WO2020021631A1 - 健全性診断装置 - Google Patents

健全性診断装置 Download PDF

Info

Publication number
WO2020021631A1
WO2020021631A1 PCT/JP2018/027691 JP2018027691W WO2020021631A1 WO 2020021631 A1 WO2020021631 A1 WO 2020021631A1 JP 2018027691 W JP2018027691 W JP 2018027691W WO 2020021631 A1 WO2020021631 A1 WO 2020021631A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
diagnostic device
detector
state
earthquake
Prior art date
Application number
PCT/JP2018/027691
Other languages
English (en)
French (fr)
Inventor
然一 伊藤
郷平 山中
健 宮川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020531873A priority Critical patent/JP7019046B2/ja
Priority to PCT/JP2018/027691 priority patent/WO2020021631A1/ja
Priority to CN201880094454.6A priority patent/CN112399958B/zh
Publication of WO2020021631A1 publication Critical patent/WO2020021631A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to a soundness diagnostic device for diagnosing the soundness of an object to be diagnosed, which is at least one of a building and an elevator, after an earthquake.
  • each displacement meter and the corresponding target face each other between vertically adjacent floors.
  • Each displacement meter is supported from the upper floor, and the corresponding target is supported from the lower floor.
  • each displacement meter measures a relative displacement amount in the horizontal direction between vertically adjacent floors.
  • the building soundness evaluation unit evaluates the soundness of the building from the measured displacement amount (for example, see Patent Literature 1).
  • the conventional seismic damage measurement system as described above requires strong and long displacement gauge bases that support the displacement gauge from the upper floor. Also, a plurality of strong and long target pedestals that support the target from the lower floor are required. For this reason, a large-sized device is additionally installed in the hoistway.
  • the present invention has been made to solve the above-described problems, and has as its object to obtain a soundness diagnostic device capable of diagnosing the soundness of an object to be diagnosed after an earthquake, by a compact configuration. I do.
  • a soundness diagnostic apparatus is provided in an elevator, and uses a state detector that detects a state of the elevator equipment, and information from the state detector, and uses at least one of a building in which the elevator is installed and an elevator. On the other hand, it has a diagnostic device main body for diagnosing the soundness of an object to be diagnosed after an earthquake.
  • the soundness of the object to be diagnosed after the occurrence of an earthquake can be diagnosed with a compact configuration.
  • FIG. 1 is a configuration diagram illustrating a health diagnostic device according to a first embodiment of the present invention.
  • 2 is a flowchart illustrating an operation of the diagnostic device main body of FIG. 1.
  • FIG. 2 is a configuration diagram illustrating an installation state of the state detector of FIG. 1.
  • FIG. 7 is a configuration diagram illustrating a main part of a health diagnostic device according to Embodiment 2 of the present invention;
  • FIG. 9 is a configuration diagram illustrating a main part of a health diagnostic device according to Embodiment 3 of the present invention.
  • FIG. 13 is a configuration diagram illustrating a main part of a health diagnostic device according to Embodiment 4 of the present invention.
  • FIG. 13 is a configuration diagram illustrating a main part of a health diagnostic device according to Embodiment 5 of the present invention.
  • FIG. 8 is a configuration diagram illustrating a main part of the state detector of FIG. 7. It is a block diagram which shows the principal part of the health diagnostic device by Embodiment 6 of this invention.
  • FIG. 9 is a configuration diagram illustrating a first example of a processing circuit that realizes each function of the diagnostic apparatus main bodies according to the first to sixth embodiments.
  • FIG. 13 is a configuration diagram illustrating a second example of a processing circuit that realizes each function of the diagnostic device main body according to the first to sixth embodiments.
  • FIG. 1 is a configuration diagram showing a health diagnostic apparatus according to Embodiment 1 of the present invention.
  • an elevator 2 is installed in a building 1.
  • the elevator 2 includes a hoistway 3, a car 4, a counterweight (not shown), a hoisting machine 5, a suspension 6, and an elevator control device 7.
  • the car 4 and the counterweight are suspended in the hoistway 3 by the suspension 6.
  • a plurality of ropes or a plurality of belts are used as the suspension 6.
  • the hoisting machine 5 is installed in a machine room provided above the hoistway 3 or at the top of the hoistway 3.
  • the hoisting machine 5 has a drive sheave 8, a motor (not shown), and a brake (not shown).
  • the motor rotates the drive sheave 8.
  • the brake keeps the drive sheave 8 stationary or brakes the rotation of the drive sheave 8.
  • the suspension 6 is wound around the drive sheave 8.
  • the car 4 and the counterweight move up and down in the hoistway 3 by rotating the drive sheave 8.
  • the elevator control device 7 controls the operation of the car 4.
  • an earthquake detector 9 and a state detector 10 are installed.
  • the state detector 10 is provided in the elevator 2.
  • the state detector 10 detects a state of the elevator equipment included in the elevator 2. That is, the state detector 10 generates a signal corresponding to the state of the elevator facility.
  • the signal from the earthquake detector 9 and the signal from the state detector 10 are input to the diagnostic device main body 11.
  • the soundness diagnostic device includes a state detector 10 and a diagnostic device main body 11.
  • the diagnostic device main body 11 uses the information from the state detector 10 to diagnose the soundness of the diagnostic object, which is at least one of the building 1 and the elevator 2, after the occurrence of the earthquake.
  • the diagnostic device body 11 determines whether there is any abnormality that may hinder the restart of the automatic operation of the elevator 2 as the soundness of the diagnosis target after the occurrence of the earthquake.
  • the diagnostic device main body 11 has an acquisition unit 12, a storage unit 13, a determination unit 14, and a timer 15 as functional blocks.
  • the acquisition unit 12 periodically acquires information from the state detector 10.
  • the storage unit 13 stores a reference value corresponding to a state value indicating a state of the elevator facility before the occurrence of the earthquake.
  • the determination unit 14 determines whether there is an abnormality in the diagnosis target after the occurrence of the earthquake by comparing the post-earthquake detection value, which is a state value indicating the state of the elevator equipment after the occurrence of the earthquake, with a reference value.
  • the reference value is, for example, a state value before an earthquake or a value obtained by adding an allowable value to a state value before an earthquake.
  • the determination unit 14 determines that there is an abnormality when the difference between the reference value and the detected value after the earthquake exceeds an allowable value.
  • the reference value is a value obtained by adding the allowable value to the state value before the occurrence of the earthquake, the determination unit 14 determines that there is an abnormality when the post-earthquake detection value exceeds the reference value.
  • the storage unit 13 periodically updates the reference value at the timing of acquiring information from the state detector 10.
  • FIG. 2 is a flowchart showing the operation of the diagnostic apparatus main body 11 of FIG.
  • the diagnostic device main body 11 periodically executes the processing of FIG. 2 at a set cycle.
  • the diagnostic device main body 11 first checks in step S1 whether the earthquake detector 9 has detected an earthquake of a set seismic intensity or higher.
  • the diagnostic device main body 11 acquires information from the state detector 10 in step S2. Then, in step S3, the diagnostic device main body 11 updates the reference value, and ends the current process.
  • the diagnostic device main body 11 checks in step S4 whether or not the shaking has stopped based on information from the earthquake detector 9. If the shaking has not stopped, the diagnostic device main body 11 ends the current process.
  • the diagnostic device main body 11 checks in step S5 whether the set time has elapsed. If the set time has not elapsed, the diagnostic device main body 11 ends the current process.
  • the diagnostic device main body 11 acquires information from the state detector 10 in step S6. Then, in step S7, the diagnostic device main body 11 determines whether there is any abnormality in the diagnosis target. Subsequently, in step S8, the diagnostic device main body 11 outputs the determination result to the elevator control device 7 and the remote control room, and ends the processing.
  • FIG. 3 is a configuration diagram showing an installation state of the state detector 10 of FIG.
  • the elevator equipment according to the first embodiment is a guide rail 21.
  • the guide rail 21 is installed in the hoistway 3 along the up-down direction.
  • the guide rail 21 guides the car 4 or the counterweight to move up and down.
  • the guide rail 21 is held by a plurality of rail brackets 22.
  • the rail brackets 22 are fixed to the hoistway wall 3a at intervals from one another in the vertical direction.
  • the lower end of the guide rail 21 is normally separated from the bottom surface of the hoistway 3 at normal times.
  • the state detector 10 detects the vertical position of the lower end of the guide rail 21 as the state of the elevator equipment. That is, the state detector 10 of the first embodiment is a displacement detector.
  • the determination unit 14 determines whether there is an abnormality in the diagnosis target after the occurrence of the earthquake by comparing the position of the lower end of the guide rail 21 with the reference value.
  • the elevator 2 is provided with the state detector 10 for detecting the state of the elevator equipment. Then, using the information from the state detector 10, the soundness of the diagnosis target after the occurrence of the earthquake is diagnosed. Therefore, the soundness of the object to be diagnosed after the occurrence of the earthquake can be diagnosed with a compact configuration.
  • the diagnostic device main body 11 also determines whether there is an abnormality in the diagnosis target after the occurrence of the earthquake by comparing the post-earthquake state value with the reference value. For this reason, the soundness after the occurrence of the earthquake to be diagnosed can be more accurately diagnosed.
  • the diagnostic apparatus main body 11 periodically acquires information from the state detector 10 and periodically updates the reference value. For this reason, the secular change can be removed and the damage caused by the earthquake can be estimated more accurately.
  • the state detector 10 is a displacement detector that detects the position of the lower end of the guide rail 21. For this reason, the configuration can be made more compact.
  • the lower end of the guide rail 21 may be lowered due to the shrinkage of the building 1 due to the earthquake. Therefore, a reference value when the lower end of the guide rail 21 is lowered may be set.
  • the position of the lower end of two or more guide rails 21 may be detected using two or more state detectors 10.
  • the reference value and the post-earthquake detection value were compared.However, the change amount of the state value within the set time is compared with the change amount threshold value, and when the change amount exceeds the change amount threshold value, an abnormality is detected. It may be determined that there is.
  • FIG. 4 is a configuration diagram showing a main part of a health diagnostic device according to Embodiment 2 of the present invention.
  • the elevator equipment according to the second embodiment is a speed governor rope tension sheave 23.
  • the governor rope tensioning wheel 23 is provided below the hoistway 3.
  • the governor rope tensioning sheave 23 is guided by a tensioning sheave guide device (not shown) and can be moved in the vertical direction.
  • the horizontal movement of the speed governor rope tension sheave 23 is regulated by the tension sheave guide device.
  • a governor 24 is installed above the hoistway 3.
  • the governor 24 has a governor sheave 25.
  • a governor rope 26 is wound around the governor sheave 25 and the governor rope tension wheel 23.
  • the governor rope 26 is annularly arranged in the hoistway 3.
  • the governor rope 26 is connected to the car 4. Accordingly, when the car 4 travels, the governor sheave 25 rotates at a speed corresponding to the traveling speed of the car 4.
  • the state detector 27 detects the vertical position of the governor rope pulling wheel 23 as the state of the elevator equipment. That is, the state detector 27 of the second embodiment is a displacement detector.
  • the soundness of the object to be diagnosed after an earthquake can be diagnosed by a compact configuration.
  • a mechanical switch operated by the displacement of the governor rope tensioning wheel 23 may be used.
  • the reference value and the post-earthquake detection value were compared.However, the change amount of the state value within the set time is compared with the change amount threshold value, and when the change amount exceeds the change amount threshold value, an abnormality is detected. It may be determined that there is.
  • FIG. 5 is a configuration diagram showing a main part of a health diagnostic device according to Embodiment 3 of the present invention.
  • the elevator equipment according to the third embodiment is a rail bracket 22.
  • a plurality of state detectors 28 are used. Each state detector 28 is provided on the corresponding rail bracket 22.
  • Each state detector 28 of the third embodiment detects the deformation of the corresponding rail bracket 22 as the state of the elevator equipment. That is, each state detector 28 of the third embodiment is a deformation detector. An example of the deformation detector is a strain gauge.
  • the diagnostic device main body 11 compares the sum of the deformation amounts detected by all the state detectors 28 with a reference value to determine whether there is an abnormality. Further, the diagnostic apparatus main body 11 may determine whether there is an abnormality by comparing the maximum value of the deformation amount detected by all the state detectors 28 with a reference value. Other configurations and operations are the same as those of the first embodiment.
  • the soundness of the object to be diagnosed after an earthquake can be diagnosed by a compact configuration.
  • the number of rail brackets 22 provided with the state detector 28 is not particularly limited.
  • FIG. 6 is a configuration diagram showing a main part of a health diagnostic apparatus according to Embodiment 4 of the present invention.
  • the elevator equipment according to the fourth embodiment is a car 4 as an elevating body.
  • the state detector 29 according to the fourth embodiment is installed at the top of the hoistway 3. Further, the state detector 29 according to the fourth embodiment detects the horizontal position of the car 4 as the state of the elevator equipment. As the state detector 29 of the fourth embodiment, an optical detector, for example, a camera is used.
  • the diagnostic device main body 11 of the fourth embodiment acquires the vertical position information of the car 4 from the elevator 2 after the occurrence of the earthquake.
  • the position information to be obtained is, for example, a signal from a car position detector provided in the hoisting machine 5.
  • the diagnostic apparatus main body 11 calculates the vertical position of the car 4 based on the signal from the car position detector.
  • the diagnostic device main body 11 may directly acquire the vertical position information of the car 4 from the elevator control device 7.
  • the diagnostic device main body 11 stores a reference value for each position of the car 4 in the vertical direction. In addition, the diagnostic device main body 11 diagnoses the soundness of the diagnosis target after the occurrence of the earthquake based on the information from the state detector 29 and the position information. That is, the diagnostic apparatus body 11 determines the presence or absence of an abnormality by comparing the post-earthquake detection value with a reference value corresponding to the stop position of the car 4.
  • the horizontal position of the car 4 as viewed from the state detector 29 is shifted from the position before the earthquake.
  • the determining unit 14 compares the horizontal position of the car 4 with a reference value to determine whether there is an abnormality.
  • Other configurations and operations are the same as those of the first embodiment.
  • the soundness of the object to be diagnosed after an earthquake can be diagnosed by a compact configuration.
  • the configuration can be made more compact.
  • the state detector 29 is installed at the top of the hoistway 3. However, it may be installed at the bottom or at both the top and bottom.
  • the lifting body for detecting the horizontal position by the state detector 29 may be a counterweight.
  • the elevator equipment for detecting the position in the horizontal direction by the state detector 29 may not be an elevator.
  • the diagnostic apparatus main body 11 automatically sets the reference value corresponding to the state value indicating the state of the elevator equipment before the occurrence of the earthquake.
  • the reference value may be a state value threshold manually set.
  • FIG. 7 is a configuration diagram showing a main part of a health diagnostic apparatus according to Embodiment 5 of the present invention.
  • the elevator equipment according to the fifth embodiment is a hoistway 3.
  • the state detector 30 detects the amount of horizontal deformation of the hoistway 3 as the state of the elevator equipment.
  • the state detector 30 has a detected rope 31, a detector main body 32, and a weight 33.
  • the detected rope 31 is vertically suspended from the top of the hoistway 3 into the hoistway 3.
  • the weight 33 is connected to the lower end of the detected rope 31.
  • the detector main body 32 detects a change in the horizontal distance from the hoistway wall 3a to the detected rope 31.
  • the detector main body 32 has a plurality of contact members 34.
  • the contact members 34 are provided on the hoistway wall 3a at intervals in the vertical direction.
  • Each contact member 34 has a fixed portion 34a and a ring-shaped facing portion 34b.
  • Each fixing part 34a is fixed to the hoistway wall 3a.
  • Each facing portion 34b surrounds the detected rope 31 and faces the detected rope 31.
  • FIG. 8 is a configuration diagram showing a main part of the state detector 30 of FIG.
  • a ring-shaped first contact portion 35 and a ring-shaped second contact portion 36 are provided on the inner peripheral surface of each facing portion 34b.
  • the first contact portion 35 and the second contact portion 36 are arranged at an interval in the up-down direction. Further, the first contact portion 35 and the second contact portion 36 are made of a conductive material.
  • a conductor portion 37 is provided in a portion of the detected rope 31 where the facing portion 34b faces.
  • the conductor portion 37 comes into contact with the inner peripheral surface of the facing portion 34b, a current flows between the first contact portion 35 and the second contact portion 36, and a signal is sent to the diagnostic device main body 11.
  • the diagnostic device main body 11 diagnoses the soundness of the diagnosis target after the occurrence of the earthquake based on the contact state between the plurality of contact members 34 and the detected ropes 31. For example, when detecting that at least one of the plurality of contact members 34 has contacted the detected rope 31, the diagnostic device main body 11 determines that an abnormality has occurred in the diagnosis target.
  • Other configurations and operations are the same as those of the first embodiment.
  • the soundness of the object to be diagnosed after an earthquake can be diagnosed by a compact configuration.
  • the detector main body 32 detects a change in the horizontal distance from the hoistway wall 3a to the detected rope 31. Therefore, even when the building 1 is deformed in a complicated manner, an abnormality can be detected.
  • contact members 34 may be connected to the power supply in series or in parallel.
  • the detector main body 32 does not detect contact with the detected rope 31 but may be a sensor that generates a signal corresponding to the horizontal distance to the detected rope 31.
  • the diagnostic device main body 11 may compare the post-earthquake detection value with the reference value to perform the health diagnosis, or may compare the post-earthquake detection value with the state threshold to perform the health diagnosis.
  • FIG. 9 is a configuration diagram showing a main part of a health diagnostic device according to Embodiment 6 of the present invention.
  • the elevator equipment according to the sixth embodiment is the hoistway 3.
  • the state detector 38 detects the amount of vertical deformation of the hoistway 3 as the state of the elevator equipment.
  • the state detector 38 has a detected rope 39, a plurality of pairs of guide members 40, and a detector main body 41.
  • the detected rope 39 is stretched vertically in the hoistway 3.
  • the guide members 40 are arranged in the hoistway 3 at intervals in the vertical direction. Further, each guide member 40 guides the detected rope 39. Further, as each guide member 40, for example, a guide roller is used.
  • the detection rope 39 is provided with a cutting portion 42.
  • the cutting portion 42 is a portion that is cut when the detected rope 39 has an elongation equal to or greater than the rope elongation threshold.
  • the cutting section 42 can be composed of, for example, a pair of magnets attracted to each other. Further, the cutting section 42 may be configured by making the tensile strength of a part of the detected rope 39 lower than that of the other parts.
  • the detector main body 41 detects whether or not the cutting section 42 has been cut. In addition, the detector main body 41 detects that the detected rope 39 has expanded beyond the rope expansion threshold by detecting the cutting of the cutting section 42.
  • the diagnostic apparatus main body 11 determines that an abnormality has occurred in the diagnosis target.
  • Other configurations and operations are the same as those of the first embodiment.
  • the soundness of the object to be diagnosed after an earthquake can be diagnosed by a compact configuration.
  • the detector main body 41 detects the extension of the detected rope 39. Therefore, even when the building 1 is deformed in the vertical direction, an abnormality can be detected.
  • the detector main body 41 does not detect the cut of the detected rope 39, but may be a sensor that generates a signal corresponding to the amount of extension of the detected rope 39.
  • the diagnostic device main body 11 may compare the post-earthquake detection value with the reference value to perform the health diagnosis, or may compare the post-earthquake detection value with the state threshold to perform the health diagnosis.
  • the soundness diagnosis by the diagnostic device body 11 of the first to sixth embodiments may be executed by manual input of a command instead of a signal from the earthquake detector 9.
  • the setting and updating of the reference values in the first to sixth embodiments may be performed manually.
  • state detectors of the above two or more embodiments may be used in combination.
  • FIG. 10 is a configuration diagram illustrating a first example of a processing circuit that realizes each function of the diagnostic apparatus main body 11 according to the first to sixth embodiments.
  • the processing circuit 100 of the first example is dedicated hardware.
  • the processing circuit 100 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Applicable. Further, each function of the diagnostic device main body 11 may be realized by the individual processing circuit 100, or each function may be realized by the processing circuit 100 collectively.
  • FIG. 11 is a configuration diagram showing a second example of a processing circuit that realizes each function of the diagnostic apparatus main body 11 of the first to sixth embodiments.
  • the processing circuit 200 of the second example includes a processor 201 and a memory 202.
  • each function of the diagnostic device main body 11 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in the memory 202.
  • the processor 201 implements each function by reading and executing a program stored in the memory 202.
  • the program stored in the memory 202 causes a computer to execute the procedure or method of each unit described above.
  • the memory 202 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Memory Only), an EEPROM (Electrical Memory, etc.). Or volatile semiconductor memory.
  • a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, and the like also correspond to the memory 202.
  • the processing circuit can realize the function of each unit described above by hardware, software, firmware, or a combination thereof.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

健全性診断装置は、状態検出器と、診断装置本体とを有している。状態検出器は、エレベータに設けられている。また、状態検出器は、エレベータ設備の状態を検出する。診断装置本体は、状態検出器からの情報を用いて、診断対象の地震発生後の健全性を診断する。診断対象は、エレベータが設置されている建物とエレベータとの少なくともいずれか一方である。

Description

健全性診断装置
 この発明は、建物とエレベータとの少なくともいずれか一方である診断対象の地震発生後の健全性を診断する健全性診断装置に関するものである。
 従来の地震損傷計測システムでは、エレベータの昇降路に、複数の変位計と複数のターゲットとが設置されている。各変位計と、対応するターゲットとは、上下に隣り合う階床間で互いに向き合っている。また、各変位計は上階から支持されており、対応するターゲットは下階から支持されている。これにより、各変位計は、上下に隣り合う階床間の水平方向への相対的な変位量を計測する。建築物健全性評価部は、計測された変位量から建築物の健全性を評価する(例えば、特許文献1参照)。
特許第5197992号公報
 上記のような従来の地震損傷計測システムでは、変位計を上階から支持する強固で長尺な複数の変位計台座が必要である。また、ターゲットを下階から支持する強固で長尺な複数のターゲット台座も必要である。このため、大型の装置を昇降路に追加で設置することになる。
 この発明は、上記のような課題を解決するためになされたものであり、コンパクトな構成により、診断対象の地震発生後の健全性を診断することができる健全性診断装置を得ることを目的とする。
 この発明に係る健全性診断装置は、エレベータに設けられ、エレベータ設備の状態を検出する状態検出器、及び状態検出器からの情報を用いて、エレベータが設置されている建物とエレベータとの少なくともいずれか一方である診断対象の地震発生後の健全性を診断する診断装置本体を備えている。
 この発明の健全性診断装置によれば、コンパクトな構成により、診断対象の地震発生後の健全性を診断することができる。
この発明の実施の形態1による健全性診断装置を示す構成図である。 図1の診断装置本体の動作を示すフローチャートである。 図1の状態検出器の設置状態を示す構成図である。 この発明の実施の形態2による健全性診断装置の要部を示す構成図である。 この発明の実施の形態3による健全性診断装置の要部を示す構成図である。 この発明の実施の形態4による健全性診断装置の要部を示す構成図である。 この発明の実施の形態5による健全性診断装置の要部を示す構成図である。 図7の状態検出器の要部を示す構成図である。 この発明の実施の形態6による健全性診断装置の要部を示す構成図である。 実施の形態1~6の診断装置本体の各機能を実現する処理回路の第1の例を示す構成図である。 実施の形態1~6の診断装置本体の各機能を実現する処理回路の第2の例を示す構成図である。
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1による健全性診断装置を示す構成図である。図において、建物1には、エレベータ2が設置されている。エレベータ2は、昇降路3、かご4、図示しない釣合おもり、巻上機5、懸架体6、及びエレベータ制御装置7を備えている。
 かご4及び釣合おもりは、懸架体6により昇降路3内に吊り下げられている。懸架体6としては、複数本のロープ又は複数本のベルトが用いられている。
 巻上機5は、昇降路3の上方に設けられている機械室、又は昇降路3内の頂部に設置されている。また、巻上機5は、駆動シーブ8、図示しないモータ、及び図示しないブレーキを有している。モータは、駆動シーブ8を回転させる。ブレーキは、駆動シーブ8の静止状態を保持、又は駆動シーブ8の回転を制動する。
 懸架体6は、駆動シーブ8に巻き掛けられている。かご4及び釣合おもりは、駆動シーブ8を回転させることにより、昇降路3内を昇降する。エレベータ制御装置7は、かご4の運行を制御する。
 建物1には、地震検出器9及び状態検出器10が設置されている。状態検出器10は、エレベータ2に設けられている。また、状態検出器10は、エレベータ2に含まれるエレベータ設備の状態を検出する。即ち、状態検出器10は、エレベータ設備の状態に応じた信号を発生する。地震検出器9からの信号と状態検出器10からの信号とは、診断装置本体11に入力される。
 実施の形態1の健全性診断装置は、状態検出器10及び診断装置本体11を有している。診断装置本体11は、状態検出器10からの情報を用いて、建物1とエレベータ2との少なくともいずれか一方である診断対象の地震発生後の健全性を診断する。
 実施の形態1の診断装置本体11は、地震発生後の診断対象の健全性として、エレベータ2の自動運転を再開するために支障となる異常の有無を判定する。
 また、診断装置本体11は、機能ブロックとして、取得部12、記憶部13、判定部14、及びタイマ15を有している。取得部12は、状態検出器10からの情報を定期的に取得する。記憶部13は、地震発生前のエレベータ設備の状態を示す状態値に対応する基準値を記憶する。
 判定部14は、地震発生後のエレベータ設備の状態を示す状態値である地震後検出値と基準値とを比較することにより、地震発生後の診断対象の異常の有無を判定する。
 基準値は、例えば、地震発生前の状態値、又は地震発生前の状態値に許容値を加えた値である。地震発生前の状態値を基準値とする場合、判定部14は、基準値と地震後検出値との差が許容値を超えた場合に、異常有りと判定する。地震発生前の状態値に許容値を加えた値を基準値とする場合、判定部14は、地震後検出値が基準値を超えた場合に、異常有りと判定する。
 記憶部13は、状態検出器10からの情報の取得のタイミングで、基準値を定期的に更新する。
 図2は、図1の診断装置本体11の動作を示すフローチャートである。診断装置本体11は、図2の処理を設定周期で定期的に実行する。診断装置本体11は、まずステップS1において、地震検出器9により設定震度以上の地震が検出されたかどうかを確認する。
 地震が検出されていない場合、診断装置本体11は、ステップS2において、状態検出器10からの情報を取得する。そして、診断装置本体11は、ステップS3において、基準値を更新し、その回の処理を終了する。
 地震が検出されている場合、診断装置本体11は、ステップS4において、地震検出器9からの情報により、揺れが収まっているかどうかを確認する。揺れが収まっていない場合、診断装置本体11は、その回の処理を終了する。
 揺れが収まっている場合、診断装置本体11は、ステップS5において、設定時間が経過したかどうかを確認する。設定時間が経過していない場合、診断装置本体11は、その回の処理を終了する。
 設定時間が経過している場合、診断装置本体11は、ステップS6において、状態検出器10からの情報を取得する。そして、診断装置本体11は、ステップS7において、診断対象の異常の有無を判定する。続いて、診断装置本体11は、ステップS8において、判定結果をエレベータ制御装置7及び遠隔の管理室に出力して、処理を終了する。
 図3は、図1の状態検出器10の設置状態を示す構成図である。実施の形態1のエレベータ設備は、ガイドレール21である。ガイドレール21は、昇降路3に上下方向に沿って設置されている。また、ガイドレール21は、かご4又は釣合おもりの昇降を案内する。
 また、ガイドレール21は、複数のレールブラケット22に保持されている。レールブラケット22は、上下方向に互いに間隔をおいて、昇降路壁3aに固定されている。また、ガイドレール21の下端は、通常時にも、昇降路3の底面から離れている。
 実施の形態1の状態検出器10は、エレベータ設備の状態として、ガイドレール21の下端の上下方向の位置を検出する。即ち、実施の形態1の状態検出器10は、変位検出器である。
 地震により建物1に変形が生じ、例えば図3の破線の状態から実線の状態に昇降路壁3aが変形した場合、ガイドレール21にも変形が生じる。そして、ガイドレール21の下端は、上方へ変位する。判定部14は、ガイドレール21の下端の位置と基準値とを比較することにより、地震発生後の診断対象の異常の有無を判定する。
 このような健全性診断装置では、エレベータ設備の状態を検出する状態検出器10がエレベータ2に設けられている。そして、状態検出器10からの情報を用いて、診断対象の地震発生後の健全性が診断される。このため、コンパクトな構成により、診断対象の地震発生後の健全性を診断することができる。
 また、診断装置本体11は、地震後状態値と基準値とを比較することにより、地震発生後の診断対象の異常の有無を判定する。このため、診断対象の地震発生後の健全性を、より正確に診断することができる。
 また、診断装置本体11は、状態検出器10からの情報を定期的に取得し、基準値を定期的に更新する。このため、経年的な変化を除去し、地震による被害をより正確に推定することができる。
 また、状態検出器10は、ガイドレール21の下端の位置を検出する変位検出器である。このため、構成をさらにコンパクト化することができる。
 なお、状態検出器10として、ガイドレール21の下端の変位により操作される機械式スイッチを用いてもよい。
 また、建物1の地震による縮みにより、ガイドレール21の下端が下降することもある。このため、ガイドレール21の下端が下降した場合の基準値を設定してもよい。
 また、2個以上の状態検出器10を用いて、2本以上のガイドレール21の下端の位置を検出してもよい。
 また、上記の例では、基準値と地震後検出値とを比較したが、設定時間内での状態値の変化量を変化量閾値と比較し、変化量が変化量閾値を超えた場合に異常有りと判定してもよい。
 実施の形態2.
 次に、図4は、この発明の実施の形態2による健全性診断装置の要部を示す構成図である。実施の形態2のエレベータ設備は、調速機ロープ張り車23である。調速機ロープ張り車23は、昇降路3の下部に設けられている。
 また、調速機ロープ張り車23は、図示しない張り車ガイド装置に案内されて、上下方向へ移動可能になっている。また、調速機ロープ張り車23の水平方向への移動は、張り車ガイド装置により規制されている。
 昇降路3の上部には、調速機24が設置されている。調速機24は、調速機シーブ25を有している。調速機シーブ25及び調速機ロープ張り車23には、調速機ロープ26が巻き掛けられている。調速機ロープ26は、昇降路3内に環状に配置されている。
 調速機ロープ26は、かご4に接続されている。これにより、調速機シーブ25は、かご4が走行すると、かご4の走行速度に応じた速度で回転する。
 実施の形態2の状態検出器27は、エレベータ設備の状態として、調速機ロープ張り車23の上下方向の位置を検出する。即ち、実施の形態2の状態検出器27は、変位検出器である。
 地震により建物1に変形が生じ、例えば図4に示すように昇降路3が変形した場合、調速機24は、破線の位置から実線の位置まで水平方向へ変位する。これにより、調速機ロープ張り車23は、上方へ変位する。判定部14は、調速機ロープ張り車23の位置と基準値とを比較して、地震発生後の診断対象の異常の有無を判定する。他の構成及び動作は、実施の形態1と同様である。
 このような健全性診断装置でも、コンパクトな構成により、診断対象の地震発生後の健全性を診断することができる。
 また、建物1の変形に応じた調速機ロープ張り車23の持ち上がり量から、地震発生後の診断対象の健全性が診断される。このため、構成をさらにコンパクト化することができる。
 なお、状態検出器27として、調速機ロープ張り車23の変位により操作される機械式スイッチを用いてもよい。
 また、建物1の地震による縮みにより、調速機ロープ張り車23が極端に下降することもある。このため、調速機ロープ張り車23が下降した場合の基準値を設定してもよい。
 また、上記の例では、基準値と地震後検出値とを比較したが、設定時間内での状態値の変化量を変化量閾値と比較し、変化量が変化量閾値を超えた場合に異常有りと判定してもよい。
 実施の形態3.
 次に、図5は、この発明の実施の形態3による健全性診断装置の要部を示す構成図である。実施の形態3のエレベータ設備は、レールブラケット22である。また、実施の形態3では、複数の状態検出器28が用いられている。各状態検出器28は、対応するレールブラケット22に設けられている。
 実施の形態3の各状態検出器28は、エレベータ設備の状態として、対応するレールブラケット22の変形を検出する。即ち、実施の形態3の各状態検出器28は、変形検出器である。変形検出器としては、例えば歪み計が挙げられる。
 診断装置本体11は、全ての状態検出器28で検出された変形量の総和と基準値とを比較して、異常の有無を判定する。また、診断装置本体11は、全ての状態検出器28で検出された変形量の最大値と基準値とを比較して、異常の有無を判定してもよい。他の構成及び動作は、実施の形態1と同様である。
 このような健全性診断装置でも、コンパクトな構成により、診断対象の地震発生後の健全性を診断することができる。
 また、レールブラケット22の変形量から診断対象の異常の有無を判定するので、構成をさらにコンパクト化することができる。
 また、2つ以上のレールブラケット22に状態検出器28を設けることにより、より高精度な診断を行うことができる。
 なお、何個のレールブラケット22に状態検出器28を設けるかは、特に限定されない。
 実施の形態4.
 次に、図6は、この発明の実施の形態4による健全性診断装置の要部を示す構成図である。実施の形態4のエレベータ設備は、昇降体としてのかご4である。
 実施の形態4の状態検出器29は、昇降路3の頂部に設置されている。また、実施の形態4の状態検出器29は、エレベータ設備の状態として、かご4の水平方向の位置を検出する。また、実施の形態4の状態検出器29としては、光学検出器、例えばカメラが用いられている。
 地震発生後には、かご4は、停止している。実施の形態4の診断装置本体11は、地震発生後に、かご4の上下方向の位置情報をエレベータ2から取得する。
 取得する位置情報は、例えば巻上機5に設けられたかご位置検出器からの信号である。この場合、診断装置本体11は、かご位置検出器からの信号に基づいて、かご4の上下方向の位置を演算する。また、診断装置本体11は、エレベータ制御装置7から、かご4の上下方向の位置情報を直接取得してもよい。
 診断装置本体11は、かご4の上下方向の位置毎に基準値を記憶している。また、診断装置本体11は、状態検出器29からの情報と位置情報とに基づいて、診断対象の地震発生後の健全性を診断する。即ち、診断装置本体11は、地震後検出値を、かご4の停止位置に対応する基準値と比較することにより、異常の有無を判定する。
 地震により建物1に変形が生じ、昇降路3が変形した場合、状態検出器29から見たかご4の水平方向の位置は、地震前の位置からずれる。判定部14は、かご4の水平方向の位置と基準値とを比較して、異常の有無を判定する。他の構成及び動作は、実施の形態1と同様である。
 このような健全性診断装置でも、コンパクトな構成により、診断対象の地震発生後の健全性を診断することができる。
 また、かご4の水平方向の位置を光学検出器で検出することにより、地震発生後の診断対象の健全性が診断される。このため、構成をさらにコンパクト化することができる。
 また、かご4の上下方向の位置を考慮して、地震発生後の診断対象の健全性が診断される。このため、より高精度な診断を行うことができる。
 なお、実施の形態4では、状態検出器29を昇降路3の頂部に設置したが、底部に設置しても、頂部と底部との両方に設置してもよい。
 また、状態検出器29により水平方向の位置を検出する昇降体は、釣合おもりであってもよい。
 また、状態検出器29により水平方向の位置を検出するエレベータ設備は、昇降体でなくてもよい。
 また、実施の形態1~4では、診断装置本体11は、地震発生前のエレベータ設備の状態を示す状態値に対応する基準値を自動的に設定した。しかし、基準値は、人手により設定された状態値の閾値であってもよい。
 実施の形態5.
 次に、図7は、この発明の実施の形態5による健全性診断装置の要部を示す構成図である。実施の形態5のエレベータ設備は、昇降路3である。
 実施の形態5の状態検出器30は、エレベータ設備の状態として、昇降路3の水平方向への変形量を検出する。また、状態検出器30は、被検出ロープ31と検出器本体32と錘33とを有している。
 被検出ロープ31は、昇降路3の頂部から、昇降路3内に鉛直に垂らされている。錘33は、被検出ロープ31の下端に接続されている。検出器本体32は、昇降路壁3aから被検出ロープ31までの水平距離の変化を検出する。
 また、検出器本体32は、複数の接触部材34を有している。接触部材34は、上下方向に互いに間隔をおいて昇降路壁3aに設けられている。各接触部材34は、固定部34aと、リング状の対向部34bとを有している。
 各固定部34aは、昇降路壁3aに固定されている。各対向部34bは、被検出ロープ31を取り囲んで被検出ロープ31に対向している。
 図8は、図7の状態検出器30の要部を示す構成図である。各対向部34bの内周面には、リング状の第1の接触部35と、リング状の第2の接触部36とが設けられている。第1の接触部35と第2の接触部36とは、上下方向に互いに間隔をおいて配置されている。また、第1の接触部35及び第2の接触部36は、導電性の材料により構成されている。
 被検出ロープ31の対向部34bが対向する部分には、導体部37が設けられている。対向部34bの内周面に導体部37が接触すると、第1の接触部35と第2の接触部36との間に電流が流れ、診断装置本体11に信号が送られる。
 診断装置本体11は、地震発生後に、複数の接触部材34と被検出ロープ31との接触状態に基づいて、診断対象の地震発生後の健全性を診断する。例えば、診断装置本体11は、複数の接触部材34の少なくともいずれか1つが被検出ロープ31に接触したことを検出すると、診断対象に異常が発生していると判定する。他の構成及び動作は、実施の形態1と同様である。
 このような健全性診断装置でも、コンパクトな構成により、診断対象の地震発生後の健全性を診断することができる。
 また、検出器本体32が、昇降路壁3aから被検出ロープ31までの水平距離の変化を検出する。このため、建物1が複雑な変形をした場合にも、異常を検出することができる。
 なお、全ての接触部材34を電源に直列に接続しても、並列に接続してもよい。
 また、検出器本体32は、被検出ロープ31との接触を検出するものではなく、被検出ロープ31までの水平距離に応じた信号を発生するセンサであってもよい。この場合、診断装置本体11は、地震後検出値と基準値とを比較して健全性診断を行っても、地震後検出値と状態閾値とを比較して健全性診断を行ってもよい。
 実施の形態6.
 次に、図9は、この発明の実施の形態6による健全性診断装置の要部を示す構成図である。実施の形態6のエレベータ設備は、昇降路3である。
 実施の形態6の状態検出器38は、エレベータ設備の状態として、昇降路3の上下方向への変形量を検出する。また、状態検出器38は、被検出ロープ39と、複数対のガイド部材40と、検出器本体41とを有している。
 被検出ロープ39は、昇降路3内に鉛直に張られている。ガイド部材40は、昇降路3内に上下方向に互いに間隔をおいて配置されている。また、各ガイド部材40は、被検出ロープ39をガイドする。また、各ガイド部材40としては、例えばガイドローラが用いられている。
 被検出ロープ39には、切断部42が設けられている。切断部42は、被検出ロープ39にロープ伸び閾値以上の伸びが発生すると切断される部分である。切断部42は、例えば、互いに吸着した一対の磁石で構成することができる。また、切断部42は、被検出ロープ39の一部の引張強度を他の部分よりも低くすることで構成することもできる。
 検出器本体41は、切断部42の切断の有無を検出する。また、検出器本体41は、切断部42の切断を検出することにより、被検出ロープ39にロープ伸び閾値以上の伸びが発生したことを検出する。
 また、診断装置本体11は、地震発生後に、被検出ロープ39にロープ伸び閾値以上の伸びが発生したことが検出されると、診断対象に異常が発生していると判定する。他の構成及び動作は、実施の形態1と同様である。
 このような健全性診断装置でも、コンパクトな構成により、診断対象の地震発生後の健全性を診断することができる。
 また、検出器本体41が、被検出ロープ39の伸びを検出する。このため、建物1が上下方向に変形をした場合にも、異常を検出することができる。
 なお、検出器本体41は、被検出ロープ39の切断を検出するものではなく、被検出ロープ39の伸び量に応じた信号を発生するセンサであってもよい。この場合、診断装置本体11は、地震後検出値と基準値とを比較して健全性診断を行っても、地震後検出値と状態閾値とを比較して健全性診断を行ってもよい。
 また、実施の形態1~6の診断装置本体11による健全性の診断は、地震検出器9からの信号によらず、人手による指令の入力により実行させてもよい。
 また、実施の形態1~6の基準値の設定及び更新は、人手により実施してもよい。
 また、上記の2つ以上の実施の形態の状態検出器を組み合わせて用いてもよい。
 また、実施の形態1~6の診断装置本体11の各機能は、処理回路によって実現される。図10は、実施の形態1~6の診断装置本体11の各機能を実現する処理回路の第1の例を示す構成図である。第1の例の処理回路100は、専用のハードウェアである。
 また、処理回路100は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。また、診断装置本体11の各機能それぞれを個別の処理回路100で実現してもよいし、各機能をまとめて処理回路100で実現してもよい。
 また、図11は、実施の形態1~6の診断装置本体11の各機能を実現する処理回路の第2の例を示す構成図である。第2の例の処理回路200は、プロセッサ201及びメモリ202を備えている。
 処理回路200では、診断装置本体11の各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアは、プログラムとして記述され、メモリ202に格納される。プロセッサ201は、メモリ202に記憶されたプログラムを読み出して実行することにより、各機能を実現する。
 メモリ202に格納されたプログラムは、上述した各部の手順又は方法をコンピュータに実行させるものであるとも言える。ここで、メモリ202とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性又は揮発性の半導体メモリである。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等も、メモリ202に該当する。
 なお、上述した各部の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述した各部の機能を実現することができる。
 1 建物、2 エレベータ、3 昇降路(エレベータ設備)、3a 昇降路壁、4 かご(エレベータ設備、昇降体)、10,27,28,29,30,38 状態検出器、11 診断装置本体、13 記憶部、14 判定部、21 ガイドレール(エレベータ設備)、22 レールブラケット(エレベータ設備)、23 調速機ロープ張り車(エレベータ設備)、31,39 被検出ロープ、32,41 検出器本体、34 接触部材、42 切断部。

Claims (12)

  1.  エレベータに設けられ、エレベータ設備の状態を検出する状態検出器、及び
     前記状態検出器からの情報を用いて、前記エレベータが設置されている建物と前記エレベータとの少なくともいずれか一方である診断対象の地震発生後の健全性を診断する診断装置本体
     を備えている健全性診断装置。
  2.  前記診断装置本体は、記憶部と判定部とを有しており、
     前記記憶部は、地震発生前の前記エレベータ設備の状態を示す状態値に対応する基準値を記憶し、
     前記判定部は、地震発生後の前記エレベータ設備の状態を示す状態値である地震後状態値と前記基準値とを比較することにより、地震発生後の前記診断対象の異常の有無を判定する請求項1記載の健全性診断装置。
  3.  前記診断装置本体は、前記状態検出器からの情報を定期的に取得し、前記基準値を定期的に更新する請求項2記載の健全性診断装置。
  4.  前記状態検出器は、前記エレベータの昇降路に上下方向に沿って設置されているガイドレールの下端の上下方向の位置を検出する変位検出器である請求項1から請求項3までのいずれか1項に記載の健全性診断装置。
  5.  前記状態検出器は、前記エレベータの昇降路の下部に設けられている調速機ロープ張り車の上下方向の位置を検出する変位検出器である請求項1から請求項3までのいずれか1項に記載の健全性診断装置。
  6.  前記状態検出器は、前記エレベータの昇降路に設置されているレールブラケットの変形を検出する変形検出器である請求項1から請求項3までのいずれか1項に記載の健全性診断装置。
  7.  前記状態検出器は、前記エレベータの昇降路の頂部及び底部の少なくともいずれか一方に設置され、前記昇降路内に設けられている前記エレベータ設備の水平方向の位置を検出する光学検出器である請求項1から請求項3までのいずれか1項に記載の健全性診断装置。
  8.  前記状態検出器は、前記昇降路内に設けられている前記エレベータ設備として、前記昇降路内を昇降する昇降体の水平方向の位置を検出し、
     前記診断装置本体は、前記昇降体の上下方向の位置情報を前記エレベータから取得し、前記状態検出器からの情報と前記位置情報とに基づいて、前記診断対象の地震発生後の健全性を診断する請求項7記載の健全性診断装置。
  9.  前記状態検出器は、
     前記エレベータの昇降路内に鉛直に垂らされている被検出ロープと、
     昇降路壁から前記被検出ロープまでの水平距離の変化を検出する検出器本体と
     を有している請求項1記載の健全性診断装置。
  10.  前記検出器本体は、上下方向に互いに間隔をおいて前記昇降路壁に設けられており、かつ前記被検出ロープに対向している複数の接触部材を有しており、
     前記診断装置本体は、前記複数の接触部材と前記被検出ロープとの接触状態に基づいて、前記診断対象の地震発生後の健全性を診断する請求項9記載の健全性診断装置。
  11.  前記状態検出器は、
     前記エレベータの昇降路内に鉛直に張られている被検出ロープと、
     前記昇降路内に上下方向に互いに間隔をおいて配置されており、前記被検出ロープをガイドする複数のガイド部材と、
     前記被検出ロープにロープ伸び閾値以上の伸びが発生したことを検出する検出器本体と
     を有しており、
     前記診断装置本体は、地震発生後に、前記被検出ロープに前記ロープ伸び閾値以上の伸びが発生したことが検出されると、前記診断対象に異常が発生していると判定する請求項1記載の健全性診断装置。
  12.  前記被検出ロープには、前記ロープ伸び閾値以上の伸びが発生すると切断される切断部が設けられており、
     前記検出器本体は、前記切断部の切断の有無を検出する請求項11記載の健全性診断装置。
PCT/JP2018/027691 2018-07-24 2018-07-24 健全性診断装置 WO2020021631A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020531873A JP7019046B2 (ja) 2018-07-24 2018-07-24 健全性診断装置
PCT/JP2018/027691 WO2020021631A1 (ja) 2018-07-24 2018-07-24 健全性診断装置
CN201880094454.6A CN112399958B (zh) 2018-07-24 2018-07-24 健全性诊断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027691 WO2020021631A1 (ja) 2018-07-24 2018-07-24 健全性診断装置

Publications (1)

Publication Number Publication Date
WO2020021631A1 true WO2020021631A1 (ja) 2020-01-30

Family

ID=69181535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027691 WO2020021631A1 (ja) 2018-07-24 2018-07-24 健全性診断装置

Country Status (3)

Country Link
JP (1) JP7019046B2 (ja)
CN (1) CN112399958B (ja)
WO (1) WO2020021631A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113781427A (zh) * 2021-09-07 2021-12-10 上海商汤智能科技有限公司 电梯组件状态检测方法、装置、电子设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603764U (ja) * 1983-06-21 1985-01-11 三菱電機株式会社 風管制運転付きエレベ−タおよび建物の揺れ量検出装置
JPS61273481A (ja) * 1985-05-29 1986-12-03 株式会社日立製作所 エレベ−タ−の昇降体の脱レ−ル検出装置
JPH10120327A (ja) * 1996-10-23 1998-05-12 Toshiba Elevator Technos Kk エレベータのガバナロープの異常検出装置
JPH1111823A (ja) * 1997-06-17 1999-01-19 Toshiba Fa Syst Eng Kk エレベータの安全装置
JPH1135245A (ja) * 1997-07-14 1999-02-09 Mitsubishi Denki Bill Techno Service Kk カウンタウェイトの脱レール検出装置
JP2007176624A (ja) * 2005-12-27 2007-07-12 Toshiba Elevator Co Ltd エレベータ
JP2008265924A (ja) * 2007-04-18 2008-11-06 Toshiba Elevator Co Ltd エレベータのロープ異常検出装置
JP2016124639A (ja) * 2014-12-26 2016-07-11 株式会社日立製作所 エレベータ用調速機ロープ振れ止め装置及びエレベータ装置
US20170297866A1 (en) * 2016-04-15 2017-10-19 Otis Elevator Company Building settling detection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564123B2 (ja) * 2000-01-19 2010-10-20 株式会社竹中工務店 免震建物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603764U (ja) * 1983-06-21 1985-01-11 三菱電機株式会社 風管制運転付きエレベ−タおよび建物の揺れ量検出装置
JPS61273481A (ja) * 1985-05-29 1986-12-03 株式会社日立製作所 エレベ−タ−の昇降体の脱レ−ル検出装置
JPH10120327A (ja) * 1996-10-23 1998-05-12 Toshiba Elevator Technos Kk エレベータのガバナロープの異常検出装置
JPH1111823A (ja) * 1997-06-17 1999-01-19 Toshiba Fa Syst Eng Kk エレベータの安全装置
JPH1135245A (ja) * 1997-07-14 1999-02-09 Mitsubishi Denki Bill Techno Service Kk カウンタウェイトの脱レール検出装置
JP2007176624A (ja) * 2005-12-27 2007-07-12 Toshiba Elevator Co Ltd エレベータ
JP2008265924A (ja) * 2007-04-18 2008-11-06 Toshiba Elevator Co Ltd エレベータのロープ異常検出装置
JP2016124639A (ja) * 2014-12-26 2016-07-11 株式会社日立製作所 エレベータ用調速機ロープ振れ止め装置及びエレベータ装置
US20170297866A1 (en) * 2016-04-15 2017-10-19 Otis Elevator Company Building settling detection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113781427A (zh) * 2021-09-07 2021-12-10 上海商汤智能科技有限公司 电梯组件状态检测方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
JP7019046B2 (ja) 2022-02-14
CN112399958A (zh) 2021-02-23
JPWO2020021631A1 (ja) 2020-12-17
CN112399958B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
EP2773584B1 (en) Brake torque monitoring and health assessment
CN108861922B (zh) 自动电梯检查和定位系统及方法
JP4849397B2 (ja) エレベータの異常検出装置
US20060175153A1 (en) Detecting elevator brake and other dragging by monitoring motor current
JPWO2005105650A1 (ja) エレベータ装置
JP6987255B2 (ja) エレベータ診断システム
JP2020186101A (ja) エレベータのロープ検査システム
WO2020021631A1 (ja) 健全性診断装置
JP6717390B2 (ja) エレベーターの自動復旧システム
WO2018083739A1 (ja) エレベーター装置、および秤装置の校正方法
JP7167994B2 (ja) エレベーターの昇降路の内部を点検する機能を備えた点検装置および点検システム
KR20190007471A (ko) 엘리베이터의 제어 장치 및 제어 방법
JP6741366B2 (ja) 健全性診断装置
JP5007498B2 (ja) エレベータの秤装置診断方法
JP6648668B2 (ja) エレベータ装置
CN112429610B (zh) 机械设备的检查装置
JP4952366B2 (ja) エレベータ釣合い錘・調速機ロープ張り車のクリアランス管理測定装置及びその方法
CN113767059B (zh) 电梯的打滑检测系统
JP2007099494A (ja) エレベータ調速機の動作試験装置
JP2022156327A (ja) エレベータ用ロープテスタ装置及びエレベータシステム
CN108689273B (zh) 电梯超行程测试系统和方法
JP5116974B2 (ja) エレベータ式駐車装置における索体の駆動状況診断装置及び駆動状況診断方法
JPWO2020115860A1 (ja) エレベータの張力測定装置
WO2024042642A1 (ja) エレベーターのガイドレールの変形検出システムおよび変形検出方法
JP7185856B2 (ja) エレベータシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531873

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927440

Country of ref document: EP

Kind code of ref document: A1