WO2020027286A1 - 電子部品実装方法及び三次元成形回路部品 - Google Patents

電子部品実装方法及び三次元成形回路部品 Download PDF

Info

Publication number
WO2020027286A1
WO2020027286A1 PCT/JP2019/030300 JP2019030300W WO2020027286A1 WO 2020027286 A1 WO2020027286 A1 WO 2020027286A1 JP 2019030300 W JP2019030300 W JP 2019030300W WO 2020027286 A1 WO2020027286 A1 WO 2020027286A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
component mounting
thermosetting adhesive
cream solder
temperature
Prior art date
Application number
PCT/JP2019/030300
Other languages
English (en)
French (fr)
Inventor
孝光 岡
浩司 野崎
徹 高野
Original Assignee
Johnan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnan株式会社 filed Critical Johnan株式会社
Priority to CN201980045784.0A priority Critical patent/CN112425275A/zh
Publication of WO2020027286A1 publication Critical patent/WO2020027286A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to a three-dimensional electronic component mounting method, and particularly to an electronic component mounting method capable of minimizing component drop during reflow when mounting an electronic component on a vertical surface or an inclined surface, and a method for mounting such an electronic component.
  • the present invention relates to a three-dimensional molded circuit component on which an electronic component is mounted using.
  • Patent Document 1 discloses a method for reflow soldering at least two opposing corners of an electronic component package mounted on a first reflow surface in a printed circuit board that performs soldering by double-sided reflow. Thereafter, a thermosetting adhesive is applied so as to have a holding function, and the thermosetting adhesive is cured at a preheating stage of the second reflow soldering.
  • a 3D-MID Molded Interconnect Device, a molded circuit component
  • a molded circuit component which is a three-dimensional resin molded product having a pattern (wiring) and a land (electrode portion) formed on the surface
  • a vertical surface and an inclined surface When electronic components are mounted on these surfaces by conventional reflow soldering, particularly large and heavy electronic components tend to fall.
  • FIG. 2 is a table showing the results of checking whether or not a component has dropped when heated in a conventional reflow by holding an electronic component with cream solder on a vertical surface.
  • the electronic components ceramic capacitors, diodes, capacitors and the like having different weights and centers of gravity were used.
  • an object of the present invention is to minimize the fall of an electronic component due to softening of the cream solder during reflow when mounting the electronic component on a vertical surface or an inclined surface with cream solder. It is an object of the present invention to provide a simple electronic component mounting method and a three-dimensional molded circuit component on which an electronic component is mounted using such a mounting method.
  • an electronic component mounting method includes a first applying step of applying cream solder to an electrode portion provided on at least one of a vertical surface or an inclined surface which is a component mounting surface on which an electronic component is mounted.
  • a second application step of applying a thermosetting adhesive to at least a part of a region facing the bottom surface of the electronic component on the component mounting surface; and the cream solder and the thermosetting adhesive are applied respectively.
  • the thermosetting adhesive is preferably an epoxy-based adhesive having a glass transition temperature lower than the softening start temperature of the cream solder (for example, about 30 ° C. lower) and a viscosity that does not spill even when applied to the vertical surface. is there. Specific examples include an epoxy-based adhesive having a complete curing temperature of about 80 ° C. and a viscosity of 50 to 100 Pa ⁇ S.
  • the amount of the thermosetting adhesive applied is preferably equal to or greater than the thickness of the cream solder.
  • the predetermined time is, for example, about 1 minute. Note that, as in this paragraph, even if expressions such as “about 80 ° C.” and “about 1 minute” are used in the claims, it is because the scope of the invention is not extremely narrowly limited. We do not believe that the scope of the invention will be unclear.
  • thermosetting adhesive whose glass transition temperature is lower than the softening start temperature of cream solder, fall of electronic components is prevented as much as possible.
  • thermosetting adhesive having "a high viscosity to a degree that does not spill even when applied to an inclined surface or a vertical surface"
  • the electronic component mounting method having such a configuration, when mounting the electronic component on the vertical surface or the inclined surface with the cream solder, the electronic component is prevented from dropping due to the softening of the cream solder at the time of reflow. Becomes possible. Thereby, in the three-dimensional electronic component mounting, the electronic component can be reliably mounted on the vertical surface and the inclined surface, and high-density mounting and miniaturization of the product can be realized.
  • the three-dimensional molded circuit component of the present invention is a component mounting surface for mounting an electronic component, at least one of a vertical surface or an inclined surface provided with an electrode portion, and is soldered to the electrode portion, An electronic component bonded to the component mounting surface by a thermosetting adhesive, wherein the thermosetting adhesive has a glass transition temperature lower than a softening start temperature of the solder.
  • thermosetting adhesive may be an adhesive having a viscosity that does not drip even when applied to the vertical surface.
  • the component mounting surface of the three-dimensional molded circuit component may further include a horizontal plane.
  • the “glass transition temperature is lower than the solder softening start temperature”
  • electronic components can be reliably mounted on vertical and inclined surfaces, and high-density mounting and small three-dimensional molded circuit components can be obtained.
  • the electronic component mounting method of the present invention when mounting an electronic component on a vertical surface or an inclined surface with cream solder, it is possible to prevent the electronic component from falling as much as possible due to softening of the cream solder during reflow. . Thereby, in the three-dimensional electronic component mounting, the electronic component can be reliably mounted on the vertical surface and the inclined surface, and high-density mounting and miniaturization of the product can be realized.
  • the electronic component can be securely mounted on the vertical surface and the inclined surface, and high-density mounting and miniaturization of the product can be realized.
  • FIG. 3G is a front view of the 3D-MID 10 after mounting two more electronic components 31 and 32
  • FIG. 3H is a cross-sectional view thereof.
  • 9 is a table showing the results of examining whether or not the electronic component has fallen when heated in a conventional reflow by holding the electronic component with cream solder on a vertical surface.
  • FIG. 1A and 1B are schematic explanatory views of an electronic component mounting method according to an embodiment of the present invention.
  • FIG. 1A is a front view of a 3D-MID 10 before mounting an electronic component
  • FIG. c) is a front view of the 3D-MID 10 after applying the thermosetting adhesive 21
  • (d) is a cross-sectional view thereof
  • (e) is a front view of the 3D-MID 10 after further applying the cream solder 22
  • (f) is a sectional view
  • (g) is a front view of the 3D-MID 10 after mounting two more electronic components 31 and 32
  • (h) is a sectional view thereof.
  • lands 11 and 12 corresponding to the electronic components 31 and 32 are shown on the inclined surface 10a and the vertical surface 10b which are the component mounting surfaces of the 3D-MID 10. , Other patterns and lands are omitted.
  • two lands 11 for mounting a chip-shaped electronic component 31 are provided on an inclined surface 10a of a 3D-MID 10, and a vertical surface 10b is provided.
  • lands 12 for mounting electronic components 32 of an 8-pin SOP package are provided.
  • the mounting of the electronic components 31 and 32 on the inclined surface 10a and the vertical surface 10b of the 3D-MID 10 is performed as follows.
  • thermosetting Adhesive 21 As shown in FIGS. 1C and 1D, when the electronic component 31 is mounted on the inclined surface 10a of the 3D-MID 10, the bottom surface of the electronic component 31 is mounted.
  • the thermosetting adhesive 21 is applied to at least a part (for example, two places shown) of the region facing the above.
  • the thermosetting adhesive 21 is applied to at least a part (for example, two locations illustrated) of the region facing the bottom surface of the electronic component 32.
  • thermosetting adhesive ⁇ Although the complete curing temperature of a generally used thermosetting adhesive is about 150 ° C., there are also epoxy-based adhesives whose complete curing temperatures are about 80 ° C. and about 120 ° C., respectively. Then, as a result of comparing the electronic component mounting method according to the present embodiment using these three types of thermosetting adhesives, no component dropped with an epoxy-based adhesive having a complete curing temperature of about 80 ° C. The epoxy adhesive at about 150 ° C. and about 150 ° C. caused parts to drop.
  • thermosetting adhesive 21 used in the present embodiment, an epoxy adhesive having a complete curing temperature of about 80 ° C. is preferable.
  • the epoxy-based adhesive has a glass transition temperature of about 30 ° C. (at which point gelation starts from a liquid state to a rubber state and exhibits tackiness), and a curing start temperature of about 60 ° C. It is almost equal to the softening start temperature of the cream solder 22. That is, the thermosetting adhesive 21 is an epoxy adhesive whose glass transition temperature is about 30 ° C. lower than the softening start temperature of the cream solder 22 and whose complete curing temperature is about 80 ° C.
  • DSC differential scanning calorimetry, differential scanning calorimetry or the like is used for measuring the glass transition temperature.
  • thermosetting adhesive 21 needs to have a certain high viscosity in order to prevent the liquid from dripping even if it is applied to the inclined surface 10a or the vertical surface 10b of the 3D-MID 10. For example, if there is a viscosity of about strawberry jam (55 Pa ⁇ S, unit: Pascal second) to hand cream (100 Pa ⁇ S), it is considered that the liquid does not drip. On the other hand, since the application is performed by dispensing, the thermosetting adhesive 21 preferably has a certain low viscosity. For example, an adhesive of 300 Pa ⁇ S was not suitable for dispensing.
  • the viscosity of the thermosetting adhesive 21 used in the present embodiment is 65 Pa ⁇ S, but is preferably about 50 to 100 Pa ⁇ S.
  • Step of Applying Cream Solder 22 As shown in FIGS. 1E and 1F, the cream solder 22 is applied to two lands 11 provided on the inclined surface 10a of the 3D-MID 10, and the vertical surface 10b is formed. The cream solder 22 is also applied to the eight lands 12 provided in the.
  • the order of execution of the steps (1) and (2) may be either order.
  • the amount of the thermosetting adhesive 21 applied is preferably equal to or greater than the thickness of the cream solder 22.
  • Reflow Step Soldering by reflow is performed on the 3D-MID 10 having the inclined surface 10a on which the electronic component 31 is mounted and the vertical surface 10b on which the electronic component 32 is mounted.
  • the temperature is raised at 2 to 3 ° C./sec, and when the preheat temperature is reached, the temperature is maintained for about 1 to 2 minutes, and then the temperature is raised again to 4 ° C./sec or less to the peak temperature. After the main heating (one and a half minutes or less) for warming, natural cooling or cooling by blowing air is performed.
  • the temperature rise is temporarily stopped. Then, the temperature is maintained for a predetermined time. For example, it is preferable to maintain the temperature for at least about 1 minute. However, setting the predetermined time longer than necessary is not preferable because it leads to a decrease in productivity.
  • the softening of the cream solder 22 starts slowly during the predetermined time and the hardening of the thermosetting adhesive 21 proceeds, so that after the predetermined time has elapsed, the electronic components 31 and 32 are held at the same positions. A sufficient holding force is generated to keep the electronic components 31 and 32 from falling.
  • thermosetting adhesive 10 3D-MID 11, 12 lands 21 thermosetting adhesive 22 cream solder 31, 32 electronic components

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

電子部品実装方法であって、電子部品を実装する部品実装面である垂直面又は傾斜面の少なくとも一方に設けられた電極部分にクリームはんだを塗布する第1塗布工程と、前記部品実装面において前記電子部品の底面に対向する領域の少なくとも一部に熱硬化性接着剤を塗布する第2塗布工程と、前記クリームはんだ及び前記熱硬化性接着剤がそれぞれ塗布された前記部品実装面に前記電子部品を搭載する部品搭載工程と、前記部品実装面に搭載された前記電子部品のリフローはんだ付けを行うリフロー工程とを含み、前記リフロー工程における昇温中に前記クリームはんだの軟化開始温度付近で予め定められた所定時間は温度を保持する。

Description

電子部品実装方法及び三次元成形回路部品
 本発明は、3次元電子部品実装方法に関し、特に、垂直面や傾斜面に電子部品を実装する場合に、リフロー時の部品落下を極力防止可能な電子部品実装方法、及びそのような実装方法を用いて電子部品を実装した三次元成形回路部品に関する。
 従来、両面リフローはんだ付けによりプリント基板に電子部品を実装する際、1回目のリフロー前に部品下面に接着剤を塗布して固定することで部品落下を防止する電子部品の実装方法が提案されている(例えば、特許文献1参照。)。
 この特許文献1に記載されている電子部品の実装方法は、両面リフローによるはんだ付けを行うプリント基板において、第1回目のリフロー面に実装される電子部品パッケージの少なくとも対向する二隅にリフローはんだ付け後に熱硬化性接着剤を保持機能を備えるように塗布し、第2回目のリフローはんだ付けのプリヒートの段階で前記熱硬化性接着剤を硬化させることを特徴とするものである。
特開平7-38251号公報
 一方、例えば、パターン(配線)やランド(電極部分)が表面に形成された3次元の樹脂成形品である3D-MID(Molded Interconnect Device、成形回路部品)は、垂直面や傾斜面も有する。これらの面に従来技術のリフローはんだ付けによって電子部品を実装しようとすると、特に大きく重い電子部品が落下しやすい傾向にある。
 図2は、垂直面に対してクリームはんだで電子部品を保持させ、従来技術のリフロー内で加熱したときに部品が落下したかどうかを調べた結果を示す表である。電子部品としては、重さや重心が異なるセラミックコンデンサー、ダイオード、コンデンサーなどを用いた。
 この図2に示すように、1608サイズのセラミックコンデンサーを含む小さい部品は落下しなかった。チップ抵抗についても、容積が小さいために落下しなかった。しかし、そのサイズ以上の大きな部品、例えば2125サイズ以上の容積の部品は、60℃付近で落下した。
 従来技術のこのような課題に鑑み、本発明の目的は、垂直面や傾斜面に電子部品をクリームはんだで実装する際、リフロー時のクリームはんだの軟化によって電子部品が落下することを極力防止可能な電子部品実装方法、及びそのような実装方法を用いて電子部品を実装した三次元成形回路部品を提供することである。
 上記目的を達成するため、本発明の電子部品実装方法は、電子部品を実装する部品実装面である垂直面又は傾斜面の少なくとも一方に設けられた電極部分にクリームはんだを塗布する第1塗布工程と、前記部品実装面において前記電子部品の底面に対向する領域の少なくとも一部に熱硬化性接着剤を塗布する第2塗布工程と、前記クリームはんだ及び前記熱硬化性接着剤がそれぞれ塗布された前記部品実装面に前記電子部品を搭載する部品搭載工程と、前記部品実装面に搭載された前記電子部品のリフローはんだ付けを行うリフロー工程とを含み、前記リフロー工程における昇温中に、前記クリームはんだの軟化開始温度付近で予め定められた所定時間は温度を保持することを特徴とする。
 ここで、前記第1塗布工程及び前記第2塗布工程の実行順序はどちらが先でもよい。前記熱硬化性接着剤は、ガラス転移温度が前記クリームはんだの前記軟化開始温度より低く(例えば約30℃低く)、前記垂直面に塗布しても液だれしない粘度のエポキシ系接着剤が好適である。具体例としては、完全硬化温度が約80℃であり、粘度が50~100Pa・Sであるエポキシ系接着剤が挙げられる。前記熱硬化性接着剤の塗布量は、前記クリームはんだの厚みと同等以上とすることが好ましい。前記所定時間は、例えば約1分である。なお、この段落内と同様に、特許請求の範囲に「約80℃」や「約1分」という表現を用いたとしても、発明の範囲を極めて狭く限定しないためであって、これらの表現によって発明の範囲が不明確にはならないと考える。
 「ガラス転移温度がクリームはんだの軟化開始温度より低い」熱硬化性接着剤を用いることで、電子部品の落下を極力防止する。「 傾斜面や垂直面に塗布しても液だれしないある程度の高粘度を有する」熱硬化性接着剤とすることで、生産性および歩留りが向上する。
 つまり、このような構成の電子部品実装方法によれば、垂直面や傾斜面に電子部品をクリームはんだで実装する際、リフロー時のクリームはんだの軟化によって電子部品が落下することを極力防止することが可能となる。これにより、3次元電子部品実装において、垂直面及び傾斜面にも電子部品を確実に実装でき、高密度実装や製品の小型化が可能になる。
 また、本発明の三次元成形回路部品は、電子部品を実装する部品実装面であって、電極部分が設けられた垂直面又は傾斜面の少なくとも一方と、前記電極部分にはんだ付けされており、熱硬化性接着剤によって前記部品実装面と接着されている電子部品とを備え、前記熱硬化性接着剤は、ガラス転移温度がはんだの軟化開始温度より低いことを特徴とする。
 ここで、熱硬化性接着剤は前記垂直面に塗布しても液だれしない粘度の接着剤であってもよい。前記三次元成形回路部品の前記部品実装面には、他に水平面を含んでいてもよい。
 「ガラス転移温度がはんだの軟化開始温度より低い」ことで、垂直面及び傾斜面にも電子部品を確実に実装でき、高密度実装や小型の三次元成形回路部品が得られる。
 本発明の電子部品実装方法によれば、垂直面や傾斜面に電子部品をクリームはんだで実装する際、リフロー時のクリームはんだの軟化によって電子部品が落下することを極力防止することが可能となる。これにより、3次元電子部品実装において、垂直面及び傾斜面にも電子部品を確実に実装でき、高密度実装や製品の小型化が可能になる。
 また、本発明の三次元成形回路部品によれば、垂直面及び傾斜面にも電子部品を確実に実装でき、高密度実装や製品の小型化が可能になる。
本発明の一実施形態に係る電子部品実装方法の概略説明図であり、(a)は電子部品を実装する前の3D-MID10の正面図、(b)はその断面図、(c)は熱硬化性接着剤21を塗布した後の3D-MID10の正面図、(d)はその断面図、(e)はさらにクリームはんだ22を塗布した後の3D-MID10の正面図、(f)はその断面図、(g)はさらに2つの電子部品31、32を搭載した後の3D-MID10の正面図、(h)はその断面図である。 垂直面に対してクリームはんだで電子部品を保持させ、従来技術のリフロー内で加熱したときに部品が落下したがどうかを調べた結果を示す表である。
 以下、本発明の実施形態を、図面を参照して説明する。
 図1は、本発明の一実施形態に係る電子部品実装方法の概略説明図であり、(a)は電子部品を実装する前の3D-MID10の正面図、(b)はその断面図、(c)は熱硬化性接着剤21を塗布した後の3D-MID10の正面図、(d)はその断面図、(e)はさらにクリームはんだ22を塗布した後の3D-MID10の正面図、(f)はその断面図、(g)はさらに2つの電子部品31、32を搭載した後の3D-MID10の正面図、(h)はその断面図である。なお、各図及び説明の簡略化のために、3D-MID10の部品実装面である傾斜面10a及び垂直面10bには、電子部品31、32に対応したランド11、12のみを図示しており、他のパターンやランドなどは省略している。
 図1(a)及び(b)に示すように、本実施形態では、3D-MID10の傾斜面10aにチップ状の電子部品31を実装するための2つのランド11が設けられるとともに、垂直面10bには8ピンSOPパッケージの電子部品32を実装するための8つのランド12が設けられている。
 3D-MID10の傾斜面10a及び垂直面10bへの電子部品31、32の実装は次のように行う。
 1)熱硬化性接着剤21を塗布する工程
 図1(c)及び(d)に示すように、3D-MID10の傾斜面10aにおいて、電子部品31が実装された際にその電子部品31の底面に対向する領域の少なくとも一部(例えば図示した2箇所)に熱硬化性接着剤21を塗布する。同様に、垂直面10bにおいて、電子部品32が実装された際にその電子部品32の底面に対向する領域の少なくとも一部(例えば図示した2箇所)にも熱硬化性接着剤21を塗布する。
 なお、一般的に使用される熱硬化性接着剤の完全硬化温度は約150℃であるが、完全硬化温度が約80℃、約120℃のエポキシ系接着剤もそれぞれ存在する。そこで、これら3種類の熱硬化性接着剤を用いて本実施形態に係る電子部品実装方法を対比した結果、完全硬化温度が約80℃のエポキシ系接着剤では部品落下はなかったが、約120℃、約150℃のエポキシ系接着剤では部品落下があった。
 よって、本実施形態に使用する熱硬化性接着剤21としては、完全硬化温度が約80℃のエポキシ系接着剤が好適である。なお、このエポキシ系接着剤のガラス転移温度(この温度を境に液状からゲル化が始まってゴム状態になり、粘着性を発揮する)は約30℃であり、硬化開始温度は約60℃であってクリームはんだ22の軟化開始温度とほぼ等しい。つまり、熱硬化性接着剤21は、ガラス転移温度がクリームはんだ22の軟化開始温度より約30℃低く、完全硬化温度が約80℃であるエポキシ系接着剤である。
 なお、ガラス転移温度の測定にはDSC(differential scanning calorimetry、示差走査熱量測定)などが用いられる。
 また、3D-MID10の傾斜面10aや垂直面10bに塗布しても液だれしないためには、熱硬化性接着剤21にある程度の高粘度が必要である。例えば、ストロベリージャム(55Pa・S、単位:パスカル秒)からハンドクリーム(100Pa・S)程度の粘度があれば、液だれしないと考えられる。一方、塗布はディスペンスで行うため、熱硬化性接着剤21はある程度の低粘度が好ましい。例えば、300Pa・Sの接着剤ではディスペンスに適さなかった。本実施形態に用いた熱硬化性接着剤21の粘度は65Pa・Sであるが、概ね50~100Pa・Sの粘度が好ましい。
 2)クリームはんだ22を塗布する工程
 図1(e)及び(f)に示すように、3D-MID10の傾斜面10aに設けられた2つのランド11にクリームはんだ22を塗布するとともに、垂直面10bに設けられた8つのランド12にもクリームはんだ22を塗布する。
 なお、上記(1)及び(2)の各工程の実行順序はどちらが先でもよい。また、後述するリフロー工程によるクリームはんだ22の体積減による浮きなどを考慮し、熱硬化性接着剤21の塗布量は、クリームはんだ22の厚みと同等以上であることが好ましい。
 3)電子部品31、32を搭載する工程
 図1(g)及び(h)に示すように、熱硬化性接着剤21及びクリームはんだ22がそれぞれ塗布された傾斜面10aに電子部品31を搭載するとともに、垂直面10bには電子部品32を搭載する。この時点では、電子部品31、32は熱硬化性接着剤21及びクリームはんだ22によって仮止めされている状態である。
 4)リフロー工程
 電子部品31が搭載された傾斜面10a及び電子部品32が搭載された垂直面10bを有する3D-MID10に対して、リフローによるはんだ付けを行う。
 一般的なリフローでは、例えば、まず2~3℃/秒で昇温し、プリヒート温度に達したらその温度を1~2分程度は保持し、その後に再度4℃/秒以下でピーク温度まで昇温する本加熱(1分半以下)を行った後、自然冷却または送風による冷却を行う。
 そのため、最初の昇温中(プリヒート温度までの昇温中)にクリームはんだ22の軟化開始温度(約60℃)を超えると、クリームはんだ22による保持力は急速に低下するものの、熱硬化性接着剤21の硬化はすぐには進まないので、電子部品31、32の落下につながる可能性がある。特に大きく重い電子部品32では落下する可能性がより高い。
 本実施形態では、最初の昇温中に、クリームはんだ22の軟化開始温度であって熱硬化性接着剤21のガラス転移温度よりも約30℃高い60℃付近に達したら、昇温を一旦中断してそのままの温度を所定時間だけ保持する。例えば、少なくとも約1分は温度を保持することが好ましい。ただし、所定時間を必要以上に長くすると、生産性の低下につながるのであまり好ましくない。
 このようにすることで、所定時間中にクリームはんだ22の軟化がゆるやかに始まるとともに熱硬化性接着剤21の硬化が進むので、所定時間経過後には電子部品31、32をそのままの位置に保持し続けるのに十分な保持力が発生しており、電子部品31、32の落下を防止することができる。
 なお、本発明は、その主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文にはなんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 この出願は、日本で2018年8月3日に出願された特願2018-146741号に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込まれるものである。また、本明細書に引用された文献は、これに言及することにより、その全部が具体的に組み込まれるものである。
10    3D-MID
11、12 ランド
21    熱硬化性接着剤
22    クリームはんだ
31、32 電子部品

Claims (3)

  1.  電子部品を実装する部品実装面である垂直面又は傾斜面の少なくとも一方に設けられた電極部分にクリームはんだを塗布する第1塗布工程と、
     前記部品実装面において前記電子部品の底面に対向する領域の少なくとも一部に熱硬化性接着剤を塗布する第2塗布工程と、
     前記クリームはんだ及び前記熱硬化性接着剤がそれぞれ塗布された前記部品実装面に前記電子部品を搭載する部品搭載工程と、
     前記部品実装面に搭載された前記電子部品のリフローはんだ付けを行うリフロー工程とを含み、
     前記リフロー工程における昇温中に、前記クリームはんだの軟化開始温度付近で予め定められた所定時間は温度を保持することを特徴とする電子部品実装方法。
  2.  請求項1に記載の電子部品実装方法において、
      前記熱硬化性接着剤は、ガラス転移温度が前記クリームはんだの前記軟化開始温度より低いことを特徴とする電子部品実装方法。
  3.  電子部品を実装する部品実装面であって、電極部分が設けられた垂直又は傾斜面の少なくとも一方と、
     前記電極部分にはんだ付けされており、熱硬化性接着剤によって前記部品実装面と接着されている電子部品とを備え、
     前記熱硬化性接着剤は、ガラス転移温度がはんだの軟化開始温度より低いことを特徴とする三次元成形回路部品。
PCT/JP2019/030300 2018-08-03 2019-08-01 電子部品実装方法及び三次元成形回路部品 WO2020027286A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980045784.0A CN112425275A (zh) 2018-08-03 2019-08-01 电子部件安装方法以及三维成形电路部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018146741A JP2020021905A (ja) 2018-08-03 2018-08-03 電子部品実装方法及び三次元成形回路部品
JP2018-146741 2018-08-03

Publications (1)

Publication Number Publication Date
WO2020027286A1 true WO2020027286A1 (ja) 2020-02-06

Family

ID=69230665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030300 WO2020027286A1 (ja) 2018-08-03 2019-08-01 電子部品実装方法及び三次元成形回路部品

Country Status (3)

Country Link
JP (1) JP2020021905A (ja)
CN (1) CN112425275A (ja)
WO (1) WO2020027286A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100805A1 (ja) * 2022-11-09 2024-05-16 株式会社Fuji 立体基板、および複数の電子部品を立体基板に位置決めする方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358493A (ja) * 1989-07-26 1991-03-13 Matsushita Electric Ind Co Ltd 電子部品の実装方法およびこの方法に用いる接着剤
JPH05226821A (ja) * 1992-02-12 1993-09-03 Matsushita Electric Ind Co Ltd 電子部品装着方法
JP2001007503A (ja) * 1999-06-23 2001-01-12 Denso Corp 電子部品の実装方法
WO2012165321A1 (ja) * 2011-05-27 2012-12-06 コニカミノルタホールディングス株式会社 インクジェットヘッドの製造方法、インクジェットヘッド、部材間通電構造の製造方法及び部材間通電構造
JP2016530723A (ja) * 2013-09-03 2016-09-29 チザラ リヒトシステーメ ゲーエムベーハーZizala Lichtsysteme GmbH 位置安定的はんだ付け方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358493A (ja) * 1989-07-26 1991-03-13 Matsushita Electric Ind Co Ltd 電子部品の実装方法およびこの方法に用いる接着剤
JPH05226821A (ja) * 1992-02-12 1993-09-03 Matsushita Electric Ind Co Ltd 電子部品装着方法
JP2001007503A (ja) * 1999-06-23 2001-01-12 Denso Corp 電子部品の実装方法
WO2012165321A1 (ja) * 2011-05-27 2012-12-06 コニカミノルタホールディングス株式会社 インクジェットヘッドの製造方法、インクジェットヘッド、部材間通電構造の製造方法及び部材間通電構造
JP2016530723A (ja) * 2013-09-03 2016-09-29 チザラ リヒトシステーメ ゲーエムベーハーZizala Lichtsysteme GmbH 位置安定的はんだ付け方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100805A1 (ja) * 2022-11-09 2024-05-16 株式会社Fuji 立体基板、および複数の電子部品を立体基板に位置決めする方法

Also Published As

Publication number Publication date
JP2020021905A (ja) 2020-02-06
CN112425275A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2018099123A1 (zh) 印制线路板及其表面贴装方法
US20090050677A1 (en) Method of welding electronic components on pcbs
JP2011171540A (ja) モジュールの製造方法
JP5523454B2 (ja) 電子部品実装構造体の製造方法
WO2020027286A1 (ja) 電子部品実装方法及び三次元成形回路部品
JPH11330162A (ja) 半導体チップの実装方法
EP1729554A2 (en) Soldering method, electronic part, and part-exchanging method
JP2005039206A (ja) 半導体チップ表面実装方法
JP2014143316A (ja) フリップチップ部品の樹脂封止方法
JP2008227310A (ja) 2種類の配線板を有するハイブリッド基板、それを有する電子装置、及び、ハイブリッド基板の製造方法
US10834811B2 (en) Implementing reworkable strain relief packaging structure for electronic component interconnects
JPH05259631A (ja) プリント配線板の表面実装方法
JP2001244299A (ja) 配線基板及びその製造方法
JPS6345892A (ja) 面実装型電子素子の実装方法および面実装型電子素子を実装した電子装置
CN113438826B (zh) 底填胶封装方法及设备
JP2589679B2 (ja) 電子部品の実装方法
JPH0738251A (ja) 電子部品の実装方法
JPH07183650A (ja) 電子部品の実装方法
JP2002217350A (ja) モジュール部品の製造方法
TWI601252B (zh) 封裝結構的製作方法以及使用其所製得之封裝結構
JP2003174045A (ja) 半導体素子の実装方法、及び、表示装置の製造方法
JP2004047772A (ja) 電子部品の接合材料および電子部品実装方法
JP2018195631A (ja) 電子回路モジュールの製造方法
JPH04352491A (ja) 電子部品の実装方法
JPS63177584A (ja) 混成集積回路の組立方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843202

Country of ref document: EP

Kind code of ref document: A1