WO2020013218A1 - 薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体 - Google Patents

薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体 Download PDF

Info

Publication number
WO2020013218A1
WO2020013218A1 PCT/JP2019/027289 JP2019027289W WO2020013218A1 WO 2020013218 A1 WO2020013218 A1 WO 2020013218A1 JP 2019027289 W JP2019027289 W JP 2019027289W WO 2020013218 A1 WO2020013218 A1 WO 2020013218A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
chemical solution
mass
content
acid
Prior art date
Application number
PCT/JP2019/027289
Other languages
English (en)
French (fr)
Inventor
大松 禎
上村 哲也
清水 哲也
智美 高橋
暁彦 大津
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020217000728A priority Critical patent/KR102613209B1/ko
Priority to JP2020530222A priority patent/JPWO2020013218A1/ja
Priority to KR1020237042288A priority patent/KR20230175315A/ko
Priority to CN201980046230.2A priority patent/CN112384858A/zh
Publication of WO2020013218A1 publication Critical patent/WO2020013218A1/ja
Priority to US17/144,259 priority patent/US20210132503A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • G03F7/405Treatment with inorganic or organometallic reagents after imagewise removal
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/042Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/1206Water-insoluble compounds free metals, e.g. aluminium grit or flakes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2079Monocarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2093Esters; Carbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/34Organic compounds containing sulfur
    • C11D3/349Organic compounds containing sulfur additionally containing nitrogen atoms, e.g. nitro, nitroso, amino, imino, nitrilo, nitrile groups containing compounds or their derivatives or thio urea
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/08Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/265Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/266Esters or carbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5004Organic solvents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/3042Imagewise removal using liquid means from printing plates transported horizontally through the processing stations
    • G03F7/3057Imagewise removal using liquid means from printing plates transported horizontally through the processing stations characterised by the processing units other than the developing unit, e.g. washing units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02082Cleaning product to be cleaned
    • H01L21/02087Cleaning of wafer edges

Definitions

  • the present invention relates to a drug solution, a kit, a pattern forming method, a method for producing a drug solution, and a drug solution container.
  • a chemical solution containing water and / or an organic solvent is used.
  • Patent Document 1 discloses a method of obtaining an ester solvent in which the content of an acid component and an alkali metal is reduced by devising a distillation method and the like.
  • Patent Document 2 discloses a method for producing butyl acetate in which the content of sulfuric acid is reduced by distillation and treatment with an anion exchange resin or the like.
  • the chemical solution is stored in a container after manufacture, and after being stored in a form of a chemical solution container for a certain period of time, the stored chemical solution is taken out and used.
  • the present inventors refer to the methods described in Patent Literatures 1 and 2 to produce a drug solution, store the drug solution for a long time in the form of a drug solution container in a container, and then remove the drug solution from the drug solution container.
  • a defect might occur in a base material (for example, a wafer).
  • an object of the present invention is to provide a chemical solution, a kit, a pattern forming method, a method for producing a chemical solution, and a chemical solution container that are excellent in defect suppression performance even after long-term storage.
  • the present inventors have conducted intensive studies on the above problems, and as a result, the mass ratio of the content of the acid component to the content of the metal component is within a predetermined range, and the content of the acid component is within a predetermined range with respect to the total mass of the chemical solution. It has been found that a chemical solution having a metal component content within a predetermined range with respect to the total mass of the chemical solution can provide a chemical solution excellent in defect suppression performance even after long-term storage, and led to the present invention.
  • the present inventors have found that the above problem can be solved by the following constitution.
  • the acid component contains an organic acid, The drug solution according to [1] or [2], wherein the content of the organic acid is 1 mass ppm or less with respect to the total mass of the drug solution.
  • the acid component contains an inorganic acid, The drug solution according to any one of [1] to [4], wherein the content of the inorganic acid is 1 mass ppb or less based on the total weight of the drug solution.
  • the metal component includes metal-containing particles containing a metal atom, The drug solution according to any one of [1] to [5], wherein the content of the metal-containing particles is 0.00001 to 10 mass ppt with respect to the total mass of the drug solution.
  • the number of metal nanoparticles having a particle size of 0.5 to 17 nm per unit volume of the chemical solution is 1.0 ⁇ 10 ⁇ 2 to 1.0 ⁇ 10 6 / cm 3.
  • the drug solution according to [6], wherein [8] The metal component contains a metal ion,
  • the metal component includes a metal-containing particle and a metal ion,
  • contains water The drug solution according to any one of [1] to [9], wherein a content of the water is 1 mass ppm or less with respect to a total mass of the drug solution.
  • a compound having an amide structure, a compound having a sulfonamide structure, a compound having a phosphonamide structure, a compound having an imide structure, a compound having a urea structure, a compound having a urethane structure, and an organic acid ester are selected from the group consisting of: Containing at least one organic compound, The drug solution according to any one of [1] to [10], wherein the content of the organic compound is 1 ppm by mass or less based on the total mass of the drug solution. [12] The chemical solution according to [11], wherein the organic compound is an organic compound having a boiling point of 300 ° C. or higher.
  • the organic solvent contains butyl acetate, and the acid component contains acetic acid, The drug solution according to any one of [1] to [16], wherein the content of the acetic acid is 0.01 to 15 ppm by mass relative to the total mass of the drug solution.
  • the organic solvent contains butyl acetate, and the acid component contains n-butanoic acid, The drug solution according to any one of [1] to [17], wherein the content of the n-butanoic acid is 1 mass ppm or more and 1 mass ppm or less based on the total mass of the drug solution.
  • a drug solution X which is the drug solution according to [17] or [18];
  • a drug solution Y that is a drug solution containing an organic solvent, The organic solvent contained in the drug solution Y is butyl butyrate, isobutyl isobutyrate, pentyl propionate, isopentyl propionate, ethylcyclohexane, mesitylene, decane, undecane, 3,7-dimethyl-3-octanol, 2-ethyl-1
  • a kit comprising at least one organic solvent Y selected from the group consisting of hexanol, 1-octanol, 2-octanol, ethyl acetoacetate, dimethyl malonate, methyl pyruvate, and dimethyl oxalate.
  • the organic solvent Y includes an organic solvent Y1 having a distance of a Hansen solubility parameter for eicosene of 3 to 20 MPa 0.5 , The kit according to [19] or [20], wherein the content of the organic solvent Y1 is 20 to 80% by mass relative to the total mass of the drug solution Y.
  • a resist film forming step of forming a resist film using an actinic ray-sensitive or radiation-sensitive resin composition An exposure step of exposing the resist film, A developing step of developing the exposed resist film using a chemical solution X that is the chemical solution according to [17] or [18]; A rinsing step of cleaning with a chemical solution Y containing an organic solvent after the development step,
  • the organic solvent contained in the chemical solution Y is butyl butyrate, isobutyl isobutyrate, pentyl propionate, isopentyl propionate, ethylcyclohexane, mesitylene, decane, undecane, 3,7-dimethyl-3-octanol, 2-ethyl-1
  • a pattern formation method comprising at least one organic solvent Y selected from the group consisting of hexanol, 1-octanol, 2-octanol, ethyl acetoacetate, dimethyl malonate, methyl
  • the organic solvent Y includes an organic solvent Y1 having a distance of a Hansen solubility parameter for eicosene of 3 to 20 MPa 0.5 , The pattern forming method according to [22], wherein the content of the organic solvent Y1 is 20 to 80% by mass based on the total mass of the chemical solution Y.
  • a method for producing a drug solution comprising refining an object to be purified containing an organic solvent to obtain a drug solution according to any one of [1] to [18],
  • a method for producing a drug solution comprising: a filtration step of filtering the substance to be purified, an ion removing step of subjecting the substance to be purified to ion adsorption or ion adsorption by a chelating group, and a distillation step of distilling the substance to be purified.
  • a cation exchange resin is used in the ion exchange method.
  • a drug solution container comprising: a container; and the drug solution according to any one of [1] to [18] stored in the container.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • ppm means “parts-per-million (10 ⁇ 6 )”
  • ppb means “parts-per-billion (10 ⁇ 9 )”
  • ppt means “Parts-per-trillion (10 ⁇ 12 )” and “ppq” mean “parts-per-quadrillion (10 ⁇ 15 )”.
  • the notation that does not denote substituted or unsubstituted includes those not having a substituent and those having a substituent as long as the effects of the present invention are not impaired.
  • hydrocarbon group includes not only a hydrocarbon group having no substituent (unsubstituted hydrocarbon group) but also a hydrocarbon group having a substituent (substituted hydrocarbon group). . This is synonymous with each compound.
  • the “radiation” in the present invention means, for example, far ultraviolet rays, extreme ultraviolet (EUV), X-rays, or electron beams. Further, in the present invention, light means actinic rays or radiation.
  • the term “exposure” in the present invention includes not only exposure with far ultraviolet rays, X-rays or EUV, but also exposure with particle beams such as electron beams or ion beams.
  • the “boiling point” in the present invention means a standard boiling point.
  • the chemical solution of the present invention (hereinafter, also referred to as “the present chemical solution”) is a chemical solution containing an organic solvent, an acid component, and a metal component.
  • the content of the acid component is 1 mass ppt or more and 15 mass ppm or less based on the total mass of the medicinal solution.
  • the content of the metal component is 0.001 to 100 mass ppt with respect to the total mass of the present drug solution.
  • the metal component contained in the chemical solution tends to exist as metal ions in the form of ions and metal-containing particles in the form of particles.
  • a metal ion forms a complex with an acid component (particularly, an organic acid) in a chemical solution, and / or one or more metal ions and one or more acid components are formed by an interaction between the metal ion and the acid component.
  • the interaction between the complex or composite structure and the surface of a substrate eg, a wafer
  • the complex and the composite structure are more stably attached to the substrate surface than the solvation in the chemical solution, so that the chemical solution is likely to remain as a residue on the wafer surface after the chemical solution is used for processing the wafer.
  • the above problem is considered to be particularly significant when the drug solution is stored in a container.
  • a chemical solution is stored in a container for a long time, a small amount of an acid component (particularly, an organic acid) in the chemical solution penetrates into a resin member constituting a liquid contact surface of the container, and an acid component (particularly, an organic acid) in the chemical solution. ) Enters minute gaps in the resin member, or an interaction between a metal component contained in the resin member and an acid component (particularly, an organic acid) in a chemical solution during the manufacturing process of the resin member, or a combination thereof. Depending on the case, the metal component may be eluted into the chemical solution.
  • the chemical solution may contain a trace amount of a basic impurity.
  • the basic impurity include an amine component migrated from the environment (so-called contamination), a decomposition product of a plasticizer, an impurity at the time of synthesizing a resin constituting a container of a chemical solution container, and the like.
  • the decomposition reaction of the resin member constituting the liquid contact surface of the container of the drug solution container may gradually progress together with the trace amount of water present in the chemical solution. is there. Due to the degradation of the liquid contact surface due to the decomposition of the resin member, the decomposition product of the resin member, and the metal components and the like contained in the resin member during the manufacturing process of the resin member elute into the chemical solution, and this elutes into the chemical solution over time. It is considered that the accumulation makes it easier to detect a defect when the drug solution is stored in the container for a long time.
  • the drug solution contains an organic solvent.
  • the content of the organic solvent in the medicinal solution is not particularly limited, but is generally preferably 98.0% by mass or more, more preferably 99.0% by mass or more, and 99.9% by mass, based on the total mass of the medicinal solution. More preferably, the content is 99.99% by mass or more.
  • the upper limit is not particularly limited, but is often less than 100% by mass.
  • One organic solvent may be used alone, or two or more organic solvents may be used in combination. When two or more organic solvents are used in combination, the total content is within the above range.
  • the organic solvent means a liquid organic compound contained at a content exceeding 10,000 mass ppm per component with respect to the total mass of the present drug solution. That is, in the present specification, a liquid organic compound contained in an amount exceeding 10,000 ppm by mass with respect to the total mass of the present drug solution corresponds to an organic solvent.
  • the term “liquid” means a liquid at 25 ° C. and atmospheric pressure.
  • the type of the organic solvent is not particularly limited, and a known organic solvent can be used.
  • the organic solvent include alkylene glycol monoalkyl ether carboxylate, alkylene glycol monoalkyl ether, carboxylate (preferably alkyl acetate, alkyl lactate), alkyl alkoxypropionate, and cyclic lactone (preferably having 4 carbon atoms).
  • a monoketone compound preferably having 4 to 10 carbon atoms
  • the organic solvent for example, those described in JP-A-2016-57614, JP-A-2014-219664, JP-A-2016-138219, and JP-A-2015-135379 may be used. Good.
  • propylene glycol monomethyl ether propylene glycol monoethyl ether
  • PGME propylene glycol monopropyl ether
  • PMEA propylene glycol monomethyl ether acetate
  • EL ethyl lactate
  • methyl methoxypropionate cyclopentanone, cyclohexanone (CHN), ⁇ -butyrolactone, diisoamyl ether, butyl acetate (nBA), isoamyl acetate (iAA), isopropanol, 4-methyl-2-pentanol (MIBC), dimethyl sulfoxide, n-methyl-2-pyrrolidone, diethylene glycol , Ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate, propylene carbonate (PC), sulfolane, cycloheptanone, -Hexanol, decane, 2-heptanone, butyl butyrate
  • the organic solvent preferably has an ester structure from the viewpoint that the effect of the present invention (specifically, excellent defect suppression performance even after long-term storage; the same applies hereinafter) is more exhibited.
  • the organic solvent having an ester structure include an aliphatic carboxylic acid alkyl ester, an alicyclic carboxylic acid alkyl ester, and a substituted aliphatic carboxylic acid alkyl ester (that is, an aliphatic carboxylic acid alkyl ester having a substituent in an aliphatic moiety). ), And the alkyl group of the alkyl ester moiety may have a substituent.
  • substituents examples include a hydroxy group, an ether bond, a thiol group, a sulfide bond, an amino group, an ester bond, an aromatic group (for example, a phenyl group).
  • the alkyl group in the alkyl ester moiety may be linear, branched, or form one or more rings.
  • Specific examples of the organic solvent having an ester structure include alkylene glycol monoalkyl ether carboxylate, alkyl acetate, alkyl lactate, alkyl alkoxypropionate, and cyclic lactone, from the viewpoint that the effects of the present invention are more exhibited. And at least one selected from the group consisting of propylene glycol monomethyl ether acetate (PGMEA), ethyl lactate (EL), butyl acetate (nBA) and isoamyl acetate (iAA).
  • PMEA propylene glycol monomethyl ether acetate
  • EL ethyl lactate
  • the SP (Solubility Parameter) value of the organic solvent is preferably 21 or less, more preferably 20 or less, and particularly preferably 19 or less.
  • the action of the solvation in the organic solvent is small, so that the interaction between the acid component (particularly the organic acid) and the metal component is relatively high, and the complex
  • defects are likely to occur due to the formation of the metal.
  • the use of the present chemical solution in which the content of the acid component (particularly, organic acid) is reduced can suppress the formation of a complex. Therefore, even if an organic solvent having a small SP value is used, the defect suppression performance can be improved. Effect is fully exhibited.
  • the lower limit of the SP value of the organic solvent is preferably 14.5 or more, more preferably 15.0 or more, from the viewpoint that the effects of the present invention are more exhibited.
  • the SP value was calculated using the Fedors method described in “Properties of Polymers, 2nd edition, published in 1976”.
  • the unit of the SP value is MPa 1/2 unless otherwise specified.
  • the content of the organic solvent having a boiling point of 250 ° C. or less is preferably 90% by mass or more based on the total mass of the organic solvent.
  • the content of the organic solvent having a boiling point of 250 ° C. or less is preferably 90% by mass or more, more preferably 95% by mass or more, with respect to the total mass of the organic solvent, from the viewpoint that the effects of the present invention are more exhibited. It is more preferably at least 100 mass%, particularly preferably 100 mass%.
  • the boiling point of the organic solvent is preferably 250 ° C or lower, more preferably 170 ° C or lower. Here, when the boiling point of the organic solvent is 170 ° C.
  • the drying rate of the chemical liquid applied on the substrate is reduced, but before the liquid film is dried by spin coating, it is formed by a metal component and an acid component.
  • the particles are blown out of the substrate along with the solvent, making them easier to remove.
  • the boiling point of the organic solvent is 170 ° C. or lower, there is a problem that particles easily remain on the substrate.
  • the use of the present chemical solution can suppress the formation of particles, so that even when an organic solvent having a low boiling point is used, the effect of the defect suppression performance is sufficiently exhibited. Therefore, even when an organic solvent having a boiling point of 170 ° C.
  • the lower limit of the boiling point of the organic solvent is not particularly limited, but is preferably 80 ° C. or higher, more preferably 90 ° C. or higher.
  • the drug solution contains an acid component.
  • the acid component may be intentionally added in the manufacturing process of the chemical solution, may be originally contained in the substance to be purified, or may be transferred from the manufacturing apparatus of the chemical solution in the manufacturing process of the chemical solution (so-called contamination). National).
  • the content of the acid component is 1 mass ppt or more and 15 mass ppm or less, preferably 1 mass ppm or less, more preferably 0.1 mass ppm or less, and 10 mass ppt or more with respect to the total mass of the drug solution. Is preferable, and 30 mass ppt or more is more preferable.
  • the content of the acid component is not particularly limited, and may be appropriately set so that the pH falls within a desired range.
  • One type of acid component may be used alone, or two or more types may be used in combination. When two or more acid components are contained, the total content is within the above range.
  • the acid component is not particularly limited, but includes an organic acid and an inorganic acid.
  • the acid component may be ionized in the drug solution and may exist as an ion.
  • Organic acid examples include an organic carboxylic acid, an organic sulfonic acid, an organic phosphoric acid, an organic phosphonic acid, and the like, and an organic carboxylic acid is preferable.
  • Organic carboxylic acids include formic acid, acetic acid, propionic acid, n-butanoic acid, pentanoic acid, lactic acid, adipic acid, maleic acid, fumaric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, -Ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid Examples include acid, glutaric acid, pimelic acid, phthal
  • Examples of the organic sulfonic acid include methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, and p-toluenesulfonic acid.
  • Examples of the organic phosphoric acid include mono or dioctyl phosphoric acid, mono or didodecyl phosphoric acid, mono or dioctadecyl phosphoric acid, and mono or di- (nonylphenyl) phosphoric acid.
  • Examples of the organic phosphonic acid include 1-hydroxyethane-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), and ethylenediaminetetra (methylenephosphonic acid).
  • the pKa of the organic acid is preferably 5 or less, and more preferably 4 or less, since the formation of a complex with a metal component can be further suppressed.
  • the lower limit of the pKa of the organic acid is preferably -11 or more, and more preferably -9 or more, from the viewpoint that the effects of the present invention are more exhibited.
  • pKa acid dissociation constant
  • pKa means pKa in an aqueous solution, and is, for example, that described in Chemical Handbook (II) (4th revised edition, 1993, edited by The Chemical Society of Japan, Maruzen Co., Ltd.). The lower the value, the higher the acid strength.
  • the pKa in an aqueous solution can be measured by measuring the acid dissociation constant at 25 ° C. using an infinitely diluted aqueous solution. Values based on the database of constants and known literature values can also be determined by calculation. The values of pKa described in this specification are all values calculated by using this software package. (Software Package 1) Advanced Chemistry Development (ACD / Labs) Software V8.14 for Solaris (1994-2007 ACD / Labs)
  • the boiling point of the organic acid is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and particularly preferably 200 ° C. or lower, from the viewpoint of more excellent defect suppression performance.
  • the lower limit of the boiling point of the organic acid is not particularly limited, it is preferably 100 ° C. or higher, more preferably 110 ° C. or higher.
  • the content of the organic acid is preferably 1 mass ppm or less, more preferably 0.5 mass ppm or less with respect to the total mass of the medicinal solution, since the defect suppression performance is more excellent. , 0.1 mass ppm or less is particularly preferred.
  • the lower limit of the content of the organic acid is preferably 5% by mass or more, more preferably 10% by mass, with respect to the total mass of the medicinal solution from the viewpoint that the effects of the present invention are more exhibited. The above is more preferable.
  • One organic acid may be used alone, or two or more organic acids may be used in combination. When two or more organic acids are contained, the total content is preferably within the above range.
  • the content of the organic acid having a boiling point or higher of the organic solvent is preferably 20% by mass or less, more preferably 15% by mass or less with respect to the total mass of the organic acid, from the viewpoint of more excellent defect suppression performance. And 10% by mass or less is particularly preferred.
  • the lower limit of the content of the organic acid which is equal to or higher than the boiling point of the organic solvent is preferably 0% by mass or more, more preferably 0.01% by mass or more based on the total mass of the organic acid, from the viewpoint that the effects of the present invention are more exhibited. More preferred.
  • the acid component preferably contains acetic acid.
  • the content of acetic acid is preferably 0.001 to 15 ppm by mass, more preferably 0.001 to 10 ppm by mass, and more preferably 0.001 to 10 ppm by mass with respect to the total mass of the drug solution from the viewpoint of more excellent defect suppression performance.
  • 001 to 5 mass ppm is particularly preferred.
  • the acid component preferably contains n-butanoic acid.
  • the content of n-butanoic acid is preferably from 1 mass ppm to 1 mass ppm, more preferably from 1 mass ppt to 0.5 mass ppm, and more preferably from 1 mass ppt to the total mass of the drug solution. Particularly preferred is 0.1 ppm by mass or less.
  • the acid component preferably contains both acetic acid and n-butanoic acid from the viewpoint of more excellent defect suppression performance.
  • the preferable range of the content of each component is as described above.
  • Inorganic acids include boric acid, nitric acid, hydrochloric acid, sulfuric acid and phosphoric acid.
  • the content of the inorganic acid is preferably 120 mass ppb or less, more preferably 1 mass ppb or less, and more preferably 1 mass ppb or less with respect to the total mass of the medicinal solution, since the defect suppression performance is more excellent. Particularly preferred is 0.6 mass ppb or less.
  • the lower limit of the content of the inorganic acid is preferably 0 mass ppb or more, more preferably 0.001 mass ppb or more, based on the total mass of the present drug solution, from the viewpoint that the effects of the present invention are more exhibited.
  • the drug solution contains a metal component.
  • the metal component include metal-containing particles and metal ions.
  • the content of the metal component means the total content of the metal-containing particles and metal ions.
  • a preferred embodiment of the method for producing a chemical solution will be described later.
  • the chemical solution can be produced by purifying a substance to be purified containing the solvent and the organic compound described above.
  • the metal component may be intentionally added in the manufacturing process of the chemical solution, may be originally contained in the substance to be purified, or may be transferred from the manufacturing device of the chemical solution in the manufacturing process of the chemical solution (so-called contamination). National).
  • the content of the metal component is 0.001 to 100 mass ppt with respect to the total mass of the present drug solution, and is preferably 0.001 to 10 mass ppt, from the viewpoint that the effect of the present invention is more exhibited. 001-5 mass ppt is more preferred.
  • the content of the metal component is measured by an ICP-MS method described later.
  • the mass ratio of the content of the acid component to the content of the metal component is preferably 10 ⁇ 2 to 10 6, and more preferably 1 to 10 6 , from the viewpoint of more excellent defect suppression performance. More preferably, 10 to 10 6 is further preferable, 10 2 to 10 6 is particularly preferable, and 10 3 to 10 6 is most preferable.
  • the drug solution may contain metal-containing particles containing metal atoms.
  • the metal atom is not particularly limited, but a Pb (lead) atom, Na (sodium) atom, K (potassium) atom, Ca (calcium) atom, Fe (iron) atom, Cu (copper) atom, Mg (magnesium) atom , Mn (manganese) atom, Li (lithium) atom, Al (aluminum) atom, Cr (chromium) atom, Ni (nickel) atom, Ti (titanium) atom, Zn (zinc) atom, and Zr (zirconium) atom Is mentioned.
  • Fe atom, Al atom, Cr atom, Ni atom, Pb atom, Zn atom, Ti atom and the like are preferable.
  • the content of metal-containing particles containing Fe atoms, Al atoms, Pb atoms, Zn atoms, and Ti atoms in a chemical solution is strictly controlled, more excellent defect suppression performance is easily obtained, and Pb atoms, Further, when the content of the metal-containing particles containing Ti atoms in the chemical solution is strictly controlled, more excellent defect suppression performance is easily obtained.
  • the metal atom is preferably at least one selected from the group consisting of Fe atom, Al atom, Cr atom, Ni atom, Pb atom, Zn atom, Ti atom, and the like.
  • the metal-containing particles may contain one kind of the above-mentioned metal atoms alone or may contain two or more kinds thereof in combination.
  • the particle size of the metal-containing particles is not particularly limited.
  • the content of particles having a particle size of about 0.1 to 100 nm in the chemical solution may be controlled.
  • the particle diameter of the metal-containing particles is 0.5 to 17 nm (hereinafter referred to as “metal”). It has been found that by controlling the content of “nanoparticles” in a chemical solution, a chemical solution having excellent defect suppression performance can be easily obtained.
  • the number-based particle size distribution of the metal-containing particles is not particularly limited, but in terms of obtaining a drug solution having more excellent effects of the present invention, the range of the particle size is less than 5 nm, and the range is more than 17 nm. It is preferable that at least one selected from the group has a maximum value. In other words, it is preferable that the particle diameter has no local maximum in the range of 5 to 17 nm. By not having a maximum value in the range of the particle diameter of 5 to 17 nm, the chemical solution has more excellent defect suppression performance, particularly more excellent bridge defect suppression performance.
  • the bridge defect means a defect like a bridge between wiring patterns.
  • the number-based particle diameter distribution has a maximum value in the range of 0.5 nm or more and less than 5 nm in the number-based particle diameter distribution from the viewpoint that a drug solution having a more excellent effect of the present invention can be obtained.
  • the chemical solution has more excellent bridge defect suppression performance.
  • the content of the metal-containing particles is preferably from 0.00001 to 10 mass ppt, more preferably from 0.0001 to 5 mass ppt, and particularly preferably from 0.0001 to 0.5 mass ppt, based on the total mass of the drug solution. .
  • a chemical solution excellent in defect suppression performance can be obtained.
  • the type and content of the metal-containing particles in the chemical solution can be measured by the SP-ICP-MS method (Single Nano Particle Inductively Coupled Plasma Mass Spectrometry).
  • the SP-ICP-MS method uses the same apparatus as the normal ICP-MS method (inductively coupled plasma mass spectrometry), and differs only in data analysis. Data analysis of the SP-ICP-MS method can be performed by commercially available software.
  • the content of a metal component to be measured is measured irrespective of its existence form. Therefore, the total mass of the metal-containing particles to be measured and the metal ions is determined as the content of the metal component.
  • the content of the metal-containing particles can be measured. Therefore, the content of metal ions in the sample can be calculated by subtracting the content of the metal-containing particles from the content of the metal component in the sample.
  • Agilent 8800 triple quadrupole ICP-MS inductively coupled plasma mass spectrometry, option # 200
  • Agilent 8900 manufactured by Agilent Technologies can be used.
  • Metal nanoparticles refer to metal-containing particles having a particle diameter of 0.5 to 17 nm.
  • the number of particles of metal nanoparticles per unit volume of the chemical solution is preferably from 1.0 ⁇ 10 ⁇ 2 to 1.0 ⁇ 10 6 particles / cm 3 , and from the viewpoint that the effects of the present invention are more exhibited, the following is possible. 0 ⁇ 10 ⁇ 1 / cm 3 or more is preferable, 5.0 ⁇ 10 ⁇ 1 / cm 3 or more is more preferable, 1.0 ⁇ 10 5 / cm 3 or less is preferable, and 1.0 ⁇ 10 4 is used. / Cm 3 or less, more preferably 1.0 ⁇ 10 3 / cm 3 or less.
  • the chemical solution has more excellent defect suppression performance.
  • the content of the metal nanoparticles in the drug solution can be measured by the method described in Examples, and the number (number) of metal nanoparticles per unit volume of the drug solution is rounded to two significant figures. Ask for it.
  • the metal atoms contained in the metal nanoparticles are not particularly limited, but are the same as the atoms already described as the metal atoms contained in the metal-containing particles. Above all, as a metal atom, at least one selected from the group consisting of Pb atoms and Ti atoms is preferable in that a chemical solution having a better effect of the present invention is obtained, and the metal nanoparticles are preferably Pb atoms. , And more preferably contain both Ti atoms. When the metal nanoparticles contain both Pb atoms and Ti atoms, typically, a form in which the chemical solution contains both metal nanoparticles containing Pb atoms and metal nanoparticles containing Ti atoms can be mentioned. .
  • Pb nanoparticles metal nanoparticles containing Pb atoms
  • Ti nanoparticles metal nanoparticles containing Ti atoms
  • the number ratio (Pb / Ti) is not particularly limited, it is generally preferably 1.0 ⁇ 10 ⁇ 4 to 3.0, more preferably 1.0 ⁇ 10 ⁇ 3 to 2.0, and more preferably 1.0 ⁇ 10 ⁇ 3 to 2.0. -2 to 1.5 are particularly preferred.
  • Pb / Ti is 1.0 ⁇ 10 ⁇ 3 to 2.0, the chemical solution has more excellent effects of the present invention, particularly, more excellent bridge defect suppression performance.
  • Pb nanoparticles and Ti nanoparticles are likely to associate with each other when, for example, a chemical solution is applied on a wafer and are likely to cause defects (especially, bridge defects) when developing a resist film. They know.
  • Pb / Ti is 1.0 ⁇ 10 ⁇ 3 to 2.0, the occurrence of defects is more likely to be suppressed.
  • Pb / Ti and A / (B + C) described later are obtained by rounding off to two significant figures.
  • the metal nanoparticles only need to contain metal atoms, and the form is not particularly limited.
  • a simple substance of a metal atom, a compound containing a metal atom (hereinafter, also referred to as a “metal compound”), a composite thereof, and the like can be given.
  • the metal nanoparticles may contain a plurality of metal atoms.
  • a metal atom having the largest content (atm%) of the plurality of metals is used as a main component. Therefore, when the term “Pb nanoparticle” includes a plurality of metals, it means that the Pb atom is a main component among the plurality of metals.
  • the complex is not particularly limited, but is a so-called core-shell type particle having a simple substance of a metal atom and a metal compound covering at least a part of the simple substance of the metal atom, and a solid solution including the metal atom and another atom.
  • Particles, eutectic particles containing metal atoms and other atoms, aggregate particles of a single metal atom and a metal compound, aggregate particles of different types of metal compounds, and continuous or Examples thereof include metal compounds whose composition changes intermittently.
  • the atom other than the metal atom contained in the metal compound is not particularly limited. Examples thereof include a carbon atom, an oxygen atom, a nitrogen atom, a hydrogen atom, a sulfur atom, and a phosphorus atom, and among them, an oxygen atom is preferable.
  • the form in which the metal compound contains an oxygen atom is not particularly limited, but an oxide of a metal atom is more preferable.
  • metal nanoparticles particles composed of a single metal atom (particle A), particles composed of an oxide of a metal atom (particle B), and metal It is preferably made of at least one selected from the group consisting of particles consisting of elemental atoms and oxides of metal atoms (particles C).
  • the relationship between the number of particles A, the number of particles B, and the number of particles C in the number of particles of metal nanoparticles per unit volume of the drug solution is not particularly limited.
  • the ratio of the number of particles contained in the particles A to the total number of particles contained in the particles B and the number of particles contained in the particles C (hereinafter referred to as “A / (B + C) ”) is preferably 1.5 or less, more preferably less than 1.0, further preferably 2.0 ⁇ 10 ⁇ 1 or less, particularly preferably 1.0 ⁇ 10 ⁇ 1 or less. .0 ⁇ 10 -3 or more, more preferably 1.0 ⁇ 10 -2 or more.
  • a / (B + C) is less than 1.0, the chemical solution has more excellent bridge defect suppression performance, more excellent pattern width uniformity performance, and spot-like defect suppression performance.
  • the spot-like defect means a defect in which no metal atom is detected.
  • a / (B + C) is 0.1 or less, the chemical solution has more excellent defect suppression performance.
  • the drug solution may contain a metal ion.
  • metal ions Pb (lead), Na (sodium), K (potassium), Ca (calcium), Fe (iron), Cu (copper), Mg (magnesium), Mn (manganese), Li (lithium), Examples include ions of metal atoms such as Al (aluminum), Cr (chromium), Ni (nickel), Ti (titanium), Zn (zinc), and Zr (zirconium).
  • the content of metal ions is preferably 0.01 to 100 mass ppt, more preferably 0.01 to 10 mass ppt, and particularly preferably 0.01 to 5 mass ppt, based on the total mass of the present drug solution.
  • a chemical solution excellent in defect suppression performance can be obtained.
  • the content of metal ions in the chemical solution is obtained by subtracting the content of metal-containing particles measured by the SP-ICP-MS method from the content of metal components in the chemical solution measured by the ICP-MS method. Desired.
  • the mass ratio of the content of the metal-containing particles to the content of the metal ions is preferably from 0.00001 to 1, and more preferably from 0.0001 to 1, from the viewpoint that the effect of the present invention is more exerted. 0.2 is more preferable, and 0.001 to 0.05 is particularly preferable.
  • the chemical solution may contain other components other than the above.
  • Other components include, for example, organic compounds other than organic solvents (particularly, organic compounds having a boiling point of 300 ° C. or higher), water, and resins.
  • the chemical solution may contain an organic compound other than the organic solvent (hereinafter, also referred to as “specific organic compound”).
  • the specific organic compound is a compound different from the organic solvent contained in the drug solution, and means an organic compound contained at a content of 10,000 mass ppm or less based on the total mass of the drug solution. I do. That is, in this specification, an organic compound contained at a content of 10,000 mass ppm or less based on the total mass of the present drug solution corresponds to a specific organic compound and does not correspond to an organic solvent. In the case where a plurality of specific organic compounds are contained in the chemical solution, and when each of the specific organic compounds is contained in the content of 10,000 mass ppm or less, each corresponds to the specific organic compound.
  • the specific organic compound may be added to the chemical solution, or may be unintentionally mixed in the manufacturing process of the chemical solution.
  • Examples of the case of being unintentionally mixed in the manufacturing process of the chemical solution include, for example, the case where the specific organic compound is contained in a raw material (for example, an organic solvent) used for manufacturing the chemical solution, and the mixing in the manufacturing process of the chemical solution ( For example, contamination is not limited to the above.
  • the content of the specific organic compound in the present drug solution can be measured by using GCMS (gas chromatography mass spectrometer; gas chromatography mass spectrometry).
  • the carbon number of the specific organic compound is not particularly limited, but is preferably 8 or more, more preferably 12 or more, from the viewpoint that the chemical solution has more excellent effects of the present invention.
  • the upper limit of the number of carbon atoms is not particularly limited, but is generally preferably 30 or less.
  • the specific organic compound may be, for example, a by-product generated during the synthesis of the organic solvent and / or an unreacted raw material (hereinafter, also referred to as “by-product or the like”).
  • by-product or the like examples include compounds represented by the following formulas IV.
  • R 1 and R 2 each independently represent an alkyl group or a cycloalkyl group, or combine with each other to form a ring.
  • the alkyl group or cycloalkyl group represented by R 1 and R 2 is preferably an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group having 6 to 12 carbon atoms, and is preferably an alkyl group having 1 to 8 carbon atoms.
  • a group or a cycloalkyl group having 6 to 8 carbon atoms is more preferable.
  • the ring formed by combining R 1 and R 2 with each other is a lactone ring, preferably a 4- to 9-membered lactone ring, more preferably a 4- to 6-membered lactone ring.
  • R 1 and R 2 preferably satisfy the relationship that the compound represented by the formula I has 8 or more carbon atoms.
  • R 3 and R 4 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, or a cycloalkenyl group, or combine with each other to form a ring. However, R 3 and R 4 are not both hydrogen atoms.
  • alkyl group represented by R 3 and R 4 for example, an alkyl group having 1 to 12 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is more preferable.
  • alkenyl group represented by R 3 and R 4 for example, an alkenyl group having 2 to 12 carbon atoms is preferable, and an alkenyl group having 2 to 8 carbon atoms is more preferable.
  • cycloalkyl group represented by R 3 and R 4 a cycloalkyl group having 6 to 12 carbon atoms is preferable, and a cycloalkyl group having 6 to 8 carbon atoms is more preferable.
  • cycloalkenyl group represented by R 3 and R 4 for example, a cycloalkenyl group having 3 to 12 carbon atoms is preferable, and a cycloalkenyl group having 6 to 8 carbon atoms is more preferable.
  • the ring formed by R 3 and R 4 bonded to each other has a cyclic ketone structure, and may be a saturated cyclic ketone or an unsaturated cyclic ketone.
  • the cyclic ketone preferably has a 6- to 10-membered ring, more preferably a 6- to 8-membered ring.
  • R 3 and R 4 preferably satisfy the relationship that the compound represented by Formula II has 8 or more carbon atoms.
  • R 5 represents an alkyl group or a cycloalkyl group.
  • the alkyl group represented by R 5 is preferably an alkyl group having 6 or more carbon atoms, more preferably an alkyl group having 6 to 12 carbon atoms, and further preferably an alkyl group having 6 to 10 carbon atoms.
  • the alkyl group may have an ether bond in the chain, or may have a substituent such as a hydroxy group.
  • the cycloalkyl group represented by R 5 is preferably a cycloalkyl group having 6 or more carbon atoms, more preferably a cycloalkyl group having 6 to 12 carbon atoms, and further preferably a cycloalkyl group having 6 to 10 carbon atoms.
  • R 6 and R 7 each independently represent an alkyl group or a cycloalkyl group, or combine with each other to form a ring.
  • the alkyl group represented by R 6 and R 7 is preferably an alkyl group having 1 to 12 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms.
  • the cycloalkyl group represented by R 6 and R 7 is preferably a cycloalkyl group having 6 to 12 carbon atoms, and more preferably a cycloalkyl group having 6 to 8 carbon atoms.
  • the ring formed by combining R 6 and R 7 with each other has a cyclic ether structure.
  • This cyclic ether structure is preferably a 4- to 8-membered ring, more preferably a 5- to 7-membered ring.
  • R 6 and R 7 satisfy the relationship that the compound represented by the formula IV has 8 or more carbon atoms.
  • R 8 and R 9 each independently represent an alkyl group or a cycloalkyl group, or combine with each other to form a ring.
  • L represents a single bond or an alkylene group.
  • alkyl group represented by R 8 and R 9 for example, an alkyl group having 6 to 12 carbon atoms is preferable, and an alkyl group having 6 to 10 carbon atoms is more preferable.
  • the cycloalkyl group represented by R 8 and R 9 is preferably a cycloalkyl group having 6 to 12 carbon atoms, and more preferably a cycloalkyl group having 6 to 10 carbon atoms.
  • the ring formed by combining R 8 and R 9 with each other has a cyclic diketone structure.
  • the cyclic diketone structure is preferably a 6- to 12-membered ring, and more preferably a 6- to 10-membered ring.
  • alkylene group represented by L for example, an alkylene group having 1 to 12 carbon atoms is preferable, and an alkylene group having 1 to 10 carbon atoms is more preferable.
  • R 8 , R 9 and L satisfy the relationship that the compound represented by the formula V has 8 or more carbon atoms.
  • the organic solvent is an amide compound, an imide compound, or a sulfoxide compound
  • an amide compound, an imide compound, or a sulfoxide compound having 6 or more carbon atoms is used.
  • examples of the specific organic compound include the following compounds.
  • organic compounds include dibutylhydroxytoluene (BHT), distearylthiodipropionate (DSTP), 4,4′-butylidenebis- (6-t-butyl-3-methylphenol), 2,2′- Antioxidants such as methylene bis- (4-ethyl-6-t-butylphenol) and antioxidants described in JP-A-2005-200775; unreacted raw materials; structural isomers produced during production of organic solvents Body and by-products; eluates from members and the like that constitute an apparatus for producing an organic solvent (for example, a plasticizer eluted from a rubber member such as an O-ring); and the like.
  • BHT dibutylhydroxytoluene
  • DSTP distearylthiodipropionate
  • DSTP 4,4′-butylidenebis- (6-t-butyl-3-methylphenol
  • 2,2′- Antioxidants such as methylene bis- (4-ethyl-6-t-buty
  • Specific organic compounds include dioctyl phthalate (DOP), bis (2-ethylhexyl) phthalate (DEHP), bis (2-propylheptyl) phthalate (DPHP), dibutyl phthalate (DBP), and benzyl phthalate.
  • DOP dioctyl phthalate
  • DEHP bis (2-ethylhexyl) phthalate
  • DPHP bis (2-propylheptyl) phthalate
  • DBP dibutyl phthalate
  • benzyl phthalate benzyl phthalate
  • the drug solution may contain an organic compound having the following specific polar structure among the specific organic compounds.
  • the organic compound having a specific polar structure is a compound having an amide structure, a compound having a sulfonamide structure, a compound having a phosphonamide structure, a compound having an imide structure, a compound having a urea structure, a compound having a urethane structure, and It preferably contains at least one organic compound selected from the group consisting of organic acid esters.
  • Examples of the compound having an amide structure include oleic acid amide, stearic acid amide, erucic acid amide, methylene bisstearic acid amide, methylene bis octadecanoic acid amide (707 ° C.), ethylene bis octadecanoic acid amide, and the like.
  • Examples of the compound having a sulfonamide structure include N-ethyl-o-toluenesulfonamide, N-ethyl-p-toluenesulfonamide, N- (2-hydroxypropyl) benzenesulfonamide, N-butylbenzenesulfonamide and the like.
  • the compound having an imide structure examples include phthalimide (366 ° C.), hexahydrophthalimide, N-2-ethylhexylphthalimide, N-butylphthalimide, N-isopropylphthalimide and the like.
  • Examples of the compound having a urea structure include aliphatic diurea, alicyclic diurea, and aromatic diurea.
  • phthalic acid such as dioctyl phthalate (boiling point: 385 ° C.), diisononyl phthalate (boiling point: 403 ° C.), and dibutyl phthalate (boiling point: 340 ° C.) It is preferable to contain at least one selected from the group consisting of esters and bis (2-ethylhexyl) terephthalate (boiling point: 416 ° C./101.3 kPa).
  • the content of the organic compound having a specific polar structure is preferably 5 ppm by mass or less based on the total mass of the drug solution, and more preferably 1 ppm by mass or less, from the viewpoint of more excellent defect suppression performance, and 0.1 mass%. ppm or less, more preferably 0.01 ppm by mass or less.
  • the lower limit of the content of the organic compound having a specific polar structure is preferably 0.0001% by mass or more, and more preferably 0.001% by mass, with respect to the total mass of the drug solution, from the viewpoint that the effects of the present invention are more exhibited. ppm or more is more preferable.
  • the present chemical liquid may contain an organic compound having a boiling point of 300 ° C. or higher (hereinafter, also referred to as “high-boiling organic compound”) among the organic compounds having the specific polar structure.
  • high-boiling organic compound organic compound having a boiling point of 300 ° C. or higher
  • it has a high boiling point and hardly volatilizes during the photolithography process. Therefore, in order to obtain a chemical solution having excellent defect suppression performance, it is preferable to strictly control the content of the high-boiling organic compound in the chemical solution, the existence form, and the like.
  • the content of the high boiling point organic compound is preferably 5 mass ppm or less with respect to the total mass of the present drug solution, and more preferably 1 mass ppm or less, and more preferably 0.1 mass ppm or less from the viewpoint of more excellent defect suppression performance. It is preferably at most 0.01 mass ppm.
  • the lower limit of the content of the high-boiling organic compound is preferably 0.0001 mass ppm or more, more preferably 0.001 mass ppm or more with respect to the total mass of the drug solution, from the viewpoint that the effects of the present invention are more exhibited. preferable.
  • the present inventors have found that when an organic compound having the above-mentioned polar structure or a high-boiling organic compound is contained in a chemical solution, there are various forms.
  • the organic compound having a polar structure or the high-boiling point organic compound may be present in a chemical solution in the form of particles composed of a metal atom or a metal compound and particles of an organic compound having a polar structure or a high-boiling point organic compound; Or particles comprising a metal compound and an organic compound having a polar structure or a high-boiling organic compound arranged to cover at least a part of the particles; an organic compound having a metal atom and a polar structure or a high-boiling point Particles formed by coordination bonding with an organic compound; and the like.
  • metal nanoparticles (particle U) containing an organic compound having a polar structure or a high-boiling organic compound are examples of a form having a large effect on the defect suppression performance of a chemical solution.
  • the present inventors have found that controlling the number of particles U contained in a chemical solution per unit volume of the particles U dramatically improves the defect suppression performance of the chemical solution. Although the reason for this is not necessarily clear, the surface free energy of the particles U tends to be relatively smaller than that of metal nanoparticles (particles V) that do not contain an organic compound having a polar structure or a high-boiling organic compound.
  • Such particles U hardly remain on the substrate treated with the chemical solution, and even if they remain, they are easily removed when they come into contact with the chemical solution again.
  • the particles U are less likely to remain on the substrate during development, and are more easily removed by rinsing or the like. That is, as a result, both the high-boiling organic compound and the particles containing metal atoms are more easily removed.
  • the resist film is often water-repellent, and it is assumed that particles U having lower surface energy hardly remain on the substrate.
  • the content ratio of the number of the particles U to the number of the particles V is preferably 10 or more in that a drug solution having a superior effect of the present invention is obtained. It is preferably at most 1.0 ⁇ 10 2, more preferably at most 50, even more preferably at most 35, particularly preferably at most 25.
  • the drug solution may contain water.
  • the water is not particularly limited, and includes, for example, distilled water, ion-exchanged water, and pure water.
  • the water may be added to the chemical solution or may be unintentionally mixed into the chemical solution in the process of manufacturing the chemical solution.
  • Examples of the case where water is unintentionally mixed in the manufacturing process of the chemical solution include, for example, a case where water is contained in a raw material (for example, an organic solvent) used for manufacturing the chemical solution, and a case where water is mixed in the manufacturing process of the chemical solution ( For example, contamination is not limited to the above.
  • the water content is preferably 30 mass ppm or less, more preferably 1 mass ppm or less, still more preferably 0 to 0.6 mass ppm, and particularly preferably 0 to 0.3 mass ppm, based on the total mass of the drug solution. preferable.
  • the content of water is 1 mass ppm or less, the formation of a complex between the metal component and the acid component is suppressed, so that defect suppression performance (particularly, defect suppression performance after long-term storage of the drug solution container) is excellent.
  • a liquid medicine is obtained.
  • the water content in the present drug solution means the water content measured using an apparatus based on the Karl Fischer moisture measurement method.
  • the drug solution may contain a resin.
  • a resin P having a group that is decomposed by the action of an acid to generate a polar group is more preferable.
  • a resin having a repeating unit represented by the following formula (AI) which is a resin whose solubility in a developer containing an organic solvent as a main component is reduced by the action of an acid, is more preferable.
  • the resin having a repeating unit represented by the formula (AI) described below has a group that is decomposed by the action of an acid to generate an alkali-soluble group (hereinafter, also referred to as an “acid-decomposable group”).
  • the polar group include an alkali-soluble group.
  • the alkali-soluble group include a carboxy group, a fluorinated alcohol group (preferably hexafluoroisopropanol group), a phenolic hydroxyl group, and a sulfo group.
  • the polar group in the acid-decomposable group is protected by an acid-eliminable group (acid-eliminable group).
  • acid-eliminable group examples include —C (R 36 ) (R 37 ) (R 38 ), —C (R 36 ) (R 37 ) (OR 39 ), and —C (R 01 ) (R 02 ) (OR 39 ).
  • R 36 to R 39 each independently represent an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • R 36 and R 37 may combine with each other to form a ring.
  • R 01 and R 02 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • the resin P preferably contains a repeating unit represented by the formula (AI).
  • Xa 1 represents a hydrogen atom or an alkyl group which may have a substituent.
  • T represents a single bond or a divalent linking group.
  • Ra 1 to Ra 3 each independently represent an alkyl group (linear or branched) or a cycloalkyl group (monocyclic or polycyclic). Two of Ra 1 to Ra 3 may combine to form a cycloalkyl group (monocyclic or polycyclic).
  • Examples of the alkyl group optionally having a substituent represented by Xa 1 include a methyl group and a group represented by —CH 2 —R 11 .
  • R 11 represents a halogen atom (such as a fluorine atom), a hydroxyl group, or a monovalent organic group.
  • Xa 1 is preferably a hydrogen atom, a methyl group, a trifluoromethyl group or a hydroxymethyl group.
  • Examples of the divalent linking group for T include an alkylene group, a -COO-Rt- group, and a -O-Rt- group.
  • Rt represents an alkylene group or a cycloalkylene group.
  • T is preferably a single bond or a -COO-Rt- group.
  • Rt is preferably an alkylene group having 1 to 5 carbon atoms, more preferably a —CH 2 — group, a — (CH 2 ) 2 — group, or a — (CH 2 ) 3 — group.
  • the alkyl group of Ra 1 to Ra 3 preferably has 1 to 4 carbon atoms.
  • the cycloalkyl group of Ra 1 to Ra 3 may be a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, or an adamantyl group. Ring cycloalkyl groups are preferred.
  • the cycloalkyl group formed by combining two of Ra 1 to Ra 3 is a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl Or a polycyclic cycloalkyl group such as an adamantyl group.
  • a monocyclic cycloalkyl group having 5 to 6 carbon atoms is more preferable.
  • the cycloalkyl group formed by combining two of Ra 1 to Ra 3 is, for example, a group in which one of methylene groups constituting a ring has a hetero atom such as an oxygen atom or a hetero atom such as a carbonyl group. It may be replaced.
  • Ra 1 is a methyl group or an ethyl group
  • Ra 2 and Ra 3 are combined to form the above-described cycloalkyl group
  • Each of the above groups may have a substituent.
  • substituents include an alkyl group (1 to 4 carbon atoms), a halogen atom, a hydroxyl group, an alkoxy group (1 to 4 carbon atoms), a carboxy group, And an alkoxycarbonyl group (having 2 to 6 carbon atoms), preferably having 8 or less carbon atoms.
  • the content of the repeating unit represented by the formula (AI) is preferably from 20 to 90 mol%, more preferably from 25 to 85 mol%, even more preferably from 30 to 80 mol%, based on all repeating units in the resin P. preferable.
  • the resin P preferably contains a repeating unit Q having a lactone structure.
  • the repeating unit Q having a lactone structure preferably has a lactone structure in a side chain, and more preferably a repeating unit derived from a (meth) acrylic acid derivative monomer.
  • a repeating unit derived from a (meth) acrylic acid derivative monomer As the repeating unit Q having a lactone structure, one type may be used alone, or two or more types may be used in combination. However, it is preferable to use one type alone.
  • the content of the repeating unit Q having a lactone structure is preferably from 3 to 80 mol%, more preferably from 3 to 60 mol%, based on all repeating units in the resin P.
  • the lactone structure preferably has a repeating unit having a lactone structure represented by any of the following formulas (LC1-1) to (LC1-17).
  • a lactone structure represented by the formula (LC1-1), the formula (LC1-4), the formula (LC1-5) or the formula (LC1-8) is preferable, and the lactone structure is represented by the formula (LC1-4). Lactone structures are more preferred.
  • the lactone structure portion may have a substituent (Rb 2 ).
  • Preferred substituents (Rb 2 ) include an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, and a carboxy group.
  • n 2 represents an integer of 0-4. When n 2 is 2 or more, a plurality of substituents (Rb 2 ) may be the same or different, and a plurality of substituents (Rb 2 ) may combine with each other to form a ring. .
  • the resin P may contain a repeating unit having a phenolic hydroxyl group.
  • Examples of the repeating unit having a phenolic hydroxyl group include a repeating unit represented by the following general formula (I).
  • R 41 , R 42 and R 43 each independently represent a hydrogen atom, an alkyl group, a halogen atom, a cyano group or an alkoxycarbonyl group.
  • R 42 may be bonded to Ar 4 to form a ring, in which case R 42 represents a single bond or an alkylene group.
  • X 4 represents a single bond, —COO—, or —CONR 64 —, and R 64 represents a hydrogen atom or an alkyl group.
  • L 4 represents a single bond or an alkylene group.
  • Ar 4 represents a (n + 1) -valent aromatic ring group, and when it is bonded to R 42 to form a ring, represents an (n + 2) -valent aromatic ring group.
  • n represents an integer of 1 to 5.
  • Examples of the alkyl group of R 41 , R 42 and R 43 in the general formula (I) include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and a sec-butyl which may have a substituent.
  • An alkyl group having 20 or less carbon atoms such as a group, hexyl group, 2-ethylhexyl group, octyl group and dodecyl group is preferred, an alkyl group having 8 or less carbon atoms is more preferred, and an alkyl group having 3 or less carbon atoms is still more preferred.
  • the cycloalkyl group of R 41 , R 42 and R 43 in the general formula (I) may be monocyclic or polycyclic.
  • a monocyclic cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group and a cyclohexyl group, which may have a substituent, is preferable.
  • Examples of the halogen atom of R 41 , R 42 and R 43 in the general formula (I) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom is preferable.
  • the alkyl group contained in the alkoxycarbonyl group of R 41 , R 42 and R 43 in the general formula (I) is preferably the same as the alkyl group of R 41 , R 42 and R 43 described above.
  • each of the above groups examples include an alkyl group, a cycloalkyl group, an aryl group, an amino group, an amide group, a ureido group, a urethane group, a hydroxy group, a carboxy group, a halogen atom, an alkoxy group, a thioether group, and an acyl group.
  • An acyloxy group, an alkoxycarbonyl group, a cyano group, and a nitro group and the substituent preferably has 8 or less carbon atoms.
  • Ar 4 represents an (n + 1) -valent aromatic ring group.
  • the divalent aromatic ring group may have a substituent, for example, an arylene group having 6 to 18 carbon atoms such as a phenylene group, a tolylene group, a naphthylene group and an anthracenylene group; , Thiophene, furan, pyrrole, benzothiophene, benzofuran, benzopyrrole, triazine, imidazole, benzimidazole, triazole, thiadiazole, thiazole and other aromatic ring groups containing a heterocycle.
  • n is an integer of 2 or more
  • specific examples of the (n + 1) -valent aromatic ring group include the above-described specific examples of the divalent aromatic ring group obtained by removing (n-1) arbitrary hydrogen atoms.
  • the group consisting of The (n + 1) -valent aromatic ring group may further have a substituent.
  • Examples of the substituent which the above-mentioned alkyl group, cycloalkyl group, alkoxycarbonyl group, alkylene group and (n + 1) -valent aromatic ring group may have include, for example, R 41 , R 42 and R 43 in the general formula (I).
  • R 64 represents a hydrogen atom or an alkyl group
  • the alkyl group for R 64 in, which may have a substituent, a methyl group, an ethyl group, a propyl group
  • Examples include an alkyl group having 20 or less carbon atoms such as an isopropyl group, an n-butyl group, a sec-butyl group, a hexyl group, a 2-ethylhexyl group, an octyl group, and a dodecyl group, and an alkyl group having 8 or less carbon atoms is more preferable.
  • X 4 is preferably a single bond, —COO— or —CONH—, more preferably a single bond or —COO—.
  • the alkylene group for L 4 is preferably an alkylene group having 1 to 8 carbon atoms which may have a substituent, such as a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group and an octylene group.
  • Ar 4 is preferably an optionally substituted aromatic ring group having 6 to 18 carbon atoms, more preferably a benzene ring group, a naphthalene ring group or a biphenylene ring group.
  • the repeating unit represented by the general formula (I) preferably has a hydroxystyrene structure. That is, Ar 4 is preferably a benzene ring group.
  • the content of the repeating unit having a phenolic hydroxyl group is preferably from 0 to 50 mol%, more preferably from 0 to 45 mol%, even more preferably from 0 to 40 mol%, based on all repeating units in the resin P.
  • the resin P may further contain a repeating unit containing an organic group having a polar group, in particular, a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group.
  • a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group is preferably an adamantyl group, a diamantyl group or a norbornane group.
  • the polar group a hydroxyl group or a cyano group is preferable.
  • the content is preferably from 1 to 50 mol%, more preferably from 1 to 30 mol%, based on all repeating units in the resin P. More preferably, 5 to 25 mol% is further preferable, and 5 to 20 mol% is particularly preferable.
  • the resin P may contain a repeating unit represented by the following general formula (VI).
  • R 61 , R 62 and R 63 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group, or an alkoxycarbonyl group.
  • R 62 may be bonded to Ar 6 to form a ring, in which case R 62 represents a single bond or an alkylene group.
  • X 6 represents a single bond, —COO—, or —CONR 64 —.
  • R 64 represents a hydrogen atom or an alkyl group.
  • L 6 represents a single bond or an alkylene group.
  • Ar 6 represents an (n + 1) -valent aromatic ring group, and when it is bonded to R 62 to form a ring, represents an (n + 2) -valent aromatic ring group.
  • Y 2 independently represents a hydrogen atom or a group capable of leaving by the action of an acid when n ⁇ 2. However, at least one of Y 2 represents a group which is eliminated by the action of an acid.
  • n represents an integer of 1 to 4.
  • the group represented by the following general formula (VI-A) is preferable as the group Y 2 which is eliminated by the action of an acid.
  • L 1 and L 2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a group obtained by combining an alkylene group and an aryl group.
  • M represents a single bond or a divalent linking group.
  • Q represents an alkyl group, a cycloalkyl group optionally containing a hetero atom, an aryl group optionally containing a hetero atom, an amino group, an ammonium group, a mercapto group, a cyano group or an aldehyde group. At least two members of Q, M and L 1 may combine to form a ring (preferably a 5- or 6-membered ring).
  • the repeating unit represented by the general formula (VI) is preferably a repeating unit represented by the following general formula (3).
  • Ar 3 represents an aromatic ring group.
  • R 3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, an acyl group, or a heterocyclic group.
  • M 3 represents a single bond or a divalent linking group.
  • Q 3 represents an alkyl group, a cycloalkyl group, an aryl group, or a heterocyclic group. At least two of Q 3 , M 3 and R 3 may combine to form a ring.
  • the aromatic ring group represented by Ar 3 is the same as Ar 6 in the general formula (VI) when n in the general formula (VI) is 1, and is preferably a phenylene group or a naphthylene group, and more preferably a phenylene group. preferable.
  • the resin P may further contain a repeating unit having a silicon atom in a side chain.
  • the repeating unit having a silicon atom in the side chain include a (meth) acrylate-based repeating unit having a silicon atom and a vinyl-based repeating unit having a silicon atom.
  • the repeating unit having a silicon atom in the side chain is typically a repeating unit having a group having a silicon atom in the side chain. Examples of the group having a silicon atom include a trimethylsilyl group, a triethylsilyl group, and a triphenyl group.
  • Silyl group tricyclohexylsilyl group, tristrimethylsiloxysilyl group, tristrimethylsilylsilyl group, methylbistrimethylsilylsilyl group, methylbistrimethylsiloxysilyl group, dimethyltrimethylsilylsilyl group, dimethyltrimethylsiloxysilyl group, and the following cyclic Alternatively, a linear polysiloxane, a cage type, a ladder type, or a random type silsesquioxane structure may be used.
  • R and R 1 each independently represent a monovalent substituent. * Represents a bond.
  • repeating unit having the above group for example, a repeating unit derived from an acrylate compound or a methacrylate compound having the above group, or a repeating unit derived from a compound having the above group and a vinyl group is preferable.
  • the resin P has a repeating unit having a silicon atom in the side chain
  • its content is preferably from 1 to 30 mol%, more preferably from 5 to 25 mol%, based on all repeating units in the resin P. Is more preferably 5 to 20 mol%.
  • the weight average molecular weight of the resin P is preferably from 1,000 to 200,000, more preferably from 3,000 to 20,000, and more preferably from 5,000 to 15,000 as a polystyrene equivalent value by GPC (Gel Permeation Chromatography). More preferred.
  • GPC Gel Permeation Chromatography
  • the degree of dispersion is usually 1 to 5, preferably 1 to 3, more preferably 1.2 to 3.0, and still more preferably 1.2 to 2.0.
  • the content of the resin P is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass based on the total solid content.
  • the resin P may be used alone or in combination of two or more.
  • any known components can be used.
  • the chemical include JP-A-2013-195844, JP-A-2016-057645, JP-A-2015-207006, WO 2014/148241, JP-A-2016-188385, and JP-A-2016-188385.
  • Components contained in the actinic ray-sensitive or radiation-sensitive resin composition described in JP-A-2017-219818 and the like can be mentioned.
  • the present chemical solution is preferably used for manufacturing a semiconductor device. In particular, it is more preferably used for forming a fine pattern with a node of 10 nm or less (for example, a process including pattern formation using EUV).
  • the chemical solution has a pattern width and / or pattern interval of 17 nm or less (preferably 15 nm or less, more preferably 12 nm or less), and / or an obtained wiring width and / or wiring interval of 17 nm or less.
  • Chemical solution used in the resist process, in other words, a resist film having a pattern width and / or pattern interval of 17 nm or less It is particularly preferably used for the production of semiconductor devices produced by using.
  • an organic material is processed after each process or before moving to the next process.
  • it is suitably used as a pre-wet liquid, a developing liquid, a rinsing liquid, a stripping liquid or the like.
  • the present chemical solution can be used as a diluting solution of a resin contained in the resist solution and a solvent contained in the resist solution. Further, it may be diluted with another organic solvent and / or water.
  • the present chemical liquid can be used for other uses other than the production of semiconductor devices, and can also be used as a developer for polyimide, a resist for sensors, a resist for lenses, and a rinsing liquid.
  • the present drug solution can be used as a solvent for medical use or cleaning use. In particular, it can be suitably used for cleaning containers, piping, and substrates (for example, wafers and glass).
  • the chemical is selected from the group consisting of a developer, a rinse, a wafer cleaning liquid, a line cleaning liquid, a pre-wet liquid, a resist liquid, a lower layer film forming liquid, an upper layer film forming liquid, and a hard coat forming liquid.
  • a developer a rinse
  • a wafer cleaning liquid a line cleaning liquid
  • a pre-wet liquid a resist liquid
  • a lower layer film forming liquid an upper layer film forming liquid
  • a hard coat forming liquid a hard coat forming liquid.
  • the method for producing the present drug solution is not particularly limited, and a known production method can be used. Above all, from the viewpoint that the effects of the present invention are more exhibited, the present drug solution is preferably obtained by purifying a substance to be purified containing an organic solvent.
  • the material to be purified may be procured by purchasing or the like, or may be obtained by reacting the raw materials. It is preferable that the substance to be purified has a low content of impurities. Examples of such a commercially available product to be purified include a commercially available product called “high-purity grade product”.
  • a method for obtaining a purified product typically, a purified product containing an organic solvent
  • a known method can be used.
  • a method in which one or more raw materials are reacted in the presence of a catalyst to obtain an organic solvent there is no particular limitation on a method for obtaining a purified product (typically, a purified product containing an organic solvent) by reacting the raw materials.
  • a known method can be used.
  • Ipc2BH Diisopinocampheylborane
  • the filtration step is a step of filtering the object to be purified using a filter.
  • the component to be removed by the filtration step is not limited to this, and includes, for example, metal-containing particles that can be included in the metal component.
  • the method of filtering the object to be purified using a filter is not particularly limited, and the object to be purified is passed through a filter unit having a housing and a filter cartridge housed in the housing under pressure or without pressure ( Is preferable.
  • the pore size of the filter is not particularly limited, and a filter having a pore size usually used for filtering a substance to be purified can be used.
  • the pore diameter of the filter is preferably 200 nm or less, more preferably 20 nm or less, still more preferably 10 nm or less, in that the number of particles (metal-containing particles and the like) contained in the drug solution is easily controlled in a desired range.
  • the following is particularly preferred, and 3 nm or less is most preferred.
  • the lower limit is not particularly limited, it is generally preferably 1 nm or more from the viewpoint of productivity.
  • the pore diameter and the pore diameter distribution of the filter are defined as isopropanol (IPA) or HFE-7200 (“Novec 7200”, manufactured by 3M, hydrofluoroether, C 4 F 9 OC 2).
  • H 5) means a pore size and pore size distribution determined by the bubble point of the.
  • the pore diameter of the filter be 5.0 nm or less, since the number of particles contained in the drug solution can be more easily controlled.
  • a filter having a pore size of 5 nm or less is also referred to as a “micropore size filter”.
  • the micropore size filter may be used alone, or may be used with a filter having another pore size. Among them, it is preferable to use a filter having a larger pore diameter from the viewpoint of better productivity. In this case, if the object to be purified, which has been filtered through a filter having a larger pore diameter in advance, is passed through a micropore size filter, clogging of the micropore size filter can be prevented.
  • the pore diameter is preferably 5.0 nm or less when one filter is used, and when two or more filters are used, the pore diameter of the filter having the smallest pore diameter is 5.0 nm. The following is preferred.
  • the form in which two or more types of filters having different pore diameters are sequentially used is not particularly limited, and examples thereof include a method of sequentially arranging the above-described filter units along a pipe through which a substance to be purified is transferred.
  • a larger pressure is applied to the filter unit having a smaller pore size as compared with the filter unit having a larger pore size.
  • a pressure regulating valve, a damper, etc. are arranged between the filter units to make the pressure applied to the filter unit having a small pore diameter constant, or to connect a filter unit containing the same filter to a pipeline. It is preferable to increase the filtration area by arranging them in parallel along with each other. This makes it possible to more stably control the number of particles in the chemical solution.
  • the material of the filter is not particularly limited, and a known material for the filter can be used. Specifically, when it is a resin, polyamide such as nylon (for example, 6-nylon and 6,6-nylon); polyolefin such as polyethylene and polypropylene; polystyrene; polyimide; polyamideimide; Polytetrafluoroethylene, perfluoroalkoxyalkane, perfluoroethylene propene copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride Fluorocarbon; polyvinyl alcohol; polyester; cellulose; cellulose acetate and the like.
  • polyamide such as nylon (for example, 6-nylon and 6,6-nylon)
  • polyolefin such as polyethylene and polypropylene
  • polystyrene polyimide
  • polyamideimide poly
  • nylon especially, 6,6-nylon is preferred
  • polyolefin especially, polyethylene is preferred
  • polyolefin are preferred in that they have better solvent resistance and the resulting chemical has more excellent defect suppression performance.
  • At least one member selected from the group consisting of (meth) acrylate and polyfluorocarbon (among others, polytetrafluoroethylene (PTFE) and perfluoroalkoxyalkane (PFA) is preferable) is preferable.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxyalkane
  • a polymer eg, nylon-grafted UPE obtained by graft-copolymerizing a polyamide (eg, nylon-6 or nylon-6,6 or the like) with a polyolefin (eg, UPE described later) may be used as the filter material.
  • a polyamide eg, nylon-6 or nylon-6,6 or the like
  • a polyolefin eg, UPE described later
  • the filter may be a surface-treated filter.
  • the method for surface treatment is not particularly limited, and a known method can be used. Examples of the surface treatment method include chemical modification treatment, plasma treatment, hydrophobic treatment, coating, gas treatment, and sintering.
  • Plasma treatment is preferable because the surface of the filter is made hydrophilic.
  • the water contact angle on the surface of the filter material that has been hydrophilized by plasma treatment is not particularly limited, but the static contact angle at 25 ° C. measured by a contact angle meter is preferably 60 ° or less, more preferably 50 ° or less. , 30 ° or less is particularly preferable.
  • a method of introducing an ion exchange group into a substrate is preferable. That is, as the filter, a filter in which each of the above-described materials is used as a base material and an ion exchange group is introduced into the base material is preferable. Typically, a filter including a layer containing a substrate containing an ion exchange group on the surface of the substrate is preferable.
  • the surface-modified substrate is not particularly limited, and a filter in which an ion exchange group is introduced into the above polymer is preferable in terms of easier production.
  • Examples of the ion exchange group include a cation exchange group such as a sulfonic acid group, a carboxy group, and a phosphate group, and examples of the anion exchange group include a quaternary ammonium group.
  • the method for introducing an ion-exchange group into a polymer is not particularly limited, and examples thereof include a method in which a compound containing an ion-exchange group and a polymerizable group is reacted with a polymer, and is typically grafted.
  • the method of introducing the ion-exchange group is not particularly limited, but the fibers of the above resin are irradiated with ionizing radiation ( ⁇ -rays, ⁇ -rays, ⁇ -rays, X-rays, electron beams, etc.) to form an active portion ( Radicals).
  • ionizing radiation ⁇ -rays, ⁇ -rays, ⁇ -rays, X-rays, electron beams, etc.
  • the irradiated resin is immersed in a monomer-containing solution to graft-polymerize the monomer onto the substrate.
  • a polymer in which this monomer is bonded to the polyolefin fiber as a graft polymerization side chain is produced.
  • the resin containing the produced polymer as a side chain is brought into contact with a compound containing an anion exchange group or a cation exchange group to cause an ion exchange group to be introduced into the graft-polymerized side chain polymer, so that the final product is obtained. can get.
  • the filter may have a structure in which a woven or nonwoven fabric having ion exchange groups formed by a radiation graft polymerization method and a conventional glass wool, woven or nonwoven fabric filter material are combined.
  • the material of the filter containing an ion exchange group is not particularly limited, and examples thereof include a polyfluorocarbon and a material in which an ion exchange group is introduced into polyolefin, and a material in which an ion exchange group is introduced into polyfluorocarbon is more preferable.
  • the pore size of the filter containing an ion exchange group is not particularly limited, but is preferably 1 to 30 nm, more preferably 5 to 20 nm.
  • the filter containing the ion-exchange group may also serve as the filter having the smallest pore diameter described above, or may be used separately from the filter having the smallest pore diameter.
  • the filtration step uses a filter containing an ion-exchange group and a filter having no ion-exchange group and having a minimum pore diameter.
  • the material of the filter having the minimum pore diameter described above is not particularly limited, but from the viewpoint of solvent resistance and the like, generally, polyfluorocarbon, and at least one selected from the group consisting of polyolefins are preferable, and polyolefin is preferably used. More preferred.
  • the filter used in the filtration step two or more types of filters having different materials may be used.
  • polyolefins, polyfluorocarbons, polyamides, and filters made of materials having ion exchange groups introduced therein may be used. Two or more selected from the group may be used.
  • the pore structure of the filter is not particularly limited, and may be appropriately selected according to the components in the object to be purified.
  • the pore structure of a filter refers to a pore size distribution, a positional distribution of pores in a filter, and a shape of pores, and is typically controlled by a filter manufacturing method. It is possible.
  • a porous film can be obtained by sintering a powder of a resin or the like, and a fiber film can be obtained by a method such as electrospinning, electroblowing, and meltblowing. These have different pore structures.
  • a “porous membrane” refers to a membrane that retains components in an object to be purified, such as gels, particles, colloids, cells, and poly-oligomers, but a component that is substantially smaller than the pores passes through the pores.
  • the retention of components in the object to be purified by the porous membrane may depend on operating conditions, such as surface velocity, use of surfactant, pH, and combinations thereof, and the pore size of the porous membrane, It may depend on the structure and the size of the particles to be removed, and the structure (hard or gel, etc.).
  • non-sieving membranes include, but are not limited to, nylon membranes such as nylon-6 membrane and nylon-6,6 membrane.
  • non-sieve retention mechanism refers to retention caused by mechanisms such as filter pressure drop or interference, diffusion, and adsorption that are not related to pore size.
  • Non-sieve retention includes retention mechanisms such as obstruction, diffusion, and adsorption that remove particles to be removed from the object to be purified, regardless of the filter pressure drop or the filter pore size.
  • the adsorption of particles to the filter surface can be mediated, for example, by intermolecular van der Waals forces and electrostatic forces.
  • An obstructive effect occurs when particles traveling in a non-sieving membrane layer having a tortuous path are not turned fast enough to avoid contact with the non-sieving membrane.
  • Particle transport by diffusion results mainly from random or Brownian motion of small particles, which creates a certain probability that the particles will collide with the filter media. If there is no repulsion between the particles and the filter, the non-sieve retention mechanism can be active.
  • UPE (ultra high molecular weight polyethylene) filters are typically sieved membranes.
  • a sieve membrane refers to a membrane that primarily captures particles via a sieve holding mechanism, or is a membrane that is optimized to capture particles via a sieve holding mechanism.
  • Typical examples of sieving membranes include, but are not limited to, polytetrafluoroethylene (PTFE) membranes and UPE membranes.
  • the “sieving holding mechanism” refers to the holding of the result due to the removal target particles being larger than the pore diameter of the porous membrane. The sieve retention is improved by forming a filter cake (agglomeration of the particles to be removed on the surface of the membrane). The filter cake effectively performs the function of a secondary filter.
  • the material of the fiber membrane is not particularly limited as long as it is a polymer capable of forming the fiber membrane.
  • the polymer include polyamide and the like.
  • the polyamide include nylon 6, nylon 6,6, and the like.
  • the polymer forming the fiber membrane may be poly (ether sulfone).
  • the surface energy of the fibrous membrane is preferably higher than the polymer which is the material of the porous membrane on the secondary side.
  • An example of such a combination is a case where the material of the fiber membrane is nylon and the porous membrane is polyethylene (UPE).
  • the method for producing the fiber membrane is not particularly limited, and a known method can be used.
  • Examples of the method for producing a fiber membrane include electrospinning, electroblowing, and meltblowing.
  • the pore structure of the porous membrane is not particularly limited, and examples of the pore shape include a lace shape, a string shape, and a node shape.
  • Can be The distribution of pore sizes in the porous membrane and the distribution of positions in the membrane are not particularly limited.
  • the size distribution may be smaller and the distribution position in the film may be symmetric. Further, the size distribution may be larger and the distribution position in the film may be asymmetric (the above film is also referred to as “asymmetric porous film”).
  • asymmetric porous membrane the size of the pores varies throughout the membrane, and typically the pore size increases from one surface of the membrane to the other surface of the membrane.
  • the surface on the side with many pores having large pore diameters is referred to as “open side”, and the surface on the side with many pores having small pore diameters is also referred to as “tight side”.
  • the asymmetric porous membrane include a membrane in which the size of pores is minimized at a certain position within the thickness of the membrane (this is also referred to as an “hourglass shape”).
  • the primary side is made to have a larger-sized pore using an asymmetric porous membrane, in other words, if the primary side is made to be the open side, a pre-filtration effect can be produced.
  • the porous membrane may contain a thermoplastic polymer such as PESU (polyethersulfone), PFA (perfluoroalkoxyalkane, a copolymer of ethylene tetrafluoride and perfluoroalkoxyalkane), polyamide, and polyolefin. , Polytetrafluoroethylene and the like.
  • PESU polyethersulfone
  • PFA perfluoroalkoxyalkane
  • polyamide polyamide
  • polyolefin polyolefin
  • ultra-high molecular weight polyethylene is preferable as the material of the porous membrane.
  • Ultra-high molecular weight polyethylene means a thermoplastic polyethylene having an extremely long chain, and preferably has a molecular weight of 1,000,000 or more, typically 2 to 6,000,000.
  • a filter used in the filtration step two or more types of filters having different pore structures may be used, or a filter of a porous membrane and a filter of a fiber membrane may be used in combination. Specific examples include a method using a nylon fiber membrane filter and a UPE porous membrane filter.
  • the filter is sufficiently washed before use.
  • impurities contained in the filter are likely to be brought into the chemical solution.
  • the impurities contained in the filter include, for example, the above-described organic compounds.
  • the filter tends to contain an alkane having 12 to 50 carbon atoms as an impurity.
  • a polymer obtained by graft copolymerizing a polyamide (eg, nylon) with a polyamide such as nylon, polyimide, or polyolefin (eg, UPE) is used for the filter, the filter tends to contain an alkene having 12 to 50 carbon atoms as an impurity.
  • the method of washing the filter includes, for example, a method of immersing the filter in an organic solvent having a low impurity content (for example, an organic solvent purified by distillation (eg, PGMEA)) for one week or more.
  • an organic solvent purified by distillation eg, PGMEA
  • the liquid temperature of the organic solvent is preferably 30 to 90 ° C.
  • the substance to be purified may be filtered using a filter whose degree of washing has been adjusted, and the resulting drug solution may be adjusted so as to contain a desired amount of the organic compound derived from the filter.
  • the filtration step may be a multi-stage filtration step in which the object to be purified is passed through two or more filters different in at least one selected from the group consisting of a filter material, a pore diameter, and a pore structure. Further, the substance to be purified may be passed through the same filter a plurality of times, or the substance to be purified may be passed through a plurality of filters of the same type.
  • the material of the liquid contacting portion of the purification device used in the filtration step is not particularly limited, but non-metallic materials (fluorinated resin And the like, and at least one selected from the group consisting of electrolytically polished metal materials (such as stainless steel) (hereinafter, these are collectively referred to as “corrosion-resistant materials”).
  • non-metallic materials fluorinated resin And the like, and at least one selected from the group consisting of electrolytically polished metal materials (such as stainless steel) (hereinafter, these are collectively referred to as “corrosion-resistant materials”).
  • the wetted part of the production tank is formed of a corrosion-resistant material, which means that the production tank itself is made of a corrosion-resistant material, or that the inner wall surface of the production tank is coated with a corrosion-resistant material.
  • the non-metallic material is not particularly limited, and a known material can be used.
  • the non-metallic material include polyethylene resin, polypropylene resin, polyethylene-polypropylene resin, and fluorine-based resin (eg, ethylene tetrafluoride resin, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer, ethylene tetrafluoride).
  • -Propylene hexafluoride copolymer resin ethylene tetrafluoride-ethylene copolymer resin, ethylene trifluoride ethylene-ethylene copolymer resin, vinylidene fluoride resin, ethylene trifluoride ethylene copolymer resin, and vinyl fluoride At least one selected from the group consisting of resins and the like, but is not limited thereto.
  • the metal material is not particularly limited, and a known material can be used.
  • the metal material include a metal material in which the total content of chromium and nickel is more than 25% by mass relative to the total mass of the metal material, and among them, 30% by mass or more is more preferable.
  • the upper limit of the total content of chromium and nickel in the metal material is not particularly limited, but is generally preferably 90% by mass or less.
  • the metal material include stainless steel and a nickel-chromium alloy.
  • the stainless steel is not particularly limited, and a known stainless steel can be used. Among them, an alloy containing 8% by mass or more of nickel is preferable, and an austenitic stainless steel containing 8% by mass or more of nickel is more preferable.
  • austenitic stainless steels include SUS (Steel Use Stainless) 304 (Ni content 8% by mass, Cr content 18% by mass), SUS304L (Ni content 9% by mass, Cr content 18% by mass), SUS316 ( Ni content of 10% by mass, Cr content of 16% by mass) and SUS316L (Ni content of 12% by mass and Cr content of 16% by mass).
  • the nickel-chromium alloy is not particularly limited, and a known nickel-chromium alloy can be used. Among them, a nickel-chromium alloy having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass is preferable.
  • the nickel-chromium alloy include Hastelloy (trade name, the same applies hereinafter), Monel (trade name, the same applies hereinafter), and Inconel (trade name, hereinafter the same). More specifically, Hastelloy C-276 (Ni content 63% by mass, Cr content 16% by mass), Hastelloy-C (Ni content 60% by mass, Cr content 17% by mass), Hastelloy C-22 ( Ni content 61% by mass, Cr content 22% by mass).
  • the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt, and the like, if necessary, in addition to the above alloy.
  • the method of electropolishing the metal material is not particularly limited, and a known method can be used.
  • a known method can be used.
  • the methods described in paragraphs [0011] to [0014] of JP-A-2015-227501 and paragraphs [0036] to [0042] of JP-A-2008-264929 can be used.
  • the metal material has a higher chromium content in the passivation layer on the surface than a chromium content in the parent phase due to electrolytic polishing. Therefore, it is presumed that the use of a refining device in which the liquid contact portion is formed of a metal material that has been electropolished, makes it difficult for metal-containing particles to flow out into the object to be purified.
  • the metal material may be buffed.
  • the buffing method is not particularly limited, and a known method can be used.
  • the size of the abrasive grains used for the buffing finish is not particularly limited, but is preferably # 400 or less from the viewpoint that irregularities on the surface of the metal material tend to be smaller.
  • the buff polishing is preferably performed before the electrolytic polishing.
  • the ion removal step is a step of subjecting a purified substance containing an organic solvent to an ion exchange method or ion adsorption by a chelate group.
  • the component removed by the ion removing step is not limited to this, but includes, for example, an acid component and metal ions contained in a metal component.
  • the method of performing the ion exchange method is not particularly limited, and a known method can be used. Typically, there is a method in which a substance to be purified is passed through a filling section filled with an ion exchange resin. In the ion removing step, the object to be purified may be passed through the same ion exchange resin a plurality of times, or the object to be purified may be passed through different ion exchange resins.
  • the ion exchange resin examples include a cation exchange resin and an anion exchange resin.
  • the mass ratio of the content of the acid component to the content of the metal component may be in the above range. It is preferable to use at least a cation exchange resin from the viewpoint of easiness, and it is more preferable to use an anion exchange resin together with the cation exchange resin from the viewpoint that the content of the acid component can be adjusted.
  • the liquid may be passed through a filled portion filled with a mixed resin containing both resins, or a plurality of filled portions filled for each resin may be passed. You may let it.
  • the cation exchange resin a known cation exchange resin can be used, and among them, a gel cation exchange resin is preferable.
  • the cation exchange resin include a sulfonic acid type cation exchange resin and a carboxylic acid type cation exchange resin.
  • cation exchange resin commercially available products can be used, for example, Amberlite IR-124, Amberlite IR-120B, Amberlite IR-200CT, ORLITE DS-1, ORLITE DS-4 (all manufactured by Organo Corporation), Duolite C20J, Duolite C20LF, Duolite C255LFH, Duolite C-433LF (all manufactured by Sumika Chemtex), DIAION SK-110, DIAION SK1B, and DIAION SK1BH (all manufactured by Mitsubishi Chemical Corporation), Purolite S957, And Purolite S985 (all manufactured by Purolite).
  • Amberlite IR-124, Amberlite IR-120B, Amberlite IR-200CT, ORLITE DS-1, ORLITE DS-4 all manufactured by Organo Corporation
  • the anion exchange resin a known anion exchange resin can be used, and among them, a gel type anion exchange resin is preferably used.
  • the acid component present as an ion in the object to be purified includes an inorganic acid derived from a catalyst at the time of production of the object to be purified and an organic acid generated after the reaction at the time of production of the object to be purified (for example, a reaction raw material). , Isomers and by-products).
  • Such an acid component is classified from a hard acid to an acid having a medium hardness in view of the HSAB (Hard and Soft Acids and Bases) rule.
  • HSAB Hard and Soft Acids and Bases
  • an anion exchange resin containing a hard base to a medium hardness base for the purpose of increasing the removal efficiency when removing these acid components by interaction with the anion exchange resin.
  • Such an anion exchange resin containing a hard base to a medium hardness base is a strong base type I anion exchange resin having a trimethyl ammonium group, and a slightly weak strong base type having a dimethyl ethanol ammonium group.
  • an organic acid is a hard acid
  • a sulfate ion is an acid having a medium hardness, so that the above-mentioned strong base type or slightly weak strong base type anion exchange resin,
  • a weak base type anion exchange resin having a medium size is used in combination, the content of the acid component can be easily reduced to a suitable range.
  • anion exchange resin commercially available products can be used.
  • examples of the anion exchange resin containing the above-mentioned hard base to a medium-hard base include, for example, ORLITE DS-6, ORLITE DS-4 (all manufactured by Organo Corporation), DIAION SA12A, DIAION SA10A, and DIAION.
  • SA10AOH, DIAION SA20A, DIAION WA10 manufactured by Mitsubishi Chemical Corporation
  • Purolite A400, Purolite A500, Purolite A850 above, manufactured by Purolite
  • the ion adsorption by the chelate group can be performed using, for example, a chelate resin having a chelate group.
  • Chelate resins are subject to purification such as hydrolysis and condensation reactions because they do not release alternative ions when capturing ions and do not use chemically highly active functional groups such as strong acidity and strong basicity. Side reaction to the organic solvent can be suppressed. Therefore, more efficient purification can be performed.
  • the chelating resin examples include amide oxime group, thiourea group, thiouronium group, iminodiacetic acid, amidophosphoric acid, phosphonic acid, aminophosphoric acid, aminocarboxylic acid, N-methylglucamine, alkylamino group, pyridine ring, cyclic cyanine, and phthalocyanine ring. And a resin having a chelating group or a chelating ability such as a cyclic ether. As the chelate resin, commercially available products can be used.
  • Duolite ES371N, Duolite C467, Duolite C747UPS, Sumichelate MC760, Sumichelate MC230, Sumichelate MC300, Sumichelate MC850, Sumichelate MC640, and Sumichelate MC900 (or more, Sumika Chemtex) Purolite S106, Purolite S910, Purolite S920, Purolite S920, Purolite S950, Purolite S957, and Purolite S985 (all manufactured by Purolite).
  • the method for performing ion adsorption is not particularly limited, and a known method can be used. Typically, there is a method in which a substance to be purified is passed through a filling section filled with a chelate resin. In the ion removing step, the substance to be purified may be passed through the same chelate resin a plurality of times, or the substance to be purified may be passed through different chelate resins.
  • the filling section usually includes a container and the above-described ion exchange resin filled in the container.
  • the container include a column, a cartridge, a packed tower, and the like, and any container other than those exemplified above may be used as long as the material to be purified can flow after the ion exchange resin is filled.
  • the distillation step is a step of distilling an object to be purified containing an organic solvent to obtain a distilled object to be purified.
  • Components removed by the distillation step include, but are not limited to, acid components, other organic compounds, and moisture.
  • the method for distilling the object to be purified is not particularly limited, and a known method can be used.
  • a distillation column is arranged on the primary side of a purification device provided for a filtration step, and a distilled product to be purified is introduced into a production tank.
  • the liquid contact portion of the distillation column is not particularly limited, but is preferably formed of the corrosion-resistant material described above.
  • the product to be purified may be passed through the same distillation column a plurality of times, or the product to be purified may be passed through different distillation columns.
  • the object to be purified is passed through a different distillation column, for example, after subjecting the object to be purified to a distillation column and performing a coarse distillation treatment for removing low-boiling acid components and the like, a distillation column different from the coarse distillation treatment is used.
  • a method of performing rectification treatment for removing acid components and other organic compounds by passing the solution is mentioned.
  • distillation column in the crude distillation treatment a plate distillation column is mentioned, and as the distillation column in the rectification treatment, a distillation column containing at least one of a plate distillation column and a reduced pressure plate plate is mentioned.
  • vacuum distillation can be selected for the purpose of achieving both thermal stability during distillation and purification accuracy.
  • the method for producing a chemical solution may further include a step other than the above.
  • Steps other than the filtration step include, for example, a reaction step and a charge removal step.
  • the reaction step is a step of reacting the raw materials to produce a purified product containing an organic solvent as a reactant.
  • the method for producing the object to be purified is not particularly limited, and a known method can be used. Typically, there is a method in which a reaction tank is arranged on the primary side of a production tank (or a distillation column) of a purification device to be subjected to a filtration step, and a reactant is introduced into the production tank (or a distillation column). At this time, the liquid contact portion of the production tank is not particularly limited, but is preferably formed of the corrosion-resistant material described above.
  • the charge removing step is a step of removing charges from the object to be purified to reduce the charged potential of the object to be purified.
  • the static elimination method is not particularly limited, and a known static elimination method can be used.
  • Examples of the charge removal method include a method of contacting an object to be purified with a conductive material.
  • the contact time for bringing the object to be purified into contact with the conductive material is preferably 0.001 to 60 seconds, more preferably 0.001 to 1 second, and particularly preferably 0.01 to 0.1 second.
  • the conductive material include stainless steel, gold, platinum, diamond, and glassy carbon.
  • ⁇ Purification of the object to be purified is preferably performed in a clean room, in which the opening of the container, the cleaning of the container and the device, the storing of the solution, and the analysis are all performed.
  • the clean room is preferably a clean room having a class 4 or higher cleanliness defined by International Standard ISO1464-1: 2015 defined by the International Organization for Standardization. Specifically, it is preferable to satisfy any one of ISO class 1, ISO class 2, ISO class 3, and ISO class 4, more preferably to satisfy ISO class 1 or ISO class 2, and to satisfy ISO class 1. Is particularly preferred.
  • the storage temperature of the drug solution is not particularly limited, but the storage temperature is preferably 4 ° C. or higher from the viewpoint that impurities and the like contained in a trace amount of the drug solution are less likely to be eluted and, as a result, more excellent effects of the present invention can be obtained.
  • the drug solution may be stored in a container and stored until use. Such a container and the medicinal solution contained in the container are collectively referred to as a medicinal solution container. The drug solution is taken out of the stored drug solution container and used.
  • a container for storing the present chemical solution a container having a high degree of cleanliness and a small amount of impurities eluted therein for semiconductor device manufacturing applications is preferable.
  • Specific examples of usable containers include, but are not limited to, “Clean Bottle” series manufactured by Aicello Chemical Co., Ltd. and “Pure Bottle” manufactured by Kodama Resin Kogyo.
  • a multi-layer bottle having a six-layer structure made of six kinds of resins or a seven-layer structure made of six kinds of resins is used for the purpose of preventing impurities from being mixed into the chemical solution (contamination). It is also preferred. Examples of these containers include those described in JP-A-2015-123351.
  • the liquid-contact part of the container may be a corrosion-resistant material (preferably, electrolytically polished stainless steel or a fluorine-based resin) or glass described above. It is preferable that 90% or more of the area of the liquid contact part is made of the above-mentioned material, and it is more preferable that all of the liquid contact part is made of the above-mentioned material from the viewpoint that the superior effects of the present invention can be obtained.
  • a corrosion-resistant material preferably, electrolytically polished stainless steel or a fluorine-based resin
  • the kit of the present invention includes a drug solution X shown below and a drug solution Y shown below.
  • a pattern forming method described later particularly, when the chemical solution X is used as a developer and the chemical solution Y is used as a rinse solution
  • a pattern in which the generation of defects is suppressed by the action of the chemical solution X is reduced.
  • the resolution of the obtained pattern is also excellent.
  • kits are not particularly limited, a drug solution container having a container X, a drug solution container X having a drug solution X stored in the container X, a container Y, and a drug solution Y stored in the container Y And a body Y.
  • a drug solution container having a container X
  • a drug solution container X having a drug solution X stored in the container X
  • a container Y having a drug solution X stored in the container Y
  • a drug solution Y stored in the container Y
  • body Y a body Y.
  • the container X and the container Y it is preferable to use those already described as the container of the chemical solution container.
  • the chemical solution X is the following chemical solution X1 or chemical solution X2.
  • the organic solvent contains butyl acetate
  • the acid component contains acetic acid
  • the acetic acid content is 0.01 to 15 mass ppm with respect to the total mass of the chemical solution X1.
  • the chemical solution X2 is such that the organic solvent contains butyl acetate, the acid component contains n-butanoic acid, and the content of n-butanoic acid is based on the total mass of the chemical solution X2. It is a chemical solution of 1 mass ppm or more and 1 mass ppm or less.
  • the chemical solution Y contains an organic solvent.
  • Organic solvents contained in the chemical solution Y include butyl butyrate, isobutyl isobutyrate, pentyl propionate, isopentyl propionate, ethylcyclohexane, mesitylene, decane, undecane, 3,7-dimethyl-3-octanol, 2-ethyl-1-hexanol , 1-octanol, 2-octanol, ethyl acetoacetate, dimethyl malonate, methyl pyruvate, and dimethyl oxalate.
  • the chemical Y is used as a rinsing liquid in a pattern forming method described later, the resolution of the obtained pattern can be improved by the action of the organic solvent Y.
  • the chemical solution Y is the above-mentioned chemical solution (that is, a chemical solution containing an organic solvent, an acid component, and a metal component, wherein the content of the acid component is 1 mass ppt or more and 15 mass ppm or less with respect to the total mass of the chemical solution. And a chemical solution in which the content of the metal component is 0.001 to 100 parts by mass ppt based on the total mass of the chemical solution.) Or a chemical solution other than the above-described chemical solution.
  • the chemical liquid other than the present chemical liquid described above is that the content of the acid component is less than 1 mass ppt or more than 15 mass ppm with respect to the total mass of the chemical liquid, and the content of the metal component is relative to the total mass of the chemical liquid. Less than 0.001 mass ppt or more than 100 mass ppt.
  • the content of the organic solvent Y in the chemical solution Y is preferably 20% by mass or more, more preferably 30% by mass or more, further preferably 40% by mass or more, and particularly preferably 50% by mass, based on the total mass of the chemical solution Y. .
  • 98.0% by mass or more is preferable, 99.0% by mass or more is more preferable, 99.9% by mass or more is further preferable, and 99.99% by mass or more is particularly preferable.
  • the upper limit is not particularly limited, and is 100% by mass or less.
  • the preferred range of the content of the organic solvent Y with respect to the total mass of the organic solvent contained in the chemical solution Y is the same as the content of the organic solvent Y in the chemical solution Y described above.
  • the organic solvent Y one type may be used alone, or two or more types may be used in combination. When two or more organic solvents Y are used in combination, the total content is within the above range.
  • the chemical solution Y may contain an organic solvent other than the organic solvent Y.
  • the organic solvent other than the organic solvent Y include organic solvents other than the organic solvent Y and ethanol among the organic solvents exemplified as the organic solvent of the above-mentioned chemical liquid.
  • the content of the organic solvent other than the organic solvent Y is preferably 60% by mass or less, more preferably 50% by mass or less, based on the total mass of the chemical solution Y. And more preferably 10% by mass or less.
  • the lower limit of the content of the organic solvent other than the organic solvent Y is more than 0% by mass, preferably 0.1% by mass or more, and more preferably 1% by mass or more. Is more preferred.
  • the preferable range of the content of the organic solvent other than the organic solvent Y with respect to the total mass of the organic solvent contained in the chemical solution Y is the above-mentioned organic solvent in the chemical solution Y. It is the same as the content of the organic solvent other than Y.
  • the content of the organic solvent in the chemical solution Y (that is, the total content of the organic solvent Y and the organic solvent other than the organic solvent Y) is preferably 98.0% by mass or more based on the total mass of the chemical solution Y, 0.0 mass% or more is more preferable, 99.9 mass% or more is still more preferable, and 99.99 mass% or more is especially preferable.
  • the upper limit is not particularly limited, and is 100% by mass or less.
  • the organic solvent Y preferably contains an organic solvent Y1 having a Hansen solubility parameter distance of 3 to 20 MPa 0.5 (more preferably 5 to 20 MPa 0.5 ) with respect to eicosene.
  • an organic solvent Y1 having a Hansen solubility parameter distance of 3 to 20 MPa 0.5 (more preferably 5 to 20 MPa 0.5 ) with respect to eicosene.
  • the organic solvent Y1 it is preferable that at least one of them is the organic solvent Y1.
  • the weighted average value of the Hansen solubility parameter based on the molar ratio of the content of each organic solvent preferably satisfies the range of the Hansen solubility parameter. .
  • the organic solvent whose Hansen solubility parameter distance to eicosene is 3 to 20 MPa 0.5 includes butyl butyrate (4.6), isobutyl isobutyrate (3.6), Dimethyl malonate (10.3).
  • the numerical value in parenthesis in a compound shows the distance of the Hansen solubility parameter with respect to eicosene.
  • One preferred embodiment of the chemical solution Y is an embodiment in which the organic solvent Y is substantially only the organic solvent Y1. That the organic solvent Y is substantially only the organic solvent Y1 means that the content of the organic solvent Y1 is 99% by mass or more (preferably 99.9% by mass) with respect to the total mass of the organic solvent Y in the chemical liquid Y. Above).
  • a mixed solvent containing both an organic solvent Y and an organic solvent other than the organic solvent Y (for example, methanol or the like) is contained, and the organic solvent Y is substantially an organic solvent.
  • the content of the organic solvent Y1 is preferably from 20 to 90% by mass, and more preferably from 20 to 80% by mass, and more preferably from 30 to 70% by mass, from the viewpoint of more excellent pattern resolution. % Is more preferred.
  • the content of the organic solvent other than the organic solvent Y is preferably from 10 to 80% by mass relative to the total mass of the chemical solution Y, and more preferably from 20 to 80% by mass from the viewpoint of more excellent pattern resolution. More preferably, it is 70% by mass.
  • the organic solvent in the chemical solution is composed of the organic solvent Y, and the organic solvent Y is combined with the organic solvent Y1 and the organic solvent that does not satisfy the range of the Hansen solubility parameter (hereinafter, referred to as “ Organic solvent Y2 ”).
  • the content of the organic solvent Y1 is preferably from 20 to 90% by mass, and more preferably from 20 to 80% by mass, and more preferably from 30 to 70% by mass, from the viewpoint of more excellent pattern resolution. % Is more preferred.
  • the content of the organic solvent Y2 is preferably from 10 to 80% by mass, more preferably from 20 to 80% by mass, and more preferably from 30 to 70% by mass, from the viewpoint of more excellent pattern resolution. Is more preferred.
  • the content of the organic solvent Y1 and the content of the upper organic solvent Y2 are within a certain range, respectively, compared to the case where the content of the organic solvent Y2 is excessive or too small, It is presumed that the affinity can be adjusted to an appropriate range and the resolution of the pattern is more excellent.
  • the organic solvent Y2 distance Hansen parameters for eicosene is, 0 MPa 0.5 or more 3MPa less than 0.5 (preferably 0 MPa 0.5 ultra 3MPa less than 0.5), or, 20 MPa 0.5 greater (preferably Is more than 20 MPa 0.5 and 50 MPa 0.5 or less).
  • the Hansen solubility parameter means a Hansen solubility parameter described in "Hansen Solubility Parameters: A Users Handbook, Second Edition” (page 1-310, CRC Press, published in 2007) and the like. That is, the Hansen solubility parameter expresses the solubility as a multidimensional vector (dispersion term ( ⁇ d), interdipole term ( ⁇ p), and hydrogen bond term ( ⁇ h)), and these three parameters are represented by Hansen space It is considered to be the coordinates of a point in a three-dimensional space called.
  • the distance of the Hansen solubility parameter is the distance between two compounds in the Hansen space, and the distance of the Hansen solubility parameter is obtained by the following equation.
  • Pattern forming method This chemical is preferably used for forming a resist pattern (hereinafter, simply referred to as “pattern”) used for semiconductor production.
  • the pattern forming method using the present chemical liquid is not particularly limited, and includes a known pattern forming method.
  • the method preferably includes the following steps.
  • the chemical solution X and the chemical solution Y are as described above, and the description thereof will be omitted.
  • the resist film forming step is a step of forming a resist film using an actinic ray- or radiation-sensitive resin composition.
  • an actinic ray- or radiation-sensitive resin composition used for the form of the actinic ray- or radiation-sensitive resin composition.
  • the actinic ray-sensitive or radiation-sensitive resin composition that can be used in the resist film forming step is not particularly limited, and a known actinic ray-sensitive or radiation-sensitive resin composition can be used.
  • a known actinic ray-sensitive or radiation-sensitive resin composition can be used.
  • the actinic ray-sensitive or radiation-sensitive resin composition hereinafter, also referred to as “resist composition”
  • a group which is decomposed by the action of an acid to generate a polar group (a carboxyl group, a phenolic hydroxyl group, or the like) is used.
  • a resin containing a repeating unit (hereinafter, also referred to as “acid-decomposable resin” in the present specification) and a compound capable of generating an acid by irradiation with actinic rays or radiation (hereinafter, referred to as a “photo-acid generator” in the present specification) ) Is also preferable.
  • the following resist compositions are preferred from the viewpoint that more excellent effects of the present invention can be obtained.
  • each component of the resist composition will be described.
  • the polar group is protected by an acid-eliminable group (acid-eliminable group).
  • the acid leaving group include —C (R 36 ) (R 37 ) (R 38 ), —C (R 36 ) (R 37 ) (OR 39 ), and —C (R 01 ) (R 02 ) (OR 39 ).
  • R 36 to R 39 each independently represent an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • R 36 and R 37 may combine with each other to form a ring.
  • R 01 and R 02 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • Examples of the acid-decomposable resin include a resin P having an acid-decomposable group represented by the formula (AI).
  • Xa 1 represents a hydrogen atom or an alkyl group which may have a substituent.
  • T represents a single bond or a divalent linking group.
  • Ra 1 to Ra 3 each independently represent an alkyl group (linear or branched) or a cycloalkyl group (monocyclic or polycyclic). Two of Ra 1 to Ra 3 may combine to form a cycloalkyl group (monocyclic or polycyclic).
  • Examples of the alkyl group optionally having a substituent represented by Xa 1 include a methyl group and a group represented by —CH 2 —R 11 .
  • R 11 represents a halogen atom (such as a fluorine atom), a hydroxyl group, or a monovalent organic group.
  • Xa 1 is preferably a hydrogen atom, a methyl group, a trifluoromethyl group or a hydroxymethyl group.
  • Examples of the divalent linking group for T include an alkylene group, a -COO-Rt- group, and a -O-Rt- group.
  • Rt represents an alkylene group or a cycloalkylene group.
  • T is preferably a single bond or a -COO-Rt- group.
  • Rt is preferably an alkylene group having 1 to 5 carbon atoms, more preferably a —CH 2 — group, a — (CH 2 ) 2 — group, or a — (CH 2 ) 3 — group.
  • the alkyl group of Ra 1 to Ra 3 preferably has 1 to 4 carbon atoms.
  • the cycloalkyl group of Ra 1 to Ra 3 may be a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, or an adamantyl group. Ring cycloalkyl groups are preferred.
  • the cycloalkyl group formed by combining two of Ra 1 to Ra 3 is a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl Or a polycyclic cycloalkyl group such as an adamantyl group.
  • a monocyclic cycloalkyl group having 5 to 6 carbon atoms is more preferable.
  • the cycloalkyl group formed by combining two of Ra 1 to Ra 3 is, for example, a group in which one of methylene groups constituting a ring has a hetero atom such as an oxygen atom or a hetero atom such as a carbonyl group. It may be replaced.
  • Ra 1 is a methyl group or an ethyl group
  • Ra 2 and Ra 3 are combined to form the above-described cycloalkyl group
  • Each of the above groups may have a substituent.
  • substituents include an alkyl group (1 to 4 carbon atoms), a halogen atom, a hydroxyl group, an alkoxy group (1 to 4 carbon atoms), a carboxy group, And an alkoxycarbonyl group (having 2 to 6 carbon atoms), preferably having 8 or less carbon atoms.
  • the total content of the repeating units represented by the formula (AI) is preferably from 20 to 90 mol%, more preferably from 25 to 85 mol%, based on all repeating units in the resin P. , And more preferably 30 to 80 mol%.
  • Rx and Xa 1 each independently represent a hydrogen atom, CH 3 , CF 3 , or CH 2 OH.
  • Rxa and Rxb each represent an alkyl group having 1 to 4 carbon atoms.
  • Z represents a substituent containing a polar group, and when there are a plurality of substituents, each is independent.
  • p represents 0 or a positive integer.
  • the substituent containing a polar group represented by Z include a hydroxyl group, a cyano group, an amino group, an alkylamide group, a sulfonamide group, and a linear or branched alkyl group or a cycloalkyl group having these groups. And an alkyl group.
  • the resin P preferably contains a repeating unit Q having a lactone structure.
  • the repeating unit Q having a lactone structure preferably has a lactone structure in a side chain, and more preferably, for example, is a repeating unit derived from a (meth) acrylic acid derivative monomer.
  • a repeating unit derived from a (meth) acrylic acid derivative monomer As the repeating unit Q having a lactone structure, one type may be used alone, or two or more types may be used in combination. However, it is preferable to use one type alone.
  • the content of the repeating unit Q having a lactone structure with respect to all the repeating units of the resin P is, for example, 3 to 80 mol%, and preferably 3 to 60 mol%.
  • the lactone structure preferably has a repeating unit having a lactone structure represented by any of the following formulas (LC1-1) to (LC1-17).
  • a lactone structure represented by the formula (LC1-1), the formula (LC1-4), the formula (LC1-5) or the formula (LC1-8) is preferable, and the lactone structure is represented by the formula (LC1-4). Lactone structures are more preferred.
  • the lactone structure portion may have a substituent (Rb 2 ).
  • Preferred substituents (Rb 2 ) include an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, and a carboxy group.
  • n 2 represents an integer of 0-4. When n 2 is 2 or more, a plurality of substituents (Rb 2 ) may be the same or different, and a plurality of substituents (Rb 2 ) may combine with each other to form a ring. .
  • the resin P includes a repeating unit represented by the formula (a), a repeating unit represented by the formula (b), a repeating unit represented by the formula (c), a repeating unit represented by the formula (d), It is preferable that the resin is a resin composed of a repeating unit selected from the group consisting of the repeating units represented by the formula (e) (hereinafter, this resin is also referred to as a “resin represented by the formula (I)”).
  • the resin represented by the following formula (I) is a resin whose solubility in a developing solution (chemical solution described later) containing an organic solvent as a main component is reduced by the action of an acid, and contains an acid-decomposable group. Since the chemical has excellent solubility in the resin represented by the formula (I), a uniform resist film can be easily obtained using a smaller amount of the resist composition.
  • the resin represented by the formula (I) will be described.
  • the repeating unit (a) (the repeating unit represented by the formula (a)
  • the repeating unit (b) (the repeating unit represented by the formula (b))
  • the repeating unit (c) (the formula It is composed of a repeating unit represented by (c)), a repeating unit (d) (a repeating unit represented by the formula (d)), and a repeating unit (e) (a repeating unit represented by the formula (e)).
  • R x1 to R x5 each independently represent a hydrogen atom or an alkyl group which may have a substituent.
  • R 1 to R 4 each independently represent a monovalent substituent
  • p 1 to p 4 each independently represent 0 or a positive integer.
  • Ra represents a linear or branched alkyl group.
  • T 1 to T 5 each independently represent a single bond or a divalent linking group.
  • R 5 represents a monovalent organic group.
  • a to e represent mol%, and each independently represents a number in the range of 0 ⁇ a ⁇ 100, 0 ⁇ b ⁇ 100, 0 ⁇ c ⁇ 100, 0 ⁇ d ⁇ 100, and 0 ⁇ e ⁇ 100.
  • a + b + c + d + e 100, and a + b ⁇ 0.
  • the repeating unit (e) has a structure different from any of the repeating units (a) to (d).
  • Examples of the alkyl group optionally having a substituent represented by R x1 to R x5 include a methyl group and a group represented by -CH 2 -R 11 .
  • R 11 represents a halogen atom (such as a fluorine atom), a hydroxyl group, or a monovalent organic group.
  • Each of R x1 to R x5 is preferably independently a hydrogen atom, a methyl group, a trifluoromethyl group, or a hydroxymethyl group.
  • examples of the divalent linking group represented by T 1 to T 5 include an alkylene group, a —COO-Rt- group, and a —O-Rt- group.
  • Rt represents an alkylene group or a cycloalkylene group.
  • T 1 to T 5 are each independently preferably a single bond or a —COO-Rt- group.
  • Rt is preferably an alkylene group having 1 to 5 carbon atoms, more preferably a —CH 2 — group, a — (CH 2 ) 2 — group, or a — (CH 2 ) 3 — group.
  • Ra represents a linear or branched alkyl group.
  • a methyl group, an ethyl group, a t-butyl group and the like can be mentioned.
  • a linear or branched alkyl group having 1 to 4 carbon atoms is preferable.
  • R 1 to R 4 each independently represent a monovalent substituent. Examples of R 1 to R 4 include, but are not particularly limited to, a hydroxyl group, a cyano group, and a linear or branched alkyl group or a cycloalkyl group having a hydroxyl group, a cyano group, or the like.
  • R 5 represents a monovalent organic group.
  • R 5 include, but are not particularly limited to, for example, a monovalent organic group having a sultone structure, and tetrahydrofuran, dioxane, 1,4-thioxane, dioxolan, and 2,4,6-trioxabicyclo [3.3.
  • .0] is a monovalent organic group having a cyclic ether such as octane, or an acid-decomposable group (for example, an adamantyl group in which the carbon at the position bonded to the —COO group has been substituted with an alkyl group, etc.).
  • the repeating unit (b) is also preferably formed from monomers described in paragraphs 0014 to 0018 of JP-A-2016-138219.
  • a + b content of the repeating unit having an acid-decomposable group with respect to all repeating units is preferably from 20 to 90 mol%, more preferably from 25 to 85 mol%, and more preferably from 30 to 80 mol%. More preferred.
  • c + d the content of the repeating unit having a lactone structure with respect to all the repeating units is preferably from 3 to 80 mol%, more preferably from 3 to 60 mol%.
  • each of the repeating units (a) to (e) may be used alone or in combination of two or more.
  • the total content is preferably within the above range.
  • the weight average molecular weight (Mw) of the resin represented by the formula (I) is usually preferably from 1,000 to 200,000, more preferably from 2,000 to 20,000, even more preferably from 3,000 to 15,000. .
  • the said weight average molecular weight is polystyrene conversion value calculated
  • GPC Gel Permeation Chromatography
  • THF tetrahydrofuran
  • the content of the resin represented by the formula (I) is based on the total solid content of the actinic ray-sensitive or radiation-sensitive resin composition. Usually, it is preferably from 30 to 99% by mass, more preferably from 50 to 95% by mass.
  • the resin P may contain a repeating unit having a phenolic hydroxyl group.
  • Examples of the repeating unit having a phenolic hydroxyl group include a repeating unit represented by the following general formula (I).
  • R 41 , R 42 and R 43 each independently represent a hydrogen atom, an alkyl group, a halogen atom, a cyano group or an alkoxycarbonyl group.
  • R 42 may be bonded to Ar 4 to form a ring, in which case R 42 represents a single bond or an alkylene group.
  • X 4 represents a single bond, —COO—, or —CONR 64 —, and R 64 represents a hydrogen atom or an alkyl group.
  • L 4 represents a single bond or an alkylene group.
  • Ar 4 represents a (n + 1) -valent aromatic ring group, and when it is bonded to R 42 to form a ring, represents an (n + 2) -valent aromatic ring group.
  • N represents an integer of 1 to 5.
  • Examples of the alkyl group of R 41 , R 42 and R 43 in the general formula (I) include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and a sec-butyl which may have a substituent.
  • An alkyl group having 20 or less carbon atoms such as a group, hexyl group, 2-ethylhexyl group, octyl group and dodecyl group is preferred, an alkyl group having 8 or less carbon atoms is more preferred, and an alkyl group having 3 or less carbon atoms is still more preferred.
  • the cycloalkyl group of R 41 , R 42 and R 43 in the general formula (I) may be monocyclic or polycyclic.
  • a monocyclic cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group and a cyclohexyl group, which may have a substituent, is preferable.
  • Examples of the halogen atom of R 41 , R 42 and R 43 in the general formula (I) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom is preferable.
  • the alkyl group contained in the alkoxycarbonyl group of R 41 , R 42 and R 43 in the general formula (I) is preferably the same as the alkyl group of R 41 , R 42 and R 43 described above.
  • each of the above groups examples include, for example, an alkyl group, a cycloalkyl group, an aryl group, an amino group, an amide group, a ureido group, a urethane group, a hydroxyl group, a carboxyl group, a halogen atom, an alkoxy group, a thioether group, and an acyl group.
  • An acyloxy group, an alkoxycarbonyl group, a cyano group, and a nitro group and the substituent preferably has 8 or less carbon atoms.
  • Ar 4 represents an (n + 1) -valent aromatic ring group.
  • the divalent aromatic ring group may have a substituent, for example, an arylene group having 6 to 18 carbon atoms such as a phenylene group, a tolylene group, a naphthylene group and an anthracenylene group; , Thiophene, furan, pyrrole, benzothiophene, benzofuran, benzopyrrole, triazine, imidazole, benzimidazole, triazole, thiadiazole, thiazole and other aromatic ring groups containing a heterocycle.
  • n is an integer of 2 or more
  • specific examples of the (n + 1) -valent aromatic ring group include the above-described specific examples of the divalent aromatic ring group obtained by removing (n-1) arbitrary hydrogen atoms.
  • the (n + 1) -valent aromatic ring group may further have a substituent.
  • Examples of the substituent which the above-mentioned alkyl group, cycloalkyl group, alkoxycarbonyl group, alkylene group and (n + 1) -valent aromatic ring group may have include, for example, R 41 , R 42 and R 43 in the general formula (I).
  • R 64 represents a hydrogen atom, an alkyl group
  • the alkyl group for R 64 in, which may have a substituent, a methyl group, an ethyl group, a propyl group
  • Examples include an alkyl group having 20 or less carbon atoms such as an isopropyl group, an n-butyl group, a sec-butyl group, a hexyl group, a 2-ethylhexyl group, an octyl group, and a dodecyl group, and an alkyl group having 8 or less carbon atoms is more preferable.
  • X 4 is preferably a single bond, —COO— or —CONH—, more preferably a single bond or —COO—.
  • the alkylene group for L 4 is preferably an alkylene group having 1 to 8 carbon atoms such as a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group and an octylene group which may have a substituent.
  • Ar 4 is preferably an optionally substituted aromatic ring group having 6 to 18 carbon atoms, more preferably a benzene ring group, a naphthalene ring group or a biphenylene ring group.
  • the repeating unit represented by the general formula (I) preferably has a hydroxystyrene structure. That is, Ar 4 is preferably a benzene ring group.
  • repeating unit having a phenolic hydroxyl group a repeating unit represented by the following general formula (p1) is preferable.
  • R in the general formula (p1) represents a hydrogen atom, a halogen atom, or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • a plurality of Rs may be the same or different.
  • R in the general formula (p1) is preferably a hydrogen atom.
  • Ar in the general formula (p1) represents an aromatic ring, for example, an aromatic hydrocarbon which may have a substituent having 6 to 18 carbon atoms such as a benzene ring, a naphthalene ring, an anthracene ring, a fluorene ring and a phenanthrene ring.
  • a hydrogen ring and, for example, a hetero ring such as a thiophene ring, a furan ring, a pyrrole ring, a benzothiophene ring, a benzofuran ring, a benzopyrrole ring, a triazine ring, an imidazole ring, a benzimidazole ring, a triazole ring, a thiadiazole ring and a thiazole ring.
  • a hetero ring such as a thiophene ring, a furan ring, a pyrrole ring, a benzothiophene ring, a benzofuran ring, a benzopyrrole ring, a triazine ring, an imidazole ring, a benzimidazole ring, a triazole ring, a thiadiazole ring and a thiazole ring.
  • an aromatic heterocycle
  • M in the general formula (p1) represents an integer of 1 to 5, preferably 1.
  • a 1 or 2.
  • the content of the repeating unit having a phenolic hydroxyl group is preferably 0 to 50 mol%, more preferably 0 to 45 mol%, and still more preferably 0 to 40 mol%, based on all repeating units in the resin P.
  • the resin P may further contain a repeating unit containing an organic group having a polar group, in particular, a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group.
  • a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group is preferably an adamantyl group, a diamantyl group or a norbornane group.
  • the polar group a hydroxyl group or a cyano group is preferable.
  • repeating unit having a polar group Specific examples of the repeating unit having a polar group are shown below, but the invention is not limited thereto.
  • the content is preferably from 1 to 50 mol%, more preferably from 1 to 30 mol%, based on all repeating units in the resin P. It is preferably from 5 to 25 mol%, more preferably from 5 to 20 mol%.
  • the resin P may contain a repeating unit having a group (photoacid generating group) that generates an acid upon irradiation with actinic rays or radiation.
  • a repeating unit having a group capable of generating an acid upon irradiation with actinic rays or radiation include a repeating unit represented by the following formula (4).
  • R 41 represents a hydrogen atom or a methyl group.
  • L 41 represents a single bond or a divalent linking group.
  • L 42 represents a divalent linking group.
  • W represents a structural site that is decomposed by irradiation with actinic rays or radiation to generate an acid in a side chain.
  • examples of the repeating unit represented by the formula (4) include the repeating units described in paragraphs [0094] to [0105] of JP-A-2014-041327.
  • the content of the repeating unit having a photoacid-generating group is preferably from 1 to 40 mol%, more preferably from all the repeating units in the resin P.
  • the content is 5 to 35 mol%, more preferably 5 to 30 mol%.
  • the resin P may contain a repeating unit represented by the following formula (VI).
  • R 61 , R 62 and R 63 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group, or an alkoxycarbonyl group.
  • R 62 may be bonded to Ar 6 to form a ring, in which case R 62 represents a single bond or an alkylene group.
  • X 6 represents a single bond, —COO—, or —CONR 64 —.
  • R 64 represents a hydrogen atom or an alkyl group.
  • L 6 represents a single bond or an alkylene group.
  • Ar 6 represents an (n + 1) -valent aromatic ring group, and when it is bonded to R 62 to form a ring, represents an (n + 2) -valent aromatic ring group.
  • Y 2 independently represents a hydrogen atom or a group capable of leaving by the action of an acid when n ⁇ 2. However, at least one of Y 2 represents a group which is eliminated by the action of an acid.
  • n represents an integer of 1 to 4.
  • L 1 and L 2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a group obtained by combining an alkylene group and an aryl group.
  • M represents a single bond or a divalent linking group.
  • Q represents an alkyl group, a cycloalkyl group optionally containing a hetero atom, an aryl group optionally containing a hetero atom, an amino group, an ammonium group, a mercapto group, a cyano group or an aldehyde group.
  • At least two members of Q, M and L 1 may combine to form a ring (preferably a 5- or 6-membered ring).
  • the repeating unit represented by the above formula (VI) is preferably a repeating unit represented by the following formula (3).
  • Ar 3 represents an aromatic ring group.
  • R 3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, an acyl group, or a heterocyclic group.
  • M 3 represents a single bond or a divalent linking group.
  • Q 3 represents an alkyl group, a cycloalkyl group, an aryl group, or a heterocyclic group. At least two of Q 3 , M 3 and R 3 may combine to form a ring.
  • the aromatic ring group represented by Ar 3 is the same as Ar 6 in the above formula (VI) when n in the above formula (VI) is 1, more preferably a phenylene group or a naphthylene group, further preferably It is a phenylene group.
  • Resin P may contain a repeating unit represented by the following formula (4).
  • R 41 , R 42 and R 43 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group or an alkoxycarbonyl group.
  • R 42 may combine with L 4 to form a ring, in which case R 42 represents an alkylene group.
  • L 4 represents a single bond or a divalent linking group, and when forming a ring with R 42 , represents a trivalent linking group.
  • R 44 and R 45 represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, an acyl group, or a heterocyclic group.
  • M 4 represents a single bond or a divalent linking group.
  • Q 4 represents an alkyl group, a cycloalkyl group, an aryl group or a heterocyclic group. At least two of Q 4 , M 4 and R 44 may combine to form a ring.
  • R 41, R 42 and R 43 is synonymous with R 41, R 42 and R 43 in the above-mentioned compounds represented by formula (IA), and the preferred ranges are also the same.
  • L 4 has the same meaning as T in the formula (AI), and the preferred range is also the same.
  • R 44 and R 45 have the same meaning as R 3 in the formula (3), and the preferred range is also the same.
  • M 4 has the same meaning as M 3 in the formula (3), and the preferred range is also the same.
  • Q 4 has the same meaning as Q 3 in the formula (3), and the preferred range is also the same.
  • the ring formed by bonding at least two of Q 4 , M 4 and R 44 includes a ring formed by bonding of at least two of Q 3 , M 3 and R 3 , and the preferred range is also the same. It is.
  • resin P may contain a repeating unit represented by the following formula (BZ).
  • AR represents an aryl group.
  • Rn represents an alkyl group, a cycloalkyl group or an aryl group.
  • Rn and AR may combine with each other to form a non-aromatic ring.
  • R 1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group or an alkyloxycarbonyl group.
  • the content of the repeating unit having an acid-decomposable group in the resin P (when a plurality of repeating units are contained, the content is preferably from 5 to 80 mol%, preferably from 5 to 75 mol%, based on all the repeating units in the resin P). Is more preferable, and 10 to 65 mol% is further preferable.
  • the resin P may contain a repeating unit represented by the following formula (V) or the following formula (VI).
  • R 6 and R 7 each independently represent a hydrogen atom, a hydroxy group, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an alkoxy group or an acyloxy group, a cyano group, a nitro group, an amino group, A halogen atom, an ester group (—OCOR or —COOR: R represents an alkyl group having 1 to 6 carbon atoms or a fluorinated alkyl group), or a carboxyl group.
  • n 3 represents an integer of 0 to 6.
  • n 4 represents an integer of 0 to 4.
  • X 4 is a methylene group, an oxygen atom or a sulfur atom.
  • the resin P may further contain a repeating unit having a silicon atom in a side chain.
  • the repeating unit having a silicon atom in the side chain include a (meth) acrylate-based repeating unit having a silicon atom and a vinyl-based repeating unit having a silicon atom.
  • the repeating unit having a silicon atom in the side chain is typically a repeating unit having a group having a silicon atom in the side chain. Examples of the group having a silicon atom include a trimethylsilyl group, a triethylsilyl group, and a triphenyl group.
  • Silyl group tricyclohexylsilyl group, tristrimethylsiloxysilyl group, tristrimethylsilylsilyl group, methylbistrimethylsilylsilyl group, methylbistrimethylsiloxysilyl group, dimethyltrimethylsilylsilyl group, dimethyltrimethylsiloxysilyl group, and the following cyclic Alternatively, a linear polysiloxane, a cage type, a ladder type, or a random type silsesquioxane structure may be used.
  • R and R 1 each independently represent a monovalent substituent. * Represents a bond.
  • repeating unit having the above group for example, a repeating unit derived from an acrylate or methacrylate compound having the above group or a repeating unit derived from a compound having the above group and a vinyl group is preferable.
  • the repeating unit having a silicon atom is preferably a repeating unit having a silsesquioxane structure, whereby the repeating unit is ultrafine (for example, a line width of 50 nm or less) and has a high aspect ratio (for example, a line width of 50 nm or less). In forming a pattern (thickness / line width of 3 or more), extremely excellent falling performance can be exhibited.
  • silsesquioxane structure examples include a cage silsesquioxane structure, a ladder silsesquioxane structure (ladder silsesquioxane structure), and a random silsesquioxane structure.
  • a cage silsesquioxane structure is preferable.
  • the cage silsesquioxane structure is a silsesquioxane structure having a cage skeleton.
  • the cage silsesquioxane structure may be a complete cage silsesquioxane structure or an incomplete cage silsesquioxane structure, but may be a complete cage silsesquioxane structure. preferable.
  • the ladder-type silsesquioxane structure is a silsesquioxane structure having a ladder-like skeleton.
  • the random silsesquioxane structure is a silsesquioxane structure having a random skeleton.
  • the cage silsesquioxane structure is preferably a siloxane structure represented by the following formula (S).
  • R represents a monovalent organic group.
  • a plurality of Rs may be the same or different.
  • the organic group is not particularly limited, but specific examples include a hydroxy group, a nitro group, a carboxy group, an alkoxy group, an amino group, a mercapto group, and a blocked mercapto group (for example, a mercapto group blocked (protected) with an acyl group). ), An acyl group, an imide group, a phosphino group, a phosphinyl group, a silyl group, a vinyl group, a hydrocarbon group optionally having a hetero atom, a (meth) acryl group-containing group and an epoxy group-containing group.
  • hetero atom of the hydrocarbon group optionally having a hetero atom examples include an oxygen atom, a nitrogen atom, a sulfur atom, and a phosphorus atom.
  • hydrocarbon group of the hydrocarbon group optionally having a hetero atom examples include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and a combination thereof.
  • the aliphatic hydrocarbon group may be linear, branched, or cyclic. Specific examples of the aliphatic hydrocarbon group include a linear or branched alkyl group (particularly 1 to 30 carbon atoms) and a linear or branched alkenyl group (particularly 2 to 30 carbon atoms). ), A linear or branched alkynyl group (particularly, having 2 to 30 carbon atoms).
  • aromatic hydrocarbon group examples include an aromatic hydrocarbon group having 6 to 18 carbon atoms such as a phenyl group, a tolyl group, a xylyl group and a naphthyl group.
  • the resin P has a repeating unit having a silicon atom in the side chain
  • its content is preferably from 1 to 30 mol%, more preferably from 5 to 25 mol%, based on all repeating units in the resin P. And more preferably 5 to 20 mol%.
  • the weight average molecular weight of the resin P is preferably from 1,000 to 200,000, more preferably from 3,000 to 20,000, and more preferably from 5,000 to 15,000 as a polystyrene equivalent value by GPC (Gel Permeation Chromatography). More preferred.
  • GPC Gel Permeation Chromatography
  • the degree of dispersion is usually 1 to 5, preferably 1 to 3, more preferably 1.2 to 3.0, and still more preferably 1.2 to 2.0.
  • the content of the resin P is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass, based on the total solid content.
  • the resin P may be used alone or in combination of two or more.
  • the actinic ray-sensitive or radiation-sensitive resin composition preferably contains a photoacid generator.
  • the photoacid generator is not particularly limited, and a known photoacid generator can be used.
  • the content of the photoacid generator in the actinic ray-sensitive or radiation-sensitive resin composition is not particularly limited, it is generally 0. 0 to the total solid content of the actinic ray-sensitive or radiation-sensitive resin composition. It is preferably from 1 to 20% by mass. The content is more preferably from 0.5 to 20% by mass.
  • One photoacid generator may be used alone, or two or more photoacid generators may be used in combination. When two or more photoacid generators are used in combination, the total content is preferably within the above range.
  • Examples of the photoacid generator include those described in JP-A-2016-57614, JP-A-2014-219664, JP-A-2016-138219, and JP-A-2015-135379.
  • the actinic ray-sensitive or radiation-sensitive resin composition may contain a quencher.
  • the quencher is not particularly limited, and a known quencher can be used.
  • the quencher is a basic compound and has a function of suppressing undesired decomposition of the acid-decomposable resin in an unexposed region due to an acid diffused from the exposed region.
  • the content of the quencher in the actinic ray-sensitive or radiation-sensitive resin composition is not particularly limited, it is generally 0.1 to 0.1% based on the total solid content of the actinic ray-sensitive or radiation-sensitive resin composition. It is preferably 15% by mass, more preferably 0.5 to 8% by mass.
  • One type of quencher may be used alone, or two or more types may be used in combination. When two or more quencher are used in combination, the total content is preferably within the above range.
  • quencher for example, those described in JP-A-2016-57614, JP-A-2014-219664, JP-A-2016-138219, and JP-A-2015-135379 are exemplified.
  • the actinic ray-sensitive or radiation-sensitive resin composition may contain a hydrophobic resin.
  • the hydrophobic resin is preferably designed so as to be unevenly distributed on the surface of the resist film, but unlike a surfactant, it does not necessarily need to have a hydrophilic group in the molecule, and a polar substance and a non-polar substance are uniformly mixed. It is not necessary to contribute to the task.
  • the effects of adding a hydrophobic resin include control of static and dynamic contact angles of the resist film surface with water, suppression of outgassing, and the like.
  • the hydrophobic resin has at least one of “fluorine atom”, “silicon atom”, and “CH 3 partial structure contained in the side chain portion of the resin” from the viewpoint of uneven distribution on the film surface layer. And more preferably two or more. Further, the hydrophobic resin preferably has a hydrocarbon group having 5 or more carbon atoms. These groups may be present in the main chain of the resin or may be substituted on the side chain.
  • the hydrophobic resin contains a fluorine atom and / or a silicon atom
  • the fluorine atom and / or the silicon atom in the hydrophobic resin may be contained in a main chain of the resin or contained in a side chain. You may.
  • the partial structure having a fluorine atom is preferably an alkyl group having a fluorine atom, a cycloalkyl group having a fluorine atom, or an aryl group having a fluorine atom.
  • the alkyl group having a fluorine atom (preferably having 1 to 10 carbon atoms, more preferably having 1 to 4 carbon atoms) is a linear or branched alkyl group in which at least one hydrogen atom is substituted with a fluorine atom. And may further have a substituent other than a fluorine atom.
  • the cycloalkyl group having a fluorine atom is a monocyclic or polycyclic cycloalkyl group in which at least one hydrogen atom is substituted with a fluorine atom, and may further have a substituent other than a fluorine atom.
  • the aryl group having a fluorine atom include those in which at least one hydrogen atom of an aryl group such as a phenyl group and a naphthyl group is substituted with a fluorine atom, and further having a substituent other than a fluorine atom. Is also good.
  • Examples of the repeating unit having a fluorine atom or a silicon atom include those exemplified in paragraph [0519] of US2012 / 0251948A1.
  • the hydrophobic resin also preferably includes a CH 3 partial structure in a side chain portion.
  • a methyl group directly bonded to the main chain of the hydrophobic resin eg, an ⁇ -methyl group of a repeating unit having a methacrylic acid structure
  • hydrophobic resin resins described in JP-A-2011-248019, JP-A-2010-175859, and JP-A-2012-032544 can also be preferably used.
  • hydrophobic resin for example, resins represented by the following formulas (1b) to (5b) are preferable.
  • the content of the hydrophobic resin is preferably from 0.01 to 20% by mass, more preferably from 0.1 to 15% by mass, based on the total solid content of the composition. .
  • the actinic ray-sensitive or radiation-sensitive resin composition may contain a solvent.
  • the solvent is not particularly limited, and a known solvent can be used.
  • the solvent contained in the actinic ray-sensitive or radiation-sensitive resin composition may be the same as or different from the organic solvent contained in the mixture in the drug solution described above.
  • the content of the solvent in the actinic ray-sensitive or radiation-sensitive resin composition is not particularly limited, but generally, the total solid content of the actinic ray-sensitive or radiation-sensitive resin composition is 0.1 to 20% by mass. It is preferable that it is contained so as to be adjusted.
  • One type of solvent may be used alone, or two or more types may be used in combination. When two or more solvents are used in combination, the total content is preferably within the above range.
  • Examples of the solvent include those described in JP-A-2016-57614, JP-A-2014-219664, JP-A-2016-138219, and JP-A-2015-135379.
  • the actinic ray-sensitive or radiation-sensitive resin composition may further contain, if necessary, a surfactant, an acid proliferating agent, a dye, a plasticizer, a photosensitizer, a light absorber, and an alkali-soluble resin other than the above. And / or a dissolution inhibitor or the like.
  • the exposure step is a step of exposing the resist film.
  • the method of exposing the resist film is not particularly limited, and a known method can be used. Examples of a method of exposing the resist film include a method of irradiating the resist film with actinic rays or radiation through a predetermined mask. In the case of irradiating the resist film with an electron beam, the irradiation may be performed without using a mask (this is also referred to as “direct drawing”).
  • the actinic ray or radiation used for the exposure is not particularly limited, and examples thereof include KrF excimer laser, ArF excimer laser, extreme ultraviolet (EUV, Extreme @ Ultra @ Violet), and electron beam (EB, Electron @ Beam). Extreme ultraviolet or electron beams are preferred.
  • the exposure may be immersion exposure.
  • the pattern forming method preferably further includes a PEB step of baking (PEB: Post Exposure Bake) the exposed resist film before the exposure step and the development step.
  • PEB Post Exposure Bake
  • the bake promotes the reaction of the exposed portion, and improves the sensitivity and / or the pattern shape.
  • the heating temperature is preferably from 80 to 150 ° C, more preferably from 80 to 140 ° C, even more preferably from 80 to 130 ° C.
  • the heating time is preferably from 30 to 1000 seconds, more preferably from 60 to 800 seconds, even more preferably from 60 to 600 seconds. Heating can be performed by means provided in a normal exposure / developing machine, and may be performed using a hot plate or the like.
  • the developing step is a step of developing the exposed resist film (hereinafter, also referred to as “resist film after exposure”) with a developing solution.
  • a chemical solution X is used as a developer.
  • the developing method is not particularly limited, and a known developing method can be used. Examples of the developing method include a dip method, a paddle method, a spray method, and a dynamic dispense method.
  • the pattern forming method may further include, after the developing step, a step of replacing the developing solution with another solvent and stopping the developing.
  • the development time is not particularly limited, it is generally preferably from 10 to 300 seconds, more preferably from 10 to 120 seconds.
  • the temperature of the developer is preferably 0 to 50 ° C, more preferably 15 to 35 ° C.
  • the pattern forming method may include the developing step at least once, and may include the developing step a plurality of times. In the development step, both development using the chemical solution X and development using an alkali developer may be performed (so-called double development may be performed).
  • the rinsing step is a step of cleaning the wafer provided with the developed resist film using a rinsing liquid.
  • a chemical Y is used as a developer.
  • the washing method is not particularly limited, and a known washing method can be used. Examples of the cleaning method include a rotary discharge method, a dipping method, and a spray method. In particular, it is preferable that the wafer is washed by a rotary discharge method, and after the wafer is washed, the wafer is rotated at a rotation speed of 2000 to 4000 rpm to remove the rinsing liquid from the substrate.
  • the rinsing time is generally preferably 10 to 300 seconds, more preferably 10 to 180 seconds, and still more preferably 20 to 120 seconds.
  • the temperature of the rinsing liquid is preferably 0 to 50 ° C, more preferably 15 to 35 ° C.
  • the pattern forming method may include other steps in addition to the steps already described.
  • Other steps include, for example, a pre-wetting step, a cleaning step using a supercritical fluid, and a heating step.
  • the pre-wet process is a process of applying a chemical solution on a substrate for forming a resist film before the resist film forming process.
  • a known method can be adopted.
  • the chemical solution used in the pre-wet process the present chemical solution may be used, or a chemical solution other than the present chemical solution may be used.
  • the substrate is not particularly limited, and a known substrate used for semiconductor manufacturing can be used. Examples of the substrate include, but are not limited to, an inorganic substrate such as silicon, SiO 2 , or SiN, or a coating-based inorganic substrate such as SOG (Spin On Glass). Further, the substrate may be a substrate with an anti-reflection film provided with an anti-reflection film.
  • the antireflection film is not particularly limited, and a known organic or inorganic antireflection film can be used.
  • the method of applying the chemical solution on the substrate is not particularly limited, and a known application method can be used. Among them, spin coating is preferred as a coating method in that a uniform resist film can be formed with a less actinic ray-sensitive or radiation-sensitive resin composition in a resist film forming step described later.
  • the method of applying the chemical solution on the substrate is not particularly limited, and a known application method can be used. Among them, spin coating is preferable as a coating method in that a uniform resist film can be formed with a less actinic ray-sensitive or radiation-sensitive resin composition in a resist film forming step described later.
  • the thickness of the chemical layer formed on the substrate using the chemical is not particularly limited, but is generally preferably 0.001 to 10 ⁇ m, more preferably 0.005 to 5 ⁇ m.
  • the resist liquid to be applied is an ArF immersion exposure resist. It is assumed that the surface tension of this resist solution was 28.8 mN / m. In this case, the surface tension of the mixture of the chemical solutions is not particularly limited, but it is preferable to make the surface tension higher than the surface tension of the resist solution and supply it to the wafer as a pre-wet solution.
  • the pre-wet nozzle moves to a position above the center of the wafer.
  • the chemical is supplied to the wafer by opening and closing the valve.
  • a predetermined amount of the above-described chemical is supplied from the pre-wet nozzle to the center of the wafer.
  • the wafer is rotated at a first speed V1 of, for example, about 500 rpm (rotation per minute), and the chemical on the wafer is diffused over the entire surface of the wafer, so that the entire surface of the wafer is wet with the chemical.
  • the upper limit of the first speed V1 is not particularly limited, but is preferably 3000 rpm or less.
  • the discharge of the resist liquid from the resist nozzle is started by opening the valve of the line to which the resist liquid is connected, and the supply of the resist liquid to the center of the wafer is started.
  • the resist film forming step is started.
  • the rotation speed of the wafer is increased from the first speed V1 to a second speed V2 of a high speed, for example, about 2000 to 4000 rpm.
  • the rotation of the wafer at the first speed V1 before the start of the resist film forming step is gradually accelerated so that the speed continuously and smoothly fluctuates. At this time, the acceleration of the rotation of the wafer gradually increases, for example, from zero.
  • the rotational acceleration of the wafer is gradually reduced, and the rotational speed of the wafer W smoothly converges to the second speed V2.
  • the rotation speed of the wafer is changed from the first speed V1 to the second speed V2 so as to change in an S shape.
  • the resist liquid supplied to the center of the wafer is diffused over the entire surface of the wafer by centrifugal force, and the resist liquid is applied to the surface of the wafer.
  • the resist-saving technique by the fluctuation of the wafer rotation speed at the time of applying the resist is described in detail in Japanese Patent Application No. 2008-131495 and Japanese Patent Application Laid-Open No. 2009-279476.
  • the interval from the end of the pre-wet process to the start of the application of the resist solution in the resist film forming process is not particularly limited, but is generally preferably 7 seconds or less.
  • the drug solution may be reused. That is, the chemical solution used in the pre-wet process can be collected and used in another wafer pre-wet process.
  • the chemical solution is reused, it is preferable to adjust the content of the impurity metal, organic impurities, water, and the like contained in the collected chemical solution.
  • the removing step using a supercritical fluid is a step of removing the developing solution and / or the rinsing liquid attached on the pattern using a supercritical fluid after the developing step and / or the rinsing step.
  • the heating step is a step of heating the resist film in order to remove the solvent remaining in the pattern after the developing step, the rinsing step, or the removing step using a supercritical fluid.
  • the heating temperature is not particularly limited, but is generally preferably from 40 to 160 ° C, more preferably from 50 to 150 ° C, and still more preferably from 50 to 110 ° C.
  • the heating time is not particularly limited, but is generally preferably 15 to 300 seconds, and more preferably 15 to 180 seconds.
  • a purified product (commercial product) containing propylene glycol monomethyl ether acetate (PGMEA) as an organic solvent was prepared.
  • PGMEA propylene glycol monomethyl ether acetate
  • a first distillation section having a first tray distillation column without a decompression mechanism (a distillation step for crude distillation), and a first packing in which three packed towers filled with a cation exchange resin are connected in series Section (ion removal step), a second packed section (ion removal step) in which two packed towers filled with an anion exchange resin are connected in series, and a second tray type distillation column without a decompression mechanism and a decompression mechanism.
  • a second distillation unit (a distillation step for rectification) in which a third tray type distillation column provided is connected in series in this order, and a filtration unit in which a first filter and a second filter are connected in series in this order (
  • a purification apparatus was prepared in which the filtration step was connected in this order from the upstream side. Then, the substance to be purified was purified using the above-described purification apparatus to produce a drug solution. In addition, the purification of the object to be purified was performed twice in total, counting once that the liquid was passed through the purification device once (in the table, indicated as two circulation times). In the following, details of each member in the purification device are shown in order from the upstream side (primary side).
  • the distillation column of the theoretical plate number shown in Table 1 was used.
  • the number of stages of the cation exchange resin means the number of packed columns filled with the cation exchange resin connected in series
  • the number of stages of the anion exchange resin is also the number of stages packed with the anion exchange resin.
  • the number of connected columns means the number of adsorbing resin stages, and the number of packed towers filled with the adsorbing resin connected in series.
  • the purified products described in Table 1 were obtained from different lots. Therefore, components other than the organic solvent initially contained in each object to be purified may be different.
  • PGMEA propylene glycol monomethyl ether acetate (boiling point: 146 ° C, SP value: 17.86) NBA: n-butyl acetate (boiling point: 126 ° C., SP value: 17.80)
  • -IAA isoamyl acetate (boiling point: 142 ° C, SP value: 17.42)
  • CHN cyclohexanone (boiling point: 155.6 ° C, SP value: 20.05)
  • PGME propylene glycol monoethyl ether (boiling point: 132.8 ° C, SP value: 23.05)
  • MIBC 4-methyl-2-pentanol (boiling point: 131.6 ° C., SP value: 21.15)
  • EL ethyl lactate (boiling point: 154 ° C, SP value: 24.41)
  • -PC propylene carbonate
  • Metal component The content of metal components (metal ions and metal-containing particles) in the chemical solution was measured by a method using ICP-MS and SP-ICP-MS. The following equipment was used. Table 2 shows the results.
  • Metal nanoparticles The number of particles of metal nanoparticles (metal-containing particles having a particle diameter of 0.5 to 17 nm) in the chemical solution was measured by the following method. First, a predetermined amount of a chemical solution was applied on a silicon substrate to form a substrate with a chemical layer, and the surface of the substrate with the chemical layer was scanned with laser light to detect scattered light. Thereby, the position and the particle size of the defect existing on the surface of the substrate with the chemical solution layer were specified. Next, based on the position of the defect, elemental analysis was performed by EDX (energy dispersive X-ray) analysis to examine the composition of the defect.
  • EDX energy dispersive X-ray
  • the number of metal nanoparticles on the substrate was determined, and converted into the number of particles contained per unit volume of the chemical solution (particles / cm 3 ).
  • the analysis was performed using a combination of a wafer inspection apparatus “SP-5” manufactured by KLA-Tencor and a fully automatic defect review and classification apparatus “SEMVion G6” manufactured by Applied Materials.
  • the sample in which particles having a desired particle size could not be detected due to the resolution of the measuring device or the like was detected using the method described in paragraphs 0015 to 0067 of JP-A-2009-188333.
  • an SiO X layer was formed on a substrate by a CVD (chemical vapor deposition) method, and then a chemical layer was formed so as to cover the above layer.
  • the composite layer having the SiO X layer and the chemical solution layer applied thereon is dry-etched, and the obtained projections are irradiated with light to detect scattered light.
  • the method of calculating the volume of the protrusion and calculating the particle diameter of the particle from the volume of the protrusion was used.
  • the defect suppression performance was evaluated.
  • the defect suppression performance was determined by using a chemical solution immediately after production (indicated as “immediately” in the table), and storing the chemical solution in a container (material of the liquid contact part: high-density polyethylene (HDPE) resin). The storage was performed at 40 ° C. for 45 days (shown as “aging” in the table).
  • the resist compositions used are as follows.
  • resist composition 1 The resist composition 1 was obtained by mixing the components with the following composition.
  • the weight average molecular weight (Mw) in terms of standard polystyrene by gel permeation chromatography (GPC) was 11,200, and the molecular weight dispersity (Mw / Mn) was 1.45.
  • GPC gel permeation chromatography
  • Mw / Mn molecular weight dispersity
  • defect suppression performance The defect suppression performance of the chemical was evaluated by the following method.
  • a coater developer “RF 3S ” manufactured by Sokudo was used.
  • AL412 manufactured by Brewer Science
  • a pre-wet solution was applied thereon, and a resist composition 1 was applied thereon, and baked (PB: Prebake) at 100 ° C. for 60 seconds to form a resist film having a thickness of 30 nm.
  • This resist film was coated with a reflective mask having a pitch of 20 nm and a pattern width of 15 nm using an EUV exposure machine (manufactured by ASML; NXE3350, NA 0.33, Dipole 90 °, outer sigma 0.87, inner sigma 0.35). Exposure via Thereafter, heating was performed at 85 ° C. for 60 seconds (PEB: Post Exposure Bake). Next, the film was developed with an organic solvent-based developer for 30 seconds and rinsed for 20 seconds. Subsequently, by rotating the wafer at a rotation speed of 2000 rpm for 40 seconds, a line-and-space pattern having a pitch of 20 nm and a pattern line width of 15 nm was formed.
  • EUV exposure machine manufactured by ASML; NXE3350, NA 0.33, Dipole 90 °, outer sigma 0.87, inner sigma 0.35. Exposure via Thereafter, heating was performed at 85 ° C. for 60 seconds (PEB: Post Exposure Bake). Next, the film was
  • An image of the above pattern is acquired, and the obtained image is analyzed using a combination of a pattern defect inspection apparatus “UVsion 7” of Applied Materials and a fully automatic defect review and classification apparatus “SEMVion G6” of Applied Materials. Then, the number of residues in the unexposed portion per unit area was measured.
  • the sample in which particles having a desired particle size could not be detected due to the resolution of the measuring device or the like was detected using the method described in paragraphs 0015 to 0067 of JP-A-2009-188333. That is, an SiO X layer was formed on a substrate by a CVD (chemical vapor deposition) method, and then a chemical layer was formed so as to cover the above layer.
  • CVD chemical vapor deposition
  • the composite layer having the SiO X layer and the chemical solution layer applied thereon is dry-etched, and the obtained projections are irradiated with light to detect scattered light.
  • the method of calculating the volume of the protrusion and calculating the particle diameter of the particle from the volume of the protrusion was used. The results were evaluated according to the following criteria and are shown in Table 2.
  • the content of the acid component is not less than 1 mass ppt and not more than 15 ppm by mass with respect to the total mass of the chemical solution, and the content of the metal component is 0.001 to 100 mass% with respect to the total mass of the chemical solution. It was shown that the use of a chemical solution having a ppt yielded a chemical solution having excellent defect suppression performance even after long-term storage (Example). For example, according to a comparison between Examples A1 and A2, when the content of the organic acid is 1 mass ppm or less with respect to the total mass of the chemical solution (Example A2), the chemical solution immediately after production and after long-term storage is stored. Defect suppression performance was shown to be better.
  • Example A2 For example, according to the comparison between Examples A2 and A3, if the content of the organic acid having a boiling point or higher of the organic solvent is 20% by mass or less based on the total mass of the organic acid (Example A2), It was shown that the defect suppression performance of the drug solution after storage was more excellent. For example, according to the comparison between Examples A1 and A4, when the content of the inorganic acid is 1 mass ppb or less with respect to the total mass of the chemical solution (Example A1), the chemical solution immediately after production and after long-term storage is stored. It was shown that the defect control performance was better.
  • Example A15 when the water content is 1 mass ppm or less with respect to the total mass of the chemical solution (Example A15), the defect suppression performance of the chemical solution after long-term storage. was shown to be better.
  • Examples A8 and A17 if the content of the metal-containing particles is within the range of 0.00001 to 10 mass ppt with respect to the total mass of the chemical solution (Example A8), It was shown that the defect suppression performance of the drug solution after storage was more excellent.
  • the number of particles contained per unit volume of the chemical solution of the metal nanoparticles is in the range of 1.0 ⁇ 10 ⁇ 2 to 1.0 ⁇ 10 6 / cm 3. If present (Example A8), it was shown that the defect suppression performance of the drug solution after long-term storage was more excellent.
  • the content of the metal ion is in the range of 0.01 to 100 mass ppt with respect to the total mass of the chemical solution (Example A8), it is stored for a long time. It was shown that the defect suppression performance of the chemical solution afterwards was more excellent.
  • Example X1 The above-mentioned chemical solution B1 was prepared as a chemical solution X as a developer. In addition, butyl butyrate was prepared as a chemical solution Y as a rinse solution. Here, the purchased butyl butyrate used as the chemical solution Y was used without performing the above-mentioned filtration treatment or the like. In addition, about the organic solvent used as the chemical liquid Y used in the following Examples and Comparative Examples, the purchased product was used as it was without performing the above-mentioned filtration treatment and the like.
  • Example X2 to X16 A chemical solution X and a chemical solution Y were prepared in the same manner as in Example X1, except that the organic solvent shown in the column of the chemical solution Y of Table 3 was used as the chemical solution Y (rinse solution). .
  • Example X18 The above-mentioned chemical solution B2 was prepared as a chemical solution X as a developer.
  • Example X21 to X26 A chemical solution X and a chemical solution Y were prepared in the same manner as in Example X1, except that the organic solvents shown in Table 3 were used as the chemical solution Y (rinse solution) so that the combinations shown in Table 3 were obtained. However, in Example X26, the chemical solution Y (rinse solution) was not used.
  • the defect suppression performance was determined by storing a chemical solution container in which the chemical solution X (developer) was accommodated in a container (material of a liquid contact part: high-density polyethylene (HDPE) resin) at 40 ° C. for 45 days (in the table, “ This was carried out in the case of using the chemical solution X (developer).
  • the pre-wet solution and the chemical solution Y (rinse solution) were not stored and used immediately after preparation or immediately after opening a commercial product.
  • EUV exposure was performed with 0.25 (rature) and dipole illumination (Dipole 60x, outer sigma 0.81, inner sigma 0.43). Specifically, EUV exposure was performed by changing the exposure amount through a mask including a pattern for forming a line-and-space pattern having a pitch on the wafer of 40 nm and a width of 20 nm on the wafer. After the irradiation, the substrate was taken out of the EUV exposure apparatus and immediately baked (PEB) at 90 ° C. for 60 seconds.
  • PEB immediately baked
  • A minimum line width is 16 nm or less
  • B minimum line width is more than 16 nm and 18 nm or less
  • C minimum line width is more than 18 nm and 20 nm or less
  • D minimum line width is more than 20 nm and 22 nm or less
  • E minimum line width exceeds 22 nm
  • Table 3 shows the evaluation results.
  • the numerical value in parentheses of the organic solvent contained in the mixed solution indicates the distance [unit: MPa 0.5 ] of the Hansen solubility parameter of the organic solvent for eicosene.
  • the chemical solution of the present invention was excellent in defect suppression properties (Examples X1 to X26).
  • the chemical solution of the present invention is used as the chemical solution X (developer) and the above-mentioned organic solvent Y1 is used as the chemical solution Y (rinse solution) (Examples X1 to X16), the organic solvent is used as the chemical solution Y (rinse solution).
  • Example X21 to X26 Compared with the case where an organic solvent other than the solvent Y1 was used (Examples X21 to X26), the overall evaluation was higher, and it was found that both the defect suppression performance and the resolution performance were compatible at a high level. Further, from the comparison between Examples X17 and X18 and Examples X19 and X20, the content of the above organic solvent Y1 (the organic solvent having a distance of the Hansen solubility parameter with respect to eicosene of 3 to 20 MPa 0.5 ) is equal to the total content of the chemical solution Y. When the content was 20 to 80% by mass based on the mass (Examples X17 and X18), it was shown that the overall evaluation was more excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)
  • Weting (AREA)
  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明の課題は、長期間保存後においても欠陥抑制性能に優れた薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体の提供である。本発明の薬液は、有機溶剤と、酸成分と、金属成分と、を含有する薬液であって、酸成分の含有量が、薬液の全質量に対して、1質量ppt以上15質量ppm以下であり、金属成分の含有量が、薬液の全質量に対して、0.001~100質量pptである。

Description

薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体
 本発明は、薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体に関する。
 フォトリソグラフィを含む配線形成工程による半導体デバイスの製造の際、プリウェット液、レジスト液、現像液、リンス液、剥離液、化学機械的研磨(CMP:Chemical Mechanical Polishing)スラリー、及び、CMP後の洗浄液等として、水及び/又は有機溶剤を含有する薬液が用いられている。
 薬液に含まれる各種不純物は、半導体デバイスの欠陥の原因になる場合がある。このような欠陥は、半導体デバイスの製造歩留りの低下、及び、ショートなどの電気的異常を引き起こす場合がある。
 例えば、特許文献1には、蒸留方法等を工夫して、酸成分及びアルカリ金属の含有量を低減させたエステル系溶剤を得る方法が開示されている。また、特許文献2には、蒸留及び陰イオン交換樹脂等の処理によって、硫酸の含有量を低減させた酢酸ブチルの製造方法が開示されている。
特開2015-30700号公報 特開2002-316967号公報
 薬液は製造後に容器に収容され、薬液収容体の形態として一定期間保管された後に、収容された薬液が取り出され、使用される。
 本発明者らが、特許文献1及び2に記載されたような方法を参考にして薬液を製造し、これを容器に収容した薬液収容体の形態で長期間保存した後、薬液収容体から薬液を取り出して、半導体デバイスの製造工程に適用したところ、基材(例えばウェハ)に欠陥が発生する場合があることを明らかとした。
 そこで、本発明は、長期間保存後においても欠陥抑制性能に優れた薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体の提供を課題とする。
 本発明者らは、上記課題について鋭意検討した結果、金属成分の含有量に対する酸成分の含有量の質量割合が所定範囲にあり、酸成分の含有量が薬液の全質量に対して所定範囲内にあり、金属成分の含有量が薬液の全質量に対して所定範囲内にある薬液を用いれば、長期間保存後においても欠陥抑制性能に優れた薬液が得られるのを見出し、本発明に至った。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
[1]
 有機溶剤と、酸成分と、金属成分と、を含有する薬液であって、
 上記酸成分の含有量が、上記薬液の全質量に対して、1質量ppt以上15質量ppm以下であり、
 上記金属成分の含有量が、上記薬液の全質量に対して、0.001~100質量pptである、薬液。
[2]
 上記金属成分の含有量に対する、上記酸成分の含有量の質量割合が、10-2~10である、[1]に記載の薬液。
[3]
 上記酸成分が有機酸を含み、
 上記有機酸の含有量が、上記薬液の全質量に対して、1質量ppm以下である、[1]または[2]に記載の薬液。
[4]
 上記有機酸のうち、上記有機溶剤の沸点以上の有機酸の含有量が、上記有機酸の全質量に対して、20質量%以下である、[3]に記載の薬液。
[5]
 上記酸成分が無機酸を含み、
 上記無機酸の含有量が、上記薬液の全質量に対して、1質量ppb以下である、[1]~[4]のいずれかに記載の薬液。
[6]
 上記金属成分が、金属原子を含有する金属含有粒子を含み、
 上記金属含有粒子の含有量が、上記薬液の全質量に対して、0.00001~10質量pptである、[1]~[5]のいずれかに記載の薬液。
[7]
 上記金属含有粒子のうち、粒子径が0.5~17nmの金属ナノ粒子の、上記薬液の単位体積あたりの含有粒子数が1.0×10-2~1.0×10個/cmである、[6]に記載の薬液。
[8]
 上記金属成分が、金属イオンを含み、
 上記金属イオンの含有量が、上記薬液の全質量に対して、0.01~100質量pptである、[1]~[7]のいずれかに記載の薬液。
[9]
 上記金属成分が、金属含有粒子と、金属イオンと、を含み、
 上記金属イオンの含有量に対する、上記金属含有粒子の含有量の質量割合が、0.00001~1である、[1]~[8]のいずれかに記載の薬液。
[10]
 更に、水を含有し、
 上記水の含有量が、上記薬液の全質量に対して、1質量ppm以下である、[1]~[9]のいずれかに記載の薬液。
[11]
 更に、アミド構造を有する化合物、スルホンアミド構造を有する化合物、ホスホンアミド構造を有する化合物、イミド構造を有する化合物、ウレア構造を有する化合物、ウレタン構造を有する化合物、及び、有機酸エステルからなる群より選択される少なくとも1種の有機化合物を含有し、
 上記有機化合物の含有量が、上記薬液の全質量に対して、1質量ppm以下である、[1]~[10]のいずれかに記載の薬液。
[12]
 上記有機化合物が、沸点が300℃以上の有機化合物である、[11]に記載の薬液。
[13]
 上記有機酸エステルが、フタル酸エステル及びクエン酸エステルからなる群より選択される少なくとも1種を含む、[11]又は[12]に記載の薬液。
[14]
 上記有機溶剤のうち、沸点が250℃以下の有機溶剤の含有量が、上記有機溶剤の全質量に対して、90質量%以上である、[1]~[13]のいずれかに記載の薬液。
[15]
 上記有機溶剤のSP値が21以下である、[1]~[14]のいずれかに記載の薬液。
[16]
 上記有機溶剤がエステル構造を有する、[1]~[15]のいずれかに記載の薬液。
[17]
 上記有機溶剤が酢酸ブチルを含み、かつ、上記酸成分が酢酸を含み、
 上記酢酸の含有量が、上記薬液の全質量に対して、0.01~15質量ppmである、[1]~[16]のいずれかに記載の薬液。
[18]
 上記有機溶剤が酢酸ブチルを含み、かつ、上記酸成分がn-ブタン酸を含み、
 上記n-ブタン酸の含有量が、上記薬液の全質量に対して、1質量ppt以上1質量ppm以下である、[1]~[17]のいずれかに記載の薬液。
[19]
 [17]または[18]に記載の薬液である薬液Xと、
 有機溶剤を含有する薬液である薬液Yと、を備え、
 上記薬液Yに含まれる上記有機溶剤が、酪酸ブチル、イソ酪酸イソブチル、プロピオン酸ペンチル、プロピオン酸イソペンチル、エチルシクロヘキサン、メシチレン、デカン、ウンデカン、3,7-ジメチル-3-オクタノール、2-エチル-1-ヘキサノール、1-オクタノール、2-オクタノール、アセト酢酸エチル、マロン酸ジメチル、ピルビン酸メチル、及び、シュウ酸ジメチルからなる群から選択される少なくとも1種の有機溶剤Yを含む、キット。
[20]
 上記薬液Xが現像液であり、上記薬液Yがリンス液である、[20]に記載のキット。
[21]
 上記有機溶剤Yが、エイコセンに対するハンセン溶解度パラメータの距離が3~20MPa0.5である有機溶剤Y1を含み、
 上記有機溶剤Y1の含有量が、上記薬液Yの全質量に対して、20~80質量%である、[19]又は[20]に記載のキット。
[22]
 感活性光線性又は感放射線性樹脂組成物を用いてレジスト膜を形成するレジスト膜形成工程と、
 上記レジスト膜を露光する露光工程と、
 露光された前記レジスト膜を、[17]または[18]に記載の薬液である薬液Xを用いて現像する現像工程と、
 上記現像工程の後に、有機溶剤を含有する薬液Yを用いて洗浄するリンス工程と、を有し、
 上記薬液Yに含まれる前記有機溶剤が、酪酸ブチル、イソ酪酸イソブチル、プロピオン酸ペンチル、プロピオン酸イソペンチル、エチルシクロヘキサン、メシチレン、デカン、ウンデカン、3,7-ジメチル-3-オクタノール、2-エチル-1-ヘキサノール、1-オクタノール、2-オクタノール、アセト酢酸エチル、マロン酸ジメチル、ピルビン酸メチル、及び、シュウ酸ジメチルからなる群から選択される少なくとも1種の有機溶剤Yを含む、パターン形成方法。
[23]
 上記有機溶剤Yが、エイコセンに対するハンセン溶解度パラメータの距離が3~20MPa0.5である有機溶剤Y1を含み、
 上記有機溶剤Y1の含有量が、上記薬液Yの全質量に対して、20~80質量%である、[22]に記載のパターン形成方法。
[24]
 有機溶剤を含有する被精製物を精製して[1]~[18]のいずれかに記載の薬液を得る薬液の製造方法であって、
 上記被精製物をろ過するろ過工程、上記被精製物にイオン交換法又はキレート基によるイオン吸着を施すイオン除去工程、及び、上記被精製物を蒸留する蒸留工程を含む、薬液の製造方法。
[25]
 上記イオン交換法において、陽イオン交換樹脂を使用する、[24]に記載の薬液の製造方法。
[26]
 上記イオン交換法において、陽イオン交換樹脂及び陰イオン交換樹脂を使用する、[24]に記載の薬液の製造方法。
[27]
 容器と、上記容器内に収容された[1]~[18]のいずれかに記載の薬液と、を有する、薬液収容体。
 以下に示すように、本発明によれば、長期間保存後においても欠陥抑制性能に優れた薬液、薬液の製造方法及び薬液収容体を提供できる。
 以下に、本発明について説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされる場合があるが、本発明はそのような実施形態に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本発明において、「ppm」は「parts-per-million(10-6)」を意味し、「ppb」は「parts-per-billion(10-9)」を意味し、「ppt」は「parts-per-trillion(10-12)」を意味し、「ppq」は「parts-per-quadrillion(10-15)」を意味する。
 また、本発明における基(原子群)の表記において、置換及び無置換を記していない表記は、本発明の効果を損ねない範囲で、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「炭化水素基」とは、置換基を有さない炭化水素基(無置換炭化水素基)のみならず、置換基を有する炭化水素基(置換炭化水素基)をも包含するものである。このことは、各化合物についても同義である。
 また、本発明における「放射線」とは、例えば、遠紫外線、極紫外線(EUV;Extreme ultraviolet)、X線、又は、電子線等を意味する。また、本発明において光とは、活性光線又は放射線を意味する。本発明中における「露光」とは、特に断らない限り、遠紫外線、X線又はEUV等による露光のみならず、電子線又はイオンビーム等の粒子線による描画も露光に含める。
 また、本発明における「沸点」は、標準沸点を意味する。
[薬液]
 本発明の薬液(以下、「本薬液」ともいう。)は、有機溶剤と、酸成分と、金属成分と、を含有する薬液である。
 また、本薬液において、上記酸成分の含有量が、本薬液の全質量に対して、1質量ppt以上15質量ppm以下である。
 また、本薬液において、上記金属成分の含有量が、本薬液の全質量に対して、0.001~100質量pptである。
 本薬液により上記課題が解決される機序は必ずしも明確ではないが、本発明者らはその機序について以下のとおり推測する。なお、以下の機序は推測であり、異なる機序により本発明の効果が得られる場合であっても本発明の範囲に含まれる。
 薬液中に含まれる金属成分は、イオン形態の金属イオン及び粒子形態の金属含有粒子として存在する傾向にある。
 金属イオンが薬液中の酸成分(特に、有機酸)と錯体を形成した場合、および/または、金属イオンと酸成分との相互作用によって1個以上の金属イオンと1個以上の酸成分とが複合構造体を形成した場合、錯体または複合構造体と基板(例えば、ウェハ)表面との間における相互作用が増大する傾向にある。その結果、錯体および複合構造体は、薬液中の溶媒和よりも基板表面への付着の方が安定化するので、薬液をウェハの処理に使用した後において、ウェハ表面の残留物として残存しやすくなるという問題がある。
 また、上記錯体および複合構造体がウェハ表面に残存している場合、ウェハをドライエッチングする際に、上記錯体および複合構造体がエッチングマスクとして作用して、ドライエッチング後にコーン状欠陥(円錐状の欠陥)として、サイズが増大した状態でウェハ表面に残存するという問題がある。
 ここで、従来のウェハ表面の欠陥検査方法の1つとして、薬液をウェハ上にコーティングした後に、ウェハ表面に残存する欠陥数を測定する方法が挙げられる。しかしながら、近年における欠陥検査の精度向上に伴って、従来方法では検出できなかった欠陥がコーン状欠陥として増幅された形で検出可能になっている。つまり、従来では検出されなかった微小なサイズの付着物が、欠陥として検出されるという問題がある。
 上記問題は、薬液を容器に保存した場合において特に顕著になると考えられる。例えば、薬液を容器に長期間保存した場合、薬液中の酸成分(特に、有機酸)が容器の接液面を構成する樹脂部材に微量浸透すること、薬液中の酸成分(特に、有機酸)が樹脂部材の微小な隙間に入り込むこと、もしくは、樹脂部材の製造過程で樹脂部材内部に含まれる金属成分と薬液中の酸成分(特に、有機酸)との相互作用、または、これらの組み合わせによって、金属成分が薬液中に溶出する場合がある。つまり、薬液を容器に長期間保存した場合に、容器の接液面に存在する金属成分が薬液中に溶出して、欠陥が検出されやすくなると考えられる。
 このような問題に対して、薬液に対する酸成分及び金属成分の含有量を上記の上限値以下にすることで、薬液収容体を長期間保存した場合であっても、錯体および複合構造体の形成を抑制できたと推測される。その結果、長期間保存した場合の薬液の欠陥抑制性能が優れたものになったと考えられる。
 また、本発明者らは、薬液中の酸成分の含有量が上記下限値よりも少なくなると、薬液を長期間保存した場合の薬液の欠陥抑制性能が低下することを見出した。この理由の詳細は定かではないが、以下の理由によるものと推測される。
 薬液中には、微量の塩基性不純物が含まれる場合がある。塩基性不純物は、環境から移行(いわゆるコンタミネーション)したアミン成分、可塑剤の分解物、薬液収容体の容器を構成する樹脂の合成時における不純物等が挙げられる。
 塩基性不純物が薬液中に微量含まれていると、薬液中に存在する微量の水分とともに、薬液収容体の容器の接液面を構成する樹脂部材の分解反応を少しずつ進行させてしまう場合がある。樹脂部材の分解による接液面の劣化によって、樹脂部材の分解物、および、樹脂部材の製造過程で樹脂部材内部に含まれる金属成分等が薬液中に溶出して、これが薬液中に経時的に蓄積されることで、薬液を容器に長期間保存した場合に欠陥が検出されやすくなると考えられる。
 このような問題に対して、薬液中の酸成分の含有量が上記下限値以上であれば、塩基性不純物に起因する容器の接液面を構成する材料の分解反応の抑制できると想定される。これにより、薬液を容器に長期間保存した場合の欠陥発生を抑制できたと推定される。
〔有機溶剤〕
 本薬液は有機溶剤を含有する。本薬液中における有機溶剤の含有量としては特に制限されないが、一般に本薬液の全質量に対して、98.0質量%以上が好ましく、99.0質量%以上がより好ましく、99.9質量%以上が更に好ましく、99.99質量%以上が特に好ましい。上限は特に制限されないが、100質量%未満の場合が多い。
 有機溶剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の有機溶剤を併用する場合には、合計含有量が上記範囲内である。
 なお、本明細書において、有機溶剤とは、本薬液の全質量に対して、1成分あたり10000質量ppmを超えた含有量で含有される液状の有機化合物を意図する。つまり、本明細書においては、本薬液の全質量に対して10000質量ppmを超えて含有される液状の有機化合物は、有機溶剤に該当するものとする。
 なお、本明細書において液状とは、25℃、大気圧下において、液体であることを意味する。
 有機溶剤の種類としては特に制限されず、公知の有機溶剤を用いることができる。有機溶剤としては、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、カルボン酸エステル(好ましくは、酢酸アルキルエステル、乳酸アルキルエステル)、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4~10)、環を有してもよいモノケトン化合物(好ましくは炭素数4~10)、アルキレンカーボネート、アルコキシ酢酸アルキル、及び、ピルビン酸アルキル等が挙げられる。
 また、有機溶剤としては、例えば、特開2016-57614号公報、特開2014-219664号公報、特開2016-138219号公報、及び、特開2015-135379号公報に記載のものを用いてもよい。
 有機溶剤としては、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル(PGME)、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸エチル(EL)、メトキシプロピオン酸メチル、シクロペンタノン、シクロヘキサノン(CHN)、γ-ブチロラクトン、ジイソアミルエーテル、酢酸ブチル(nBA)、酢酸イソアミル(iAA)、イソプロパノール、4-メチル-2-ペンタノール(MIBC)、ジメチルスルホキシド、n-メチル-2-ピロリドン、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、炭酸エチレン、炭酸プロピレン(PC)、スルホラン、シクロヘプタノン、1-ヘキサノール、デカン、2-ヘプタノン、酪酸ブチル、イソ酪酸イソブチル、プロピオン酸ペンチル、プロピオン酸イソペンチル、エチルシクロヘキサン、メシチレン、デカン、ウンデカン、3,7-ジメチル-3-オクタノール、2-エチル-1-ヘキサノール、1-オクタノール、2-オクタノール、アセト酢酸エチル、マロン酸ジメチル、ピルビン酸メチル、及び、シュウ酸ジメチルからなる群から選択される少なくとも1種が好ましい。
 なお、有機溶剤は1種を単独で用いても、2種以上を併用してもよい。
 なお、薬液中における有機溶剤の種類及び含有量は、ガスクロマトグラフ質量分析計を用いて測定できる。
 有機溶剤は、本発明の効果(具体的には、長期間保存後においても欠陥抑制性能に優れること。以下同様。)がより発揮される点から、エステル構造を有するのが好ましい。エステル構造を有する有機溶剤としては、脂肪族カルボン酸アルキルエステル、脂環族カルボン酸アルキルエステル、および、置換脂肪族カルボン酸アルキルエステル(すなわち、脂肪族部分に置換基を有する脂肪族カルボン酸アルキルエステル)が挙げられ、アルキルエステル部分のアルキル基は置換基を有していてもよい。置換基としては、ヒドロキシ基、エーテル結合、チオール基、スルフィド結合、アミノ基、エステル結合、芳香族基(例えば、フェニル基)等が挙げられる。また、アルキルエステル部分におけるアルキル基は、直鎖状であっても、分岐状であっても、1または2以上の環を形成していてもよい。
 エステル構造を有する有機溶剤の具体例としては、アルキレングリコールモノアルキルエーテルカルボキシレート、酢酸アルキルエステル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトンが挙げられ、本発明の効果がより発揮される点から、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸エチル(EL)、酢酸ブチル(nBA)及び酢酸イソアミル(iAA)からなる群より選択される少なくとも1種が好ましい。
 有機溶剤のSP(Solubility Parameter)値は、21以下が好ましく、20以下がより好ましく、19以下が特に好ましい。
 有機溶剤のSP値が小さい系(疎水的な系)では、有機溶剤における溶媒和の作用が小さくなるため、相対的に酸成分(特に有機酸)と金属成分との相互作用が高くなり、錯体の形成による欠陥が生じやすいという問題がある。この問題に対して、酸成分(特に有機酸)の含有量を低減させた本薬液を使用すれば、錯体の形成を抑制できるので、SP値が小さい有機溶剤を使用しても、欠陥抑制性能の効果が充分に発現する。
 有機溶剤のSP値の下限値は、本発明の効果がより発揮される点から、14.5以上が好ましく、15.0以上がより好ましい。
 SP値は、「Properties of Polymers、第二版、1976出版」に記載のFedors法を用いて計算されたものである。なお、SP値の単位は特に記載が無い限りはMPa1/2である。
 本発明の効果がより発揮される点から、有機溶剤のうち、沸点が250℃以下の有機溶剤の含有量が、有機溶剤の全質量に対して、90質量%以上が好ましい。
 沸点が250℃以下の有機溶剤の含有量は、本発明の効果がより発揮される点から、有機溶剤の全質量に対して、90質量%以上が好ましく、95質量%以上がより好ましく、99質量%以上が更に好ましく、100質量%が特に好ましい。
 有機溶剤の沸点は、250℃以下が好ましく、170℃以下がより好ましい。
 ここで、有機溶剤の沸点が170℃以上である場合、基板上に塗布した薬液の乾燥速度は低下するが、スピン塗布での液膜の乾燥前に、金属成分及び酸成分等により形成される粒子が溶剤とともに基板の外に飛ばされて、除去しやすくなる。一方で、有機溶剤の沸点が170℃以下である場合、粒子が基板に残留しやすくなるという問題がある。この問題に対して、本薬液を使用すれば、粒子の形成を抑制できるので、沸点が低い有機溶剤を使用しても、欠陥抑制性能の効果が充分に発現する。
 したがって、沸点が170℃以下であり、かつ、上述のSP値が21以下の有機溶剤(例えば、プロピレングリコールモノメチルエーテルアセテート、酢酸ブチル及び酢酸イソアミル)を使用する場合であっても、本薬液を使用すれば、欠陥抑制性能の効果が充分に発揮される。
 なお、有機溶剤の沸点の下限値は、特に限定されないが、80℃以上が好ましく、90℃以上がより好ましい。
〔酸成分〕
 本薬液は、酸成分を含有する。
 酸成分は、薬液の製造工程において意図的に添加されてもよいし、もともと被精製物に含有されていてもよいし、又は、薬液の製造過程において、薬液の製造装置等から移行(いわゆるコンタミネーション)したものであってもよい。
 酸成分の含有量は、本薬液の全質量に対して、1質量ppt以上15質量ppm以下であり、1質量ppm以下が好ましく、0.1質量ppm以下がより好ましく、また、10質量ppt以上が好ましく、30質量ppt以上がより好ましい。
 酸成分の含有量は、特に限定されず、pHが所望の範囲内になるように適宜設定すればよい。
 酸成分は1種を単独で用いても、2種以上を併用してもよい。2種以上の酸成分を含有する場合には、合計含有量が上記範囲内である。
 酸成分としては、特に限定されないが、有機酸及び無機酸が挙げられる。酸成分は、薬液中で電離してイオンとして存在していてもよい。
<有機酸>
 有機酸としては、有機カルボン酸、有機スルホン酸、有機リン酸及び有機ホスホン酸等が挙げられ、有機カルボン酸が好ましい。
 有機カルボン酸としては、ギ酸、酢酸、プロピオン酸、n-ブタン酸、ペンタン酸、乳酸、アジピン酸、マレイン酸、フマル酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、ヒドロキシエチルイミノ二酢酸、イミノ二酢酸等が挙げられる。
 有機スルホン酸としては、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、及び、p-トルエンスルホン酸等が挙げられる。
 有機リン酸としては、モノ又はジオクチルリン酸、モノ又はジドデシルリン酸、モノ又はジオクタデシルリン酸、及び、モノ又はジ-(ノニルフェニル)リン酸等が挙げられる。
 有機ホスホン酸としては、1-ヒドロキシエタン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)等が挙げられる。
 有機酸のpKaは、金属成分との錯体の形成をより抑制できる点から、5以下が好ましい、4以下がより好ましい。
 有機酸のpKaの下限値は、本発明の効果がより発揮される点から、-11以上が好ましく、-9以上がより好ましい。
 ここで、pKa(酸解離定数)とは、水溶液中でのpKaを意味し、例えば、化学便覧(II)(改訂4版、1993年、日本化学会編、丸善株式会社)に記載のものであり、この値が低いほど酸強度が大きいことを示している。水溶液中でのpKaは、具体的には、無限希釈水溶液を用い、25℃での酸解離定数を測定することにより実測することができ、また、下記ソフトウェアパッケージ1を用いて、ハメットの置換基定数及び公知文献値のデータベースに基づいた値を、計算により求めることもできる。本明細書中に記載したpKaの値は、全て、このソフトウェアパッケージを用いて計算により求めた値を示している。
 (ソフトウェアパッケージ1)Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs)
 有機酸の沸点は、欠陥抑制性能がより優れる点から、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が特に好ましい。
 有機酸の沸点の下限値は、特に限定されないが、100℃以上が好ましく、110℃以上がより好ましい。
 酸成分が有機酸を含む場合、有機酸の含有量は、欠陥抑制性能がより優れる点から、本薬液の全質量に対して、1質量ppm以下が好ましく、0.5質量ppm以下がより好ましく、0.1質量ppm以下が特に好ましい。
 酸成分が有機酸を含む場合、有機酸の含有量の下限値は、本発明の効果がより発揮される点から、本薬液の全質量に対して、5質量ppt以上が好ましく、10質量ppt以上がより好ましい。
 有機酸は1種を単独で用いても、2種以上を併用してもよい。2種以上の有機酸を含有する場合には、合計含有量が上記範囲内であるのが好ましい。
 有機酸のうち、有機溶剤の沸点以上の有機酸の含有量は、欠陥抑制性能がより優れる点から、有機酸の全質量に対して、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が特に好ましい。
 有機溶剤の沸点以上の有機酸の含有量の下限は、本発明の効果がより発揮される点から、有機酸の全質量に対して、0質量%以上が好ましく、0.01質量%以上がより好ましい。
 有機溶剤が酢酸ブチルを含む場合、酸成分が酢酸を含むのが好ましい。この場合、酢酸の含有量は、欠陥抑制性能がより優れる点から、本薬液の全質量に対して、0.001~15質量ppmが好ましく、0.001~10質量ppmがより好ましく、0.001~5質量ppmが特に好ましい。
 また、有機溶剤が酢酸ブチルを含む場合、酸成分はn-ブタン酸を含むのが好ましい。この場合、n-ブタン酸の含有量が、本薬液の全質量に対して、1質量ppt以上1質量ppm以下が好ましく、1質量ppt以上0.5質量ppm以下がより好ましく、1質量ppt以上0.1質量ppm以下が特に好ましい。
 有機溶剤が酢酸ブチルを含む場合、酸成分は、欠陥抑制性能がより優れる点から、酢酸及びn-ブタン酸の両方を含むのが好ましい。この場合、各成分の含有量の好適範囲は上記の通りである。
<無機酸>
 無機酸としては、ホウ酸、硝酸、塩酸、硫酸及びリン酸が挙げられる。
 酸成分が無機酸を含む場合、無機酸の含有量は、欠陥抑制性能がより優れる点から、本薬液の全質量に対して、120質量ppb以下が好ましく、1質量ppb以下がより好ましく、0.6質量ppb以下が特に好ましい。
 無機酸の含有量の下限値は、本発明の効果がより発揮される点から、本薬液の全質量に対して、0質量ppb以上が好ましく、0.001質量ppb以上がより好ましい。
〔金属成分〕
 本薬液は、金属成分を含有する。金属成分としては、金属含有粒子及び金属イオンが挙げられ、例えば、金属成分の含有量という場合、金属含有粒子及び金属イオンの合計含有量を意味する。
 薬液の製造方法の好適形態は後述するが、一般に薬液は、既に説明した溶剤と、有機化合物とを含有する被精製物を精製して製造できる。金属成分は、薬液の製造工程において意図的に添加されてもよいし、もともと被精製物に含有されていてもよいし、又は、薬液の製造過程において、薬液の製造装置等から移行(いわゆるコンタミネーション)したものであってもよい。
 金属成分の含有量は、本薬液の全質量に対して、0.001~100質量pptであり、本発明の効果がより発揮される点から、0.001~10質量pptが好ましく、0.001~5質量pptがより好ましい。
 金属成分の含有量は、後述のICP-MS法によって測定される。
 本薬液において、金属成分の含有量に対する酸成分の含有量の質量割合(酸成分/金属成分)は、欠陥抑制性能がより優れる点から、10-2~10が好ましく、1~10がより好ましく、10~10が更に好ましく、10~10が特に好ましく、10~10が最も好ましい。
<金属含有粒子>
 本薬液は、金属原子を含有する金属含有粒子を含有してもよい。
 金属原子としては特に制限されないが、Pb(鉛)原子、Na(ナトリウム)原子、K(カリウム)原子、Ca(カルシウム)原子、Fe(鉄)原子、Cu(銅)原子、Mg(マグネシウム)原子、Mn(マンガン)原子、Li(リチウム)原子、Al(アルミニウム)原子、Cr(クロム)原子、Ni(ニッケル)原子、Ti(チタン)原子、Zn(亜鉛)原子、及び、Zr(ジルコニウム)原子が挙げられる。なかでも、Fe原子、Al原子、Cr原子、Ni原子、Pb原子、Zn原子、及び、Ti原子等が好ましい。
 特に、Fe原子、Al原子、Pb原子、Zn原子、及び、Ti原子を含有する金属含有粒子の薬液中の含有量を厳密に制御すると、より優れた欠陥抑制性能が得られやすく、Pb原子、及び、Ti原子を含有する金属含有粒子の薬液中における含有量を厳密に制御すると、更に優れた欠陥抑制性能が得られやすい。
 すなわち、金属原子としては、Fe原子、Al原子、Cr原子、Ni原子、Pb原子、Zn原子、及び、Ti原子等からなる群より選択される少なくとも1種が好ましく、Fe原子、Al原子、Pb原子、Zn原子、及び、Ti原子からなる群より選択される少なくとも1種がより好ましく、Pb原子、及び、Ti原子からなる群より選択される少なくとも1種が更に好ましく、金属含有粒子は、Pb原子、及び、Ti原子のいずれをも含有するのが特に好ましい。
 なお、金属含有粒子は、上記金属原子を、1種を単独で含有しても、2種以上を併せて含有してもよい。
 金属含有粒子の粒子径としては特に制限されないが、例えば、半導体デバイス製造用の薬液においては0.1~100nm程度の粒子径を有する粒子の薬液中における含有量が制御の対象とされる場合が多い。
 なかでも本発明者らの検討によれば、特にEUV(極紫外線)露光のフォトレジストプロセスに適用される薬液においては、その粒子径が、0.5~17nmの金属含有粒子(以下、「金属ナノ粒子」ともいう。)の薬液中における含有量を制御することにより、優れた欠陥抑制性能を有する薬液が得られやすいことがわかった。EUV露光のフォトレジストプロセスにおいては、微細なレジスト間隔、レジスト幅、及び、レジストピッチが求められる場合が多い。このような場合、従来のプロセスではあまり問題とならなかった、より微細な粒子をその個数単位で制御することが求められるのである。
 金属含有粒子の個数基準の粒子径分布としては特に制限されないが、より優れた本発明の効果を有する薬液が得られる点で、粒子径5nm未満の範囲、及び、粒子径17nmを超える範囲からなる群より選択される少なくとも一方に極大値を有するのが好ましい。
 言い換えれば、粒子径が5~17nmの範囲には極大値を有しないのが好ましい。粒子径が5~17nmの範囲には極大値を有さないことにより、薬液はより優れた欠陥抑制性能、特に、より優れたブリッジ欠陥抑制性能を有する。ここで、ブリッジ欠陥とは、配線パターン同士の架橋様の不良を意味する。
 また、更に優れた本発明の効果を有する薬液が得られる点で、個数基準の粒子径分布において、粒子径が0.5nm以上、5nm未満の範囲に極大値を有するのが特に好ましい。上記により、薬液は更に優れたブリッジ欠陥抑制性能を有する。
 金属含有粒子の含有量は、本薬液の全質量に対して、0.00001~10質量pptが好ましく、0.0001~5質量pptがより好ましく、0.0001~0.5質量pptが特に好ましい。金属含有粒子の含有量が上記範囲にあれば、欠陥抑制性能(特に、薬液収容体の長期間保存後における欠陥抑制性能)に優れた薬液が得られる。
 薬液中の金属含有粒子の種類及び含有量は、SP-ICP-MS法(Single Nano Particle Inductively Coupled Plasma Mass Spectrometry)で測定できる。
 ここで、SP-ICP-MS法とは、通常のICP-MS法(誘導結合プラズマ質量分析法)と同様の装置を使用し、データ分析のみが異なる。SP-ICP-MS法のデータ分析は、市販のソフトウェアにより実施できる。
 ICP-MS法では、測定対象とされた金属成分の含有量が、その存在形態に関わらず、測定される。したがって、測定対象とされた金属含有粒子と、金属イオンとの合計質量が、金属成分の含有量として定量される。
 一方、SP-ICP-MS法では、金属含有粒子の含有量が測定できる。したがって、試料中の金属成分の含有量から、金属含有粒子の含有量を引くと、試料中の金属イオンの含有量が算出できる。
 SP-ICP-MS法の装置としては、例えば、アジレントテクノロジー社製、Agilent 8800 トリプル四重極ICP-MS(inductively coupled plasma mass spectrometry、半導体分析用、オプション#200)が挙げられ、実施例に記載した方法により測定できる。上記以外の他の装置としては、PerkinElmer社製 NexION350Sのほか、アジレントテクノロジー社製、Agilent 8900も使用できる。
(金属ナノ粒子)
 金属ナノ粒子は、金属含有粒子のうち、その粒子径が0.5~17nmのものをいう。
 薬液の単位体積あたりの金属ナノ粒子の含有粒子数は、1.0×10-2~1.0×10個/cmが好ましく、本発明の効果がより発揮される点から、1.0×10-1個/cm以上が好ましく、5.0×10-1個/cm以上がより好ましく、1.0×10個/cm以下が好ましく、1.0×10個/cm以下がより好ましく、1.0×10個/cm以下が更に好ましい。
 特に、薬液の単位体積あたりの金属ナノ粒子の含有粒子数が、5.0×10-1~1.0×10個/cmであると、薬液はより優れた欠陥抑制性能を有する。
 なお、薬液中における金属ナノ粒子の含有量は、実施例に記載した方法により測定でき、金属ナノ粒子の薬液の単位体積あたりの粒子数(個数)は、有効数字が2桁となるように四捨五入して求める。
 金属ナノ粒子に含有される金属原子としては特に制限されないが、金属含有粒子に含有される金属原子としてすでに説明した原子と同様である。なかでも、より優れた本発明の効果を有する薬液が得られる点で、金属原子としては、Pb原子、及び、Ti原子からなる群より選択される少なくとも1種が好ましく、金属ナノ粒子はPb原子、及び、Ti原子の両方を含有するのがより好ましい。金属ナノ粒子がPb原子及びTi原子の両方を含有するとは、典型的には、薬液が、Pb原子を含有する金属ナノ粒子とTi原子を含有する金属ナノ粒子の両方を含有する形態が挙げられる。
 なお、薬液中におけるPb原子を含有する金属ナノ粒子(以下、「Pbナノ粒子」ともいう。)及び、Ti原子を含有する金属ナノ粒子(以下、「Tiナノ粒子」ともいう。)の含有粒子数比(Pb/Ti)としては特に制限されないが、一般に、1.0×10-4~3.0が好ましく、1.0×10-3~2.0がより好ましく、1.0×10-2~1.5が特に好ましい。Pb/Tiが1.0×10-3~2.0であると、薬液はより優れた本発明の効果、特に、より優れたブリッジ欠陥抑制性能を有する。
 Pbナノ粒子とTiナノ粒子は、例えば、薬液をウェハ上に塗布した際等に会合しやすく、レジスト膜の現像の際に欠陥の原因(特にブリッジ欠陥の原因)になりやすいことを、本発明者らは知見している。
 Pb/Tiが1.0×10-3~2.0であると、驚くべきことに、欠陥の発生がより抑制されやすい。なお、本明細書においてPb/Ti及び後述するA/(B+C)は有効数字が2桁となるように四捨五入して求める。
 金属ナノ粒子は金属原子を含有していればよく、その形態は特に制限されない。例えば、金属原子の単体、金属原子を含有する化合物(以下「金属化合物」ともいう。)、並びに、これらの複合体等が挙げられる。また、金属ナノ粒子は複数の金属原子を含有してもよい。なお、金属ナノ粒子が複数の金属を含有する場合、上記複数の金属のうち最も含有量(atm%)の多い金属原子を主成分とする。従って、Pbナノ粒子というときには、複数の金属を含有している場合にあっては、複数の金属のうちで、Pb原子が主成分であることを意味する。
 複合体としては特に制限されないが、金属原子の単体と、上記金属原子の単体の少なくとも一部を覆う金属化合物と、を有するいわゆるコア-シェル型の粒子、金属原子と他の原子とを含む固溶体粒子、金属原子と他の原子とを含む共晶体粒子、金属原子の単体と金属化合物との凝集体粒子、種類の異なる金属化合物の凝集体粒子、及び、粒子表面から中心に向かって連続的又は断続的に組成が変化する金属化合物等が挙げられる。
 金属化合物が含有する金属原子以外の原子としては特に制限されないが、例えば、炭素原子、酸素原子、窒素原子、水素原子、硫黄原子、及び、燐原子等が挙げられ、中でも、酸素原子が好ましい。金属化合物が酸素原子を含有する形態としては特に制限されないが、金属原子の酸化物がより好ましい。
 より優れた本発明の効果を有する薬液が得られる点で、金属ナノ粒子としては、金属原子の単体からなる粒子(粒子A)、金属原子の酸化物からなる粒子(粒子B)、並びに、金属原子の単体及び金属原子の酸化物からなる粒子(粒子C)からなる群より選択される少なくとも1種からなるのが好ましい。
 なお、薬液の単位体積あたりの、金属ナノ粒子の含有粒子数における、粒子Aの含有粒子数、粒子Bの含有粒子数、及び、粒子Cの含有粒子数の関係としては特に制限されないが、より優れた本発明の効果を有する薬液が得られる点で、粒子Bの含有粒子数と粒子Cの含有粒子数との合計に対する、粒子Aの含有粒子数の含有粒子数比(以下、「A/(B+C)」ともいう。)が、1.5以下が好ましく、1.0未満がより好ましく、2.0×10-1以下が更に好ましく、1.0×10-1以下が特に好ましく、1.0×10-3以上が好ましく、1.0×10-2以上がより好ましい。
 A/(B+C)が1.0未満であると、薬液は、より優れたブリッジ欠陥抑制性能、より優れたパターン幅の均一性能、及び、シミ状欠陥抑制性能を有する。なお、シミ状欠陥とは、金属原子が検出されなかった欠陥を意味する。
 また、A/(B+C)が0.1以下であると、薬液は、より優れた欠陥抑制性能を有する。
<金属イオン>
 本薬液は、金属イオンを含有してもよい。
 金属イオンとしては、Pb(鉛)、Na(ナトリウム)、K(カリウム)、Ca(カルシウム)、Fe(鉄)、Cu(銅)、Mg(マグネシウム)、Mn(マンガン)、Li(リチウム)、Al(アルミニウム)、Cr(クロム)、Ni(ニッケル)、Ti(チタン)、Zn(亜鉛)、及び、Zr(ジルコニウム)などの金属原子のイオンが挙げられる。
 金属イオンの含有量は、本薬液の全質量に対して、0.01~100質量pptが好ましく、0.01~10質量pptがより好ましく、0.01~5質量pptが特に好ましい。金属イオンの含有量が上記範囲にあれば、欠陥抑制性能(特に、薬液収容体の長期間保存後における欠陥抑制性能)に優れた薬液が得られる。
 薬液中の金属イオンの含有量は、上述の通り、ICP-MS法で測定した薬液中の金属成分の含有量から、SP-ICP-MS法で測定した金属含有粒子の含有量を引くことで求められる。
 金属イオンの含有量に対する、金属含有粒子の含有量の質量割合(金属含有粒子/金属イオン)は、本発明の効果がより発揮される点から、0.00001~1が好ましく、0.0001~0.2がより好ましく、0.001~0.05が特に好ましい。
〔他の成分〕
 薬液は、上記以外の他の成分を含有してもよい。他の成分としては、例えば、有機溶剤以外の有機化合物(特に、沸点が300℃以上の有機化合物)、水、及び、樹脂等が挙げられる。
<有機溶剤以外の有機化合物>
 薬液は、有機溶剤以外の有機化合物(以下、「特定有機化合物」ともいう。)を含有してもよい。本明細書において、特定有機化合物とは、薬液に含有される有機溶剤とは異なる化合物であって、本薬液の全質量に対して、10000質量ppm以下の含有量で含有される有機化合物を意味する。つまり、本明細書においては、本薬液の全質量に対して10000質量ppm以下の含有量で含有される有機化合物は、特定有機化合物に該当し、有機溶剤には該当しないものとする。
 なお、複数種の特定有機化合物が薬液に含有される場合であって、各特定有機化合物が上述した10000質量ppm以下の含有量で含有される場合には、それぞれが特定有機化合物に該当する。
 特定有機化合物は、薬液中に添加されてもよいし、薬液の製造工程において意図せず混合されるものであってもよい。薬液の製造工程において意図せず混合される場合としては例えば、特定有機化合物が、薬液の製造に用いる原料(例えば、有機溶剤)に含有されている場合、及び、薬液の製造工程で混合する(例えば、コンタミネーション)等が挙げられるが、上記に制限されない。
 なお、本薬液中における特定有機化合物の含有量は、GCMS(ガスクロマトグラフ質量分析装置;gas chromatography mass spectrometry)を用いて測定することができる。
 特定有機化合物の炭素数としては特に制限されないが、薬液がより優れた本発明の効果を有する点で、8以上が好ましく、12以上がより好ましい。なお、炭素数の上限として特に制限されないが、一般に30以下が好ましい。
 特定有機化合物としては、例えば、有機溶剤の合成に伴い生成する副生成物、及び/又は、未反応の原料(以下、「副生成物等」ともいう。)等であってもよい。
 上記副生成物等としては、例えば、下記の式I~Vで表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式I中、R及びRは、それぞれ独立に、アルキル基、若しくは、シクロアルキル基を表すか、又は、互いに結合し、環を形成している。
 R及びRにより表されるアルキル基、又は、シクロアルキル基としては、炭素数1~12のアルキル基、又は、炭素数6~12のシクロアルキル基が好ましく、炭素数1~8のアルキル基、又は、炭素数6~8のシクロアルキル基がより好ましい。
 R及びRが互いに結合して形成する環は、ラクトン環であり、4~9員環のラクトン環が好ましく、4~6員環のラクトン環がより好ましい。
 なお、R及びRは、式Iで表される化合物の炭素数が8以上となる関係を満たすことが好ましい。
 式II中、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、若しくは、シクロアルケニル基を表すか、又は、互いに結合して環を形成している。但し、R及びRの双方が水素原子であることはない。
 R及びRにより表されるアルキル基としては、例えば、炭素数1~12のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましい。
 R及びRにより表されるアルケニル基としては、例えば、炭素数2~12のアルケニル基が好ましく、炭素数2~8のアルケニル基がより好ましい。
 R及びRにより表されるシクロアルキル基としては、炭素数6~12のシクロアルキル基が好ましく、炭素数6~8のシクロアルキル基がより好ましい。
 R及びRにより表されるシクロアルケニル基としては、例えば、炭素数3~12のシクロアルケニル基が好ましく、炭素数6~8のシクロアルケニル基がより好ましい。
 R及びRが互いに結合して形成する環は、環状ケトン構造であり、飽和環状ケトンであってもよく、不飽和環状ケトンであってもよい。この環状ケトンは、6~10員環が好ましく、6~8員環がより好ましい。
 なお、R及びRは、式IIで表される化合物の炭素数が8以上となる関係を満たすことが好ましい。
 式III中、Rは、アルキル基又はシクロアルキル基を表す。
 Rにより表されるアルキル基は、炭素数6以上のアルキル基が好ましく、炭素数6~12のアルキル基がより好ましく、炭素数6~10のアルキル基が更に好ましい。
 上記アルキル基は、鎖中にエーテル結合を有していてもよく、ヒドロキシ基等の置換基を有していてもよい。
 Rにより表されるシクロアルキル基は、炭素数6以上のシクロアルキル基が好ましく、炭素数6~12のシクロアルキル基がより好ましく、炭素数6~10のシクロアルキル基が更に好ましい。
 式IV中、R及びRは、それぞれ独立に、アルキル基若しくはシクロアルキル基を表すか、又は、互いに結合し、環を形成している。
 R及びRにより表されるアルキル基としては、炭素数1~12のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましい。
 R及びRにより表されるシクロアルキル基としては、炭素数6~12のシクロアルキル基が好ましく、炭素数6~8のシクロアルキル基がより好ましい。
 R及びRが互いに結合して形成する環は、環状エーテル構造である。この環状エーテル構造は、4~8員環であることが好ましく、5~7員環であることがより好ましい。
 なお、R及びRは、式IVで表される化合物の炭素数が8以上となる関係を満たすことが好ましい。
 式V中、R及びRは、それぞれ独立に、アルキル基、若しくは、シクロアルキル基を表すか、又は、互いに結合し、環を形成している。Lは、単結合又はアルキレン基を表す。
 R及びRにより表されるアルキル基としては、例えば、炭素数6~12のアルキル基が好ましく、炭素数6~10のアルキル基がより好ましい。
 R及びRにより表されるシクロアルキル基としては、炭素数6~12のシクロアルキル基が好ましく、炭素数6~10のシクロアルキル基がより好ましい。
 R及びRが互いに結合して形成する環は、環状ジケトン構造である。この環状ジケトン構造は、6~12員環であることが好ましく、6~10員環であることがより好ましい。
 Lにより表されるアルキレン基としては、例えば、炭素数1~12のアルキレン基が好ましく、炭素数1~10のアルキレン基がより好ましい。
 なお、R、R及びLは、式Vで表される化合物の炭素数が8以上となる関係を満たす。
 特に制限されないが、有機溶剤が、アミド化合物、イミド化合物及びスルホキシド化合物である場合は、一形態において、炭素数が6以上のアミド化合物、イミド化合物及びスルホキシド化合物が挙げられる。また、特定有機化合物としては、例えば、下記化合物も挙げられる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 また、特定有機化合物としては、ジブチルヒドロキシトルエン(BHT)、ジステアリルチオジプロピオネート(DSTP)、4,4’-ブチリデンビス-(6-t-ブチル-3-メチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、及び、特開2015-200775号公報に記載されている酸化防止剤等の酸化防止剤;未反応の原料;有機溶剤の製造時に生じる構造異性体及び副生成物;有機溶剤の製造装置を構成する部材等からの溶出物(例えば、Oリングなどのゴム部材から溶出した可塑剤);等も挙げられる。
 また、特定有機化合物としては、フタル酸ジオクチル(DOP)、フタル酸ビス(2-エチルヘキシル)(DEHP)、フタル酸ビス(2-プロピルヘプチル)(DPHP)、フタル酸ジブチル(DBP)、フタル酸ベンジルブチル(BBzP)、フタル酸ジイソデシル(DIDP)、フタル酸ジイソオクチル(DIOP)、フタル酸ジエチル(DEP)、フタル酸ジイソブチル(DIBP)、フタル酸ジヘキシル、フタル酸ジイソノニル(DINP)、トリメリット酸トリス(2-エチルヘキシル)(TEHTM)、トリメリット酸トリス(n-オクチル-n-デシル)(ATM)、アジピン酸ビス(2-エチルヘキシル)(DEHA)、アジピン酸モノメチル(MMAD)、アジピン酸ジオクチル(DOA)、セバシン酸ジブチル(DBS)、マレイン酸ジブチル(DBM)、マレイン酸ジイソブチル(DIBM)、アゼライン酸エステル、安息香酸エステル、テレフタレート(例:ジオクチルテレフタレート(DEHT))、1,2-シクロヘキサンジカルボン酸ジイソノニルエステル(DINCH)、エポキシ化植物油、スルホンアミド(例:N-(2-ヒドロキシプロピル)ベンゼンスルホンアミド(HP BSA)、N-(n-ブチル)ベンゼンスルホンアミド(BBSA-NBBS))、有機リン酸エステル(例:リン酸トリクレジル(TCP)、リン酸トリブチル(TBP))、アセチル化モノグリセリド、クエン酸トリエチル(TEC)、アセチルクエン酸トリエチル(ATEC)、クエン酸トリブチル(TBC)、アセチルクエン酸トリブチル(ATBC)、クエン酸トリオクチル(TOC)、アセチルクエン酸トリオクチル(ATOC)、クエン酸トリへキシル(THC)、アセチルクエン酸トリへキシル(ATHC)エポキシ化大豆油、エチレンプロピレンゴム、ポリブテン、5-エチリデン-2-ノルボルネンの付加重合体、及び、以下に例示される高分子可塑剤も挙げられる。
 これらの特定有機化合物は、精製工程で触れるフィルター、配管、タンク、O-ring、及び、容器等から被精製物又は薬液へと混入するものと推定される。特に、アルキルオレフィン以外の化合物は、ブリッジ欠陥の発生に関連する。
Figure JPOXMLDOC01-appb-C000004
(特定の極性構造を有する有機化合物)
 本薬液は、特定有機化合物のうち、以下の特定の極性構造を有する有機化合物を含有してもよい。特定の極性構造を有する有機化合物は、アミド構造を有する化合物、スルホンアミド構造を有する化合物、ホスホンアミド構造を有する化合物、イミド構造を有する化合物、ウレア構造を有する化合物、ウレタン構造を有する化合物、及び、有機酸エステルからなる群より選択される少なくとも1種の有機化合物を含むのが好ましい。
 アミド構造を有する化合物としては、オレイン酸アミド、ステアリン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、メチレンビスオクダデカン酸アミド(707℃)、エチレンビスオクダデカン酸アミド、等が挙げられる。
 スルホンアミド構造を有する化合物としては、N-エチル-o-トルエンスルホンアミド、N-エチル-p-トルエンスルホンアミド、N-(2-ヒドロキシプロピル)ベンゼンスルホンアミド、N-ブチルベンゼンスルホンアミド等が挙げられる。
 イミド構造を有する化合物としては、フタルイミド(366℃)、ヘキサヒドロフタルイミド、N-2-エチルヘキシルフタルイミド、N-ブチルフタルイミド、N-イソプロピルフタルイミド等が挙げられる。
 ウレア構造を有する化合物としては、脂肪族ジウレア、脂環族ジウレア、芳香族ジウレアが挙げられる。
 有機酸エステルとしては、本発明の効果がより発揮される点から、フタル酸ジオクチル(沸点385℃)、フタル酸ジイソノニル(沸点403℃)、及び、フタル酸ジブチル(沸点340℃)等のフタル酸エステル、ならびに、テレフタル酸ビス(2-エチルヘキシル)(沸点416℃/101.3kPa)、からなる群より選択される少なくとも1種を含むのが好ましい。
 特定の極性構造を有する有機化合物の含有量は、本薬液の全質量に対して、5質量ppm以下が好ましく、欠陥抑制性能がより優れる点から、1質量ppm以下がより好ましく、0.1質量ppm以下がさらに好ましく、0.01質量ppm以下が特に好ましい。
 特定の極性構造を有する有機化合物の含有量の下限値は、本発明の効果がより発揮される点から、本薬液の全質量に対して、0.0001質量ppm以上が好ましく、0.001質量ppm以上がより好ましい。
(沸点が300℃以上の有機化合物)
 本薬液は、上記特定の極性構造を有する有機化合物のうち、沸点が300℃以上の有機化合物(以下、「高沸点有機化合物」ともいう。)を含有してもよい。本薬液が高沸点有機化合物を含有する場合、沸点が高く、フォトリソグラフィのプロセス中には揮発し難い。そのため、優れた欠陥抑制性能を有する薬液を得るためには、高沸点有機化合物の薬液中における含有量、及び、存在形態等を厳密に管理するのが好ましい。
 高沸点有機化合物の含有量は、本薬液の全質量に対して、5質量ppm以下が好ましく、欠陥抑制性能がより優れる点から、1質量ppm以下がより好ましく、0.1質量ppm以下がさらに好ましく、0.01質量ppm以下が特に好ましい。
 高沸点有機化合物の含有量の下限値は、本発明の効果がより発揮される点から、本薬液の全質量に対して、0.0001質量ppm以上が好ましく、0.001質量ppm以上がより好ましい。
 上記の極性構造を有する有機化合物または高沸点有機化合物が薬液中に含有される場合、様々な形態があることを本発明者らは見出している。極性構造を有する有機化合物または高沸点有機化合物の薬液中における存在形態としては、金属原子又は金属化合物からなる粒子と、極性構造を有する有機化合物または高沸点有機化合物粒子とが凝集した粒子;金属原子又は金属化合物からなる粒子と、上記粒子の少なくとも一部を被覆するように配置された極性構造を有する有機化合物または高沸点有機化合物とを有する粒子;金属原子と極性構造を有する有機化合物または高沸点有機化合物とが配位結合して形成された粒子;等が挙げられる。
 なかでも、薬液の欠陥抑制性能に与える影響が大きい形態として、極性構造を有する有機化合物または高沸点有機化合物を含有する金属ナノ粒子(粒子U)が挙げられる。本発明者らは、上記粒子Uの薬液の単位体積あたりの含有粒子数を制御することで、飛躍的に薬液の欠陥抑制性能が向上することを見出している。
 この理由は必ずしも明らかではないが、粒子Uは、極性構造を有する有機化合物または高沸点有機化合物を含有しない金属ナノ粒子(粒子V)と比較して、相対的に表面自由エネルギーが小さくなりやすい。このような粒子Uは、薬液で処理した基板上に残存しにくく、また、残存したとしても、再度薬液に接触した際に、除去されやすい。例えば、薬液を現像液及びリンス液として用いるような場合には、現像時には、基板上に粒子Uがより残存しにくく、更に、リンス等により除去されやすい。すなわち、結果として、高沸点有機化合物、及び、金属原子を含有する粒子の両方がより除去されやすくなる。
 また、一般にレジスト膜は、撥水的であることが多いため、表面エネルギーがより低い粒子Uは基板上に残りにくいと推測される。
 薬液の単位体積あたりの、粒子Vの含有粒子数に対する、粒子Uの含有粒子数の含有粒子数比としては、より優れた本発明の効果を有する薬液が得られる点で、10以上が好ましく、1.0×10以下が好ましく、50以下がより好ましく、35以下が更に好ましく、25以下が特に好ましい。
<水>
 本薬液は、水を含有してもよい。水としては特に制限されず、例えば、蒸留水、イオン交換水、及び、純水等が挙げられる。
 水は、薬液中に添加されてもよいし、薬液の製造工程において意図せずに薬液中に混合されるものであってもよい。薬液の製造工程において意図せずに混合される場合としては、例えば、水が、薬液の製造に用いる原料(例えば、有機溶剤)に含有されている場合、及び、薬液の製造工程で混合する(例えば、コンタミネーション)等が挙げられるが、上記に制限されない。
 水の含有量は、本薬液の全質量に対して、30質量ppm以下が好ましく、1質量ppm以下がより好ましく、0~0.6質量ppmがさらに好ましく、0~0.3質量ppmが特に好ましい。水の含有量が1質量ppm以下であると、金属成分と酸成分との錯体の形成が抑制されるので、欠陥抑制性能(特に、薬液収容体の長期間保存後における欠陥抑制性能)に優れた薬液が得られる。
 本薬液中における水の含有量は、カールフィッシャー水分測定法を測定原理とする装置を用いて、測定される水分含有量を意味する。
<樹脂>
 本薬液は、樹脂を含有してもよい。樹脂としては、酸の作用により分解して極性基を生じる基を有する樹脂Pがより好ましい。上記樹脂としては、酸の作用により有機溶剤を主成分とする現像液に対する溶解性が減少する樹脂である、後述する式(AI)で表される繰り返し単位を有する樹脂がより好ましい。後述する式(AI)で表される繰り返し単位を有する樹脂は、酸の作用により分解してアルカリ可溶性基を生じる基(以下、「酸分解性基」ともいう)を有する。
 極性基としては、アルカリ可溶性基が挙げられる。アルカリ可溶性基としては、例えば、カルボキシ基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、フェノール性水酸基、及びスルホ基が挙げられる。
 酸分解性基において極性基は酸で脱離する基(酸脱離性基)によって保護されている。酸脱離性基としては、例えば、-C(R36)(R37)(R38)、-C(R36)(R37)(OR39)、及び、-C(R01)(R02)(OR39)等が挙げられる。
 式中、R36~R39は、各々独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。R36とR37とは、互いに結合して環を形成してもよい。
 R01及びR02は、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。
 以下、酸の作用により有機溶剤を主成分とする現像液に対する溶解性が減少する樹脂Pについて詳述する。
(式(AI):酸分解性基を有する繰り返し単位)
 樹脂Pは、式(AI)で表される繰り返し単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(AI)に於いて、
 Xaは、水素原子又は置換基を有していてもよいアルキル基を表す。
 Tは、単結合又は2価の連結基を表す。
 Ra~Raは、それぞれ独立に、アルキル基(直鎖状又は分岐鎖状)又はシクロアルキル基(単環又は多環)を表す。
 Ra~Raの2つが結合して、シクロアルキル基(単環又は多環)を形成してもよい。
 Xaにより表される、置換基を有していてもよいアルキル基としては、例えば、メチル基、及び-CH-R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子等)、水酸基、又は1価の有機基を表す。
 Xaは、水素原子、メチル基、トリフルオロメチル基又はヒドロキシメチル基が好ましい。
 Tの2価の連結基としては、アルキレン基、-COO-Rt-基、及び、-O-Rt-基等が挙げられる。式中、Rtは、アルキレン基又はシクロアルキレン基を表す。
 Tは、単結合又は-COO-Rt-基が好ましい。Rtは、炭素数1~5のアルキレン基が好ましく、-CH-基、-(CH-基、又は、-(CH-基がより好ましい。
 Ra~Raのアルキル基としては、炭素数1~4のものが好ましい。
 Ra~Raのシクロアルキル基としては、シクロペンチル基、若しくはシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくはアダマンチル基等の多環のシクロアルキル基が好ましい。
 Ra~Raの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、若しくはシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくはアダマンチル基等の多環のシクロアルキル基が好ましい。炭素数5~6の単環のシクロアルキル基がより好ましい。
 Ra~Raの2つが結合して形成される上記シクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、又はカルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
 式(AI)で表される繰り返し単位は、例えば、Raがメチル基又はエチル基であり、RaとRaとが結合して上述のシクロアルキル基を形成している態様が好ましい。
 上記各基は、置換基を有していてもよく、置換基としては、例えば、アルキル基(炭素数1~4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1~4)、カルボキシ基、及びアルコキシカルボニル基(炭素数2~6)等が挙げられ、炭素数8以下が好ましい。
 式(AI)で表される繰り返し単位の含有量は、樹脂P中の全繰り返し単位に対して、20~90モル%が好ましく、25~85モル%がより好ましく、30~80モル%が更に好ましい。
(ラクトン構造を有する繰り返し単位)
 また、樹脂Pは、ラクトン構造を有する繰り返し単位Qを含有することが好ましい。
 ラクトン構造を有する繰り返し単位Qは、ラクトン構造を側鎖に有していることが好ましく、(メタ)アクリル酸誘導体モノマーに由来する繰り返し単位であることがより好ましい。
 ラクトン構造を有する繰り返し単位Qは、1種単独で用いてもよく、2種以上を併用していてもよいが、1種単独で用いることが好ましい。
 ラクトン構造を有する繰り返し単位Qの含有量は、樹脂P中の全繰り返し単位に対して、3~80モル%が好ましく、3~60モル%がより好ましい。
 ラクトン構造としては、5~7員環のラクトン構造が好ましく、5~7員環のラクトン構造にビシクロ構造又はスピロ構造を形成する形で他の環構造が縮環している構造がより好ましい。
 ラクトン構造としては、下記式(LC1-1)~(LC1-17)のいずれかで表されるラクトン構造を有する繰り返し単位を有することが好ましい。ラクトン構造としては式(LC1-1)、式(LC1-4)、式(LC1-5)、又は式(LC1-8)で表されるラクトン構造が好ましく、式(LC1-4)で表されるラクトン構造がより好ましい。
Figure JPOXMLDOC01-appb-C000006
 ラクトン構造部分は、置換基(Rb)を有していてもよい。好ましい置換基(Rb)としては、炭素数1~8のアルキル基、炭素数4~7のシクロアルキル基、炭素数1~8のアルコキシ基、炭素数2~8のアルコキシカルボニル基、カルボキシ基、ハロゲン原子、水酸基、シアノ基、及び酸分解性基等が挙げられる。nは、0~4の整数を表す。nが2以上のとき、複数存在する置換基(Rb)は、同一でも異なっていてもよく、また、複数存在する置換基(Rb)同士が結合して環を形成してもよい。
(フェノール性水酸基を有する繰り返し単位)
 また、樹脂Pは、フェノール性水酸基を有する繰り返し単位を含有していてもよい。
 フェノール性水酸基を有する繰り返し単位としては、例えば、下記一般式(I)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 式中、
 R41、R42及びR43は、各々独立に、水素原子、アルキル基、ハロゲン原子、シアノ基又はアルコキシカルボニル基を表す。但し、R42はArと結合して環を形成していてもよく、その場合のR42は単結合又はアルキレン基を表す。
 Xは、単結合、-COO-、又は-CONR64-を表し、R64は、水素原子又はアルキル基を表す。
 Lは、単結合又はアルキレン基を表す。
 Arは、(n+1)価の芳香環基を表し、R42と結合して環を形成する場合には(n+2)価の芳香環基を表す。
 nは、1~5の整数を表す。
 一般式(I)におけるR41、R42及びR43のアルキル基としては、置換基を有していてもよい、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基及びドデシル基など炭素数20以下のアルキル基が好ましく、炭素数8以下のアルキル基がより好ましく、炭素数3以下のアルキル基が更に好ましい。
 一般式(I)におけるR41、R42及びR43のシクロアルキル基としては、単環型でも、多環型でもよい。シクロアルキル基としては、置換基を有していてもよい、シクロプロピル基、シクロペンチル基及びシクロヘキシル基などの炭素数3~8で単環型のシクロアルキル基が好ましい。
 一般式(I)におけるR41、R42及びR43のハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子が好ましい。
 一般式(I)におけるR41、R42及びR43のアルコキシカルボニル基に含まれるアルキル基としては、上記R41、R42及びR43におけるアルキル基と同様のものが好ましい。
 上記各基における置換基としては、例えば、アルキル基、シクロアルキル基、アリール基、アミノ基、アミド基、ウレイド基、ウレタン基、ヒドロキシ基、カルボキシ基、ハロゲン原子、アルコキシ基、チオエーテル基、アシル基、アシロキシ基、アルコキシカルボニル基、シアノ基、及び、ニトロ基等が挙げられ、置換基の炭素数は8以下が好ましい。
 Arは、(n+1)価の芳香環基を表す。nが1である場合における2価の芳香環基は、置換基を有していてもよく、例えば、フェニレン基、トリレン基、ナフチレン基及びアントラセニレン基などの炭素数6~18のアリーレン基、並びに、チオフェン、フラン、ピロール、ベンゾチオフェン、ベンゾフラン、ベンゾピロール、トリアジン、イミダゾール、ベンゾイミダゾール、トリアゾール、チアジアゾール及びチアゾール等のヘテロ環を含む芳香環基が挙げられる。
 nが2以上の整数である場合における(n+1)価の芳香環基の具体例としては、2価の芳香環基の上記した具体例から、(n-1)個の任意の水素原子を除してなる基が挙げられる。
 (n+1)価の芳香環基は、更に置換基を有していてもよい。
 上述したアルキル基、シクロアルキル基、アルコキシカルボニル基、アルキレン基及び(n+1)価の芳香環基が有し得る置換基としては、例えば、一般式(I)におけるR41、R42及びR43で挙げたアルキル基;メトキシ基、エトキシ基、ヒドロキシエトキシ基、プロポキシ基、ヒドロキシプロポキシ基及びブトキシ基等のアルコキシ基;フェニル基等のアリール基が挙げられる。
 Xにより表わされる-CONR64-(R64は、水素原子又はアルキル基を表す)におけるR64のアルキル基としては、置換基を有していてもよい、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基及びドデシル基など炭素数20以下のアルキル基が挙げられ、炭素数8以下のアルキル基がより好ましい。
 Xとしては、単結合、-COO-又は-CONH-が好ましく、単結合又は-COO-がより好ましい。
 Lにおけるアルキレン基としては、置換基を有していてもよい、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基及びオクチレン基等の炭素数1~8のアルキレン基が好ましい。
 Arとしては、置換基を有していてもよい炭素数6~18の芳香環基が好ましく、ベンゼン環基、ナフタレン環基又はビフェニレン環基がより好ましい。
 一般式(I)で表される繰り返し単位は、ヒドロキシスチレン構造を備えていることが好ましい。即ち、Arは、ベンゼン環基であることが好ましい。
 フェノール性水酸基を有する繰り返し単位の含有量は、樹脂P中の全繰り返し単位に対して、0~50モル%が好ましく、0~45モル%がより好ましく、0~40モル%が更に好ましい。
(極性基を有する有機基を含有する繰り返し単位)
 樹脂Pは、極性基を有する有機基を含有する繰り返し単位、特に、極性基で置換された脂環炭化水素構造を有する繰り返し単位を更に含有していてもよい。これにより基板密着性、現像液親和性が向上する。
 極性基で置換された脂環炭化水素構造の脂環炭化水素構造としては、アダマンチル基、ジアマンチル基又はノルボルナン基が好ましい。極性基としては、水酸基又はシアノ基が好ましい。
 樹脂Pが、極性基を有する有機基を含有する繰り返し単位を含有する場合、その含有量は、樹脂P中の全繰り返し単位に対して、1~50モル%が好ましく、1~30モル%がより好ましく、5~25モル%が更に好ましく、5~20モル%が特に好ましい。
(一般式(VI)で表される繰り返し単位)
 樹脂Pは、下記一般式(VI)で表される繰り返し単位を含有していてもよい。
Figure JPOXMLDOC01-appb-C000008
 一般式(VI)中、
 R61、R62及びR63は、各々独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基、又はアルコキシカルボニル基を表す。但し、R62はArと結合して環を形成していてもよく、その場合のR62は単結合又はアルキレン基を表す。
 Xは、単結合、-COO-、又は-CONR64-を表す。R64は、水素原子又はアルキル基を表す。
 Lは、単結合又はアルキレン基を表す。
 Arは、(n+1)価の芳香環基を表し、R62と結合して環を形成する場合には(n+2)価の芳香環基を表す。
 Yは、n≧2の場合には各々独立に、水素原子又は酸の作用により脱離する基を表す。但し、Yの少なくとも1つは、酸の作用により脱離する基を表す。
 nは、1~4の整数を表す。
 酸の作用により脱離する基Yとしては、下記一般式(VI-A)で表される構造が好ましい。
Figure JPOXMLDOC01-appb-C000009
 L及びLは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、又はアルキレン基とアリール基とを組み合わせた基を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、アルキル基、ヘテロ原子を含んでいてもよいシクロアルキル基、ヘテロ原子を含んでいてもよいアリール基、アミノ基、アンモニウム基、メルカプト基、シアノ基又はアルデヒド基を表す。
 Q、M、Lの少なくとも2つが結合して環(好ましくは、5員若しくは6員環)を形成してもよい。
 上記一般式(VI)で表される繰り返し単位は、下記一般式(3)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(3)において、
 Arは、芳香環基を表す。
 Rは、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、アシル基又はヘテロ環基を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、アルキル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
 Q、M及びRの少なくとも二つが結合して環を形成してもよい。
 Arが表す芳香環基は、上記一般式(VI)におけるnが1である場合の、上記一般式(VI)におけるArと同様であり、フェニレン基又はナフチレン基が好ましく、フェニレン基がより好ましい。
(側鎖に珪素原子を有する繰り返し単位)
 樹脂Pは、更に、側鎖に珪素原子を有する繰り返し単位を含有していてもよい。側鎖に珪素原子を有する繰り返し単位としては、例えば、珪素原子を有する(メタ)アクリレート系繰り返し単位、及び、珪素原子を有するビニル系繰り返し単位などが挙げられる。側鎖に珪素原子を有する繰り返し単位は、典型的には、側鎖に珪素原子を有する基を有する繰り返し単位であり、珪素原子を有する基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基、トリシクロヘキシルシリル基、トリストリメチルシロキシシリル基、トリストリメチルシリルシリル基、メチルビストリメチルシリルシリル基、メチルビストリメチルシロキシシリル基、ジメチルトリメチルシリルシリル基、ジメチルトリメチルシロキシシリル基、及び、下記のような環状若しくは直鎖状ポリシロキサン、又はカゴ型あるいははしご型若しくはランダム型シルセスキオキサン構造などが挙げられる。式中、R、及び、Rは各々独立に、1価の置換基を表す。*は、結合手を表す。
Figure JPOXMLDOC01-appb-C000011
 上記の基を有する繰り返し単位としては、例えば、上記の基を有するアクリレート化合物又はメタクリレート化合物に由来する繰り返し単位、又は、上記の基とビニル基とを有する化合物に由来する繰り返し単位が好ましい。
 樹脂Pが、上記側鎖に珪素原子を有する繰り返し単位を有する場合、その含有量は、樹脂P中の全繰り返し単位に対して、1~30モル%が好ましく、5~25モル%がより好ましくは、5~20モル%が更に好ましい。
 樹脂Pの重量平均分子量は、GPC(Gel permeation chromatography)法によりポリスチレン換算値として、1,000~200,000が好ましく、3,000~20,000がより好ましく、5,000~15,000が更に好ましい。重量平均分子量を、1,000~200,000とすることにより、耐熱性及びドライエッチング耐性の劣化を防ぐことができ、且つ現像性が劣化したり、粘度が高くなって製膜性が劣化したりすることを防ぐことができる。
 分散度(分子量分布)は、通常1~5であり、1~3が好ましく、1.2~3.0がより好ましく、1.2~2.0が更に好ましい。
 本薬液中において、樹脂Pの含有量は、全固形分中、50~99.9質量%が好ましく、60~99.0質量%がより好ましい。
 また、本薬液中において、樹脂Pは、1種で使用してもよいし、複数併用してもよい。
 本薬液に含まれるその他の成分(例えば酸発生剤、塩基性化合物、クエンチャー、疎水性樹脂、界面活性剤、及び溶剤等)についてはいずれも公知のものを使用できる。薬液としては、例えば、特開2013-195844号公報、特開2016-057645号公報、特開2015-207006号公報、国際公開第2014/148241号、特開2016-188385号公報、及び、特開2017-219818号公報等に記載の感活性光線性又は感放射線性樹脂組成物等に含有される成分が挙げられる。
〔薬液の用途〕
 本薬液は、半導体デバイスの製造に用いられることが好ましい。特に、ノード10nm以下の微細パターンを形成するため(例えば、EUVを用いたパターン形成を含む工程)に用いられることがより好ましい。
 本薬液は、パターン幅、及び/又は、パターン間隔が17nm以下(好ましくは15nm以下、より好ましくは、12nm以下)、及び/又は、得られる配線幅、及び/又は、配線間隔が17nm以下であるレジストプロセスに使用される薬液(プリウェット液、現像液、リンス液、レジスト液の溶剤、及び、剥離液等)、言いかえれば、パターン幅、及び/又は、パターン間隔が17nm以下であるレジスト膜を用いて製造される半導体デバイスの製造用として、特に好ましく用いられる。
 具体的には、リソグラフィー工程、エッチング工程、イオン注入工程、及び、剥離工程等を含有する半導体デバイスの製造工程において、各工程の終了後、又は、次の工程に移る前に、有機物を処理するために使用され、具体的にはプリウェット液、現像液、リンス液、及び、剥離液等として好適に用いられる。例えばレジスト塗布前後の半導体基板のエッジエラインのリンスにも使用することができる。
 また、本薬液は、レジスト液に含有される樹脂の希釈液、レジスト液に含有される溶剤としても用いることができる。また、他の有機溶剤、及び/又は、水等により希釈してもよい。
 また、本薬液は、半導体デバイスの製造用以外の、他の用途にも用いることができ、ポリイミド、センサー用レジスト、レンズ用レジスト等の現像液、及び、リンス液等としても使用できる。
 また、本薬液は、医療用途又は洗浄用途の溶媒としても用いることができる。特に、容器、配管、及び、基板(例えば、ウェハ、及び、ガラス等)等の洗浄に好適に用いることができる。
 なかでも、本薬液は、現像液、リンス液、ウェハ洗浄液、ライン洗浄液、プリウェット液、レジスト液、下層膜形成用液、上層膜形成用液、及び、ハードコート形成用液からなる群より選択される少なくとも1種の液の原料として用いると、より効果が発揮される。
〔薬液の製造方法〕
 本薬液の製造方法としては特に制限されず、公知の製造方法が使用できる。なかでも、本発明の効果がより発揮される点から、本薬液は、有機溶剤を含有する被精製物を精製して得るが好ましく、具体的には、本薬液の製造方法の好適態様としては、被精製物をろ過するろ過工程、被精製物にイオン交換法又はイオン吸着を施すイオン除去工程、及び、被精製物を蒸留する蒸留工程を含む態様が挙げられる。
 被精製物は、購入等により調達してもよいし、原料を反応させて得てもよい。被精製物としては、不純物の含有量が少ないのが好ましい。そのような被精製物の市販品としては、例えば、「高純度グレード品」と呼ばれる市販品が挙げられる。
 原料を反応させて被精製物(典型的には、有機溶剤を含有する被精製物)を得る方法として特に制限されず、公知の方法を使用できる。例えば、触媒の存在下において、一又は複数の原料を反応させて、有機溶剤を得る方法が挙げられる。
 より具体的には、例えば、酢酸とn-ブタノールとを硫酸の存在下で反応させ、酢酸ブチルを得る方法;エチレン、酸素、及び、水をAl(Cの存在下で反応させ、1-ヘキサノールを得る方法;シス-4-メチル-2-ペンテンをIpc2BH(Diisopinocampheylborane)の存在下で反応させ、4-メチル-2-ペンタノールを得る方法;プロピレンオキシド、メタノール、及び、酢酸を硫酸の存在下で反応させ、PGMEA(プロピレングリコール1-モノメチルエーテル2-アセタート)を得る方法;アセトン、及び、水素を酸化銅-酸化亜鉛-酸化アルミニウムの存在下で反応させて、IPA(isopropyl alcohol)を得る方法;乳酸、及び、エタノールを反応させて、乳酸エチルを得る方法;等が挙げられる。
<ろ過工程>
 ろ過工程は、フィルターを用いて上記被精製物をろ過する工程である。ろ過工程による除去される成分としては、これに限定されないが、例えば、金属成分に含まれ得る金属含有粒子が挙げられる。
 フィルターを用いて被精製物をろ過する方法としては特に制限されないが、ハウジングと、ハウジングに収納されたフィルターカートリッジと、を有するフィルターユニットに、被精製物を加圧又は無加圧で通過させる(通液する)のが好ましい。
(フィルターの細孔径)
 フィルターの細孔径としては特に制限されず、被精製物のろ過用として通常使用される細孔径のフィルターが使用できる。中でも、フィルターの細孔径は、薬液が含有する粒子(金属含有粒子等)の数を所望の範囲により制御しやすい点で、200nm以下が好ましく、20nm以下がより好ましく、10nm以下が更に好ましく、5nm以下が特に好ましく、3nm以下が最も好ましい。下限値としては特に制限されないが、一般に1nm以上が、生産性の観点から好ましい。
 なお、本明細書において、フィルターの細孔径、及び、細孔径分布とは、イソプロパノール(IPA)又は、HFE-7200(「ノベック7200」、3M社製、ハイドロフロオロエーテル、COC)のバブルポイントによって決定される細孔径及び細孔径分布を意味する。
 フィルターの細孔径が、5.0nm以下であると、薬液中における含有粒子数をより制御しやすい点で好ましい。以下、細孔径が5nm以下のフィルターを「微小孔径フィルター」ともいう。
 なお、微小孔径フィルターは単独で用いてもよいし、他の細孔径を有するフィルターと使用してもよい。中でも、生産性により優れる観点から、より大きな細孔径を有するフィルターと使用するのが好ましい。この場合、予めより大きな細孔径を有するフィルターによってろ過した被精製物を、微小孔径フィルターに通液させれば、微小孔径フィルターの目詰まりを防げる。
 すなわち、フィルターの細孔径としては、フィルターを1つ用いる場合には、細孔径は5.0nm以下が好ましく、フィルターを2つ以上用いる場合、最小の細孔径を有するフィルターの細孔径が5.0nm以下が好ましい。
 細孔径の異なる2種以上のフィルターを順次使用する形態としては特に制限されないが、被精製物が移送される管路に沿って、既に説明したフィルターユニットを順に配置する方法が挙げられる。このとき、管路全体として被精製物の単位時間当たりの流量を一定にしようとすると、細孔径のより小さいフィルターユニットには、細孔径のより大きいフィルターユニットと比較してより大きな圧力がかかる場合がある。この場合、フィルターユニットの間に圧力調整弁、及び、ダンパ等を配置して、小さい細孔径を有するフィルターユニットにかかる圧力を一定にしたり、また、同一のフィルターが収納されたフィルターユニットを管路に沿って並列に配置したりして、ろ過面積を大きくするのが好ましい。このようにすれば、より安定して、薬液中における粒子の数を制御できる。
(フィルターの材料)
 フィルターの材料としては特に制限されず、フィルターの材料として公知の材料が使用できる。具体的には、樹脂である場合、ナイロン(例えば、6-ナイロン及び6,6-ナイロン)等のポリアミド;ポリエチレン、及び、ポリプロピレン等のポリオレフィン;ポリスチレン;ポリイミド;ポリアミドイミド;ポリ(メタ)アクリレート;ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、エチレン・テトラフルオロエチレンコポリマー、エチレン-クロロトリフロオロエチレンコポリマー、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、及び、ポリフッ化ビニル等のポリフルオロカーボン;ポリビニルアルコール;ポリエステル;セルロース;セルロースアセテート等が挙げられる。中でも、より優れた耐溶剤性を有し、得られる薬液がより優れた欠陥抑制性能を有する点で、ナイロン(中でも、6,6-ナイロンが好ましい)、ポリオレフィン(中でも、ポリエチレンが好ましい)、ポリ(メタ)アクリレート、及び、ポリフルオロカーボン(中でも、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)が好ましい。)からなる群から選択される少なくとも1種が好ましい。これらの重合体は単独で又は二種以上を組み合わせて使用できる。
 また、樹脂以外にも、ケイソウ土、及び、ガラス等であってもよい。
 他にも、ポリオレフィン(後述するUPE等)にポリアミド(例えば、ナイロン-6又はナイロン-6,6等のナイロン)をグラフト共重合させたポリマー(ナイロングラフトUPE等)をフィルターの材料としてもよい。
 また、フィルターは表面処理されたフィルターであってもよい。表面処理の方法としては特に制限されず、公知の方法が使用できる。表面処理の方法としては、例えば、化学修飾処理、プラズマ処理、疎水処理、コーティング、ガス処理、及び、焼結等が挙げられる。
 プラズマ処理は、フィルターの表面が親水化されるために好ましい。プラズマ処理して親水化されたろ過材の表面における水接触角としては特に制限されないが、接触角計で測定した25℃における静的接触角が、60°以下が好ましく、50°以下がより好ましく、30°以下が特に好ましい。
 化学修飾処理としては、基材にイオン交換基を導入する方法が好ましい。
 すなわち、フィルターとしては、上記で挙げた各材料を基材として、上記基材にイオン交換基を導入したフィルターが好ましい。典型的には、上記基材の表面にイオン交換基を含有する基材を含む層を含むフィルターが好ましい。表面修飾された基材としては特に制限されず、製造がより容易な点で、上記重合体にイオン交換基を導入したフィルターが好ましい。
 イオン交換基としては、カチオン交換基として、スルホン酸基、カルボキシ基、及び、リン酸基等が挙げられ、アニオン交換基として、4級アンモニウム基等が挙げられる。イオン交換基を重合体に導入する方法としては特に制限されないが、イオン交換基と重合性基とを含有する化合物を重合体と反応させ典型的にはグラフト化する方法が挙げられる。
 イオン交換基の導入方法としては特に制限されないが、上記の樹脂の繊維に電離放射線(α線、β線、γ線、X線、及び、電子線等)を照射して樹脂中に活性部分(ラジカル)を生成させる。この照射後の樹脂をモノマー含有溶液に浸漬してモノマーを基材にグラフト重合させる。その結果、このモノマーがポリオレフィン繊維にグラフト重合側鎖として結合したポリマーが生成する。この生成されたポリマーを側鎖として含有する樹脂をアニオン交換基又はカチオン交換基を含有する化合物と接触反応させて、グラフト重合された側鎖のポリマーにイオン交換基が導入されて最終生成物が得られる。
 また、フィルターは、放射線グラフト重合法によりイオン交換基を形成した織布、又は、不織布と、従来のガラスウール、織布、又は、不織布のろ過材とを組み合わせた構成でもよい。
 イオン交換基を含有するフィルターを用いると、金属原子を含有する粒子の薬液中における含有量を所望の範囲により制御しやすい。イオン交換基を含有するフィルターの材料としては特に制限されないが、ポリフルオロカーボン、及び、ポリオレフィンにイオン交換基を導入した材料等が挙げられ、ポリフルオロカーボンにイオン交換基を導入した材料がより好ましい。
 イオン交換基を含有するフィルターの細孔径としては特に制限されないが、1~30nmが好ましく、5~20nmがより好ましい。イオン交換基を含有するフィルターは、既に説明した最小の細孔径を有するフィルターを兼ねてもよいし、最小の細孔径を有するフィルターとは別に使用してもよい。中でもより優れた本発明の効果を示す薬液が得られる点で、ろ過工程は、イオン交換基を含有するフィルターと、イオン交換基を有さず、最小の細孔径を有するフィルターとを使用する形態が好ましい。
 既に説明した最小の細孔径を有するフィルターの材料としては特に制限されないが、耐溶剤性等の観点から、一般に、ポリフルオロカーボン、及び、ポリオレフィンからなる群より選択される少なくとも1種が好ましく、ポリオレフィンがより好ましい。
 従って、ろ過工程で使用されるフィルターとしては、材料の異なる2種以上のフィルターを使用してもよく、例えば、ポリオレフィン、ポリフルオロカーボン、ポリアミド、及び、これらにイオン交換基を導入した材料のフィルターからなる群より選択される2種以上を使用してもよい。
(フィルターの細孔構造)
 フィルターの細孔構造としては特に制限されず、被精製物中の成分に応じて適宜選択すればよい。本明細書において、フィルターの細孔構造とは、細孔径分布、フィルター中の細孔の位置的な分布、及び、細孔の形状等を意味し、典型的には、フィルターの製造方法により制御可能である。
 例えば、樹脂等の粉末を焼結して形成すれば多孔質膜が得られ、及び、エレクトロスピニング、エレクトロブローイング、及び、メルトブローイング等の方法により形成すれば繊維膜が得られる。これらは、それぞれ細孔構造が異なる。
 「多孔質膜」とは、ゲル、粒子、コロイド、細胞、及び、ポリオリゴマー等の被精製物中の成分を保持するが、細孔よりも実質的に小さい成分は、細孔を通過する膜を意味する。多孔質膜による被精製物中の成分の保持は、動作条件、例えば、面速度、界面活性剤の使用、pH、及び、これらの組み合わせに依存する場合があり、かつ、多孔質膜の孔径、構造、及び、除去されるべき粒子のサイズ、及び、構造(硬質粒子か、又は、ゲルか等)に依存し得る。
 被精製物が負に帯電している粒子を含有する場合、そのような粒子の除去には、ポリアミド製のフィルターが非ふるい膜の機能を果たす。典型的な非ふるい膜には、ナイロン-6膜及びナイロン-6,6膜等のナイロン膜が含まれるが、これらに制限されない。
 なお、本明細書で使用される「非ふるい」による保持機構は、フィルターの圧力降下、又は、細孔径に関連しない、妨害、拡散及び吸着等の機構によって生じる保持を指す。
 非ふるい保持は、フィルターの圧力降下又はフィルターの細孔径に関係なく、被精製物中の除去対象粒子を除去する、妨害、拡散及び吸着等の保持機構を含む。フィルター表面への粒子の吸着は、例えば、分子間のファンデルワールス力及び静電力等によって媒介され得る。蛇行状のパスを有する非ふるい膜層中を移動する粒子が、非ふるい膜と接触しないように十分に速く方向を変られない場合に、妨害効果が生じる。拡散による粒子輸送は、粒子がろ過材と衝突する一定の確率を作り出す、主に、小さな粒子のランダム運動又はブラウン運動から生じる。粒子とフィルターの間に反発力が存在しない場合、非ふるい保持機構は活発になり得る。
 UPE(超高分子量ポリエチレン)フィルターは、典型的には、ふるい膜である。ふるい膜は、主にふるい保持機構を介して粒子を捕捉する膜、又は、ふるい保持機構を介して粒子を捕捉するために最適化された膜を意味する。
 ふるい膜の典型的な例としては、ポリテトラフルオロエチレン(PTFE)膜とUPE膜が含まれるが、これらに制限されない。
 なお、「ふるい保持機構」とは、除去対象粒子が多孔質膜の細孔径よりも大きいことによる結果の保持を指す。ふるい保持力は、フィルターケーキ(膜の表面での除去対象となる粒子の凝集)を形成することによって向上させられる。フィルターケーキは、2次フィルターの機能を効果的に果たす。
 繊維膜の材質は、繊維膜を形成可能なポリマーであれば特に制限されない。ポリマーとしては、例えば、ポリアミド等が挙げられる。ポリアミドとしては、例えば、ナイロン6、及び、ナイロン6,6等が挙げられる。繊維膜を形成するポリマーとしては、ポリ(エーテルスルホン)であってもよい。繊維膜が多孔質膜の一次側にある場合、繊維膜の表面エネルギーは、二次側にある多孔質膜の材質であるポリマーより高いのが好ましい。そのような組合せとしては、例えば、繊維膜の材料がナイロンで、多孔質膜がポリエチレン(UPE)である場合が挙げられる。
 繊維膜の製造方法としては特に制限されず、公知の方法を使用できる。繊維膜の製造方法としては、例えば、エレクトロスピニング、エレクトロブローイング、及び、メルトブローイング等が挙げられる。
 多孔質膜(例えば、UPE、及び、PTFE等を含む多孔質膜)の細孔構造としては特に制限されないが、細孔の形状としては例えば、レース状、ストリング状、及び、ノード状等が挙げられる。
 多孔質膜における細孔の大きさの分布とその膜中における位置の分布は、特に制限されない。大きさの分布がより小さく、かつ、その膜中における分布位置が対称であってもよい。また、大きさの分布がより大きく、かつ、その膜中における分布位置が非対称であってもよい(上記の膜を「非対称多孔質膜」ともいう。)。非対称多孔質膜では、孔の大きさは膜中で変化し、典型的には、膜一方の表面から膜の他方の表面に向かって孔径が大きくなる。このとき、孔径の大きい細孔が多い側の表面を「オープン側」といい、孔径が小さい細孔が多い側の表面を「タイト側」ともいう。
 また、非対称多孔質膜としては、例えば、細孔の大きさが膜の厚さ内のある位置においてで最小となる膜(これを「砂時計形状」ともいう。)が挙げられる。
 非対称多孔質膜を用いて、一次側をより大きいサイズの孔とすると、言い換えれば、一次側をオープン側とすると、前ろ過効果を生じさせられる。
 多孔質膜は、PESU(ポリエーテルスルホン)、PFA(パーフルオロアルコキシアルカン、四フッ化エチレンとパーフルオロアルコキシアルカンとの共重合体)、ポリアミド、及び、ポリオレフィン等の熱可塑性ポリマーを含んでもよいし、ポリテトラフルオロエチレン等を含んでもよい。
 中でも、多孔質膜の材料としては、超高分子量ポリエチレンが好ましい。超高分子量ポリエチレンは、極めて長い鎖を有する熱可塑性ポリエチレンを意味し、分子量が百万以上、典型的には、200~600万が好ましい。
 ろ過工程で使用されるフィルターとしては、細孔構造の異なる2種以上のフィルターを使用してもよく、多孔質膜、及び、繊維膜のフィルターを併用してもよい。具体例としては、ナイロン繊維膜のフィルターと、UPE多孔質膜のフィルターとを使用する方法が挙げられる。
 また、フィルターは使用前に十分に洗浄してから使用するのが好ましい。
 未洗浄のフィルター(又は十分な洗浄がされていないフィルター)を使用する場合、フィルターが含有する不純物が薬液に持ち込まれやすい。
 フィルターが含有する不純物としては、例えば、上述の有機化合物が挙げられ、未洗浄のフィルター(又は十分な洗浄がされていないフィルター)を使用してろ過工程を実施すると、薬液中の有機化合物の含有量が、本発明の薬液としての許容範囲を超える場合もある。
 例えば、UPE等のポリオレフィン及びPTFE等のポリフルオロカーボンをフィルターに用いる場合、フィルターは不純物として炭素数12~50のアルカンを含有しやすい。
 また、ナイロン等のポリアミド、ポリイミド、及び、ポリオレフィン(UPE等)にポリアミド(ナイロン等)をグラフト共重合させたポリマーをフィルターに用いる場合、フィルターは不純物として炭素数12~50のアルケンを含有しやすい。
 フィルターの洗浄の方法は、例えば、不純物含有量の少ない有機溶剤(例えば、蒸留精製した有機溶剤(PGMEA等))に、フィルターを1週間以上浸漬する方法が挙げられる。この場合、上記有機溶剤の液温は30~90℃が好ましい。
 洗浄の程度を調整したフィルターを用いて被精製物をろ過し、得られる薬液が所望の量のフィルター由来の有機化合物を含有するように調整してもよい。
 ろ過工程は、フィルターの材料、細孔径、及び、細孔構造からなる群より選択される少なくとも1種が異なる2種以上のフィルターに被精製物を通過させる、多段ろ過工程であってもよい。
 また、同一のフィルターに被精製物を複数回通過させてもよく、同種のフィルターの複数に、被精製物を通過させてもよい。
 ろ過工程で使用される精製装置の接液部(被精製物、及び、薬液が接触する可能性のある内壁面等を意味する)の材料としては特に制限されないが、非金属材料(フッ素系樹脂等)、及び、電解研磨された金属材料(ステンレス鋼等)からなる群から選択される少なくとも1種(以下、これらをあわせて「耐腐食材料」ともいう。)から形成されるのが好ましい。例えば、製造タンクの接液部が耐腐食材料から形成される、とは、製造タンク自体が耐腐食材料からなるか、又は、製造タンクの内壁面等が耐腐食材料で被覆されている場合が挙げられる。
 上記非金属材料としては、特に制限されず、公知の材料が使用できる。
 非金属材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレン-ポリプロピレン樹脂、並びに、フッ素系樹脂(例えば、四フッ化エチレン樹脂、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体、四フッ化エチレン-六フッ化プロピレン共重合樹脂、四フッ化エチレン-エチレン共重合体樹脂、三フッ化塩化エチレン-エチレン共重合樹脂、フッ化ビニリデン樹脂、三フッ化塩化エチレン共重合樹脂、及び、フッ化ビニル樹脂等)からなる群から選択される少なくとも1種が挙げられるが、これに制限されない。
 上記金属材料としては、特に制限されず、公知の材料が使用できる。
 金属材料としては、例えば、クロム及びニッケルの含有量の合計が金属材料全質量に対して25質量%超である金属材料が挙げられ、中でも、30質量%以上がより好ましい。金属材料におけるクロム及びニッケルの含有量の合計の上限値としては特に制限されないが、一般に90質量%以下が好ましい。
 金属材料としては例えば、ステンレス鋼、及びニッケル-クロム合金等が挙げられる。
 ステンレス鋼としては、特に制限されず、公知のステンレス鋼が使用できる。中でも、ニッケルを8質量%以上含有する合金が好ましく、ニッケルを8質量%以上含有するオーステナイト系ステンレス鋼がより好ましい。オーステナイト系ステンレス鋼としては、例えばSUS(Steel Use Stainless)304(Ni含有量8質量%、Cr含有量18質量%)、SUS304L(Ni含有量9質量%、Cr含有量18質量%)、SUS316(Ni含有量10質量%、Cr含有量16質量%)、及びSUS316L(Ni含有量12質量%、Cr含有量16質量%)等が挙げられる。
 ニッケル-クロム合金としては、特に制限されず、公知のニッケル-クロム合金が使用できる。中でも、ニッケル含有量が40~75質量%、クロム含有量が1~30質量%のニッケル-クロム合金が好ましい。
 ニッケル-クロム合金としては、例えば、ハステロイ(商品名、以下同じ。)、モネル(商品名、以下同じ)、及びインコネル(商品名、以下同じ)等が挙げられる。より具体的には、ハステロイC-276(Ni含有量63質量%、Cr含有量16質量%)、ハステロイ-C(Ni含有量60質量%、Cr含有量17質量%)、ハステロイC-22(Ni含有量61質量%、Cr含有量22質量%)等が挙げられる。
 また、ニッケル-クロム合金は、必要に応じて、上記した合金の他に、更に、ホウ素、ケイ素、タングステン、モリブデン、銅、及びコバルト等を含有していてもよい。
 金属材料を電解研磨する方法としては特に制限されず、公知の方法が使用できる。例えば、特開2015-227501号公報の段落[0011]~[0014]、及び、特開2008-264929号公報の段落[0036]~[0042]等に記載された方法が使用できる。
 金属材料は、電解研磨により表面の不動態層におけるクロムの含有量が、母相のクロムの含有量よりも多くなっていると推測される。そのため、接液部が電解研磨された金属材料から形成された精製装置を用いると、被精製物中に金属含有粒子が流出しにくいと推測される。
 なお、金属材料はバフ研磨されていてもよい。バフ研磨の方法は特に制限されず、公知の方法を使用できる。バフ研磨の仕上げに用いられる研磨砥粒のサイズは特に制限されないが、金属材料の表面の凹凸がより小さくなりやすい点で、#400以下が好ましい。なお、バフ研磨は、電解研磨の前に行われるのが好ましい。
<イオン除去工程>
 イオン除去工程は、有機溶剤を含有する被精製物に対してイオン交換法、又は、キレート基によるイオン吸着を施す工程である。イオン除去工程によって除去される成分としては、これに限定されないが、例えば、酸成分、及び、金属成分に含まれる金属イオンが挙げられる。
 イオン交換法を施す方法としては、特に限定されず、公知の方法が使用できる。典型的には、イオン交換樹脂が充填された充填部に被精製物を通液する方法が挙げられる。
 イオン除去工程は、同一のイオン交換樹脂に被精製物を複数回通過させてもよく、異なるイオン交換樹脂に被精製物を通過させてもよい。
 イオン交換樹脂としては、陽イオン交換樹脂及び陰イオン交換樹脂が挙げられ、金属成分の含有量を調節して、金属成分の含有量に対する酸成分の含有量の質量割合を上記範囲にすることが容易になる点から、少なくとも陽イオン交換樹脂を使用するのが好ましく、酸成分の含有量を調節できる点から、陽イオン交換樹脂とともに陰イオン交換樹脂を使用するのがより好ましい。
 陽イオン交換樹脂及び陰イオン交換樹脂の両方を使用する場合、両樹脂を含む混合樹脂が充填された充填部を通液させてもよいし、樹脂毎に充填された複数の充填部を通液させてもよい。
 陽イオン交換樹脂としては、公知の陽イオン交換樹脂を用いることができ、中でもゲル型陽イオン交換樹脂が好ましい。
 陽イオン交換樹脂として、具体的には、スルホン酸型陽イオン交換樹脂及びカルボン酸型陽イオン交換樹脂が挙げられる。
 陽イオン交換樹脂としては、市販品を使用でき、例えば、アンバーライトIR-124、アンバーライトIR-120B、アンバーライトIR-200CT、ORLITE DS-1、ORLITE DS-4(以上、オルガノ社製)、デュオライトC20J、デュオライトC20LF、デュオライトC255LFH、デュオライトC-433LF(以上、住化ケムテックス製)、DIAION SK-110、DIAION SK1B、及び、DIAION SK1BH(以上、三菱ケミカル社製)、ピュロライトS957、及び、ピュロライトS985(以上、ピュロライト社製)等が挙げられる。
 陰イオン交換樹脂としては、公知の陰イオン交換樹脂を用いることができ、中でもゲル型陰イオン交換樹脂を使用するのが好ましい。
 ここで、被精製物中でイオンとして存在する酸成分としては、被精製物の製造時の触媒を由来する無機酸、及び、被精製物の製造時の反応後に生じる有機酸(例えば、反応原料、異性体、及び副生成物)等が挙げられる。このような酸成分は、HSAB(Hard and Soft Acids and Bases)則の点からは、硬い酸から中程度の硬さの酸に分類される。そのため、陰イオン交換樹脂との相互作用よって、これらの酸成分を除去する際の除去効率を上げる目的で、硬い塩基から中程度の硬さの塩基を含む陰イオン交換樹脂を用いるのが好ましい。
 このような硬い塩基から中程度の硬さの塩基を含む陰イオン交換樹脂は、トリメチルアンモニウム基を有する強塩基型のI型の陰イオン交換樹脂、ジメチルエタノールアンモニウム基を有するやや弱い強塩基型のII型の陰イオン交換樹脂、ならびに、ジメチルアミン及びジエチレントリアミン等の弱塩基型の陰イオン交換樹脂からなる群より選択される少なくとも1種の陰イオン交換樹脂が好ましい。
 酸成分のうち、例えば有機酸は硬い酸であり、無機酸のうち硫酸イオンは中程度の硬さの酸であるので、上述の強塩基型又はやや弱い強塩基型の陰イオン交換樹脂と、中程度の片さの弱塩基型の陰イオン交換樹脂と、を併用すれば、酸成分の含有量を好適な範囲まで低減することが容易となる。
 陰イオン交換樹脂としては、市販品を使用でき、例えば、アンバーライトIRA-400J、アンバーライトIRA-410J、アンバーライトIRA-900J、アンバーライトIRA67、ORLITE DS-2、ORLITE DS-5、ORLITE DS-6(オルガノ社製)、デュオライトA113LF、デュオライトA116、デュオライトA-375LF(住化ケムテックス製)、及び、DIAION SA12A、DIAION SA10A、DIAION SA10AOH、DIAION SA20A、DIAION WA10(三菱ケミカル社製)等が挙げられる。
 この中でも、上述の硬い塩基から中程度の硬さの塩基を含む陰イオン交換樹脂としては、例えば、ORLITE DS-6、ORLITE DS-4(以上、オルガノ社製)、DIAION SA12A、DIAION SA10A、DIAION SA10AOH、DIAION SA20A、DIAION WA10(以上、三菱ケミカル社製)、ピュロライトA400、ピュロライトA500、ピュロライトA850(以上、ピュロライト社製)等が挙げられる。
 キレート基によるイオン吸着は、例えば、キレート基を有するキレート樹脂を用いて行うことができる。キレート樹脂は、イオンを捕獲する際の代替イオンの放出が無く、また、強酸性や強塩基性といった化学的に高活性な官能基を用いないことで、加水分解および縮合反応といった精製対象となっている有機溶剤に対する副次反応を抑制することができる。そのため、より高効率な精製を行うことができる。
 キレート樹脂としては、アミドオキシム基、チオ尿素基、チオウロニウム基、イミノジ酢酸、アミドリン酸、ホスホン酸、アミノリン酸、アミノカルボン酸、N-メチルグルカミン、アルキルアミノ基、ピリジン環、環状シアニン、フタロシアニン環、および、環状エーテル等の、キレート基またはキレート能を有する樹脂が挙げられる。
 キレート樹脂としては、市販品を使用でき、例えば、デュオライトES371N、デュオライトC467、デュオライトC747UPS、スミキレートMC760、スミキレートMC230、スミキレートMC300、スミキレートMC850、スミキレートMC640、及び、スミキレートMC900(以上、住化ケムテックス社製)、ピュロライトS106、ピュロライトS910、ピュロライトS914、ピュロライトS920、ピュロライトS930、ピュロライトS950、ピュロライトS957、及び、ピュロライトS985(以上、ピュロライト社製)等が挙げられる。
 イオン吸着を施す方法としては、特に限定されず、公知の方法が使用できる。典型的には、キレート樹脂が充填された充填部に被精製物を通液する方法が挙げられる。
 イオン除去工程は、同一のキレート樹脂に被精製物を複数回通過させてもよく、異なるキレート樹脂に被精製物を通過させてもよい。
 充填部は、通常、容器と、容器に充填された上述したイオン交換樹脂とを含む。
 容器としては、カラム、カートリッジ、及び、充填塔などが挙げられるが、上記イオン交換樹脂が充填された後に被精製物が通液できるものであれば上記で例示した以外のものでもよい。
<蒸留工程>
 蒸留工程は、有機溶剤を含有する被精製物を蒸留して、蒸留済み被精製物を得る工程である。蒸留工程によって除去される成分としては、これに限定されないが、例えば、酸成分、他の有機化合物、及び、水分が挙げられる。
 被精製物を蒸留する方法としては特に制限されず、公知の方法が使用できる。典型的には、ろ過工程に供される精製装置の一次側に、蒸留塔を配置し、蒸留された被精製物を製造タンクに導入する方法が挙げられる。
 このとき、蒸留塔の接液部としては特に制限されないが、既に説明した耐腐食材料で形成されるのが好ましい。
 蒸留工程は、同一の蒸留塔に被精製物を複数回通過させてもよく、異なる蒸留塔に被精製物を通過させてもよい。
 異なる蒸留塔に被精製物を通過させる場合、例えば、蒸留塔に被精製物を通過させて低沸点の酸成分等を除去する粗蒸留処理を施した後、粗蒸留処理とは異なる蒸留塔を通過させて酸成分及び他の有機化合物等を除去する精留処理を施す方法挙げられる。このとき、粗蒸留処理における蒸留塔としては、棚段式蒸留塔が挙げられ、精留処理における蒸留塔としては、棚段式蒸留塔及び減圧棚段式の少なくとも一方を含む蒸留塔が挙げられる。
 また、蒸留時の熱的な安定性と精製の精度とを両立する目的で、減圧蒸留を選択することもできる。
<その他の工程>
 薬液の製造方法は、上記以外の工程を更に有していてもよい。ろ過工程以外の工程としては、例えば、反応工程、及び、除電工程等が挙げられる。
(反応工程)
 反応工程は、原料を反応させて、反応物である有機溶剤を含有する被精製物を生成する工程である。被精製物を生成する方法としては特に制限されず、公知の方法が使用できる。典型的には、ろ過工程に供される精製装置の製造タンク(又は、蒸留塔)の一次側に反応槽を配置し、反応物を製造タンク(又は蒸留塔)に導入する方法が挙げられる。
 このとき、製造タンクの接液部としては特に制限されないが、既に説明した耐腐食材料で形成されるのが好ましい。
(除電工程)
 除電工程は、被精製物を除電して、被精製物の帯電電位を低減させる工程である。
 除電方法としては特に制限されず、公知の除電方法を使用できる。除電方法としては、例えば、被精製物を導電性材料に接触させる方法が挙げられる。
 被精製物を導電性材料に接触させる接触時間は、0.001~60秒が好ましく、0.001~1秒がより好ましく、0.01~0.1秒が特に好ましい。導電性材料としては、ステンレス鋼、金、白金、ダイヤモンド、及びグラッシーカーボン等が挙げられる。
 被精製物を導電性材料に接触させる方法としては、例えば、導電性材料からなる接地されたメッシュを管路内部に配置し、ここに被精製物を通す方法等が挙げられる。
 被精製物の精製は、それに付随する、容器の開封、容器及び装置の洗浄、溶液の収容、並びに、分析等は、全てクリーンルームで行うのが好ましい。クリーンルームは、国際標準化機構が定める国際標準ISO14644-1:2015で定めるクラス4以上の清浄度のクリーンルームが好ましい。具体的にはISOクラス1、ISOクラス2、ISOクラス3、及び、ISOクラス4のいずれかを満たすのが好ましく、ISOクラス1又はISOクラス2を満たすのがより好ましく、ISOクラス1を満たすのが特に好ましい。
 薬液の保管温度としては特に制限されないが、薬液が微量に含有する不純物等がより溶出しにくく、結果としてより優れた本発明の効果が得られる点で、保管温度としては4℃以上が好ましい。
[薬液収容体]
 本薬液は、容器に収容されて使用時まで保管してもよい。このような容器と、容器に収容された本薬液とをあわせて薬液収容体という。保管された薬液収容体からは、本薬液が取り出され使用される。
 本薬液を保管する容器としては、半導体デバイス製造用途向けに、容器内のクリーン度が高く、不純物の溶出が少ないものが好ましい。
 使用可能な容器としては、具体的には、アイセロ化学(株)製の「クリーンボトル」シリーズ、及び、コダマ樹脂工業製の「ピュアボトル」等が挙げられるが、これらに制限されない。
 容器としては、薬液への不純物混入(コンタミ)防止を目的として、容器内壁を6種の樹脂による6層構造とした多層ボトル、又は、6種の樹脂による7層構造とした多層ボトルを使用することも好ましい。これらの容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。
 容器の接液部の少なくとも一部は、既に説明した耐腐食材料(好ましくは電解研磨されたステンレス鋼若しくはフッ素系樹脂)又はガラスであってもよい。より優れた本発明の効果が得られる点で、接液部の面積の90%以上が上記材料からなるのが好ましく、接液部の全部が上記材料からなるのがより好ましい。
[キット]
 本発明のキットは、以下に示す薬液Xと、以下に示す薬液Yと、を備える。本発明のキットを後述するパターン形成方法に用いた場合(特に、薬液Xを現像液に用いて、薬液Yをリンス液に用いた場合)、薬液Xの作用によって欠陥発生が抑制されたパターンを得ることができるとともに、薬液X及び薬液Yの相乗効果によって、得られるパターンの解像度にも優れる。
 キットの形態としては特に制限されないが、容器Xと、上記容器Xに収容された薬液Xとを有する薬液収容体Xと、容器Yと、上記容器Yに収容された薬液Yとを有する薬液収容体Yと、を有する形態が挙げられる。容器X及び容器Yとしては、薬液収容体の容器として既に説明したものを使用することが好ましい。
 薬液Xは、次に示す薬液X1又は薬液X2である。薬液X1は、上述した本薬液のうち、有機溶剤が酢酸ブチルを含み、かつ、酸成分が酢酸を含み、酢酸の含有量が薬液X1の全質量に対して0.01~15質量ppmである薬液である。また、薬液X2は、上述した本薬液のうち、有機溶剤が酢酸ブチルを含み、かつ、酸成分がn-ブタン酸を含み、n-ブタン酸の含有量が薬液X2の全質量に対して、1質量ppt以上1質量ppm以下である薬液である。
 薬液Yは、有機溶剤を含む。薬液Yに含まれる有機溶剤は、酪酸ブチル、イソ酪酸イソブチル、プロピオン酸ペンチル、プロピオン酸イソペンチル、エチルシクロヘキサン、メシチレン、デカン、ウンデカン、3,7-ジメチル-3-オクタノール、2-エチル-1-ヘキサノール、1-オクタノール、2-オクタノール、アセト酢酸エチル、マロン酸ジメチル、ピルビン酸メチル、及び、シュウ酸ジメチルからなる群から選択される少なくとも1種の有機溶剤Yを含む。薬液Yを後述のパターン形成方法におけるリンス液に用いた場合に、有機溶剤Yの作用によって、得られるパターンの解像度を向上できる。
 薬液Yは、上述した本薬液(すなわち、有機溶剤と酸成分と金属成分とを含有する薬液であって、酸成分の含有量が薬液の全質量に対して1質量ppt以上15質量ppm以下であり、金属成分の含有量が薬液の全質量に対して0.001~100質量pptである薬液。)であってもよいし、上述した本薬液以外の薬液であってもよい。
 上述した本薬液以外の薬液とは、酸成分の含有量が薬液の全質量に対して1質量ppt未満又は15質量ppm超であること、及び、金属成分の含有量が薬液の全質量に対して0.001質量ppt未満又は100質量ppt超であること、の少なくとも一方を満たすことを意味する。
 薬液Y中の有機溶剤Yの含有量は、薬液Yの全質量に対して、20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上が更に好ましく、50質量%が特に好ましい。さらに好適な態様としては、98.0質量%以上が好ましく、99.0質量%以上がより好ましく、99.9質量%以上が更に好ましく、99.99質量%以上が特に好ましい。上限は特に制限されず、100質量%以下である。
 薬液Yに含まれる有機溶剤の全質量に対する、有機溶剤Yの含有量の好適範囲は、上述の薬液Y中の有機溶剤Yの含有量と同じである。
 有機溶剤Yは1種を単独で用いても、2種以上を併用してもよい。2種以上の有機溶剤Yを併用する場合には、合計含有量が上記範囲内である。
 薬液Yは、有機溶剤Y以外の有機溶剤を含有してもよい。有機溶剤Y以外の有機溶剤としては、上述の本薬液の有機溶剤として例示した有機溶剤のうち、有機溶剤Y以外の有機溶剤、及び、エタノール等が挙げられる。
 薬液Yが有機溶剤Y以外の有機溶剤を含有する場合、有機溶剤Y以外の有機溶剤の含有量は、薬液Yの全質量に対して、60質量%以下が好ましく、50質量%以下がより好ましく、10質量%以下が更に好ましい。薬液Yが有機溶剤Y以外の有機溶剤を含有する場合、有機溶剤Y以外の有機溶剤の含有量の下限値は、0質量%超であり、0.1質量%以上が好ましく、1質量%以上がより好ましい。
 薬液Yが有機溶剤Y以外の有機溶剤を含有する場合、薬液Yに含まれる有機溶剤の全質量に対する、有機溶剤Y以外の有機溶剤の含有量の好適範囲は、上述の薬液Y中の有機溶剤Y以外の有機溶剤の含有量と同じである。
 薬液Y中の有機溶剤の含有量(すなわち、有機溶剤Y及び有機溶剤Y以外の有機溶剤の含有量の合計)は、薬液Yの全質量に対して、98.0質量%以上が好ましく、99.0質量%以上がより好ましく、99.9質量%以上が更に好ましく、99.99質量%以上が特に好ましい。上限は特に制限されず、100質量%以下である。
 有機溶剤Yは、エイコセンに対するハンセン溶解度パラメータの距離が3~20MPa0.5(より好ましくは5~20MPa0.5)である有機溶剤Y1を含むのが好ましい。
 薬液Y中に2種以上の有機溶剤Yが含まれる場合は、少なくとも1種が有機溶剤Y1であるのが好ましい。
 薬液Y中に2種以上の有機溶剤Yが含まれる場合は、各有機溶剤の含有量のモル比に基づいた、ハンセン溶解度パラメータの加重平均値が、上記ハンセン溶解度パラメータの範囲を満たすのが好ましい。
 有機溶剤Yのうち、エイコセンに対するハンセン溶解度パラメータの距離が3~20MPa0.5である有機溶剤(すなわち有機溶剤Y1)としては、酪酸ブチル(4.6)、イソ酪酸イソブチル(3.6)、マロン酸ジメチル(10.3)が挙げられる。なお、化合物における括弧内の数値は、エイコセンに対するハンセン溶解度パラメータの距離を示す。
 薬液Yの好適態様の一つとしては、有機溶剤Yが、実質的に有機溶剤Y1のみである態様が挙げられる。有機溶剤Yが、実質的に有機溶剤Y1のみであるとは、有機溶剤Y1の含有量が、薬液Y中の有機溶剤Yの全質量に対して99質量%以上(好ましくは99.9質量%以上)であることをいう。
 また、薬液Yの好適態様の一つとしては、有機溶剤Yと、有機溶剤Y以外の有機溶剤(例えば、メタノール等)との両方を含む混合溶剤を含有し、有機溶剤Yが実質的に有機溶剤Y1のみである態様が挙げられる。
 この場合、有機溶剤Y1の含有量は、薬液Yの全質量に対して、20~90質量%が好ましく、パターンの解像度がより優れる点から、20~80質量%がより好ましく、30~70質量%が更に好ましい。
 また、有機溶剤Y以外の有機溶剤の含有量は、薬液Yの全質量に対して、10~80質量%が好ましく、パターンの解像度がより優れる点から、20~80質量%がより好ましく、30~70質量%が更に好ましい。
 また、薬液Yの好適態様の一つとしては、薬液中の有機溶剤が有機溶剤Yからなり、有機溶剤Yが、有機溶剤Y1と、上記ハンセン溶解度パラメータの範囲を満たさない有機溶剤(以下、「有機溶剤Y2」ともいう。)との両方を含む混合溶剤である態様が挙げられる。
 この場合、有機溶剤Y1の含有量は、薬液Yの全質量に対して、20~90質量%が好ましく、パターンの解像度がより優れる点から、20~80質量%がより好ましく、30~70質量%が更に好ましい。
 また、有機溶剤Y2の含有量は、薬液Yの全質量に対して、10~80質量%が好ましく、パターンの解像度がより優れる点から、20~80質量%がより好ましく、30~70質量%が更に好ましい。
 有機溶剤Y1の含有量と上有機溶剤Y2の含有量が、それぞれ一定の範囲内である場合、有機溶剤Y2の含有量が過剰又は過少である場合に比べて、薬液Yの、有機系素材に対する親和性を適度な範囲に調整でき、パターンの解像度がより優れると推測される。
 なお、有機溶剤Y2の、エイコセンに対するハンセン溶解度パラメータの距離は、0MPa0.5以上3MPa0.5未満(好ましくは0MPa0.5超3MPa0.5未満)、又は、20MPa0.5超(好ましくは20MPa0.5超50MPa0.5以下)である。
 本明細書において、ハンセン溶解度パラメータとは、「Hansen Solubility Parameters:A Users Handbook, Second Edition」(第1-310頁、CRC  Press、2007年発行)等に記載されたハンセン溶解度パラメータを意図する。すなわち、ハンセン溶解度パラメータは、溶解性を多次元のベクトル(分散項(δd)、双極子間項(δp)、及び、水素結合項(δh))で表し、これらの3つのパラメータは、ハンセン空間と呼ばれる三次元空間における点の座標と考えられる。
 ハンセン溶解度パラメータの距離とは、2種の化合物のハンセン空間における距離であり、ハンセン溶解度パラメータの距離は以下の式によって求められる。
(Ra)=4(δd2-δd1)+(δp2-δp1)+(δh2-δh1)
Ra:第1の化合物と第2の化合物とのハンセン溶解度パラメータの距離(単位:MPa0.5
  δd1:第1の化合物の分散項(単位:MPa0.5
  δd2:第2の化合物の分散項(単位:MPa0.5
  δp1:第1の化合物の双極子間項(単位:MPa0.5
  δp2:第2の化合物の双極子間項(単位:MPa0.5
  δh1:第1の化合物の水素結合項(単位:MPa0.5
  δh2:第2の化合物の水素結合項(単位:MPa0.5
 本明細書において、化合物のハンセン溶解度パラメータは、具体的には、HSPiP(Hansen Solubility Parameter in Practice)を用いて計算する。
[パターン形成方法]
 本薬液は、半導体製造用に用いられるレジストパターン(以下、単に「パターン」という。)の形成に用いることが好ましい。本薬液を用いたパターン形成方法としては特に制限されず、公知のパターン形成方法が挙げられる。
 本発明のパターン形成方法の好適態様の一つとしては、上述したキットの項で説明した薬液Xを現像液として用い、かつ、上述したキットの項で説明した薬液Yをリンス液として用いる態様が挙げられ、具体的には以下の各工程を含むことが好ましい。
(A)感活性光線性又は感放射線性樹脂組成物を用いてレジスト膜を形成するレジスト膜形成工程
(B)レジスト膜を露光する露光工程
(C)露光された前記レジスト膜を、薬液Xを用いて現像する現像工程
(D)現像工程の後に、薬液Yを用いて洗浄するリンス工程
 以下では、上記工程ごとにその形態を説明する。なお、薬液X及び薬液Yについては、上述した通りであるので、その説明を省略する。
〔レジスト膜形成工程〕
 レジスト膜形成工程は、感活性光線又は感放射線性樹脂組成物を用いてレジスト膜を形成する工程である。
 以下では、まず、感活性光線又は感放射線性樹脂組成物の形態についてする。
<感活性光線又は感放射線性樹脂組成物>
 上記レジスト膜形成工程において用いることができる感活性光線性又は感放射線性樹脂組成物としては特に制限されず、公知の感活性光線性又は感放射線性樹脂組成物を用いることができる。
 感活性光線性又は感放射線性樹脂組成物(以下、「レジスト組成物」ともいう。)としては、酸の作用により分解して極性基(カルボキシル基、及び、フェノール性水酸基等)を生じる基を含有する繰り返し単位を含有する樹脂(以下、本明細書において「酸分解性樹脂」ともいう。)と、活性光線又は放射線の照射により酸を発生する化合物(以下、本明細書において「光酸発生剤」ともいう。)と、を含有することが好ましい。
 なかでも、より優れた本発明の効果が得られる点で、以下のレジスト組成物が好ましい。
・後述する式(I)で表される樹脂を含有するレジスト組成物
・後述するフェノール性水酸基を有する酸分解性樹脂を含有するレジスト組成物
・後述する疎水性樹脂と、酸分解性樹脂とを含有するレジスト組成物
以下では、レジスト組成物の各成分について説明する。
(酸分解性樹脂)
 酸分解性基において、極性基は酸で脱離する基(酸脱離性基)によって保護されている。酸脱離性基としては、例えば、-C(R36)(R37)(R38)、-C(R36)(R37)(OR39)、及び、-C(R01)(R02)(OR39)等が挙げられる。
 式中、R36~R39は、各々独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。R36とR37とは、互いに結合して環を形成してもよい。
 R01及びR02は、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。
 酸分解性樹脂としては、式(AI)で表される酸分解性基を有する樹脂Pが挙げられる。
Figure JPOXMLDOC01-appb-C000012
 式(AI)に於いて、
 Xaは、水素原子、又は置換基を有していてもよいアルキル基を表す。
 Tは、単結合又は2価の連結基を表す。
 Ra~Raは、それぞれ独立に、アルキル基(直鎖状又は分岐鎖状)又はシクロアルキル基(単環又は多環)を表す。
 Ra~Raの2つが結合して、シクロアルキル基(単環又は多環)を形成してもよい。
 Xaにより表される、置換基を有していてもよいアルキル基としては、例えば、メチル基、及び-CH-R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子等)、水酸基、又は1価の有機基を表す。
 Xaは、水素原子、メチル基、トリフルオロメチル基又はヒドロキシメチル基が好ましい。
 Tの2価の連結基としては、アルキレン基、-COO-Rt-基、及び、-O-Rt-基等が挙げられる。式中、Rtは、アルキレン基又はシクロアルキレン基を表す。
 Tは、単結合又は-COO-Rt-基が好ましい。Rtは、炭素数1~5のアルキレン基が好ましく、-CH-基、-(CH-基、又は、-(CH-基がより好ましい。
 Ra~Raのアルキル基としては、炭素数1~4のものが好ましい。
 Ra~Raのシクロアルキル基としては、シクロペンチル基、若しくはシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくはアダマンチル基等の多環のシクロアルキル基が好ましい。
 Ra~Raの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、若しくはシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくはアダマンチル基等の多環のシクロアルキル基が好ましい。炭素数5~6の単環のシクロアルキル基がより好ましい。
 Ra~Raの2つが結合して形成される上記シクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、又はカルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
 式(AI)で表される繰り返し単位は、例えば、Raがメチル基又はエチル基であり、RaとRaとが結合して上述のシクロアルキル基を形成している態様が好ましい。
 上記各基は、置換基を有していてもよく、置換基としては、例えば、アルキル基(炭素数1~4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1~4)、カルボキシ基、及びアルコキシカルボニル基(炭素数2~6)等が挙げられ、炭素数8以下が好ましい。
 式(AI)で表される繰り返し単位の合計としての含有量は、樹脂P中の全繰り返し単位に対し、20~90モル%であることが好ましく、25~85モル%であることがより好ましく、30~80モル%であることが更に好ましい。
 以下に、式(AI)で表される繰り返し単位の具体例を示すが、これに限定されるものではない。
 具体例中、Rx及びXaは、各々独立して、水素原子、CH、CF、又はCHOHを表す。Rxa及びRxbは、各々炭素数1~4のアルキル基を表す。Zは、極性基を含む置換基を表し、複数存在する場合は各々独立である。pは0又は正の整数を表す。Zにより表される極性基を含む置換基としては、例えば、水酸基、シアノ基、アミノ基、アルキルアミド基、スルホンアミド基、及びこれらの基を有する直鎖状又は分岐鎖状のアルキル基又はシクロアルキル基が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 (ラクトン構造を有する繰り返し単位)
 また、樹脂Pは、ラクトン構造を有する繰り返し単位Qを含有することが好ましい。
 ラクトン構造を有する繰り返し単位Qは、ラクトン構造を側鎖に有していることが好ましく、例えば(メタ)アクリル酸誘導体モノマーに由来する繰り返し単位であることがより好ましい。
 ラクトン構造を有する繰り返し単位Qは、1種単独で用いてもよく、2種以上を併用していてもよいが、1種単独で用いることが好ましい。
 上記樹脂Pの全繰り返し単位に対する、ラクトン構造を有する繰り返し単位Qの含有量は、例えば、3~80モル%が挙げられ、3~60モル%が好ましい。
 ラクトン構造としては、5~7員環のラクトン構造が好ましく、5~7員環のラクトン構造にビシクロ構造又はスピロ構造を形成する形で他の環構造が縮環している構造がより好ましい。
 ラクトン構造としては、下記式(LC1-1)~(LC1-17)のいずれかで表されるラクトン構造を有する繰り返し単位を有することが好ましい。ラクトン構造としては式(LC1-1)、式(LC1-4)、式(LC1-5)、又は式(LC1-8)で表されるラクトン構造が好ましく、式(LC1-4)で表されるラクトン構造がより好ましい。
Figure JPOXMLDOC01-appb-C000014
 ラクトン構造部分は、置換基(Rb)を有していてもよい。好ましい置換基(Rb)としては、炭素数1~8のアルキル基、炭素数4~7のシクロアルキル基、炭素数1~8のアルコキシ基、炭素数2~8のアルコキシカルボニル基、カルボキシ基、ハロゲン原子、水酸基、シアノ基、及び酸分解性基等が挙げられる。nは、0~4の整数を表す。nが2以上のとき、複数存在する置換基(Rb)は、同一でも異なっていてもよく、また、複数存在する置換基(Rb)同士が結合して環を形成してもよい。
 樹脂Pは、式(a)で表される繰り返し単位、式(b)で表される繰り返し単位、式(c)で表される繰り返し単位、式(d)で表される繰り返し単位、及び、式(e)で表される繰り返し単位からなる群から選択される繰り返し単位からなる樹脂(以後、この樹脂を「式(I)で表される樹脂」とも称する)であることが好ましい。
 下記式(I)で表される樹脂は、酸の作用により有機溶剤を主成分とする現像液(後述する薬液)に対する溶解性が減少する樹脂であり、酸分解性基を含有する。上記薬液は、式(I)で表されるような樹脂に対する優れた溶解性を有するため、より少ないレジスト組成物を用いて均一なレジスト膜が得られやすい。以下、式(I)で表される樹脂について説明する。
・式(I)で表される樹脂
Figure JPOXMLDOC01-appb-C000015
 上記式(I)は、繰り返し単位(a)(式(a)で表される繰り返し単位)、繰り返し単位(b)(式(b)で表される繰り返し単位)、繰り返し単位(c)(式(c)で表される繰り返し単位)、繰り返し単位(d)(式(d)で表される繰り返し単位)及び繰り返し単位(e)(式(e)で表される繰り返し単位)から構成される。
 Rx1~Rx5は、それぞれ独立に、水素原子、又は、置換基を含有してもよいアルキル基を表す。
 R~Rは、それぞれ独立に、1価の置換基を表し、p~pは、それぞれ独立に、0、又は、正の整数を表す。
 Rは、直鎖状、又は、分岐鎖状のアルキル基を表す。
 T~Tは、それぞれ独立に、単結合、又は、2価の連結基を表す。
 Rは1価の有機基を表す。
 a~eは、モル%を表し、それぞれ独立に、0≦a≦100、0≦b≦100、0≦c<100、0≦d<100、及び、0≦e<100の範囲内の数を表す。ただし、a+b+c+d+e=100であり、a+b≠0である。
 ただし、式(I)中、上記繰り返し単位(e)は、上記繰り返し単位(a)~(d)のいずれとも異なる構造を有する。
 Rx1~Rx5により表される、置換基を含有してもよいアルキル基としては、例えば、メチル基、及び、-CH-R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子等)、水酸基、又は、1価の有機基を表す。
 Rx1~Rx5は、それぞれ独立に、水素原子、メチル基、トリフルオロメチル基、又は、ヒドロキシメチル基が好ましい。
 式(I)中、T~Tにより表される2価の連結基としては、アルキレン基、-COO-Rt-基、及び、-O-Rt-基等が挙げられる。式中、Rtは、アルキレン基又はシクロアルキレン基を表す。
 T~Tは、それぞれ独立に、単結合又は-COO-Rt-基が好ましい。Rtは、炭素数1~5のアルキレン基が好ましく、-CH-基、-(CH-基、又は、-(CH-基がより好ましい。
 式(I)中、Rは、直鎖状又は分岐鎖状のアルキル基を表す。例えば、メチル基、エチル基、及びt-ブチル基等が挙げられる。なかでも、炭素数1~4の直鎖状又は分岐鎖状のアルキル基が好ましい。
 式(I)中、R~Rは、それぞれ独立に、1価の置換基を表す。R~Rとしては、特に限定されないが、例えば、水酸基、シアノ基、及び、水酸基又はシアノ基等を有する直鎖状若しくは分岐鎖状のアルキル基又はシクロアルキル基が挙げられる。
 式(I)中、p~pは、各々独立に、0又は正の整数を表す。なお、p~pの上限値は、各繰り返し単位において置換し得る水素原子の数に相当する。
 式(I)中、Rは、1価の有機基を表す。Rとしては、特に限定されないが、例えば、スルトン構造を有する1価の有機基、及び、テトラヒドロフラン、ジオキサン、1,4-チオキサン、ジオキソラン、及び2,4,6-トリオキサビシクロ[3.3.0]オクタン等の環状エーテルを有する1価の有機基、又は酸分解性基(例えば、-COO基と結合する位置の炭素がアルキル基で置換されて4級化されたアダマンチル基等)が挙げられる。
 また、式(I)中、上記繰り返し単位(b)は、特開2016-138219号公報の段落0014~0018に記載される単量体から形成されたものであることも好ましい。
 式(I)中、a~eは、モル%を表し、各々独立に、0≦a≦100、0≦b≦100、0≦c<100、0≦d<100、0≦e<100の範囲に含まれる数を表す。ただし、a+b+c+d+e=100であり、a+b≠0である。
 式(I)中、a+b(全繰り返し単位に対する、酸分解性基を有する繰り返し単位の含有量)は、20~90モル%が好ましく、25~85モル%がより好ましく、30~80モル%が更に好ましい。
 また、式(I)中、c+d(全繰り返し単位に対する、ラクトン構造を有する繰り返し単位の含有量)は、3~80モル%が好ましく、3~60モル%がより好ましい。
 なお、繰り返し単位(a)~繰り返し単位(e)の各繰り返し単位はそれぞれ1種を単独で用いても、それぞれ2種以上の各繰り返し単位を併用してもよい。2種以上の繰各繰り返し単位を併用する場合には、合計含有量が、それぞれ上記範囲内であることが好ましい。
 式(I)で表される樹脂の重量平均分子量(Mw)は、通常1,000~200,000が好ましく、2,000~20,000がより好ましく、3,000~15,000が更に好ましい。なお、上記重量平均分子量は、展開溶媒としてテトラヒドロフラン(THF)を用いて、ゲルパーミエーションクロマトグラフィー(GPC:Gel Permeation Chromatography)法により求められるポリスチレン換算値である。
 また、上記感活性光線性又は感放射線性樹脂組成物中、上記式(I)で表される樹脂の含有量は、感活性光線性又は感放射線性樹脂組成物の全固形分を基準として、通常30~99質量%が好ましく、50~95質量%がより好ましい。
 (フェノール性水酸基を有する繰り返し単位)
 また、樹脂Pは、フェノール性水酸基を有する繰り返し単位を含有していてもよい。
 フェノール性水酸基を有する繰り返し単位としては、例えば、下記一般式(I)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 式中、
 R41、R42及びR43は、各々独立に、水素原子、アルキル基、ハロゲン原子、シアノ基又はアルコキシカルボニル基を表す。但し、R42はArと結合して環を形成していてもよく、その場合のR42は単結合又はアルキレン基を表す。
 Xは、単結合、-COO-、又は-CONR64-を表し、R64は、水素原子又はアルキル基を表す。
 Lは、単結合又はアルキレン基を表す。
 Arは、(n+1)価の芳香環基を表し、R42と結合して環を形成する場合には(n+2)価の芳香環基を表す。
 nは、1~5の整数を表す。
 一般式(I)におけるR41、R42及びR43のアルキル基としては、置換基を有していてもよい、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基及びドデシル基など炭素数20以下のアルキル基が好ましく、炭素数8以下のアルキル基がより好ましく、炭素数3以下のアルキル基が更に好ましい。
 一般式(I)におけるR41、R42及びR43のシクロアルキル基としては、単環型でも、多環型でもよい。シクロアルキル基としては、置換基を有していてもよい、シクロプロピル基、シクロペンチル基及びシクロヘキシル基などの炭素数3~8個で単環型のシクロアルキル基が好ましい。
 一般式(I)におけるR41、R42及びR43のハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子が好ましい。
 一般式(I)におけるR41、R42及びR43のアルコキシカルボニル基に含まれるアルキル基としては、上記R41、R42及びR43におけるアルキル基と同様のものが好ましい。
 上記各基における置換基としては、例えば、アルキル基、シクロアルキル基、アリール基、アミノ基、アミド基、ウレイド基、ウレタン基、ヒドロキシル基、カルボキシル基、ハロゲン原子、アルコキシ基、チオエーテル基、アシル基、アシロキシ基、アルコキシカルボニル基、シアノ基、及び、ニトロ基等が挙げられ、置換基の炭素数は8以下が好ましい。
 Arは、(n+1)価の芳香環基を表す。nが1である場合における2価の芳香環基は、置換基を有していてもよく、例えば、フェニレン基、トリレン基、ナフチレン基及びアントラセニレン基などの炭素数6~18のアリーレン基、並びに、チオフェン、フラン、ピロール、ベンゾチオフェン、ベンゾフラン、ベンゾピロール、トリアジン、イミダゾール、ベンゾイミダゾール、トリアゾール、チアジアゾール及びチアゾール等のヘテロ環を含む芳香環基が挙げられる。
 nが2以上の整数である場合における(n+1)価の芳香環基の具体例としては、2価の芳香環基の上記した具体例から、(n-1)個の任意の水素原子を除してなる基が挙げられる。
 (n+1)価の芳香環基は、更に置換基を有していてもよい。
 上述したアルキル基、シクロアルキル基、アルコキシカルボニル基、アルキレン基及び(n+1)価の芳香環基が有し得る置換基としては、例えば、一般式(I)におけるR41、R42及びR43で挙げたアルキル基;メトキシ基、エトキシ基、ヒドロキシエトキシ基、プロポキシ基、ヒドロキシプロポキシ基及びブトキシ基等のアルコキシ基;フェニル基等のアリール基が挙げられる。
 Xにより表わされる-CONR64-(R64は、水素原子、アルキル基を表す)におけるR64のアルキル基としては、置換基を有していてもよい、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基及びドデシル基など炭素数20以下のアルキル基が挙げられ、炭素数8以下のアルキル基がより好ましい。
 Xとしては、単結合、-COO-又は-CONH-が好ましく、単結合又は-COO-がより好ましい。
 Lにおけるアルキレン基としては、置換基を有していてもよい、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基及びオクチレン基等の炭素数1~8個のアルキレン基が好ましい。
 Arとしては、置換基を有していてもよい炭素数6~18の芳香環基が好ましく、ベンゼン環基、ナフタレン環基又はビフェニレン環基がより好ましい。
 一般式(I)で表される繰り返し単位は、ヒドロキシスチレン構造を備えていることが好ましい。即ち、Arは、ベンゼン環基であることが好ましい。
 フェノール性水酸基を有する繰り返し単位としては、下記一般式(p1)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(p1)におけるRは、水素原子、ハロゲン原子又は1~4個の炭素原子を有する直鎖状若しくは分岐鎖状のアルキル基を表す。複数のRは、各々同じでも異なっていてもよい。一般式(p1)中のRとしては水素原子が好ましい。
 一般式(p1)におけるArは芳香族環を表し、例えば、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環及びフェナントレン環などの炭素数6~18の置換基を有していてもよい芳香族炭化水素環、並びに、例えば、チオフェン環、フラン環、ピロール環、ベンゾチオフェン環、ベンゾフラン環、ベンゾピロール環、トリアジン環、イミダゾール環、ベンゾイミダゾール環、トリアゾール環、チアジアゾール環及びチアゾール環等のヘテロ環を含む芳香環ヘテロ環が挙げられる。中でも、ベンゼン環がより好ましい。
 一般式(p1)におけるmは、1~5の整数を表し、1が好ましい。
 以下、フェノール性水酸基を有する繰り返し単位の具体例を示すが、本発明は、これに限定されるものではない。式中、aは1又は2を表す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 フェノール性水酸基を有する繰り返し単位の含有量は、樹脂P中の全繰り返し単位に対し、0~50モル%が好ましく、より好ましくは0~45モル%、更に好ましくは0~40モル%である。
(極性基を有する有機基を含有する繰り返し単位)
 樹脂Pは、極性基を有する有機基を含有する繰り返し単位、特に、極性基で置換された脂環炭化水素構造を有する繰り返し単位を更に含有していてもよい。
 これにより基板密着性、現像液親和性が向上する。極性基で置換された脂環炭化水素構造の脂環炭化水素構造としてはアダマンチル基、ジアマンチル基又はノルボルナン基が好ましい。極性基としては、水酸基又はシアノ基が好ましい。
 極性基を有する繰り返し単位の具体例を以下に挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000021
 樹脂Pが、極性基を有する有機基を含有する繰り返し単位を含有する場合、その含有量は、樹脂P中の全繰り返し単位に対し、1~50モル%が好ましく、1~30モル%がより好ましく、5~25モル%が更に好ましくは、5~20モル%が特に好ましい。
(活性光線又は放射線の照射により酸を発生する基(光酸発生基)を有する繰り返し単位)
 樹脂Pは、活性光線又は放射線の照射により酸を発生する基(光酸発生基)を有する繰り返し単位を含有していてもよい。
 活性光線又は放射線の照射により酸を発生する基(光酸発生基)を有する繰り返し単位としては、例えば、下記式(4)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 R41は、水素原子又はメチル基を表す。L41は、単結合又は2価の連結基を表す。L42は、2価の連結基を表す。Wは、活性光線又は放射線の照射により分解して側鎖に酸を発生させる構造部位を表す。
 以下に、式(4)で表される繰り返し単位の具体例を示すが、本発明がこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000023
 そのほか、式(4)で表される繰り返し単位としては、例えば、特開2014-041327号公報の段落[0094]~[0105]に記載された繰り返し単位が挙げられる。
 樹脂Pが光酸発生基を有する繰り返し単位を含有する場合、光酸発生基を有する繰り返し単位の含有量は、樹脂P中の全繰り返し単位に対し、1~40モル%が好ましく、より好ましくは5~35モル%、更に好ましくは5~30モル%である。
 樹脂Pは、下記式(VI)で表される繰り返し単位を含有していてもよい。
Figure JPOXMLDOC01-appb-C000024
 式(VI)中、
 R61、R62及びR63は、各々独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基、又はアルコキシカルボニル基を表す。但し、R62はArと結合して環を形成していてもよく、その場合のR62は単結合又はアルキレン基を表す。
 Xは、単結合、-COO-、又は-CONR64-を表す。R64は、水素原子又はアルキル基を表す。
 Lは、単結合又はアルキレン基を表す。
 Arは、(n+1)価の芳香環基を表し、R62と結合して環を形成する場合には(n+2)価の芳香環基を表す。
 Yは、n≧2の場合には各々独立に、水素原子又は酸の作用により脱離する基を表す。但し、Yの少なくとも1つは、酸の作用により脱離する基を表す。
 nは、1~4の整数を表す。
 酸の作用により脱離する基Yとしては、下記式(VI-A)で表される構造が好ましい。
Figure JPOXMLDOC01-appb-C000025
 L及びLは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、又はアルキレン基とアリール基とを組み合わせた基を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、アルキル基、ヘテロ原子を含んでいてもよいシクロアルキル基、ヘテロ原子を含んでいてもよいアリール基、アミノ基、アンモニウム基、メルカプト基、シアノ基又はアルデヒド基を表す。
 Q、M、Lの少なくとも2つが結合して環(好ましくは、5員若しくは6員環)を形成してもよい。
 上記式(VI)で表される繰り返し単位は、下記式(3)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
 式(3)において、
 Arは、芳香環基を表す。
 Rは、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、アシル基又はヘテロ環基を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、アルキル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
 Q、M及びRの少なくとも二つが結合して環を形成してもよい。
 Arが表す芳香環基は、上記式(VI)におけるnが1である場合の、上記式(VI)におけるArと同様であり、より好ましくはフェニレン基、ナフチレン基であり、更に好ましくはフェニレン基である。
 以下に式(VI)で表される繰り返し単位の具体例を示すが、本発明はこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 樹脂Pは、下記式(4)で表される繰り返し単位を含有していてもよい。
Figure JPOXMLDOC01-appb-C000029
 式(4)中、
 R41、R42及びR43は、各々独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基又はアルコキシカルボニル基を表す。R42はLと結合して環を形成していてもよく、その場合のR42はアルキレン基を表す。
 Lは、単結合又は2価の連結基を表し、R42と環を形成する場合には3価の連結基を表す。
 R44及びR45は、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、アシル基又はヘテロ環基を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、アルキル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
 Q、M及びR44の少なくとも二つが結合して環を形成してもよい。
 R41、R42及びR43は、前述の式(IA)中のR41、R42及びR43と同義であり、また好ましい範囲も同様である。
 Lは、前述の式(AI)中のTと同義であり、また好ましい範囲も同様である。
 R44及びR45は、前述の式(3)中のRと同義であり、また好ましい範囲も同様である。
 Mは、前述の式(3)中のMと同義であり、また好ましい範囲も同様である。
 Qは、前述の式(3)中のQと同義であり、また好ましい範囲も同様である。
 Q、M及びR44の少なくとも二つが結合して形成される環としては、Q、M及びRの少なくとも二つが結合して形成される環があげられ、また好ましい範囲も同様である。
 以下に式(4)で表される繰り返し単位の具体例を示すが、本発明はこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000030
 また、樹脂Pは、下記式(BZ)で表される繰り返し単位を含有していてもよい。
Figure JPOXMLDOC01-appb-C000031
 式(BZ)中、ARは、アリール基を表す。Rnは、アルキル基、シクロアルキル基又はアリール基を表す。RnとARとは互いに結合して非芳香族環を形成してもよい。
 Rは、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基又はアルキルオキシカルボニル基を表す。
 以下に、式(BZ)により表される繰り返し単位の具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 樹脂Pにおける酸分解性基を有する繰り返し単位の含有量(複数種類含有する場合はその合計)は、上記樹脂P中の全繰り返し単位に対して5~80モル%が好ましく、5~75モル%がより好ましく、10~65モル%が更に好ましい。
 樹脂Pは、下記式(V)又は下記式(VI)で表される繰り返し単位を含有していてもよい。
Figure JPOXMLDOC01-appb-C000034
 式中、
 R及びR7は、それぞれ独立に、水素原子、ヒドロキシ基、炭素数1~10の直鎖状、分岐状又は環状のアルキル基、アルコキシ基又はアシロキシ基、シアノ基、ニトロ基、アミノ基、ハロゲン原子、エステル基(-OCOR又は-COOR:Rは炭素数1~6のアルキル基又はフッ素化アルキル基)、又はカルボキシル基を表す。
 nは0~6の整数を表す。
 nは0~4の整数を表す。
 Xはメチレン基、酸素原子又は硫黄原子である。
 式(V)又は式(VI)で表される繰り返し単位の具体例を下記に示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000035

 
 樹脂Pは、更に、側鎖に珪素原子を有する繰り返し単位を含有していてもよい。側鎖に珪素原子を有する繰り返し単位としては、例えば、珪素原子を有する(メタ)アクリレート系繰り返し単位、珪素原子を有するビニル系繰り返し単位などが挙げられる。側鎖に珪素原子を有する繰り返し単位は、典型的には、側鎖に珪素原子を有する基を有する繰り返し単位であり、珪素原子を有する基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基、トリシクロヘキシルシリル基、トリストリメチルシロキシシリル基、トリストリメチルシリルシリル基、メチルビストリメチルシリルシリル基、メチルビストリメチルシロキシシリル基、ジメチルトリメチルシリルシリル基、ジメチルトリメチルシロキシシリル基、及び、下記のような環状もしくは直鎖状ポリシロキサン、又はカゴ型あるいははしご型もしくはランダム型シルセスキオキサン構造などが挙げられる。式中、R、及び、Rは各々独立に、1価の置換基を表す。*は、結合手を表す。
Figure JPOXMLDOC01-appb-C000036
 上記の基を有する繰り返し単位としては、例えば、上記の基を有するアクリレート又はメタクリレート化合物に由来する繰り返し単位、または、上記の基とビニル基とを有する化合物に由来する繰り返し単位が好ましい。
 珪素原子を有する繰り返し単位は、シルセスキオキサン構造を有する繰り返し単位であることが好ましく、これにより、超微細(例えば、線幅50nm以下)であり、かつ、断面形状が高アスペクト比(例えば、膜厚/線幅が3以上)のパターンの形成において、非常に優れた倒れ性能を発現することができる。
 シルセスキオキサン構造としては、例えば、カゴ型シルセスキオキサン構造、はしご型シルセスキオキサン構造(ラダー型シルセスキオキサン構造)、及び、ランダム型シルセスキオキサン構造が挙げられる。なかでも、カゴ型シルセスキオキサン構造が好ましい。
 ここで、カゴ型シルセスキオキサン構造とは、カゴ状骨格を有するシルセスキオキサン構造である。カゴ型シルセスキオキサン構造は、完全カゴ型シルセスキオキサン構造であっても、不完全カゴ型シルセスキオキサン構造であってもよいが、完全カゴ型シルセスキオキサン構造であることが好ましい。
 また、はしご型シルセスキオキサン構造とは、はしご状骨格を有するシルセスキオキサン構造である。
 また、ランダム型シルセスキオキサン構造とは、骨格がランダムのシルセスキオキサン構造である。
 上記カゴ型シルセスキオキサン構造は、下記式(S)で表されるシロキサン構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000037
 上記式(S)中、Rは、1価の有機基を表す。複数あるRは、同一であっても、異なってもよい。
 上記有機基は特に制限されないが、具体例としては、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アミノ基、メルカプト基、ブロック化メルカプト基(例えば、アシル基でブロック(保護)されたメルカプト基)、アシル基、イミド基、ホスフィノ基、ホスフィニル基、シリル基、ビニル基、ヘテロ原子を有していてもよい炭化水素基、(メタ)アクリル基含有基及びエポキシ基含有基などが挙げられる。
 上記ヘテロ原子を有していてもよい炭化水素基のヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子及びリン原子などが挙げられる。
 上記ヘテロ原子を有していてもよい炭化水素基の炭化水素基としては、例えば、脂肪族炭化水素基、芳香族炭化水素基、又はこれらを組み合わせた基などが挙げられる。
 上記脂肪族炭化水素基は、直鎖状、分岐鎖状及び環状のいずれであってもよい。上記脂肪族炭化水素基の具体例としては、直鎖状又は分岐鎖状のアルキル基(特に、炭素数1~30)、直鎖状又は分岐鎖状のアルケニル基(特に、炭素数2~30)、直鎖状又は分岐鎖状のアルキニル基(特に、炭素数2~30)などが挙げられる。
 上記芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基及びナフチル基などの炭素数6~18の芳香族炭化水素基などが挙げられる。
 樹脂Pが、上記側鎖に珪素原子を有する繰り返し単位を有する場合、その含有量は、樹脂P中の全繰り返し単位に対し、1~30モル%が好ましく、5~25モル%がより好ましくは、5~20モル%が更に好ましい。
 樹脂Pの重量平均分子量は、GPC(Gel permeation chromatography)法によりポリスチレン換算値として、1,000~200,000が好ましく、3,000~20,000がより好ましく、5,000~15,000が更に好ましい。重量平均分子量を、1,000~200,000とすることにより、耐熱性及びドライエッチング耐性の劣化を防ぐことができ、且つ現像性が劣化したり、粘度が高くなって製膜性が劣化したりすることを防ぐことができる。
 分散度(分子量分布)は、通常1~5であり、1~3が好ましく、1.2~3.0がより好ましく、1.2~2.0が更に好ましい。
 感活性光線性又は感放射線性組成物において、樹脂Pの含有量は、全固形分中、50~99.9質量%が好ましく、60~99.0質量%がより好ましい。
 また、感活性光線性又は感放射線性組成物において、樹脂Pは、1種で使用してもよいし、複数併用してもよい。
(光酸発生剤)
 上記感活性光線性又は感放射線性樹脂組成物は、光酸発生剤を含有することが好ましい。光酸発生剤としては特に制限されず、公知の光酸発生剤を用いることができる。
 感活性光線性又は感放射線性樹脂組成物中における光酸発生剤の含有量としては特に制限されないが、一般に、感活性光線性又は感放射線性樹脂組成物の全固形分に対して、0.1~20質量%が好ましく。0.5~20質量%がより好ましい。光酸発生剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の光酸発生剤を併用する場合には、合計含有量が上記範囲内であることが好ましい。
 光酸発生剤としては、例えば、特開2016-57614号公報、特開2014-219664号公報、特開2016-138219号公報、及び、特開2015-135379号公報に記載のものが挙げられる。
(クエンチャー)
 上記感活性光線性又は感放射線性樹脂組成物は、クエンチャーを含有してもよい。クエンチャーとしては特に制限されず、公知のクエンチャーを用いることができる。
 クエンチャーとは、塩基性化合物であって、未露光領域において、露光領域から拡散した酸によって、酸分解性樹脂が意図せず分解するのを抑制する機能を有する。
 感活性光線性又は感放射線性樹脂組成物中におけるクエンチャーの含有量としては特に制限されないが、一般に、感活性光線性又は感放射線性樹脂組成物の全固形分に対して、0.1~15質量%が好ましく、0.5~8質量%がより好ましい。クエンチャーは、1種を単独で用いても、2種以上を併用してもよい。2種以上のクエンチャーを併用する場合には、合計含有量が上記範囲内であることが好ましい
 クエンチャーとしては、例えば、特開2016-57614号公報、特開2014-219664号公報、特開2016-138219号公報、及び、特開2015-135379号公報に記載のものが挙げられる。
(疎水性樹脂)
 上記感活性光線性又は感放射線性樹脂組成物は、疎水性樹脂を含有していてもよい。
 疎水性樹脂はレジスト膜の表面に偏在するように設計されることが好ましいが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性物質及び非極性物質を均一に混合することに寄与しなくてもよい。
 疎水性樹脂を添加することの効果として、水に対するレジスト膜表面の静的及び動的な接触角の制御、並びに、アウトガスの抑制等が挙げられる。
 疎水性樹脂は、膜表層への偏在化の観点から、“フッ素原子”、“珪素原子”、及び、“樹脂の側鎖部分に含まれたCH部分構造”のいずれか1種以上を有することが好ましく、2種以上を有することがより好ましい。また、上記疎水性樹脂は、炭素数5以上の炭化水素基を有することが好ましい。これらの基は樹脂の主鎖中に有していても、側鎖に置換していてもよい。
 疎水性樹脂が、フッ素原子及び/又は珪素原子を含む場合、疎水性樹脂における上記フッ素原子及び/又は珪素原子は、樹脂の主鎖中に含まれていてもよく、側鎖中に含まれていてもよい。
 疎水性樹脂がフッ素原子を含んでいる場合、フッ素原子を有する部分構造としては、フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基、又は、フッ素原子を有するアリール基が好ましい。
 フッ素原子を有するアルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~4)は、少なくとも1つの水素原子がフッ素原子で置換された直鎖状又は分岐鎖状のアルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
 フッ素原子を有するシクロアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された単環又は多環のシクロアルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
 フッ素原子を有するアリール基としては、フェニル基、及び、ナフチル基等のアリール基の少なくとも1つの水素原子がフッ素原子で置換されたものが挙げられ、更にフッ素原子以外の置換基を有していてもよい。
 フッ素原子又は珪素原子を有する繰り返し単位の例としては、US2012/0251948A1の段落[0519]に例示されたものが挙げられる。
 また、上記したように、疎水性樹脂は、側鎖部分にCH部分構造を含むことも好ましい。
 ここで、疎水性樹脂中の側鎖部分が有するCH部分構造は、エチル基、及び、プロピル基等が有するCH部分構造を含むものである。
 一方、疎水性樹脂の主鎖に直接結合しているメチル基(例えば、メタクリル酸構造を有する繰り返し単位のα-メチル基)は、主鎖の影響により疎水性樹脂の表面偏在化への寄与が小さいため、本発明におけるCH部分構造に含まれないものとする。
 疎水性樹脂に関しては、特開2014-010245号公報の段落[0348]~[0415]の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 なお、疎水性樹脂としてはこの他にも特開2011-248019号公報、特開2010-175859号公報、特開2012-032544号公報記載の樹脂も好ましく用いることができる。
 疎水性樹脂としては、例えば、以下の式(1b)~式(5b)で表される樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000038
 レジスト組成物が疎水性樹脂を含有する場合、疎水性樹脂の含有量は、組成物の全固形分に対して、0.01~20質量%が好ましく、0.1~15質量%がより好ましい。
(溶剤)
 上記感活性光線性又は感放射線性樹脂組成物は、溶剤を含有してもよい。溶剤としては特に制限されず、公知の溶剤を用いることができる。
 上記感活性光線性又は感放射線性樹脂組成物に含有される溶剤は、既に説明した薬液中の混合物に含有される有機溶剤と同一でも異なってもよい。
 感活性光線性又は感放射線性樹脂組成物中における溶剤の含有量としては特に制限されないが、一般に、感活性光線性又は感放射線性樹脂組成物の全固形分が、0.1~20質量%に調整されるよう含有されることが好ましい。溶剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の溶剤を併用する場合には、合計含有量が上記範囲内であることが好ましい
 溶剤としては、例えば、特開2016-57614号公報、特開2014-219664号公報、特開2016-138219号公報、及び、特開2015-135379号公報に記載のものが挙げられる。
(その他の添加剤)
 また、上記感活性光線性又は感放射線性樹脂組成物は、必要に応じて更に、界面活性剤、酸増殖剤、染料、可塑剤、光増感剤、光吸収剤、上記以外のアルカリ可溶性樹脂、及び/又は、溶解阻止剤等を含有してもよい。
〔露光工程〕
 露光工程は、レジスト膜を露光する工程である。レジスト膜を露光する方法としては特に制限されず、公知の方法を用いることができる。
 レジスト膜を露光する方法としては、例えばレジスト膜に、所定のマスクを通して活性光線又は放射線を照射する方法が挙げられる。また、レジスト膜に電子ビームを照射する方法の場合は、マスクを介さないで照射してもよい(これを、「直描」ともいう。)。
 露光に用いられる活性光線又は放射線としては特に制限されないが、例えば、KrFエキシマレーザー、ArFエキシマレーザー、極紫外線(EUV、Extreme Ultra Violet)、及び、電子線(EB、Electron Beam)等が挙げられ、極紫外線又は電子線が好ましい。露光は液浸露光であってもよい。
 <PEB(Post Exposure Bake)工程>
 上記パターン形成方法は、露光工程と、現像工程の前に、露光後のレジスト膜をベーク(PEB:Post Exposure Bake)する、PEB工程を更に含有することが好ましい。ベークにより露光部の反応が促進され、感度、及び/又は、パターン形状がより良好となる。
 加熱温度は80~150℃が好ましく、80~140℃がより好ましく、80~130℃が更に好ましい。
 加熱時間は30~1000秒が好ましく、60~800秒がより好ましく、60~600秒が更に好ましい。
 加熱は通常の露光・現像機に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。
〔現像工程〕
 現像工程は、露光されたレジスト膜(以下、「露光後のレジスト膜」ともいう。)を現像液によって現像する工程である。なお、本実施態様においては、現像液として薬液Xを用いる。
 現像方法としては、特に制限されず、公知の現像方法を用いることができる。現像方法としては、例えば、ディップ法、パドル法、スプレー法、及び、ダイナミックディスペンス法等が挙げられる。
 また、上記パターン形成方法は、現像工程の後に、現像液を他の溶剤に置換し、現像を停止する工程を更に含有してもよい。
 現像時間はとしては、特に制限されないが、一般に10~300秒が好ましく、10~120秒がより好ましい。現像液の温度としては、0~50℃が好ましく、15~35℃がより好ましい。パターン形成方法は、現像工程を少なくとも1回含有していればよく、複数回含有してもよい。
 なお、現像工程においては、薬液Xを用いた現像と、アルカリ現像液による現像を両方行ってもよい(いわゆる二重現像を行ってもよい)。
〔リンス工程〕
 リンス工程は、現像後のレジスト膜を備えるウェハを、リンス液を用いて洗浄する工程である。なお、本実施態様においては、現像液として薬液Yを用いる。
 洗浄方法としては特に制限されず、公知の洗浄方法を用いることできる。洗浄方法としては、例えば、回転吐出法、ディップ法、及び、スプレー法等が挙げられる。
 なかでも回転吐出法で洗浄し、洗浄後にウェハを2000~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
 リンス時間としては、一般に10~300秒が好ましく、10~180秒がより好ましく、20~120秒が更に好ましい、リンス液の温度としは0~50℃が好ましく、15~35℃がより好ましい。
〔その他の工程〕
 上記パターン形成方法は、既に説明した工程に加えて、その他の工程を含有してもよい。その他の工程としては例えば、プリウェット工程、超臨界流体による洗浄工程、及び、加熱工程等が挙げられる。
<プリウェット工程>
 プリウェット工程は、レジスト膜形成工程前において、レジスト膜を形成するための基板上に薬液を塗布する工程である。プリウェット工程は、公知の方法を採用できる。また、プリウェット工程に使用する薬液としては、本薬液を用いてもよいし、本薬液以外の薬液を用いてもよい。
 基板としては特に制限されず、半導体製造用として用いられる公知の基板を用いることができる。基板としては、例えば、シリコン、SiO、若しくはSiN等の無機基板、又は、SOG(Spin On Glass)等の塗布系無機基板等が挙げられるがこれに制限されない。
 また、基板は、反射防止膜を備える、反射防止膜付き基板であってもよい。反射防止膜としては、特に制限されず、公知の有機系又は無機系の反射防止膜を用いることができる。
 基板上に薬液を塗布する方法としては特に制限されず、公知の塗布方法を用いることができる。中でも、後述するレジスト膜形成工程において、より少ない感活性光線性又は感放射線性樹脂組成物で均一なレジスト膜が形成できる点で、塗布方法としてはスピン塗布が好ましい。
 基板上に薬液を塗布する方法としては特に制限されず、公知の塗布方法を用いることができる。中でも、後述するレジスト膜形成工程において、より少ない感活性光線性又は感放射線性樹脂組成物で均一なレジスト膜が形成できる点で、塗布方法としてはスピン塗布が好ましい。
 薬液を用いて基板上に形成される薬液層の厚みとしては特に制限されないが、一般に0.001~10μmが好ましく、0.005~5μmがより好ましい。
 ここで、これから塗布しようとするレジスト液がArF液浸露光用レジストであるものとする。このレジスト液の表面張力が28.8mN/mであったとする。この場合、薬液の混合物の表面張力としては特に制限されないが、レジスト液の表面張力よりも高くし、これをプリウェット液としてウェハに供給することが好ましい。
 薬液のウェハへの供給方法としては、通常、プリウェットノズルがウェハの中心部の上方まで移動する。そして、バルブの開閉によって薬液がウェハへ供給される。
 ウェハが停止している状態で、プリウェットノズルから上記の薬液が所定量、ウェハの中心部に供給される。その後、ウェハが例えば500rpm(rotation per minute)程度の第1の速度V1で回転され、ウェハ上の薬液がウェハの表面の全面に拡散されて、ウェハの表面全体が薬液により濡れた状態となる。
 なお、第1の速度V1の上限値としては特に制限されないが3000rpm以下が好ましい。
 その後、レジスト液が繋がっているラインのバルブが開放されることによりレジストノズルからレジスト液の吐出が開始され、ウェハの中心部にレジスト液が供給され始める。
 こうして、レジスト膜形成工程が開始される。このレジスト膜形成工程では、ウェハの回転速度が第1の速度V1から、高速の例えば2000~4000rpm程度の第2の速度V2まで上げられる。レジスト膜形成工程の開始前に第1の速度V1であったウェハの回転は、その後速度が連続的に滑らかに変動するように徐々に加速される。このとき、ウェハの回転の加速度は、例えば零から次第に増加する。そして、レジスト膜形成工程の終了時には、ウェハの回転の加速度が次第に減少され、ウェハWの回転速度が第2の速度V2に滑らかに収束する。こうして、レジスト膜形成工程時においては、ウェハの回転速度が第1の速度V1から第2の速度V2にS字状に推移するように変動する。レジスト膜形成工程では、ウェハの中心部に供給されたレジスト液が遠心力によりウェハの表面の全面に拡散されて、ウェハの表面にレジスト液が塗布される。
 なお、このようなレジスト塗布時のウェハ回転速度の変動による省レジスト技術については、特願2008-131495号公報、特開2009-279476号公報に詳細に記載されている。
 なお、プリウェット工程が終了した後、レジスト膜形成工程におけるレジスト液の塗布が始まるまでの間隔としては特に制限されないが、一般に7秒以下が好ましい。
 上記薬液は、再利用されてもよい。すなわち、上記プリウェット工程で用いた薬液を回収し、更に他のウェハのプリウェット工程に用いることができる。
 薬液を再利用する場合、回収した薬液中に含有される、不純物金属、有機不純物、及び、水等の含有量を調製することが好ましい。
<超臨界流体による除去工程>
 超臨界流体による除去工程は、現像工程、及び/又は、リンス工程の後に、パターン上に付着している現像液、及び/又は、リンス液を超臨界流体により除去する工程である。
<加熱工程>
 加熱工程は、現像工程、リンス工程、又は、超臨界流体による除去工程の後に、パターン中に残存する溶剤を除去するためにレジスト膜を加熱する工程である。
 加熱温度は、特に制限されないが、一般に40~160℃が好ましく、50~150℃がより好ましく、50~110℃が更に好ましい。
 加熱時間は、特に制限されないが、一般に15~300秒が好ましく、15~180秒がより好ましい。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。
 また、実施例及び比較例の薬液の調製にあたって、容器の取り扱い、薬液の調製、充填、保管及び分析測定は、全てISOクラス2又は1を満たすレベルのクリーンルームで行った。測定精度向上のため、有機化合物の含有量の測定、及び、金属成分の含有量の測定においては、通常の測定で検出限界以下の成分の測定を行う際には、薬液を濃縮して測定を行い、濃縮前の溶液の濃度に換算して含有量を算出した。
[薬液A1の精製]
 有機溶剤としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)を含有する被精製物(市販品)を準備した。
 次に、減圧機構を備えない第1棚段式蒸留塔を有する第1蒸留部(粗蒸留のための蒸留工程)、陽イオン交換樹脂を充填した充填塔を3つ直列に接続した第1充填部(イオン除去工程)、陰イオン交換樹脂を充填した充填塔を2つ直列に接続した第2充填部(イオン除去工程)、及び減圧機構を備えない第2棚段式蒸留塔と減圧機構を備えた第3棚段式蒸留塔とをこの順に直列に接続した第2蒸留部(精留処理のための蒸留工程)、第1フィルターと第2フィルターとをこの順に直列に接続したろ過部(ろ過工程)を、上流側からこの順に接続した精製装置を準備した。
 そして、上記精製装置を用いて上記被精製物を精製して、薬液を製造した。なお、被精製物の精製は、精製装置を一回通液させるのを1回とカウントして、合計2回行った(表中、循環回数2回と示した。)。
 以下において、精製装置における各部材の詳細を上流側(一次側)から順に示す。
・第1棚段式蒸留塔(理論段数:10段)
・陽イオン交換樹脂(ORLITE DS-4、オルガノ社製)
・陰イオン交換樹脂(ORLITE DS-6、オルガノ社製)
・第2棚段式蒸留塔(理論段数:23段)
・第3棚段式蒸留塔(理論段数:23段、減圧蒸留)
・第1フィルター(Purasol SP/SN溶剤用ピューリファイヤー、インテグリス社製、UPE(超高分子量ポリエチレン)フィルター)
・第2フィルター(製品名「トレント」、インテグリス社製、ポリテトラフルオロエチレン(PTFE)フィルター)
[他の薬液の精製]
 表1に記載した条件で、表1に記載した有機溶剤を含有する被精製物を精製して得た。なお、各薬液は、被精製物を表1に記載した各部材に上流側から順に通液し(なお、空欄の薬液は、その部材を用いなかったことを表す。)、これを「循環回数」に記載した回数繰り返して得た。
 ただし、比較例NA2については、イオン除去工程に使用した第1充填部および第2充填部の代わりに、吸着樹脂(製品名「デュオライト 874」、スチレン系樹脂)を充填した第3充填部を用いて、イオン除去工程を行った。
 なお、第1棚段式蒸留塔、第2棚段式蒸留塔及び第3棚段式蒸留塔については、表1に記載の理論段数の蒸留塔を用いた。また、陽イオン交換樹脂の段数は、陽イオン交換樹脂を充填した充填塔を直列に接続した個数を意味し、陰イオン交換樹脂の段数についても、陰イオン交換樹脂を充填した充填塔を直列に接続した個数を意味し、吸着樹脂の段数についても、吸着樹脂を充填した充填塔を直列に接続した個数を意味する。
 また、表1中に記載された被精製物は、それぞれロットの異なるものを調達したものである。従って、各被精製物に当初含有されている有機溶剤以外の成分は異なる場合がある。
 なお、表1中における略号は、それぞれ以下の内容を表す。
・PGMEA:プロピレングリコールモノメチルエーテルアセテート(沸点:146℃、SP値:17.86)
・nBA:n-酢酸ブチル(沸点:126℃、SP値:17.80)
・iAA:酢酸イソアミル(沸点:142℃、SP値:17.42)
・CHN:シクロヘキサノン(沸点:155.6℃、SP値:20.05)
・PGME:プロピレングリコールモノエチルエーテル(沸点:132.8℃、SP値:23.05)
・MIBC:4-メチル-2-ペンタノール(沸点:131.6℃、SP値:21.15)
・EL:乳酸エチル(沸点:154℃、SP値:24.41)
・PC:炭酸プロピレン(沸点:242℃、SP値:20.26)
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
[薬液中の各成分の含有量等の測定]
 薬液の中の各成分の含有量等の測定には、以下の方法を用いた。なお、以下の測定は、全てISO(国際標準化機構)クラス2以下を満たすレベルのクリーンルームで行った。測定精度向上のため、各成分の測定において、通常の測定で検出限界以下である場合は体積換算で100分の1に濃縮して測定を行い、濃縮前の有機溶剤の含有量に換算して含有量を算出した。結果はまとめて表2に示した。
 なお、薬液中の各成分の含有量の測定は、薬液の調製直後に行った。
〔酸成分及び有機化合物〕
 各薬液中の酸成分及び有機化合物の含有量は、ガスクロマトグラフ質量分析装置(製品名「GCMS-2020」、島津製作所社製、測定条件は以下のとおり)を用いて測定した。
<測定条件>
キャピラリーカラム:InertCap 5MS/NP 0.25mmI.D. ×30m df=0.25μm
試料導入法:スプリット 75kPa 圧力一定
気化室温度 :230℃
カラムオーブン温度:80℃(2min)-500℃(13min)昇温速度15℃/min
キャリアガス:ヘリウム
セプタムパージ流量:5mL/min
スプリット比:25:1
インターフェイス温度:250℃
イオン源温度:200℃
測定モード:Scan m/z=85~500
試料導入量:1μL
〔金属成分〕
 薬液中の金属成分(金属イオン及び金属含有粒子)の含有量は、ICP-MS及びSP-ICP-MSを用いる方法により測定した。
 装置は以下の装置を使用した。結果を表2に示す。
・メーカー:PerkinElmer
・型式:NexION350S
 解析には以下の解析ソフトを使用した。
・“SP-ICP-MS”専用Syngistix ナノアプリケーションモジュール
・Syngistix for ICP-MS ソフトウェア
〔金属ナノ粒子〕
 薬液中における金属ナノ粒子(粒子径0.5~17nmの金属含有粒子)の含有粒子数は、以下の方法により測定した。
 まず、シリコン基板上に一定量の薬液を塗布して薬液層付き基板を形成し、薬液層付き基板の表面をレーザ光により走査し、散乱光を検出した。これにより、薬液層付き基板の表面に存在する欠陥の位置及び粒子径を特定した。次に、その欠陥の位置を基準にEDX(エネルギー分散型X線)分析法により元素分析し、欠陥の組成を調べた。この方法により、金属ナノ粒子の基板上における粒子数を求め、それを薬液の単位体積あたりの含有粒子数(個/cm)に換算した。
 なお、分析には、KLA-Tencor社製のウェハ検査装置「SP-5」と、アプライドマテリアル社の全自動欠陥レビュー分類装置「SEMVision G6」を組み合わせて使用した。
 また、測定装置の分解能等の都合で、所望の粒子径の粒子が検出できなかった試料については、特開2009-188333号公報の0015~0067段落に記載の方法を用いて検出した。すなわち、基板上に、CVD(化学気相成長)法によりSiO層を形成し、次に、上記層上を覆うように薬液層を形成した。次に、上記SiO層とその上に塗布された薬液層とを有する複合層をドライエッチングして、得られた突起物に対して光照射して、散乱光を検出し、上記散乱光から、突起物の体積を計算し、上記突起物の体積から粒子の粒子径を計算する方法を用いた。
[欠陥抑制性能の評価]
 得られた薬液をプリウェット液として用いて、欠陥抑制性能を評価した。
 ここで、欠陥抑制性能は、製造直後の薬液(表中、「直後」と示した。)を用いた場合と、薬液を容器(接液部の材料:高密度ポリエチレン(HDPE)樹脂)に収容した薬液収容体を40℃で45日間保管した後(表中、「経時」と示した。)の薬液を用いた場合と、の両方について実施した。
 なお、使用したレジスト組成物は以下のとおりである。
〔レジスト組成物1〕
 レジスト組成物1は、各成分を以下の組成で混合して得た。
・樹脂(A-1):0.77g
・酸発生剤(B-1):0.03g
・塩基性化合物(E-3):0.03g
・PGMEA:67.5g
・EL:75g
 <樹脂(A)等>
(合成例1)樹脂(A-1)の合成
 2Lフラスコにシクロヘキサノン600gを入れ、100mL/minの流量で一時間窒素置換した。その後、重合開始剤V-601(和光純薬工業(株)製)4.60g(0.02mol)を加え、内温が80℃になるまで昇温した。次に、以下のモノマーと重合開始剤V-601(和光純薬工業(株)製)4.60g(0.02mol)とを、シクロヘキサノン200gに溶解し、モノマー溶液を調製した。モノマー溶液を上記80℃に加熱したフラスコ中に6時間かけて滴下した。滴下終了後、更に80℃で2時間反応させた。
 4-アセトキシスチレン         48.66g(0.3mol)
 1-エチルシクロペンチルメタクリレート 109.4g(0.6mol)
 モノマー1                22.2g(0.1mol)
Figure JPOXMLDOC01-appb-C000041
 反応溶液を室温まで冷却し、ヘキサン3L中に滴下しポリマーを沈殿させた。ろ過した固体をアセトン500mLに溶解し、再度ヘキサン3L中に滴下、ろ過した固体を減圧乾燥して、4-アセトキシスチレン/1-エチルシクロペンチルメタクリレート/モノマー1共重合体(A-1)160gを得た。
 反応容器中に上記で得られた重合体10g、メタノール40mL、1-メトキシ-2-プロパノール200mL、及び、濃塩酸1.5mLを加え、80℃に加熱して5時間攪拌した。反応溶液を室温まで放冷し、蒸留水3L中に滴下した。ろ過した固体をアセトン200mLに溶解し、再度蒸留水3L中に滴下、ろ過した固体を減圧乾燥して樹脂(A-1)(8.5g)を得た。ゲルパーミエーションクロマトグラフィー(GPC)(溶媒:THF(tetrahydrofuran))による標準ポリスチレン換算の重量平均分子量(Mw)は11200、分子量分散度(Mw/Mn)は1.45であった。樹脂A-1の構造等を以下に示す。
Figure JPOXMLDOC01-appb-C000042
 <光酸発生剤(B)>
 光酸発生剤としては、以下のものを用いた。
Figure JPOXMLDOC01-appb-C000043
 <塩基性化合物(E)>
 塩基性化合物としては、以下のものを用いた。
Figure JPOXMLDOC01-appb-C000044
(欠陥抑制性能)
 以下の方法により、薬液の欠陥抑制性能を評価した。なお、試験には、SOKUDO社製コータデベロッパ「RF3S」を用いた。
 まず、シリコンウエハ上にAL412(Brewer Science社製)を塗布し、200℃で60秒間ベークを行い、膜厚20nmのレジスト下層膜を形成した。その上にプリウェット液(薬液1)を塗布し、その上からレジスト組成物1を塗布し、100℃で60秒間ベーク(PB:Prebake)を行い、膜厚30nmのレジスト膜を形成した。
 このレジスト膜をEUV露光機(ASML社製;NXE3350、NA0.33、Dipole 90°、アウターシグマ0.87、インナーシグマ0.35)を用い、ピッチが20nm且つパターン幅が15nmの反射型マスクを介して露光した。その後、85℃にて60秒間加熱(PEB:Post Exposure Bake)した。次いで、有機溶剤系の現像液で30秒間現像し、20秒間リンスした。続いて、2000rpmの回転数で40秒間ウェハを回転させることにより、ピッチが20nm、且つパターン線幅が15nmのラインアンドスペースのパターンを形成した。
 上記のパターンの画像を取得し、得られた画像を、アプライドマテリアル社のパターン欠陥検査装置「UVsion 7」と、アプライドマテリアル社の全自動欠陥レビュー分類装置「SEMVision G6」を組み合わせて使用して解析し、単位面積当たりの未露光部における残渣数を計測した。
 なお、測定装置の分解能等の都合で、所望の粒子径の粒子が検出できなかった試料については、特開2009-188333号公報の0015~0067段落に記載の方法を用いて検出した。すなわち、基板上に、CVD(化学気相成長)法によりSiO層を形成し、次に、上記層上を覆うように薬液層を形成した。次に、上記SiO層とその上に塗布された薬液層とを有する複合層をドライエッチングして、得られた突起物に対して光照射して、散乱光を検出し、上記散乱光から、突起物の体積を計算し、上記突起物の体積から粒子の粒子径を計算する方法を用いた。
 結果は以下の基準により評価し、表2に示した。
A:欠陥数が50個未満だった。
B:欠陥数が50個以上、70個未満だった。
C:欠陥数が70個以上、90個未満だった。
D:欠陥数が90個以上、110個未満だった。
E:欠陥数が110個以上、130個未満だった。
F:欠陥数が130個以上だった。
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
 上記表2中、「酸成分」および「酸成分/金属成分(質量比)」の欄に記載の数値は、指数表示を略記している場合があり、例えば、「1.1E+05」は「1.1×10」を意味し、「6.3E-03」は「6.3×10-3」を意味する。
 表2に示すように、酸成分の含有量が薬液の全質量に対して1質量ppt以上15質量ppm以下であり、金属成分の含有量が薬液の全質量に対して0.001~100質量pptである薬液を用いれば、長期間保存後においても欠陥抑制性能に優れた薬液が得られるのが示された(実施例)。
 例えば、実施例A1とA2との対比によれば、有機酸の含有量が薬液の全質量に対して1質量ppm以下であれば(実施例A2)、製造直後および長期間保存後における薬液の欠陥抑制性能がより優れるのが示された。
 例えば、実施例A2とA3との対比によれば、有機溶剤の沸点以上の有機酸の含有量が、有機酸の全質量に対して20質量%以下であれば(実施例A2)、長期間保存後における薬液の欠陥抑制性能がより優れるのが示された。
 例えば、実施例A1とA4との対比によれば、無機酸の含有量が、薬液の全質量に対して1質量ppb以下であれば(実施例A1)、製造直後および長期間保存後における薬液の欠陥抑制性能がより優れるのが示された。
 例えば、実施例A15とA16との対比によれば、水の含有量が、薬液の全質量に対して1質量ppm以下であれば(実施例A15)、長期間保存後における薬液の欠陥抑制性能がより優れるのが示された。
 例えば、実施例A8とA17との対比によれば、金属含有粒子の含有量が、薬液の全質量に対して0.00001~10質量pptの範囲内にあれば(実施例A8)、長期間保存後における薬液の欠陥抑制性能がより優れるのが示された。
 例えば、実施例A8とA18との対比によれば、金属ナノ粒子の薬液の単位体積あたりの含有粒子数が1.0×10-2~1.0×10個/cmの範囲内にあれば(実施例A8)、長期間保存後における薬液の欠陥抑制性能がより優れるのが示された。
 例えば、実施例A8とA19との対比によれば、金属イオンの含有量が、薬液の全質量に対して0.01~100質量pptの範囲内であれば(実施例A8)、長期間保存後における薬液の欠陥抑制性能がより優れるのが示された。
 表2に示すように、薬液の全質量に対する酸成分の含有量、及び、薬液の全質量に対する金属成分の含有量の少なくとも一つが上記範囲外の薬液を用いると、長期間保存後における薬液の欠陥抑制性能が劣るのが示された(比較例)。
 なお、上記以外の欠陥性能の評価方法として、以下の文献(1)および文献(2)に記載の方法によって欠陥性能の評価を行ったところ、実施例および比較例の欠陥性能の評価結果はいずれも、上述の欠陥性能と同様の傾向を示すことがわかった。
文献(1)Journal of photopolymer science and technology, Vol28, No.1(2015)17-24 (Renesus)
文献(2)”Development of Novel Purifiers with Approproate Functional Groups Based on Solvent Polarities at Bulk Filtration” Enteglis News letter (May 2017)
[実施例X1]
 現像液である薬液Xとして、上述の薬液B1を準備した。
 また、リンス液である薬液Yとして、酪酸ブチルを準備した。ここで、薬液Yとして用いた酪酸ブチルは、上述のろ過処理等を行わずに、購入品をそのまま使用した。
 なお、以下の実施例及び比較例で使用した薬液Yとして用いた有機溶剤についても、上述のろ過処理等を行わずに、購入品をそのまま使用した。
[実施例X2~X16]
 薬液Y(リンス液)として、表3の薬液Yの欄に示す有機溶剤を用いた以外は、実施例X1と同様にして、表3の組み合わせになるように、薬液X及び薬液Yを準備した。
[実施例X17]
 薬液Y(リンス液)として、酪酸ブチルとウンデカンとの混合溶剤A1(酪酸ブチル:ウンデカン=1:1(質量基準))を準備した。
 これ以外は、実施例X1と同様にして、表3の組み合わせになるように、薬液X及び薬液Yを準備した。
[実施例X18]
 現像液である薬液Xとして、上述の薬液B2を準備した。
 薬液Y(リンス液)として、酪酸ブチルとメタノールとの混合溶剤B1(酪酸ブチル:メタノール=1:1(質量基準))を準備した。
[実施例X19]
 薬液Y(リンス液)として、酪酸ブチルとウンデカンとの混合溶剤A2(酪酸ブチル:ウンデカン=9:1(質量基準))を準備した。
 これ以外は、実施例X1と同様にして、表3の組み合わせになるように、薬液X及び薬液Yを準備した。
[実施例X20]
 薬液Y(リンス液)として、酪酸ブチルとメタノールとの混合溶剤B2(酪酸ブチル:メタノール=9:1(質量基準))を準備した。
 これ以外は、実施例X1と同様にして、表3の組み合わせになるように、薬液X及び薬液Yを準備した。
[実施例X21~X26]
 薬液Y(リンス液)として、表3に示す有機溶剤を用いた以外は、実施例X1と同様にして、表3の組み合わせになるように、薬液X及び薬液Yを準備した。
 ただし、実施例X26では、薬液Y(リンス液)を使用しなかった。
[比較例NX1~NX16]
 薬液X(現像液)として上述の薬液NB1を用い、薬液Y(リンス液)として表3に示す有機溶剤を用いて、表3の組み合わせになるように薬液X及び薬液Yを準備した。
[比較例NX17~NX20]
 薬液Y(リンス液)として、上述した混合溶剤A1、A2、B1又はB2を用いた以外は、比較例NX1と同様にして、表3の組み合わせになるように、薬液X及び薬液Yを準備した。
[比較例NX21~NX26]
 薬液Y(リンス液)として表3に示す有機溶剤を用いた以外は、実施例NX1と同様にして、表3の組み合わせになるように、薬液X及び薬液Yを準備した。
 ただし、比較例NX26では、薬液Y(リンス液)を使用しなかった。
[欠陥抑制性能の評価]
 プリウェット液としてPGMEAを用い、表3の組み合わせの現像液及びリンス液を用い、レジスト膜の露光条件、及び、リンス液による洗浄条件を以下のように変更した以外は、上述の欠陥抑制性能の評価と同様にして、実施例X1~X26及び比較例NX1~NX26のそれぞれについて、欠陥抑制性能の評価を実施した。評価基準についても、上述の欠陥抑制性能の評価と同様にした。
 なお、プリウェット液として用いたPEGMEAは、上述のろ過処理等を行わずに、購入品をそのまま使用した。
 また、欠陥抑制性能は、薬液X(現像液)を容器(接液部の材料:高密度ポリエチレン(HDPE)樹脂)に収容した薬液収容体を40℃で45日間保管した後(表中、「経時」と示した。)の薬液X(現像液)を用いた場合について実施した。なお、プリウェット液及び薬液Y(リンス液)については、保存せずに、調製直後又は市販品を開封した直後のものを用いた。
(レジスト膜の露光条件)
 作製したレジスト膜付きウエハに、NA(レンズ開口数、Numerical Ape
rture)0.25、ダイポール照明(Dipole60x、アウターシグマ0.81、インナーシグマ0.43)でEUV露光を行った。具体的には、ウエハ上寸法がピッチ40nm、幅20nmのラインアンドスペースパターンを形成するためのパターンが含まれたマスクを介して、露光量を変えてEUV露光を行った。照射後、EUV露光装置から取り出したら、ただちに、90℃の条件で60秒間ベーク(PEB)した。
(洗浄条件)
 50回転(rpm)でウエハを回転しながら、薬液Y(23℃)を、200mL/分の流量で15秒間スプレー吐出することで、リンス処理を行った。最後に、2000回転(rpm)でT秒間高速回転してウエハを乾燥させた。
[解像性(パターン倒れ性能)]
 異なる露光量にて露光したラインアンドスペースパターンの解像状況を、走査型電子顕微鏡((株)日立製作所製S-9380II)を用いて倍率200kで観察し、観察した一視野内にてパターン倒れが起こっていない最小のライン幅を求め、パターン倒れの指標とした。この数値が小さいほど、パターン倒れ性能が良好であることを示す。得られた最少のライン幅を下記の評価基準により評価した。なお、パターン倒れ性能の評価は、密集パターン形成用マスクを用いて形成されたパターンについて実施した。
(評価基準)
 「A」:最小のライン幅が16nm以下
 「B」:最小のライン幅が16nm超18nm以下
 「C」:最小のライン幅が18nm超20nm以下
 「D」:最小のライン幅が20nm超22nm以下
 「E」:最小のライン幅が22nm超
[総合評価]
 実施例X1~X26及び比較例NX1~NX26について、欠陥抑制性能の評価結果については、評価基準のA~Fをこの順に5点~0点に換算した。また、解像性の評価結果については、評価基準のA~Eをこの順に4点~0点に換算した。
 そして、欠陥抑制性能の点数と、解像性の点数との合計点に基づいて、以下の基準よって総合評価を行った。
 S:合計点が9点
 A:合計点が8点
 B:合計点が6~7点
 C:合計点が5点以下
 なお、実用上は「B」評価以上であることが好ましい。
 評価結果を表3に示す。なお、薬液Yのうち、混合溶液に含まれる有機溶剤における括弧内の数値は、有機溶剤のエイコセンに対するハンセン溶解度パラメータの距離[単位:MPa0.5]を示す。
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
 表3(その1)に示す通り、薬液及びリンス液のいずれか一方において、本発明の薬液を用いた場合、欠陥抑制性に優れることが示された(実施例X1~X26)。
 特に、薬液X(現像液)として本発明の薬液を用い、かつ、薬液Y(リンス液)として上述の有機溶剤Y1を用いた場合(実施例X1~X16)、薬液Y(リンス液)として有機溶剤Y1以外の有機溶剤を用いた場合(実施例X21~X26)と比較して、総合評価が高く、欠陥抑制性能と解像性能とが高いレベルで両立できることがわかった。
 また、実施例X17及びX18と、実施例X19及びX20との対比から、上述の有機溶剤Y1(エイコセンに対するハンセン溶解度パラメータの距離が3~20MPa0.5である有機溶剤)の含有量が薬液Yの全質量に対して20~80質量%であれば(実施例X17及びX18)、総合評価がより優れることが示された。
 一方、表3(その2)に示す通り、薬液及びリンス液の両方に本発明の薬液を用いていない場合、少なくとも欠陥抑制性能が不十分であり、総合評価も劣ることが示された(比較例NX1~NX26)。

Claims (27)

  1.  有機溶剤と、酸成分と、金属成分と、を含有する薬液であって、
     前記酸成分の含有量が、前記薬液の全質量に対して、1質量ppt以上15質量ppm以下であり、
     前記金属成分の含有量が、前記薬液の全質量に対して、0.001~100質量pptである、薬液。
  2.  前記金属成分の含有量に対する、前記酸成分の含有量の質量割合が、10-2~10である、請求項1に記載の薬液。
  3.  前記酸成分が有機酸を含み、
     前記有機酸の含有量が、前記薬液の全質量に対して、1質量ppm以下である、請求項1または2に記載の薬液。
  4.  前記有機酸のうち、前記有機溶剤の沸点以上の有機酸の含有量が、前記有機酸の全質量に対して、20質量%以下である、請求項3に記載の薬液。
  5.  前記酸成分が無機酸を含み、
     前記無機酸の含有量が、前記薬液の全質量に対して、1質量ppb以下である、請求項1~4のいずれか1項に記載の薬液。
  6.  前記金属成分が、金属原子を含有する金属含有粒子を含み、
     前記金属含有粒子の含有量が、前記薬液の全質量に対して、0.00001~10質量pptである、請求項1~5のいずれか1項に記載の薬液。
  7.  前記金属含有粒子のうち、粒子径が0.5~17nmの金属ナノ粒子の、前記薬液の単位体積あたりの含有粒子数が1.0×10-2~1.0×10個/cmである、請求項6に記載の薬液。
  8.  前記金属成分が、金属イオンを含み、
     前記金属イオンの含有量が、前記薬液の全質量に対して、0.01~100質量pptである、請求項1~7のいずれか1項に記載の薬液。
  9.  前記金属成分が、金属含有粒子と、金属イオンと、を含み、
     前記金属イオンの含有量に対する、前記金属含有粒子の含有量の質量割合が、0.00001~1である、請求項1~8のいずれか1項に記載の薬液。
  10.  更に、水を含有し、
     前記水の含有量が、前記薬液の全質量に対して、1質量ppm以下である、請求項1~9のいずれか1項に記載の薬液。
  11.  更に、アミド構造を有する化合物、スルホンアミド構造を有する化合物、ホスホンアミド構造を有する化合物、イミド構造を有する化合物、ウレア構造を有する化合物、ウレタン構造を有する化合物、及び、有機酸エステルからなる群より選択される少なくとも1種の有機化合物を含有し、
     前記有機化合物の含有量が、前記薬液の全質量に対して、1質量ppm以下である、請求項1~10のいずれか1項に記載の薬液。
  12.  前記有機化合物が、沸点が300℃以上の有機化合物である、請求項11に記載の薬液。
  13.  前記有機酸エステルが、フタル酸エステル及びクエン酸エステルからなる群より選択される少なくとも1種を含む、請求項11又は12に記載の薬液。
  14.  前記有機溶剤のうち、沸点が250℃以下の有機溶剤の含有量が、前記有機溶剤の全質量に対して、90質量%以上である、請求項1~13のいずれか1項に記載の薬液。
  15.  前記有機溶剤のSP値が21以下である、請求項1~14のいずれか1項に記載の薬液。
  16.  前記有機溶剤がエステル構造を有する、請求項1~15のいずれか1項に記載の薬液。
  17.  前記有機溶剤が酢酸ブチルを含み、かつ、前記酸成分が酢酸を含み、
     前記酢酸の含有量が、前記薬液の全質量に対して、0.01~15質量ppmである、請求項1~16のいずれか1項に記載の薬液。
  18.  前記有機溶剤が酢酸ブチルを含み、かつ、前記酸成分がn-ブタン酸を含み、
     前記n-ブタン酸の含有量が、前記薬液の全質量に対して、1質量ppt以上1質量ppm以下である、請求項1~17のいずれか1項に記載の薬液。
  19.  請求項17または18に記載の薬液である薬液Xと、
     有機溶剤を含有する薬液Yと、を備え、
     前記薬液Yに含まれる前記有機溶剤が、酪酸ブチル、イソ酪酸イソブチル、プロピオン酸ペンチル、プロピオン酸イソペンチル、エチルシクロヘキサン、メシチレン、デカン、ウンデカン、3,7-ジメチル-3-オクタノール、2-エチル-1-ヘキサノール、1-オクタノール、2-オクタノール、アセト酢酸エチル、マロン酸ジメチル、ピルビン酸メチル、及び、シュウ酸ジメチルからなる群から選択される少なくとも1種の有機溶剤Yを含む、キット。
  20.  前記薬液Xが現像液であり、前記薬液Yがリンス液である、請求項19に記載のキット。
  21.  前記有機溶剤Yが、エイコセンに対するハンセン溶解度パラメータの距離が3~20MPa0.5である有機溶剤Y1を含み、
     前記有機溶剤Y1の含有量が、前記薬液Yの全質量に対して、20~80質量%である、請求項19又は20に記載のキット。
  22.  感活性光線性又は感放射線性樹脂組成物を用いてレジスト膜を形成するレジスト膜形成工程と、
     前記レジスト膜を露光する露光工程と、
     露光された前記レジスト膜を、請求項17または18に記載の薬液である薬液Xを用いて現像する現像工程と、
     前記現像工程の後に、有機溶剤を含有する薬液Yを用いて洗浄するリンス工程と、を有し、
     前記薬液Yに含まれる前記有機溶剤が、酪酸ブチル、イソ酪酸イソブチル、プロピオン酸ペンチル、プロピオン酸イソペンチル、エチルシクロヘキサン、メシチレン、デカン、ウンデカン、3,7-ジメチル-3-オクタノール、2-エチル-1-ヘキサノール、1-オクタノール、2-オクタノール、アセト酢酸エチル、マロン酸ジメチル、ピルビン酸メチル、及び、シュウ酸ジメチルからなる群から選択される少なくとも1種の有機溶剤Yを含む、パターン形成方法。
  23.  前記有機溶剤Yが、エイコセンに対するハンセン溶解度パラメータの距離が3~20MPa0.5である有機溶剤Y1を含み、
     前記有機溶剤Y1の含有量が、前記薬液Yの全質量に対して、20~80質量%である、請求項22に記載のパターン形成方法。
  24.  有機溶剤を含有する被精製物を精製して請求項1~18のいずれか1項に記載の薬液を得る薬液の製造方法であって、
     前記被精製物をろ過するろ過工程、前記被精製物にイオン交換法又はキレート基によるイオン吸着を施すイオン除去工程、及び、前記被精製物を蒸留する蒸留工程を含む、薬液の製造方法。
  25.  前記イオン交換法において、陽イオン交換樹脂を使用する、請求項24に記載の薬液の製造方法。
  26.  前記イオン交換法において、陽イオン交換樹脂及び陰イオン交換樹脂を使用する、請求項24に記載の薬液の製造方法。
  27.  容器と、前記容器内に収容された請求項1~18のいずれか1項に記載の薬液と、を有する、薬液収容体。
PCT/JP2019/027289 2018-07-13 2019-07-10 薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体 WO2020013218A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217000728A KR102613209B1 (ko) 2018-07-13 2019-07-10 약액, 키트, 패턴 형성 방법, 약액의 제조 방법 및 약액 수용체
JP2020530222A JPWO2020013218A1 (ja) 2018-07-13 2019-07-10 薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体
KR1020237042288A KR20230175315A (ko) 2018-07-13 2019-07-10 약액, 키트, 패턴 형성 방법, 약액의 제조 방법 및 약액 수용체
CN201980046230.2A CN112384858A (zh) 2018-07-13 2019-07-10 药液、试剂盒、图案形成方法、药液的制造方法及药液收容体
US17/144,259 US20210132503A1 (en) 2018-07-13 2021-01-08 Chemical liquid, kit, pattern forming method, chemical liquid manufacturing method, and chemical liquid storage body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018133580 2018-07-13
JP2018-133580 2018-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/144,259 Continuation US20210132503A1 (en) 2018-07-13 2021-01-08 Chemical liquid, kit, pattern forming method, chemical liquid manufacturing method, and chemical liquid storage body

Publications (1)

Publication Number Publication Date
WO2020013218A1 true WO2020013218A1 (ja) 2020-01-16

Family

ID=69141770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027289 WO2020013218A1 (ja) 2018-07-13 2019-07-10 薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体

Country Status (6)

Country Link
US (1) US20210132503A1 (ja)
JP (3) JPWO2020013218A1 (ja)
KR (2) KR102613209B1 (ja)
CN (1) CN112384858A (ja)
TW (2) TWI831722B (ja)
WO (1) WO2020013218A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017711A1 (ja) * 2021-08-13 2023-02-16 富士フイルム株式会社 レジスト組成物の検査方法、レジスト組成物の製造方法、レジスト組成物
WO2023048020A1 (ja) * 2021-09-21 2023-03-30 富士フイルム株式会社 処理液の検定方法、及び、処理液の製造方法
WO2023210370A1 (ja) * 2022-04-26 2023-11-02 オルガノ株式会社 有機溶媒の精製方法及び精製装置
WO2024176515A1 (ja) * 2023-02-24 2024-08-29 株式会社Screenホールディングス 基板処理方法と基板処理装置と処理液

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240005483A (ko) 2022-07-05 2024-01-12 삼성에스디아이 주식회사 금속 함유 포토레지스트 현상액 조성물, 및 이를 이용한 현상 단계를 포함하는 패턴 형성 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093172A1 (ja) * 2003-04-16 2004-10-28 Sekisui Chemical Co. Ltd. レジスト除去方法及びレジスト除去装置
US20140263053A1 (en) * 2013-03-12 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Filter System and Method
WO2017188296A1 (ja) * 2016-04-28 2017-11-02 富士フイルム株式会社 処理液及び処理液収容体
WO2018061573A1 (ja) * 2016-09-27 2018-04-05 富士フイルム株式会社 薬液、薬液収容体、薬液の充填方法、及び、薬液の保管方法
WO2018092763A1 (ja) * 2016-11-18 2018-05-24 富士フイルム株式会社 薬液、薬液収容体、パターン形成方法、及び、キット

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618655A (en) * 1995-07-17 1997-04-08 Olin Corporation Process of reducing trace levels of metal impurities from resist components
JP4059685B2 (ja) 2001-02-16 2008-03-12 ダイセル化学工業株式会社 高純度酢酸ブチル及びその製造方法
JP5848869B2 (ja) 2010-08-25 2016-01-27 富士フイルム株式会社 パターン形成方法
JP2015030700A (ja) 2013-08-02 2015-02-16 株式会社ダイセル エステル系溶剤の製造方法
JP6200289B2 (ja) * 2013-11-18 2017-09-20 富士フイルム株式会社 半導体基板の処理液、処理方法、これらを用いた半導体基板製品の製造方法
KR102025581B1 (ko) * 2014-12-26 2019-09-26 후지필름 가부시키가이샤 유기계 처리액 및 패턴 형성 방법
KR102113463B1 (ko) * 2016-01-22 2020-05-21 후지필름 가부시키가이샤 처리액
CN109071104B (zh) * 2016-03-31 2020-03-31 富士胶片株式会社 半导体制造用处理液、收容有半导体制造用处理液的收容容器、图案形成方法及电子器件的制造方法
JP6713044B2 (ja) * 2016-06-02 2020-06-24 富士フイルム株式会社 処理液、基板の洗浄方法及びレジストの除去方法
CN109661615B (zh) * 2016-09-02 2022-08-02 富士胶片株式会社 溶液、溶液收容体、感光化射线性或感放射线性树脂组合物、图案形成方法、半导体装置的制造方法
JP6794462B2 (ja) 2016-09-28 2020-12-02 富士フイルム株式会社 薬液、薬液収容体、薬液の製造方法、及び、薬液収容体の製造方法
WO2018062471A1 (ja) * 2016-09-30 2018-04-05 富士フイルム株式会社 パターン形成方法、電子デバイスの製造方法、キット
TW201823879A (zh) 2016-11-07 2018-07-01 日商富士軟片股份有限公司 處理液及圖案形成方法
KR102500938B1 (ko) * 2018-01-12 2023-02-17 후지필름 가부시키가이샤 약액, 약액의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093172A1 (ja) * 2003-04-16 2004-10-28 Sekisui Chemical Co. Ltd. レジスト除去方法及びレジスト除去装置
US20140263053A1 (en) * 2013-03-12 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Filter System and Method
WO2017188296A1 (ja) * 2016-04-28 2017-11-02 富士フイルム株式会社 処理液及び処理液収容体
WO2018061573A1 (ja) * 2016-09-27 2018-04-05 富士フイルム株式会社 薬液、薬液収容体、薬液の充填方法、及び、薬液の保管方法
WO2018092763A1 (ja) * 2016-11-18 2018-05-24 富士フイルム株式会社 薬液、薬液収容体、パターン形成方法、及び、キット

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017711A1 (ja) * 2021-08-13 2023-02-16 富士フイルム株式会社 レジスト組成物の検査方法、レジスト組成物の製造方法、レジスト組成物
WO2023048020A1 (ja) * 2021-09-21 2023-03-30 富士フイルム株式会社 処理液の検定方法、及び、処理液の製造方法
WO2023210370A1 (ja) * 2022-04-26 2023-11-02 オルガノ株式会社 有機溶媒の精製方法及び精製装置
WO2024176515A1 (ja) * 2023-02-24 2024-08-29 株式会社Screenホールディングス 基板処理方法と基板処理装置と処理液

Also Published As

Publication number Publication date
JP2024061780A (ja) 2024-05-08
KR102613209B1 (ko) 2023-12-13
US20210132503A1 (en) 2021-05-06
KR20210019081A (ko) 2021-02-19
TWI831722B (zh) 2024-02-01
TWI814866B (zh) 2023-09-11
JP2023052469A (ja) 2023-04-11
JP7453435B2 (ja) 2024-03-19
TW202419983A (zh) 2024-05-16
TW202006482A (zh) 2020-02-01
CN112384858A (zh) 2021-02-19
KR20230175315A (ko) 2023-12-29
JPWO2020013218A1 (ja) 2021-08-02
TW202347053A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
JP7453435B2 (ja) 薬液、キット、パターン形成方法、薬液の製造方法及び薬液収容体
KR102282589B1 (ko) 약액, 약액 수용체, 패턴 형성 방법, 및 키트
JP7446498B2 (ja) 薬液及び薬液収容体
JP2023015246A (ja) 薬液、薬液の製造方法
JP2024100845A (ja) 薬液、薬液の製造方法、及び、被検液の分析方法
JP2023041701A (ja) 薬液、及び、薬液の製造方法
WO2020040034A1 (ja) 薬液収容体
KR20230047474A (ko) 약액의 공급 방법, 패턴 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530222

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217000728

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833865

Country of ref document: EP

Kind code of ref document: A1