WO2024040445A1 - 一种调相表面单元、调相表面结构及终端设备 - Google Patents

一种调相表面单元、调相表面结构及终端设备 Download PDF

Info

Publication number
WO2024040445A1
WO2024040445A1 PCT/CN2022/114339 CN2022114339W WO2024040445A1 WO 2024040445 A1 WO2024040445 A1 WO 2024040445A1 CN 2022114339 W CN2022114339 W CN 2022114339W WO 2024040445 A1 WO2024040445 A1 WO 2024040445A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
length
electrode pattern
substrate
shifting
Prior art date
Application number
PCT/CN2022/114339
Other languages
English (en)
French (fr)
Inventor
王�锋
王龙
彭依丹
曲峰
李必奇
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/114339 priority Critical patent/WO2024040445A1/zh
Priority to CN202280002792.9A priority patent/CN117918004A/zh
Publication of WO2024040445A1 publication Critical patent/WO2024040445A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices

Definitions

  • the present invention relates to the technical field of antenna communication equipment, and in particular to a phase modulation surface unit, a phase modulation surface structure and a terminal device.
  • a smart metasurface composed of subwavelength resonators is an artificial composite metamaterial with programmable amplitude or phase modulation properties. It can operate in reflection mode or transmission mode. In transmission mode, it is considered a spatial phase modulation surface; in reflection mode, it is also called a smart reflective surface.
  • transmission mode it is considered a spatial phase modulation surface; in reflection mode, it is also called a smart reflective surface.
  • the greatest market value of smart metasurfaces is that they can actively control the wireless propagation environment during wireless communication, dynamically regulate the transmission direction of electromagnetic signals in three-dimensional space, and control the transmission channel between the transmitter and receiver.
  • the most commonly used control method for current smart metasurfaces is to embed PIN diodes in the array subunits of the smart metasurface, and use electrical signals to drive each PIN diode on and off to achieve digital phase modulation or amplitude modulation.
  • electrical signal control devices such as varactor diodes or mems switches to achieve dynamic modulation of the compensation phase of the array subunits of smart metasurfaces, but the above control methods have some shortcomings.
  • PIN diode and MEMS switch tuning continuous phase or amplitude modulation cannot be performed.
  • phase change range of the phase modulation metasurface is limited. Since many phase-modulated metasurface structures currently perform phase jumps based on the resonance effect of subunits, the resonance phase change range of a single-layer oscillator is ⁇ 180 degrees. Third, for electrical control methods such as varactor diodes that change the resonant frequency of the array sub-units of the smart metasurface, although each array sub-unit can achieve continuous phase compensation, a specialized DAC device needs to be embedded. Therefore, all sub-units must be implemented. The cost of continuous and precise control of units is high.
  • the invention provides a phase modulation surface unit, a phase modulation surface structure and a terminal device.
  • the phase modulation surface unit can realize continuous and accurately controlled phase modulation, has a large phase shift range and can save production costs.
  • a phase-modulating surface unit includes at least two phase-shifting layers stacked on top of one another, and the phase-shifting layers include:
  • a first phase-shifting surface layer is located on a side of the first substrate facing the second substrate.
  • the first phase-shifting surface layer includes at least a first electrode pattern extending along a first direction and a first electrode pattern connected to the first substrate.
  • the first control line connected to the electrode pattern;
  • a second phase-shifting surface layer is located on the side of the second substrate facing the first substrate.
  • the second phase-shifting surface layer includes at least one corresponding to the first electrode pattern and extends along the second direction.
  • the second electrode pattern and the second control line connected to the second electrode, the orthographic projection of the second electrode pattern on the first substrate and the corresponding first electrode pattern on the first substrate The orthographic projection above intersects, and the second electrode pattern and the corresponding first electrode pattern form a resonant unit;
  • a tunable dielectric layer is located between the first phase-shifting surface layer and the second phase-shifting surface layer.
  • the orthographic projection of the first electrode pattern on the first substrate and the orthogonal projection of the second electrode pattern on the first substrate are orthogonal to each other.
  • the length of the first electrode pattern is the same as the length of the second electrode pattern
  • the width of the first electrode pattern is the same as the width of the second electrode pattern
  • the thickness of the first electrode pattern is The thickness of the second electrode pattern is the same as that of the second electrode pattern.
  • the center point of the orthographic projection of the first electrode pattern on the first substrate coincides with the center point of the orthographic projection of the second electrode pattern on the first substrate.
  • the middle region of the first electrode pattern has a first strip groove extending along the first direction
  • the middle area of the second electrode pattern has a second strip groove extending along the second direction, and the orthographic projection of the second strip groove on the first substrate is the same as the orthogonal projection of the first strip groove on the first substrate. Orthographic projections on the first substrate cross each other.
  • the length of the first strip groove is the same as the length of the second strip groove, and the width of the first strip groove is the same as the width of the second strip groove.
  • the first electrode pattern has two first comb teeth extending along the second direction on both sides arranged along the second direction, and the distance between the two first comb teeth is equal to the The width of the second groove along the first direction;
  • the second electrode pattern has two second comb teeth extending along the first direction on both sides arranged along the first direction, and the distance between the two second comb teeth is equal to the first strip shape.
  • the orthographic projection of the second electrode pattern on the first substrate covers the orthographic projection of the first comb teeth on the first substrate, and the orthographic projection of the first electrode pattern on the first substrate covers all the orthographic projections of the first comb teeth on the first substrate.
  • the orthographic projection of the second comb teeth on the first substrate covers all the orthographic projections of the first comb teeth on the first substrate.
  • the length of the first comb teeth along the second direction is the same as the length of the second comb teeth along the first direction
  • the width of the first comb teeth along the first direction is the same as the length of the second comb teeth along the first direction.
  • the width in the second direction is the same.
  • the width of the first comb teeth along the first direction is the same as the width between the inner wall and the outer wall of the second electrode pattern along the second direction
  • the width of the second comb teeth along the second direction is the same as the width between the inner wall and the outer wall of the second electrode pattern.
  • the width between the inner wall and the outer wall of the first electrode pattern along the first direction is the same.
  • the first phase-shifting surface layer includes a plurality of first electrode patterns distributed in an array
  • the second phase-shifting surface layer includes a second electrode pattern that corresponds one-to-one to the plurality of first electrode patterns.
  • the resonant frequencies of the plurality of resonant units are different.
  • the lengths of the first strip grooves and the lengths of the second strip grooves of different resonant units are different, or the lengths of the different resonant units are different.
  • the length of the first comb teeth is different from the length of the second comb teeth.
  • the first phase-shifting surface layer includes four first electrode patterns distributed in a 2 ⁇ 2 array
  • the second phase-shifting surface layer includes four first electrode patterns that correspond one to one to the plurality of first electrode patterns. second electrode pattern.
  • the length of the first strip slot and the length of the second strip slot of one resonant unit are the first length, and the length of the second strip slot of the other resonant unit is the first length.
  • the length of the strip groove and the length of the second strip groove are a second length, and the first length is greater than the second length.
  • the length of the first strip groove and the length of the second strip slot of one resonant unit are the first length, and the length of the other resonant unit is the first length.
  • the length of the first strip groove and the length of the second strip groove of the unit are a second length, and the first length is greater than the second length.
  • the length of the first comb tooth and the length of the second comb tooth of one resonant unit are a third length, and the length of the first comb tooth of the other resonant unit is a third length.
  • the length of the comb teeth and the length of the second comb teeth are a fourth length, and the fourth length is greater than the third length.
  • the length of the first comb teeth and the length of the second comb teeth of one resonant unit are a third length
  • the length of the other resonant unit is The length of the first comb teeth and the length of the second comb teeth are a fourth length, and the fourth length is greater than the third length.
  • the first electrode patterns in two adjacent resonant units are connected;
  • the second electrode patterns in two adjacent resonant units are connected.
  • the first electrode pattern includes two straight portions extending along the first direction and a microstrip line portion connected between the straight portions;
  • the orthographic projection of the second electrode pattern on the first substrate covers the orthographic projection of the microstrip line portion on the first substrate.
  • the microstrip line portion is in the shape of a folded line.
  • the microstrip line portion includes at least two square wave-shaped fold line portions spaced apart along the first direction.
  • the adjacent first substrate and the second substrate in two adjacent stacked phase-shifting layers are the same substrate.
  • At least two phase-shifting layers have the same structure, and the orthographic projections of the first electrode patterns in the different first phase-shifting surface layers on the same first substrate completely overlap, and the different second phase-shifting layers have the same structure.
  • the orthographic projection of the second electrode pattern in the surface layer on the same first substrate completely overlaps.
  • the tunable dielectric layer is a liquid crystal layer;
  • the phase-modulating surface unit further includes a first alignment layer and a second alignment layer, the first alignment layer is located on the first phase-shifting surface layer toward the On one side of the tunable dielectric layer, the second alignment layer is located on a side of the second phase-shifting surface layer facing the tunable dielectric layer.
  • the present invention also provides a phase-modifying surface structure, which includes at least one phase-modifying surface unit provided in the above technical solutions distributed in an array.
  • the present invention also provides a terminal device, which includes the phase modulation surface structure provided in the above technical solution and a control board for controlling the voltage applied to the first electrode pattern and the second electrode pattern.
  • Embodiments of the present invention provide a phase-modulating surface unit, a phase-modulating surface structure and a terminal device.
  • the phase-modulating surface structure includes at least two laminated phase-shifting layers.
  • the phase-shifting layer includes a first substrate, a second substrate, a first substrate and a first substrate.
  • the phase-shifting surface layer, the second phase-shifting surface layer and the tunable dielectric layer, the orthographic projection of the first electrode pattern in the first phase-shifting surface layer on the first substrate and the second electrode pattern in the second phase-shifting surface layer The orthographic projections on the first substrate intersect, and the first electrode pattern and the second electrode pattern can construct a resonance unit capable of resonating in a specific single frequency band, because the tunable dielectric layer is disposed between the first phase-shifting surface layer and the second phase-shifting surface layer. Between the phase surface layers, the tunable dielectric layer can be used as a tuning filter.
  • a single phase-shifting layer can produce a phase-shifting range of less than 180° for a specific single frequency band signal, and at least two such phase-shifting layers are stacked to form a resonant structure of at least two layers, as shown in the figure As shown in 3, it can produce a phase-shifting range of 0 degrees to 180 degrees or more, and at least two layers of resonant structures can perform in-band transmittance or reflectivity flattening, which can achieve relative transmission or reflection in a wide frequency band. constant.
  • phase-modulation surface unit continuous and precisely controlled phase modulation can be achieved by applying different voltages to the adjustable dielectric layer, and at least two stacked phase-shifting layers can produce a larger phase-shifting range without
  • Each resonant unit needs to be controlled to change the resonant frequency through a varactor diode or other means.
  • Figure 1 is a schematic structural diagram of a phase modulation surface unit provided by an embodiment of the present invention.
  • Figure 2 is a three-dimensional schematic diagram of a resonant unit provided by an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a double-layer resonance unit provided by an embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a resonant unit provided by an embodiment of the present invention.
  • Figure 5 is a schematic structural diagram of a first electrode pattern provided by an embodiment of the present invention.
  • Figure 6 is a schematic structural diagram of a second electrode pattern provided by an embodiment of the present invention.
  • Figure 7 is a single-layer phase-shifting layer single-resonance phase-modulation waveform diagram provided by an embodiment of the present invention.
  • Figure 8 is a double-layer phase-shifting layer single resonance phase modulation waveform diagram provided by an embodiment of the present invention.
  • Figure 9 is a dual-layer phase-shifting layer dual-resonance phase-modulation waveform diagram provided by an embodiment of the present invention.
  • Figure 10 is a schematic structural diagram of the arrangement of resonant units in a phase-shifting layer according to an embodiment of the present invention.
  • Figure 11 is a relationship curve between frequency and transmittance provided by an embodiment of the present invention.
  • Figure 12 is a graph showing the relationship between frequency and phase shift angle provided by an embodiment of the present invention.
  • Figure 13 is a schematic structural diagram of the arrangement of resonant units in another phase-shifting layer provided by an embodiment of the present invention.
  • Figure 14 is a graph of the relationship between frequency and transmittance provided by an embodiment of the present invention.
  • Figure 15 is a graph showing the relationship between frequency and phase shift angle provided by an embodiment of the present invention.
  • Figure 16 is a schematic structural diagram of the arrangement of resonant units in another phase-shifting layer provided by an embodiment of the present invention.
  • Figure 17 is a graph of the relationship between frequency and transmittance provided by an embodiment of the present invention.
  • Figure 18 is a graph showing the relationship between frequency and phase shift angle provided by an embodiment of the present invention.
  • Figure 19 is a schematic structural diagram of the arrangement of resonant units in another phase-shifting layer provided by an embodiment of the present invention.
  • Figure 20 is a graph showing the relationship between frequency and transmittance provided by an embodiment of the present invention.
  • Figure 21 is a graph of the relationship between frequency and phase shift angle provided by an embodiment of the present invention.
  • Figure 22 is a schematic structural diagram of a resonance unit distributed in an array according to an embodiment of the present invention.
  • Figure 23 is a schematic structural diagram of a phase-shifting layer provided by an embodiment of the present invention.
  • 100-phase-shifting layer 101-resonance unit; 1-first substrate; 2-second substrate; 3-first phase-shifting surface layer; 31-first electrode pattern; 311-first strip groove; 312-th A comb tooth; 313-straight line portion; 314-microstrip line portion; 4-second phase-shifting surface layer; 41-second electrode pattern; 411-first strip groove; 5-adjustable dielectric layer; 6-th An alignment layer; 7-a second alignment layer.
  • the present invention provides a phase-modulating surface unit, which includes at least two stacked phase-shifting layers 100.
  • the phase-shifting layer 100 includes:
  • the second substrate 2 is arranged opposite to the first substrate 1;
  • the first phase-shifting surface layer 3 is located on the side of the first substrate 1 facing the second substrate 2.
  • the first phase-shifting surface layer 3 includes at least a first electrode pattern 31 extending along the first direction x and a first electrode pattern 31 extending along the first direction x. 31 connects the first control line;
  • the second phase-shifting surface layer 4 is located on the side of the second substrate 2 facing the first substrate 1 .
  • the second phase-shifting surface layer 4 includes at least one third electrode pattern extending along the second direction y corresponding to the first electrode pattern 31 .
  • the second electrode pattern and the corresponding first electrode pattern form a resonance unit 101;
  • the adjustable dielectric layer 5 is located between the first phase-shifting surface layer 3 and the second phase-shifting surface layer 4 .
  • the phase-modulating surface unit provided by the embodiment of the present invention includes at least two laminated phase-shifting layers 100.
  • the phase-shifting layer 100 includes a first substrate 1, a second substrate 2, a first phase-shifting surface layer 3, a second phase-shifting surface layer 100, and a second substrate 100.
  • the phase surface layer 4 and the tunable dielectric layer 5, the orthographic projection of the first electrode pattern 31 in the first phase-shifting surface layer 3 on the first substrate and the second electrode pattern 41 in the second phase-shifting surface layer 4 are on the first substrate.
  • the orthographic projection on a substrate intersects, and the first electrode pattern 31 and the second electrode pattern 41 can construct a resonant unit 101 that can resonate in a specific single frequency band, because the tunable dielectric layer 5 is disposed between the first phase-shifting surface layer 3 and Between the second phase-shifting surface layer 4, the tunable dielectric layer 5 can be used as a tuning filter, and the first electrode pattern 31 and the second electrode pattern 41 can be controlled to be tunable through the first control line and the second control line respectively.
  • the dielectric layer 5 applies a voltage to adjust the resonant frequency of the resonant unit 101.
  • a single phase-shifting layer 100 can produce a phase-shifting range of less than 180° for a specific single frequency band signal, and at least two such phase-shifting layers 100 are stacked. , can form at least two layers of resonant structures, as shown in Figure 3, can produce a phase-shiftable range of 0 degrees to 180 degrees or greater, and at least two layers of resonant structures can perform in-band transmittance or reflectivity flattening, Relatively constant transmission or reflection over a wide frequency band can be achieved.
  • continuous and precisely controlled phase modulation can be achieved by applying different voltages to the adjustable dielectric layer 5, and at least two stacked phase-shifting layers 100 can produce a larger phase-shifting range.
  • each resonant unit 101 to change the resonant frequency through a varactor diode or other means, and there is no need to add other additional electronic devices. It is only necessary to control the first electrode pattern 31 and the second electrode pattern 31 through the first control line and the second control line.
  • the electrode pattern 41 applies voltage to adjust the resonant frequency.
  • the first electrode pattern 31 and the first control line can be manufactured on the same layer, and the second electrode pattern 41 and the second control line can be manufactured on the same layer, which can simplify the manufacturing process and save costs.
  • the first electrode pattern 31 can be connected to ground, and the second electrode pattern 41 can be connected to high voltage or low voltage to control the adjustment of the resonant frequency in the adjustable dielectric layer 5 .
  • the adjustable dielectric layer 5 can be a liquid crystal layer
  • the above-mentioned phase-modulating surface unit can apply different deflection voltages to the liquid crystal layer through the first electrode pattern and the second electrode pattern. , through the different deflection angles of the liquid crystal molecules in the liquid crystal layer, continuous and precisely controlled phase modulation can be achieved.
  • the above-mentioned phase-shifting surface unit also includes a first alignment layer 6 and a second alignment layer 7. The first alignment layer 6 is located on the side of the first phase-shifting surface layer 3 facing the adjustable dielectric layer 5.
  • the second alignment layer 7 is located on The side of the second phase-shifting surface layer 4 facing the adjustable dielectric layer 5 can use the first alignment layer 6 and the second alignment layer 7 to make the rotation angle of the liquid crystal molecules to a preset initial angle when no voltage is applied, which facilitates alignment. Adjustment of the resonant frequency of the resonant unit 101.
  • the orthographic projection of the first electrode pattern 31 on the first substrate and the orthogonal projection of the second electrode pattern 41 on the first substrate may be orthogonal to each other. , or the orthographic projection of the first electrode pattern 31 on the first substrate and the orthographic projection of the second electrode pattern 41 on the first substrate can also form a specific angle, which is not limited here and can be determined according to the actual situation.
  • the length of the first electrode pattern 31 may be the same as the length of the second electrode pattern 41, and the width of the first electrode pattern 31 may be the same as the width of the second electrode pattern 41.
  • the first electrode pattern 31 may have the same length as the second electrode pattern 41.
  • the thickness of 31 may be the same as the thickness of the second electrode pattern 41 .
  • the specific size values of the first electrode pattern 31 and the second electrode pattern 41 are not limited here and can be determined according to the actual situation.
  • the length of the first electrode pattern 31 is the period dimension P1 of the first electrode pattern 31
  • the length of the second electrode pattern 41 is the period dimension P2 of the second electrode pattern 41
  • the width of the first electrode pattern 31 is w1
  • the length of the second electrode pattern 41 is w1.
  • the width of the electrode pattern 41 is w2; the thickness of the first electrode pattern 31 and the second electrode pattern 41 is h, which can be 20 mm.
  • the thickness of the adjustable dielectric layer 5 can be d.
  • the first electrode pattern 31 and the second electrode pattern 41 The distance between them is d-2h, d-2h may be 26 ⁇ m, and the thickness of the first alignment layer 6 and the second alignment layer 7 may be 100 nm.
  • the center point of the orthographic projection of the first electrode pattern 31 on the first substrate coincides with the center point of the orthographic projection 1 of the second electrode pattern 4 on the first substrate. That is, the orthographic projection of the first electrode pattern on the first substrate intersects with the orthographic projection of the second electrode pattern on the first substrate at the center point of the two.
  • the orthographic projection of the first electrode pattern 31 on the first substrate intersects.
  • the orthographic projection and the orthographic projection of the second electrode pattern 41 on the first substrate may not intersect at their respective midpoints, which is not limited here and depends on the actual situation.
  • the first electrode pattern 31 and the second electrode pattern 41 may not be a simple linear electrode, and a certain deformation may be made in the overlapping area of the first electrode pattern 31 and the second electrode pattern 41.
  • the middle region of the above-mentioned first electrode pattern 31 may have a first strip groove 311 extending along the first direction x; as shown in FIG. 6 , the middle region of the above-mentioned second electrode pattern 41 may have It has a second strip groove 411 extending along the second direction y, and the orthographic projection of the second strip groove 411 on the first substrate intersects with the orthographic projection of the first strip groove 311 on the first substrate, which can effectively compress
  • the size of the resonant unit 101 can be finely controlled by each resonant unit 101 to achieve a more complex and controllable phase modulation characteristic of the phase modulation array structure, while also increasing the beam deflection angle range.
  • the length of the first electrode pattern 31 and the length of the second electrode pattern 41 can reach 1.6 mm, which is 1/6 to 1/7 of the wavelength of 28 GHz.
  • first electrode pattern 31 and the second electrode pattern 41 it can be set that the length of the first strip groove 311 is the same as the length of the second strip groove 411, and the width of the first strip groove 311 is the same as the width of the second strip groove. 411 is the same width.
  • the length and width of the first strip groove 311 and the length and width of the second strip groove 411 may also be different, and may be determined according to the actual situation, and are not limited here.
  • the midpoint of the orthographic projection of the above-mentioned first strip groove 311 on the first substrate and the midpoint of the orthographic projection of the second strip groove 411 on the first substrate can intersect, and the structure is symmetrical, which is beneficial to the resonant unit. 101 resonance effect.
  • the first electrode pattern 31 may also have two extending along the second direction y on both sides of the first electrode pattern 31 arranged along the second direction y.
  • the first comb teeth 312, the distance between the two first comb teeth 312 is equal to the width of the second strip groove along the first direction x; as shown in Figure 6, the second electrode pattern 41 is arranged along the first direction x
  • the orthographic projection of the second electrode pattern 41 on the first substrate 1 covers the orthographic projection of the first comb teeth 312 on the first substrate 1
  • the orthographic projection of the first electrode pattern 31 on the first substrate 1 covers
  • the orthographic projection of the second comb teeth on the first substrate 1 can increase the overlapping area of the first electrode pattern 31 and the second electrode pattern 41 in a resonance unit 101, and a larger overlapping area helps to reduce resonance.
  • the size of the unit 101 and the frequency modulation range after the voltage is applied to the tunable dielectric layer 5 are increased. In practical applications, the minimum size of the above-mentioned resonant unit 101 can reach the order of 1/10 of the wavelength of 28 GHz, so that the deflection angle of the beam incident on the vertical phase modulation surface can reach ⁇ 50°.
  • the length w5 of the first comb teeth 312 along the second direction y may be the same as the length w6 of the second comb teeth 312 along the first direction x, and the width of the first comb teeth 312 along the first direction x may be the same as the length w6 of the second comb teeth 312 along the first direction x.
  • the widths along the second direction y are the same, which can ensure the resonance effect of the resonance unit 101 .
  • the width of the first comb teeth 312 along the first direction x may be the same as the width between the inner wall and the outer wall of the second electrode pattern 41 along the second direction y, and the width of the second comb teeth along the second direction y may be equal to
  • the width of the inner wall and the outer wall of the first electrode pattern 31 along the first direction x is the same, which can increase the area where the first electrode pattern 31 and the second electrode pattern 41 overlap and face each other, which is beneficial to reducing the size of the resonant unit 101 .
  • the first phase-shifting surface layer 3 may include a plurality of first electrode patterns 31 distributed in an array, and the second phase-shifting surface layer 4
  • the second electrode pattern 41 is included in a one-to-one correspondence with the plurality of first electrode patterns 31 to form a plurality of resonant units 101.
  • the row direction of the plurality of resonant units 101 is the first direction x, and the column of the plurality of resonant units 101 is arranged.
  • the direction is the second direction y; along the first direction x and/or the second direction y, the resonant frequencies of the plurality of resonant units 101 are different.
  • the phase-shifting layer 100 of the above-mentioned phase-modulating surface unit may have multiple resonant units 101 distributed in an array. Along the first direction x and/or the second direction y, the resonant frequencies of the multiple resonant units 101 are different. It can further expand the phase shift range produced by the phase modulation surface unit for a specific frequency band.
  • the lengths of the first strip grooves 311 of the plurality of resonance units 101 and the lengths of the second strip grooves 411 are different, or the lengths of the first strip grooves 311 of the plurality of resonance units 101 are different.
  • the length of the first comb tooth 312 is different from the length of the second comb tooth. That is, in the plurality of resonant units 101, different resonant frequencies can be achieved by setting different lengths of strip grooves or different lengths of the comb teeth.
  • the length of the first strip groove 311 is the length of the first strip groove 311 along the first direction x
  • the length of the second strip groove 411 is the length of the second strip groove 411 along the second direction y
  • the length of one comb tooth 312 is the length of the first comb tooth 312 along the second direction y
  • the length of the second comb tooth is the length of the second comb tooth along the first direction x.
  • the first phase modulation surface 3 may include four first electrodes distributed in a 2 ⁇ 2 array
  • the second phase modulation surface may include a second electrode pattern 41 corresponding to the first electrode pattern 31, that is to say
  • the phase-shifting layer 100 may include four resonant units 101 arranged in a 2 ⁇ 2 array.
  • the resonant frequencies of the two resonant units 101 are different, which can realize the internal
  • the dual-resonance phase modulation structure of two frequency bands by setting each phase-shifting layer 100 to a dual-resonance structure, can produce a phase-shifting range of 360° or even greater than 360° for a specific single frequency band signal.
  • the above-mentioned phase-modulating surface unit may have two stacked phase-shifting layers 100.
  • Each phase-shifting layer 100 has a dual-resonance phase-modulating structure. Assuming that the phase-modulating surface unit is in transmission mode, this arrangement can achieve a single-layer resonance.
  • the 180° phase jump of the transmitted wave during the structure is converted into a 360° phase jump, thereby achieving a phase adjustment amount of about 180°.
  • Figure 7 shows the effect curves of phase shifting in a specific frequency band under three different resonant structures.
  • the changes in the orientation state of the liquid crystal molecules in the tunable dielectric layer 5 are consistent when the signal is phase-modulated under the three different resonant structures.
  • the solid curves in Figures 7, 8 and 9 show the frequency band transmission in the first liquid crystal molecule orientation state.
  • the dotted curves in Figures 7, 8 and 9 are the state diagrams of the frequency band passing through the phase-modulating surface unit in the second liquid crystal molecule orientation state.
  • Figure 7 shows the effect of signal phase shifting in the case of a single-layer phase-shifting layer with 100 single resonances.
  • the transmission peak After phase modulation, the transmission peak produces a 90° phase jump.
  • Figure 8 shows the frequency band in the case of a double-layer phase-shifting layer with 100 single-resonance structures. The effect diagram of phase shifting. After phase modulation, the transmission peak produces a phase jump of 180°.
  • Figure 9 shows the effect diagram of frequency band phase shifting in the case of a double-layer phase-shifting layer 100 double resonance structure. After phase modulation, the transmission peak produces a 360° phase jump. Phase jump increases the phase adjustment amount.
  • the resonant structure of the double-layer phase-shifting layer 100 can make the transmission peak relatively flat, which is beneficial to the constant transmittance reproduction when a single phase-shifting application is applied, thereby increasing the relative bandwidth. Specifically, by setting an appropriate spacing between the two phase-shifting layers 100, it is also beneficial to make the transmission peak flatter and increase the relative bandwidth.
  • the length of the first strip groove 311 and the length of the second strip groove 411 of the unit 101 are the second length.
  • the first length is greater than the second length, which can make the length of the two adjacent resonant units 101 in the first direction x
  • the resonant frequencies are different.
  • a phase-shifting layer 100 includes four resonant units 101.
  • the length of the first strip groove 311 of one resonant unit 101 and the length of the second strip The length of the groove 411 is greater than the length of the first strip groove 311 and the length of the second strip groove 411 of another resonance unit 101; and in the column direction, the first strip groove 311 of two different resonance units 101 are equal in length, and the length of the second strip groove 411 is also equal.
  • the orthographic projection of the first electrode pattern 31 on the first substrate and the orthographic projection of the second electrode pattern 41 on the first substrate are They are orthogonal to each other, and the intersection point is the center point of the orthographic projection of the first electrode pattern 31 and the second electrode pattern 41 on the first substrate.
  • the length P1 of the first electrode pattern 31, the length P2 of the second electrode pattern 41, the width w1 of the first electrode pattern 31, the width w2 of the second electrode pattern 41, the first strip groove The width w3 of 311, the width w4 of the second strip groove 411, the length w5 of the first comb tooth 312 and the length w6 of the second comb tooth are all equal.
  • this structure is used to phase-modulate space millimeter waves in the 27GHz frequency band, and the vacuum wavelength is approximately 11.1 mm.
  • a high voltage is applied to both columns of resonant units 101, assuming that the liquid crystal molecules are oriented completely perpendicular to the plane of the first electrode pattern 31 and the second electrode pattern 41, their transmittance peaks can be shown as the solid curves in Figure 11.
  • the transmission curve can be shown as the dotted curve in Figure 11.
  • the bandwidth is wider.
  • the width of the second transmission peak of the solid curve is much smaller than the width of the second transmission peak of the dotted curve. In this way, larger phase adjustment can be achieved within a wider bandwidth, and the original transmission peaks of 26.5GHz and 28.3GHz are moved to 28.8GHz-29.8GHz.
  • the maximum range of phase modulation in the 28.8GHz to 29.8GHz frequency band can reach about 360 degrees.
  • the length of the first strip groove 311 and the length of the second strip slot 411 of one resonant unit 101 are the first length.
  • the length of the first strip groove 311 and the length of the second strip groove 411 of the other resonant unit 101 are the second length, and the first length is greater than the second length, so that in the first direction x and the second direction y
  • the resonant frequencies of two adjacent resonant units 101 are different.
  • a phase-shifting layer 100 includes four resonant units 101 .
  • the length of the first strip groove 311 of one resonant unit 101 and The length of the second strip groove 411 is greater than the length of the first strip groove 311 and the length of the second strip groove 411 of another resonance unit 101 .
  • the transmittances of x-polarization in the first direction and y-polarization in the second direction are symmetrical, and dual-polarization design can be easily realized by applying high voltage or low voltage to all second electrode patterns 41 at the same time.
  • the orthographic projection of the first electrode pattern 31 on the first substrate and the orthographic projection of the second electrode pattern 41 on the first substrate are They are orthogonal to each other, and the intersection point is the center point of the orthographic projection of the first electrode pattern 31 and the second electrode pattern 41 on the first substrate.
  • the length P1 of the first electrode pattern 31, the length P2 of the second electrode pattern 41, the width w1 of the first electrode pattern 31, the width w2 of the second electrode pattern 41, the first strip groove The width w3 of 311, the width w4 of the second strip groove 411, the length w5 of the first comb tooth 312 and the length w6 of the second comb tooth are all equal.
  • this structure is used to perform phase modulation of space millimeter waves in the 27GHz frequency band, and the vacuum wavelength is approximately 11.1 mm.
  • the transmittance appears as two transmission peaks at 26.5GHz and 28.3GHz as shown in the solid curve in Figure 14.
  • the transmittance peak is shown as the dotted curve in Figure 14.
  • the length of the first comb teeth 312 and the length of the second comb teeth are a fourth length, and the fourth length is greater than the third length, which can cause the resonant frequencies of two adjacent resonant units 101 in the first direction x to be different.
  • a phase-shifting layer 100 includes four resonant units 101 .
  • the length of the first comb tooth 312 of one resonant unit 101 and the length of the second comb tooth 312 are The lengths are both greater than the length of the first comb teeth 312 and the length of the second comb teeth in another resonant unit 101; and in the column direction, the lengths of the first comb teeth 312 of the two resonant units 101 are equal, and the lengths of the second comb teeth are equal. are equal in length.
  • the orthographic projection of the first electrode pattern 31 on the first substrate in each resonant unit 101 and the orthographic projection of the second electrode pattern 41 on the first substrate are mutually exclusive.
  • the orthogonal and intersection points are the center points of the orthographic projections of the first electrode pattern 31 and the second electrode pattern 41 on the first substrate.
  • the length P1 of the first electrode pattern 31, the length P2 of the second electrode pattern 41, the width w1 of the first electrode pattern 31, the width w2 of the second electrode pattern 41, the first strip groove The length L1 of 311, the length L2 of the second strip groove 411, the width w3 of the first strip groove 311, and the width w4 of the second strip groove 411 are all equal.
  • the length of the first comb tooth 312 and the length of the second comb tooth of one resonant unit 101 are the third length
  • the length of the second comb tooth 312 of one resonant unit 101 is the third length
  • the length of the first comb tooth 312 and the length of the second comb tooth 312 of a resonant unit 101 are the fourth length
  • the fourth length is greater than the third length, which can make two adjacent ones in the first direction x and the second direction y
  • the resonant frequencies of the resonant units 101 are different.
  • a phase-shifting layer 100 includes four resonant units 101 .
  • the length of the first comb tooth 312 of one resonant unit 101 and the length of the first comb tooth 312 of the resonant unit 101 are The lengths of the two comb teeth are both larger than the length of the first comb teeth 312 and the length of the second comb teeth in the other resonance unit 101 .
  • the orthographic projection of the first electrode pattern 31 on the first substrate in each resonant unit 101 and the orthographic projection of the second electrode pattern 41 on the first substrate are mutually exclusive. They are arranged orthogonally, and the intersection point is the center point of the orthogonal projection of the first electrode pattern 31 and the second electrode pattern 41 on the first substrate.
  • the length P1 of the first electrode pattern 31, the length P2 of the second electrode pattern 41, the width w1 of the first electrode pattern 31, the width w2 of the second electrode pattern 41, the first strip groove The length L1 of 311, the length L2 of the second strip groove 411, the width w3 of the first strip groove 311, and the width w4 of the second strip groove 411 are all equal.
  • the resonant units 101 when the resonant units 101 are distributed in an array, it can be arranged that along the first direction x, the first electrode patterns 31 in two adjacent resonant units 101 are connected; along the second direction y, the first electrode patterns 31 in adjacent The second electrode patterns 41 in the two resonant units 101 are connected, and the structure is simple and easy to manufacture.
  • the first electrode pattern 31 in order to reduce the size of the resonant unit 101, as shown in FIG. 22, can also be configured to include two straight portions 313 extending along the first direction x and a pair of straight portions 313 connected between the straight portions 313.
  • the microstrip line portion 314 can increase the area of the overlapping region of the first electrode pattern 31 and the second electrode pattern 41, and can reduce the size of the resonant unit 101.
  • the above-mentioned microstrip line portion 314 may be in a polygonal shape, as shown in FIG. 22 .
  • the above-mentioned microstrip line portion 314 includes at least two square wave-shaped polygonal line portions, which can realize the dual resonance structure of the resonant unit 101 and increase the phase modulation range of the phase modulation surface unit.
  • the adjacent first substrate 1 and the second substrate 2 in the above-mentioned two adjacent laminated phase-shifting layers 100 can be the same substrate, which has a simple structure and is easy to manufacture, as shown in FIG. 1 .
  • the structures of at least two phase-shifting layers 100 may be the same, and the orthographic projections of the first electrode patterns 31 in different first phase-shifting surface layers 3 on the same first substrate 1 completely overlap.
  • the orthographic projections of the second electrode patterns 41 in the second phase-shifting surface layer 4 on the same first substrate 1 completely overlap, thereby enabling a double-layer phase-modulating structure.
  • the present invention also provides a phase-modifying surface structure, which includes at least one phase-modifying surface unit provided in the above technical solutions distributed in an array.
  • the above-mentioned phase-modulating surface structure includes at least two phase-shifting layers 100 in a plurality of phase-modulating surface units distributed in an array.
  • Figure 23 is a cross-sectional view of one phase-shifting layer 100 along the first direction x the first electrode pattern 31 are connected to form a first metal wire grid pattern, and the second electrode pattern 41 is connected along the second direction y to form a second metal wire grid pattern.
  • the adjustable dielectric layer 5 is located between the first metal wire grid pattern and the second metal wire grid pattern.
  • the phase modulation function of the phase modulation surface structure can be realized by applying a deflection voltage to the adjustable dielectric layer 5, as shown in Figure 22.
  • the phase-modulating surface structure has at least two layers of resonant structures, which can produce a phase-shifting range of 0 degrees to 180 degrees or more, and does not require additional control devices on each resonant unit 101.
  • the manufacturing process and structure are simple, and can Save production costs.
  • the present invention also provides a terminal device, which includes the phase modulation surface structure provided in the above technical solution and a control board for controlling the voltage applied to the first electrode pattern 31 and the second electrode pattern 41 .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种调相表面单元、调相表面结构及终端设备,该调相表面单元包括至少两层层叠设置的移相层,移相层包括:第一基板;第二基板,与第一基板相对设置;第一移相表面层,位于第一基板朝向第二基板的一侧,第一移相表面层包括至少一个沿第一方向延伸的第一电极图案;第二移相表面层,位于第二基板朝向第一基板的一侧,第二移相表面层包括与第一电极图案一一对应的至少一个沿第二方向延伸的第二电极图案,第二电极图案在第一基板上的正投影与对应的第一电极图案在第一基板上的正投影相交叉;可调电介质层,位于第一移相表面层与第二移相表面层之间。该调相表面单元能实现连续、精准控制的调相,具有较大移相范围和能节省制作成本。

Description

一种调相表面单元、调相表面结构及终端设备 技术领域
本发明涉及天线通讯设备技术领域,特别涉及一种调相表面单元、调相表面结构及终端设备。
背景技术
由亚波长谐振器组成的智能超表面是一种具有可编程调幅或调相特性的人工复合超材料,它可以工作在反射模式,也可以工作在透射模式。在透射模式,它被认为是一种空间调相表面;在反射模式,它又被称作智能反射表面。智能超表面的最大市场价值是它能够在无线通信过程中实现主动地控制无线传播环境,在三维空间中对电磁信号传输方向进行动态调控,对发射机与接收机之间传输信道进行操控。
目前的智能超表面最常用的控制方式主要是在智能超表面的阵列子单元中嵌入PIN二极管,由电信号驱动每一个PIN二极管的通断来实现数字化的调相或调幅。此外,研究人员也尝试利用变容二极管或者mems开关等电信号控制器件,实现对智能超表面的阵列子单元补偿相位的动态调制,但以上控制方式存在一些不足。首先,基于PIN二极管和MEMS开关调谐,不能进行连续相位或幅度调制,为了增加数字化调相或调幅精度需要更多几何参数不同的子单元,导致单元数目庞大且所需二极管数目倍数增加,加大了驱动电路的布线难度。二是,调相超表面的相位变化范围有限。由于目前很多调相超表面结构是基于子单元的谐振效应来进行相位的跳变,单层振子的谐振相位变化范围<180度。第三,对于变容二极管等通过改变智能超表面的阵列子单元谐振频率的电控制方式,虽然每个阵列子单元可以实现连续的相位补偿,但是需要嵌入专门的DAC器件,因此,实现所有子单元连续、精准控制的成本较高。
发明内容
本发明提供了一种调相表面单元、调相表面结构及终端设备,上述调相表面单元能够实现连续、精准控制的调相,具有较大的移相范围以及能够节省制作成本。
为达到上述目的,本发明提供以下技术方案:
一种调相表面单元,包括至少两层层叠设置的移相层,所述移相层包括:
第一基板;
第二基板,与所述第一基板相对设置;
第一移相表面层,位于所述第一基板朝向所述第二基板的一侧,所述第一移相表面层包括至少一个沿第一方向延伸的第一电极图案以及与所述第一电极图案连接的第一控制线;
第二移相表面层,位于所述第二基板朝向所述第一基板的一侧,所述第二移相表面层包括与所述第一电极图案一一对应的至少一个沿第二方向延伸的第二电极图案以及与所述第二电极连接的第二控制线,所述第二电极图案在所述第一基板上的正投影与对应的所述第一电极图案在所述第一基板上的正投影相交叉,所述第二电极图案与对应的所述第一电极图案组成一个谐振单元;
可调电介质层,所述可调电介质层位于所述第一移相表面层与所述第二移相表面层之间。
可选地,一个所述谐振单元中,所述第一电极图案在所述第一基板上的正投影与所述第二电极图案在所述第一基板上的正投影相互正交。
可选地,所述第一电极图案的长度与所述第二电极图案的长度相同,所述第一电极图案的宽度与所述第二电极图案的宽度相同,所述第一电极图案的厚度与所述第二电极图案的厚度相同。
可选地,所述第一电极图案在所述第一基板上的正投影的中心点与所述第二电极图案在第一基板上的正投影的中心点相重合。
可选地,所述第一电极图案的中间区域具有沿第一方向延伸的第一条形 槽;
所述第二电极图案的中间区域具有沿第二方向延伸的第二条形槽,所述第二条形槽在所述第一基板上的正投影与所述第一条形槽在所述第一基板上的正投影相互交叉。
可选地,所述第一条形槽的长度与第二条形槽的长度相同,所述第一条形槽的宽度与所述第二条形槽的宽度相同。
可选地,所述第一电极图案沿第二方向排列的两侧边上均具有两个沿第二方向延伸的第一梳齿,两个所述第一梳齿之间的间距等于所述第二条型槽沿第一方向的宽度;
所述第二电极图案沿第一方向排列的两侧边上均具有两个沿第一方向延伸的第二梳齿,两个所述第二梳齿之间的间距等于所述第一条形槽沿第二方向的宽度;
所述第二电极图案在所述第一基板上的正投影覆盖所述第一梳齿在所述第一基板上的正投影,所述第一电极图案在第一基板上的正投影覆盖所述第二梳齿在所述第一基板上的正投影。
可选地,所述第一梳齿沿第二方向的长度与所述第二梳齿沿第一方向的长度相同,所述第一梳齿沿第一方向的宽度与所述第二梳齿沿第二方向的宽度相同。
可选地,所述第一梳齿沿第一方向的宽度与所述第二电极图案内壁与外壁之间沿第二方向的宽度相同,所述第二梳齿沿第二方向的宽度与所述第一电极图案内壁与外壁之间沿第一方向的宽度相同。
可选地,所述第一移相表面层包括呈阵列分布的多个第一电极图案,所述第二移相表面层包括与所述多个第一电极图案一一对应的第二电极图案,以组成多个所述谐振单元,多个谐振单元排列的行方向为第一方向,多个所述谐振单元排列的列方向为第二方向;
沿所述第一方向和/或第二方向,多个所述谐振单元的谐振频率不相同。
可选地,沿所述第一方向和/或第二方向,不同的所述谐振单元的第一条 形槽的长度和第二条形槽的长度不同,或者,不同的所述谐振单元的第一梳齿的长度和第二梳齿的长度不同。
可选地,所述第一移相表面层包括呈2×2阵列分布的四个所述第一电极图案,所述第二调相表面层包括与所述多个第一电极图案一一对应的第二电极图案。
可选地,至少沿所述第一方向,相邻的两个谐振单元中,一个谐振单元的第一条形槽长度和第二条形槽的长度为第一长度,另一个谐振单元的第一条形槽的长度和第二条形槽的长度为第二长度,所述第一长度大于所述第二长度。
可选地,沿所述第一方向和第二方向,相邻的两个谐振单元中,一个谐振单元的第一条形槽长度和第二条形槽的长度为第一长度,另一个谐振单元的第一条形槽的长度和第二条形槽的长度为第二长度,所述第一长度大于所述第二长度。
可选地,至少沿所述第一方向,相邻的两个谐振单元中,一个谐振单元的第一梳齿的长度和第二梳齿的长度为第三长度,另一个谐振单元的第一梳齿的长度和第二梳齿的长度为第四长度,所述第四长度大于所述第三长度。
可选地,沿所述第一方向和第二方向,相邻的两个谐振单元中,一个谐振单元的第一梳齿的长度和第二梳齿的长度为第三长度,另一个谐振单元的第一梳齿的长度和第二梳齿的长度为第四长度,所述第四长度大于所述第三长度。
可选地,沿所述第一方向,相邻的两个所述谐振单元中第一电极图案相连接;
沿所述第二方向,相邻的两个所述谐振单元中第二电极图案相连接。
可选地,所述第一电极图案包括沿第一方向延伸的两个直线部以及连接于所述直线部之间的微带线部;
所述第二电极图案在所述第一基板上的正投影覆盖所述微带线部在所述第一基板上的正投影。
可选地,所述微带线部呈折线状。
可选地,所述微带线部至少包括两个沿第一方向间隔排列的方波状折线部分。
可选地,相邻两层层叠的移相层中相邻的第一基板和第二基板为同一个基板。
可选地,至少两层移相层的结构相同,且不同的第一移相表面层中的第一电极图案在同一个所述第一基板上的正投影完全重合,不同的第二移相表面层中的第二电极图案在同一个所述第一基板上的正投影完全重合。
可选地,所述可调电介质层为液晶层;所述调相表面单元还包括第一配向层和第二配向层,所述第一配向层位于所述第一移相表面层朝向所述可调电介质层的一侧,所述第二配向层位于所述第二移相表面层朝向所述可调电介质层的一侧。
本发明还提供了一种调相表面结构,其中,包括呈阵列分布的至少一个上述技术方案中提供的任意一种调相表面单元。
本发明还提供了一种终端设备,其中,包括上述技术方案中提供的调相表面结构及用于控制施加在第一电极图案和第二电极图案上电压的控制板。
本发明实施例提供一种调相表面单元、调相表面结构及终端设备,该调相表面结构包括至少两层层叠设置的移相层,移相层包括第一基板、第二基板、第一移相表面层、第二移相表面层以及可调电介质层,第一移相表面层中的第一电极图案在第一基板上的正投影和第二移相表面层中的第二电极图案在第一基板上的正投影相交叉,第一电极图案和第二电极图案能够构建一个在特定单一频段能够谐振的谐振单元,由于可调电介质层设置于第一移相表面层与第二移相表面层之间,可调电介质层可以作为调谐滤波器使用,可以通过第一控制线和第二控制线分别控制第一电极图案和第二电极图案向可调电介质层施加电压,来调节谐振单元的谐振频率,单层移相层对特定单一频段信号能够产生小于180°的可移相范围,而将至少两层这样的移相层层叠设置,能够形成至少两层的谐振结构,如图3所示,能够产生0度到180度 或者更大的可移相范围,并且至少两层谐振结构能够进行带内透视率或反射率平坦化,可以实现较宽频带范围内的透射或反射相对恒定。上述调相表面单元中,可以通过对可调电介质层施加不同电压,实现连续、精准控制的调相,并且至少两层层叠设置的移相层,可以产生较大的可以移相范围,同时不需要通过变容二级管等方式控制每个谐振单元改变谐振频率,不需要额外增加其它电子器件,只需要通过第一控制线和第二控制线对第一电极图案和第二电极图案施加电压,以实现对谐振频率的调节,制作工序以及结构简单,能够节省制作成本。
附图说明
图1为本发明实施例提供的一种调相表面单元的结构示意图;
图2为本发明实施例提供的一种谐振单元的立体示意图;
图3为本发明实施例提供的一种双层谐振单元的结构示意图;
图4为本发明实施例提供的一种谐振单元的结构示意图;
图5为本发明实施例提供的一种第一电极图案的结构示意图;
图6为本发明实施例提供的一种第二电极图案的结构示意图;
图7为本发明实施例提供的单层移相层单谐振调相波形图;
图8为本发明实施例提供的双层移相层单谐振调相波形图;
图9为本发明实施例提供的双层移相层双谐振调相波形图;
图10为本发明实施例提供的一种移相层中谐振单元排布的结构示意图;
图11为本发明实施例提供的一种频率与透过率的关系曲线图;
图12为本发明实施例提供的一种频率与移相角度的关系曲线图;
图13为本发明实施例提供的另一种移相层中谐振单元排布的结构示意图;
图14为本发明实施例提供的一种频率与透过率的关系曲线图;
图15为本发明实施例提供的一种频率与移相角度的关系曲线图;
图16为本发明实施例提供的另一种移相层中谐振单元排布的结构示意图;
图17为本发明实施例提供的一种频率与透过率的关系曲线图;
图18为本发明实施例提供的一种频率与移相角度的关系曲线图;
图19为本发明实施例提供的另一种移相层中谐振单元排布的结构示意图;
图20为本发明实施例提供的一种频率与透过率的关系曲线图;
图21为本发明实施例提供的一种频率与移相角度的关系曲线图;
图22为本发明实施例提供的一种呈阵列分布的谐振单元的结构示意图;
图23为本发明实施例提供的一种移相层的结构示意图。
图标:
100-移相层;101-谐振单元;1-第一基板;2-第二基板;3-第一移相表面层;31-第一电极图案;311-第一条形槽;312-第一梳齿;313-直线部;314-微带线部;4-第二移相表面层;41-第二电极图案;411-第一条形槽;5-可调电介质层;6-第一配向层;7-第二配向层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1、图2和图3,本发明提供一种调相表面单元,包括至少两层层叠设置的移相层100,移相层100包括:
第一基板1;
第二基板2,与第一基板1相对设置;
第一移相表面层3,位于第一基板1朝向第二基板2的一侧,第一移相表面层3包括至少一个沿第一方向x延伸的第一电极图案31以及与第一电极图案31连接的第一控制线;
第二移相表面层4,位于第二基板2朝向第一基板1的一侧,第二移相表面层4包括与第一电极图案31一一对应的至少一个沿第二方向y延伸的第二电极图案41以及与第二电极连接的第二控制线,第二电极图案41在第一基 板1上的正投影与对应的第一电极图案31在第一基板1上的正投影相交叉,第二电极图案与对应的第一电极图案组成一个谐振单元101;
可调电介质层5,可调电介质层5位于第一移相表面层3与第二移相表面层4之间。
本发明实施例提供的调相表面单元中,包括至少两层层叠设置的移相层100,移相层100包括第一基板1、第二基板2、第一移相表面层3、第二移相表面层4以及可调电介质层5,第一移相表面层3中的第一电极图案31在第一基板上的正投影和第二移相表面层4中的第二电极图案41在第一基板上的正投影相交叉,第一电极图案31和第二电极图案41能够构建一个在特定单一频段能够谐振的谐振单元101,由于可调电介质层5设置于第一移相表面层3与第二移相表面层4之间,可调电介质层5可以作为调谐滤波器使用,可以通过第一控制线和第二控制线分别控制第一电极图案31线和第二电极图案41向可调电介质层5施加电压,来调节谐振单元101的谐振频率,单层移相层100对特定单一频段信号能够产生小于180°的可移相范围,而将至少两层这样的移相层100层叠设置,能够形成至少两层的谐振结构,如图3所示,能够产生0度到180度或者更大的可移相范围,并且至少两层谐振结构能够进行带内透视率或反射率平坦化,可以实现较宽频带范围内的透射或反射相对恒定。上述调相表面单元中,可以通过对可调电介质层5施加不同电压,实现连续、精准控制的调相,并且至少两层层叠设置的移相层100,可以产生较大的可以移相范围,同时不需要通过变容二级管等方式控制每个谐振单元101改变谐振频率,不需要额外增加其它电子器件,只需要通过第一控制线和第二控制线对第一电极图案31和第二电极图案41施加电压,实现对谐振频率的调节,制作工序以及结构简单,能够节省制作成本。
具体地,第一电极图案31与第一控制线可以同层制作,第二电极图案41与第二控制线可以同层制作,能够简化制作工艺,节省成本。第一电极图案31可以接地,第二电极图案41可以接高电压或者低电压,来控制可调电介质层5中对谐振频率的调节。
具体地,如图1所示,上述移相层100中,可调电介质层5可以为液晶层,上述调相表面单元可以通过第一电极图案和第二电极图案向液晶层施加不同的偏转电压,通过液晶层中液晶分子不同的偏转角度,能够实现连续、精准控制的调相。上述调相表面单元还包括第一配向层6和第二配向层7,第一配向层6位于第一移相表面层3朝向所述可调电介质层5的一侧,第二配向层7位于第二移相表面层4朝向所述可调电介质层5的一侧,能够通过第一配向层6和第二配向层7使得未施加电压时液晶分子的旋转角度为预设初始角度,便于对谐振单元101的谐振频率的调节。
上述移相层100中,如图4所示,一个谐振单元101中,第一电极图案31在第一基板上的正投影与第二电极图案41在第一基板上的正投影可以相互正交,或者第一电极图案31在第一基板上的正投影与第二电极图案41在第一基板上的正投影也可以呈特定夹角,在这里不做限制,可以根据实际情况而定。
具体地,在一个谐振单元101中,第一电极图案31的长度可以与第二电极图案41的长度相同,第一电极图案31的宽度可以与第二电极图案41的宽度相同,第一电极图案31的厚度可以与第二电极图案41的厚度相同。第一电极图案31和第二电极图案41的具体尺寸数值在这里不做限制,可以根据实际情况而定。其中,第一电极图案31的长度为第一电极图案31的周期尺寸P1,第二电极图案41的长度为第二电极图案41的周期尺寸P2;第一电极图案31的宽度为w1,第二电极图案41的宽度为w2;第一电极图案31和第二电极图案41的厚度为h,可以为20mm,可调电介质层5的厚度可以为d,第一电极图案31与第二电极图案41之间的距离为d-2h,d-2h可以为26μm,第一配向层6和第二配向层7的厚度可以为100nm。
具体地,在一个谐振单元101中,第一电极图案31在第一基板上的正投影的中心点和第二电极图案4在第一基板上的正投影1的中心点重合。即第一电极图案在第一基板上的正投影与第二电极图案在第一基板上的正投影在二者的中心点处相交,可选地,第一电极图案31在第一基板上的正投影和第 二电极图案41在第一基板上的正投影也可以不在各自的中点处相交,在这里不做限制,根据实际情况而定。
本发明实施例中,第一电极图案31和第二电极图案41可以不是简单的一条直线型电极,在第一电极图案31和第二电极图案41相交叠的区域可以做一定的变形。
具体地,如图5所示,上述第一电极图案31的中间区域可以具有沿第一方向x延伸的第一条形槽311;如图6所示,上述第二电极图案41的中间区域可以具有沿第二方向y延伸的第二条形槽411,第二条形槽411在第一基板上的正投影与第一条形槽311在第一基板上的正投影相互交叉,能够有效压缩谐振单元101的尺寸,可以通过对每个谐振单元101进行精细控制,从而实现更复杂可控的调相阵列结构的调相特性,同时还能增加波束偏转角度范围。在实际应用中,第一电极图案31的长度和第二电极图案41的长度可以达到1.6mm,也就是28GHz的波长的1/6到1/7。
上述第一电极图案31和第二电极图案41中,可以设置,第一条形槽311的长度与第二条形槽411的长度相同,第一条形槽311的宽度与第二条形槽411的宽度相同。可选地,第一条形槽311的长度进而宽度与第二条形槽411的长度和宽度也可以不相同,可以根据实际情况而定,在这里不做限制。
具体地,上述第一条形槽311在第一基板上的正投影的中点和第二条形槽411在第一基板上的正投影的中点可以交叉点,结构对称,有利于谐振单元101的谐振效果。
上述第一电极图案31和第二电极图案41的结构中,如图5所示,第一电极图案31沿第二方向y排列的两侧边上还可以均具有两个沿第二方向y延伸的第一梳齿312,两个第一梳齿312之间的间距等于第二条型槽沿第一方向x的宽度;如图6所示,第二电极图案41沿第一方向x排列的两侧边上均还可以具有两个沿第一方向x延伸的第二梳齿,两个第二梳齿之间的间距等于第一条形槽311沿第二方向y的宽度;其中,如图4所示,第二电极图案41在第一基板1上的正投影覆盖第一梳齿312在第一基板1上的正投影,第一 电极图案31在第一基板1上的正投影覆盖第二梳齿在第一基板1上的正投影,能够增大一个谐振单元101中第一电极图案31和第二电极图案41的交叠面积,较大的交叠面积有助于减小谐振单元101的尺寸以及增大可调电介质层5上施加电压后的调频范围。在实际应用中,上述谐振单元101的尺寸最小可以达到28GHz的波长的1/10波长量级,能够使得垂直调相表面入射的波束偏转角度可以达到±50°。
其中,上述第一梳齿312沿第二方向y的长度w5可以与第二梳齿沿第一方向x的长度w6相同,第一梳齿312沿第一方向x的宽度可以与第二梳齿沿第二方向y的宽度相同,能够保证谐振单元101的谐振效果。
具体地,上述第一梳齿312沿第一方向x的宽度可以与第二电极图案41内壁与外壁之间沿第二方向y的宽度相同,第二梳齿沿第二方向y的宽度可以与第一电极图案31内壁与外壁之间沿第一方向x的宽度相同,可以增大第一电极图案31和第二电极图案41重合相对的区域,有利于减小谐振单元101的尺寸。
本发明实施例中,如图10、图13、图16以及图19所示,上述第一移相表面层3可以包括呈阵列分布的多个第一电极图案31,第二移相表面层4包括与多个第一电极图案31一一对应的第二电极图案41,以组成多个谐振单元101,多个谐振单元101排列的行方向为第一方向x,多个谐振单元101排列的列方向为第二方向y;沿第一方向x和/或第二方向y,多个谐振单元101的谐振频率不相同。即上述调相表面单元的一层移相层100中可以具有呈阵列分布的多个谐振单元101,沿第一方向x和/或第二方向y,多个谐振单元101的谐振频率不相同,能够更进一步的扩大调相表面单元对特定频段产生的移相范围。
具体地,沿第一方向x和/或第二方向y,多个谐振单元101的第一条形槽311的长度和第二条形槽411的长度不同,或者,多个谐振单元101的第一梳齿312的长度和第二梳齿的长度不同,即在多个谐振单元101中,可以通过设置条形槽的长度不同或者梳齿的长度不同实现谐振频率的不同。其中, 上述第一条形槽311的长度为第一条形槽311沿第一方向x的长度,第二条形槽411的长度为第二条形槽411沿第二方向y的长度,第一梳齿312的长度为第一梳齿312沿第二方向y的长度,所述第二梳齿的长度为第二梳齿沿第一方向x的长度。
具体地,上述第一调相表面3可以包括2×2阵列分布的四个第一电极,第二调相表面可以包括与第一电极图案31一一对应的第二电极图案41,也就是说,移相层100可以中可以包括呈2×2阵列排布的4个谐振单元101,在第一方向x和/列方向,两个谐振单元101的谐振频率不同,能够实现移相层100内两个频段的双谐振调相结构,通过将每层移相层100均设置为双谐振结构,能够对特定单一频段信号产生360°甚至大于360°的可移相范围。
上述调相表面单元中可以具有两层层叠设置的移相层100,每层移相层100为双谐振调相结构,假设该调相表面单元处于透射模式,这种设置方式能够将单层谐振结构时的透射波的180°相位跳变,转换为360°相位跳变,从而实现180°左右的相位调节量。
如图7、图8和图9所示,分别为三种不同的谐振结构下对某一特定频段移相的效果曲线图。其中三种不同谐振结构下在对信号调相时可调电介质层5中液晶分子取向状态变化一致,图7、图8和图9中实线曲线为第一种液晶分子取向状态下频段透过调相表面单元的状态图,图7、图8和图9中虚线曲线为第二种液晶分子取向状态下频段透过调相表面单元的状态图。图7为单层移相层100单谐振的情况下信号移相的效果图,调相后透射峰产生90°的相位跳变,图8为双层移相层100单谐振结构的情况下频段移相的效果图,调相后透射峰产生180°的相位跳变,图9为双层移相层100双谐振结构的情况下频段移相的效果图,调相后透射峰产生360°的相位跳变,增大了相位的调节量。并且,双层移相层100的谐振结构能够使得透射峰变得较为平坦,有利于单独调相应用时透过率复制的恒定,从而增加了相对带宽。具体地,通过设置合适的两层移相层100之间的间距,也有利于使得透射峰变得较为平坦,能够增加相对带宽。
可选地,至少沿第一方向x,相邻的两个谐振单元101中,一个谐振单元101的第一条形槽311长度和第二条形槽411的长度为第一长度,另一个谐振单元101的第一条形槽311的长度和第二条形槽411的长度为第二长度,第一长度大于第二长度,可以使得在第一方向x上两个相邻的谐振单元101的谐振频率不同。
例如,如图10所示,一个移相层100中包括四个谐振单元101,在行方向上,两个谐振单元101中,一个谐振单元101的第一条形槽311的长度和第二条形槽411的长度均大于另一个谐振单元101的第一条形槽311的长度和第二条形槽411的长度;而在列方向上,两个不同的谐振单元101的第一条形槽311的长度相等、以及第二条形槽411的长度也相等。
在实际应用中,图10中的四个谐振单元101中,每个谐振单元101中,第一电极图案31在第一基板上的正投影和第二电极图案41在第一基板上的正投影相互正交、且交叉点为第一电极图案31和第二电极图案41在第一基板上的正投影的中心点。其中,四个谐振单元101中,第一电极图案31的长度P1、第二电极图案41的长度P2、第一电极图案31的宽度w1、第二电极图案41的宽度w2、第一条形槽311的宽度w3、第二条形槽411的宽度w4、第一梳齿312的长度w5以及第二梳齿的长度w6均相等,可以设置P1=P2=1.6mm、w1=w2=0.56,w3=w4=0.22,w5=w6=0.04mm;而在行方向上,两个谐振单元101第一条形槽311的长度L1不相等、第二条形槽411的长度L2不相等,其中一个谐振单元101中L1=L2=1.4mm,另一个谐振单元101中第一条形槽311的长度L11和第二电极槽的长度L21可以为L11=L21=1.44,第一电极图案31与第二电极图案41之间可调电介质层5的厚度(d-2h)可以为20微米,液晶介电常数可以为ε‖=3.58(tanδ=0.006),ε⊥=2.45(tanδ=0.011)。图10中,使用该结构对于27GHz频段的空间毫米波进行调相,真空波长大约为11.1毫米。当两列谐振单元101都加上高电压时,设液晶分子取向完全垂直于第一电极图案31和第二电极图案41平面,它们的透过率峰可以如图11中实线曲线所示。当对具有较长条形槽(L11=L21=1.44mm) 的一列谐振单元101施加低电压,而对具有较短条形槽(L1=L2=1.4mm)的一列谐振单元101施加高电压,则透过曲线可以如图11中的虚线曲线所示。采用这样的电极线驱动方式,带宽较宽。如图11所示,实线曲线第二个透射峰的宽度远小于虚线曲线第二个透射峰的宽度。这样就可以在较宽的带宽内实现较大相位调节,原本26.5GHz和28.3GHz的透射峰移到了28.8GHz-29.8GHz。如图12所示,28.8GHz到29.8GHz频段调相最大范围可以达到360度左右。
可选地,沿第一方向x和第二方向y,相邻的两个谐振单元101中,一个谐振单元101的第一条形槽311长度和第二条形槽411的长度为第一长度,另一个谐振单元101的第一条形槽311的长度和第二条形槽411的长度为第二长度,第一长度大于第二长度,可以使得在第一方向x和第二方向y上两个相邻的谐振单元101的谐振频率不同。
例如,如图13所示,一个移相层100中包括四个谐振单元101,在行方向和列方向上,两个谐振单元101中,一个谐振单元101的第一条形槽311的长度和第二条形槽411的长度均大于另一个谐振单元101的第一条形槽311的长度和第二条形槽411的长度。这种结构中,第一方向x极化和第二方向y极化的透过率是对称的,容易实现双极化设计,可以通过在所有第二电极图案41上同时施加高电压或低电压,从而使得第一电极图案31和第二电极图案41间重合部分的液晶分子发生取向偏转,从而实现频移。在双层移相层100双谐振结构中借助谐振频移,可以实现360度的移相量。
在实际应用中,图13中的四个谐振单元101中,每个谐振单元101中,第一电极图案31在第一基板上的正投影和第二电极图案41在第一基板上的正投影相互正交、且交叉点为第一电极图案31和第二电极图案41的在第一基板上的正投影的中心点。其中,四个谐振单元101中,第一电极图案31的长度P1、第二电极图案41的长度P2、第一电极图案31的宽度w1、第二电极图案41的宽度w2、第一条形槽311的宽度w3、第二条形槽411的宽度w4、第一梳齿312的长度w5以及第二梳齿的长度w6均相等,可以设置 P1=P2=1.6mm、w1=w2=0.56,w3=w4=0.22,w5=w6=0.04mm;而在行方向和列方向上,两个谐振单元101第一条形槽311的长度L1不相等、第二条形槽411的长度L2不相等,其中一个谐振单元101中可以为L1=L2=1.4mm,另一个谐振单元101中第一条形槽311的长度L12和第二电极槽的长度L22可以为L12=L22=1.44,第一电极图案31与第二电极图案41之间可调电介质层5的厚度(d-2h)可以为20微米,液晶介电常数可以为ε‖=3.58(tanδ=0.006),ε⊥=2.45(tanδ=0.011)。图13中,使用该结构对于27GHz频段的空间毫米波进行调相,真空波长大约为11.1毫米。当液晶分子垂直第一基底取向,其透过率如图14中实线曲线所示在26.5GHz与28.3GHz出现两个透射峰。当液晶分子平行于第一基底取向,其透过率峰如图14中虚线曲线所示,原本26.5GHz和28.3GHz的透射峰移到了28.3GHz与31.2GHz。或者,空间入射电磁波频率在28.1GHz到28.5GHz,那么通过图13中谐振结构调相,这个频段最大的相移量可以如图15所示,可以看到在28.3GHz左右频段可以最大实现近400度的相移。
可选地,至少沿第一方向x,相邻的两个谐振单元101中,一个谐振单元101的第一梳齿312的长度和第二梳齿的长度为第三长度,另一个谐振单元101的第一梳齿312的长度和第二梳齿的长度为第四长度,第四长度大于第三长度,可以使得在第一方向x上两个相邻的谐振单元101的谐振频率不同。
例如,如图16所示,一个移相层100中包括四个谐振单元101,在行方向上,两个谐振单元101中,一个谐振单元101的第一梳齿312的长度和第二梳齿的长度均大于另一个谐振单元101中第一梳齿312的长度和第二梳齿的长度;而在列方向上,两个谐振单元101的第一梳齿312的长度相等,以及第二梳齿的长度相等。
在实际应用中,图16中的四个谐振单元101,每个谐振单元101中的第一电极图案31在第一基板上的正投影和第二电极图案41在第一基板上的正投影相互正交、且交叉点为第一电极图案31和第二电极图案41在第一基板上的正投影的中心点。其中,四个谐振单元101中,第一电极图案31的长度 P1、第二电极图案41的长度P2、第一电极图案31的宽度w1、第二电极图案41的宽度w2、第一条形槽311的长度L1、第二条形槽411的长度L2、第一条形槽311的宽度w3、第二条形槽411的宽度w4均相等,可以设置P1=P2=1.8mm、w1=w2=0.56,L1=L2=1.44mm,w3=w4=0.20;而在行方向上,两个谐振单元101的第一梳齿312的长度不相等、第二梳齿的长度不相等,其中一个谐振单元101中w5=w6=0.05mm,另一个谐振单元101中第一梳齿312的长度w5和第二电极槽的长度w51可以为w5=w51=0.02,第一电极图案31与第二电极图案41之间可调电介质层5的厚度(d-2h)可以为20μm,液晶介电常数可以为ε‖=3.58(tanδ=0.006),ε⊥=2.45(tanδ=0.011)。假设对第二电极图案41施加高电压时液晶分子取向沿垂直于电极所在平面的方向,施加低电压时液晶分子取向沿第一方向x平行于电极所在平面。如果在两列谐振单元上同时施加高压,则它们形成的双谐振透过率曲线如图17中的实线曲线。如果在第一列谐振单元上施加高压,第二列谐振单元施加低压,则它们形成的双谐振透过率曲线如图17中的虚线曲线。在图18中,可以看到在较高频率的透射峰处(28.5GHz)可以形成最大360度的相移。
可选地,沿第一方向x和第二方向y,相邻的两个谐振单元101中,一个谐振单元101的第一梳齿312的长度和第二梳齿的长度为第三长度,另一个谐振单元101的第一梳齿312的长度和第二梳齿的长度为第四长度,第四长度大于第三长度,可以使得在第一方向x和第二方向y上两个相邻的谐振单元101的谐振频率不同。
例如,如图19所示,一个移相层100中包括四个谐振单元101,在行方向和列方向上,两个谐振单元101中,一个谐振单元101的第一梳齿312的长度和第二梳齿的长度均大于另一个谐振单元101中第一梳齿312的长度和第二梳齿的长度。
在实际应用中,图19中的四个谐振单元101,每个谐振单元101中的第一电极图案31在第一基板上的正投影和第二电极图案41在第一基板上的正投影相互正交设置、且交叉点为第一电极图案31和第二电极图案41在第一 基板上的正投影的中心点。其中,四个谐振单元101中,第一电极图案31的长度P1、第二电极图案41的长度P2、第一电极图案31的宽度w1、第二电极图案41的宽度w2、第一条形槽311的长度L1、第二条形槽411的长度L2、第一条形槽311的宽度w3、第二条形槽411的宽度w4均相等,可以设置P1=P2=1.8mm、w1=w2=0.56,L1=L2=1.44mm,w3=w4=0.20;而在行方向和列方向上,两个谐振单元101的第一梳齿312的长度不相等、第二梳齿的长度不相等,其中一个谐振单元101中w5=w6=0.05mm,另一个谐振单元101中第一梳齿312的长度w5和第二电极槽的长度w52可以为w5=w52=0.02,第一电极图案31与第二电极图案41之间可调电介质层5的厚度(d-2h)可以为20μm,液晶介电常数可以为ε‖=3.58(tanδ=0.006),ε⊥=2.45(tanδ=0.011)。假设对第二电极图案41施加高电压时液晶分子取向沿垂直于电极所在平面的方向,施加低电压时液晶分子取向沿第一方向x平行于电极所在平面。如果对两列谐振单元同时施加高压或同时施加低压,则它们形成的双谐振透过率曲线分别如图20中的实线曲线和虚线曲线。在图21中,可以看到在较高频率的透射峰处(28GHz)可以形成最大400度的相移。
上述发明实施例中,当谐振单元101呈阵列分布时,可以设置,沿第一方向x,相邻的两个谐振单元101中第一电极图案31相连接;沿第二方向y,相邻的两个谐振单元101中第二电极图案41相连接,结构简单,易于制作。
本发明实施例中,为了减小谐振单元101的尺寸,如图22,第一电极图案31还可以设置为包括沿第一方向x延伸的两个直线部313以及连接于直线部313之间的微带线部314;第二电极图案41在第一基板1上的正投影覆盖微带线部314在第一基板1上的正投影。微带线部314能够增大第一电极图案31与第二电极图案41交叠区域的面积,能够缩小谐振单元101的尺寸。
具体地,上述微带线部314可以呈折线状,如图22所示。
具体地,上述微带线部314至少包括两个方波状折线部分,能够实现谐振单元101的双谐振结构,能够增大调相表面单元的调相范围。
本发明实施例中,上述相邻两层层叠的移相层100中相邻的第一基板1 和第二基板2可以为同一个基板,结构简单,易于制作,如图1所示。
本发明实施例中,至少两层移相层100的结构可以相同,且不同的第一移相表面层3中的第一电极图案31在同一个第一基板1上的正投影完全重合,不同的第二移相表面层4中的第二电极图案41在同一个第一基板1上的正投影完全重合,能够实现双层调相结构。
本发明还提供了一种调相表面结构,其中,包括呈阵列分布的至少一个上述技术方案中提供的任意一种调相表面单元。
上述调相表面结构,阵列分布的多个调相表面单元中,包括至少两层移相层100,如图23为一层移相层100的截面图,沿第一方向x第一电极图案31相连接形成第一金属线栅图案,沿第二方向y第二电极图案41相连接形成第二金属线栅图案,可调电介质层5位于第一金属线栅图案与第二金属线栅图案之间,能够通过对可调电介质层5施加偏转电压,实现调相表面结构的调相功能,如图22所示。调相表面结构具有至少两层谐振结构,能够产生0度到180度或者更大的可移相范围,并且,不需要在每个谐振单元101上额外设置控制器件,制作工序以及结构简单,能够节省制作成本。
本发明还提供了一种终端设备,其中,包括上述技术方案中提供的调相表面结构及用于控制施加在第一电极图案31和第二电极图案41上电压的控制板。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (25)

  1. 一种调相表面单元,其中,包括至少两层层叠设置的移相层,所述移相层包括:
    第一基板;
    第二基板,与所述第一基板相对设置;
    第一移相表面层,位于所述第一基板朝向所述第二基板的一侧,所述第一移相表面层包括至少一个沿第一方向延伸的第一电极图案以及与所述第一电极图案连接的第一控制线;
    第二移相表面层,位于所述第二基板朝向所述第一基板的一侧,所述第二移相表面层包括与所述第一电极图案一一对应的至少一个沿第二方向延伸的第二电极图案以及与所述第二电极连接的第二控制线,所述第二电极图案在所述第一基板上的正投影与对应的所述第一电极图案在所述第一基板上的正投影相交叉,所述第二电极图案与对应的所述第一电极图案组成一个谐振单元;
    可调电介质层,所述可调电介质层位于所述第一移相表面层与所述第二移相表面层之间。
  2. 根据权利要求1所述的调相表面单元,其中,一个所述谐振单元中,所述第一电极图案在所述第一基板上的正投影与所述第二电极图案在所述第一基板上的正投影相互正交。
  3. 根据权利要求1或2所述的调相表面单元,其中,所述第一电极图案的长度与所述第二电极图案的长度相同,所述第一电极图案的宽度与所述第二电极图案的宽度相同,所述第一电极图案的厚度与所述第二电极图案的厚度相同。
  4. 根据权利要求2或3所述的调相表面单元,其中,所述第一电极图案在所述第一基板上的正投影的中心点与所述第二电极图案在第一基板上的正投影的中心点相重合。
  5. 根据权利要求1-4任一项所述的调相表面单元,其中,所述第一电极图案的中间区域具有沿第一方向延伸的第一条形槽;
    所述第二电极图案的中间区域具有沿第二方向延伸的第二条形槽,所述第二条形槽在所述第一基板上的正投影与所述第一条形槽在所述第一基板上的正投影相互交叉。
  6. 根据权利要求5所述的调相表面单元,其中,所述第一条形槽的长度与第二条形槽的长度相同,所述第一条形槽的宽度与所述第二条形槽的宽度相同。
  7. 根据权利要求5或6所述的调相表面单元,其中,所述第一电极图案沿第二方向排列的两侧边上均具有两个沿第二方向延伸的第一梳齿,两个所述第一梳齿之间的间距等于所述第二条型槽沿第一方向的宽度;
    所述第二电极图案沿第一方向排列的两侧边上均具有两个沿第一方向延伸的第二梳齿,两个所述第二梳齿之间的间距等于所述第一条形槽沿第二方向的宽度;
    所述第二电极图案在所述第一基板上的正投影覆盖所述第一梳齿在所述第一基板上的正投影,所述第一电极图案在第一基板上的正投影覆盖所述第二梳齿在所述第一基板上的正投影。
  8. 根据权利要求7所述的调相表面单元,其中,所述第一梳齿沿第二方向的长度与所述第二梳齿沿第一方向的长度相同,所述第一梳齿沿第一方向的宽度与所述第二梳齿沿第二方向的宽度相同。
  9. 根据权利要求7或8所述的调相表面单元,其中,所述第一梳齿沿第一方向的宽度与所述第二电极图案内壁与外壁之间沿第二方向的宽度相同,所述第二梳齿沿第二方向的宽度与所述第一电极图案内壁与外壁之间沿第一方向的宽度相同。
  10. 根据权利要求5-9任一项所述的调相表面单元,其中,所述第一移相表面层包括呈阵列分布的多个第一电极图案,所述第二移相表面层包括与所述多个第一电极图案一一对应的第二电极图案,以组成多个所述谐振单元, 多个谐振单元排列的行方向为第一方向,多个所述谐振单元排列的列方向为第二方向;
    沿所述第一方向和/或第二方向,多个所述谐振单元的谐振频率不相同。
  11. 根据权利要求10所述的调相表面单元,其中,沿所述第一方向和/或第二方向,不同的所述谐振单元的第一条形槽的长度和第二条形槽的长度不同,和/或,不同的所述谐振单元的第一梳齿的长度和第二梳齿的长度不同。
  12. 根据权利要求10或11所述的调相表面单元,其中,所述第一移相表面层包括呈2×2阵列分布的四个所述第一电极图案,所述第二调相表面层包括与所述多个第一电极图案一一对应的第二电极图案。
  13. 根据权利要求11或12所述的调相表面单元,其中,至少沿所述第一方向,相邻的两个谐振单元中,一个谐振单元的第一条形槽长度和第二条形槽的长度为第一长度,另一个谐振单元的第一条形槽的长度和第二条形槽的长度为第二长度,所述第一长度大于所述第二长度。
  14. 根据权利要求13所述的调相表面单元,其中,沿所述第一方向和第二方向,相邻的两个谐振单元中,一个谐振单元的第一条形槽长度和第二条形槽的长度为第一长度,另一个谐振单元的第一条形槽的长度和第二条形槽的长度为第二长度,所述第一长度大于所述第二长度。
  15. 根据权利要求11或12所述的调相表面单元,其中,至少沿所述第一方向,相邻的两个谐振单元中,一个谐振单元的第一梳齿的长度和第二梳齿的长度为第三长度,另一个谐振单元的第一梳齿的长度和第二梳齿的长度为第四长度,所述第四长度大于所述第三长度。
  16. 根据权利要求15所述的调相表面单元,其中,沿所述第一方向和第二方向,相邻的两个谐振单元中,一个谐振单元的第一梳齿的长度和第二梳齿的长度为第三长度,另一个谐振单元的第一梳齿的长度和第二梳齿的长度为第四长度,所述第四长度大于所述第三长度。
  17. 根据权利要求1-16任一项所述的调相表面单元,其中,沿所述第一方向,相邻的两个所述谐振单元中第一电极图案相连接;
    沿所述第二方向,相邻的两个所述谐振单元中第二电极图案相连接。
  18. 根据权利要求1或2所述的调相表面单元,其中,所述第一电极图案包括沿第一方向延伸的两个直线部以及连接于所述直线部之间的微带线部;
    所述第二电极图案在所述第一基板上的正投影覆盖所述微带线部在所述第一基板上的正投影。
  19. 根据权利要求18所述的调相表面单元,其中,所述微带线部呈折线状。
  20. 根据权利要求19所述的调相表面单元,其中,所述微带线部至少包括两个沿第一方向间隔排列的方波状折线部分。
  21. 根据权利要求1-20任一项所述的调相表面单元,其中,相邻两层层叠的移相层中相邻的第一基板和第二基板为同一个基板。
  22. 根据权利要求1-21任一项所述的调相表面单元,其中,至少两层移相层的结构相同,且不同的第一移相表面层中的第一电极图案在同一个所述第一基板上的正投影完全重合,不同的第二移相表面层中的第二电极图案在同一个所述第一基板上的正投影完全重合。
  23. 根据权利要求1-22任一项所述的调相表面单元,其中,所述可调电介质层为液晶层;
    所述调相表面单元还包括第一配向层和第二配向层,所述第一配向层位于所述第一移相表面层朝向所述可调电介质层的一侧,所述第二配向层位于所述第二移相表面层朝向所述可调电介质层的一侧。
  24. 一种调相表面结构,其中,包括呈阵列分布的至少一个如权利要求1-23任一项所述的调相表面单元。
  25. 一种终端设备,其中,包括如权利要求24所述的调相表面结构及用于控制施加在第一电极图案和第二电极图案上电压的控制板。
PCT/CN2022/114339 2022-08-23 2022-08-23 一种调相表面单元、调相表面结构及终端设备 WO2024040445A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/114339 WO2024040445A1 (zh) 2022-08-23 2022-08-23 一种调相表面单元、调相表面结构及终端设备
CN202280002792.9A CN117918004A (zh) 2022-08-23 2022-08-23 一种调相表面单元、调相表面结构及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114339 WO2024040445A1 (zh) 2022-08-23 2022-08-23 一种调相表面单元、调相表面结构及终端设备

Publications (1)

Publication Number Publication Date
WO2024040445A1 true WO2024040445A1 (zh) 2024-02-29

Family

ID=90012184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114339 WO2024040445A1 (zh) 2022-08-23 2022-08-23 一种调相表面单元、调相表面结构及终端设备

Country Status (2)

Country Link
CN (1) CN117918004A (zh)
WO (1) WO2024040445A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464600A (zh) * 2009-01-04 2009-06-24 汕头超声显示器(二厂)有限公司 垂直配向模式液晶显示器
CN203054404U (zh) * 2012-11-30 2013-07-10 信利半导体有限公司 一种无源驱动垂直定向液晶显示器
CN104330930A (zh) * 2014-11-05 2015-02-04 华中科技大学 一种红外聚光芯片
CN206210991U (zh) * 2016-11-29 2017-05-31 河北工业大学 一种液晶微波调制器件
CN106980203A (zh) * 2017-06-07 2017-07-25 京东方科技集团股份有限公司 一种彩膜基板、显示面板及显示装置
CN209248207U (zh) * 2018-09-12 2019-08-13 北京超材信息科技有限公司 一种液晶移相器及基于其的电磁波调控透镜
CN110609422A (zh) * 2018-06-15 2019-12-24 京东方科技集团股份有限公司 超材料结构单元、超材料及电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464600A (zh) * 2009-01-04 2009-06-24 汕头超声显示器(二厂)有限公司 垂直配向模式液晶显示器
CN203054404U (zh) * 2012-11-30 2013-07-10 信利半导体有限公司 一种无源驱动垂直定向液晶显示器
CN104330930A (zh) * 2014-11-05 2015-02-04 华中科技大学 一种红外聚光芯片
CN206210991U (zh) * 2016-11-29 2017-05-31 河北工业大学 一种液晶微波调制器件
CN106980203A (zh) * 2017-06-07 2017-07-25 京东方科技集团股份有限公司 一种彩膜基板、显示面板及显示装置
CN110609422A (zh) * 2018-06-15 2019-12-24 京东方科技集团股份有限公司 超材料结构单元、超材料及电子装置
CN209248207U (zh) * 2018-09-12 2019-08-13 北京超材信息科技有限公司 一种液晶移相器及基于其的电磁波调控透镜

Also Published As

Publication number Publication date
CN117918004A (zh) 2024-04-23

Similar Documents

Publication Publication Date Title
US8958050B2 (en) Tunable terahertz metamaterial filter
JP4550837B2 (ja) 調整可能な装置
WO2020030129A1 (zh) 移相器及液晶天线
JP2007116573A (ja) アレーアンテナ
US7764861B2 (en) Photonic crystal device
KR101285388B1 (ko) 빔 조향 장치
CN109932845B (zh) 液晶移相器及电子装置
US11747706B2 (en) Optical display device having variable conductivity patterns
CN117293557A (zh) 反射式智能超表面单元、反射式智能超表面及通信设备
WO2024040445A1 (zh) 一种调相表面单元、调相表面结构及终端设备
CN113871860A (zh) 天线结构及阵列天线模块
CN110600874B (zh) 一种基于ltcc的液晶可编程相控阵天线
WO2023140243A1 (ja) リフレクトアレイ
CN115986383A (zh) 单片多功能集成的自旋太赫兹器件
US11658411B2 (en) Electrically-controlled RF, microwave, and millimeter wave devices using tunable material-filled vias
JP4077013B2 (ja) フォトニック結晶デバイス
CN113036442A (zh) 一种用于四通道波前调控的多功能数字超表面
WO2020075521A1 (ja) 周波数選択板
WO2023240463A1 (zh) 可调射频单元、滤波器和电子设备
JP7527182B2 (ja) メタ表面
WO2024016144A1 (zh) 空间滤波器及其制备方法、电子设备
CN219917586U (zh) 基于液晶面板工艺的定频扫描漏波天线
WO2023228368A1 (ja) 波動制御媒質、波動制御素子、波動制御部材、及び波動制御装置
CN118380776A (zh) 空间滤波器的驱动方法、驱动装置、空间滤波器
Thakur et al. AFSS superstrate integrated microstrip antennas-a progressive study

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002792.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18693671

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955994

Country of ref document: EP

Kind code of ref document: A1