WO2020012867A1 - 換気システム - Google Patents

換気システム Download PDF

Info

Publication number
WO2020012867A1
WO2020012867A1 PCT/JP2019/023543 JP2019023543W WO2020012867A1 WO 2020012867 A1 WO2020012867 A1 WO 2020012867A1 JP 2019023543 W JP2019023543 W JP 2019023543W WO 2020012867 A1 WO2020012867 A1 WO 2020012867A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
ventilator
ventilation device
detection signal
sensor
Prior art date
Application number
PCT/JP2019/023543
Other languages
English (en)
French (fr)
Inventor
義孝 松木
徹 藤本
亮 藤本
一裕 塩山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES19834952T priority Critical patent/ES2920526T3/es
Priority to AU2019300633A priority patent/AU2019300633B2/en
Priority to EP19834952.4A priority patent/EP3786539B1/en
Priority to CN201980038233.1A priority patent/CN112236626B/zh
Publication of WO2020012867A1 publication Critical patent/WO2020012867A1/ja
Priority to US17/118,249 priority patent/US11268728B2/en
Priority to US17/480,943 priority patent/US11703245B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This disclosure relates to ventilation systems.
  • the ventilation device of Patent Document 1 includes an air supply passage in which an air supply fan is arranged and an exhaust passage in which an exhaust fan is arranged.
  • a sensor for example, a humidity sensor for detecting an air condition is provided in the air supply passage.
  • the control unit controls the air supply fan and the exhaust fan.
  • the control unit controls the start and stop of the air supply fan and the exhaust fan based on the detection signal of the humidity sensor.
  • the purpose of the present disclosure is to reduce the number of sensors in a ventilation system.
  • the first aspect is Multiple ventilation devices (20), A sensor (40, 40a) attached to a predetermined ventilator (20) among the plurality of ventilators (20) and detecting an air condition; Among the plurality of ventilators (20), the first ventilator (20-o) to which the sensor (40, 40a) is attached and the object to share the detection signal of the sensor (40, 40a).
  • Each of the control devices (50) controls the corresponding ventilation device (20) based on the detection signal transmitted from the transmission / reception unit (64), respectively.
  • the first ventilation device (20-o) and the second ventilation device (20-s) are set in the setting unit (63).
  • the first ventilation device (20-o) is a ventilation device to which a sensor (40, 40a) for detecting an air condition is attached.
  • the second ventilation device (20-s) is a ventilation device to which the detection signals of the sensors (40, 40a) of the first ventilation device (20-o) are shared.
  • the transmission / reception unit (64) receives a detection signal of the sensor (40, 40a) of the first ventilation device (20-o), and transmits the detection signal to the first ventilation device (20-o) and the second ventilation device (20). -s) to each control device (50).
  • control device (50) of the first ventilation device (20-o) and the control device (50) of the second ventilation device (20-s) are connected to the sensor (40) of the first ventilation device (20-o). , 40a), and controls each ventilation device (20) based on the detection signal. That is, the sensors (40, 40a) attached to the first ventilation device (20-o) are used for control by both the first ventilation device (20-o) and the second ventilation device (20-s).
  • a second aspect is the first aspect, wherein A remote controller (60) for transmitting an operation command of the plurality of ventilation devices (20) to each of the control devices (50);
  • the ventilation system is characterized in that the setting unit (63) and the transmission / reception unit (64) are provided in the remote control (60).
  • the remote controller (60) for transmitting the operation command to each ventilation device (20) is provided with the transmission / reception unit (64). Therefore, a signal line (including wired and wireless) for transmitting the operation command can be used as a line for transmitting a detection signal of the sensor (40, 40a).
  • a third aspect is the method according to the first or second aspect,
  • the remote controller (60) is a ventilation system that does not transmit an operation command to turn off the first ventilation device (20-o) and turn on the second ventilation device (20-s).
  • an operation command for turning on some of the ventilators (20) and turning off others is not transmitted by operating the remote controller (60). For this reason, when the first ventilation device (20-o) to which the sensor (40, 40a) is attached is stopped, the second ventilation device (20-s) is detected based on the detection signal of the sensor (40, 40a). ) Can be prevented from being performed.
  • a fourth aspect is the third aspect, wherein The remote control (60) While transmitting a first operation command for turning on all of the plurality of ventilators (20) and a second operation command for turning off all of the plurality of ventilators (20),
  • a ventilation system is characterized in that an operation command for turning on a part of the plurality of ventilators (20) and turning off others is not transmitted.
  • the operation of turning on the second ventilator (20-s) while turning off the first ventilator (20-o) to which the sensor (40, 40a) is attached is not performed. Therefore, it is possible to prevent the second ventilator (20-s) from being controlled based on the detection signal of the sensor (40, 40a) of the first ventilator (20-o) in the stopped state.
  • the setting unit (63) is set so that the first ventilation device (20-o) and the second ventilation device (20-s) can be changed from among the plurality of ventilation devices (20). It is a ventilation system characterized by the following.
  • the ventilation device (20) for attaching the sensor (40, 40a) when the ventilation device (20) for attaching the sensor (40, 40a) is changed, the first ventilation device (20-o) is selected from the plurality of ventilation devices (20) accordingly. And the 2nd ventilation device (20-s) can be changed suitably.
  • An abnormality determination unit (65) that outputs a signal indicating an abnormality when the detection signal of the sensor (40, 40a) is not received from the first ventilation device (20-o) to the transmission / reception unit (64). It is a ventilation system characterized by having.
  • the senor (40, 40a) is not attached to the first ventilator (20-o), or the sensor (40, 40a) is not attached due to a wiring failure of the sensor (40, 40a). If the transmission / reception unit (64) does not receive the detection signal of (2), the abnormality determination unit (65) outputs a signal indicating abnormality. Thus, the user or the like can quickly grasp such a defect of the sensor (40, 40a).
  • FIG. 1 is a schematic overall configuration diagram of a ventilation system according to an embodiment.
  • FIG. 2 is a schematic configuration diagram of the ventilation device.
  • FIG. 3 is a block diagram of a control device and a remote controller of the ventilation system.
  • FIG. 4 is a configuration diagram illustrating a first example in which a carbon dioxide concentration sensor is attached to a ventilation system, and a setting example of a setting unit corresponding to the first example.
  • FIG. 5 is a control flowchart of the ventilation operation.
  • FIG. 6 is a configuration diagram illustrating a second example in which a carbon dioxide concentration sensor is attached to a ventilation system, and a setting example of a setting unit corresponding to the second example.
  • FIG. 7 is a configuration diagram illustrating a third example in which a carbon dioxide concentration sensor is attached to a ventilation system, and a setting example of a setting unit corresponding to the third example.
  • the ventilation system (10) includes a plurality of ventilation units (U).
  • the plurality of ventilation units (U) target the same indoor space for ventilation.
  • the ventilation unit (U) is arranged, for example, above the ceiling.
  • the ventilation system (10) of the present example is provided with four ventilation units (U).
  • the number of ventilation units (U) is not limited to this, and may be any number as long as it is two or more.
  • Each ventilation unit (U) includes one ventilation device (20) and one control device (50).
  • Each ventilation device (20) includes a casing (21), an air supply fan (31), an exhaust fan (32), a total heat exchanger (33), and a carbon dioxide concentration sensor (40).
  • the casing (21) is formed in a hollow box shape.
  • the casing (21) has an outside air port (22), an exhaust port (23), an inside air port (24), and an air supply port (25).
  • Each of the outside air port (22) and the exhaust port (23) communicates with the outdoor space via a duct.
  • Each of the inside air port (24) and the air supply port (25) communicates with the indoor space via a duct.
  • a supply passage (26) and an exhaust passage (27) are formed inside the casing (21).
  • the air supply passage (26) is formed from the outside air port (22) to the air supply port (25).
  • the exhaust passage (27) is formed from the inside air port (24) to the exhaust port (23).
  • An air supply fan (31) is arranged in the air supply passage (26), and an exhaust fan (32) is arranged in the exhaust passage (27).
  • the air supply fan (31) and the exhaust fan (32) are composed of, for example, sirocco fans.
  • the air supply fan (31) and the exhaust fan (32) are configured such that the respective air volumes are variable. Specifically, the air flow rates of the air supply fan (31) and the exhaust fan (32) of this example can be switched in multiple stages according to the fan tap.
  • the total heat exchanger (33) is arranged so as to straddle the air supply passage (26) and the exhaust passage (27).
  • the total heat exchanger (33) has a first passage (34) connected to the air supply passage (26) and a second passage (35) connected to the exhaust passage (27).
  • the total heat exchanger (33) exchanges sensible heat and latent heat between the first air flowing through the first passage (34) and the second air flowing through the second passage (35).
  • the carbon dioxide concentration sensor (40) detects the concentration of carbon dioxide in indoor air. That is, the carbon dioxide concentration sensor (40) constitutes a sensor that detects the state of the air (here, the carbon dioxide concentration).
  • the carbon dioxide concentration sensor (40) is arranged in the exhaust passage (27) on the upstream side of the total heat exchanger (33).
  • the control device (50) includes, for example, a control board, a processor (for example, a microcontroller) mounted on the control board, and a memory device (for example, a semiconductor memory) that stores software for operating the processor.
  • a processor for example, a microcontroller
  • a memory device for example, a semiconductor memory
  • the control device (50) includes a fan control unit (51) for controlling an air supply fan (31) and an exhaust fan (32), and a carbon dioxide concentration sensor (40), which is detachable.
  • a connection terminal (52) to be connected, and a first transmission / reception unit (53) for exchanging signals with the remote controller (60) are provided.
  • the fan control unit (51) controls the air supply fan (31) and the exhaust fan (32) based on the detection signal of the carbon dioxide concentration sensor (40). Specifically, based on the detection signal, the fan control unit (51) sends a control signal for turning on / off the air supply fan (31) and the exhaust fan (32) and switching the air volume to the air supply fan (31). 31) and the exhaust fan (32).
  • connection terminal (52) ⁇ Signal wiring of the carbon dioxide concentration sensor (40) is connected to the connection terminal (52).
  • the carbon dioxide concentration sensor (40) is not connected to all the connection terminals (52). That is, in the ventilation system (10), one ventilator (20) shares one carbon dioxide concentration sensor (40).
  • Each first transmission / reception unit (53) transmits a detection signal detected by the carbon dioxide concentration sensor (40) of the common ventilator (20-o) to the remote control (60).
  • the sharing source ventilation device (20-o) is a first ventilation device to which the carbon dioxide concentration sensor (40) is attached.
  • the remote controller (60) transmits the received detection signal to each first transmission / reception unit (53) of the sharing source ventilation device (20-o) and the sharing destination ventilation device (20-s).
  • the shared ventilator (20-s) is the second ventilator to which the detection signal is shared.
  • the detection signal of the common source ventilator (20-o) is indirectly transmitted to the first transmitting / receiving unit (53) of the common source ventilator (20-o) and the common destination ventilator (20-s). (Details will be described later).
  • the remote control (60) is shared by all ventilation units (U).
  • the remote controller (60) transmits an operation command to each ventilation device (20).
  • the remote control (60) includes a display unit (61), an operation unit (62), a setting unit (63), a second transmission / reception unit (64), and an abnormality determination unit (65).
  • the display section (61) is composed of, for example, a liquid crystal monitor.
  • the operation unit (62) includes cursor keys and buttons. By operating the operation unit (62), a user, a contractor, and the like can switch various settings and output an operation command to each ventilation unit (U).
  • a common source ventilator (20-o) and a common destination ventilator (20-s) are set from all the ventilators (20). Further, in the setting unit (63), a single ventilator (20-i) that is not a target of sharing or a destination of sharing of the carbon dioxide concentration sensor (40) can be set from all the ventilators (20). .
  • the single ventilation device (20-i) is a third ventilation device that independently controls its own ventilation device (20) based on the carbon dioxide concentration sensor (40) connected to itself.
  • the independent ventilation device (20-i) can be set while arbitrarily changing.
  • a detection signal of the carbon dioxide concentration sensor (40) is sent to the second transmission / reception unit (64) from the first transmission / reception unit (53) of all the ventilation devices (20). Strictly, the second transmission / reception unit (64) receives the detection signal from the first transmission / reception unit (53) of the shared ventilator (20-o). On the other hand, the second transmission / reception unit (64) tries to receive a detection signal from the common ventilation device (20-s), but the value of the detection signal is zero. This is because the carbon dioxide concentration sensor (40) is not attached to the common use ventilator (20-s), and the detection signal of the common use ventilator (20-s) becomes substantially zero. The second transmitting / receiving unit (64) receives detection signals from all the ventilation devices (20) regardless of whether they are the common ventilation device (20-o) or the common ventilation device (20-s). Try to receive.
  • the second transmitting / receiving unit (64) converts the detection signal received from the common source ventilator (20-o) among the detection signals thus received into the common source ventilator (20-o) and the common destination ventilator. (20-s) and send to.
  • the common ventilator (20-o) and the common ventilator (20-s) are based on the detection signal of the carbon dioxide concentration sensor (40) connected to the common ventilator (20-o). It is controlled (details will be described later).
  • the abnormality determination unit (65) determines abnormality of the carbon dioxide concentration sensor (40) connected to the common ventilation device (20-o). That is, the abnormality determination unit (65) receives an appropriate detection signal from the control device (50) of the ventilation device (20) set as the sharing source ventilation device (20-o) by the second transmission / reception unit (64). If not, a signal indicating an abnormality is output. In the remote controller (60) of the present example, a sign indicating an abnormality is displayed on the display section (61) in synchronization with the abnormality signal.
  • the first air that has passed through the total heat exchanger (33) is supplied to the indoor space as supply air (SA) through the air supply port (25).
  • the second air that has passed through the total heat exchanger (33) is discharged to the outdoor space as exhaust air (EA) through the exhaust port (23).
  • the air volume of the supply fan (31) and the exhaust fan (32) is appropriately adjusted according to the carbon dioxide concentration detected by the carbon dioxide concentration sensor (40). Specifically, for example, when the carbon dioxide concentration detected by the carbon dioxide concentration sensor (40) is lower than a predetermined value, the control device (50) determines the air volume of the air supply fan (31) and the exhaust fan (32). Increase. As a result, the amount of ventilation in the indoor space increases. Further, for example, when the carbon dioxide concentration detected by the carbon dioxide concentration sensor (40) is higher than a predetermined value, the control device (50) reduces the air volume of the air supply fan (31) and the exhaust fan (32). As a result, the power of the air supply fan (31) and the power of the exhaust fan (32) can be reduced.
  • one carbon dioxide concentration sensor (40) can be used for controlling a plurality of ventilation devices (20).
  • the mounting of the carbon dioxide concentration sensor (40) and the setting example of the setting unit (63) will be described with reference to specific examples.
  • the ventilation system (10) shown in FIG. 4 is provided with four ventilation devices (20).
  • the four ventilators (20) consist of ventilator NO.1 (N1), ventilator NO.2 (N2), ventilator NO.3 (N3), and ventilator NO.4 (N4). .
  • the carbon dioxide concentration sensor (40) is attached to the ventilator NO.1 (N1). Specifically, the carbon dioxide concentration sensor (40) is connected to the connection terminal (52) of the control device (50) corresponding to the ventilator NO.1 (N1).
  • the remaining ventilator NO.2 (N2), ventilator NO.3 (N3), and ventilator NO.4 (N4) do not have a carbon dioxide concentration sensor (40). That is, the connection terminal (52) of the control device (50) corresponding to the ventilator NO.2 (N2), the ventilator NO.3 (N3), and the ventilator NO.4 (N4) has the carbon dioxide concentration Sensor (40) is not connected.
  • the contractor, user, and the like set the setting unit (63) according to the state of attachment of the carbon dioxide concentration sensor (40).
  • the setting of the setting unit (63) is performed using the operation unit (62) of the remote controller (60).
  • the ventilator NO.1 (N1) is used as the “common source” (common source ventilator (20-o)).
  • the ventilator NO.2 (N2), the ventilator NO.3 (N3), and the ventilator NO.4 (N4) are set as “shared destination” (shared ventilator (20-s)).
  • the detection signal of the carbon dioxide concentration sensor (40) of the ventilator NO.1 (N1) can be shared for controlling all the ventilators (20).
  • the carbon dioxide concentration sensor (40) detects the carbon dioxide concentration in the indoor air.
  • the detection signal (d1) indicating the carbon dioxide concentration is detected by the carbon dioxide concentration sensor (40) of the ventilator NO.1 (N1).
  • a detection signal is transmitted from the first transmission / reception units (53) of all the control devices (50) to the second transmission / reception units (64) of the remote controller (60) (step ST1).
  • the detection signal of the ventilator NO. 1 (N1) is the detection signal (d1) that is the sharing source.
  • the detection signals of the other ventilators NO.2 (N2), NO.3 (N3), and ventilator NO.4 (N4) become substantially zero.
  • step ST3 the detection signal (d1) corresponding to the ventilator (20) (that is, the ventilator NO.1 (N1)) set as the sharing source by the setting unit (63) is output to the second remote controller (60). 2 Transmit from the transmission / reception unit (64) to each ventilation device (20). Specifically, the second transmission / reception unit (64) transmits the detection signal (d1) to the ventilation device NO.1 (N1) that is the sharing source ventilation device (20-o). At the same time, the second transmission / reception unit (64) transmits the detection signal (d1) to each of the first transmission / reception of the ventilation devices NO.2 to NO.4 (N2, N3, N4) that are the shared ventilation devices (20-s) Also transmitted to the section (53). Thereby, the detection signal of each control device (50) is rewritten to the detection signal (d1) transmitted from the second transmission / reception unit (64).
  • Each control device (50) controls the corresponding ventilation device (20) based on the rewritten detection signal (d1) (step ST4). Specifically, the control device (50) corresponding to the ventilation device NO.1 (N1), based on the detection signal (d1), supplies the air supply fan (31) and the exhaust fan (32) of the ventilation device NO.1 (N1). ) Control.
  • the control devices (50) of the ventilation devices NO.2 to NO.4 (N2, N3, N4) supply the ventilation devices NO.2 to NO.4 (N2, N3, N4) based on the detection signal (d1).
  • the air fan (31) and the exhaust fan (32) are controlled.
  • these ventilators (20) target the same indoor space, proper ventilation operation can be performed even if the carbon dioxide concentration sensor (40) is shared.
  • step ST5 the control of steps ST1 to ST4 is repeatedly performed. Then, when the predetermined end condition is satisfied in step ST5, the ventilation operation ends.
  • the carbon dioxide concentration sensor (40) is attached to the ventilator NO.2 (N2).
  • the carbon dioxide concentration sensor (40) is not attached to other ventilators NO.1 (N1), NO.3 (N3) and NO.4 (N4).
  • the setting unit (63) sets the ventilator NO.2 (N2) to "shared source”, and sets the ventilator NO.1 (N1), the ventilator NO.3 (N3), and the ventilator NO. 4 Set (N4) as “Shared to”.
  • the detection signal (d2) of the ventilator NO.2 (N2) is transmitted to the second transceiver (64) of the remote control (60).
  • the second transmission / reception unit (64) transmits the detection signal (d2) to the ventilation device NO.2 (N2), which is the common ventilation device (20-o), and the ventilation, which is the common ventilation device (20-s). It transmits to the device NO.1 (N1), the ventilator NO.3 (N3), and the ventilator NO.4 (N4). As a result, the detection signal (d2) is shared for controlling the ventilation devices NO.1 to NO.4 (N1, N2, N3, N4).
  • the first carbon dioxide concentration sensor (40a) is attached to the ventilator NO.1 (N1)
  • the second carbon dioxide concentration sensor (40b) is attached to the ventilator NO.3 (N3).
  • the detection signal of the first carbon dioxide concentration sensor (40a) is sent to the ventilator NO.1 (N1), the ventilator NO.2 (N2), and the ventilator NO.4 (N4).
  • the detection signal of the second carbon dioxide concentration sensor (40b) is used only for the ventilator NO.3 (N3) set for the single ventilator (20-i).
  • the ventilation device NO.1 (N1) is set to “shared source” (shared source ventilation device (20-o)), and the ventilation device NO.2 (N2) and the ventilation device NO. 4 (N4) is set as "shared destination” (shared ventilator (20-s)).
  • the ventilator NO.3 (N3) is set to “single” (single ventilator (20-i)) that does not belong to “shared source” and “shared destination”.
  • the second transmitting / receiving unit (64) uses the detection signal (d1) of the ventilation device NO.1 (N1) as the sharing source as the ventilation device NO.1 (N1) as the sharing source and the sharing destination. Transmit to ventilator NO.2 (N2) and ventilator NO.4 (N4). Therefore, the ventilation device NO.1 (N1), the ventilation device NO.2 (N2), and the ventilation device NO.4 (N4) are controlled based on the detection signal (d1).
  • the second transmitting / receiving unit (64) also receives the detection signal (d3) of the ventilator NO.3 (N3).
  • the second transmission / reception unit (64) transmits a detection signal (d3) corresponding to the ventilation device NO.3 (N3) set to “single” to the first transmission / reception unit (53) of the ventilation device NO.3 (N3). ).
  • the control device (50) corresponding to the ventilator NO.3 (N3) controls the ventilator NO.3 (N3) based on the rewritten detection signal (d3).
  • the ventilator NO. 3 (N3) set to “single” is controlled based on the detection signal (d3) of the second carbon dioxide concentration sensor (40b) connected to itself.
  • each ventilation device In the ventilation system (10) of the present embodiment, an operation of turning on all the ventilation devices (20) and an operation of turning off all the ventilation devices (20) are switched. That is, from the second transmission / reception unit (64) of the remote controller (60), an operation command for turning on all the ventilation devices (20) and an operation command for turning off all the ventilation devices (20) are issued to each ventilation unit ( U) is transmitted to the control device (50). On the other hand, the remote controller (60) does not transmit an operation command for turning on a part of all the ventilators (20) and turning off the rest.
  • the common ventilator (20-o) to which the carbon dioxide concentration sensor (40) is attached is turned off and the common ventilator (20-s) sharing the detection signal is turned on, the operation is performed.
  • the correct detection signal is not sent to the control device (50) of the common ventilation device (20-s).
  • by prohibiting the operation of turning on a part of all the ventilators (20) and turning off the remaining ones such a problem can be reliably avoided.
  • the detection signal of the carbon dioxide concentration sensor (40) corresponding to the sharing source ventilation device (20-o) is transmitted from the second transmission / reception unit (64) to the sharing source ventilation device (20-o) and the sharing signal. Transmit to each control device (50) of the ventilator (20-s). Then, the sharing source ventilation device (20-o) and the sharing destination ventilation device (20-s) control the corresponding ventilation device (20) based on the detection signal. For this reason, according to the present embodiment, each ventilator (20) can be controlled without providing a carbon dioxide concentration sensor (40) in every ventilator (20). As a result, the number of carbon dioxide concentration sensors (40) can be reduced.
  • the second transceiver (64) of the remote controller (60) transmits and receives the detection signal. Therefore, the line for transmitting the operation command of the remote controller (60) and the line for transmitting and receiving the detection signal can be shared, and the number of parts can be reduced.
  • the remote control (60) is provided with the setting unit (63) for setting the common source ventilation device (20-o) and the common destination ventilation device (20-s). Therefore, these settings can be easily performed by operating the operation unit (62) of the remote control (60).
  • the setting unit (63) can arbitrarily change the settings of the common ventilator (20-o) and the common ventilator (20-s). For this reason, even when the ventilation device (20) to which the carbon dioxide concentration sensor (40) is attached is changed due to, for example, a change in the layout of the indoor space, the common ventilation device (20-o) is correspondingly changed. And the common ventilator (20-s) can be changed easily.
  • the setting unit (63) can set a single ventilator (20-i) that does not belong to the sharing source and the sharing destination of the carbon dioxide concentration sensor (40).
  • the ventilator (20) can be controlled based on its own carbon dioxide concentration sensor (40).
  • the operation of turning on a part of all the ventilators (20) and turning off the rest is prohibited. For this reason, the common ventilator (20-s) is stopped and the common ventilator (20-s) is in operation. It is possible to reliably avoid the problem that the control cannot be performed.
  • the remote controller (60) may be configured so as not to transmit an operation command to turn off the sharing source ventilation device (20-o) and turn on the sharing destination ventilation device (20-s).
  • the operation command is prohibited according to the settings.
  • the remote controller (60) prohibits an operation command to turn off the common ventilator (20-o) and turn on the common ventilator (20-s), while prohibiting the operation of the common ventilator (20-o).
  • An operation command to turn on o) and turn off the shared ventilator (20-s) is allowed.
  • the common ventilator (20-s) is stopped, and the common ventilator (20-s) is in operation. Can be reliably avoided.
  • the ventilation operation can be performed based on the carbon dioxide concentration sensor (40) of the common source ventilator (20-o).
  • the sensor may be other than the carbon dioxide concentration sensor (40) as long as it detects the air condition.
  • the sensor may be a temperature sensor that detects the temperature of the air, a humidity sensor that detects the humidity of the air, an odor sensor that detects the odor of air, a concentration sensor that detects the concentration of another substance in the air, and the like.
  • the sensor may detect an air condition of outdoor air.
  • first transmission / reception unit (53) a part for receiving a signal and a part for transmitting a signal may be physically configured separately. In this case, these parts are collectively referred to as a first transmitting / receiving unit (53).
  • second transmission / reception unit (64) a part for receiving a signal and a part for transmitting a signal may be physically configured separately. In this case, these parts are collectively referred to as a second transmitting / receiving unit.
  • the second transmitting / receiving unit (64) and the setting unit (63) do not necessarily have to be provided in the remote control (60).
  • the present disclosure is useful for a ventilation system.
  • Ventilation system 20 Ventilation device 40 Carbon dioxide concentration sensor (sensor) 40a First carbon dioxide concentration sensor (sensor) 50 control device 60 remote controller 63 setting unit 64 second transmitting / receiving unit (transmitting / receiving unit) 65 Abnormality judgment unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)
  • Fluid-Driven Valves (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Flow Control (AREA)

Abstract

換気システム(S)には、複数の換気装置(20)の中から、センサ(40,40a)を取り付ける対象である第1換気装置(20-o)と、センサ(40,40a)の検出信号を共有させる対象である第2換気装置(20-s)とを設定する設定部(63)と、センサ(40,40a)の検出信号を受信するとともに、設定部(63)に設定した第1換気装置(20-o)及び第2換気装置(20-s)の各制御装置(50)に検出信号を送信する送受信部(64)とが設けられる。各制御装置(50)は、送受信部(64)から送信された検出信号に基づいて、対応する換気装置(20)をそれぞれ制御する。

Description

換気システム
 本開示は、換気システムに関する。
 室内の換気を行う換気装置が知られている。
 特許文献1の換気装置は、給気ファンが配置される給気通路と、排気ファンが配置される排気通路とを備える。給気通路には、空気状態を検出するセンサ(例えば湿度センサ)が設けられる。給気ファン及び排気ファンが運転されると、室内空気が排気通路に吸い込まれると同時に室外空気が給気通路に吸い込まれる。これらの空気は、全熱交換器を流れる。全熱交換器では、室内空気と室外空気との間で、潜熱及び顕熱が交換する。全熱交換器を通過した室内空気は室外に排出される。全熱交換器を通過した室外空気は室内に供給される。
 特許文献1の換気装置では、制御部が、給気ファン及び排気ファンを制御する。例えば制御部は、湿度センサの検出信号に基づいて、給気ファン及び排気ファンの発停の制御を行う。
特開2015-143593号公報
 特許文献1に開示のような換気装置を複数台設け、換気システムを構成することが考えられる。この場合、複数の換気装置毎にそれぞれセンサを設けると、センサの数量が多くなってしまう。
 本開示の目的は、換気システムのセンサの数量を削減することである。
 第1の態様は、
 複数の換気装置(20)と、
 前記複数の換気装置(20)の中の所定の換気装置(20)に取り付けられるとともに、空気の状態を検出するセンサ(40,40a)と、
 前記複数の換気装置(20)の中から、前記センサ(40,40a)を取り付ける対象である第1換気装置(20-o)と、該センサ(40,40a)の検出信号を共有させる対象である第2換気装置(20-s)とを設定する設定部(63)と、
 前記センサ(40,40a)の検出信号を受信するとともに、前記設定部(63)に設定した前記第1換気装置(20-o)及び第2換気装置(20-s)の各制御装置(50)に前記検出信号を送信する送受信部(64)とを備え、
 前記各制御装置(50)は、前記送受信部(64)から送信された前記検出信号に基づいて、対応する換気装置(20)をそれぞれ制御することを特徴とする換気システムである。
 第1の態様では、設定部(63)に第1換気装置(20-o)及び第2換気装置(20-s)が設定される。第1換気装置(20-o)は、空気の状態を検出するセンサ(40,40a)が取り付ける対象となる換気装置である。第2換気装置(20-s)は、第1換気装置(20-o)のセンサ(40,40a)の検出信号を共有させる対象となる換気装置である。送受信部(64)は、第1換気装置(20-o)のセンサ(40,40a)の検出信号を受信し、この検出信号を第1換気装置(20-o)及び第2換気装置(20-s)の各制御装置(50)に送信する。これにより、第1換気装置(20-o)の制御装置(50)、及び第2換気装置(20-s)の制御装置(50)は、第1換気装置(20-o)のセンサ(40,40a)で検出した検出信号に基づいて各換気装置(20)を制御する。つまり、第1換気装置(20-o)に取り付けたセンサ(40,40a)が、第1換気装置(20-o)と第2換気装置(20-s)の双方に制御に利用される。
 第2の態様は、第1の態様において、
 前記複数の換気装置(20)の運転指令を前記各制御装置(50)に送信するリモコン(60)を備え、
 前記設定部(63)及び前記送受信部(64)は、前記リモコン(60)に設けられることを特徴とする換気システムである。
 第2の態様では、各換気装置(20)に運転指令を送信するためのリモコン(60)に、送受信部(64)が設けられる。このため、この運転指令を送るための信号回線(有線及び無線を含む)を、センサ(40,40a)の検出信号を送るための回線として利用できる。
 第3の態様は、第1又は2の態様において、
 前記リモコン(60)は、前記第1換気装置(20-o)をOFFさせ、前記第2換気装置(20-s)をONさせる運転指令を送信しないことを特徴とする換気システムである。
 第3の態様では、リモコン(60)の操作により、一部の換気装置(20)をONさせ、残りをOFFさせる運転指令が送信されない。このため、センサ(40,40a)が取り付けられた第1換気装置(20-o)が停止状態のときに、このセンサ(40,40a)の検出信号に基づいて第2換気装置(20-s)の制御が行われることを回避できる。
 第4の態様は、第3の態様において、
 前記リモコン(60)は、
  前記複数の換気装置(20)の全てをONさせる第1運転指令と、前記複数の換気装置(20)の全てをOFFさせる第2運転指令とを送信する一方、
  前記複数の換気装置(20)の一部をONさせ、残りをOFFさせる運転指令を送信しないことを特徴とする換気システムである。
 第4の態様では、センサ(40,40a)が取り付けられる第1換気装置(20-o)をOFFさせつつ、第2換気装置(20-s)をONさせる運転を行わない。このため、停止状態の第1換気装置(20-o)のセンサ(40,40a)の検出信号に基づいて、第2換気装置(20-s)が制御されてしまうことを回避できる。
 第5の態様は、第1乃至4の態様のいずれか1つにおいて、
 前記設定部(63)には、前記複数の換気装置(20)の中から、前記第1換気装置(20-o)及び前記第2換気装置(20-s)を変更可能に設定されることを特徴とする換気システムである。
 第5の態様では、センサ(40,40a)を取り付ける換気装置(20)が変更された場合に、これに応じて、複数の換気装置(20)の中から第1換気装置(20-o)及び第2換気装置(20-s)を適宜変更できる。
 第6の態様は、第1乃至5の態様のいずれか1つにおいて、
 前記第1換気装置(20-o)から前記送受信部(64)に、前記センサ(40,40a)の検出信号が受信されないときに、異常を示す信号を出力する異常判定部(65)を備えていることを特徴とする換気システムである。
 第6の態様では、第1換気装置(20-o)にセンサ(40,40a)が取り付けられていない、あるいはセンサ(40,40a)の配線不良などに起因して、該センサ(40,40a)の検出信号が送受信部(64)に受信されない場合、異常判定部(65)が異常を示す信号を出力する。これにより、ユーザ等は、このようなセンサ(40,40a)の不具合を速やかに把握できる。
図1は、実施形態に係る換気システムの概略の全体構成図である。 図2は、換気装置の概略構成図である。 図3は、換気システムの制御装置及びリモコンのブロック図である。 図4は、換気システムに二酸化炭素濃度センサを取り付けた第1の例と、該第1の例に対応する設定部の設定例を示す構成図である。 図5は、換気運転の制御フローチャートである。 図6は、換気システムに二酸化炭素濃度センサを取り付けた第2の例と、該第2の例に対応する設定部の設定例を示す構成図である。 図7は、換気システムに二酸化炭素濃度センサを取り付けた第3の例と、該第3の例に対応する設定部の設定例を示す構成図である。
 以下、本実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本開示、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《実施形態》
 実施形態に係る換気システム(10)は、複数の換気ユニット(U)を備えている。複数の換気ユニット(U)は、同一の室内空間を換気対象としている。換気ユニット(U)は、例えば天井裏に配置される。図1に模式的に示すように、本例の換気システム(10)には、4台の換気ユニット(U)が設けられている。換気ユニット(U)の数量はこれに限らず、2台以上であれば如何なる数量であってもよい。各換気ユニット(U)は、換気装置(20)と制御装置(50)とをそれぞれ1つずつ備えている。
 〈換気装置〉
 各換気装置(20)の概略構成について図2を参照しながら説明する。各換気装置(20)は、ケーシング(21)、給気ファン(31)、排気ファン(32)、全熱交換器(33)、及び二酸化炭素濃度センサ(40)をそれぞれ備えている。
 ケーシング(21)は、中空の箱状に形成される。ケーシング(21)には、外気口(22)、排気口(23)、内気口(24)、及び給気口(25)が形成される。外気口(22)及び排気口(23)のそれぞれは、ダクトを介して室外空間と連通している。内気口(24)及び給気口(25)のぞれぞれは、ダクトを介して室内空間と連通している。
 ケーシング(21)の内部には、給気通路(26)と排気通路(27)とが形成される。給気通路(26)は、外気口(22)から給気口(25)に亘って形成される。排気通路(27)は、内気口(24)から排気口(23)に亘って形成される。給気通路(26)には給気ファン(31)が配置され、排気通路(27)には排気ファン(32)が配置される。
 給気ファン(31)及び排気ファン(32)は、例えばシロッコファンで構成される。給気ファン(31)及び排気ファン(32)は、各々の風量が可変に構成される。具体的には、本例の給気ファン(31)及び排気ファン(32)の風量は、ファンタップに応じて多段階に切換可能である。
 全熱交換器(33)は、給気通路(26)及び排気通路(27)に跨がるように配置される。全熱交換器(33)は、給気通路(26)に接続する第1通路(34)と、排気通路(27)に接続する第2通路(35)とを有する。全熱交換器(33)は、第1通路(34)を流れる第1空気と、第2通路(35)を流れる第2空気との間で、顕熱及び潜熱を交換させる。
 二酸化炭素濃度センサ(40)は、室内空気の二酸化炭素濃度を検出する。つまり、二酸化炭素濃度センサ(40)は、空気の状態(ここでは二酸化炭素濃度)を検出するセンサを構成する。二酸化炭素濃度センサ(40)は、排気通路(27)における全熱交換器(33)の上流側に配置される。
 〈制御装置〉
 制御装置(50)は、例えば制御基板と、制御基板に搭載されたプロセッサ(例えばマイクロコントローラ)と、該プロセッサを動作させるためのソフトウェアを格納するメモリディバイス(例えば半導体メモリ)とを有する。
 図3に示すように、制御装置(50)は、給気ファン(31)及び排気ファン(32)を制御するためのファン制御部(51)と、二酸化炭素濃度センサ(40)が着脱可能に接続される接続端子(52)と、リモコン(60)側と信号の授受を行うための第1送受信部(53)とを備えている。
 ファン制御部(51)は、二酸化炭素濃度センサ(40)の検出信号に基づいて、給気ファン(31)及び排気ファン(32)を制御する。具体的に、ファン制御部(51)は、この検出信号に基づいて、給気ファン(31)及び排気ファン(32)のON/OFFや、風量を切り換えるための制御信号を、給気ファン(31)及び排気ファン(32)に出力する。
 接続端子(52)には、二酸化炭素濃度センサ(40)の信号配線が接続される。本実施形態の換気システム(10)では、基本的に、全ての接続端子(52)に二酸化炭素濃度センサ(40)が接続されない。つまり、換気システム(10)では、1つの二酸化炭素濃度センサ(40)を、複数の換気装置(20)が共用する。
 各第1送受信部(53)は、共有元換気装置(20-o)の二酸化炭素濃度センサ(40)で検出した検出信号を、リモコン(60)へ送信する。ここで、共有元換気装置(20-o)は、二酸化炭素濃度センサ(40)が取り付けられる対象となる第1換気装置である。リモコン(60)は、受信した検出信号を、共有元換気装置(20-o)及び共有先換気装置(20-s)の各第1送受信部(53)へ送信する。ここで、共有先換気装置(20-s)は、検出信号を共有する対象となる第2換気装置である。この結果、共有元換気装置(20-o)及び共用先換気装置(20-s)の第1送受信部(53)には、共有元換気装置(20-o)の検出信号が間接的に送られることになる(詳細は後述する)。
 〈リモコン〉
 図1に示すように、リモコン(60)は、全ての換気ユニット(U)に共用される。リモコン(60)は、各換気装置(20)に運転指令を送信する。図3に示すように、リモコン(60)は、表示部(61)、操作部(62)、設定部(63)、第2送受信部(64)、及び異常判定部(65)を備える。
 表示部(61)は、例えば液晶モニタで構成される。操作部(62)は、カーソルキーやボタンなどで構成される。ユーザや施工業者などは、操作部(62)を操作することで、各種の設定を切り換えたり、各換気ユニット(U)に運転指令を出力したりできる。
 本実施形態の設定部(63)は、全ての換気装置(20)の中から、共有元換気装置(20-o)と共用先換気装置(20-s)とが設定される。更に、設定部(63)では、全ての換気装置(20)の中から二酸化炭素濃度センサ(40)の共有元、及び共有先のいずれの対象にしない単独換気装置(20-i)を設定できる。単独換気装置(20-i)は、自己に接続された二酸化炭素濃度センサ(40)に基づき、自己の換気装置(20)を単独で制御する第3換気装置である。設定部(63)では、全ての換気装置(20)の中から、二酸化炭素濃度センサ(40)の取り付け状態に応じて、共有元換気装置(20-o)、共用先換気装置(20-s)、及び単独換気装置(20-i)を任意に変更しながら設定できる。
 第2送受信部(64)には、全ての換気装置(20)の第1送受信部(53)から、二酸化炭素濃度センサ(40)の検出信号が送られる。厳密には、第2送受信部(64)には、共有元換気装置(20-o)の第1送受信部(53)からの検出信号が受信される。一方、第2送受信部(64)は、共用先換気装置(20-s)からの検出信号を受信しようとするが、この検出信号の値はゼロとなる。共用先換気装置(20-s)には、二酸化炭素濃度センサ(40)が取り付けられておらず、共用先換気装置(20-s)の検出信号は実質的にゼロとなるためである。第2送受信部(64)は、共有元換気装置(20-o)であるか、共用先換気装置(20-s)であるかを問わず、全ての換気装置(20)からの検出信号を受信しようとする。
 第2送受信部(64)は、このようにして受信した検出信号のうち、共有元換気装置(20-o)から受信した検出信号を、共有元換気装置(20-o)と共用先換気装置(20-s)とへ送信する。これにより、共有元換気装置(20-o)及び共用先換気装置(20-s)は、共有元換気装置(20-o)に接続される二酸化炭素濃度センサ(40)の検出信号に基づいて制御される(詳細は後述する)。
 異常判定部(65)は、共有元換気装置(20-o)に接続される二酸化炭素濃度センサ(40)の異常を判定する。つまり、異常判定部(65)は、共有元換気装置(20-o)に設定された換気装置(20)の制御装置(50)から、適切な検出信号が第2送受信部(64)に受信されない場合に、異常を示す信号を出力する。本例のリモコン(60)では、この異常信号に同期して表示部(61)に異常を示すサインが表示される。
 -換気運転-
 換気装置(20)の基本的な運転動作について、図2を参照しながら説明する。換気装置(20)の換気運転時には、給気ファン(31)及び排気ファン(32)が運転状態となる。この結果、室外空気(OA)が外気口(22)を通じて給気通路(26)に取り込まれると同時に、室内空気(RA)が内気口(24)を通じて排気通路(27)に取り込まれる。
 給気通路(26)を流れる室外空気は、全熱交換器(33)の第1通路(34)を流れる。排気通路(27)を流れる室内空気は、全熱交換器(33)の第2通路(35)を流れる。全熱交換器(33)では、第1通路(34)を流れる空気と、第2通路(35)を流れる空気との間で、顕熱及び潜熱が交換される。具体的には、例えば夏季であれば、比較的高温、高湿の室外空気(第1空気)の顕熱及び潜熱が、比較的低温、低湿の室内空気(第2空気)に付与される。例えば冬季であれば、比較的高温、高湿の室内空気(第2空気)の顕熱及び潜熱が、比較的低温、低湿の室外空気(第1空気)に付与される。
 全熱交換器(33)を通過した第1空気は、給気口(25)を通じて、供給空気(SA)として室内空間へ供給される。全熱交換器(33)を通過した第2空気は、排気口(23)を通じて、排出空気(EA)として室外空間へ排出される。
 このような換気運転では、二酸化炭素濃度センサ(40)で検出した二酸化炭素濃度に応じて、給気ファン(31)及び排気ファン(32)の風量が適宜調整される。具体的には、例えば二酸化炭素濃度センサ(40)で検出した二酸化炭素濃度が所定値より低い場合には、制御装置(50)は、給気ファン(31)及び排気ファン(32)の風量を増大させる。この結果、室内空間の換気量が増大する。また、例えば二酸化炭素濃度センサ(40)で検出した二酸化炭素濃度が所定値より高い場合には、制御装置(50)は、給気ファン(31)及び排気ファン(32)の風量を低下させる。この結果、給気ファン(31)及び排気ファン(32)の動力を低減できる。
 〈センサの取り付け、及び設定部の設定例〉
 換気システム(10)では、1つの二酸化炭素濃度センサ(40)を、複数の換気装置(20)の制御に利用できる。まず、二酸化炭素濃度センサ(40)の取り付け、及び設定部(63)の設定例について、具体例を挙げながら説明する。
 図4に示す例の換気システム(10)には、4台の換気装置(20)が設けられる。4台の換気装置(20)は、換気装置NO.1(N1)、換気装置NO.2(N2)、換気装置NO.3(N3)、及び換気装置NO.4(N4)によって構成される。二酸化炭素濃度センサ(40)は、換気装置NO.1(N1)に取り付けられる。具体的には、二酸化炭素濃度センサ(40)は、換気装置NO.1(N1)に対応する制御装置(50)の接続端子(52)に接続される。残りの換気装置NO.2(N2)、換気装置NO.3(N3)、及び換気装置NO.4(N4)には、二酸化炭素濃度センサ(40)は取り付けられない。つまり、換気装置NO.2(N2)、換気装置NO.3(N3)、及び換気装置NO.4(N4)に対応する制御装置(50)の各接続端子(52)には、二酸化炭素濃度センサ(40)は接続されない。
 施工業者やユーザ等は、二酸化炭素濃度センサ(40)の取り付け状態に応じて、設定部(63)の設定を行う。設定部(63)の設定は、リモコン(60)の操作部(62)を用いて行われる。
 本例では、換気装置NO.1(N1)に二酸化炭素濃度センサ(40)が取り付けられるため、換気装置NO.1(N1)を「共有元」(共有元換気装置(20-o))に設定する。本例では、換気装置NO.2(N2)、換気装置NO.3(N3)、及び換気装置NO.4(N4)を「共有先」(共有先換気装置(20-s))に設定する。この結果、換気装置NO.1(N1)の二酸化炭素濃度センサ(40)の検出信号を、全ての換気装置(20)の制御に共用できる。
 〈制御動作〉
 このような換気装置(20)の制御動作について、図5のフローチャートを参照しながら説明する。
 換気運転が開始されると、二酸化炭素濃度センサ(40)が室内空気の二酸化炭素濃度を検出する。本例では、換気装置NO.1(N1)の二酸化炭素濃度センサ(40)により、二酸化炭素濃度を示す検出信号(d1)が検出される。
 次いでステップST2では、全ての制御装置(50)の第1送受信部(53)からリモコン(60)の第2送受信部(64)に検出信号が送信される(ステップST1)。本例では、換気装置NO.1(N1)の検出信号が、共有元となる検出信号(d1)となる。一方、他の換気装置NO.2(N2)、換気装置NO.3(N3)、及び換気装置NO.4(N4)の検出信号は実質的にゼロとなる。
 次いでステップST3では、設定部(63)で共有元に設定された換気装置(20)(即ち、換気装置NO.1(N1))に対応する検出信号(d1)を、リモコン(60)の第2送受信部(64)から、各換気装置(20)へ送信する。具体的には、第2送受信部(64)は、検出信号(d1)を、共有元換気装置(20-o)である換気装置NO.1(N1)に送信する。同時に、第2送受信部(64)は、検出信号(d1)を、共有先換気装置(20-s)である換気装置NO.2~NO.4(N2,N3,N4)の各第1送受信部(53)にも送信する。これにより、各制御装置(50)の検出信号が、第2送受信部(64)から送信された検出信号(d1)に書き換えられる。
 各制御装置(50)は、このようにして書き換えられた検出信号(d1)に基づき、対応する換気装置(20)を制御する(ステップST4)。具体的には、換気装置NO.1(N1)に対応する制御装置(50)は、検出信号(d1)に基づき換気装置NO.1(N1)の給気ファン(31)及び排気ファン(32)を制御する。換気装置NO.2~NO.4(N2,N3,N4)の各制御装置(50)は、検出信号(d1)に基づき換気装置NO.2~NO.4(N2,N3,N4)の給気ファン(31)及び排気ファン(32)を制御する。ここで、これらの換気装置(20)は、同一の室内空間を対象とするため、二酸化炭素濃度センサ(40)を共用しても、適切な換気運転を行うことができる。
 本例では、ステップST1~ステップST4の制御が繰り返し行われる。そして、ステップST5において所定の終了条件が成立すると、換気運転が終了する。
 〈異常表示〉
 図4に示す例において、例えば換気装置NO.1(N1)の制御装置(50)に二酸化炭素濃度センサ(40)が正しく接続されなかったとする。この場合、第2送受信部(64)には、共有元換気装置(20-o)である換気装置NO.1(N1)の検出信号(d1)が正しく受信されない。この場合、異常判定部(65)は異常を示す信号を出力する。表示部(61)は、この信号を受けて異常を示すサインを表示する。この結果、施工業者やユーザ等は、二酸化炭素濃度センサ(40)の接続ミス、接続不良、故障等を速やかに把握できる。
 〈他の設定例1〉
 図6の例では、二酸化炭素濃度センサ(40)が換気装置NO.2(N2)に取り付けられる。一方、二酸化炭素濃度センサ(40)は、他の換気装置NO.1(N1)、換気装置NO.3(N3)、及び換気装置NO.4(N4)には取り付けられない。この場合、設定部(63)では、換気装置NO.2(N2)を「共有元」に設定し、換気装置NO.1(N1)、換気装置NO.3(N3)、及び換気装置NO.4(N4)を「共有先」に設定する。この場合、換気装置NO.2(N2)の検出信号(d2)が、リモコン(60)の第2送受信部(64)に送信される。第2送受信部(64)は、この検出信号(d2)を、共有元換気装置(20-o)である換気装置NO.2(N2)と、共有先換気装置(20-s)である換気装置NO.1(N1)、換気装置NO.3(N3)、及び換気装置NO.4(N4)とに送信する。これにより、検出信号(d2)が換気装置NO.1~NO.4(N1,N2,N3,N4)の制御に共用される。
 〈他の設定例2〉
 図7の例では、第1二酸化炭素濃度センサ(40a)が換気装置NO.1(N1)に取り付けられ、第2二酸化炭素濃度センサ(40b)が換気装置NO.3(N3)に取り付けられる。本例の設定部(63)では、第1二酸化炭素濃度センサ(40a)の検出信号を、換気装置NO.1(N1)、換気装置NO.2(N2)、及び換気装置NO.4(N4)で共用する。一方、第2二酸化炭素濃度センサ(40b)の検出信号は、単独換気装置(20-i)に設定される換気装置NO.3(N3)のみに利用される。
 つまり、設定部(63)では、換気装置NO.1(N1)を「共有元」(共有元換気装置(20-o))に設定し、換気装置NO.2(N2)及び換気装置NO.4(N4)を「共有先」(共有先換気装置(20-s))に設定する。換気装置NO.3(N3)は、「共有元」及び「共有先」に属さない「単独」(単独換気装置(20-i))に設定する。
 この場合、第2送受信部(64)は、共有元となる換気装置NO.1(N1)の検出信号(d1)を、共有元となる換気装置NO.1(N1)、及び共有先となる換気装置NO.2(N2)、換気装置NO.4(N4)に送信する。従って、換気装置NO.1(N1)、換気装置NO.2(N2)、及び換気装置NO.4(N4)は、検出信号(d1)に基づいて制御される。
 第2送受信部(64)には、換気装置NO.3(N3)の検出信号(d3)も受信される。第2送受信部(64)は、「単独」と設定された換気装置NO.3(N3)に対応する検出信号(d3)を、この換気装置NO.3(N3)の第1送受信部(53)に送信する。換気装置NO.3(N3)に対応する制御装置(50)は、このようにして書き換えられた検出信号(d3)に基づいて換気装置NO.3(N3)を制御する。これにより、「単独」に設定された換気装置NO.3(N3)は、自己に接続された第2二酸化炭素濃度センサ(40b)の検出信号(d3)に基づいて制御される。
 〈各換気装置のON/OFFについて〉
 本実施形態の換気システム(10)では、全ての換気装置(20)をONさせる動作と、全ての換気装置(20)をOFFさせる動作とが切り換えられる。つまり、リモコン(60)の第2送受信部(64)からは、全ての換気装置(20)をONさせる運転指令と、全ての換気装置(20)をOFFさせる運転指令とが、各換気ユニット(U)の制御装置(50)に送信される。一方、リモコン(60)は、全ての換気装置(20)の中の一部をONさせ、残りをOFFさせる運転指令を送信しない。
 仮に、二酸化炭素濃度センサ(40)が取り付けられる共有元換気装置(20-o)がOFF状態となり、検出信号を共有する共有先換気装置(20-s)がON状態となる運転が行われると、共有先換気装置(20-s)の制御装置(50)に正しい検出信号が送られない。この結果、共有先換気装置(20-s)を適切に制御できなくなる。これに対し、全ての換気装置(20)の中の一部をONさせ、残りをOFFさせる運転を禁止することで、このような不具合を確実に回避できる。
 -実施形態の効果-
 上記実施形態によれば、共有元換気装置(20-o)に対応する二酸化炭素濃度センサ(40)の検出信号を、第2送受信部(64)から共有元換気装置(20-o)及び共有先換気装置(20-s)の各制御装置(50)に送信する。そして、共有元換気装置(20-o)及び共有先換気装置(20-s)は、この検出信号に基づいて、対応する換気装置(20)を制御する。このため、本実施形態によれば、全ての換気装置(20)にそれぞれ二酸化炭素濃度センサ(40)を設けずとも、各換気装置(20)を制御できる。この結果、二酸化炭素濃度センサ(40)の数量を削減できる。
 上記実施形態によれば、リモコン(60)の第2送受信部(64)により、検出信号の授受を行うようにしている。このため、リモコン(60)の運転指令を送信する回線と、検出信号の授受を行うための回線とを共用でき、部品点数を削減できる。
 上記実施形態によれば、リモコン(60)に、共有元換気装置(20-o)及び共有先換気装置(20-s)を設定するための設定部(63)を設けている。このため、リモコン(60)の操作部(62)を操作することで、これらの設定を簡単に行うことができる。
 設定部(63)では、共有元換気装置(20-o)及び共有先換気装置(20-s)の設定を任意に変更できる。このため、例えば室内空間のレイアウトの変更などに起因して二酸化炭素濃度センサ(40)を取り付ける換気装置(20)を変更した場合にも、これに対応して共有元換気装置(20-o)及び共有先換気装置(20-s)を簡単に変更できる。
 上記実施形態によれば、設定部(63)において、二酸化炭素濃度センサ(40)の共有元、及び共有先に属さない単独換気装置(20-i)を設定できる。この結果、自己の二酸化炭素濃度センサ(40)に基づいて換気装置(20)を制御することもできる。
 上記実施形態によれば、全ての換気装置(20)の中の一部をONさせ、残りをOFFさせる運転が禁止されている。このため、共有元換気装置(20-o)が停止状態となり、且つ共有先換気装置(20-s)が運転状態になることに起因して、共有先換気装置(20-s)を適切に制御できなくなる不具合を確実に回避できる。
 〈変形例〉
 上記実施形態において、リモコン(60)は、共有元換気装置(20-o)をOFFさせ、且つ共有先換気装置(20-s)をONさせる運転指令を送信しないように構成されてもよい。例えば、リモコン(60)の設定部(63)に共有元換気装置(20-o)及び共有先換気装置(20-s)が設定された場合、この設定に応じて、上記運転指令が禁止される。具体的には、リモコン(60)では、共有元換気装置(20-o)をOFF、共有先換気装置(20-s)をONさせる運転指令が禁止される一方、共有元換気装置(20-o)をON、共有先換気装置(20-s)をOFFさせる運転指令は許容される。このようにしても、共有元換気装置(20-o)が停止状態となり、且つ共有先換気装置(20-s)が運転状態になることに起因して、共有先換気装置(20-s)を適切に制御できなくなる不具合を確実に回避できる。また、共有元換気装置(20-o)だけをONさせながら、該共有元換気装置(20-o)の二酸化炭素濃度センサ(40)に基づいて換気運転を行うことができる。
 《その他の実施形態》
 上記実施形態及び変形例は、以下のような構成としてもよい。
 センサは、空気状態を検出するものであれば、二酸化炭素濃度センサ(40)以外であってもよい。例えばセンサは、空気の温度を検出する温度センサ、空気の湿度を検出する湿度センサ、空気のにおいを検出するにおいセンサ、空気中の他の物質の濃度を検出する濃度センサなどであってもよい。また、センサは、室外空気の空気状態を検出するものであってもよい。
 第1送受信部(53)は、信号を受信する部分と、信号を送信する部分とが物理的に別体に構成されていてもよい。この場合には、これらの部分を総称して第1送受信部(53)とする。同様に、第2送受信部(64)は、信号を受信する部分と、信号を送信する部分とが物理的に別体に構成されていてもよい。この場合には、これらの部分を総称して第2送受信部とする。
 第2送受信部(64)及び設定部(63)のそれぞれは、必ずしもリモコン(60)に設けられてなくてもよい。
 異常判定部(65)が異常を示す信号を出力した場合、メンテナンス業者等に警報したり、発報したりしてもよい。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 以上説明したように、本開示は、換気システムについて有用である。
10   換気システム
20   換気装置
40   二酸化炭素濃度センサ(センサ)
40a  第1二酸化炭素濃度センサ(センサ)
50   制御装置
60   リモコン
63   設定部
64   第2送受信部(送受信部)
65   異常判定部

Claims (6)

  1.  複数の換気装置(20)と、
     前記複数の換気装置(20)の中の所定の換気装置(20)に取り付けられるとともに、空気の状態を検出するセンサ(40,40a)と、
     前記複数の換気装置(20)の中から、前記センサ(40,40a)を取り付ける対象である第1換気装置(20-o)と、該センサ(40,40a)の検出信号を共有させる対象である第2換気装置(20-s)とを設定する設定部(63)と、
     前記センサ(40,40a)の検出信号を受信するとともに、前記設定部(63)に設定した前記第1換気装置(20-o)及び第2換気装置(20-s)の各制御装置(50)に前記検出信号を送信する送受信部(64)とを備え、
     前記各制御装置(50)は、前記送受信部(64)から送信された前記検出信号に基づいて、対応する換気装置(20)をそれぞれ制御することを特徴とする換気システム。
  2.  請求項1において、
     前記複数の換気装置(20)の運転指令を前記各制御装置(50)に送信するリモコン(60)を備え、
     前記設定部(63)及び前記送受信部(64)は、前記リモコン(60)に設けられることを特徴とする換気システム。
  3.  請求項1又は2において、
     前記リモコン(60)は、前記第1換気装置(20-o)をOFFさせ、前記第2換気装置(20-s)をONさせる運転指令を送信しないことを特徴とする換気システム。
  4.  請求項3において、
     前記リモコン(60)は、
      前記複数の換気装置(20)の全てをONさせる第1運転指令と、前記複数の換気装置(20)の全てをOFFさせる第2運転指令とを送信する一方、
      前記複数の換気装置(20)の一部をONさせ、残りをOFFさせる運転指令を送信しないことを特徴とする換気システム。
  5.  請求項1乃至4のいずれか1つにおいて、
     前記設定部(63)には、前記複数の換気装置(20)の中から、前記第1換気装置(20-o)及び前記第2換気装置(20-s)を変更可能に設定されることを特徴とする換気システム。
  6.  請求項1乃至5のいずれか1つにおいて、
     前記第1換気装置(20-o)から前記送受信部(64)に、前記センサ(40,40a)の検出信号が受信されないときに、異常を示す信号を出力する異常判定部(65)を備えていることを特徴とする換気システム。
PCT/JP2019/023543 2018-07-11 2019-06-13 換気システム WO2020012867A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES19834952T ES2920526T3 (es) 2018-07-11 2019-06-13 Sistema de ventilación
AU2019300633A AU2019300633B2 (en) 2018-07-11 2019-06-13 Ventilation system
EP19834952.4A EP3786539B1 (en) 2018-07-11 2019-06-13 Ventilation system
CN201980038233.1A CN112236626B (zh) 2018-07-11 2019-06-13 换气系统
US17/118,249 US11268728B2 (en) 2018-07-11 2020-12-10 Ventilation system
US17/480,943 US11703245B2 (en) 2018-07-11 2021-09-21 Ventilation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018131846A JP6687063B2 (ja) 2018-07-11 2018-07-11 換気システム
JP2018-131846 2018-07-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/118,249 Continuation US11268728B2 (en) 2018-07-11 2020-12-10 Ventilation system

Publications (1)

Publication Number Publication Date
WO2020012867A1 true WO2020012867A1 (ja) 2020-01-16

Family

ID=69141920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023543 WO2020012867A1 (ja) 2018-07-11 2019-06-13 換気システム

Country Status (7)

Country Link
US (2) US11268728B2 (ja)
EP (1) EP3786539B1 (ja)
JP (1) JP6687063B2 (ja)
CN (1) CN112236626B (ja)
AU (1) AU2019300633B2 (ja)
ES (1) ES2920526T3 (ja)
WO (1) WO2020012867A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159905A (ja) * 2009-01-07 2010-07-22 Mitsubishi Electric Corp 空気調和システム
JP2013087969A (ja) * 2011-10-13 2013-05-13 Mitsubishi Electric Corp 換気機器の制御システム
JP2013168734A (ja) * 2012-02-14 2013-08-29 Sharp Corp 情報処理システム、リモートコントローラ、情報処理方法およびプログラム
US20150204551A1 (en) * 2013-12-30 2015-07-23 Degree Controls, Inc. Energy saving method for room level heating and cooling system
JP2015143593A (ja) 2014-01-31 2015-08-06 ダイキン工業株式会社 換気装置
JP2018096600A (ja) * 2016-12-12 2018-06-21 ダイキン工業株式会社 空気調和システム

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765231A (en) * 1987-03-23 1988-08-23 Aniello Michael J Smoke exhausting air conditioning system
JP2714220B2 (ja) * 1990-03-31 1998-02-16 株式会社東芝 換気装置
US5282770A (en) * 1990-03-31 1994-02-01 Kabushiki Kaisha Toshiba Ventilation system
US5205783A (en) * 1991-08-22 1993-04-27 Accu*Aire Systems, Inc. Air flow control equipment in chemical laboratory buildings
US5279609A (en) * 1992-10-30 1994-01-18 Milton Meckler Air quality-temperature controlled central conditioner and multi-zone conditioning
JPH09196447A (ja) * 1996-01-24 1997-07-31 Sanyo Electric Co Ltd 空気調和機の制御装置
US20020102936A1 (en) * 2001-01-29 2002-08-01 Ray Daumler Air circulation system
DE20218363U1 (de) * 2002-11-26 2004-01-15 Meltem Wärmerückgewinnung GmbH & Co. KG Luftaustauschsystem für die Entlüftung wenigstens eines Raums eines Gebäudes
JP4779463B2 (ja) * 2005-06-27 2011-09-28 富士電機株式会社 換気システム
KR100676256B1 (ko) * 2005-08-06 2007-02-01 삼성전자주식회사 환기시스템의 운전제어방법
US7793513B2 (en) * 2006-07-19 2010-09-14 Trane International Inc. Configurable PTAC controller with alternate temperature sensors
WO2011002142A1 (en) * 2009-07-01 2011-01-06 Lg Electronics, Inc. Ventilation system
WO2011120091A1 (en) * 2010-03-31 2011-10-06 Sisacs Holdings Ltd Super integrated security and air cleansing systems (sisacs)
JP6008564B2 (ja) * 2011-06-20 2016-10-19 三菱電機株式会社 空気調和機
US9639100B2 (en) * 2011-12-06 2017-05-02 Trane International Inc. Power-sensing circuit for wireless zone sensors
US10371399B1 (en) * 2012-03-15 2019-08-06 Carlos Rodriguez Smart vents and systems and methods for operating an air conditioning system including such vents
JP2014185834A (ja) 2013-03-25 2014-10-02 Toshiba Lighting & Technology Corp 電気機器制御システム
JP6279242B2 (ja) * 2013-07-31 2018-02-14 三菱重工業株式会社 空調システム及び空調システムの制御方法
US10184678B2 (en) * 2013-09-06 2019-01-22 Carrier Corporation System and method for measuring duct leakage in a HVAC system
US10197304B2 (en) * 2014-05-23 2019-02-05 Lennox Industries Inc. Tandem compressor discharge pressure and temperature control logic
JP6497195B2 (ja) * 2015-04-28 2019-04-10 ダイキン工業株式会社 空調装置
SG10201606873UA (en) * 2015-08-28 2017-03-30 Yulong Zhang Environmentally Friendly Heating Ventilation and Air Conditioning System
US9939162B2 (en) * 2015-11-13 2018-04-10 Honeywell International Inc. HVAC boiler controller
US10684188B2 (en) * 2015-11-18 2020-06-16 Carrier Corporation System and method for determining duct leakage in a HVAC system
CN108369018A (zh) * 2015-12-22 2018-08-03 松下知识产权经营株式会社 热交换式换气装置
CN105823142B (zh) * 2016-04-29 2019-06-18 宁波奥克斯电气股份有限公司 一种空调多联机的外机机组及压力检测方法
WO2018004768A1 (en) * 2016-06-28 2018-01-04 Ibacos, Inc. Environmental control and air distribution system and method of using the same
US10746424B2 (en) * 2016-10-17 2020-08-18 Lennox Industries Inc. Sensor features for climate control system
KR102572079B1 (ko) * 2017-01-10 2023-08-30 삼성전자주식회사 공조 장치, 공조 장치의 제어 장치 및 공조 장치의 제어 방법
CN107166504A (zh) * 2017-04-18 2017-09-15 青岛海尔空调器有限总公司 供暖调节方法及装置
US11465095B2 (en) * 2017-06-02 2022-10-11 Daikin Industries, Ltd. Ventilation system
US11085664B2 (en) * 2017-06-21 2021-08-10 Signify Holding B.V. Light fixture sensors for external use
US20190017716A1 (en) * 2017-07-13 2019-01-17 Jude Osamor Airflow Control Assembly
WO2019058517A1 (ja) * 2017-09-22 2019-03-28 三菱電機株式会社 熱交換型換気システム
US10684037B2 (en) * 2017-10-04 2020-06-16 Trane International Inc. Thermostat and method for controlling an HVAC system with remote temperature sensor and onboard temperature sensor
US10808446B2 (en) * 2017-11-24 2020-10-20 Hall Labs Llc Pulley-driven automated window or door system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159905A (ja) * 2009-01-07 2010-07-22 Mitsubishi Electric Corp 空気調和システム
JP2013087969A (ja) * 2011-10-13 2013-05-13 Mitsubishi Electric Corp 換気機器の制御システム
JP2013168734A (ja) * 2012-02-14 2013-08-29 Sharp Corp 情報処理システム、リモートコントローラ、情報処理方法およびプログラム
US20150204551A1 (en) * 2013-12-30 2015-07-23 Degree Controls, Inc. Energy saving method for room level heating and cooling system
JP2015143593A (ja) 2014-01-31 2015-08-06 ダイキン工業株式会社 換気装置
JP2018096600A (ja) * 2016-12-12 2018-06-21 ダイキン工業株式会社 空気調和システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3786539A4

Also Published As

Publication number Publication date
JP6687063B2 (ja) 2020-04-22
US11703245B2 (en) 2023-07-18
US20210088248A1 (en) 2021-03-25
US11268728B2 (en) 2022-03-08
AU2019300633B2 (en) 2021-01-21
CN112236626A (zh) 2021-01-15
AU2019300633A1 (en) 2021-01-07
US20220003446A1 (en) 2022-01-06
ES2920526T3 (es) 2022-08-05
CN112236626B (zh) 2022-04-26
JP2020008250A (ja) 2020-01-16
EP3786539A1 (en) 2021-03-03
EP3786539A4 (en) 2021-06-16
EP3786539B1 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
KR101591886B1 (ko) 공기조화기 시스템
KR20150129572A (ko) 공기조화기 시스템
KR101788016B1 (ko) 공기조화기 시스템
JP2015081725A (ja) 空気調和機
KR102140070B1 (ko) 공기조화기 및 그 동작방법
KR20100041230A (ko) 공기조화기 및 그 제어방법
KR20120078891A (ko) 통합 제어 시스템 및 그 제어방법
KR102140067B1 (ko) 공기조화기 및 그 동작방법
WO2020012867A1 (ja) 換気システム
KR101460711B1 (ko) 공기조화기 및 그 동작방법
KR20150106751A (ko) 공기조화기 및 그 제어방법
KR102199373B1 (ko) 공기조화기 및 그 동작방법
WO2020054055A1 (ja) 空気調和システム
KR101657559B1 (ko) 공기조화기 시스템
KR102436703B1 (ko) 공기조화기 및 그 제어방법
KR101155346B1 (ko) 공기조화기 및 그 통신방법
KR102106910B1 (ko) 공기조화기 및 그 동작방법
KR102192787B1 (ko) 공기조화기 및 그 동작방법
KR102155558B1 (ko) 공기조화기 및 그 제어방법
KR20140100651A (ko) 공기조화기 및 그 동작방법
JP2012248965A (ja) 設備制御システム
WO2023209870A1 (ja) 空気調和システム
JP6865891B2 (ja) 空気調和システム
KR20100032201A (ko) 공기조화기 및 그 동작방법
KR20120090274A (ko) 공기조화기 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019834952

Country of ref document: EP

Effective date: 20201124

ENP Entry into the national phase

Ref document number: 2019300633

Country of ref document: AU

Date of ref document: 20190613

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE