least one embodiment of the disclosure.
  • the phased array antenna element of this exemplary embodiment includes: a MEMS phase-shifting multi-unit 21 , an antenna 22 , a first impedance transforming unit 23 and a second impedance transforming unit 25 .
  • the first impedance transforming unit 23 is connected between the feeding structure 10 and the MEMS phase-shifting multi-unit 21, and the MEMS phase-shifting multi-unit 21 is connected between the first impedance transforming unit 23 and the second impedance transforming unit 25, and the second impedance transforming
  • the unit 25 is connected to the antenna 22 .
  • the MEMS phase-shifting multi-cell 21 includes a CPW structure with a characteristic impedance greater than 50 ohms.
  • the characteristic impedance of a CPW structure in a MEMS phase-shifted multi-cell may be 100 ohms.
  • this embodiment does not limit this.
  • the structures of the MEMS phase-shifting multi-unit, the first impedance transforming unit and the second impedance transforming unit reference may be made to the foregoing embodiments, and thus will not be repeated here.
  • FIG. 14 is another schematic structural diagram of a phased array antenna element according to at least one embodiment of the disclosure.
  • the phased array antenna element of this exemplary embodiment includes: a MEMS phase-shifting multi-unit 21 , an antenna 22 , a first impedance transforming unit 23 and a first switching unit 24 .
  • the first switching unit 24 is connected between the feeding structure 10 and the first impedance transforming unit 23
  • the MEMS phase-shifting multi-unit 21 is connected between the first impedance transforming unit 23 and the antenna 22 .
  • the MEMS phase-shifting multi-cell 21 includes a CPW structure with a characteristic impedance greater than 50 ohms.
  • the characteristic impedance of a CPW structure in a MEMS phase-shifted multi-cell may be 100 ohms.
  • this embodiment does not limit this.
  • the structures of the MEMS phase-shifting multi-unit, the first impedance transforming unit, and the first switching unit reference may be made to the foregoing embodiments, and thus will not be repeated here.
  • FIG. 15 is another schematic structural diagram of a phased array antenna element according to at least one embodiment of the disclosure.
  • the phased array antenna element of this exemplary embodiment includes: a MEMS phase-shifting multi-unit 21 , an antenna 22 and a first impedance transforming unit 23 .
  • the first impedance transformation unit 23 is connected between the feeding structure 10 and the MEMS phase-shifting multi-unit 21
  • the MEMS phase-shifting multi-unit 21 is connected to the antenna 22 .
  • the MEMS phase-shifting multi-cell 21 includes a CPW structure with a characteristic impedance greater than 50 ohms.
  • the characteristic impedance of a CPW structure in a MEMS phase-shifted multi-cell may be 100 ohms.
  • this embodiment does not limit this.
  • the structures of the MEMS phase-shifting multi-unit and the first impedance transforming unit reference may be made to the foregoing embodiments, and thus will not be repeated here.
  • FIG. 16 is a schematic diagram of an electronic device according to at least one embodiment of the disclosure.
  • this embodiment provides an electronic device 91 including: a phased array antenna system 910 .
  • the phased array antenna system 910 is the phased array antenna system provided in the foregoing embodiment.
  • the electronic device 91 can be any product or component with communication function, such as smart phone, navigation device, game console, television (TV), car audio, tablet computer, personal multimedia player (PMP), personal digital assistant (PDA). However, this embodiment does not limit this.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种相控阵天线系统,包括:馈电结构以及至少一个相控阵天线阵元,至少一个相控阵天线阵元包括:第一阻抗变换单元、MEMS移相多单元以及天线。第一阻抗变换单元与馈电结构连接,MEMS移相多单元连接在第一阻抗变换单元和天线之间。

Description

相控阵天线系统及电子装置 技术领域
本文涉及但不限于通信技术领域,尤指一种相控阵天线系统及电子装置。
背景技术
相控阵天线是目前卫星移动通信系统中最重要的一种天线形式,与传统的机械扫描天线相比,相控阵天线不需要机械转动天线平面,主要依靠相位变化实现天线波束指向在空间的移动和扫描,具有体积小、轮廓低、反应速度快、扫描范围广、扫描精度高等众多优点。相控阵天线的应用范围极其广泛,例如,可以应用于交通工具与卫星间的通信、无人驾驶用数组雷达或安全防护数组雷达等。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供一种相控阵天线系统及电子装置。
一方面,本公开实施例提供一种相控阵天线系统,包括:馈电结构以及至少一个相控阵天线阵元。所述至少一个相控阵天线阵元包括:第一阻抗变换单元、MEMS移相多单元以及天线。所述第一阻抗变换单元连接在所述馈电结构和所述MEMS移相多单元之间,所述MEMS移相多单元连接在所述第一阻抗变换单元和所述天线之间。
另一方面,本公开实施例提供一种电子装置,包括如上所述的相控阵天线系统。
在阅读理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部 分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开的技术方案的限制。附图中一个或多个部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1为本公开至少一实施例的相控阵天线系统的一种结构示意图;
图2A为本公开至少一实施例的馈电结构的一种示意图;
图2B为本公开至少一实施例的馈电结构的另一示意图;
图3为本公开至少一实施例的相控阵天线阵元的一种结构示意图;
图4为本公开至少一实施例的MEMS移相多单元的示意图;
图5A为本公开至少一实施例的第一阻抗变换单元的一种结构示意图;
图5B为本公开至少一实施例的第一阻抗变换单元的另一结构示意图;
图6A为本公开至少一实施例的第一转接单元的一种结构示意图;
图6B为本公开至少一实施例的第一转接单元的另一结构示意图;
图6C为本公开至少一实施例的第一转接单元的又一结构示意图;
图6D为本公开至少一实施例的第一转接单元的再一结构示意图;
图7为本公开至少一实施例的相控阵天线阵元的另一结构示意图;
图8为图7所示的相控阵天线阵元的俯视图;
图9为本公开至少一实施例的相控阵天线阵元的另一结构示意图;
图10为图9所示的相控阵天线阵元的俯视图;
图11A至图11D为图9所示的相控阵天线阵元的仿真结果示意图;
图12为本公开至少一实施例的相控阵天线阵元的另一结构示意图;
图13为本公开至少一实施例的相控阵天线阵元的另一结构示意图;
图14为本公开至少一实施例的相控阵天线阵元的另一结构示意图;
图15为本公开至少一实施例的相控阵天线阵元的另一结构示意图;
图16为本公开至少一实施例的电子装置的示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为一种或多种形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,夸大表示了一个或多个构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中多个部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。
本公开中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。本公开中的“多个”表示两个或两个以上的数量。
在本公开中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本公开中的含义。
在本公开中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、 其它具有一种或多种功能的元件等。
在本公开中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,可以包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,可以包括85°以上且95°以下的角度的状态。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
在本公开中,微机电系统(MEMS,Micro Electromechanical System)是指尺寸在若干毫米乃至更小的高科技装置,其内部结构一般在微米甚至纳米量级,是一个独立的智能系统。
在本公开中,共面波导(CPW,Coplanar Waveguide)是指在介质基板的一个面上制作出中心导体带,并在紧邻中心导体带的两侧制作出导体平面所形成的结构,又叫共面微带传输线。
在本公开中,微带(MS,Micro-strip)是指由支在介质基板上的单一导体带构成的微波传输线。
本公开至少一实施例提供一种相控阵天线系统,包括:馈电结构以及至少一个相控阵天线阵元。至少一个相控阵天线阵元包括:第一阻抗变换单元、MEMS移相多单元以及天线。第一阻抗变换单元与馈电结构连接,MEMS移相多单元连接在第一阻抗变换单元和天线之间。
本实施例通过将MEMS移相多单元和天线结合组成相控阵天线系统,实现具有响应时间短(例如,达到微秒级别)、损耗低、不受温度限制等优点的相控阵天线系统。通过第一阻抗变换单元可以实现馈电结构和MEMS移相多单元之间的阻抗匹配。
在一些示例性实施方式中,MEMS移相多单元包括特征阻抗大于50欧姆的CPW结构。例如,MEMS移相多单元包括的CPW结构的特征阻抗可以为100欧姆。然而,本实施例对此并不限定。本示例性实施方式通过增大MEMS移相多单元包括的CPW结构的特征阻抗,支持增大MEMS移相多单元内单个移相单元的移相度数,从而减少MEMS移相单元内的单个移相单元 的数目,进而减小相控阵天线系统的损耗。
在一些示例性实施方式中,至少一个相控阵天线阵元还包括:至少一个转接单元。至少一个转接单元与第一阻抗变换单元或MEMS移相多单元连接,配置为实现微带结构和共面波导结构之间的转换。通过采用转接单元,本示例性实施例的相控阵天线系统支持多种类型的馈电形式与天线形式。
在一些示例性实施方式中,至少一个转接单元包括:第一转接单元。第一转接单元连接在馈电结构和第一阻抗变换单元之间,配置为实现微带结构至共面波导结构的转换。本示例性实施方式中,通过在馈电结构和第一阻抗变换单元之间设置第一转接单元,可以支持多种类型的馈电形式,例如直接馈电方式或缝隙耦合馈电方式。
在一些示例性实施方式中,至少一个转接单元包括:第二转接单元。第二转接单元连接在MEMS移相多单元和天线之间,配置为实现共面波导结构至微带结构的转换。本示例性实施方式中,通过在MEMS移相多单元和天线之间设置第二转接单元,可以支持多种类型的天线形式。
在一些示例性实施方式中,至少一个相控阵天线阵元还包括:第二阻抗变换单元。第二阻抗变换单元连接在MEMS移相多单元和天线之间。通过设置第二阻抗变换单元,可以实现MEMS移相多单元和天线之间的阻抗匹配。
在一些示例性实施方式中,第一阻抗变换单元至少包括:连接在两个特征阻抗不同的CPW结构之间的第一阻抗变换结构。其中,第一阻抗变换结构的特征阻抗Z 1、第一阻抗变换结构所连接的两个CPW结构的特征阻抗Z 2和Z 3满足以下关系:
Figure PCTCN2020124264-appb-000001
或者,第一阻抗变换结构为连接在两个特征阻抗不同的CPW结构之间的渐变式过渡结构。在本示例性实施方式中,可以采用1/4波长阻抗变换或渐变式过渡结构来实现阻抗变换。
在一些示例性实施方式中,至少一个转接单元包括:连接在MS结构和CPW结构之间的转接结构。转接结构包括设置在介质基板的第一面上的信号转接线、设置在介质基板的与第一面相对的第二面上的第一转接地线。信号转接线连接在MS结构的MS信号线和CPW结构的CPW信号线之间,第一转接地线由MS结构的MS地线延伸形成,信号转接线在介质基板上的投影位于第一转接地线在介质基板上的投影内。
在一些示例性实施方式中,转接结构包括:设置在介质基板的第一面上的信号转接线和第二转接地线、以及设置在介质基板的与第一面相对的第二面上的第一转接地线。信号转接线连接在MS结构的MS信号线和CPW结构的CPW信号线之间,第一转接地线由MS结构的MS地线延伸形成,第二转接地线由CPW结构的CPW地线延伸形成。信号转接线在介质基板上的投影位于第一转接地线在介质基板上的投影内。转接结构的信号转接线沿着延伸方向具有阶梯状变化边缘,第一转接地线靠近CPW结构的一侧具有阶梯状变化边缘,第二转接地线靠近MS结构的一侧具有阶梯状变化边缘;或者,转接结构的信号转接线沿着延伸方向具有渐变式变化边缘,第一转接地线靠近CPW结构的一侧具有渐变式变化边缘,第二转接地线靠近MS结构的一侧具有渐变式变化边缘。
在一些示例性实施方式中,至少一个转接单元包括:连接在MS结构和CPW结构之间的转接结构,转接结构包括一个接地共面波导(GCPW)结构。
在一些示例性实施方式中,相控阵天线系统还包括:缝隙耦合结构。缝隙耦合结构与馈电结构连接,配置为通过缝隙耦合方式向第一转接单元馈电。本示例性实施方式中,通过设置缝隙耦合结构,可以实现缝隙耦合馈电。
在一些示例性实施方式中,馈电结构包括:馈电单元。馈电单元包括:直流电源、矢量网络分析仪、隔直器、T型偏置器以及射频同轴连接器SMA;隔直器与矢量网络分析仪连接,T型偏置器连接在隔直器和SMA之间,直流电源与T型偏置器连接,SMA与相控阵天线阵元连接。或者,馈电单元包括:直流电源、矢量网络分析仪、控制电路、柔性线路板和SMA;控制电路与直流电源连接,柔性线路板连接在控制电路和相控阵天线阵元之间,SMA连接在矢量网络分析仪和相控阵天线阵元之间。
在一些示例性实施方式中,馈电结构还包括:功分网络,功分网络连接在馈电单元和多个相控阵天线阵元之间。
在一些示例性实施方式中,MEMS移相多单元至少包括十六个移相单元。至少一个移相单元包括位于介质基板的同一表面上的CPW信号线和CPW地线、覆盖CPW信号线的绝缘层、以及位于绝缘层远离介质基板一侧的金属桥,金属桥横跨在CPW信号线上。十六个移相单元的CPW信号线依次连接。
下面通过多个示例对本实施例的相控阵天线系统进行举例说明。
图1为本公开至少一实施例的相控阵天线系统的结构示意图。如图1所示,本示例性实施例的相控阵天线系统包括:馈电结构10以及多个相控阵天线阵元。图1中仅示意了四个相控阵天线阵元20a、20b、20c和20d。然而,本实施例对于相控阵天线阵元的数目并不限定。如图1所示,馈电结构10包括馈电单元101和功分网络102。功分网络102连接在馈电单元101和多个相控阵天线阵元之间。馈电单元101可以通过功分网络102给多个相控阵天线阵元进行馈电。本示例性实施例中,通过功分网络将多个相控阵天线阵元组合形成线阵和面阵,可以提升相控阵天线系统的增益。
图2A为本公开至少一实施例的馈电结构的一种示意图。如图2A所示,本示例性实施例的馈电单元可以包括:直流电源111、矢量网络分析仪112、隔直器113、T型偏置器114和射频同轴连接器SMA 115。隔直器113与矢量网络分析仪112连接,T型偏置器114连接在隔直器113和SMA 115之间,直流电源111与T型偏置器114连接,SMA 115与功分网络连接。隔直器113、T型偏置器114、SMA 115、功分网络和相控阵天线阵元处于微波暗室,以排除外界电磁干扰。直流电源111可以提供直流信号,矢量网络分析仪112可以提供射频信号。隔直器113可以包括隔直电路。T型偏置器114可以实现向射频电路中注入直流信号而不影响通过主传输通路的射频信号。在一些示例中,当馈电结构不包括功分网络时,T型偏置器可以通过SMA直接连接相控阵天线阵元。本示例性实施例的馈电结构中,矢量网络分析仪提供的射频信号和直流电源提供的直流信号可以合并为一路后输入相控阵天线阵元。
图2B为本公开至少一实施例的馈电结构的另一示意图。如图2B所示,本示例性实施例的馈电单元可以包括:直流电源111、矢量网络分析仪112、控制电路116、柔性线路板(FPC,Flexible Printed Circuit)117和SMA 118。其中,FPC 117、SMA 118、功分网络和相控阵天线阵元处于微波暗室,以排除外界电磁干扰。直流电源111可以提供直流信号,矢量网络分析仪112可以提供射频信号。控制电路116与直流电源111连接,可以实现对直流电源111提供的直流信号的控制。FPC 117连接在控制电路116和功分网络之间,可以实现控制电路116和功分网络之间的电性连接。矢量网络分析仪112可 以提供射频信号。SMA 118连接在矢量网络分析仪112和功分网络之间。在一些示例中,当馈电结构不包括功分网络时,控制电路116可以通过FPC 117直接连接相控阵天线阵元,矢量网络分析仪112可以通过SMA 118直接连接相控阵天线阵元。本示例性实施例提供的馈电结构中,矢量网络分析仪提供的射频信号和直流电源提供的直流信号可以单独输入相控阵天线阵元。
图3为本公开至少一实施例的相控阵天线阵元的一种结构示意图。如图3所示,本示例性实施例的相控阵天线阵元包括:MEMS移相多单元21、天线22、第一阻抗变换单元23、第一转接单元24、第二阻抗变换单元25和第二转接单元26。第一转接单元24连接在馈电结构10和第一阻抗变换单元23之间,MEMS移相多单元21连接在第一阻抗变换单元23和第二阻抗变换单元25之间,第二转接单元26连接在第二阻抗变换单元25和天线22之间。MEMS移相多单元21包括特征阻抗大于50欧姆的CPW结构。例如,MEMS移相多单元中的CPW结构的特征阻抗可以为100欧姆。然而,本实施例对此并不限定。
图4为本公开至少一实施例的MEMS移相多单元的结构示意图。在一些示例性实施方式中,MEMS移相多单元可以包括n个移相单元,其中,n为正整数。如图4所示,n可以为1、2、4或8等。本实施例对此并不限定。
在一些示例中,如图4所示,单个移相单元可以包括设置在介质基板200的同一表面上的CPW信号线211和CPW地线212、覆盖CPW信号线211的绝缘层、以及设置在绝缘层上的金属桥213。CPW地线212位于CPW信号线211的相对两侧,金属桥213横跨CPW信号线211。金属桥213在介质基板200上的投影与CPW信号线211和CPW地线212均存在交叠。通过在金属桥213上周期性地加载驱动电压使得金属桥213的悬空部分在静电力的作用下向靠近CPW信号线211的一侧产生形变,金属桥213形变后,改变了金属桥213与CPW信号线211之间的距离,引起CPW信号线211与金属桥213之间的负载电容变化,从而导致CPW信号线211上传输的微波信号的传输速度发生变化。微波信号的传输速率发生变化后其相位也随着传输速度的变换而变化,从而实现对微波信号的移相。
在一些示例中,当n=1时,单个移相单元的移相度为27.89度,插损为 -0.29dB。当移相单元之间的周期s=1.5mm(即相邻的金属桥之间的间距为1.5mm)时,多个移相单元之间的耦合可以忽略不计。例如,当n=16时,平均单个移相单元的移相度为27.01度,则只需约16个移相单元即可完成360度的移相变化。在一些示例中,MEMS移相多单元包括16个依次连接的移相单元,且MEMS移相多单元的CPW结构的特征阻抗可以为100欧姆。然而,本实施例对于MEMS移相多单元内的多个移相单元的连接方式并不限定。
在一些示例性实施方式中,如图3所示,第一阻抗变换单元23配置为实现馈电结构10和MEMS移相多单元21之间的阻抗匹配,第二阻抗变换单元25配置为实现MEMS移相多单元21和天线22之间的阻抗匹配。例如,MEMS移相多单元中的CPW结构的特征阻抗为100欧姆,则第一阻抗变换单元可以将50欧姆的特征阻抗转换为100欧姆,实现馈电结构与MEMS移相多单元之间的阻抗匹配,第二阻抗变换单元可以将100欧姆的特征阻抗转换为50欧姆,实现MEMS移相多单元与天线之间的阻抗匹配。然而,本实施例对此并不限定。
在一些示例性实施方式中,如图3所示,第一转接单元24配置为实现从MS结构至CPW结构的转换,以便馈电结构10通过对应于MS结构引脚的SMA与第一转接单元24连接。第二转接单元26配置为实现从CPW结构至MS结构的转换,以便通过MS结构向天线22馈电。
图5A为本公开至少一实施例的第一阻抗变换单元的一种结构示意图。图5A所示为第一阻抗变换单元的俯视图。如图5A所示,本示例性实施例的第一阻抗变换单元至少包括:第一阻抗结构232和第一阻抗变换结构231。第一阻抗结构232和第一阻抗变换结构231均为CPW结构。第一阻抗变换结构231的第一端与MEMS移相多单元21的CPW结构连接,第一阻抗变化结构231的第二端与第一阻抗结构232连接。第一阻抗结构232可以直接与馈电结构连接,或者通过第一转接单元与馈电结构连接。例如,第一阻抗结构232的第一端与第一阻抗变换结构231连接,第一阻抗结构232的第二端与馈电结构的对应CPW结构引脚的SMA连接,或者,第一阻抗结构232的第二端通过第一转接单元与馈电结构的对应MS结构引脚的SMA连接。
在一些示例性实施方式中,第一阻抗变换单元可以实现1/4波长阻抗变 换。如图5A所示,第一阻抗变换结构231的特征阻抗记为Z 1,第一阻抗结构232的特征阻抗记为Z 2,MEMS移相多单元21的CPW结构的特征阻抗记为Z 3,则特征阻抗Z 1、Z 2和Z 3满足以下关系:
Figure PCTCN2020124264-appb-000002
在一些示例性实施方式中,如图5A所示,第一阻抗结构232包括:位于介质基板200上的第一CPW信号线232a和两条第一CPW地线232b。第一CPW信号线232a和两条第一CPW地线232b位于介质基板200的同一表面上,两条第一CPW地线232b位于第一CPW信号线232a的相对两侧。第一CPW信号线232a和第一CPW地线232b均沿第一方向X延伸。两条第一CPW地线232b相对于第一CPW信号线232a沿第二方向Y的中心线对称。第一方向X和第二方向Y位于同一平面内,且第一方向X垂直于第二方向Y。第一阻抗变换结构231包括:位于介质基板200的第二CPW信号线231a和两条第二CPW地线231b。第二CPW信号线231a和两条第二CPW地线231b位于介质基板200的同一表面上,两条第二CPW地线231b位于第二CPW信号线231a的相对两侧。第二CPW信号线231a和第二CPW地线231b均沿第一方向X延伸。两条第二CPW地线231b相对于第一CPW信号线231a沿第二方向Y的中心线对称。第二CPW地线231b与第一CPW地线232b一一对应连接,第二CPW信号线231a和第一CPW信号线232a连接。第二CPW信号线231a沿第二方向Y的平均长度小于第一CPW信号线232a沿第二方向Y的平均长度,且大于MEMS移相多单元21的CPW结构的CPW信号线211沿着第二方向Y的平均长度。第二CPW地线231b沿第二方向Y的平均长度小于第一CPW地线232b沿第二方向Y的平均长度,且大于MEMS移相多单元21的CPW结构的CPW地线212沿着第二方向Y的平均长度。
在一些示例中,如图5A所示,第一CPW信号线232a连接第二CPW信号线231a的一端在介质基板200上的投影具有两个对称的切角,这两个切角相对于第一CPW信号线232a平行于第一方向X的中心线对称。第二CPW信号线231a连接MEMS移相多单元21的CPW结构的CPW信号线的一端在介质基板200上的投影具有两个对称的切角,这两个切角相对于第二CPW信号线231a平行于第一方向X的中心线对称。然而,本实施例对此并不限 定。例如,第二CPW信号线和第一CPW信号线在介质基板上的投影可以均为矩形。
图5B为本公开至少一实施例的第一阻抗变换单元的另一结构示意图。图5B所示为第一阻抗变换单元的俯视图。如图5B所示,本示例性实施例的第一阻抗变换单元至少包括:第一阻抗结构232和第一阻抗变换结构231。第一阻抗结构232和第一阻抗变换结构231均为CPW结构。图5B所示的第一阻抗变换单元中,第一阻抗变换结构231是第一阻抗结构232和MEMS移相多单元21的CPW结构之间的过渡结构。第一阻抗变换结构231的第二CPW信号线231a沿第二方向Y的长度沿着远离第一阻抗结构232的方向逐渐减小。例如,第一阻抗变换结构231的第二CPW信号线231a沿第二方向Y的长度沿着远离第一阻抗结构232的方向,从第一阻抗结构232的第一CPW信号线232a沿第二方向Y的长度逐渐减小为MEMS移相多单元21的CPW结构的CPW信号线211沿第二方向Y的长度。第一阻抗变换结构231的第二CPW地线231b沿第二方向Y的长度沿着远离第一阻抗结构232的方向逐渐增加,从而实现阻抗的逐渐转变。例如,第一阻抗变换结构231的第二CPW地线231b沿第二方向Y的长度沿着远离第一阻抗结构232的方向,从第一阻抗结构232的第一CPW地线232b沿第二方向Y的长度逐渐减小为MEMS移相多单元21的CPW结构的CPW地线212沿第二方向Y的长度。在本示例性实施方式中,通过第一阻抗变换结构的渐变式结构实现阻抗转变。关于第一阻抗变换单元的其余结构说明可以参照图5A所示实施例,故于此不再赘述。
图6A为本公开至少一实施例的第一转接单元的一种结构示意图。图6A所示为第一转接单元的俯视图。在一些示例性实施方式中,第一转接单元连接在MS结构和CPW结构之间,实现从MS结构到CPW结构的转换。如图6A所示,第一转接单元包括:第一转接结构241,第一转接结构241连接在MS结构和CPW结构之间。以图3所示的相控阵天线系统为例,第一转接结构241连接的MS结构可以连接馈电结构,第一转接结构241连接的CPW结构可以为第一阻抗变换单元的CPW结构。
在一些示例性实施方式中,如图6A所示,第一转接结构241连接的MS 结构包括:位于介质基板的第二面的MS地线242b和位于介质基板的第一面的MS信号线242a。第一面与第二面为介质基板的两个相对表面。第一转接结构241连接的CPW结构包括:位于介质基板的第一面的CPW信号线232a和两条CPW地线232b。两条CPW地线232b位于CPW信号线232a的相对两侧。第一转接结构241包括:位于介质基板的第一面的信号转接线241a和位于介质基板的第二面的第一转接地线。信号转接线241a的两端分别与MS结构的MS信号线242a和CPW结构的CPW信号线232a连接,第一转接地线由MS结构的MS地线242b延伸形成。信号转接线241a沿第二方向Y的长度小于MS结构的MS信号线242a沿第二方向Y的长度,可以等于CPW结构的CPW信号线232a沿第二方向Y的长度。
图6B为本公开至少一实施例的第一转接单元的另一种结构示意图。图6B所示为第一转接单元的俯视图。如图6B所示,第一转接单元包括:连接在MS结构和CPW结构之间的第一转接结构241。第一转接结构241包括:位于介质基板的第一面上的信号转接线241a和第二转接地线、以及位于介质基板的第二面上的第一接地线。第一转接结构241的信号转接线241a在第二方向Y的长度沿着远离MS结构的方向呈阶梯状减小,直至与CPW结构的CPW信号线232a沿第二方向Y的长度相同。信号转接线241a沿着第一方向X延伸,且沿着延伸方向具有阶梯状变化边缘。第一转接结构241的第一转接地线由MS结构的MS地线242b延伸形成,第一转接地线靠近CPW结构的一侧具有阶梯状变化边缘。第一转接地线在第二方向Y的长度沿着远离MS结构的方向呈阶梯状减小。第二转接地线由CPW结构的CPW地线232b延伸形成,第二转接地线靠近MS结构的一侧具有阶梯状变化边缘。第二转接地线在第二方向Y的长度沿着远离MS结构的方向呈阶梯状增加。信号转接线241a在介质基板上的投影位于第一转接地线在介质基板上的投影内。第一转接地线和第二转接地线在介质基板上的投影的交界呈阶梯状。关于第一转接单元的其余结构可以参照图6A所示的实施例,故于此不再赘述。相较于图6A提供的第一转接单元,图6B提供的第一转接单元可以避免MS结构至CPW结构的电场突变,从而减少差损。
图6C为本公开至少一实施例的第一转接单元的另一结构示意图。图6C 所示为第一转接单元的俯视图。在一些示例性实施方式中,如图6C所示,第一转接结构241的信号转接线241a沿着第一方向X具有渐变式变化边缘,第一转接地线靠近CPW结构的一侧具有渐变式变化边缘,第二转接地线靠近MS结构的一侧具有渐变式变化边缘。本示例性实施方式的第一转接单元的其余结构可以参照图6B所示的实施例,故于此不再赘述。
图6D为本公开至少一实施例的第一转接单元的另一结构示意图。图6D所示为第一转接单元的俯视图。在一些示例性实施方式中,如图6D所示,第一转接结构241可以包括一个接地共面波导(GCPW)结构。其中,第一转接结构241包括:位于介质基板的第一面上的信号转接线241a和第二转接地线、位于介质基板的第二面上的第一转接地线。第一转接地线由MS结构的MS地线242b延伸形成,第二转接地线由CPW结构的CPW地线232b延伸形成。第二转接地线位于信号转接线241a的相对两侧。信号转接线241a沿第二方向Y的长度大于MS结构的MS信号线242a沿第二方向Y的长度,且大于CPW结构的CPW信号线232a沿第二方向Y的长度。信号转接线241a在介质基板上的投影位于第一转接地线在介质基板上的投影内。本示例性实施方式通过采用一个GCPW可以较好地实现CPW结构和MS结构之间的过渡。
在一些示例性实施方式中,第二转接单元连接在CPW结构和MS结构之间,实现从CPW结构到MS结构的转换。第二转接单元和第一转接单元可以相对于MEMS移相多单元沿第一方向X的中心线呈镜像结构。然而,本实施例对此并不限定。
在一些示例性实施方式中,第二阻抗变换单元和第一阻抗变换单元可以相对于MEMS移相多单元沿第一方向X的中心线呈镜像结构。然而,本实施例对此并不限定。
图7为本公开至少一实施例的相控阵天线阵元的另一结构示意图。图8为图7所示的相控阵天线阵元的俯视图。在一些示例性实施方式中,相控阵天线阵元的介质基板为玻璃,且馈电结构的馈电方式为缝隙耦合馈电方式。然而,本实施例对于介质基板的材质并不限定。
如图7和图8所示,本示例性实施方式的相控阵天线阵元包括:第一转 接单元24、第一阻抗变换单元23、MEMS移相多单元21、第二阻抗变换单元25、第二转接单元26、天线22以及缝隙耦合结构27。第一转接单元24实现MS结构至CPW结构的转换,例如可以包括第一转接结构241和MS结构242。第二转接单元26实现CPW结构至MS结构的转换。第一阻抗变换单元23包括第一阻抗结构232和第一阻抗变换结构231。第二阻抗变换单元25包括第二阻抗单元252和第二阻抗变换结构251。第一阻抗变换单元23和第二阻抗变换单元25相对于MEMS移相多单元21的中心线呈镜像。天线22可以为贴片天线(Patch Antenna)。天线22包括天线信号线221和天线地线222。天线22和第二转接单元26可以共用设置在第一电路基板(例如,印制电路板(PCB,Printed Circuit Board))上的MS地线(GND)。第一转接单元24和缝隙耦合结构27可以共用设置在第二电路基板上的MS地线。关于第一阻抗变换单元、第二阻抗变换单元、MEMS移相多单元、第一转接单元和第二转接单元的结构可以参照前述实施例,故于此不再赘述。
在一些示例性实施方式中,如图7和图8所示,缝隙耦合结构27连接馈电结构。缝隙耦合结构27为MS结构,通过缝隙耦合方式给第一转接单元24馈电。第一转接单元24包括第一转接结构241和MS结构242。MS结构242包括位于介质基板200的第一面上的MS信号线242a以及位于介质基板200的第二面上的MS地线242b。在本示例中,MS地线242b设置在第二电路基板上,MS地线242b具有缝隙30,缝隙30例如为矩形。缝隙耦合结构27包括位于第二电路基板远离MS地线242b一侧的MS信号线271。MS信号线271和MS信号线242a共用MS地线242b。MS信号线271在介质基板200上的投影与MS信号线242a在介质基板200上的投影存在交叠,且两者的交叠部分位于缝隙30在介质基板300上的投影内。本示例性实施方式中,通过MS信号线271和MS信号线242a之间的耦合作用,实现缝隙耦合馈电。
图9为本公开至少一实施例的相控阵天线阵元的另一结构示意图。图10为图9所示的相控阵天线阵元的俯视图。在本示例性实施方式中,相控阵天线阵元的介质基板200可以为玻璃,且馈电结构的馈电方式为直接馈电方式。如图9和图10所示,本示例性实施例的相控阵天线阵元包括:MEMS移相多单元21、天线22、第一阻抗变换单元23、第二阻抗变换单元25以及第二 转接单元26。第二转接单元26实现CPW结构至MS结构的转换。第一阻抗变换单元23包括第一阻抗结构232和第一阻抗变换结构231。第二阻抗变换单元25包括第二阻抗单元252和第二阻抗变换结构251。第一阻抗变换单元23和第二阻抗变换单元25相对于MEMS移相多单元21的中心线呈镜像。天线22可以为贴片天线(Patch Antenna)。天线22和第二转接单元26可以共用设置在第一电路基板上的MS地线。关于第一阻抗变换单元、第二阻抗变换单元、MEMS移相多单元和第二转接单元的结构可以参照前述实施例,故于此不再赘述。本示例性实施方式中,第一阻抗结构232可以直接连接对应于CPW结构引脚的SMA,实现直接馈电。
图11A至图11D为图9所示的相控阵天线阵元的仿真结果示意图。图11B和图11D的横坐标为俯仰角θ,表示的是与z轴形成的夹角,纵坐标为实际增益。图11B和图11D中的实线表示的是方位角
Figure PCTCN2020124264-appb-000003
度时,θ取不同值对应的相控阵天线阵元的实际增益值曲线,即xoz平面辐射方向图。类似的,图11B和11D中的虚线表示的是方位角
Figure PCTCN2020124264-appb-000004
度时,θ取不同值对应的相控阵天线阵元的实际增益值曲线,即yoz平面辐射方向图。
图11A和图11B为图9中MEMS移相多单元中的金属桥均处于开启(Up)状态(即金属桥上没有施加驱动电压)时直接馈电端口的S11参数的曲线图和平面辐射方向图。如图11A和图11B所示,当MEMS移相多单元中的金属桥均处于开启(Up)状态时,当S11参数小于-6dB和-10dB时,相控阵天线阵元的阻抗带宽均为15.7GHz至19.7GHz,可以实现实际增益为-0.52dB,xoz平面和yoz平面的3dB波束宽度分别为94度和86度。
图11C和图11D为图9中MEMS移相多单元中的金属桥均处于关闭(Down)状态(即金属桥上施加驱动电压)时直接馈电端口的S11参数的曲线图和平面辐射方向图。如图11C和图11D所示,当MEMS移相多单元中的金属桥均处于关闭(Down)状态时,当S11参数小于-6dB,相控阵天线阵元的阻抗带宽为15.7GHz至19.7GHz;当S11参数小于-10dB,相控阵天线阵元的阻抗带宽为15.7GHz至18.76GHz,可实现实际增益为-4.39dB,xoz平面和yoz平面的3dB波束宽度分别为80度和56度。
图12为本公开至少一实施例的相控阵天线阵元的另一结构示意图。如图 12所示,本示例性实施例的相控阵天线阵元包括:MEMS移相多单元21、天线22、第一阻抗变换单元23、第一转接单元24和第二转接单元26。第一转接单元24连接在馈电结构10和第一阻抗变换单元23之间,MEMS移相多单元21连接在第一阻抗变换单元23和第二转接单元26之间,第二转接单元26连接在MEMS移相多单元21和天线22之间。在一些示例中,MEMS移相多单元21包括特征阻抗大于50欧姆的CPW结构。例如,MEMS移相多单元中的CPW结构的特征阻抗可以为100欧姆。然而,本实施例对此并不限定。关于MEMS移相多单元、第一阻抗变换单元、第一转接单元和第二转接单元的结构可以参照前述实施例,故于此不再赘述。
图13为本公开至少一实施例的相控阵天线阵元的一种结构示意图。如图3所示,本示例性实施例的相控阵天线阵元包括:MEMS移相多单元21、天线22、第一阻抗变换单元23和第二阻抗变换单元25。第一阻抗变换单元23连接在馈电结构10和MEMS移相多单元21之间,MEMS移相多单元21连接在第一阻抗变换单元23和第二阻抗变换单元25之间,第二阻抗变换单元25与天线22连接。在一些示例中,MEMS移相多单元21包括特征阻抗大于50欧姆的CPW结构。例如,MEMS移相多单元中的CPW结构的特征阻抗可以为100欧姆。然而,本实施例对此并不限定。关于MEMS移相多单元、第一阻抗变换单元和第二阻抗变换单元的结构可以参照前述实施例,故于此不再赘述。
图14为本公开至少一实施例的相控阵天线阵元的另一结构示意图。如图14所示,本示例性实施例的相控阵天线阵元包括:MEMS移相多单元21、天线22、第一阻抗变换单元23和第一转接单元24。第一转接单元24连接在馈电结构10和第一阻抗变换单元23之间,MEMS移相多单元21连接在第一阻抗变换单元23和天线22之间。在一些示例中,MEMS移相多单元21包括特征阻抗大于50欧姆的CPW结构。例如,MEMS移相多单元中的CPW结构的特征阻抗可以为100欧姆。然而,本实施例对此并不限定。关于MEMS移相多单元、第一阻抗变换单元和第一转接单元的结构可以参照前述实施例,故于此不再赘述。
图15为本公开至少一实施例的相控阵天线阵元的另一结构示意图。如图 15所示,本示例性实施例的相控阵天线阵元包括:MEMS移相多单元21、天线22和第一阻抗变换单元23。第一阻抗变换单元23连接在馈电结构10和MEMS移相多单元21之间,MEMS移相多单元21与天线22连接。在一些示例中,MEMS移相多单元21包括特征阻抗大于50欧姆的CPW结构。例如,MEMS移相多单元中的CPW结构的特征阻抗可以为100欧姆。然而,本实施例对此并不限定。关于MEMS移相多单元和第一阻抗变换单元的结构可以参照前述实施例,故于此不再赘述。
图16为本公开至少一实施例的电子装置的示意图。如图16所示,本实施例提供一种电子装置91,包括:相控阵天线系统910。相控阵天线系统910为前述实施例提供的相控阵天线系统。电子装置91可以为:智能电话、导航装置、游戏机、电视(TV)、车载音响、平板计算机、个人多媒体播放器(PMP)、个人数字助理(PDA)等任何具有通信功能的产品或部件。然而,本实施例对此并不限定。
本公开中的附图只涉及本公开涉及到的结构,其他结构可参考通常设计。在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
本领域的普通技术人员应当理解,可以对本公开的技术方案进行修改或者等同替换,而不脱离本公开技术方案的精神和范围,均应涵盖在本公开的权利要求的范围当中。

Claims (15)

  1. 一种相控阵天线系统,包括:
    馈电结构以及至少一个相控阵天线阵元,所述至少一个相控阵天线阵元包括:第一阻抗变换单元、MEMS移相多单元以及天线;
    所述第一阻抗变换单元与所述馈电结构连接,所述MEMS移相多单元连接在所述第一阻抗变换单元和所述天线之间。
  2. 根据权利要求1所述的相控阵天线系统,其中,所述MEMS移相多单元包括特征阻抗大于50欧姆的共面波导结构。
  3. 根据权利要求1或2所述的相控阵天线系统,其中,所述至少一个相控阵天线阵元还包括:至少一个转接单元,所述至少一个转接单元与所述第一阻抗变换单元或所述MEMS移相多单元连接,配置为实现微带结构和共面波导结构之间的转换。
  4. 根据权利要求3所述的相控阵天线系统,其中,所述至少一个转接单元包括:第一转接单元,所述第一转接单元连接在所述馈电结构和所述第一阻抗变换单元之间,配置为实现微带结构至共面波导结构的转换。
  5. 根据权利要求3至4中任一项所述的相控阵天线系统,其中,所述至少一个转接单元包括:第二转接单元,所述第二转接单元连接在所述MEMS移相多单元和所述天线之间,配置为实现共面波导结构至微带结构的转换。
  6. 根据权利要求1至5中任一项所述的相控阵天线系统,其中,所述至少一个相控阵天线阵元还包括:第二阻抗变换单元,所述第二阻抗变换单元连接在所述MEMS移相多单元和所述天线之间。
  7. 根据权利要求1至6中任一项所述的相控阵天线系统,其中,所述第一阻抗变换单元至少包括:连接在两个特征阻抗不同的共面波导结构之间的第一阻抗变换结构;
    其中,所述第一阻抗变换结构的特征阻抗Z 1、所述第一阻抗变换结构所连接的两个共面波导结构的特征阻抗Z 2和Z 3满足以下关系:
    Figure PCTCN2020124264-appb-100001
    或者,所述第一阻抗变换结构为连接在两个特征阻抗不同的共面波导结构之间的渐变式过渡结构。
  8. 根据权利要求3至7中任一项所述的相控阵天线系统,其中,所述至少一个转接单元包括:连接在微带结构和共面波导结构之间的转接结构;
    所述转接结构包括设置在介质基板的第一面上的信号转接线、设置在介质基板的与第一面相对的第二面上的第一转接地线;所述信号转接线连接在所述微带结构的微带信号线和所述共面波导结构的共面波导信号线之间,所述第一转接地线由所述微带结构的微带地线延伸形成,所述信号转接线在所述介质基板上的投影位于所述第一转接地线在所述介质基板上的投影内。
  9. 根据权利要求8所述的相控阵天线系统,其中,所述转接结构还包括:设置在介质基板的第一面上的第二转接地线;所述第二转接地线由所述共面波导结构的共面波导地线延伸形成;
    所述转接结构的信号转接线沿着延伸方向具有阶梯状变化边缘,所述第一转接地线靠近共面波导结构的一侧具有阶梯状变化边缘,所述第二转接地线靠近微带结构的一侧具有阶梯状变化边缘;或者,所述转接结构的信号转接线沿着延伸方向具有渐变式变化边缘,所述第一转接地线靠近共面波导结构的一侧具有渐变式变化边缘,所述第二转接地线靠近微带结构的一侧具有渐变式变化边缘。
  10. 根据权利要求3至7中任一项所述的相控阵天线系统,其中,所述至少一个转接单元包括:连接在微带结构和共面波导结构之间的转接结构,所述转接结构包括一个接地共面波导结构。
  11. 根据权利要求4所述的相控阵天线系统,还包括:缝隙耦合结构,所述缝隙耦合结构与所述馈电结构连接,配置为通过缝隙耦合方式向所述第一转接单元馈电。
  12. 根据权利要求1至11中任一项所述的相控阵天线系统,其中,所述馈电结构包括:馈电单元;
    所述馈电单元包括:直流电源、矢量网络分析仪、隔直器、T型偏置器以及射频同轴连接器SMA;所述隔直器与矢量网络分析仪连接,所述T型 偏置器连接在所述隔直器和所述SMA之间,所述直流电源与所述T型偏置器连接,所述SMA与所述相控阵天线阵元连接;
    或者,所述馈电单元包括:直流电源、矢量网络分析仪、控制电路、柔性线路板和SMA;所述控制电路与直流电源连接,所述柔性线路板连接在所述控制电路和相控阵天线阵元之间,所述SMA连接在矢量网络分析仪和所述相控阵天线阵元之间。
  13. 根据权利要求12所述的相控阵天线系统,其中,所述馈电结构还包括:功分网络,所述功分网络连接在所述馈电单元和多个相控阵天线阵元之间。
  14. 根据权利要求1至13中任一项所述的相控阵天线系统,其中,所述MEMS移相多单元至少包括十六个移相单元,至少一个移相单元包括位于介质基板的同一表面上的共面波导信号线和共面波导地线、覆盖共面波导信号线的绝缘层、以及位于绝缘层远离介质基板一侧的金属桥,所述金属桥横跨在所述共面波导信号线上;所述十六个移相单元的共面波导信号线依次连接。
  15. 一种电子装置,包括如权利要求1至14中任一项所述的相控阵天线系统。
PCT/CN2020/124264 2020-10-28 2020-10-28 相控阵天线系统及电子装置 WO2022087872A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/426,651 US20220320750A1 (en) 2020-10-28 2020-10-28 Phased Array Antenna System and Electronic Device
CN202080002504.0A CN114698406A (zh) 2020-10-28 2020-10-28 相控阵天线系统及电子装置
PCT/CN2020/124264 WO2022087872A1 (zh) 2020-10-28 2020-10-28 相控阵天线系统及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/124264 WO2022087872A1 (zh) 2020-10-28 2020-10-28 相控阵天线系统及电子装置

Publications (1)

Publication Number Publication Date
WO2022087872A1 true WO2022087872A1 (zh) 2022-05-05

Family

ID=81381703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124264 WO2022087872A1 (zh) 2020-10-28 2020-10-28 相控阵天线系统及电子装置

Country Status (3)

Country Link
US (1) US20220320750A1 (zh)
CN (1) CN114698406A (zh)
WO (1) WO2022087872A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230179163A1 (en) * 2021-12-07 2023-06-08 Harris Global Communications, Inc. Communications system including selectable impedance using an alternating pulse width modulation scheme and related methods
CN116315745B (zh) * 2023-05-11 2023-08-01 合肥联宝信息技术有限公司 一种紧凑型电子设备的天线系统和笔记本电脑

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1373916A (zh) * 1999-09-14 2002-10-09 帕拉泰克微波公司 带有介电移相器的串行馈送相控阵天线
CN1851972A (zh) * 2006-05-19 2006-10-25 哈尔滨工业大学 低激励电压和精确控制相移特性的mems毫米波移相器
CN102306861A (zh) * 2011-05-19 2012-01-04 南京邮电大学 带有屏蔽背板的共面波导-双面平行双线宽带转换接头
US20140266897A1 (en) * 2011-09-27 2014-09-18 Merck Patent Gmbh Electronically steerable planar phase array antenna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686885B1 (en) * 2002-08-09 2004-02-03 Northrop Grumman Corporation Phased array antenna for space based radar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1373916A (zh) * 1999-09-14 2002-10-09 帕拉泰克微波公司 带有介电移相器的串行馈送相控阵天线
CN1851972A (zh) * 2006-05-19 2006-10-25 哈尔滨工业大学 低激励电压和精确控制相移特性的mems毫米波移相器
CN102306861A (zh) * 2011-05-19 2012-01-04 南京邮电大学 带有屏蔽背板的共面波导-双面平行双线宽带转换接头
US20140266897A1 (en) * 2011-09-27 2014-09-18 Merck Patent Gmbh Electronically steerable planar phase array antenna

Also Published As

Publication number Publication date
US20220320750A1 (en) 2022-10-06
CN114698406A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
US20220393356A1 (en) Patch antenna
US11119364B2 (en) Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
US11837802B2 (en) Liquid crystal antenna unit and liquid crystal phased array antenna
US8907744B2 (en) Multi-line phase shifter having a fixed plate and a mobile plate in slideable engagement to provide vertical beam-tilt
KR100574014B1 (ko) 광대역 슬롯 배열 안테나
US7324049B2 (en) Miniaturized ultra-wideband microstrip antenna
WO2022087872A1 (zh) 相控阵天线系统及电子装置
CN109346834A (zh) Sigw圆极化缝隙天线
US11557826B2 (en) Antenna unit, preparation method, and electronic device
CN110350282B (zh) 基于双脊集成基片间隙波导的定向耦合器
Sbarra et al. A novel Rotman lens in SIW technology
CN112731715B (zh) 液晶移相器及天线
WO2022170497A1 (zh) 阵列天线模块及其制备方法、相控阵天线系统
KR100980678B1 (ko) 위상 천이기
CN108172994B (zh) 一种基于介质集成同轴线的双极化宽带天线装置
US20220247090A1 (en) Dipole Antenna
CN114156641A (zh) 天线及其制作方法、天线装置及其制作方法
JPH07120888B2 (ja) 複数面導波管結合器
CN101645537B (zh) 半模基片集成波导馈电的宽带对数周期偶极子阵列天线
US20060044193A1 (en) Antenna and electronic device using the same
Bayraktar et al. RF MEMS based millimeter wave phased array for short range communication
CN113809491B (zh) 枝节加载的快速响应型电调谐液晶移相器
Xu et al. Tunable phase shifter in substrate integrated waveguide
JP7315043B2 (ja) パッチアンテナ
WO2023155196A1 (zh) 天线和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20959036

Country of ref document: EP

Kind code of ref document: A1