WO2020008969A1 - Resin composition, light-blocking film, method for producing light-blocking film, and substrate having partitioning wall attached thereto - Google Patents

Resin composition, light-blocking film, method for producing light-blocking film, and substrate having partitioning wall attached thereto Download PDF

Info

Publication number
WO2020008969A1
WO2020008969A1 PCT/JP2019/025291 JP2019025291W WO2020008969A1 WO 2020008969 A1 WO2020008969 A1 WO 2020008969A1 JP 2019025291 W JP2019025291 W JP 2019025291W WO 2020008969 A1 WO2020008969 A1 WO 2020008969A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
substrate
resin composition
partition wall
light
Prior art date
Application number
PCT/JP2019/025291
Other languages
French (fr)
Japanese (ja)
Inventor
飯塚英祐
諏訪充史
小林秀行
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201980041920.9A priority Critical patent/CN112368611B/en
Priority to JP2019536119A priority patent/JP6908116B2/en
Priority to KR1020217000149A priority patent/KR102432033B1/en
Priority to CN202210992042.2A priority patent/CN115356873A/en
Priority to KR1020227011384A priority patent/KR102624898B1/en
Publication of WO2020008969A1 publication Critical patent/WO2020008969A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present invention relates to a resin composition, a light-shielding film formed from the resin composition, a method of manufacturing the light-shielding film, and a substrate with a partition having a pattern-formed partition.
  • a liquid crystal display device which is one type of image display device, generally performs color display using a white light source such as an LED and a color filter that selectively transmits red, green, and blue.
  • a white light source such as an LED
  • a color filter that selectively transmits red, green, and blue.
  • color display using such a color filter has poor light use efficiency and has problems in color reproducibility.
  • a color display device including a wavelength conversion unit made of a phosphor for wavelength conversion, a polarization separation unit and a polarization conversion unit has been proposed as a color display device with high light use efficiency (for example, see Patent Document 1).
  • a color display device including a conversion unit has been proposed (for example, see Patent Document 2).
  • the color filters including the color conversion phosphors described in Patent Literatures 1 and 2 have low light extraction efficiency and insufficient luminance because fluorescence is generated in all directions.
  • a high-definition display device referred to as 4K or 8K since the pixel size is reduced, the problem of luminance becomes significant, and thus higher luminance is required.
  • the inventors first studied a method of using a material obtained by adding a black pigment to a high-reflectance white partition wall material in order to form a partition having both high reflectance and light-shielding properties.
  • a material obtained by adding a black pigment to a high-reflectance white partition wall material in order to form a partition having both high reflectance and light-shielding properties.
  • the problem that the light was absorbed by the white pigment and the black pigment at the time of exposure, the light did not reach the bottom of the film, and the pattern processability was poor was revealed.
  • Patent Literatures 3 and 4 a technique has been proposed in which a specific metal compound is added to blacken by baking after pattern formation.
  • these blackening techniques require baking at 400 ° C. or higher, and there is a problem that heating at 250 ° C. or lower does not improve light-shielding properties.
  • an object of the present invention is to provide a resin composition that can form a partition having both high reflectance and light-shielding properties even under heating conditions of 250 ° C. or lower.
  • the present invention provides a resin composition containing a resin, an organometallic compound containing at least one metal selected from the group consisting of silver, gold, platinum and palladium, a photopolymerization initiator or a quinonediazide compound, and a solvent. It is.
  • the resin composition of the present invention allows light to pass during the step of pattern exposure after film formation.However, since the light-shielding property increases after the exposed film is heated at a temperature of 120 ° C. or more and 250 ° C. or less, under heating conditions of 250 ° C. or less In addition, it is possible to form a fine thick-wall partition pattern having high reflectivity and high light-shielding properties.
  • FIG. 2 is a cross-sectional view showing one embodiment of a substrate with a partition wall of the present invention having a low refractive index layer and an inorganic protective layer I. It is sectional drawing which shows one aspect of the board
  • FIG. 3 is a cross-sectional view illustrating a configuration of a display device used for color mixing evaluation in Examples.
  • the resin composition of the present invention can be suitably used as a material for forming a partition for separating the color conversion phosphor.
  • the resin composition of the present invention is a resin and an organometallic compound containing at least one metal selected from the group consisting of silver, gold, platinum and palladium (hereinafter may be referred to as “organometallic compound”).
  • organometallic compound containing at least one metal selected from the group consisting of silver, gold, platinum and palladium
  • a photopolymerization initiator or a quinonediazide compound and a solvent.
  • the resin has a function of improving crack resistance and light resistance of the partition.
  • the content of the resin in the solid content of the resin composition is preferably 10% by weight or more, and more preferably 20% by weight or more, from the viewpoint of improving the crack resistance of the partition walls in the heat treatment.
  • the content of the resin in the solid content of the resin composition is preferably equal to or less than 60% by weight, and more preferably equal to or less than 50% by weight.
  • the solid content means all of the components contained in the resin composition except for volatile components such as a solvent. The amount of solid content can be determined by heating the resin composition and measuring the residue obtained by evaporating volatile components.
  • the resin examples include polysiloxane, polyimide, polyimide precursor, polybenzoxazole, polybenzoxazole precursor, and (meth) acrylic polymer.
  • the (meth) acrylic polymer means a polymer of a methacrylate and / or an acrylate. Two or more of these may be contained.
  • polysiloxane is preferable because of its excellent transparency, heat resistance and light resistance.
  • Polysiloxane is a hydrolysis / dehydration condensate of organosilane.
  • the polysiloxane preferably contains at least a repeating unit represented by the following general formula (2). Further, other repeating units may be included.
  • the repeating unit represented by the general formula (2) is contained in an amount of 10 to 80 mol% in all the repeating units in the polysiloxane.
  • the content of the repeating unit represented by the general formula (2) is more preferably at least 15 mol%, even more preferably at least 20 mol%.
  • the content of the repeating unit represented by the general formula (2) is 80 mol% or less, the molecular weight of the polysiloxane can be sufficiently increased at the time of polymerization, and the coating property can be improved.
  • the content of the repeating unit represented by the general formula (2) is more preferably 70 mol% or less.
  • R 1 and R 2 may be the same or different and represent a monovalent organic group having 1 to 20 carbon atoms.
  • R 1 and R 2 are preferably a group selected from an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms, from the viewpoint of facilitating the adjustment of the molecular weight of the polysiloxane during the polymerization.
  • the alkyl group and the aryl group at least a part of the hydrogen may be substituted by a radical polymerizable group.
  • the radically polymerizable group may be radically polymerized.
  • the polysiloxane is further selected from a repeating unit represented by the following general formula (3) and a repeating unit represented by the following general formula (4). It preferably contains a repeating unit.
  • a repeating unit derived from a fluorine-containing alkoxysilane compound represented by the general formula (3) or (4) the refractive index of the polysiloxane is reduced, and when a white pigment described later is contained, white The difference in refractive index between the pigment and the pigment can be enlarged to further improve interfacial reflection and further improve the reflectance.
  • a total of 20 to 80 mol% of the repeating unit selected from the repeating unit represented by the general formula (3) and the repeating unit represented by the general formula (4) be contained in the polysiloxane.
  • the repeating unit represented by the general formula (3) and the repeating unit represented by the general formula (4) in a total amount of 20 mol% or more, when a white pigment described later is contained, the interface between the polysiloxane and the white pigment is The reflection can be further improved, and the reflectance can be further improved.
  • the total content of the repeating unit represented by the general formula (3) and the repeating unit represented by the general formula (4) is more preferably 40 mol% or more.
  • the repeating unit represented by the general formula (3) and the repeating unit represented by the general formula (4) in a total amount of 80 mol% or less, excessive hydrophobization of the polysiloxane is suppressed, and The compatibility with other components can be improved, and the resolution can be improved.
  • the total content of the repeating unit represented by the general formula (3) and the repeating unit represented by the general formula (4) is more preferably 70 mol% or less. Further, other repeating units may be included.
  • R 3 represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group or an arylalkyl group, in which all or a part of hydrogen is substituted with fluorine.
  • R 4 represents a single bond, —O—, —CH 2 —CO—, —CO— or —O—CO—.
  • R 5 represents a monovalent organic group having 1 to 20 carbon atoms.
  • R 3 is preferably an alkyl group having 1 to 6 carbon atoms in which all or part of hydrogen has been substituted with fluorine.
  • the alkenyl group may be radically polymerized.
  • the repeating units represented by the general formulas (2) to (4) are derived from the alkoxysilane compounds represented by the following general formulas (5) to (7). That is, the polysiloxane containing the repeating units represented by the above general formulas (2) to (4) is obtained by hydrolyzing an alkoxysilane compound containing the alkoxysilane compound represented by the following general formulas (5) to (7). It can be obtained by polycondensation. Further, other alkoxysilane compounds may be used.
  • R 1 ⁇ R 5 are in each general formula (2) to (4) represent the same group as R 1 - R 5.
  • R 6 may be the same or different and represents a monovalent organic group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
  • alkoxysilane compound represented by the general formula (5) examples include, for example, dimethyldimethoxysilane, dimethyldiethoxysilane, ethylmethyldimethoxysilane, ethylmethyldimethoxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, diphenyldimethoxysilane , Diphenyldiethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylmethyldiethoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, allylmethyldimethoxysilane, allylmethyldiethoxysilane, styrylmethyldimethoxysilane, styrylmethyldiethoxysilane, ⁇ -methacryloylpropylmethyldimethoxysilane, ⁇ -methacryloylpropylmethyldiethoxys
  • alkoxysilane compound represented by the general formula (6) examples include trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, perfluoropentyltrimethoxysilane, perfluoropentyltriethoxysilane, and tridecafluorooctyltrisilane.
  • alkoxysilane compound represented by the general formula (7) examples include bis (trifluoromethyl) dimethoxysilane, bis (trifluoropropyl) dimethoxysilane, bis (trifluoropropyl) diethoxysilane, trifluoropropylmethyldimethoxysilane, Trifluoropropylmethyldiethoxysilane, trifluoropropylethyldimethoxysilane, trifluoropropylethyldiethoxysilane, heptadecafluorodecylmethyldimethoxysilane and the like. Two or more of these may be used.
  • alkoxysilane compounds for example, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, Cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, Trifunctional alkoxysilane compounds such as 3-ureidopropyltriethoxysilane; tetramethoxysilane,
  • the content of the alkoxysilane compound represented by the general formula (5) in the alkoxysilane compound as a raw material of the polysiloxane is determined by the content of the repeating unit represented by the general formula (2) in all the repeating units of the polysiloxane. From the viewpoint of controlling the amount to the above range, 10 mol% or more is preferable, 15 mol% or more is more preferable, and 20 mol% or more is further preferable. On the other hand, the content of the alkoxysilane compound represented by the general formula (5) is preferably 80 mol% or less, and more preferably 70 mol% or less, from the same viewpoint.
  • the total content of the alkoxysilane compounds represented by the general formulas (6) and (7) the total content of the repeating units represented by the general formulas (3) and (4) is described above. From the viewpoint of setting the content in the range, 20 mol% or more is preferable, and 40 mol% or more is more preferable. On the other hand, the total content of the alkoxysilane compounds represented by the general formulas (6) and (7) is preferably 80 mol% or less, more preferably 70 mol% or less from the same viewpoint.
  • the weight average molecular weight (Mw) of the polysiloxane is preferably 1,000 or more, more preferably 2,000 or more, from the viewpoint of applicability.
  • the Mw of the polysiloxane is preferably 50,000 or less, more preferably 20,000 or less.
  • the Mw of the polysiloxane in the present invention means a value in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the polysiloxane can be obtained by hydrolyzing the above-mentioned organosilane compound and then subjecting the hydrolyzate to a dehydration condensation reaction in the presence or absence of a solvent.
  • Various conditions in the hydrolysis can be set in accordance with the physical properties suitable for the intended use in consideration of the reaction scale, the size and shape of the reaction vessel, and the like.
  • Examples of the various conditions include an acid concentration, a reaction temperature, and a reaction time.
  • an acid catalyst such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polycarboxylic acid or anhydride thereof, or ion exchange resin can be used.
  • an acidic aqueous solution containing an acid selected from formic acid, acetic acid, and phosphoric acid is preferable.
  • the amount of the acid catalyst added is 0.05% by weight, based on 100 parts by weight of all the alkoxysilane compounds used in the hydrolysis reaction, from the viewpoint of promptly proceeding the hydrolysis. Or more, more preferably 0.1 part by weight or more.
  • the amount of the acid catalyst to be added is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, based on 100 parts by weight of all the alkoxysilane compounds.
  • the total amount of the alkoxysilane compound refers to an amount including all of the alkoxysilane compound, its hydrolyzate, and its condensate. The same shall apply hereinafter.
  • the hydrolysis reaction can be performed in a solvent.
  • the solvent can be appropriately selected in consideration of the stability, wettability, volatility, and the like of the resin composition.
  • the hydrolysis can be performed without a solvent.
  • the amount of the solvent to be added is preferably 50 parts by weight or more, more preferably 80 parts by weight or more, based on 100 parts by weight of all the alkoxysilane compounds, from the viewpoint of suppressing gel formation.
  • the amount of the solvent to be added is preferably 500 parts by weight or less, more preferably 200 parts by weight or less, based on 100 parts by weight of all the alkoxysilane compounds, from the viewpoint of promoting hydrolysis more quickly.
  • water used for the hydrolysis reaction ion-exchanged water is preferable.
  • the amount of water can be arbitrarily set, but is preferably 1.0 to 4.0 mol per 1 mol of the total alkoxysilane compound.
  • a method of the dehydration condensation reaction for example, a method of directly heating a silanol compound solution obtained by a hydrolysis reaction of an organosilane compound and the like can be mentioned.
  • the heating temperature is preferably from 50 ° C. to the boiling point of the solvent, and the heating time is preferably from 1 to 100 hours.
  • reheating or addition of a base catalyst may be performed.
  • an appropriate amount of the produced alcohol or the like may be distilled and removed under heating and / or reduced pressure, and then a suitable solvent may be added.
  • the siloxane resin solution after hydrolysis and dehydration condensation does not contain the catalyst, and the catalyst can be removed if necessary.
  • the catalyst removal method water washing, treatment with an ion exchange resin, and the like are preferable from the viewpoint of easy operation and removability.
  • Water washing is a method in which a polysiloxane solution is diluted with an appropriate hydrophobic solvent, washed several times with water, and then the obtained organic layer is concentrated using an evaporator or the like.
  • the treatment with an ion exchange resin is a method in which a polysiloxane solution is brought into contact with an appropriate ion exchange resin.
  • the organometallic compound is decomposed and agglomerated into black particles or yellow particles in the exposure step and / or the heating step when forming the pattern of the partition wall (A-1) described later, and the OD of the partition wall (A-1) described later is reduced.
  • a resin composition having negative photosensitivity if a pattern is previously formed using a resin composition containing a large amount of black pigment in order to form a partition wall (A-1) having a high OD value, Light curing tends to be insufficient.
  • the shape of the obtained partition wall (A-1) tends to be reverse-tapered.
  • the taper angle can be easily adjusted to a preferable range described later because the photocuring is sufficiently performed to the bottom.
  • organometallic compound examples include organometallic compounds containing silver such as silver neodecanoate, silver octylate, and silver salicylate; and gold such as chloro (triphenylphosphine) gold and tetrachloroauric acid tetrahydrate.
  • Organometallic compounds Organometallic compounds containing platinum such as bis (acetylacetonato) platinum, dichlorobis (triphenylphosphine) platinum, dichlorobis (benzonitrile) platinum; bis (acetylacetonato) palladium, dichlorobis (triphenylphosphine) Palladium-containing organometallic compounds such as palladium, dichlorobis (benzonitrile) palladium, tetrakis (triphenylphosphine) palladium, and dibenzylideneacetone palladium. Two or more of these may be contained.
  • an organic metal compound containing silver such as silver neodecanoate, silver octylate, and silver salicylate
  • it is decomposed and aggregated in the exposure step to blacken, and further decomposed and aggregated in the subsequent heating step. It turns yellow.
  • organometallic compounds containing platinum such as bis (acetylacetonato) platinum, dichlorobis (triphenylphosphine) platinum, dichlorobis (benzonitrile) platinum; bis (acetylacetonato) palladium, dichlorobis (triphenylphosphine) palladium
  • organometallic compound selected from palladium such as dichlorobis (benzonitrile) palladium, tetrakis (triphenylphosphine) palladium, and dibenzylideneacetone palladium
  • blackening occurs due to decomposition and aggregation in the exposure step and / or the heating step.
  • an organic metal compound selected from bis (acetylacetonato) palladium, dichlorobis (triphenylphosphine) palladium, dichlorobis (benzonitrile) palladium and tetrakis (triphenylphosphine) palladium from the viewpoint of further improving the OD value Is preferred.
  • the content of the organometallic compound in the solid content is preferably 0.2 to 5% by weight.
  • the OD value of the obtained partition wall can be further improved.
  • the content of the organometallic compound is more preferably 1.5% by weight or more.
  • the reflectance can be further improved.
  • the resin composition of the present invention is used for forming a pattern of a partition wall (A-1) described later, it is preferable that the resin composition has negative or positive photosensitivity.
  • the resin composition When imparting negative-type photosensitivity, it is preferable to contain a photopolymerization initiator, and a partition wall having a high-definition pattern can be formed.
  • the negative photosensitive resin composition further contains a photopolymerizable compound.
  • the photopolymerization initiator may be any one that decomposes and / or reacts by irradiation of light (including ultraviolet rays and electron beams) to generate radicals.
  • the content of the photopolymerization initiator in the resin composition of the present invention is preferably 0.01% by weight or more, more preferably 1% by weight or more, based on the solid content.
  • the content of the photopolymerization initiator in the solid content is preferably 20% by weight or less, and more preferably 10% by weight or less, from the viewpoint of suppressing the dissolution of the remaining photopolymerization initiator and improving yellowing. preferable.
  • the photopolymerizable compound in the present invention refers to a compound having two or more ethylenically unsaturated double bonds in a molecule. Considering the ease of radical polymerization, the photopolymerizable compound preferably has a (meth) acryl group.
  • photopolymerizable compound examples include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, and trimethylolpropane.
  • Triacrylate trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, neopentyl glycol diacrylate, 1,4-butanediol diacrylate, 1, 4-butanediol dimethacrylate, 1,6-hexanediol diacrylate, 1, -Nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol pentaacrylate, dipentaerythritol Pentaery
  • the content of the photopolymerizable compound in the resin composition of the present invention is preferably 1% by weight or more based on the solid content.
  • the content of the photopolymerizable compound is preferably 40% by weight or less in the solid content from the viewpoint of suppressing the excessive reaction of radicals and improving the resolution.
  • quinonediazide compound a compound in which a sulfonic acid of naphthoquinonediazide is bonded to a compound having a phenolic hydroxyl group by an ester is preferable.
  • the compound having a phenolic hydroxyl group used here include, for example, BIs-Z, TekP-4HBPA (tetrakis P-DO-BPA), TrIsP-HAP, TrIsP-PA, BIsRS-2P, BIsRS-3P (all commercial products) Name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-PC, BIR-PTBP, BIR-BIPC-F (all trade names, manufactured by Asahi Organic Materials Co., Ltd.), 4,4'-sulfonyldiphenol, BPFL (Trade name, manufactured by JFE Chemical Corporation).
  • quinonediazide compound a compound obtained by introducing 4-naphthoquinonediazidesulfonic acid or 5-naphthoquinonediazidesulfonic acid to the compound having a phenolic hydroxyl group through an ester bond is preferable.
  • the content of the quinonediazide compound in the resin composition of the present invention is preferably 0.5% by weight or more, more preferably 1% by weight or more, based on the solid content, from the viewpoint of improving sensitivity.
  • the content of the quinonediazide compound is preferably 25% by weight or less, more preferably 20% by weight or less in the solid content, from the viewpoint of improving the resolution.
  • the solvent has a function of adjusting the viscosity of the resin composition to a range suitable for coating and improving the uniformity of the partition walls.
  • the solvent it is preferable to combine a solvent having a boiling point at atmospheric pressure of more than 150 ° C. and 250 ° C. or less with a solvent having a boiling point of 150 ° C. or less.
  • the solvent examples include alcohols such as ethanol, propanol, isopropanol, and diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl.
  • Ethers such as ether, propylene glycol monopropyl ether and propylene glycol monobutyl ether; ketones such as methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone and cyclopentanone; dimethylformamide, dimethylacetamide and the like Amides; ethyl acetate, propyl ace Acetates such as acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate and butyl lactate Aromatic or aliphatic hydrocarbons such as toluene, xylene, hexane
  • diacetone alcohol as a solvent having a boiling point at atmospheric pressure of more than 150 ° C. and 250 ° C. or less and propylene glycol monomethyl ether as a solvent of 150 ° C. or less from the viewpoint of applicability.
  • the content of the solvent can be arbitrarily set according to the coating method and the like.
  • the content of the solvent is generally 50% by weight or more and 95% by weight or less in the resin composition.
  • the resin composition of the present invention preferably further contains a coordinating compound having a phosphorus atom (hereinafter, sometimes referred to as “coordinating compound”).
  • coordinating compound coordinates with the organometallic compound in the resin composition, improves the solubility of the organometallic compound in the solvent, promotes the decomposition of the organometallic compound, and further improves the OD value of the obtained partition wall. Can be done.
  • Examples of the coordinating compound include triphenylphosphine, tri-t-butylphosphine, trimethylphosphine, tricyclohexylphosphine, tri-t-butylphosphine tetrafluoroborate, tri (2-furyl) phosphine, tris (1- (Adamantyl) phosphine, tris (diethylamino) phosphine, tris (4-methoxyphenyl) phosphine, tris (O-tolyl) phosphine and the like. Two or more of these may be contained.
  • the content of the coordinating compound in the resin composition of the present invention is preferably 0.5 to 3.0 molar equivalents relative to the organometallic compound.
  • the resin composition of the present invention preferably further contains a white pigment and / or a black pigment.
  • the white pigment has a function of further improving the reflectance of the partition walls.
  • the black pigment has a function of adjusting the OD value.
  • the white pigment examples include titanium dioxide, zirconium oxide, zinc oxide, barium sulfate, and composite compounds thereof. Two or more of these may be contained. Among these, titanium dioxide, which has a high reflectance and is easily used industrially, is preferable.
  • the crystal structure of titanium dioxide is classified into anatase type, rutile type and brookite type. Among these, rutile-type titanium oxide is preferred because of its low photocatalytic activity.
  • the surface treatment may be applied to the white pigment.
  • Surface treatment with a metal selected from Al, Si and Zr is preferable, and the light resistance and heat resistance of the formed partition wall can be improved.
  • the median diameter of the white pigment is preferably 100 to 500 nm from the viewpoint of further improving the reflectance of the partition walls.
  • the median diameter of the white pigment can be calculated from a particle size distribution measured by a laser diffraction method using a particle size distribution measuring device (N4-PLUS; manufactured by Beckman Coulter, Inc.) or the like.
  • titanium dioxide pigment preferably used as a white pigment examples include R960; manufactured by DuPont (rutile type, SiO 2 / Al 2 O 3 treatment, average primary particle diameter 210 nm), CR-97; Ishihara Sangyo Co., Ltd. (Rutile type, Al 2 O 3 / ZrO 2 treatment, average primary particle diameter 250 nm), JR-301; Teika Co., Ltd. (rutile type, Al 2 O 3 treatment, average primary particle diameter 300 nm), JR-405 Manufactured by Teica Co., Ltd. (rutile type, Al 2 O 3 treatment, average primary particle diameter 210 nm), JR-600A; Teica Co., Ltd.
  • the content of the white pigment in the resin composition is preferably 20% by weight or more, more preferably 30% by weight or more in the solid content from the viewpoint of further improving the reflectance.
  • the content of the white pigment is preferably 60% by weight or less, more preferably 55% by weight or less based on the solid content.
  • black pigment examples include a black organic pigment, a mixed color organic pigment, and a black inorganic pigment.
  • black organic pigment examples include carbon black, perylene black, aniline black, and benzofuranone pigments. These may be coated with a resin.
  • the mixed color organic pigment examples include those obtained by mixing two or more kinds of pigments selected from red, blue, green, violet, yellow, magenta, cyan, and the like, to give a pseudo black color.
  • a mixed pigment of a red pigment and a blue pigment is preferable from the viewpoint of achieving both an appropriately high OD value and pattern processability.
  • the weight ratio of the red pigment to the blue pigment in the mixed pigment is preferably from 20/80 to 80/20, more preferably from 30/70 to 70/30.
  • Specific examples of typical pigments represented by color index (CI) numbers include the following.
  • red pigments examples include Pigment Red (hereinafter abbreviated as PR) 9, PR48, PR97, PR122, PR123, PR144, PR149, PR166, PR168, PR177, PR179, PR180, PR192, PR209, PR215, PR216, PR217, PR220. , PR223, PR224, PR226, PR227, PR228, PR240, PR254, and the like. Two or more of these may be contained.
  • blue pigment include Pigment Blue (hereinafter abbreviated as PB) 15, PB15: 3, PB15: 4, PB15: 6, PB22, PB60, and PB64. Two or more of these may be contained.
  • black inorganic pigments include graphite; fine particles of metals such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, silver, gold, platinum and palladium; metal oxides; Metal sulfide; metal nitride; metal oxynitride; metal carbide and the like. Two or more of these may be contained.
  • titanium nitride, zirconium nitride, and a mixed pigment having a weight ratio of a red pigment and a blue pigment of 20/80 to 80/20 are used.
  • the selected pigment is more preferred.
  • the content of the black pigment in the resin composition is preferably 0.01% by weight or more in the solid content from the viewpoint of adjusting the reflectance and the OD to the above-mentioned ranges to further suppress the color mixing of light in adjacent pixels. 0.05% by weight or more is more preferable.
  • the content of the black pigment is preferably 5% by weight or less, more preferably 3% by weight or less in the solid content.
  • the resin composition of the present invention preferably further contains a photobase generator.
  • a photobase generator By containing a photobase generator, a base is generated in the exposure step, and the decomposition / aggregation of the organometallic compound in the resin composition is promoted, so that the organometallic compound is more efficiently converted into black particles or yellow particles. By converting, the OD value of the obtained partition wall can be further improved.
  • the photobase generator is not particularly limited as long as it can be decomposed and / or reacted by irradiation of light (including ultraviolet rays and electron beams) to generate a base.
  • light including ultraviolet rays and electron beams
  • the photobase generator is not particularly limited as long as it can be decomposed and / or reacted by irradiation of light (including ultraviolet rays and electron beams) to generate a base.
  • the content of the photobase generator in the resin composition of the present invention is preferably 0.5% by weight or more based on the solid content.
  • the content of the photobase generator is preferably 2.0% by weight or less in the solid content from the viewpoint of improving the resolution.
  • the resin composition of the present invention may contain a liquid repellent compound.
  • the liquid-repellent compound is a compound that imparts the property of repelling water or an organic solvent (liquid-repellent performance) to the resin composition.
  • liquid repellent compound liquid repellency can be imparted to the top of the partition after the formation of the partition (A-1).
  • liquid repellent compound examples include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, 1,1,2,2-tetrafluorooctylhexyl ether, and octaethylene.
  • liquid repellent compounds include "MegaFac” (registered trademark) F142D, F172, F173, F183, F444, F477 (all manufactured by Dainippon Ink and Chemicals, Inc.), and F-Top EF301, 303, and 352.
  • those having a photopolymerizable group are more preferable because they have high reactivity and can form a strong bond with the resin.
  • the liquid repellent compound having a fluorine atom and a photopolymerizable group include “MegaFac” (registered trademark) RS-76-E, RS-56, RS-72-k, RS-75, RS-76-E , RS-76-NS, RS-76, and RS-90 (trade names, manufactured by DIC Corporation) and the like.
  • the photopolymerizable group may be photopolymerized in the partition wall (A-1) made of the photocurable negative photosensitive resin composition.
  • the content of the liquid repellent compound in the resin composition is preferably 0.01% by weight or more, and more preferably 0.1% by weight or more based on the solid content. More preferred.
  • the content of the liquid repellent compound is preferably 10% by weight or less, more preferably 5% by weight or less in the solid content.
  • the resin composition of the present invention may contain, if necessary, an ultraviolet absorber, a polymerization inhibitor, a surfactant, an adhesion improver, and the like.
  • an ultraviolet absorber in the resin composition of the present invention, light resistance can be improved and resolution can be further improved.
  • the ultraviolet absorber include 2- (2H-benzotriazol-2-yl) phenol and 2- (2H-benzotriazol-2-yl) -4,6-tert-pentyl from the viewpoint of transparency and non-coloring.
  • the resolution can be further improved by including the polymerization inhibitor in the resin composition of the present invention.
  • the polymerization inhibitor include di-t-butylhydroxytoluene, butylhydroxyanisole, hydroquinone, 4-methoxyphenol, 1,4-benzoquinone, and t-butylcatechol.
  • IRGANOX registered trademark 1010, 1035, 1076, 1098, 1135, 1330, 1726, 1425, 1520, 245, 259, 3114, 565, 295 (all trade names, BASF Japan Co., Ltd.). Two or more of these may be contained.
  • the flow property during coating can be improved.
  • the surfactant include “MegaFac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475, F477 (all trade names, manufactured by Dainippon Ink and Chemicals, Inc.), NBX- 15.
  • Fluorinated surfactants such as FTX-218 (trade name, manufactured by Neos Co., Ltd.); "BYK” (registered trademark) -333, 301, 331, 345, 307 (trade name, BYK Chemie Co., Ltd.) Japan-made), polyalkylene oxide-based surfactants, poly (meth) acrylate-based surfactants, and the like. Two or more of these may be contained.
  • the adhesion improving agent in the resin composition of the present invention, the adhesion to the underlying substrate is improved, and a highly reliable partition wall can be obtained.
  • the adhesion improver include an alicyclic epoxy compound and a silane coupling agent. Among these, the alicyclic epoxy compound has high heat resistance, so that the color change after heating can be further suppressed.
  • alicyclic epoxy compound examples include, for example, 3,2-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate and 1,2-epoxy-cyclohexane of 2,2-bis (hydroxymethyl) -1-butanol.
  • the content of the adhesion improver in the resin composition of the present invention is preferably 0.1% by weight or more, more preferably 1% by weight or more in the solid content, from the viewpoint of further improving the adhesion to the underlying substrate. .
  • the content of the adhesion improver is preferably 20% by weight or less, more preferably 10% by weight or less in the solid content, from the viewpoint of further suppressing color change due to heating.
  • the resin composition of the present invention can be produced, for example, by mixing the aforementioned resin, an organometallic compound, a photopolymerization initiator or a quinonediazide compound, a solvent, and other components as necessary.
  • the light-shielding film of the present invention is obtained by curing the above-described resin composition of the present invention.
  • the light-shielding film of the present invention can be suitably used as a light-shielding pattern in an OGS-type touch panel such as a decorative pattern for a cover substrate, in addition to a partition wall (A-1) described later.
  • the thickness of the light-shielding film is preferably 10 ⁇ m or more.
  • the method for producing a light-shielding film of the present invention includes a step of applying the resin composition of the present invention on an undersubstrate and drying the film to obtain a dried film, an exposing step of pattern-exposing the obtained dried film, It is preferable to have a developing step of dissolving and removing a portion of the dried film that is soluble in the developer, and a heating step of heating the dried film to cure the dried film.
  • the OD value per 10 ⁇ m of film thickness is increased by 0.3 or more by heating the film after development at a temperature of 120 ° C. or more and 250 ° C. or less.
  • the heating temperature in the heating step is preferably 150 ° C. or higher, and more preferably 180 ° C. or higher, from the viewpoint of further improving the OD value.
  • the heating temperature in the heating step is preferably 250 ° C. or lower, more preferably 240 ° C. or lower, from the viewpoint of suppressing the occurrence of cracks in the film to be heated.
  • the heating time is preferably from 15 minutes to 2 hours.
  • the film formed from the resin composition of the present invention has a low OD value at the time of exposure, and the OD value increases after pattern formation. An angled partition can be obtained. In addition, since the OD value after pattern formation is high, it is possible to obtain a partition having both high reflectance and light shielding properties.
  • a method of applying the resin composition in the film forming step for example, a slit coating method, a spin coating method and the like can be mentioned.
  • the drying device include a hot air oven and a hot plate.
  • the drying time is preferably from 80 to 120 ° C., and the drying time is preferably from 1 to 15 minutes.
  • the exposure step is a step of photo-curing a necessary portion of the dried film by exposure or photo-decomposing an unnecessary portion of the dried film to make any portion of the dried film soluble in a developer.
  • exposure may be performed through a photomask having a predetermined opening, or an arbitrary pattern may be directly drawn using a laser beam or the like without using a photomask.
  • the actinic rays irradiated in the exposure step include, for example, near infrared rays, visible rays, and ultraviolet rays, and ultraviolet rays are preferable.
  • the light source include a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a halogen lamp, and a germicidal lamp, and an ultra-high-pressure mercury lamp is preferable.
  • Exposure conditions can be appropriately selected depending on the thickness of the dried film to be exposed. In general, it is preferable to perform exposure with an exposure amount of 1 to 10,000 mJ / cm 2 using an ultrahigh pressure mercury lamp having an output of 1 to 100 mW / cm 2 .
  • a portion of the dried film after exposure that is soluble in the developing solution is dissolved and removed with the developing solution, and only a portion that is insoluble in the developing solution remains.
  • a pattern before heating examples include a lattice shape and a stripe shape.
  • Examples of the developing method include an immersion method, a spray method, and a brush method.
  • the developer a solvent capable of dissolving an unnecessary portion in the dried film after exposure can be appropriately selected, and an aqueous solution containing water as a main component is preferable.
  • the resin composition contains a polymer having a carboxyl group
  • the developing solution is preferably an aqueous alkaline solution.
  • the aqueous alkali solution include aqueous inorganic alkali solutions such as sodium hydroxide, potassium hydroxide, sodium carbonate, and calcium hydroxide; aqueous organic alkali solutions such as tetramethylammonium hydroxide, trimethylbenzylammonium hydroxide, monoethanolamine, and diethanolamine. Is mentioned.
  • an aqueous solution of potassium hydroxide or an aqueous solution of tetramethylammonium hydroxide is preferred from the viewpoint of improving the resolution.
  • the concentration of the aqueous alkali solution is preferably 0.05% by weight or more, and more preferably 0.1% by weight or more, from the viewpoint of improving developability.
  • the concentration of the alkaline aqueous solution is preferably 5% by weight or less, more preferably 1% by weight or less, from the viewpoint of suppressing peeling and corrosion of the pattern before heating.
  • the development temperature is preferably from 20 to 50 ° C. in order to facilitate the process control.
  • the heating step is a step of heating and curing the pre-heating pattern formed in the developing step.
  • Examples of the heating device include a hot plate and an oven. Preferred heating temperature and heating time are as described above.
  • the substrate with a partition wall of the present invention has a partition (A-1) formed with a pattern on an undersubstrate (hereinafter, may be referred to as “partition (A-1)”).
  • the base substrate has a function as a support in the substrate with partition walls.
  • the partition has a pixel containing a color conversion light-emitting material described later, the partition has a function of suppressing color mixture of light between adjacent pixels.
  • the barrier rib (A-1) has a reflectivity at a wavelength of 550 nm per 10 ⁇ m thickness of 20% to 60%, and an OD value per 10 ⁇ m thickness of 1.0 to 3.0.
  • the reflectivity By setting the reflectivity to 20% or more and the OD value to 3.0 or less, (A-1) the luminance of the display device can be improved by utilizing the reflection on the side wall of the partition wall.
  • the reflectance By setting the reflectance to 60% or less and the OD value to 1.0 or more, it is possible to suppress the light transmitted through the partition wall (A-1) and to suppress the color mixing of light between adjacent pixels.
  • FIG. 1 shows a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a patterned partition wall.
  • a partition 2 having a pattern is formed on an undersubstrate 1.
  • the base substrate examples include a glass plate, a resin plate, and a resin film.
  • a material of the glass plate non-alkali glass is preferable.
  • polyester, (meth) acrylic polymer, transparent polyimide, polyether sulfone, and the like are preferable.
  • the thickness of the glass plate and the resin plate is preferably 1 mm or less, and more preferably 0.8 mm or less.
  • the thickness of the resin film is preferably 100 ⁇ m or less.
  • the partition wall (A-1) is characterized in that the reflectance per 10 ⁇ m thickness at a wavelength of 550 nm is 20 to 60% and the OD value is 1.0 to 3.0.
  • the thickness of the partition wall (A-1) refers to the length of the partition wall (A-1) in a direction perpendicular to the underlying substrate (height direction).
  • the thickness of the partition 2 is represented by the symbol H.
  • the length of the partition wall (A-1) in a direction parallel to the base substrate is the width of the partition wall (A-1).
  • the width of the partition 2 is represented by a reference symbol L.
  • the reflectance on the side wall of the partition contributes to the improvement of the brightness of the display device, and the light blocking property of the partition contributes to the suppression of color mixing.
  • the reflectance and the OD value per thickness are considered to be the same regardless of the thickness direction and the width direction, the present invention focuses on the reflectance and the OD value per partition thickness.
  • the thickness of the partition wall (A-1) is preferably 0.5 to 50 ⁇ m, and the width is preferably 5 to 40 ⁇ m. Therefore, in the present invention, 10 ⁇ m was selected as a representative value of the thickness of the partition wall (A-1), and attention was paid to the reflectance and the OD value per 10 ⁇ m of the thickness.
  • the reflectance per 10 ⁇ m thickness is less than 20%, the reflection on the side wall of the partition is small, and the luminance of the display device becomes insufficient.
  • the reflectance per 10 ⁇ m thickness is preferably 30% or more, more preferably 35% or more. The higher the reflectance, the greater the reflection on the side wall of the partition wall, so that the brightness of the display device can be improved. However, if the reflectance exceeds 60%, color mixing of light occurs between adjacent pixels.
  • the reflectance per 10 ⁇ m thickness is more preferably 44% or less.
  • the OD value per 10 ⁇ m thickness is less than 1.0, light color mixing occurs between adjacent pixels.
  • the OD value per 10 ⁇ m thickness is preferably 1.5 or more, more preferably 2.0 or more.
  • the OD value per 10 ⁇ m thickness exceeds 3.0, the reflection on the side wall of the partition wall becomes small, and the luminance of the display device becomes insufficient.
  • the OD value per 10 ⁇ m thickness is more preferably 2.5 or less.
  • the reflectance of the partition wall (A-1) per 10 ⁇ m thickness at a wavelength of 550 nm was measured using a spectrophotometer (for example, Konica Minolta Co., Ltd., CM-2600d) from above for the partition wall (A-1) having a thickness of 10 ⁇ m. Thus, it can be measured in the SCI mode. However, when a sufficient area for measurement cannot be secured, or when a measurement sample having a thickness of 10 ⁇ m cannot be obtained, if the composition of the partition wall (A-1) is known, the same composition as that of the partition wall (A-1) is used.
  • a spectrophotometer for example, Konica Minolta Co., Ltd., CM-2600d
  • the reflectivity per 10 ⁇ m thickness may be obtained by preparing a solid film having a thickness of 10 ⁇ m and measuring the reflectivity of the solid film similarly to the partition (A-1). For example, a solid film is formed using the material on which the partition wall (A-1) is formed, under the same processing conditions as the formation of the partition wall (A-1) except that the thickness is 10 ⁇ m and the pattern is not formed. The reflectance of the film may be measured from the upper surface in the same manner.
  • the OD value of the partition wall (A-1) per 10 ⁇ m thickness is determined by using an optical densitometer (for example, 361T (visual) manufactured by X-rite) from above for the partition wall (A-1) having a thickness of 10 ⁇ m.
  • the intensity of the transmitted light can be measured and calculated by the following equation (1).
  • the partition ( An OD value per 10 ⁇ m thickness may be obtained by preparing a solid film having the same composition as that of A-1) and having a thickness of 10 ⁇ m, and measuring the OD value of the solid film similarly to the partition wall (A-1). .
  • OD value log10 (I 0 / I) ⁇ (1)
  • I 0 incident light intensity
  • I transmitted light intensity
  • the partition wall (A-1) may have a preferable composition described later.
  • the taper angle of the partition wall (A-1) is preferably 45 ° to 110 °.
  • the taper angle of the partition (A-1) refers to an angle formed between a side and a bottom of the cross section of the partition. In the case of the substrate with a partition wall shown in FIG. 1, the taper angle of the partition wall 2 is represented by the symbol ⁇ .
  • the taper angle is more preferably 70 ° or more.
  • the taper angle is set to 110 ° or less, when forming a pixel containing the color conversion luminescent material (B) described later by ink jet coating, it is possible to suppress breakage of the ink and improve ink jet coatability.
  • the breakage of the ink refers to a phenomenon in which the ink gets over the partition and mixes into the adjacent pixel portion.
  • the taper angle is more preferably 95 ° or less.
  • the taper angle of the partition wall (A-1) is determined by measuring an arbitrary cross section of the partition wall (A-1) by using an optical microscope (FE-SEM (eg, S-4800 manufactured by Hitachi, Ltd.)) and accelerating voltage 3 It can be obtained by observing at 0.0 kV and 2,500 times magnification and measuring the angle formed between the side and the bottom of the cross section of the partition wall (A-1).
  • FE-SEM eg, S-4800 manufactured by Hitachi, Ltd.
  • Means for adjusting the taper angle of the partition wall (A-1) to the above range include, for example, the partition wall (A-1) having a preferable composition described later, and the use of the above-described resin composition of the present invention. And the like.
  • the thickness of the partition wall (A-1) is preferably larger than the thickness of the pixel.
  • the thickness of the partition wall (A-1) is preferably 0.5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the thickness of the partition wall (A-1) is preferably equal to or less than 50 ⁇ m, and more preferably equal to or less than 20 ⁇ m, from the viewpoint of more efficiently extracting light emitted from the bottom of the pixel.
  • the width of the partition wall (A-1) is sufficient to further improve luminance by utilizing light reflection on the side wall of the partition wall and to further suppress color mixture of light in adjacent pixels due to light leakage.
  • the width of the partition is preferably 5 ⁇ m or more, more preferably 15 ⁇ m or more.
  • the width of the partition wall (A-1) is preferably equal to or less than 50 ⁇ m, and more preferably equal to or less than 40 ⁇ m, from the viewpoint of securing more light emitting regions of the pixels and further improving the luminance.
  • the partition wall (A-1) has a repetition pattern for a predetermined number of pixels according to the screen size of the image display device.
  • the number of pixels of the image display device is, for example, 4000 in the horizontal direction and 2000 in the vertical direction.
  • the number of pixels affects the resolution (fineness) of the displayed image. For this reason, it is necessary to form a number of pixels according to the required image resolution and the screen size of the image display device, and it is preferable to determine the pattern formation dimensions of the partition walls accordingly.
  • the partition wall (A-1) is made of a resin, a white pigment, and at least one metal oxide or metal selected from the group consisting of palladium oxide, platinum oxide, gold oxide, silver oxide, palladium, platinum, gold and silver. (Hereinafter sometimes referred to as “metal oxide particles or metal particles”).
  • the resin has a function of improving crack resistance and light resistance of the partition.
  • the white pigment has a function of further improving the reflectance of the partition walls.
  • the metal oxide particles or the metal particles have a function of adjusting the OD value and suppressing color mixing of light in adjacent pixels.
  • the resin and the white pigment are as described above as the materials constituting the resin composition.
  • the content of the resin in the partition wall (A-1) is preferably 10% by weight or more, and more preferably 20% by weight or more, from the viewpoint of improving the crack resistance of the partition wall in the heat treatment.
  • the content of the resin in the partition wall (A-1) is preferably equal to or less than 60% by weight, and more preferably equal to or less than 50% by weight.
  • the content of the white pigment in the partition wall (A-1) is preferably 20% by weight or more, and more preferably 30% by weight or more, from the viewpoint of further improving the reflectance.
  • the content of the white pigment in the partition walls (A-1) is preferably 60% by weight or less, more preferably 55% by weight or less.
  • the metal oxide particles or metal particles refer to black particles or yellow particles generated by the decomposition and aggregation of the above-mentioned organometallic compound in the resin composition in the exposure step and / or the heating step.
  • the content of the metal oxide particles or the metal particles in the partition wall (A-1) is set at 0.2% by weight from the viewpoint of adjusting the reflectance and the OD to the above-mentioned ranges to further suppress color mixing of light in adjacent pixels. Or more, more preferably 0.5% by weight or more.
  • the content of the metal oxide particles or the metal particles in the partition wall (A-1) is preferably 5% by weight or less, more preferably 3% by weight or less. .
  • the partition wall (A-1) preferably further contains a liquid repellent compound.
  • a liquid repellent compound By containing the liquid repellent compound, liquid repellency can be imparted to the partition wall (A-1).
  • each pixel In addition, color conversion luminescent materials having different compositions can be easily applied.
  • the liquid-repellent compound is as described above as a material constituting the resin composition.
  • the content of the liquid repellent compound in the partition (A-1) is preferably 0.01% by weight or more, and more preferably 0.1% by weight or more. More preferred.
  • the content of the liquid-repellent compound in the partition wall (A-1) is preferably 10% by weight or less, more preferably 5% by weight or less.
  • the surface contact angle of the partition wall (A-1) with propylene glycol monomethyl ether acetate is preferably 10 ° or more, and more preferably 20 ° or more, from the viewpoint of improving ink-jet coatability and facilitating separate application of the color conversion luminescent material. More preferably, it is more preferably 40 ° or more.
  • the surface contact angle of the partition (A-1) is preferably 70 ° or less, more preferably 60 ° or less.
  • a method for setting the surface contact angle of the partition wall (A-1) to the above range for example, a method using the above-described lyophobic compound and the like can be mentioned.
  • a photosensitive paste method is preferable as a method for forming a pattern of the partition wall (A-1) on the base substrate because the pattern shape can be easily adjusted.
  • a method of patterning the partition walls by the photosensitive paste method for example, a coating step of applying the above-described resin composition on a base substrate and drying to obtain a dry film, and applying the obtained dry film to a desired pattern
  • a method including an exposure step of performing pattern exposure according to the shape, a development step of dissolving and removing a portion of the dried film after exposure that is soluble in a developer, and a heating step of curing the developed partition walls is preferable.
  • the resin composition preferably has positive or negative photosensitivity.
  • the pattern exposure may be performed through a photomask having a predetermined opening, or an arbitrary pattern may be directly drawn using a laser beam or the like without using a photomask.
  • the partition (A-1) can be pattern-formed on the light-shielding partition (A-2) in the same manner.
  • Each step is as described above as a method of manufacturing a light-shielding film.
  • the substrate with a partition wall according to the present invention further comprises (A-2) an OD value per 1.0 ⁇ m thickness of 0.5 or more between the base substrate and the (A-1) patterned partition wall. It is preferable to have a pattern-formed partition (hereinafter, sometimes referred to as “light-shielding partition (A-2)”).
  • light-shielding partition (A-2) By having the light-shielding partition wall (A-2), light leakage from a backlight in a display device can be suppressed by improving light-shielding properties, and a clear image with high contrast can be obtained.
  • FIG. 6 is a cross-sectional view illustrating one embodiment of a substrate with a partition wall of the present invention having a light-shielding partition wall.
  • a pattern-formed partition wall 2 and a light-blocking partition wall 7 are provided, and pixels 3 are arranged in a region separated by the partition wall 2 and the light-blocking partition wall 7.
  • the light-shielding partition wall (A-2) has an OD value of 0.5 or more per 1.0 ⁇ m thickness.
  • the thickness of the light-shielding partition wall (A-2) is preferably 0.5 to 10 ⁇ m as described later. Therefore, in the present invention, 1.0 ⁇ m was selected as a representative value of the thickness of the partition wall (A-2), and attention was paid to the OD value per 1.0 ⁇ m of the thickness.
  • the OD value per 1.0 ⁇ m thickness is more preferably 1.0 or more.
  • the OD value per 1.0 ⁇ m thickness is preferably 4.0 or less, and the pattern workability can be improved.
  • the OD value per 1.0 ⁇ m thickness is more preferably 3.0 or less.
  • the OD value of the light-shielding partition wall (A-2) can be measured in the same manner as the above-mentioned OD value of the partition wall (A-1).
  • Means for setting the OD value in the above range include, for example, setting the light-shielding partition (A-2) to a preferable composition described later.
  • the thickness of the light-shielding partition wall (A-2) is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, from the viewpoint of improving light-shielding properties.
  • the thickness of the light-shielding partition wall (A-2) is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the width of the light-shielding partition wall (A-2) is preferably about the same as that of the above-described partition wall (A-1).
  • the light-shielding partition wall (A-2) preferably contains a resin and a black pigment.
  • the resin has a function of improving crack resistance and light resistance of the partition.
  • the black pigment has a function of absorbing incident light and reducing emitted light.
  • the resin examples include an epoxy resin, a (meth) acrylic polymer, a polyurethane, a polyester, a polyimide, a polyolefin, and a polysiloxane. Two or more of these may be contained. Among these, polyimide is preferable because of its excellent heat resistance and solvent resistance.
  • black pigment those exemplified as the black pigment in the resin composition described above, palladium oxide, platinum oxide, gold oxide, silver oxide and the like can be mentioned.
  • a black pigment selected from titanium nitride, zirconium nitride, carbon black, palladium oxide, platinum oxide, gold oxide and silver oxide is preferred because of its high light-shielding properties.
  • a method for forming a pattern of the light-shielding partition (A-2) on the base substrate for example, a photosensitive material described in JP-A-2015-1654 is used and exposed in the same manner as the partition (A-1).
  • a method of forming a pattern by a conductive paste method is preferred.
  • the substrate with a partition wall of the present invention further comprises a pixel (B) containing a color conversion luminescent material arranged and separated by the partition wall (A-1) (hereinafter, may be referred to as “pixel (B)”). It is preferable to have The pixel (B) has a function of converting at least a part of the wavelength region of the incident light and emitting outgoing light in a wavelength region different from the incident light, thereby enabling a color display.
  • FIG. 2 is a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a patterned partition wall (A-1) and a pixel (B) containing a color conversion luminescent material.
  • A-1 patterned partition wall
  • B pixel
  • FIG. 2 is a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a patterned partition wall (A-1) and a pixel (B) containing a color conversion luminescent material.
  • A-1 patterned partition wall
  • B pixel
  • the color conversion material preferably contains a phosphor selected from an inorganic phosphor and an organic phosphor.
  • the substrate with a partition wall of the present invention can be used as a display device by combining, for example, a backlight that emits blue light, a liquid crystal formed over a TFT, and a pixel (B).
  • the region corresponding to the red pixel preferably contains a red phosphor that is excited by blue excitation light and emits red fluorescence.
  • the region corresponding to the green pixel preferably contains a green phosphor that is excited by blue excitation light and emits green fluorescence. It is preferable that the region corresponding to the blue pixel does not contain a phosphor.
  • the substrate with a partition wall of the present invention can also be used in a display device using a blue micro LED in which a number of blue LEDs corresponding to each pixel are arranged on a substrate and separated by white partition walls as a backlight. ON / OFF of each pixel is enabled by ON / OFF of the blue micro LED, and no liquid crystal is required.
  • the substrate with a partition according to the present invention can be used for both a partition for separating each pixel and a partition for separating a blue micro LED in a backlight.
  • the inorganic phosphor those which emit light of each color such as green or red by blue excitation light, that is, those which are excited by excitation light having a wavelength of 400 to 500 nm and whose emission spectrum has a peak in a region of 500 to 700 nm are preferable.
  • examples of such an inorganic phosphor include a YAG-based phosphor, a TAG-based phosphor, a sialon-based phosphor, a Mn 4+ activated fluoride complex phosphor, and an inorganic semiconductor called a quantum dot. Two or more of these may be used. Among these, quantum dots are preferred. Since the quantum dot has a smaller average particle size than other phosphors, (B) the surface of the pixel can be smoothed to suppress light scattering on the surface, so that the light extraction efficiency can be further improved, Brightness can be further improved.
  • Examples of the quantum dot include particles made of II-IV group, III-V group, IV-VI group, and IV group semiconductors.
  • examples of these inorganic semiconductors include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeSe, GeSe, GeSe Examples thereof include SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 ,
  • the quantum dot may contain a p-type dopant or an n-type dopant. Further, the quantum dots may have a core-shell structure. In the core-shell structure, any appropriate functional layer (single layer or plural layers) may be formed around the shell depending on the purpose, and the shell surface may be subjected to surface treatment and / or chemical modification. .
  • the average particle size of the quantum dots can be arbitrarily selected according to the desired emission wavelength, and is preferably 1 to 30 nm. When the average particle diameter of the quantum dots is 1 to 10 nm, the peak in the emission spectrum can be sharpened in each of blue, green, and red.
  • the average particle diameter of the quantum dots is preferably 2 nm or more, and more preferably 8 nm or less. For example, when the average particle diameter of the quantum dot is about 2 nm, blue light is emitted, when it is about 3 nm, green light is emitted, and when it is about 6 nm, red light is emitted.
  • the average particle size of the quantum dots can be measured by a dynamic light scattering method.
  • Examples of a device for measuring the average particle size include a dynamic light scattering photometer DLS-8000 (manufactured by Otsuka Electronics Co., Ltd.).
  • organic phosphor one that emits each color such as green or red by blue excitation light is preferable.
  • Pyromethene derivative having a basic skeleton represented by the following structural formula (8) as a phosphor emitting red fluorescence and pyromethene having a basic skeleton represented by the following structural formula (9) as a phosphor emitting green fluorescence Derivatives and the like.
  • Other examples include perylene derivatives, porphyrin derivatives, oxazine derivatives, and pyrazine derivatives that emit red or green fluorescence depending on the selection of the substituent. Two or more of these may be contained. Of these, pyromethene derivatives are preferred because of their high quantum yield.
  • the pyrromethene derivative can be obtained, for example, by the method described in JP-A-2011-241160.
  • the organic phosphor is soluble in the solvent, the pixel (B) having a desired thickness can be easily formed.
  • the thickness of the pixel (B) is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, from the viewpoint of improving color characteristics. On the other hand, the thickness of the pixel (B) is preferably equal to or less than 30 ⁇ m, and more preferably equal to or less than 20 ⁇ m, from the viewpoint of reducing the thickness of the display device and the workability of the curved surface.
  • each pixel (B) is generally about 20 to 200 ⁇ m.
  • the pixels (B) are arranged so as to be separated by the partition (A-1).
  • the partition (A-1) By providing a partition wall between pixels, diffusion and color mixing of emitted light can be further suppressed.
  • Examples of the method for forming the pixel (B) include a method of filling a space separated by the partition wall (A-1) with a coating liquid containing a color conversion luminescent material (hereinafter, a color conversion luminescent material coating liquid).
  • a color conversion luminescent material coating liquid may further contain a resin or a solvent.
  • an ink jet coating method is preferable from the viewpoint of easily applying different types of color conversion light emitting materials to each pixel.
  • the obtained coating film may be dried under reduced pressure and / or dried by heating.
  • the drying temperature under reduced pressure is preferably 80 ° C. or lower in order to prevent the drying solvent from re-condensing on the inner wall of the reduced pressure chamber.
  • the pressure for drying under reduced pressure is preferably equal to or lower than the vapor pressure of the solvent contained in the coating film, and more preferably 1 to 1000 Pa.
  • the drying time under reduced pressure is preferably from 10 to 600 seconds.
  • examples of the heating and drying device include an oven and a hot plate.
  • the heating and drying temperature is preferably from 60 to 200 ° C.
  • the heating and drying time is preferably from 1 to 60 minutes.
  • the substrate with a partition wall of the present invention further comprises (C) a low refractive index layer having a refractive index of 1.20 to 1.35 at a wavelength of 550 nm (hereinafter referred to as a “low refractive index layer (C)”). "May be described as”).
  • a low refractive index layer C
  • the light extraction efficiency can be further improved, and the luminance of the display device can be further improved.
  • FIG. 3 is a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a low refractive index layer.
  • a patterned partition wall 2 and pixels 3 are provided, and a low refractive index layer 4 is further provided thereon.
  • the refractive index of the low-refractive-index layer (C) is preferably 1.20 or more, from the viewpoint of appropriately suppressing the reflection of light from the backlight and efficiently entering light into the pixel (B). 23 or more is more preferable.
  • the refractive index of the low refractive index layer (C) is preferably equal to or less than 1.35, and more preferably equal to or less than 1.30.
  • the refractive index of the low refractive index layer (C) is measured by irradiating the cured film surface with light having a wavelength of 550 nm from the vertical direction under atmospheric pressure and 20 ° C. using a prism coupler. Can be.
  • the low refractive index layer (C) preferably contains polysiloxane and silica particles having no hollow structure.
  • Polysiloxane has high compatibility with inorganic particles such as silica particles and functions as a binder capable of forming a transparent layer. Further, by containing silica particles, it is possible to efficiently form minute voids in the low refractive index layer (C) to reduce the refractive index, and to easily adjust the refractive index to the above-mentioned range. Can be.
  • the use of silica particles having no hollow structure does not have a hollow structure that easily causes cracks during curing shrinkage, so that cracks can be suppressed.
  • the polysiloxane and the silica particles having no hollow structure may be independently contained, or the polysiloxane and the silica particles having no hollow structure may be combined. May be contained. From the viewpoint of uniformity of the low refractive index layer (C), it is preferable that the polysiloxane and the silica particles having no hollow structure are contained in a bonded state.
  • the polysiloxane contained in the low refractive index layer (C) preferably contains fluorine.
  • fluorine By containing fluorine, the refractive index of the low refractive index layer (C) can be easily adjusted to 1.20 to 1.35.
  • the fluorine-containing polysiloxane can be obtained by hydrolyzing and polycondensing a plurality of alkoxysilane compounds including at least a fluorine-containing alkoxysilane compound represented by the following general formula (10). Further, other alkoxysilane compounds may be used.
  • R 7 represents a fluoroalkyl group having 3 to 17 fluorine atoms.
  • R 6 represents the same group as R 6 in formulas (5) to (7).
  • m represents 1 or 2.
  • 4-m R 6 and m R 7 may be the same or different, respectively.
  • fluorine-containing alkoxysilane compound represented by the general formula (10) for example, trifluoroethyltrimethoxysilane, trifluoroethyltriethoxysilane, trifluoroethyltriisopropoxysilane, trifluoropropyltrimethoxysilane, trifluoro Propyltriethoxysilane, trifluoropropyltriisopropoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, heptadecafluorodecyltriisopropoxysilane, tridecafluorooctyltriethoxysilane, tridecafluorooctyl Trimethoxysilane, tridecafluorooctyltriisopropoxysilane, trifluoroethylmethyldimethoxys
  • the content of polysiloxane in the low refractive index layer (C) is preferably 4% by weight or more from the viewpoint of suppressing cracks.
  • the content of the polysiloxane is 32% by weight or less from the viewpoint of securing the thixotropy due to the network between the silica particles, appropriately maintaining the air layer in the low refractive index layer (C), and further reducing the refractive index. Is preferred.
  • silica particles having no hollow structure in the low refractive index layer (C) include, for example, "Snowtex” (registered trademark) manufactured by Nissan Chemical Industries, Ltd. and "Organosilica Sol” (registered trademark) series (isopropyl alcohol dispersion , Ethylene glycol dispersion, methyl ethyl ketone dispersion, dimethylacetamide dispersion, methyl isobutyl ketone dispersion, propylene glycol monomethyl acetate dispersion, propylene glycol monomethyl ether dispersion, methanol dispersion, ethyl acetate dispersion, butyl acetate dispersion, xylene -N-butanol dispersion, toluene dispersion, etc.
  • Examples include PGM-ST, PMA-ST, IPA-ST, IPA-ST-L, IPA-ST-ZL, IPA-ST-UP, etc. Two or more of these may be contained.
  • the content of the silica particles having no hollow structure in the low-refractive-index layer (C) ensures thixotropic properties due to the network between the silica particles, keeps the air layer in the low-refractive-index layer (C) appropriately, and refracts. From the viewpoint of further reducing the rate, 68% by weight or more is preferable. On the other hand, the content of the silica particles having no hollow structure is preferably 96% by weight or less from the viewpoint of suppressing cracks.
  • the thickness of the low refractive index layer (C) is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, from the viewpoint of covering the steps of the pixel (B) and suppressing the occurrence of defects.
  • the thickness of the low refractive index layer (C) is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less, from the viewpoint of reducing the stress that causes cracks in the low refractive index layer (C).
  • a coating method is preferable because the forming method is easy.
  • a low-refractive-index layer (C) can be formed by applying a low-refractive-index resin composition containing polysiloxane and silica particles on the pixel (B), drying the resultant, and then heating.
  • the substrate with a partition wall of the present invention preferably further has an inorganic protective layer I having a thickness of 50 to 1,000 nm on the low refractive index layer (C).
  • the presence of the inorganic protective layer I makes it difficult for moisture in the air to reach the low refractive index layer (C). Therefore, it is possible to suppress the fluctuation of the refractive index of the low refractive index layer (C) and the deterioration of luminance. it can.
  • FIG. 4 is a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a low refractive index layer and an inorganic protective layer I.
  • a pattern-formed partition 2 and pixels 3 are provided on a base substrate 1, and a low refractive index layer 4 and an inorganic protective layer I5 are further provided thereon.
  • the substrate with a partition wall of the present invention preferably further has an inorganic protective layer II having a thickness of 50 to 1,000 nm between the pixel (B) and the low refractive index layer (C).
  • the presence of the inorganic protective layer II makes it difficult for the raw material forming the pixel (B) to move from the pixel (B) to the low-refractive-index layer, thereby suppressing a change in the refractive index of the low-refractive-index layer (C). In addition, luminance degradation can be suppressed.
  • FIG. 5 is a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a low refractive index layer and an inorganic protective layer II.
  • a pattern-formed partition wall 2 and pixels 3 are provided on a base substrate 1, and an inorganic protective layer II6 and a low refractive index layer 4 are further provided thereon.
  • the substrate with a partition wall of the present invention preferably further has a color filter having a thickness of 1 to 5 ⁇ m (hereinafter sometimes referred to as “color filter”) between the base substrate and the pixel (B). .
  • the color filter has a function of transmitting visible light in a specific wavelength range and setting the transmitted light to a desired hue. With the color filter, the color purity of the display device can be improved. By setting the thickness of the color filter to 1 ⁇ m or more, the color purity can be further improved. On the other hand, by setting the thickness of the color filter to 5 ⁇ m or less, the luminance can be further improved.
  • FIG. 6 is a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a color filter.
  • a pattern-formed partition 2 and a color filter 7 are provided, and on the color filter 7, pixels 3 are provided.
  • the color filter examples include a color filter using a pigment-dispersed material in which a pigment is dispersed in a photoresist, which is used for a flat panel display such as a liquid crystal display. More specifically, a blue color filter that selectively transmits a wavelength of 400 nm to 550 nm, a green color filter that selectively transmits a wavelength of 500 nm to 600 nm, a yellow color filter that selectively transmits a wavelength of 500 nm or more, And a red color filter that selectively transmits a wavelength of 600 nm or more.
  • the color filter may be laminated separately from the pixel (B) containing the color conversion luminescent material, or may be laminated integrally.
  • the substrate with a partition wall of the present invention preferably further has an inorganic protective layer III and / or a yellow organic protective layer having a thickness of 50 to 1,000 nm between the color filter and the pixel (B).
  • an inorganic protective layer III By having the inorganic protective layer III, the raw material for forming the color filter hardly reaches the pixel (B) containing the color conversion luminescent material from the color filter. Luminance degradation can be suppressed. Further, by having the yellow organic protective layer, blue leakage light that cannot be completely converted by the pixel (B) containing the color conversion luminescent material can be cut, and color reproducibility can be improved.
  • FIG. 7 is a cross-sectional view of one embodiment of the substrate with a partition wall of the present invention having a color filter and an inorganic protective layer III and / or a yellow organic protective layer.
  • a patterned partition wall 2 and a color filter 7 are provided, on which an inorganic protective layer III and / or a yellow organic protective layer 8 is provided. It has pixels 3 arranged and separated by a partition wall 2 covered with a protective layer 8.
  • the substrate with a partition wall of the present invention preferably further has an inorganic protective layer IV and / or a yellow organic protective layer having a thickness of 50 to 1,000 nm on the base substrate.
  • the inorganic protective layer IV and / or the yellow organic protective layer act as a refractive index adjusting layer, and can extract light emitted from the pixel (B) more efficiently, thereby further improving the luminance of the display device.
  • the yellow organic protective layer can cut off blue leak light that cannot be converted by the pixel (B) containing the color conversion luminescent material, and can improve color reproducibility.
  • the inorganic protective layer IV and / or the yellow organic protective layer are provided between the base substrate and the partition (A) and the pixel (B).
  • FIG. 8 is a cross-sectional view of one embodiment of the substrate with a partition wall of the present invention having an inorganic protective layer IV and / or a yellow organic protective layer.
  • an inorganic protective layer IV and / or a yellow organic protective layer 9 are provided, on which a patterned partition 2 and a color filter 7 are provided, on which a patterned barrier is provided. 2 and a pixel 3.
  • Examples of the material constituting the inorganic protective layers I to IV include metal oxides such as silicon oxide, indium tin oxide, and gallium zinc oxide; metal nitrides such as silicon nitride; and fluorides such as magnesium fluoride. . Two or more of these may be contained. Among these, silicon nitride or silicon oxide is more preferable because of low water vapor permeability and high permeability.
  • the thickness of the inorganic protective layers I to IV is preferably 50 nm or more, more preferably 100 nm or more, from the viewpoint of sufficiently suppressing the permeation of a substance such as water vapor. On the other hand, from the viewpoint of suppressing a decrease in transmittance, the thickness of the inorganic protective layers I to IV is preferably 800 nm or less, more preferably 500 nm or less.
  • each of the inorganic protective layers I to IV is determined by exposing a cross section perpendicular to the underlying substrate using a polishing device such as a cross section polisher and observing the cross section using a scanning electron microscope or a transmission electron microscope. Can be measured.
  • Examples of the method for forming the inorganic protective layers I to IV include a sputtering method.
  • the inorganic protective layer is preferably colorless and transparent or yellow and transparent.
  • the yellow organic protective layer is obtained, for example, by patterning the resin composition of the present invention containing an organic metal compound containing silver as the organic metal compound.
  • the organometallic compound containing silver has a function of decomposing and aggregating in a heating step to form yellow particles during pattern formation, thereby yellowing the protective layer.
  • the organometallic compound containing silver include silver neodecanoate, silver octylate, and silver salicylate. Among these, silver neodecanoate is preferred from the viewpoint of yellowing.
  • the content of the organometallic compound containing silver is preferably 0.2 to 5% by weight based on the solid content.
  • the content of the organometallic compound containing silver 0.2% by weight or more, yellowing can be further achieved.
  • the content of the organometallic compound containing silver is more preferably 1.5% by weight or more based on the solid content.
  • the transmittance can be further improved.
  • the resin composition forming the yellow organic protective layer may contain a yellow pigment.
  • a yellow pigment for example, Pigment Yellow (hereinafter abbreviated as PY) PY12, PY13, PY17, PY20, PY24, PY83, PY86, PY93, PY95, PY109, PY110, PY117, PY125, PY129, PY137, PY138, PY139, PY147 , PY148, PY150, PY153, PY154, PY166, PY168, PY185, and the like.
  • a yellow pigment selected from PY139, PY147, PY148 and PY150 is preferable from the viewpoint of selectively blocking blue light.
  • a method of forming a pattern of the yellow organic protective layer a method of forming a pattern by a photosensitive paste method as in the case of the above-described partition wall (A-1) is preferable.
  • the yellow organic protective layer 8 may have a role as an overcoat layer for flattening each pixel of the color filter.
  • the thickness of the yellow organic protective layer is preferably 100 nm or more, more preferably 500 nm or more, from the viewpoint of sufficiently shielding blue leakage light. On the other hand, from the viewpoint of suppressing a decrease in light extraction efficiency, the thickness of the yellow organic protective layer is preferably equal to or less than 3000 nm, and more preferably equal to or less than 2000 nm.
  • the display device of the present invention includes the substrate with a partition and a light source.
  • a light source selected from a liquid crystal cell, an organic EL cell, a mini LED cell, and a micro LED cell is preferable.
  • An organic EL cell is more preferable as the light source because of its excellent light emitting characteristics.
  • the mini LED cell refers to a cell in which a number of LEDs having a length and width of about 100 ⁇ m to 10 mm are arranged.
  • the micro LED cell refers to a cell in which a number of LEDs having a length and width less than 100 ⁇ m are arranged.
  • the method for manufacturing the display device of the present invention will be described with reference to an example of a display device having the substrate with a partition wall and the organic EL cell of the present invention.
  • a photosensitive polyimide resin is applied over a glass substrate, and an insulating film having an opening is formed by photolithography. After aluminum is sputtered thereon, aluminum is patterned by a photolithography method, and a back electrode layer made of aluminum is formed in an opening having no insulating film.
  • Alq3 tris (8-quinolinolato) aluminum
  • Alq3 tris (8-quinolinolato) aluminum
  • dicyanomethylenepyran, quinacridone and 4,4 ′ A white light emitting layer doped with -bis (2,2-diphenylvinyl) biphenyl is formed.
  • N, N'-diphenyl-N, N'-bis ( ⁇ -naphthyl) -1,1'-biphenyl-4,4'-diamine is formed as a hole transport layer by a vacuum evaporation method.
  • ITO is formed as a transparent electrode by sputtering to produce an organic EL cell having a white light emitting layer.
  • a display device can be manufactured by bonding the above-mentioned substrate with a partition wall and the organic EL cell obtained in this manner with a sealing agent.
  • the solid concentration of the polysiloxane solution in Synthesis Examples 1 to 4 was determined by the following method. 1.5 g of the polysiloxane solution was weighed into an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration of the polysiloxane solution was determined from the ratio to the weight before heating.
  • the content ratio of each repeating unit in the polysiloxane in Synthesis Examples 1 to 4 was determined by the following method.
  • the polysiloxane solution was injected into an NMR sample tube made of “Teflon” (registered trademark) having a diameter of 10 mm, 29 Si-NMR measurement was performed, and the Si derived from the specific organosilane was compared with the integrated value of the total Si derived from the organosilane.
  • the content ratio of each repeating unit was calculated from the ratio of the integral value of.
  • the 29 Si-NMR measurement conditions are shown below.
  • Apparatus Nuclear magnetic resonance apparatus (JNM-GX270; manufactured by JEOL Ltd.) Measurement method: gated decoupling method measurement nuclear frequency: 53.6693MHz (29 Si nucleus) Spectral width: 20000Hz Pulse width: 12 ⁇ s (45 ° pulse) Pulse repetition time: 30.0 seconds Solvent: acetone-d6 Reference substance: tetramethylsilane Measurement temperature: 23 ° C Sample rotation speed: 0.0 Hz.
  • Synthesis Example 1 Polysiloxane (PSL-1) Solution In a 1000 ml three-necked flask, 147.32 g (0.675 mol) of trifluoropropyltrimethoxysilane and 40.66 g (0.175 mol) of 3-methacryloxypropylmethyldimethoxysilane.
  • the weight average molecular weight of the obtained polysiloxane (PSL-1) was 4,000. Also, trifluoropropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride, and 3- (3,4-epoxycyclohexyl) propyl in polysiloxane (PSL-1)
  • the molar ratio of each repeating unit derived from trimethoxysilane was 67.5 mol%, 17.5 mol%, 10 mol%, and 5 mol%, respectively.
  • Synthesis Example 2 Polysiloxane (PSL-2) Solution In a 1000 ml three-necked flask, 116.07 g (0.475 mol) of diphenyldimethoxysilane, dimethyldimethoxysilane (0.20 mol), and 43.3-methacryloxypropyltrimethoxysilane.
  • the weight average molecular weight of the obtained polysiloxane (PSL-3) was 4,100. Also, trifluoropropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride, and 3- (3,4-epoxycyclohexyl) propyltrisiloxane in polysiloxane (PSL-3) The molar ratio of each repeating unit derived from methoxysilane was 67.5 mol%, 17.5 mol%, 10 mol% and 5 mol%, respectively.
  • Synthesis Example 4 Polysiloxane (PSL-4) Solution In a 1000 ml three-necked flask, 34.05 g (0.250 mol) of methyltrimethoxysilane, 99.15 g (0.500 mol) of phenyltrimethoxysilane, and 31 of tetraethoxysilane were added. .25 g (0.150 mol), 24.64 g (0.100 mol) of 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane, and 174.95 g of PGMEA were charged and stirred at room temperature in 56.70 g of water.
  • a phosphoric acid aqueous solution in which 0.945 g of phosphoric acid (0.50% by weight based on the charged monomer) was dissolved was added over 30 minutes. Thereafter, a polysiloxane solution was obtained in the same manner as in Synthesis Example 1. During the reaction, a total of 129.15 g of by-products methanol and water were distilled off. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration became 40% by weight, to obtain a polysiloxane (PSL-4) solution. The weight average molecular weight of the obtained polysiloxane (PSL-4) was 4,200.
  • the molar ratio of each repeating unit derived from methyltrimethoxysilane, phenyltrimethoxysilane, tetraethoxysilane, and 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane is as follows: , 25 mol%, 50 mol%, 15 mol% and 10 mol%, respectively.
  • the obtained reaction product was purified by silica gel column chromatography to obtain a white solid of 3,5-bis (4-t-butylphenyl) benzaldehyde (3.5 g).
  • 3,5-bis (4-t-butylphenyl) benzaldehyde (1.5 g) and 2,4-dimethylpyrrole (0.7 g) were placed in a flask, and dehydrated dichloromethane (200 mL) and trifluoroacetic acid (1 ) And stirred under a nitrogen atmosphere for 4 hours.
  • the obtained reaction product was purified by silica gel column chromatography to obtain 0.4 g of a green powder (yield 17%).
  • the result of 1 H-NMR analysis of the obtained green powder is as follows, and it was confirmed that the green powder obtained above was [G-1] represented by the following structural formula.
  • 1 H-NMR (CDCl 3 (d ppm)): 7.95 (s, 1H), 7.63 to 7.48 (m, 10H), 6.00 (s, 2H), 2.58 (s , 6H), 1.50 (s, 6H), 1.37 (s, 18H).
  • the organic layer was washed twice with 20 ml of water, then evaporated and dried under vacuum to obtain a pyrromethene derivative as a residue.
  • 305 mg of diisopropylethylamine and 670 mg of boron trifluoride diethyl ether complex were added to a mixed solution of the obtained pyromethene compound and 10 ml of toluene under a nitrogen stream, and the mixture was stirred at room temperature for 3 hours.
  • 20 ml of water was poured into the reaction mixture, and extracted with 30 ml of dichloromethane.
  • the organic layer was washed twice with 20 ml of water, dried over magnesium sulfate, and evaporated.
  • Synthesis Example 7 Silica Particle-Containing Polysiloxane Solution (LS-1) In a 500 ml three-necked flask, 0.05 g (0.4 mmol) of methyltrimethoxysilane, 0.66 g (3.0 mmol) of trifluoropropyltrimethoxysilane, and 0.10 g (0,0 g) of trimethoxysilylpropylsuccinic anhydride were added.
  • the solid concentration of the obtained silica particle-containing polysiloxane solution (LS-1) was 24.3% by weight, and the contents of the polysiloxane and the silica particles in the solid content were 15% by weight and 85% by weight, respectively.
  • Methyltrimethoxysilane, trifluoropropyltrimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride, and ⁇ -acryloxypropyltrimethoxysilane of the polysiloxane in the obtained silica particle-containing polysiloxane (LS-1) was 1.0 mol%, 8.0 mol%, 1.0 mol% and 90.0 mol%, respectively.
  • Example 1 Resin composition for partition wall (P-1) As a white pigment, 5.00 g of a titanium dioxide pigment (R-960; manufactured by BASF Japan Ltd. (hereinafter, “R-960”)), and as a resin, a solution of the polysiloxane (PSL-1) obtained in Synthesis Example 1 5.00 g were mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-1).
  • R-960 titanium dioxide pigment
  • PSL-1 polysiloxane
  • IC-819 1,2-diisopropyl-3- [bis (dimethylamino) methyl 2- (3-benzoylphenyl) propionate as photobase generator 0.100 g of guanidinium (WPBG-266 (trade name), manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. (hereinafter, "WPBG-266”)), and dipentaerythritol hexaacrylate (“KAYARAD” (registered) as a photopolymerizable compound. Trade name) DPHA, 1.20 g, manufactured by Shin Nippon Pharmaceutical Co., Ltd.
  • DPHA photopolymerizable fluorine-containing compound
  • RS-76-E photopolymerizable fluorine-containing compound
  • CELLOXIDE registered trademark
  • Carbon dioxide (registered trademark) 2021P”)
  • ethylene bis (Oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate] (“Irganox” (registered trademark) 1010, manufactured by BASF Japan Ltd.
  • IRGANOX registered trademark 1010
  • BYK (registered trademark) 352, manufactured by BYK Japan KK (hereinafter,” BYK-352 ")
  • BYK acrylic surfactant
  • PGMEA PGMEA
  • Example 4 Resin composition for partition walls (P-4)
  • Example 10 Except that a 40% by weight PGMEA diluted solution of "MegaFac” (registered trademark) F477 (manufactured by Dainippon Ink and Chemicals, Inc.) was used instead of the 40% by weight PGMEA diluted solution of RS-76-E. In the same manner as in Example 1, a resin composition for partition walls (P-4) was obtained.
  • PGMEA diluted solution of "MegaFac” (registered trademark) F477 manufactured by Dainippon Ink and Chemicals, Inc.
  • Example 5 Resin composition for partition wall (P-5) A mixture of 5.00 g of R-960 as a white pigment and 5.00 g of a polysiloxane (PSL-4) solution as a resin was dispersed using a mill-type disperser filled with zirconia beads, and dispersed in a pigment dispersion (MW). -4) was obtained. 9.98 g of the pigment dispersion (MW-4), 1.86 g of the organometallic compound solution (OM-1), 1.16 g of the polysiloxane (PSL-4) solution, and WPBG- as a photobase generator.
  • Example 6 Resin composition for partition wall (P-6) An organometallic compound solution (OM-2) was prepared in the same manner as the organometallic compound solution (OM-1) except that silver neodecanoate was used instead of bis (acetylacetonato) palladium as the organometallic compound. did. A resin composition for partition walls (P-6) was obtained in the same manner as in Example 1, except that the organometallic compound solution (OM-2) was used instead of the organometallic compound solution (OM-1).
  • Example 7 Resin composition for partition wall (P-7) An organometallic compound solution (OM-3) was prepared in the same manner as the organometallic compound solution (OM-1) except that chlorotriphenylphosphine gold was used instead of bis (acetylacetonato) palladium as the organometallic compound. Was prepared. A resin composition for partition walls (P-7) was obtained in the same manner as in Example 1, except that the organometallic compound solution (OM-3) was used instead of the organometallic compound solution (OM-1).
  • Example 8 Resin composition for partition wall (P-8) An organometallic compound solution (OM-) was prepared in the same manner as the organometallic compound solution (OM-1) except that bis (acetylacetonato) platinum was used instead of bis (acetylacetonato) palladium as the organometallic compound. 4) was prepared. A resin composition for partition walls (P-8) was obtained in the same manner as in Example 1, except that the organometallic compound solution (OM-4) was used instead of the organometallic compound solution (OM-1).
  • Example 9 Resin composition for partition wall (P-9) Except that the amount of the organometallic compound solution (OM-1) was changed to 0.929 g, the amount of the polysiloxane (PSL-1) solution was changed to 1.41 g, and 4.20 g of PGMEA was changed to 4.70 g of PGMEA as a solvent. In the same manner as in Example 1, a resin composition for partition walls (P-9) was obtained.
  • Example 10 Resin composition for partition wall (P-10) Except that the addition amount of the organometallic compound solution (OM-1) was changed to 0.400 g, the addition amount of the polysiloxane (PSL-1) solution was changed to 1.940 g, and 4.20 g of PGMEA was changed to 6.27 g of PGMEA as a solvent. In the same manner as in Example 1, a resin composition for partition walls (P-10) was obtained.
  • Example 11 Partition Resin Composition (P-11) Except that the addition amount of the organometallic compound solution (OM-1) was changed to 4.595 g, the addition amount of the polysiloxane (PSL-1) solution was changed to 0.010 g, and 4.20 g of PGMEA was changed to 2.92 g of PGMEA as a solvent. In the same manner as in Example 1, a resin composition for partition walls (P-11) was obtained.
  • Example 12 Resin Composition for Partition Wall (P-12) A mill type dispersing machine filled with zirconia beads was prepared by mixing 5.00 g of R-960 as a white pigment, 5.00 g of a polysiloxane (PSL-1) solution as a resin, and 0.01 g of titanium nitride as a black pigment. To obtain a pigment dispersion (MW-2). Instead of the pigment dispersion (MW-1), 9.99 g of the pigment dispersion (MW-2) was added, the amount of the polysiloxane (PSL-1) solution was changed to 1.38 g, and PGMEA4. Except for using 72 g, a resin composition for partition walls (P-12) was obtained in the same manner as in Example 9.
  • Example 13 Resin composition for partition wall (P-13)
  • a resin 10.0 g of a polysiloxane (PSL-1) solution and 0.15 g of titanium nitride as a black pigment were mixed, and dispersed using a mill-type disperser filled with zirconia beads. 3) was obtained.
  • the pigment dispersion (MW-1) 9.99 g of the pigment dispersion (MW-3) was added, the amount of the polysiloxane (PSL-1) solution was changed to 15.16 g, and the amount of the PGMEA added. was changed from 4.20 g to 0.11 g to obtain a resin composition for partition walls (P-13) in the same manner as in Example 1.
  • Example 14 Resin Composition for Partition Wall (P-14) Instead of the organometallic compound solution (OM-1), 1.85 g of a 10% DAA solution of bis (acetylacetonato) palladium was used as the organometallic compound, and the addition amount of the polysiloxane (PSL-1) solution was 1
  • the resin composition for a partition wall (P-14) was obtained in the same manner as in Example 1 except that PGMEA was changed to 3.85 g and PGMEA was changed to 3.85 g from PGMEA as a solvent.
  • Example 15 Resin composition for partition wall (P-15) Example 1 was repeated except that the photobase generator WPBG-266 was not added, the addition amount of the polysiloxane (PSL-1) solution was changed to 1.21 g, and 4.20 g of PGMEA was changed to 4.07 g of PGMEA as a solvent. Similarly, a partition wall resin composition (P-15) was obtained.
  • Example 16 Resin Composition for Partition Wall (P-16)
  • the addition amount of the polysiloxane (PSL-1) solution was changed to 2.01 g without adding the 40% by weight PGMEA diluted solution of the liquid repellent compound RS-76-E, and 4.20 g of PGMEA was changed to 4.17 g of PGMEA as a solvent.
  • a resin composition for partition walls (P-16) was obtained in the same manner as in Example 1 except that the above procedure was repeated.
  • Comparative Example 2 Resin composition for partition wall (P-18) Mill type dispersing machine filled with zirconia beads by mixing 5.00 g of R-960 as a white pigment, 5.00 g of a polysiloxane (PSL-1) solution as a resin, and 0.10 g of titanium nitride as a black pigment To obtain a pigment dispersion (MW-4). Next, 10.02 g of the pigment dispersion (MW-4), 1.73 g of the polysiloxane (PSL-1) solution, 0.050 g of OXE-02 as a photopolymerization initiator, and 0.10 g of IC-819.
  • P-18 Mill type dispersing machine filled with zirconia beads by mixing 5.00 g of R-960 as a white pigment, 5.00 g of a polysiloxane (PSL-1) solution as a resin, and 0.10 g of titanium nitride as a black pigment
  • MW-4 pigment dispersion
  • Comparative Example 3 Resin composition for partition wall (P-19) A mill type dispersing machine filled with zirconia beads by mixing 5.00 g of R-960 as a white pigment, 5.00 g of a polysiloxane (PSL-1) solution as a resin, and 0.10 g of zirconium nitride as a black pigment. To obtain a pigment dispersion (MW-5). A resin composition for partition walls (P-19) was obtained in the same manner as in Comparative Example 2, except that the pigment dispersion (MW-5) was used instead of the pigment dispersion (MW-4).
  • Comparative Example 4 Resin Composition for Partition Wall (P-20) 5.00 g of R-960 as a white pigment, 5.00 g of a polysiloxane (PSL-1) solution as a resin, and 0 as a black pigment a mixed pigment of a red pigment PR254 and a blue pigment PB64 in a weight ratio of 60/40. .05 g were mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-6).
  • a resin composition for partition walls (P-20) was obtained in the same manner as in Comparative Example 2, except that the pigment dispersion (MW-6) was used instead of the pigment dispersion (MW-4).
  • Tables 2 and 3 show the compositions of Examples 1 to 16 and Comparative Examples 1 to 6.
  • Color conversion luminescent material composition (CL-1) 20 parts by weight of a 0.5% by weight toluene solution of a green quantum dot material (Lumidot 640 CdSe / ZnS, average particle diameter: 6.3 nm, manufactured by Aldrich), 45 parts by weight of DPHA, "IRGACURE” (registered trademark) 907 (registered trademark) 5 parts by weight of BASF Japan Co., Ltd., 166 parts by weight of a 30% by weight PGMEA solution of acrylic resin (SPCR-18 (trade name), manufactured by Showa Denko KK) and 97 parts by weight of toluene were mixed and stirred. And dissolved uniformly.
  • a green quantum dot material Limidot 640 CdSe / ZnS, average particle diameter: 6.3 nm, manufactured by Aldrich
  • DPHA green quantum dot material
  • "IRGACURE" registered trademark
  • 907 registered trademark
  • BASF Japan Co., Ltd. 166 parts by weight
  • Pigment Yellow 150 75 g of a polymer dispersant ("BYK” (registered trademark) -6919 (trade name) manufactured by BYK Chemie (hereinafter, "BYK-6919”)), and a binder resin (“ADEKA ARKULS” (registered trademark)) ) 100 g of WR301 (trade name, manufactured by ADEKA Corporation) and 675 g of PGMEA were mixed to prepare a slurry.
  • BYK polymer dispersant
  • BYK-6919 trade name
  • ADEKA ARKULS binder resin
  • the beaker containing the slurry was connected to a Dyno mill and a tube, and a dispersion treatment was performed for 8 hours at a peripheral speed of 14 m / s using zirconia beads having a diameter of 0.5 mm as a medium to obtain Pigment Green 59 dispersion (GD-1).
  • GD-1 Pigment Green 59 dispersion
  • Pigment Green 59 dispersion (GD-1) 56.54 g, acrylic resin (“Cyclomer” (registered trademark) P (ACA) Z250 (trade name) manufactured by Daicel Ornex Co., Ltd. (hereinafter “P (ACA) Z250”) )), 2.64 g of DPHA, 0.330 g of a photopolymerization initiator (“Optomer” (registered trademark) NCI-831 (trade name), manufactured by ADEKA Corporation (hereinafter “NCI-831”)), 0.04 g of a surfactant (BYK "(registered trademark) -333 (trade name) manufactured by BYK-Chemie, Inc. (hereinafter,” BYK-333 ”)), 0.01 g of BHT as a polymerization inhibitor, and 37 g of PGMEA as a solvent. 30 g were mixed to prepare a color filter forming material (CF-1).
  • CF-1 color filter forming material
  • Preparation Example 5 150 g of carbon black (MA100 (trade name, manufactured by Mitsubishi Chemical Corporation)), 75 g of polymer dispersant BYK-6919, 100 g of P (ACA) Z250, and 675 g of PGMEA were prepared. To prepare a slurry. A beaker containing the slurry is connected with a Dyno mill and a tube, and a dispersion process is performed for 8 hours at a peripheral speed of 14 m / s using zirconia beads having a diameter of 0.5 mm as a medium to produce a pigment dispersion (MB-1). did.
  • MA100 trade name, manufactured by Mitsubishi Chemical Corporation
  • Preparation Example 6 Low refractive index layer forming material 5.350 g of the silica particle-containing polysiloxane solution (LS-1) obtained in Synthesis Example 6, 1.170 g of ethylene glycol mono-t-butyl ether, and 3.48 g of DAA After mixing, the mixture was filtered with a 0.45 ⁇ m syringe filter to prepare a low refractive index layer forming material.
  • Preparation Example 7 Yellow organic protective layer forming material (YL-1) C. I.
  • Pigment Yellow 150 75 g of a polymer dispersant ("BYK” (registered trademark) -6919 (trade name), manufactured by BYK Chemie (hereinafter, "BYK-6919”)), and a binder resin (“ADEKA ARKULS” (registered trademark)) ) 100 g of WR301 (trade name, manufactured by ADEKA Corporation) and 675 g of PGMEA were mixed to prepare a slurry.
  • BYK polymer dispersant
  • BYK-6919 trade name
  • ADEKA ARKULS binder resin
  • the beaker containing the slurry was connected with a Dyno mill and a tube, and a dispersion treatment was performed for 8 hours at a peripheral speed of 14 m / s using zirconia beads having a diameter of 0.5 mm as a medium to obtain Pigment Yellow 150 dispersion (YD-1).
  • a dispersion treatment was performed for 8 hours at a peripheral speed of 14 m / s using zirconia beads having a diameter of 0.5 mm as a medium to obtain Pigment Yellow 150 dispersion (YD-1).
  • Pigment Yellow 150 dispersion (YD-1) 3.09 g, polysiloxane (PSL-1) solution 23.54 g as a resin, DPHA 6.02 g as a photopolymerizable compound, and silver neodecanoate as an organometallic compound.
  • Examples 17 to 20, 22 to 28, 38 to 45, Comparative Examples 7 to 9 As a base substrate, a 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used. The partition wall resin compositions shown in Tables 4 and 5 were spin-coated thereon, and dried at 90 ° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). Then, a dried film was prepared.
  • SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.
  • a parallel light mask aligner (PLA-501F, manufactured by Canon Inc.), an ultra-high pressure mercury lamp as a light source and an exposure amount of 200 mJ / cm 2 (i-line) through a photomask, using a prepared dry film. Exposure. Thereafter, using an automatic developing device (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed for 100 seconds using a 0.045% by weight aqueous solution of potassium hydroxide, and then 30 minutes using water. Rinse for seconds. Further, it was heated in an air (trade name: IHPS-222, manufactured by Espec Corporation) at a temperature of 230 ° C.
  • AD-2000 automatic developing device
  • IHPS-222 manufactured by Espec Corporation
  • partition walls formed in a lattice pattern with a pitch of 150 ⁇ m on the long side were formed.
  • the color-converting light-emitting material compositions shown in Tables 4 and 5 were applied to the regions separated by the partition walls of the obtained substrate with partition walls by an inkjet method under a nitrogen atmosphere, dried at 100 ° C. for 30 minutes, and dried. A 5.0 ⁇ m pixel was formed to obtain a substrate with a partition having the configuration shown in FIG.
  • Example 21 As a base substrate, a 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used. The resin composition for partition walls shown in Table 4 was spin-coated thereon, and dried at 90 ° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). A film was prepared. Using a parallel light mask aligner (PLA-501F, manufactured by Canon Inc.), an ultra-high pressure mercury lamp as a light source and an exposure amount of 200 mJ / cm 2 (i-line) through a photomask, using a prepared dry film. Exposure.
  • PPA-501F parallel light mask aligner
  • AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.
  • shower development was performed with a 2.38% by weight aqueous solution of tetramethylammonium hydroxide for 90 seconds, and then rinsed with water for 30 seconds. did.
  • exposure was performed at an exposure dose of 500 mJ / cm 2 (i-line) without using a photomask, and bleaching was performed as described above. Further, it was heated in an air (trade name: IHPS-222, manufactured by Espec Corporation) at a temperature of 230 ° C.
  • partition walls formed in a lattice pattern with a pitch of 150 ⁇ m on the long side were formed.
  • the color-converting light-emitting material compositions shown in Tables 4 and 5 were applied to the regions separated by the partition walls of the obtained substrate with partition walls by an inkjet method under a nitrogen atmosphere, dried at 100 ° C. for 30 minutes, and dried. A 5.0 ⁇ m pixel was formed to obtain a substrate with a partition having the configuration shown in FIG.
  • Example 29 After forming pixels in the same manner as in Example 18, the substrate with the partition walls is spin-coated with a material for forming a low refractive index layer, and a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.) is used. Then, it was dried at a temperature of 90 ° C. for 2 minutes to produce a dried film. Further, by using an oven (trade name: IHPS-222, manufactured by Espec Corporation), the substrate was heated in air at a temperature of 90 ° C. for 30 minutes to form a low refractive index layer. Obtained.
  • a hot plate trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.
  • Example 30 An inorganic protective layer having a thickness of 50 to 1,000 nm was formed on the low-refractive-index layer of the substrate with a low-refractive-index layer obtained in Example 29 using a plasma CVD apparatus (PD-220NL, manufactured by Samco). A 300-nm-thick silicon nitride film corresponding to I was formed, and a substrate with a partition having the configuration shown in FIG. 4 was obtained.
  • a plasma CVD apparatus PD-220NL, manufactured by Samco.
  • Example 31 Using a plasma CVD apparatus (PD-220NL, manufactured by SAMCO) on a substrate with partition walls obtained in Example 18, silicon nitride having a thickness of 300 nm corresponding to the inorganic protective layer II having a thickness of 50 to 1,000 nm A film was formed on the pixel. Thereafter, a low-refractive-index layer having a thickness of 1.0 ⁇ m was formed on the inorganic protective layer II by the same method as in Example 29, using the low-index layer-forming material obtained in Preparation Example 6, and shown in FIG. A substrate with a partition having the above configuration was obtained.
  • PD-220NL manufactured by SAMCO
  • Example 32 The color obtained in Preparation Example 4 was obtained in the same manner as in Example 17 so that the film thickness after curing was 2.5 ⁇ m in the region separated by the partition walls of the substrate with partition walls before pixel formation.
  • a filter forming material (CF-1) was applied and vacuum dried. Exposure was performed at a light exposure of 40 mJ / cm 2 (i-line) through a photomask designed to be exposed to the region of the opening of the substrate with a partition. After developing with a 0.3% by weight aqueous solution of tetramethylammonium for 50 seconds, the film was cured by heating at 230 ° C.
  • the color conversion luminescent material composition (CL-2) obtained in Preparation Example 2 was applied on a color filter in a nitrogen atmosphere by an inkjet method using an inkjet method, and dried at 100 ° C. for 30 minutes. Pixels of 0 ⁇ m were formed, and a substrate with a partition having the configuration shown in FIG. 6 was obtained.
  • Example 33 A plasma CVD device (PD-220NL, manufactured by SAMCO CORPORATION) was formed on a color filter of a substrate with a partition wall before pixel formation, on which a color filter having a thickness of 2.5 ⁇ m and a width of 50 ⁇ m was formed in the same manner as in Example 32.
  • a color filter having a thickness of 2.5 ⁇ m and a width of 50 ⁇ m was formed in the same manner as in Example 32.
  • the color conversion luminescent material composition (CL-2) obtained in Preparation Example 2 was applied on the inorganic protective layer III under a nitrogen atmosphere by an inkjet method, dried at 100 ° C. for 30 minutes, and dried. Pixels of 5.0 ⁇ m were formed, and a substrate with a partition having the configuration shown in FIG. 7 was obtained.
  • Example 34 As a base substrate, a 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used. A 300 nm-thick silicon nitride film corresponding to the 50-1,000 nm-thick inorganic protective layer IV was formed thereon using a plasma CVD device (PD-220NL, manufactured by Samco). A substrate with a partition having the configuration shown in FIG. 8 was obtained in the same manner as in Example 31, except that the above substrate was used instead of a 10 cm square alkali-free glass substrate.
  • a plasma CVD device PD-220NL, manufactured by Samco
  • Example 35 The yellow organic protection obtained in Preparation Example 7 was applied on a color filter of a substrate with a partition wall before pixel formation, on which a color filter having a thickness of 2.5 ⁇ m and a width of 50 ⁇ m was obtained in the same manner as in Example 32.
  • the layer forming material (YL-1) was applied and vacuum dried. Exposure was performed at a light exposure of 40 mJ / cm 2 (i-line) through a photomask designed to be exposed to the region of the opening of the substrate with a partition. After developing with a 0.3% by weight aqueous solution of tetramethylammonium for 50 seconds, it was cured by heating at 230 ° C.
  • the color conversion luminescent material composition (CL-2) obtained in Preparation Example 2 was applied on a yellow organic protective layer under a nitrogen atmosphere by an inkjet method, and dried at 100 ° C. for 30 minutes. Pixels of 5.0 ⁇ m were formed, and a substrate with a partition having the configuration shown in FIG. 7 was obtained.
  • Example 36 As a base substrate, a 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used.
  • the yellow organic protective layer forming material (YL-1) obtained in Preparation Example 7 was applied thereon, and dried under vacuum. After exposing the dried film at a light exposure of 40 mJ / cm 2 (i-line) without using a photomask, the film is developed with a 0.3% by weight aqueous solution of tetramethylammonium for 50 seconds, and cured by heating at 230 ° C. for 30 minutes. As a result, a yellow organic protective layer having a thickness of 1.0 ⁇ m was formed.
  • a substrate with a partition having the configuration shown in FIG. 8 was obtained in the same manner as in Example 31, except that the above substrate was used instead of a 10 cm square alkali-free glass substrate.
  • Example 37 As a base substrate, a 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used. The material for forming a light-shielding partition obtained in Preparation Example 5 was spin-coated thereon, and dried at 90 ° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). Then, a dried film was prepared.
  • SCW-636 trade name: manufactured by Dainippon Screen Mfg. Co., Ltd.
  • a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.), the produced dried film was exposed to light through a photomask using an ultra-high pressure mercury lamp as a light source and an exposure amount of 40 mJ / cm 2 (i-line). Exposure. Thereafter, development was performed for 50 seconds with a 0.3% by weight aqueous solution of tetramethylammonium using an automatic developing apparatus (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), and then rinsed with water for 30 seconds. did. Further, it was heated in an air (trade name: IHPS-222, manufactured by Espec Corporation) at a temperature of 230 ° C.
  • AD-2000 automatic developing apparatus
  • Example 17 A substrate having a light-shielding partition wall in which partition walls having an OD value per unit area of 2.0 were formed in a grid pattern with a pitch of 30 ⁇ m on a short side and 150 ⁇ m on a long side was obtained. Thereafter, in the same manner as in Example 17, the partition having a height of 10 ⁇ m and a width of 20 ⁇ m was formed on the light-shielding partition in the same grid pattern as the light-shielding partition having a pitch of 30 ⁇ m on a short side and 150 ⁇ m on a long side.
  • the color-converting light-emitting material composition (CL-2) obtained in Preparation Example 22 was applied to a region separated by the partition of the obtained substrate with a partition under an atmosphere of nitrogen by an inkjet method, and then heated at 100 ° C. After drying for 30 minutes, a pixel having a thickness of 5.0 ⁇ m was formed, and a substrate with a partition having the configuration shown in FIG. 9 was obtained.
  • Tables 4 and 5 show the configurations of the examples and comparative examples.
  • Polysiloxane which is a raw material of the partition wall forming resin composition used in each of Examples and Comparative Examples, and the material for forming a low refractive index layer obtained in Preparation Example 26 were each applied to a silicon wafer by a spinner, and were heated on a hot plate ( It was dried at a temperature of 90 ° C. for 2 minutes using SCW-636 (trade name, manufactured by Dainippon Screen Mfg. Co., Ltd.). Then, it was heated in an air at 230 ° C. for 30 minutes using an oven (IHPS-222; manufactured by Espec Corporation) to form a cured film.
  • SCW-636 trade name, manufactured by Dainippon Screen Mfg. Co., Ltd.
  • the cured film was irradiated with light having a wavelength of 550 nm from the direction perpendicular to the surface of the cured film at 20 ° C. under atmospheric pressure to measure the refractive index. , Rounded to two decimal places.
  • the prepared dried film was used as an ultra-high pressure mercury lamp as a light source, and each width of 100 ⁇ m, 80 ⁇ m, 60 ⁇ m, 50 ⁇ m, 40 ⁇ m, 30 ⁇ m and 20 ⁇ m.
  • Exposure was performed with a gap of 100 ⁇ m at an exposure dose of 200 mJ / cm 2 (i-line) through a mask having a line & space pattern of Thereafter, using an automatic developing device (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed for 100 seconds using a 0.045% by weight aqueous solution of potassium hydroxide, and then 30 minutes using water. Rinse for seconds.
  • AD-2000 automatic developing device
  • the partition wall forming resin compositions used in each of the examples and comparative examples were spin-coated so that the film thickness after heating became 5 ⁇ m, 10 ⁇ m, 15 ⁇ m and 20 ⁇ m, respectively.
  • processing was performed under the same conditions as in the respective Examples and Comparative Examples except that the whole was exposed without using a photomask at the time of exposure, and a solid film was formed on a glass substrate.
  • a glass substrate having a solid film was visually observed, and the presence or absence of cracks in the solid film was evaluated.
  • the crack resistant film thickness was determined to be “ ⁇ 15 ⁇ m”.
  • the crack-resistant film thickness in the case where there was no crack even at 20 ⁇ m was determined as “ ⁇ 20 ⁇ m”
  • the crack-resistant film thickness in the case where cracks occurred even at 5 ⁇ m was determined as “ ⁇ 5 ⁇ m”.
  • ⁇ OD value> As a model of the partition wall of the substrate with a partition wall obtained in each of the examples and comparative examples, a solid film was formed on a glass substrate in the same manner as in the evaluation of the reflectance. With respect to the obtained glass substrate having a solid film, the intensity of incident light and transmitted light was measured using an optical densitometer (361T (visual); manufactured by X-rite), and the OD value was calculated by the above-described equation (1). Calculated. For the OD value, the solid film before the heating step and the OD value after the heating step were measured, and the results are shown in Tables 6 and 7 including the difference.
  • Example 37 a solid film was similarly formed on a glass substrate as a model of the light-shielding partition wall (A-2). With respect to the obtained glass substrate having a solid film, the intensities of incident light and transmitted light were measured using an optical densitometer (361T (visual); manufactured by X-rite), and were calculated by the above-described equation (1).
  • an optical densitometer 361T (visual); manufactured by X-rite
  • ⁇ Taper angle> In each of the examples and comparative examples, an arbitrary cross section of the substrate with the partition wall before pixel formation was measured at an accelerating voltage of 3.0 kV using an optical microscope (FE-SEM (S-4800); manufactured by Hitachi, Ltd.). Observation was made and the taper angle was measured.
  • a solid film was formed on a glass substrate as a model of a partition in the substrate with a partition obtained in each of the examples and comparative examples, in the same manner as in the evaluation of the reflectance.
  • About the surface of the obtained solid film DM-700 manufactured by Kyowa Interface Science Co., Ltd., micro syringe: Teflon (registered trademark) for contact angle meter, manufactured by Kyowa Interface Science Co., Ltd.
  • propylene glycol monomethyl ether acetate was used instead of water, and the contact angle between the surface of the solid film and propylene glycol monomethyl ether acetate was measured.
  • the pixel portion surrounded by the grid-like partition walls is subjected to an ink jet coating apparatus (InkjetLabo, cluster technology (PGM)) using PGMEA as ink.
  • Ink-jet coating was performed using the following method. 160 pL of PGMEA was applied per one grid-like pattern, and the presence or absence of breakage (phenomenon in which ink crossed the partition walls and mixed into the adjacent pixel portion) was observed, and the ink jet coatability was evaluated based on the following criteria. The smaller the break, the higher the liquid repellency and the better the ink jet coating property.
  • ⁇ Thickness> The height of the structure before and after the formation of the pixel (B) was measured using a Surfcom stylus-type film thickness measuring device for the substrate with a partition wall obtained in each of the examples and comparative examples, and the difference was calculated. The thickness of the pixel (B) was measured. In Examples 29 to 31, the film thickness of the low refractive index layer (C) was further reduced, in Examples 32 to 36, the thickness of the color filter was further reduced, and in Example 37, the thickness (height) of the light shielding partition was further reduced. Were similarly measured.
  • Examples 30 to 31 and 33 to 34 a cross section perpendicular to the base substrate was exposed using a polishing device such as a cross section polisher, and the cross sections were enlarged with a scanning electron microscope or a transmission electron microscope. By observation, the thickness of each of the inorganic protective layers I to IV was measured.
  • ⁇ Brightness> Using a planar light emitting device equipped with a commercially available LED backlight (peak wavelength: 465 nm) as a light source, the substrates with partition walls obtained in each of the examples and comparative examples were installed such that the pixel portion was on the light source side. A current of 30 mA is passed through the surface light-emitting device to turn on the LED element, and a luminance (unit: cd / m 2 ) based on the CIE1931 standard is measured using a spectral radiance meter (CS-1000, manufactured by Konica Minolta). It measured and made it the initial luminance. However, the evaluation of the luminance was performed by a relative value with the initial luminance of Example 45 being 100 as a standard.
  • CS-1000 spectral radiance meter
  • CM-2600d manufactured by Konica Minolta, measurement diameter ⁇ 8 mm
  • light was irradiated from the base substrate side of the substrate with partition walls, and the spectrum including specular reflection light was measured.
  • the color gamut defined by 2020 is defined as red, green, and blue on the spectrum locus shown in the chromaticity diagram as three primary colors, and the wavelengths of red, green, and blue correspond to 630 nm, 532 nm, and 467 nm, respectively.
  • the emission color of the pixel was evaluated according to the following criteria.
  • ⁇ Display characteristics> The display characteristics of a display device manufactured by combining the substrate with a partition wall obtained in each of the examples and the comparative examples and the organic EL element were evaluated based on the following criteria.
  • a part of a pixel portion surrounded by a grid-like partition wall is provided with a color conversion luminescent material composition ( CL-2) was applied and dried at 100 ° C. for 30 minutes to form a pixel having a thickness of 5.0 ⁇ m.
  • CL-2 color conversion luminescent material composition
  • a region adjacent to the region where the color conversion light emitting material composition (CL-2) is applied is applied to the color conversion light emitting material composition (CL -3) was applied and dried at 100 ° C. for 30 minutes to form a pixel having a thickness of 5.0 ⁇ m.
  • a blue organic EL cell having the same width as that of the pixel portion surrounded by the lattice-shaped partition is manufactured, and the above-described substrate with a partition and the blue organic EL cell are bonded to each other with a sealing agent so as to face each other, as shown in FIG. A display device having the above configuration was obtained.
  • Base substrate 2 Partition wall 3: Pixel 3 (CL-2): Pixel 3 (CL-3) formed of color conversion luminescent material composition (CL-2): Color conversion luminescent material composition (CL-3) 4): low refractive index layer 5: inorganic protective layer I 6: inorganic protective layer II 7: Color filter 8: Inorganic protective layer III and / or yellow organic protective layer 9: Inorganic protective layer IV and / or yellow organic protective layer 10: Light-shielding partition 11: Blue organic EL cell H: Partition thickness L: Partition width ⁇ : taper angle

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)
  • Silicon Polymers (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Pinball Game Machines (AREA)

Abstract

A resin composition comprising: a resin; an organometallic compound comprising at least one metal selected from the group consisting of silver, gold, platinum and palladium; a photopolymerization initiator or a quinonediazide compound; and a solvent. Provided is a resin composition which can be formed into a partitioning wall that can exhibit both of a high reflectance and high light-blocking performance even under a heated condition having a temperature of 250ºC or lower.

Description

樹脂組成物、遮光膜、遮光膜の製造方法および隔壁付き基板Resin composition, light-shielding film, method for producing light-shielding film, and substrate with partition
 本発明は、樹脂組成物と、樹脂組成物から形成される遮光膜、遮光膜の製造方法、およびパターン形成された隔壁を有する隔壁付き基板に関する。 The present invention relates to a resin composition, a light-shielding film formed from the resin composition, a method of manufacturing the light-shielding film, and a substrate with a partition having a pattern-formed partition.
 画像表示装置の1種である液晶表示装置は、一般的に、LED等の白色光源と、赤色、緑色および青色を選択的に通過させるカラーフィルターを用いて、カラー表示を行っている。しかしながら、このようなカラーフィルターを用いたカラー表示は、光利用効率が悪く、かつ、色再現性に課題があった。 (2) A liquid crystal display device, which is one type of image display device, generally performs color display using a white light source such as an LED and a color filter that selectively transmits red, green, and blue. However, color display using such a color filter has poor light use efficiency and has problems in color reproducibility.
 そこで、光利用効率を高くしたカラー表示装置として、波長変換用蛍光体からなる波長変換部と、偏光分離手段と偏光変換手段を備えたカラー表示装置が提案されている(例えば、特許文献1参照)。例えば、青色光源と、液晶素子と、青色光により励起されて赤色の蛍光を発する蛍光体、青色光により励起されて緑色の蛍光を発する蛍光体、および青色光を散乱させる光散乱層を有する波長変換部とを含むカラー表示装置が提案されている(例えば、特許文献2参照)。
しかし、特許文献1、2に記載されるような色変換蛍光体を含むカラーフィルターは、蛍光があらゆる方向に発生することから、光の取り出し効率が低く、輝度が不十分である。特に、4K、8Kと言われる高精細表示装置においては、画素サイズが小さくなるため、輝度の課題が顕著となることから、より高い輝度が求められている。
In view of this, a color display device including a wavelength conversion unit made of a phosphor for wavelength conversion, a polarization separation unit and a polarization conversion unit has been proposed as a color display device with high light use efficiency (for example, see Patent Document 1). ). For example, a blue light source, a liquid crystal element, a phosphor that emits red fluorescence when excited by blue light, a phosphor that emits green fluorescence when excited by blue light, and a wavelength that has a light scattering layer that scatters blue light. A color display device including a conversion unit has been proposed (for example, see Patent Document 2).
However, the color filters including the color conversion phosphors described in Patent Literatures 1 and 2 have low light extraction efficiency and insufficient luminance because fluorescence is generated in all directions. In particular, in a high-definition display device referred to as 4K or 8K, since the pixel size is reduced, the problem of luminance becomes significant, and thus higher luminance is required.
特開2000-131683号公報JP 2000-131683 A 特開2009-244383号公報JP 2009-244383 A 特開2000-347394号公報JP 2000-347394 A 特開2006-259421号公報JP 2006-259421 A
 表示装置の輝度を向上させるためには、色変換蛍光体を隔てる隔壁の反射率を高くすることが有効である。また、隣接画素間において光の混色が発生しないためには、隔壁の遮光性を高くする必要がある。以上から、高い反射率と遮光性を両立した隔壁材料が求められている。 In order to improve the luminance of the display device, it is effective to increase the reflectance of the partition walls separating the color conversion phosphors. In addition, in order to prevent color mixing of light between adjacent pixels, it is necessary to enhance the light shielding property of the partition. From the above, there is a need for a partition wall material that has both high reflectivity and light blocking properties.
 発明者らは、高い反射率と遮光性を両立した隔壁を形成するために、まず、高反射率の白色隔壁材料に黒色顔料を添加した材料を使用する方法を検討した。しかし、この方法では、露光時に白色顔料と黒色顔料によって光が吸収され、膜の底部まで光が届かず、パターン加工性が悪いという課題が明らかになった。 The inventors first studied a method of using a material obtained by adding a black pigment to a high-reflectance white partition wall material in order to form a partition having both high reflectance and light-shielding properties. However, in this method, the problem that the light was absorbed by the white pigment and the black pigment at the time of exposure, the light did not reach the bottom of the film, and the pattern processability was poor was revealed.
 一方、特許文献3、4に記載されているように、特定の金属化合物を添加することで、パターン形成後の焼成によって黒色化する技術が提案されている。しかしながら、これらの黒色化技術は、400℃以上の焼成が必要であり、250℃以下の加熱では遮光性が向上しないという課題があった。 On the other hand, as described in Patent Literatures 3 and 4, a technique has been proposed in which a specific metal compound is added to blacken by baking after pattern formation. However, these blackening techniques require baking at 400 ° C. or higher, and there is a problem that heating at 250 ° C. or lower does not improve light-shielding properties.
 そこで、本発明は、250℃以下の加熱条件においても、高い反射率と遮光性を両立した隔壁を形成可能である樹脂組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide a resin composition that can form a partition having both high reflectance and light-shielding properties even under heating conditions of 250 ° C. or lower.
 本発明は、樹脂と、銀、金、白金およびパラジウムからなる群より選ばれる少なくとも1種の金属を含有する有機金属化合物と、光重合開始剤またはキノンジアジド化合物と、溶媒とを含有する樹脂組成物である。 The present invention provides a resin composition containing a resin, an organometallic compound containing at least one metal selected from the group consisting of silver, gold, platinum and palladium, a photopolymerization initiator or a quinonediazide compound, and a solvent. It is.
 本発明の樹脂組成物は、製膜後にパターン露光する工程時には光を通すが、露光した膜を120℃以上250℃以下の温度で加熱した後に遮光性が上がるため、250℃以下の加熱条件においても、高い反射率と高い遮光性を有する微細厚膜隔壁パターンの形成が可能である。 The resin composition of the present invention allows light to pass during the step of pattern exposure after film formation.However, since the light-shielding property increases after the exposed film is heated at a temperature of 120 ° C. or more and 250 ° C. or less, under heating conditions of 250 ° C. or less In addition, it is possible to form a fine thick-wall partition pattern having high reflectivity and high light-shielding properties.
パターン形成された隔壁を有する本発明の隔壁付き基板の一態様を示す断面図である。It is sectional drawing which shows one aspect of the board | substrate with a partition of this invention which has the partition formed in pattern. パターン形成された隔壁と色変換発光材料を含有する画素を有する本発明の隔壁付き基板の一態様を示す断面図である。It is sectional drawing which shows one aspect of the board | substrate with a partition of this invention which has the pixel which contains the pattern-formed partition and the color conversion luminescent material. 低屈折率層を有する本発明の隔壁付き基板の一態様を示す断面図である。It is sectional drawing which shows one aspect of the board | substrate with a partition of this invention which has a low refractive index layer. 低屈折率層および無機保護層Iを有する本発明の隔壁付き基板の一態様を示す断面図である。FIG. 2 is a cross-sectional view showing one embodiment of a substrate with a partition wall of the present invention having a low refractive index layer and an inorganic protective layer I. 低屈折率層および無機保護層IIを有する本発明の隔壁付き基板の一態様を示す断面図である。It is sectional drawing which shows one aspect of the board | substrate with a partition of this invention which has a low refractive index layer and an inorganic protective layer II. カラーフィルターを有する本発明の隔壁付き基板の一態様を示す断面図である。It is sectional drawing which shows one aspect of the board | substrate with a partition of this invention which has a color filter. カラーフィルターと、無機保護層IIIおよび/または黄色有機保護層を有する本発明の隔壁付き基板の一態様を示す断面図である。It is sectional drawing which shows one aspect of the board | substrate with a partition of this invention which has a color filter and an inorganic protective layer III and / or a yellow organic protective layer. カラーフィルターと、無機保護層IVおよび/または黄色有機保護層を有する本発明の隔壁付き基板の一態様を示す断面図である。It is sectional drawing which shows one aspect of the board | substrate with a partition of this invention which has a color filter and an inorganic protective layer IV and / or a yellow organic protective layer. 遮光隔壁を有する本発明の隔壁付き基板の一態様を示す断面図である。It is sectional drawing which shows one aspect of the board | substrate with a partition of this invention which has a light-shielding partition. 実施例において混色評価に用いた表示装置の構成を示す断面図である。FIG. 3 is a cross-sectional view illustrating a configuration of a display device used for color mixing evaluation in Examples.
 以下、本発明に係る樹脂組成物、樹脂組成物から形成される遮光膜、遮光膜の製造方法、および隔壁付き基板の好適な実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。 Hereinafter, preferred embodiments of the resin composition according to the present invention, a light-shielding film formed from the resin composition, a method of manufacturing the light-shielding film, and a substrate with a partition wall will be specifically described. The present invention is not limited to the embodiment, and can be implemented with various changes depending on the purpose and application.
 本発明の樹脂組成物は、色変換蛍光体を隔てる隔壁を形成するための材料として好適に用いることができる。本発明の樹脂組成物は、樹脂と、銀、金、白金およびパラジウムからなる群より選ばれる少なくとも1種の金属を含有する有機金属化合物(以下、「有機金属化合物」と記載する場合がある)と、光重合開始剤またはキノンジアジド化合物と、溶媒とを含有することが好ましい。 樹脂 The resin composition of the present invention can be suitably used as a material for forming a partition for separating the color conversion phosphor. The resin composition of the present invention is a resin and an organometallic compound containing at least one metal selected from the group consisting of silver, gold, platinum and palladium (hereinafter may be referred to as “organometallic compound”). , A photopolymerization initiator or a quinonediazide compound, and a solvent.
 樹脂は、隔壁のクラック耐性および耐光性を向上させる機能を有する。樹脂組成物の固形分中に占める樹脂の含有量は、熱処理における隔壁のクラック耐性を向上させる観点から、10重量%以上が好ましく、20重量%以上がより好ましい。一方、耐光性を向上させる観点から、樹脂組成物の固形分中に占める樹脂の含有量は、60重量%以下が好ましく、50重量%以下がより好ましい。ここで、固形分とは、樹脂組成物に含まれる成分のうち、溶媒等の揮発性の成分を除いた全成分のことを意味する。固形分の量は、樹脂組成物を加熱して揮発性の成分を蒸発させた残分を計ることにより求めることができる。 The resin has a function of improving crack resistance and light resistance of the partition. The content of the resin in the solid content of the resin composition is preferably 10% by weight or more, and more preferably 20% by weight or more, from the viewpoint of improving the crack resistance of the partition walls in the heat treatment. On the other hand, from the viewpoint of improving light resistance, the content of the resin in the solid content of the resin composition is preferably equal to or less than 60% by weight, and more preferably equal to or less than 50% by weight. Here, the solid content means all of the components contained in the resin composition except for volatile components such as a solvent. The amount of solid content can be determined by heating the resin composition and measuring the residue obtained by evaporating volatile components.
 樹脂としては、例えば、ポリシロキサン、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、(メタ)アクリルポリマなどが挙げられる。ここで、(メタ)アクリルポリマとは、メタクリル酸エステルおよび/またはアクリル酸エステルの重合体を意味する。これらを2種以上含有してもよい。これらの中でも、透明性、耐熱性および耐光性に優れることから、ポリシロキサンが好ましい。 Examples of the resin include polysiloxane, polyimide, polyimide precursor, polybenzoxazole, polybenzoxazole precursor, and (meth) acrylic polymer. Here, the (meth) acrylic polymer means a polymer of a methacrylate and / or an acrylate. Two or more of these may be contained. Among these, polysiloxane is preferable because of its excellent transparency, heat resistance and light resistance.
 ポリシロキサンは、オルガノシランの加水分解・脱水縮合物である。本発明の樹脂組成物がネガ型感光性を有する場合、ポリシロキサンは、少なくとも下記一般式(2)で表される繰り返し単位を含むことが好ましい。さらに他の繰り返し単位を含んでもよい。一般式(2)で表される2官能アルコキシシラン化合物由来の繰り返し単位を含むことにより、加熱によるポリシロキサンの過剰な熱重合(縮合)を抑制し、隔壁のクラック耐性を向上させることができる。ポリシロキサンにおける全繰り返し単位中、一般式(2)で表される繰り返し単位を10~80モル%含有することが好ましい。一般式(2)で表される繰り返し単位を10モル%以上含むことにより、クラック耐性をより向上させることができる。一般式(2)で表される繰り返し単位の含有量は、15モル%以上がより好ましく、20モル%以上がさらに好ましい。一方、一般式(2)で表される繰り返し単位を80モル%以下含むことにより、重合時にポリシロキサンの分子量を十分に高め、塗布性を向上させることができる。一般式(2)で表される繰り返し単位の含有量は、70モル%以下がより好ましい。 Polysiloxane is a hydrolysis / dehydration condensate of organosilane. When the resin composition of the present invention has negative photosensitivity, the polysiloxane preferably contains at least a repeating unit represented by the following general formula (2). Further, other repeating units may be included. By including the repeating unit derived from the bifunctional alkoxysilane compound represented by the general formula (2), excessive thermal polymerization (condensation) of the polysiloxane due to heating can be suppressed, and the crack resistance of the partition can be improved. It is preferred that the repeating unit represented by the general formula (2) is contained in an amount of 10 to 80 mol% in all the repeating units in the polysiloxane. By containing 10 mol% or more of the repeating unit represented by the general formula (2), crack resistance can be further improved. The content of the repeating unit represented by the general formula (2) is more preferably at least 15 mol%, even more preferably at least 20 mol%. On the other hand, when the content of the repeating unit represented by the general formula (2) is 80 mol% or less, the molecular weight of the polysiloxane can be sufficiently increased at the time of polymerization, and the coating property can be improved. The content of the repeating unit represented by the general formula (2) is more preferably 70 mol% or less.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(2)中、RおよびRは、それぞれ同じでも異なってもよく、炭素数1~20の1価の有機基を表す。RおよびRは、重合時のポリシロキサンの分子量調整を容易にする観点から、炭素数1~6のアルキル基および炭素数6~12のアリール基から選ばれた基が好ましい。ただし、アルキル基およびアリール基は、その水素の少なくとも一部がラジカル重合性基により置換されていてもよい。この場合、ネガ型感光性樹脂組成物の硬化物中においては、ラジカル重合性基はラジカル重合されていてもよい。 In the general formula (2), R 1 and R 2 may be the same or different and represent a monovalent organic group having 1 to 20 carbon atoms. R 1 and R 2 are preferably a group selected from an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms, from the viewpoint of facilitating the adjustment of the molecular weight of the polysiloxane during the polymerization. However, in the alkyl group and the aryl group, at least a part of the hydrogen may be substituted by a radical polymerizable group. In this case, in the cured product of the negative photosensitive resin composition, the radically polymerizable group may be radically polymerized.
 本発明の樹脂組成物がネガ型感光性を有する場合、ポリシロキサンは、さらに、下記一般式(3)で表される繰り返し単位および下記一般式(4)で表される繰り返し単位から選ばれた繰り返し単位を含むことが好ましい。一般式(3)または一般式(4)で表される、フッ素含有アルコキシシラン化合物由来の繰り返し単位を含むことにより、ポリシロキサンの屈折率を低減し、後述する白色顔料を含有する場合に、白色顔料との屈折率差を拡大して界面反射をより向上させ、反射率をより向上させることができる。一般式(3)で表される繰り返し単位および一般式(4)で表される繰り返し単位から選ばれた繰り返し単位をポリシロキサン中に合計20~80モル%含有することがより好ましい。一般式(3)で表される繰り返し単位と一般式(4)で表される繰り返し単位を合計20モル%以上含むことにより、後述する白色顔料を含有する場合に、ポリシロキサンと白色顔料の界面反射をより向上させ、反射率をより向上させることができる。一般式(3)で表される繰り返し単位と一般式(4)で表される繰り返し単位の合計含有量は、40モル%以上がより好ましい。一方、一般式(3)で表される繰り返し単位と一般式(4)で表される繰り返し単位を合計80モル%以下含むことにより、ポリシロキサンの過度な疎水化を抑制し、組成物中の他の成分との相溶性を向上させ、解像度を向上させることができる。一般式(3)で表される繰り返し単位と一般式(4)で表される繰り返し単位の合計含有量は、70モル%以下がより好ましい。さらに他の繰り返し単位を含んでもよい。 When the resin composition of the present invention has negative photosensitivity, the polysiloxane is further selected from a repeating unit represented by the following general formula (3) and a repeating unit represented by the following general formula (4). It preferably contains a repeating unit. By containing a repeating unit derived from a fluorine-containing alkoxysilane compound represented by the general formula (3) or (4), the refractive index of the polysiloxane is reduced, and when a white pigment described later is contained, white The difference in refractive index between the pigment and the pigment can be enlarged to further improve interfacial reflection and further improve the reflectance. It is more preferable that a total of 20 to 80 mol% of the repeating unit selected from the repeating unit represented by the general formula (3) and the repeating unit represented by the general formula (4) be contained in the polysiloxane. By containing the repeating unit represented by the general formula (3) and the repeating unit represented by the general formula (4) in a total amount of 20 mol% or more, when a white pigment described later is contained, the interface between the polysiloxane and the white pigment is The reflection can be further improved, and the reflectance can be further improved. The total content of the repeating unit represented by the general formula (3) and the repeating unit represented by the general formula (4) is more preferably 40 mol% or more. On the other hand, by including the repeating unit represented by the general formula (3) and the repeating unit represented by the general formula (4) in a total amount of 80 mol% or less, excessive hydrophobization of the polysiloxane is suppressed, and The compatibility with other components can be improved, and the resolution can be improved. The total content of the repeating unit represented by the general formula (3) and the repeating unit represented by the general formula (4) is more preferably 70 mol% or less. Further, other repeating units may be included.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(3)および(4)中、Rは、水素の全部または一部がフッ素で置換された、炭素数1~10のアルキル基、アルケニル基、アリール基またはアリールアルキル基を表す。Rは、単結合、-O-、-CH-CO-、-CO-または-O-CO-を表す。Rは、炭素数1~20の1価の有機基を表す。Rは、ポリシロキサンの屈折率をより低減させる観点から、水素の全部または一部がフッ素で置換された炭素数1~6のアルキル基が好ましい。なお、ネガ型感光性樹脂組成物の光硬化物中においては、アルケニル基はラジカル重合されていてもよい。 In the above general formulas (3) and (4), R 3 represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group, an aryl group or an arylalkyl group, in which all or a part of hydrogen is substituted with fluorine. R 4 represents a single bond, —O—, —CH 2 —CO—, —CO— or —O—CO—. R 5 represents a monovalent organic group having 1 to 20 carbon atoms. From the viewpoint of further reducing the refractive index of the polysiloxane, R 3 is preferably an alkyl group having 1 to 6 carbon atoms in which all or part of hydrogen has been substituted with fluorine. In the photocured product of the negative photosensitive resin composition, the alkenyl group may be radically polymerized.
 上記一般式(2)~(4)で表される繰り返し単位は、それぞれ下記一般式(5)~(7)で表されるアルコキシシラン化合物に由来する。すなわち、前記一般式(2)~(4)で表される繰り返し単位を含むポリシロキサンは、下記一般式(5)~(7)で表されるアルコキシシラン化合物を含むアルコキシシラン化合物を加水分解および重縮合することによって得ることができる。さらに他のアルコキシシラン化合物を用いてもよい。 繰 り 返 し The repeating units represented by the general formulas (2) to (4) are derived from the alkoxysilane compounds represented by the following general formulas (5) to (7). That is, the polysiloxane containing the repeating units represented by the above general formulas (2) to (4) is obtained by hydrolyzing an alkoxysilane compound containing the alkoxysilane compound represented by the following general formulas (5) to (7). It can be obtained by polycondensation. Further, other alkoxysilane compounds may be used.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(5)~(7)中、R~Rは、それぞれ一般式(2)~(4)における、R~Rと同じ基を表す。Rは、同じでも異なってもよく、炭素数1~20の1価の有機基を表し、炭素数1~6のアルキル基が好ましい。 In the general formula (5) ~ (7), R 1 ~ R 5 are in each general formula (2) to (4) represent the same group as R 1 - R 5. R 6 may be the same or different and represents a monovalent organic group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
 一般式(5)で表されるアルコキシシラン化合物としては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、エチルメチルジメトキシシラン、エチルメチルジメトキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、アリルメチルジメトキシシラン、アリルメチルジエトキシシラン、スチリルメチルジメトキシシラン、スチリルメチルジエトキシシラン、γ-メタクリロイルプロピルメチルジメトキシシラン、γ-メタクリロイルプロピルメチルジエトキシシラン、γ-アクリロイルプロピルメチルジメトキシシラン、γ-アクリロイルプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3-ジメチルメトキシシリルプロピルコハク酸無水物、3-ジメチルエトキシシリルプロピルコハク酸無水物、3-ジメチルメトキシシリルプロピオン酸、3-ジメチルエトキシシリルプロピオン酸、3-ジメチルメトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-ジメチルエトキシシリルプロピルシクロヘキシルジカルボン酸無水物、5-ジメチルメトキシシリル吉草酸、5-ジメチルエトキシシリル吉草酸、3-ジメチルメトキシシリルプロピルフタル酸無水物、3-ジメチルエトキシシリルプロピルフタル酸無水物、3-ジメチルメトキシシリルプロピルフタル酸無水物、3-ジメチルエトキシシリルプロピルフタル酸無水物、4-ジメチルメトキシシリル酪酸、4-ジメチルエトキシシリル酪酸等が挙げられる。これらを2種以上用いてもよい。 Examples of the alkoxysilane compound represented by the general formula (5) include, for example, dimethyldimethoxysilane, dimethyldiethoxysilane, ethylmethyldimethoxysilane, ethylmethyldimethoxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, diphenyldimethoxysilane , Diphenyldiethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylmethyldiethoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, allylmethyldimethoxysilane, allylmethyldiethoxysilane, styrylmethyldimethoxysilane, styrylmethyldiethoxysilane, γ-methacryloylpropylmethyldimethoxysilane, γ-methacryloylpropylmethyldiethoxysilane, γ-acrylo Propylmethyldimethoxysilane, γ-acryloylpropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane , 2- (3,4-epoxycyclohexyl) ethylethyldimethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, 3-dimethylmethoxysilylpropylsuccinic anhydride, 3-dimethylethoxysilylpropylsuccinic anhydride, 3-dimethyl Methoxysilylpropionic acid, 3-dimethylethoxysilylpropionic acid, 3-dimethylmethoxysilylpropylcyclohexyldicarboxylic anhydride, 3-dimethylethoxysilylpropylcyclohexyl Dicarboxylic anhydride, 5-dimethylmethoxysilylvaleric acid, 5-dimethylethoxysilylvaleric acid, 3-dimethylmethoxysilylpropylphthalic anhydride, 3-dimethylethoxysilylpropylphthalic anhydride, 3-dimethylmethoxysilylpropylphthalate Acid anhydride, 3-dimethylethoxysilylpropylphthalic anhydride, 4-dimethylmethoxysilylbutyric acid, 4-dimethylethoxysilylbutyric acid and the like can be mentioned. Two or more of these may be used.
 一般式(6)で表されるアルコキシシラン化合物としては、例えば、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、パーフルオロペンチルトリメトキシシラン、パーフルオロペンチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリプロポキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン等が挙げられる。これらを2種以上用いてもよい。 Examples of the alkoxysilane compound represented by the general formula (6) include trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, perfluoropentyltrimethoxysilane, perfluoropentyltriethoxysilane, and tridecafluorooctyltrisilane. Methoxysilane, tridecafluorooctyltriethoxysilane, tridecafluorooctyltripropoxysilane, tridecafluorooctyltriisopropoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, and the like. Two or more of these may be used.
 一般式(7)で表されるアルコキシシラン化合物としては、ビス(トリフルオロメチル)ジメトキシシラン、ビス(トリフルオロプロピル)ジメトキシシラン、ビス(トリフルオロプロピル)ジエトキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリフルオロプロピルエチルジエトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン等が挙げられる。これらを2種以上用いてもよい。 Examples of the alkoxysilane compound represented by the general formula (7) include bis (trifluoromethyl) dimethoxysilane, bis (trifluoropropyl) dimethoxysilane, bis (trifluoropropyl) diethoxysilane, trifluoropropylmethyldimethoxysilane, Trifluoropropylmethyldiethoxysilane, trifluoropropylethyldimethoxysilane, trifluoropropylethyldiethoxysilane, heptadecafluorodecylmethyldimethoxysilane and the like. Two or more of these may be used.
 その他のアルコキシシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシランなどの3官能アルコキシシラン化合物;テトラメトキシシラン、テトラエトキシシラン、シリケート51(テトラエトキシシランオリゴマー)などの4官能アルコキシシラン化合物;トリメチルメトキシシラン、トリフェニルメトキシシランなどの単官能アルコキシシラン化合物;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-エチル-3-{[3-(トリメトキシシリル)プロポキシ]メチル}オキセタン、3-エチル-3-{[3-(トリエトキシシリル)プロポキシ]メチル}オキセタンなどのエポキシ基またはオキセタン基含有アルコキシシラン化合物:フェニルトリメトキシシラン、フェニルトリエトキシシラン、1-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、トリルトリメトキシシラン、トリルトリエトキシシラン、1-フェニルエチルトリメトキシシラン、1-フェニルエチルトリエトキシシラン、2-フェニルエチルトリメトキシシラン、2-フェニルエチルトリエトキシシラン、3-トリメトキシシリルプロピルフタル酸無水物、3-トリエトキシシリルプロピルフタル酸無水物などの芳香環含有アルコキシシラン化合物;スチリルトリメトキシシラン、スチリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、γ-アクリロイルプロピルトリメトキシシラン、γ-アクリロイルプロピルトリエトキシシラン、γ-メタクリロイルプロピルトリメトキシシラン、γ-メタクリロイルプロピルトリエトキシシランなどのラジカル重合性基含有アルコキシシラン化合物;3-トリメトキシシリルプロピオン酸、3-トリエトキシシリルプロピオン酸、4-トリメトキシシリル酪酸、4-トリエトキシシリル酪酸、5-トリメトキシシリル吉草酸、5-トリエトキシシリル吉草酸、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-トリメトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリエトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリメトキシシリルプロピルフタル酸無水物、3-トリエトキシシリルプロピルフタル酸無水物などのカルボキシル基含有アルコキシシラン化合物等が挙げられる。 As other alkoxysilane compounds, for example, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, Cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, Trifunctional alkoxysilane compounds such as 3-ureidopropyltriethoxysilane; tetramethoxysilane, tetraethoxysilane, 4-functional alkoxysilane compounds such as Kate 51 (tetraethoxysilane oligomer); monofunctional alkoxysilane compounds such as trimethylmethoxysilane and triphenylmethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxy Silane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3-ethyl-3-{[3- (trimethoxysilyl) propoxy] methyl Epoxy or oxetane group-containing alkoxysilane compounds such as {oxetane, 3-ethyl-3-{[3- (triethoxysilyl) propoxy] methyl} oxetane: phenyltrimethoxysilane, phenyltriethoxysilane, 1-naph 1,2-naphthyltrimethoxysilane, 2-naphthyltrimethoxysilane, 2-naphthyltrimethoxysilane, tolyltrimethoxysilane, tolyltriethoxysilane, 1-phenylethyltrimethoxysilane, 1-phenylethyltriethoxysilane Aromatic ring-containing alkoxysilane compounds such as, 2-phenylethyltrimethoxysilane, 2-phenylethyltriethoxysilane, 3-trimethoxysilylpropylphthalic anhydride, 3-triethoxysilylpropylphthalic anhydride; styryltrimethoxy Silane, styryltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, γ-acryloylpropyltrimethoxysilane, γ-acryl Radical polymerizable group-containing alkoxysilane compounds such as ylpropyltriethoxysilane, γ-methacryloylpropyltrimethoxysilane, γ-methacryloylpropyltriethoxysilane; 3-trimethoxysilylpropionic acid, 3-triethoxysilylpropionic acid, 4- Trimethoxysilylbutyric acid, 4-triethoxysilylbutyric acid, 5-trimethoxysilylvaleric acid, 5-triethoxysilylvaleric acid, 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilylpropylsuccinic anhydride 3-trimethoxysilylpropylcyclohexyldicarboxylic anhydride, 3-triethoxysilylpropylcyclohexyldicarboxylic anhydride, 3-trimethoxysilylpropylphthalic anhydride, 3-triethoxysilylpropylphthalic acid Carboxyl group-containing alkoxysilane compounds such as anhydride and the like.
 ポリシロキサンの原料となるアルコキシシラン化合物中における、一般式(5)で表されるアルコキシシラン化合物の含有量は、ポリシロキサンの全繰り返し単位中の一般式(2)で表される繰り返し単位の含有量を前述の範囲にする観点から、10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましい。一方、一般式(5)で表されるアルコキシシラン化合物の含有量は、同様の観点から、80モル%以下が好ましく、70モル%以下がより好ましい。また、一般式(6)および一般式(7)で表されるアルコキシシラン化合物の合計含有量についても、一般式(3)および一般式(4)で表される繰り返し単位の合計含有量を前述の範囲にする観点から、20モル%以上が好ましく、40モル%以上がより好ましい。一方で、一般式(6)および一般式(7)で表されるアルコキシシラン化合物の合計含有量は、同様の観点から、80モル%以下が好ましく、70モル%以下がより好ましい。 The content of the alkoxysilane compound represented by the general formula (5) in the alkoxysilane compound as a raw material of the polysiloxane is determined by the content of the repeating unit represented by the general formula (2) in all the repeating units of the polysiloxane. From the viewpoint of controlling the amount to the above range, 10 mol% or more is preferable, 15 mol% or more is more preferable, and 20 mol% or more is further preferable. On the other hand, the content of the alkoxysilane compound represented by the general formula (5) is preferably 80 mol% or less, and more preferably 70 mol% or less, from the same viewpoint. Also, regarding the total content of the alkoxysilane compounds represented by the general formulas (6) and (7), the total content of the repeating units represented by the general formulas (3) and (4) is described above. From the viewpoint of setting the content in the range, 20 mol% or more is preferable, and 40 mol% or more is more preferable. On the other hand, the total content of the alkoxysilane compounds represented by the general formulas (6) and (7) is preferably 80 mol% or less, more preferably 70 mol% or less from the same viewpoint.
 ポリシロキサンの重量平均分子量(Mw)は、塗布性の観点から、1,000以上が好ましく、2,000以上がより好ましい。一方、現像性の観点から、ポリシロキサンのMwは、50,000以下が好ましく、20,000以下がより好ましい。ここで、本発明におけるポリシロキサンのMwとは、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算値を言う。 The weight average molecular weight (Mw) of the polysiloxane is preferably 1,000 or more, more preferably 2,000 or more, from the viewpoint of applicability. On the other hand, from the viewpoint of developability, the Mw of the polysiloxane is preferably 50,000 or less, more preferably 20,000 or less. Here, the Mw of the polysiloxane in the present invention means a value in terms of polystyrene measured by gel permeation chromatography (GPC).
 ポリシロキサンは、前述のオルガノシラン化合物を加水分解した後、該加水分解物を溶媒の存在下または無溶媒で脱水縮合反応させることによって得ることができる。 The polysiloxane can be obtained by hydrolyzing the above-mentioned organosilane compound and then subjecting the hydrolyzate to a dehydration condensation reaction in the presence or absence of a solvent.
 加水分解における各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して、目的とする用途に適した物性に合わせて設定することができる。各種条件としては、例えば、酸濃度、反応温度、反応時間などが挙げられる。 各種 Various conditions in the hydrolysis can be set in accordance with the physical properties suitable for the intended use in consideration of the reaction scale, the size and shape of the reaction vessel, and the like. Examples of the various conditions include an acid concentration, a reaction temperature, and a reaction time.
 加水分解反応には、塩酸、酢酸、蟻酸、硝酸、蓚酸、塩酸、硫酸、リン酸、ポリリン酸、多価カルボン酸やその無水物、イオン交換樹脂などの酸触媒を用いることができる。これらの中でも、蟻酸、酢酸およびリン酸から選ばれた酸を含む酸性水溶液が好ましい。 酸 In the hydrolysis reaction, an acid catalyst such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polycarboxylic acid or anhydride thereof, or ion exchange resin can be used. Among these, an acidic aqueous solution containing an acid selected from formic acid, acetic acid, and phosphoric acid is preferable.
 加水分解反応に酸触媒を用いる場合、酸触媒の添加量は、加水分解をより速やかに進行させる観点から、加水分解反応に使用される全アルコキシシラン化合物100重量部に対して、0.05重量部以上が好ましく、0.1重量部以上がより好ましい。一方、加水分解反応の進行を適度に調整する観点から、酸触媒の添加量は、全アルコキシシラン化合物100重量部に対して、20重量部以下が好ましく、10重量部以下がより好ましい。ここで、全アルコキシシラン化合物量とは、アルコキシシラン化合物、その加水分解物およびその縮合物の全てを含む量のことを言う。以下同じとする。 When an acid catalyst is used in the hydrolysis reaction, the amount of the acid catalyst added is 0.05% by weight, based on 100 parts by weight of all the alkoxysilane compounds used in the hydrolysis reaction, from the viewpoint of promptly proceeding the hydrolysis. Or more, more preferably 0.1 part by weight or more. On the other hand, from the viewpoint of appropriately adjusting the progress of the hydrolysis reaction, the amount of the acid catalyst to be added is preferably 20 parts by weight or less, more preferably 10 parts by weight or less, based on 100 parts by weight of all the alkoxysilane compounds. Here, the total amount of the alkoxysilane compound refers to an amount including all of the alkoxysilane compound, its hydrolyzate, and its condensate. The same shall apply hereinafter.
 加水分解反応は、溶媒中で行うことができる。溶媒は、樹脂組成物の安定性、濡れ性、揮発性などを考慮して、適宜選択することができる。 The hydrolysis reaction can be performed in a solvent. The solvent can be appropriately selected in consideration of the stability, wettability, volatility, and the like of the resin composition.
 加水分解反応によって溶媒が生成する場合には、無溶媒で加水分解を行うことも可能である。樹脂組成物に用いる場合には、加水分解反応終了後に、さらに溶媒を添加することにより、樹脂組成物を適切な濃度に調整することも好ましい。また、加水分解後に加熱および/または減圧下により生成アルコール等の全量あるいは一部を留出、除去し、その後好適な溶媒を添加することも可能である。 場合 When a solvent is generated by the hydrolysis reaction, the hydrolysis can be performed without a solvent. When used for a resin composition, it is also preferable to adjust the concentration of the resin composition to an appropriate concentration by adding a solvent after the completion of the hydrolysis reaction. Further, it is also possible to distill and remove all or a part of the produced alcohol or the like by heating and / or under reduced pressure after the hydrolysis, and then add a suitable solvent.
 加水分解反応に溶媒を使用する場合、溶媒の添加量は、ゲルの生成を抑制する観点から、全アルコキシシラン化合物100重量部に対して、50重量部以上が好ましく、80重量部以上がより好ましい。一方、溶媒の添加量は、加水分解をより速やかに進行させる観点から、全アルコキシシラン化合物100重量部に対して、500重量部以下が好ましく、200重量部以下がより好ましい。 When a solvent is used in the hydrolysis reaction, the amount of the solvent to be added is preferably 50 parts by weight or more, more preferably 80 parts by weight or more, based on 100 parts by weight of all the alkoxysilane compounds, from the viewpoint of suppressing gel formation. . On the other hand, the amount of the solvent to be added is preferably 500 parts by weight or less, more preferably 200 parts by weight or less, based on 100 parts by weight of all the alkoxysilane compounds, from the viewpoint of promoting hydrolysis more quickly.
 また、加水分解反応に用いる水としては、イオン交換水が好ましい。水の量は任意に設定することができるが、全アルコキシシラン化合物1モルに対して、1.0~4.0モルが好ましい。 水 Further, as the water used for the hydrolysis reaction, ion-exchanged water is preferable. The amount of water can be arbitrarily set, but is preferably 1.0 to 4.0 mol per 1 mol of the total alkoxysilane compound.
 脱水縮合反応の方法としては、例えば、オルガノシラン化合物の加水分解反応により得られたシラノール化合物溶液をそのまま加熱する方法などが挙げられる。加熱温度は、50℃以上、溶媒の沸点以下が好ましく、加熱時間は、1~100時間が好ましい。また、ポリシロキサンの重合度を高めるために、再加熱または塩基触媒の添加を行ってもよい。また、目的に応じて、脱水縮合反応後に、生成アルコールなどの適量を加熱および/または減圧下にて留出、除去し、その後好適な溶媒を添加してもよい。 As a method of the dehydration condensation reaction, for example, a method of directly heating a silanol compound solution obtained by a hydrolysis reaction of an organosilane compound and the like can be mentioned. The heating temperature is preferably from 50 ° C. to the boiling point of the solvent, and the heating time is preferably from 1 to 100 hours. Further, in order to increase the degree of polymerization of the polysiloxane, reheating or addition of a base catalyst may be performed. Further, depending on the purpose, after the dehydration condensation reaction, an appropriate amount of the produced alcohol or the like may be distilled and removed under heating and / or reduced pressure, and then a suitable solvent may be added.
 樹脂組成物の保存安定性の観点から、加水分解、脱水縮合後のシロキサン樹脂溶液には前記触媒が含まれないことが好ましく、必要に応じて触媒の除去を行うことができる。触媒除去方法としては、操作の簡便さと除去性の観点から、水洗浄、イオン交換樹脂による処理などが好ましい。水洗浄とは、ポリシロキサン溶液を適当な疎水性溶媒で希釈し、水で数回洗浄した後、得られた有機層をエバポレーター等で濃縮する方法である。イオン交換樹脂による処理とは、ポリシロキサン溶液を適当なイオン交換樹脂に接触させる方法である。 From the viewpoint of storage stability of the resin composition, it is preferable that the siloxane resin solution after hydrolysis and dehydration condensation does not contain the catalyst, and the catalyst can be removed if necessary. As the catalyst removal method, water washing, treatment with an ion exchange resin, and the like are preferable from the viewpoint of easy operation and removability. Water washing is a method in which a polysiloxane solution is diluted with an appropriate hydrophobic solvent, washed several times with water, and then the obtained organic layer is concentrated using an evaporator or the like. The treatment with an ion exchange resin is a method in which a polysiloxane solution is brought into contact with an appropriate ion exchange resin.
 有機金属化合物は、後述の隔壁(A-1)のパターン形成に際し、露光工程および/または加熱工程において、分解・凝集することにより黒色粒子または黄色粒子となり、後述の隔壁(A-1)のOD値を向上させる機能を有する。露光前にはOD値が低く、パターン形成後にOD値が上昇することから、露光工程においては露光した光を底部まで十分に透過させて、光硬化または光分解させることができる。例えば、ネガ型感光性を有する樹脂組成物の場合、OD値の高い隔壁(A-1)を形成するために、予め黒色顔料を多量に含有する樹脂組成物を用いてパターン形成すると、底部における光硬化が不十分となりやすい。その結果、得られた隔壁(A-1)の形状が逆テーパー型になりやすい傾向にある。前述の有機金属化合物を含有する本発明の樹脂組成物を用いてパターン形成すると、底部まで十分に光硬化することから、テーパー角度を容易に後述の好ましい範囲にすることができる。 The organometallic compound is decomposed and agglomerated into black particles or yellow particles in the exposure step and / or the heating step when forming the pattern of the partition wall (A-1) described later, and the OD of the partition wall (A-1) described later is reduced. Has the function of improving the value. Since the OD value before exposure is low and the OD value increases after pattern formation, in the exposure step, the exposed light can be sufficiently transmitted to the bottom to perform photocuring or photodecomposition. For example, in the case of a resin composition having negative photosensitivity, if a pattern is previously formed using a resin composition containing a large amount of black pigment in order to form a partition wall (A-1) having a high OD value, Light curing tends to be insufficient. As a result, the shape of the obtained partition wall (A-1) tends to be reverse-tapered. When a pattern is formed using the resin composition of the present invention containing the above-described organometallic compound, the taper angle can be easily adjusted to a preferable range described later because the photocuring is sufficiently performed to the bottom.
 有機金属化合物としては、例えば、ネオデカン酸銀、オクチル酸銀、サリチル酸銀などの銀を含有する有機金属化合物;クロロ(トリフェニルホスフィン)金、テトラクロロ金酸四水和物などの金を含有する有機金属化合物;ビス(アセチルアセトナト)白金、ジクロロビス(トリフェニルホスフィン)白金、ジクロロビス(ベンゾニトリル)白金などの白金を含有する有機金属化合物;ビス(アセチルアセトナト)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロビス(ベンゾニトリル)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、ジベンジリデンアセトンパラジウムなどのパラジウムを含有する有機金属化合物などが挙げられる。これらを2種以上含有してもよい。 Examples of the organometallic compound include organometallic compounds containing silver such as silver neodecanoate, silver octylate, and silver salicylate; and gold such as chloro (triphenylphosphine) gold and tetrachloroauric acid tetrahydrate. Organometallic compounds; Organometallic compounds containing platinum such as bis (acetylacetonato) platinum, dichlorobis (triphenylphosphine) platinum, dichlorobis (benzonitrile) platinum; bis (acetylacetonato) palladium, dichlorobis (triphenylphosphine) Palladium-containing organometallic compounds such as palladium, dichlorobis (benzonitrile) palladium, tetrakis (triphenylphosphine) palladium, and dibenzylideneacetone palladium. Two or more of these may be contained.
 これらのうち、ネオデカン酸銀、オクチル酸銀、サリチル酸銀などの銀を含有する有機金属化合物を含有すると、露光工程において分解・凝集することにより黒色化し、その後の加熱工程において、さらに分解・凝集することにより黄色化する。 Among these, when containing an organic metal compound containing silver such as silver neodecanoate, silver octylate, and silver salicylate, it is decomposed and aggregated in the exposure step to blacken, and further decomposed and aggregated in the subsequent heating step. It turns yellow.
 一方、ビス(アセチルアセトナト)白金、ジクロロビス(トリフェニルホスフィン)白金、ジクロロビス(ベンゾニトリル)白金などの白金を含有する有機金属化合物;ビス(アセチルアセトナト)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロビス(ベンゾニトリル)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、ジベンジリデンアセトンパラジウムなどのパラジウムから選ばれた有機金属化合物を含有すると、露光工程および/または加熱工程において、分解・凝集することにより黒色化する。 On the other hand, organometallic compounds containing platinum such as bis (acetylacetonato) platinum, dichlorobis (triphenylphosphine) platinum, dichlorobis (benzonitrile) platinum; bis (acetylacetonato) palladium, dichlorobis (triphenylphosphine) palladium, When containing an organometallic compound selected from palladium such as dichlorobis (benzonitrile) palladium, tetrakis (triphenylphosphine) palladium, and dibenzylideneacetone palladium, blackening occurs due to decomposition and aggregation in the exposure step and / or the heating step. I do.
 これらの中でも、OD値をより向上させる観点から、ビス(アセチルアセトナト)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロビス(ベンゾニトリル)パラジウムおよびテトラキス(トリフェニルホスフィン)パラジウムから選ばれた有機金属化合物が好ましい。 Among them, an organic metal compound selected from bis (acetylacetonato) palladium, dichlorobis (triphenylphosphine) palladium, dichlorobis (benzonitrile) palladium and tetrakis (triphenylphosphine) palladium from the viewpoint of further improving the OD value Is preferred.
 本発明の樹脂組成物において、固形分中に占める有機金属化合物の含有量は、0.2~5重量%が好ましい。有機金属化合物の含有量を0.2重量%以上とすることにより、得られる隔壁のOD値をより向上させることができる。有機金属化合物の含有量は、1.5重量%以上がより好ましい。一方、有機金属化合物の含有量を5重量%以下とすることにより、反射率をより向上させることができる。 に お い て In the resin composition of the present invention, the content of the organometallic compound in the solid content is preferably 0.2 to 5% by weight. By setting the content of the organometallic compound to 0.2% by weight or more, the OD value of the obtained partition wall can be further improved. The content of the organometallic compound is more preferably 1.5% by weight or more. On the other hand, by setting the content of the organometallic compound to 5% by weight or less, the reflectance can be further improved.
 本発明の樹脂組成物は、後述の隔壁(A-1)のパターン形成に用いられる場合、ネガ型またはポジ型の感光性を有することが好ましい。ネガ型感光性を付与する場合は、光重合開始剤を含有することが好ましく、高精細なパターン形状の隔壁を形成することができる。ネガ型感光性樹脂組成物は、さらに、光重合性化合物を含有することが好ましい。一方、ポジ型感光性を付与する場合はキノンジアジド化合物を含有することが好ましい。 樹脂 When the resin composition of the present invention is used for forming a pattern of a partition wall (A-1) described later, it is preferable that the resin composition has negative or positive photosensitivity. When imparting negative-type photosensitivity, it is preferable to contain a photopolymerization initiator, and a partition wall having a high-definition pattern can be formed. It is preferable that the negative photosensitive resin composition further contains a photopolymerizable compound. On the other hand, when imparting positive-type photosensitivity, it is preferable to contain a quinonediazide compound.
 光重合開始剤は、光(紫外線、電子線を含む)の照射によって分解および/または反応し、ラジカルを発生させるものであればどのようなものでもよい。例えば、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1などのα-アミノアルキルフェノン化合物;2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-フォスフィンオキサイドなどのアシルホスフィンオキサイド化合物;1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)などのオキシムエステル化合物;ベンジルジメチルケタールなどのベンジルケタール化合物;2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトンなどのα-ヒドロキシケトン化合物;ベンゾフェノン、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アルキル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン化合物;2,2-ジエトキシアセトフェノン、2,3-ジエトキシアセトフェノン、4-t-ブチルジクロロアセトフェノン、ベンザルアセトフェノン、4-アジドベンザルアセトフェノンなどのアセトフェノン化合物;2-フェニル-2-オキシ酢酸メチルなどの芳香族ケトエステル化合物;4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(2-エチル)ヘキシル、4-ジエチルアミノ安息香酸エチル、2-ベンゾイル安息香酸メチルなどの安息香酸エステル化合物などが挙げられる。これらを2種以上含有してもよい。 (4) The photopolymerization initiator may be any one that decomposes and / or reacts by irradiation of light (including ultraviolet rays and electron beams) to generate radicals. For example, 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl Α-aminoalkylphenone compounds such as -phenyl) -butan-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1; 2,4,6-trimethylbenzoylphenyl Acylphosphine oxide compounds such as phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) -phosphine oxide 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) oxime 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], 1-phenyl-1,2-butadione-2- (O-methoxycarbonyl) oxime, 1,3- Diphenylpropanetrione-2- (O-ethoxycarbonyl) oxime, ethanone-1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) Oxime ester compounds of the formula: benzyl ketal compounds such as benzyl dimethyl ketal; 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane-1 -One, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1- Α-hydroxy ketone compounds such as roxycyclohexyl-phenyl ketone; benzophenone, 4,4-bis (dimethylamino) benzophenone, 4,4-bis (diethylamino) benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, Benzophenone compounds such as 4-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-methyl-diphenylsulfide, alkylated benzophenone, and 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone; 2 Acetophenone compounds such as 2,2-diethoxyacetophenone, 2,3-diethoxyacetophenone, 4-t-butyldichloroacetophenone, benzalacetophenone and 4-azidobenzalacetophenone; Aromatic ketoester compounds such as methyl-phenyl-2-oxyacetate; ethyl 4-dimethylaminobenzoate, (2-ethyl) hexyl 4-dimethylaminobenzoate, ethyl 4-diethylaminobenzoate, methyl 2-benzoylbenzoate and the like And the like. Two or more of these may be contained.
 本発明の樹脂組成物中における光重合開始剤の含有量は、ラジカル硬化を効果的に進める観点から、固形分中、0.01重量%以上が好ましく、1重量%以上がより好ましい。一方、残留した光重合開始剤の溶出等を抑制し、黄変をより向上させる観点から、光重合開始剤の含有量は、固形分中、20重量%以下が好ましく、10重量%以下がより好ましい。 か ら From the viewpoint of effectively promoting radical curing, the content of the photopolymerization initiator in the resin composition of the present invention is preferably 0.01% by weight or more, more preferably 1% by weight or more, based on the solid content. On the other hand, the content of the photopolymerization initiator in the solid content is preferably 20% by weight or less, and more preferably 10% by weight or less, from the viewpoint of suppressing the dissolution of the remaining photopolymerization initiator and improving yellowing. preferable.
 本発明における光重合性化合物とは、分子中に2つ以上のエチレン性不飽和二重結合を有する化合物をいう。ラジカル重合性のしやすさを考えると、光重合性化合物は、(メタ)アクリル基を有することが好ましい。 光 The photopolymerizable compound in the present invention refers to a compound having two or more ethylenically unsaturated double bonds in a molecule. Considering the ease of radical polymerization, the photopolymerizable compound preferably has a (meth) acryl group.
 光重合性化合物としては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート、ペンタペンタエリスリトールウンデカアクリレート、ペンタペンタエリスリトールドデカアクリレート、トリペンタエリスリトールヘプタメタクリレート、トリペンタエリスリトールオクタメタクリレート、テトラペンタエリスリトールノナメタクリレート、テトラペンタエリスリトールデカメタクリレート、ペンタペンタエリスリトールウンデカメタクリレート、ペンタペンタエリスリトールドデカメタクリレート、ジメチロール-トリシクロデカンジアクリレートなどが挙げられる。これらを2種以上含有してもよい。 Examples of the photopolymerizable compound include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, and trimethylolpropane. Triacrylate, trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, neopentyl glycol diacrylate, 1,4-butanediol diacrylate, 1, 4-butanediol dimethacrylate, 1,6-hexanediol diacrylate, 1, -Nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol pentaacrylate, dipentaerythritol Pentaerythritol hexaacrylate, tripentaerythritol heptaacrylate, tripentaerythritol octaacrylate, tetrapentaerythritol nonaacrylate, tetrapentaerythritol decaacrylate, pentapentaerythritol undecaacrylate, pentapentaerythritol dodecaacrylate, tripentaerythritol hept Methacrylate, tripentaerythritol octa methacrylate, tetra pentaerythritol nona methacrylate, tetra pentaerythritol deca methacrylate, pentaerythritol pentaerythritol undecalactone methacrylate, pentaerythritol pentaerythritol dodeca methacrylate, dimethylol - such as tricyclodecane acrylate. Two or more of these may be contained.
 本発明の樹脂組成物中における光重合性化合物の含有量は、ラジカル硬化を効果的に進める観点から、固形分中、1重量%以上が好ましい。一方、ラジカルの過剰反応を抑制し解像度を向上させる観点から、光重合性化合物の含有量は、固形分中、40重量%以下が好ましい。 光 From the viewpoint of effectively promoting radical curing, the content of the photopolymerizable compound in the resin composition of the present invention is preferably 1% by weight or more based on the solid content. On the other hand, the content of the photopolymerizable compound is preferably 40% by weight or less in the solid content from the viewpoint of suppressing the excessive reaction of radicals and improving the resolution.
 キノンジアジド化合物としては、フェノール性水酸基を有する化合物にナフトキノンジアジドのスルホン酸がエステルで結合した化合物が好ましい。ここで用いられるフェノール性水酸基を有する化合物としては、例えば、BIs-Z、TekP-4HBPA(テトラキスP-DO-BPA)、TrIsP-HAP、TrIsP-PA、BIsRS-2P、BIsRS-3P(以上、商品名、本州化学工業(株)製)、BIR-PC、BIR-PTBP、BIR-BIPC-F(以上、商品名、旭有機材工業(株)製)、4,4’-スルホニルジフェノール、BPFL(商品名、JFEケミカル(株)製)などが挙げられる。キノンジアジド化合物としては、これらフェノール性水酸基を有する化合物に、4-ナフトキノンジアジドスルホン酸または5-ナフトキノンジアジドスルホン酸をエステル結合で導入したものが好ましく、例えば、THP-17、TDF-517(商品名、東洋合成工業(株)製)、SBF-525(商品名、AZエレクトロニックマテリアルズ(株)製)などが挙げられる。 As the quinonediazide compound, a compound in which a sulfonic acid of naphthoquinonediazide is bonded to a compound having a phenolic hydroxyl group by an ester is preferable. Examples of the compound having a phenolic hydroxyl group used here include, for example, BIs-Z, TekP-4HBPA (tetrakis P-DO-BPA), TrIsP-HAP, TrIsP-PA, BIsRS-2P, BIsRS-3P (all commercial products) Name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-PC, BIR-PTBP, BIR-BIPC-F (all trade names, manufactured by Asahi Organic Materials Co., Ltd.), 4,4'-sulfonyldiphenol, BPFL (Trade name, manufactured by JFE Chemical Corporation). As the quinonediazide compound, a compound obtained by introducing 4-naphthoquinonediazidesulfonic acid or 5-naphthoquinonediazidesulfonic acid to the compound having a phenolic hydroxyl group through an ester bond is preferable. For example, THP-17, TDF-517 (trade names, Toyo Gosei Co., Ltd.) and SBF-525 (trade name, manufactured by AZ Electronic Materials Co., Ltd.).
 本発明の樹脂組成物中におけるキノンジアジド化合物の含有量は、感度を向上させる観点から、固形分中、0.5重量%以上が好ましく、1重量%以上がより好ましい。一方、キノンジアジド化合物の含有量は、解像度を向上させる観点から、固形分中、25重量%以下が好ましく、20重量%以下がより好ましい。 か ら The content of the quinonediazide compound in the resin composition of the present invention is preferably 0.5% by weight or more, more preferably 1% by weight or more, based on the solid content, from the viewpoint of improving sensitivity. On the other hand, the content of the quinonediazide compound is preferably 25% by weight or less, more preferably 20% by weight or less in the solid content, from the viewpoint of improving the resolution.
 溶媒は、樹脂組成物の粘度を塗布に適した範囲に調整し、隔壁の均一性を向上させる機能を有する。溶媒としては、大気圧下の沸点が150℃を超えて250℃以下の溶媒と、150℃以下の溶媒を組み合わせることが好ましい。 (4) The solvent has a function of adjusting the viscosity of the resin composition to a range suitable for coating and improving the uniformity of the partition walls. As the solvent, it is preferable to combine a solvent having a boiling point at atmospheric pressure of more than 150 ° C. and 250 ° C. or less with a solvent having a boiling point of 150 ° C. or less.
 溶媒としては、例えば、エタノール、プロパノール、イソプロパノール、ジアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなどのエーテル類;メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族あるいは脂肪族炭化水素、γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなどを挙げることができる。これらを2種以上含有してもよい。これらの中でも、塗布性の観点から、大気圧下の沸点が150℃を超えて250℃以下の溶媒としてジアセトンアルコールと、150℃以下の溶媒としてプロピレングリコールモノメチルエーテルを組み合わせることが好ましい。 Examples of the solvent include alcohols such as ethanol, propanol, isopropanol, and diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl. Ethers such as ether, propylene glycol monopropyl ether and propylene glycol monobutyl ether; ketones such as methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone and cyclopentanone; dimethylformamide, dimethylacetamide and the like Amides; ethyl acetate, propyl ace Acetates such as acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate and butyl lactate Aromatic or aliphatic hydrocarbons such as toluene, xylene, hexane and cyclohexane, γ-butyrolactone, N-methyl-2-pyrrolidone, dimethylsulfoxide and the like. Two or more of these may be contained. Among these, it is preferable to combine diacetone alcohol as a solvent having a boiling point at atmospheric pressure of more than 150 ° C. and 250 ° C. or less and propylene glycol monomethyl ether as a solvent of 150 ° C. or less from the viewpoint of applicability.
 溶媒の含有量は、塗布方法などに応じて任意に設定することができる。例えば、スピンコーティングにより膜形成を行う場合には、溶媒の含有量は、樹脂組成物中、50重量%以上、95重量%以下とすることが一般的である。 The content of the solvent can be arbitrarily set according to the coating method and the like. For example, when a film is formed by spin coating, the content of the solvent is generally 50% by weight or more and 95% by weight or less in the resin composition.
 本発明の樹脂組成物は、さらに、リン原子を有する配位性化合物(以下、「配位性化合物」と記載する場合がある)を含有することが好ましい。配位性化合物は、樹脂組成物中の有機金属化合物に配位し、有機金属化合物の溶媒への溶解性を向上させて有機金属化合物の分解を促進し、得られる隔壁のOD値をより向上させることができる。配位性化合物としては、例えば、トリフェニルホスフィン、トリ-t-ブチルホスフィン、トリメチルホスフィン、トリシクロヘキシルホスフィン、テトラフルオロホウ酸トリ-t-ブチルホスフィン、トリ(2-フリル)ホスフィン、トリス(1-アダマンチル)ホスフィン、トリス(ジエチルアミノ)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(O-トリル)ホスフィンなどが挙げられる。これらを2種以上含有してもよい。本発明の樹脂組成物中における配位性化合物の含有量は、有機金属化合物に対して0.5~3.0モル当量が好ましい。 樹脂 The resin composition of the present invention preferably further contains a coordinating compound having a phosphorus atom (hereinafter, sometimes referred to as “coordinating compound”). The coordinating compound coordinates with the organometallic compound in the resin composition, improves the solubility of the organometallic compound in the solvent, promotes the decomposition of the organometallic compound, and further improves the OD value of the obtained partition wall. Can be done. Examples of the coordinating compound include triphenylphosphine, tri-t-butylphosphine, trimethylphosphine, tricyclohexylphosphine, tri-t-butylphosphine tetrafluoroborate, tri (2-furyl) phosphine, tris (1- (Adamantyl) phosphine, tris (diethylamino) phosphine, tris (4-methoxyphenyl) phosphine, tris (O-tolyl) phosphine and the like. Two or more of these may be contained. The content of the coordinating compound in the resin composition of the present invention is preferably 0.5 to 3.0 molar equivalents relative to the organometallic compound.
 本発明の樹脂組成物は、さらに、白色顔料および/または黒色顔料を含有することが好ましい。白色顔料は、隔壁の反射率をより向上させる機能を有する。黒色顔料は、OD値を調整する機能を有する。 樹脂 The resin composition of the present invention preferably further contains a white pigment and / or a black pigment. The white pigment has a function of further improving the reflectance of the partition walls. The black pigment has a function of adjusting the OD value.
 白色顔料としては、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、硫酸バリウム、これらの複合化合物などが挙げられる。これらを2種以上含有してもよい。これらの中でも、反射率が高く工業的利用が容易な二酸化チタンが好ましい。 Examples of the white pigment include titanium dioxide, zirconium oxide, zinc oxide, barium sulfate, and composite compounds thereof. Two or more of these may be contained. Among these, titanium dioxide, which has a high reflectance and is easily used industrially, is preferable.
 二酸化チタンの結晶構造は、アナターゼ型、ルチル型およびブルッカイト型に分類される。これらの中でも、光触媒活性が低いことから、ルチル型酸化チタンが好ましい。 チ タ ン The crystal structure of titanium dioxide is classified into anatase type, rutile type and brookite type. Among these, rutile-type titanium oxide is preferred because of its low photocatalytic activity.
 白色顔料には、表面処理が施されていてもよい。Al、SiおよびZrから選ばれた金属による表面処理が好ましく、形成した隔壁の耐光性および耐熱性を向上させることができる。 The surface treatment may be applied to the white pigment. Surface treatment with a metal selected from Al, Si and Zr is preferable, and the light resistance and heat resistance of the formed partition wall can be improved.
 白色顔料のメジアン径は、隔壁の反射率をより向上させる観点から、100~500nmが好ましい。ここで、白色顔料のメジアン径は、粒度分布測定装置(N4-PLUS;ベックマン・コールター(株)製)などを用いてレーザー回折法により測定された粒度分布から算出することができる。 メ The median diameter of the white pigment is preferably 100 to 500 nm from the viewpoint of further improving the reflectance of the partition walls. Here, the median diameter of the white pigment can be calculated from a particle size distribution measured by a laser diffraction method using a particle size distribution measuring device (N4-PLUS; manufactured by Beckman Coulter, Inc.) or the like.
 白色顔料として好ましく用いられる二酸化チタン顔料としては、例えば、R960;デュポン(株)製(ルチル型、SiO/Al処理、平均一次粒子径210nm)、CR-97;石原産業(株)製(ルチル型、Al/ZrO処理、平均一次粒子径250nm)、JR-301;テイカ(株)製(ルチル型、Al処理、平均一次粒子径300nm)、JR-405;テイカ(株)製(ルチル型、Al処理、平均一次粒子径210nm)、JR-600A;テイカ(株)(ルチル型、Al処理、平均一次粒子径250nm)、JR-603;テイカ(株)(ルチル型、Al/ZrO処理、平均一次粒子径280nm)等が挙げられる。これらを2種以上含有してもよい。 Examples of the titanium dioxide pigment preferably used as a white pigment include R960; manufactured by DuPont (rutile type, SiO 2 / Al 2 O 3 treatment, average primary particle diameter 210 nm), CR-97; Ishihara Sangyo Co., Ltd. (Rutile type, Al 2 O 3 / ZrO 2 treatment, average primary particle diameter 250 nm), JR-301; Teika Co., Ltd. (rutile type, Al 2 O 3 treatment, average primary particle diameter 300 nm), JR-405 Manufactured by Teica Co., Ltd. (rutile type, Al 2 O 3 treatment, average primary particle diameter 210 nm), JR-600A; Teica Co., Ltd. (rutile type, Al 2 O 3 treatment, average primary particle diameter 250 nm), JR- 603; Teica Co., Ltd. (rutile type, Al 2 O 3 / ZrO 2 treatment, average primary particle diameter 280 nm) and the like. Two or more of these may be contained.
 樹脂組成物における白色顔料の含有量は、反射率をより向上させる観点から、固形分中の20重量%以上が好ましく、30重量%以上がより好ましい。一方、隔壁の表面平滑性を向上させる観点から、白色顔料の含有量は、固形分中の60重量%以下が好ましく、55重量%以下がより好ましい。 含有 The content of the white pigment in the resin composition is preferably 20% by weight or more, more preferably 30% by weight or more in the solid content from the viewpoint of further improving the reflectance. On the other hand, from the viewpoint of improving the surface smoothness of the partition walls, the content of the white pigment is preferably 60% by weight or less, more preferably 55% by weight or less based on the solid content.
 黒色顔料としては、例えば、黒色有機顔料、混色有機顔料、黒色無機顔料等が挙げられる。 Examples of the black pigment include a black organic pigment, a mixed color organic pigment, and a black inorganic pigment.
 黒色有機顔料としては、例えば、カーボンブラック、ペリレンブラック、アニリンブラック、ベンゾフラノン系顔料などが挙げられる。これらは、樹脂で被覆されていてもよい。 Examples of the black organic pigment include carbon black, perylene black, aniline black, and benzofuranone pigments. These may be coated with a resin.
 混色有機顔料としては、例えば、赤、青、緑、紫、黄色、マゼンダおよびシアン等から選ばれた2種以上の顔料を混合して疑似黒色化したものが挙げられる。これらの中でも、適度に高いOD値とパターン加工性を両立する観点から、赤色顔料と青色顔料との混合顔料が好ましい。混合顔料における赤色顔料と青色顔料の重量比は、20/80~80/20が好ましく、30/70~70/30がより好ましい。代表的な顔料の具体例をカラーインデックス(CI)ナンバーで示すと、次のようなものが挙げられる。赤色顔料としては、例えば、ピグメントレッド(以下PRと略す)9、PR48、PR97、PR122、PR123、PR144、PR149、PR166、PR168、PR177、PR179、PR180、PR192、PR209、PR215、PR216、PR217、PR220、PR223、PR224、PR226、PR227、PR228、PR240、PR254などが挙げられる。これらを2種以上含有してもよい。青色顔料としては、例えば、ピグメントブルー(以下PBと略す)15、PB15:3、PB15:4、PB15:6、PB22、PB60、PB64などが挙げられる。これらを2種以上含有してもよい。 Examples of the mixed color organic pigment include those obtained by mixing two or more kinds of pigments selected from red, blue, green, violet, yellow, magenta, cyan, and the like, to give a pseudo black color. Among these, a mixed pigment of a red pigment and a blue pigment is preferable from the viewpoint of achieving both an appropriately high OD value and pattern processability. The weight ratio of the red pigment to the blue pigment in the mixed pigment is preferably from 20/80 to 80/20, more preferably from 30/70 to 70/30. Specific examples of typical pigments represented by color index (CI) numbers include the following. Examples of red pigments include Pigment Red (hereinafter abbreviated as PR) 9, PR48, PR97, PR122, PR123, PR144, PR149, PR166, PR168, PR177, PR179, PR180, PR192, PR209, PR215, PR216, PR217, PR220. , PR223, PR224, PR226, PR227, PR228, PR240, PR254, and the like. Two or more of these may be contained. Examples of the blue pigment include Pigment Blue (hereinafter abbreviated as PB) 15, PB15: 3, PB15: 4, PB15: 6, PB22, PB60, and PB64. Two or more of these may be contained.
 黒色無機顔料としては、例えば、グラファイト;チタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム、銀、金、白金、パラジウム等の金属の微粒子;金属酸化物;金属複合酸化物;金属硫化物;金属窒化物;金属酸窒化物;金属炭化物などが挙げられる。これらを2種以上含有してもよい。 Examples of black inorganic pigments include graphite; fine particles of metals such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, silver, gold, platinum and palladium; metal oxides; Metal sulfide; metal nitride; metal oxynitride; metal carbide and the like. Two or more of these may be contained.
 以上の黒色顔料の中でも、高い遮光性を有することから、窒化チタン、窒化ジルコニウム、カーボンブラック、および赤色顔料と青色顔料との重量比20/80~80/20の混合顔料から選ばれた顔料が好ましい。さらに、隔壁(A-1)のテーパー角度を後述の好ましい範囲に調整しやすい観点から、窒化チタン、窒化ジルコニウム、および赤色顔料と青色顔料との重量比20/80~80/20の混合顔料から選ばれた顔料がより好ましい。 Among the above black pigments, pigments selected from titanium nitride, zirconium nitride, carbon black, and a mixed pigment of a red pigment and a blue pigment in a weight ratio of 20/80 to 80/20 because of having high light-shielding properties, preferable. Further, from the viewpoint of easily adjusting the taper angle of the partition wall (A-1) to a preferable range described below, titanium nitride, zirconium nitride, and a mixed pigment having a weight ratio of a red pigment and a blue pigment of 20/80 to 80/20 are used. The selected pigment is more preferred.
 樹脂組成物における黒色顔料の含有量は、反射率およびODを前述の範囲に調整して隣接画素における光の混色をより抑制する観点から、固形分中の0.01重量%以上が好ましく、0.05重量%以上がより好ましい。一方、反射率およびODを前述の範囲に調整する観点から、黒色顔料の含有量は、固形分中の5重量%以下が好ましく、3重量%以下がより好ましい。 The content of the black pigment in the resin composition is preferably 0.01% by weight or more in the solid content from the viewpoint of adjusting the reflectance and the OD to the above-mentioned ranges to further suppress the color mixing of light in adjacent pixels. 0.05% by weight or more is more preferable. On the other hand, from the viewpoint of adjusting the reflectance and the OD to the above ranges, the content of the black pigment is preferably 5% by weight or less, more preferably 3% by weight or less in the solid content.
 本発明の樹脂組成物は、さらに、光塩基発生剤を含有することが好ましい。光塩基発生剤を含有することにより、露光工程において塩基を発生して、樹脂組成物中の有機金属化合物の分解・凝集を促進することから、有機金属化合物をより効率よく黒色粒子または黄色粒子に変換し、得られる隔壁のOD値をより向上させることができる。 樹脂 The resin composition of the present invention preferably further contains a photobase generator. By containing a photobase generator, a base is generated in the exposure step, and the decomposition / aggregation of the organometallic compound in the resin composition is promoted, so that the organometallic compound is more efficiently converted into black particles or yellow particles. By converting, the OD value of the obtained partition wall can be further improved.
 光塩基発生剤は、光(紫外線、電子線を含む)の照射によって分解および/または反応し、塩基を発生させるものであればどのようなものでもよい。例えば、2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザシクロ[4,4,0]デカ-5-エン、N-シクロヘキシルカルバミン酸1-(アントラキノン-2-イル)エチル、N、N-ジエチルカルバミン酸9-アントリルメチル、N-シクロヘキシルカルバミン酸9-アントリルメチル、1-カルボン酸9-アントリルメチルピペリジン、N,N-ジシクロヘキシルカルバミン酸9-アントリルメチル、N,N-ジシクロヘキシルカルバミン酸1-(アントラキノン-2-イル)エチル、プロピオン酸シクロヘキシルアンモニウム2-(3-ベンゾイルフェニル)、ブチルトリフェニルボロン酸1,2-ジシクロヘキシルー4,4,5,5、-テトラメチルビグアニジニウム、2-(3-ベンゾイルフェニル)プロピオン酸1,2-ジイソプロピル-3-[ビス(ジメチルアミノ)メチレン]グアニジニウム、(2-ニトロフェニル)メチル4-ヒドロキシピペリジン-1-カルボン酸、2-(3-ベンゾイルフェニル)プロピオン酸グアニジニウムなどが挙げられる。これらを2種以上用いてもよい。 (4) The photobase generator is not particularly limited as long as it can be decomposed and / or reacted by irradiation of light (including ultraviolet rays and electron beams) to generate a base. For example, 1,5,7-triazacyclo [4,4,0] dec-5-ene 2- (9-oxoxanthen-2-yl) propionate, 1- (anthraquinone-2-yl) N-cyclohexylcarbamate Ethyl, 9-anthrylmethyl N, N-diethylcarbamate, 9-anthrylmethyl N-cyclohexylcarbamate, 9-anthrylmethylpiperidine 1-carboxylate, 9-anthrylmethyl N, N-dicyclohexylcarbamate, 1- (anthraquinone-2-yl) ethyl N, N-dicyclohexylcarbamate, cyclohexylammonium 2- (3-benzoylphenyl) propionate, 1,2- dicyclohexylbutyl butyltriphenylboronate 4,4,5,5, -Tetramethylbiguanidinium, 2- (3-benzoylphenyl) 1,2-diisopropyl-3- [bis (dimethylamino) methylene] guanidinium lopionate, (2-nitrophenyl) methyl 4-hydroxypiperidine-1-carboxylic acid, guanidinium 2- (3-benzoylphenyl) propionate and the like No. Two or more of these may be used.
 本発明の樹脂組成物中における光塩基発生剤の含有量は、OD値をより向上させる観点から、固形分中の0.5重量%以上が好ましい。一方、光塩基発生剤の含有量は、解像度を向上させる観点から、固形分中の2.0重量%以下が好ましい。 含有 From the viewpoint of further improving the OD value, the content of the photobase generator in the resin composition of the present invention is preferably 0.5% by weight or more based on the solid content. On the other hand, the content of the photobase generator is preferably 2.0% by weight or less in the solid content from the viewpoint of improving the resolution.
 本発明の樹脂組成物は、撥液化合物を含有してもよい。撥液化合物とは、樹脂組成物に水や有機溶媒をはじく性質(撥液性能)を付与する化合物である。このような性質を有する化合物であれば特に限定されないが、具体的には、フルオロアルキル基を有する化合物が好ましく用いられる。撥液化合物を含有することにより、隔壁(A-1)形成後に、隔壁の頂部に撥液性能を付与することができる。それにより、例えば、後述する(B)色変換発光材料を含有する画素を形成する際に、それぞれの画素に、組成の異なる色変換発光材料を、容易に塗り分けることができる。 樹脂 The resin composition of the present invention may contain a liquid repellent compound. The liquid-repellent compound is a compound that imparts the property of repelling water or an organic solvent (liquid-repellent performance) to the resin composition. There is no particular limitation as long as it is a compound having such properties, but specifically, a compound having a fluoroalkyl group is preferably used. By containing the liquid repellent compound, liquid repellency can be imparted to the top of the partition after the formation of the partition (A-1). Thereby, for example, when forming a pixel containing a color conversion light emitting material (B) described later, it is possible to easily apply a color conversion light emitting material having a different composition to each pixel.
 撥液化合物としては、例えば、1,1,2,2-テトラフロロオクチル(1,1,2,2-テトラフロロプロピル)エーテル、1,1,2,2-テトラフロロオクチルヘキシルエーテル、オクタエチレングリコールジ(1,1,2,2-テトラフロロブチル)エーテル、ヘキサエチレングリコール(1,1,2,2,3,3-ヘキサフロロペンチル)エーテル、オクタプロピレングリコールジ(1,1,2,2-テトラフロロブチル)エーテル、ヘキサプロピレングリコールジ(1,1,2,2,3,3-ヘキサフロロペンチル)エーテル、パーフロロドデシルスルホン酸ナトリウム、1,1,2,2,8,8,9,9,10,10-デカフロロドデカン、1,1,2,2,3,3-ヘキサフロロデカン、N-[3-(パーフルオロオクタンスルホンアミド)プロピル]-N,N’-ジメチル-N-カルボキシメチレンアンモニウムベタイン、パーフルオロアルキルスルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル-N-エチルスルホニルグリシン塩、リン酸ビス(N-パーフルオロオクチルスルホニル-N-エチルアミノエチル)、モノパーフルオロアルキルエチルリン酸エステルなどの末端、主鎖および/または側鎖にフルオロアルキルまたはフルオロアルキレン基を有する化合物などが挙げられる。また、市販の撥液化合物としては、“メガファック”(登録商標)F142D、F172、F173、F183、F444、F477(以上、大日本インキ化学工業(株)製)、エフトップEF301、303、352(新秋田化成(株)製)、フロラードFC-430、FC-431(住友スリーエム(株)製))、“アサヒガード”(登録商標)AG710、“サーフロン”(登録商標)S-382、SC-101、SC-102、SC-103、SC-104、SC-105、SC-106(旭硝子(株)製)、BM-1000、BM-1100(裕商(株)製)、NBX-15、FTX-218、DFX-18((株)ネオス製)などが挙げられる。これらを2種以上含有してもよい。これらの中でも、反応性が高く、樹脂と強固な結合を形成することができることから、光重合性基を有するものがより好ましい。フッ素原子および光重合性基を有する撥液化合物としては、例えば、“メガファック”(登録商標)RS-76-E、RS-56、RS-72-k、RS-75、RS-76-E、RS-76-NS、RS-76、RS-90(以上、商品名、DIC(株)製)等が挙げられる。なお、この場合、ネガ型感光性樹脂組成物の光硬化物からなる隔壁(A-1)中においては、光重合性基は光重合されていてもよい。 Examples of the liquid repellent compound include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, 1,1,2,2-tetrafluorooctylhexyl ether, and octaethylene. Glycol di (1,1,2,2-tetrafluorobutyl) ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl) ether, octapropylene glycol di (1,1,2,2) 2-tetrafluorobutyl) ether, hexapropylene glycol di (1,1,2,2,3,3-hexafluoropentyl) ether, sodium perfluorododecylsulfonate, 1,1,2,2,8,8, 9,9,10,10-decafluorododecane, 1,1,2,2,3,3-hexafluorodecane, N- [3- (perfluoroocta Sulfonamido) propyl] -N, N′-dimethyl-N-carboxymethyleneammonium betaine, perfluoroalkylsulfonamidopropyltrimethylammonium salt, perfluoroalkyl-N-ethylsulfonylglycine salt, bis (N-perfluorooctyl phosphate) Compounds having a fluoroalkyl or fluoroalkylene group at the terminal, main chain and / or side chain, such as sulfonyl-N-ethylaminoethyl), monoperfluoroalkylethyl phosphate, and the like. Commercially available liquid repellent compounds include "MegaFac" (registered trademark) F142D, F172, F173, F183, F444, F477 (all manufactured by Dainippon Ink and Chemicals, Inc.), and F-Top EF301, 303, and 352. (Manufactured by Shin-Akita Chemical Co., Ltd.), Florado FC-430, FC-431 (manufactured by Sumitomo 3M Limited), "Asahigard" (registered trademark) AG710, "Surflon" (registered trademark) S-382, SC -101, SC-102, SC-103, SC-104, SC-105, SC-106 (manufactured by Asahi Glass Co., Ltd.), BM-1000, BM-1100 (manufactured by Yusho Co., Ltd.), NBX-15, FTX-218, DFX-18 (manufactured by Neos Corporation) and the like. Two or more of these may be contained. Among these, those having a photopolymerizable group are more preferable because they have high reactivity and can form a strong bond with the resin. Examples of the liquid repellent compound having a fluorine atom and a photopolymerizable group include “MegaFac” (registered trademark) RS-76-E, RS-56, RS-72-k, RS-75, RS-76-E , RS-76-NS, RS-76, and RS-90 (trade names, manufactured by DIC Corporation) and the like. In this case, the photopolymerizable group may be photopolymerized in the partition wall (A-1) made of the photocurable negative photosensitive resin composition.
 隔壁の撥液性能を向上させ、インクジェット塗布性を向上させる観点から、樹脂組成物における撥液化合物の含有量は、固形分中の0.01重量%以上が好ましく、0.1重量%以上がより好ましい。一方、樹脂や白色顔料との相溶性を向上させる観点から、撥液化合物の含有量は、固形分中の10重量%以下が好ましく、5重量%以下がより好ましい。 From the viewpoint of improving the liquid repellency of the partition walls and improving ink jet coating properties, the content of the liquid repellent compound in the resin composition is preferably 0.01% by weight or more, and more preferably 0.1% by weight or more based on the solid content. More preferred. On the other hand, from the viewpoint of improving the compatibility with the resin or the white pigment, the content of the liquid repellent compound is preferably 10% by weight or less, more preferably 5% by weight or less in the solid content.
 また、本発明の樹脂組成物は、必要に応じて、紫外線吸収剤、重合禁止剤、界面活性剤、密着性改良剤などを含有してもよい。 樹脂 Further, the resin composition of the present invention may contain, if necessary, an ultraviolet absorber, a polymerization inhibitor, a surfactant, an adhesion improver, and the like.
 本発明の樹脂組成物中に紫外線吸収剤を含有することにより、耐光性を向上させ、解像度をより向上させることができる。紫外線吸収剤としては、透明性および非着色性の観点から、2-(2H-ベンゾトリアゾール-2-イル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-tert-ペンチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールなどのベンゾトリアゾール系化合物;2-ヒドロキシ-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;2-(4,6-ジフェニル-1,3,5トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノールなどのトリアジン系化合物などが好ましく用いられる。 に よ り By containing an ultraviolet absorber in the resin composition of the present invention, light resistance can be improved and resolution can be further improved. Examples of the ultraviolet absorber include 2- (2H-benzotriazol-2-yl) phenol and 2- (2H-benzotriazol-2-yl) -4,6-tert-pentyl from the viewpoint of transparency and non-coloring. Phenol, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, 2 (2H-benzotriazol-2-yl) -6-dodecyl-4- Benzotriazole compounds such as methylphenol, 2- (2′-hydroxy-5′-methacryloxyethylphenyl) -2H-benzotriazole; benzophenone compounds such as 2-hydroxy-4-methoxybenzophenone; Tris such as 6-diphenyl-1,3,5 triazin-2-yl) -5-[(hexyl) oxy] -phenol Such as Jin compounds are preferably used.
 本発明の樹脂組成物中に重合禁止剤を含有することにより、解像度をより向上させることができる。重合禁止剤としては、例えば、ジ-t-ブチルヒドロキシトルエン、ブチルヒドロキシアニソール、ハイドロキノン、4-メトキシフェノール、1,4-ベンゾキノン、t-ブチルカテコールが挙げられる。また、市販の重合禁止剤としては、“IRGANOX”(登録商標)1010、1035、1076、1098、1135、1330、1726、1425、1520、245、259、3114、565、295(以上、商品名、BASFジャパン(株)製)などが挙げられる。これらを2種以上含有してもよい。 解像度 The resolution can be further improved by including the polymerization inhibitor in the resin composition of the present invention. Examples of the polymerization inhibitor include di-t-butylhydroxytoluene, butylhydroxyanisole, hydroquinone, 4-methoxyphenol, 1,4-benzoquinone, and t-butylcatechol. As a commercially available polymerization inhibitor, “IRGANOX” (registered trademark) 1010, 1035, 1076, 1098, 1135, 1330, 1726, 1425, 1520, 245, 259, 3114, 565, 295 (all trade names, BASF Japan Co., Ltd.). Two or more of these may be contained.
 本発明の樹脂組成物中に界面活性剤を含有することにより、塗布時のフロー性を向上させることができる。界面活性剤としては、例えば、“メガファック”(登録商標)F142D、F172、F173、F183、F445、F470、F475、F477(以上、商品名、大日本インキ化学工業(株)製)、NBX-15、FTX-218(以上、商品名、(株)ネオス製)などのフッ素系界面活性剤;“BYK”(登録商標)-333、301、331、345、307(以上、商品名、ビックケミー・ジャパン(株)製)などのシリコーン系界面活性剤;ポリアルキレンオキシド系界面活性剤;ポリ(メタ)アクリレート系界面活性剤などが挙げられる。これらを2種以上含有してもよい。 フ ロ ー By including a surfactant in the resin composition of the present invention, the flow property during coating can be improved. Examples of the surfactant include “MegaFac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475, F477 (all trade names, manufactured by Dainippon Ink and Chemicals, Inc.), NBX- 15. Fluorinated surfactants such as FTX-218 (trade name, manufactured by Neos Co., Ltd.); "BYK" (registered trademark) -333, 301, 331, 345, 307 (trade name, BYK Chemie Co., Ltd.) Japan-made), polyalkylene oxide-based surfactants, poly (meth) acrylate-based surfactants, and the like. Two or more of these may be contained.
 本発明の樹脂組成物中に密着性改良剤を含有することにより、下地基板との密着性が向上し、信頼性の高い隔壁を得ることができる。密着性改良剤としては、例えば、脂環式エポキシ化合物や、シランカップリング剤などが挙げられる。これらの中でも、脂環式エポキシ化合物は、耐熱性が高いことから、加熱後の色変化をより抑制することができる。 こ と By containing the adhesion improving agent in the resin composition of the present invention, the adhesion to the underlying substrate is improved, and a highly reliable partition wall can be obtained. Examples of the adhesion improver include an alicyclic epoxy compound and a silane coupling agent. Among these, the alicyclic epoxy compound has high heat resistance, so that the color change after heating can be further suppressed.
 脂環式エポキシ化合物としては、例えば、3’,4’-エポキシシクロヘキシメチル-3,4-エポキシシクロヘキサンカルボキシレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、ε-カプロラクトン変性3’,4’-エポキシシクロヘキシルメチル3’,4’-エポキシシクロヘキサンカルボキシレート、1,2-エポキシ-4-ビニルシクロヘキサン、ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン、3,4-エポキシシクロヘキシルメチルメタアクリレート、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールEジグリシジルエーテル、水添ビスフェノールAビス(プロピレングリコールグリシジルエーテル)エーテル、水添ビスフェノールAビス(エチレングリコールグリシジルエーテル)エーテル、1,4-シクロヘキサンジカルボン酸ジグリシジル、1,4-シクロヘキサンジメタノールジグリシジルエーテル等が挙げられる。これらを2種以上含有してもよい。 Examples of the alicyclic epoxy compound include, for example, 3,2-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate and 1,2-epoxy-cyclohexane of 2,2-bis (hydroxymethyl) -1-butanol. 4- (2-oxiranyl) cyclohexane adduct, ε-caprolactone-modified 3 ′, 4′-epoxycyclohexylmethyl 3 ′, 4′-epoxycyclohexanecarboxylate, 1,2-epoxy-4-vinylcyclohexane, butanetetracarboxylic acid Tetra (3,4-epoxycyclohexylmethyl) -modified ε-caprolactone, 3,4-epoxycyclohexylmethyl methacrylate, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol E diglycidyl ether Hydrogenated bisphenol A bis (propylene glycol glycidyl ether) ether, hydrogenated bisphenol A bis (ethylene glycol glycidyl ether) ether, diglycidyl 1,4-cyclohexanedicarboxylate, 1,4-cyclohexanedimethanol diglycidyl ether, and the like. Can be Two or more of these may be contained.
 本発明の樹脂組成物中における密着性改良剤の含有量は、下地基板との密着性をより向上させる観点から、固形分中の0.1重量%以上が好ましく、1重量%以上がより好ましい。一方、密着性改良剤の含有量は、加熱による色変化をより抑制する観点から、固形分中の20重量%以下が好ましく、10重量%以下がより好ましい。 The content of the adhesion improver in the resin composition of the present invention is preferably 0.1% by weight or more, more preferably 1% by weight or more in the solid content, from the viewpoint of further improving the adhesion to the underlying substrate. . On the other hand, the content of the adhesion improver is preferably 20% by weight or less, more preferably 10% by weight or less in the solid content, from the viewpoint of further suppressing color change due to heating.
 本発明の樹脂組成物は、例えば、前述の樹脂、有機金属化合物、光重合開始剤またはキノンジアジド化合物、溶媒および必要に応じてその他成分を混合することにより製造することができる。 樹脂 The resin composition of the present invention can be produced, for example, by mixing the aforementioned resin, an organometallic compound, a photopolymerization initiator or a quinonediazide compound, a solvent, and other components as necessary.
 次に、本発明の遮光膜について説明する。本発明の遮光膜は、前述の本発明の樹脂組成物を硬化して得られる。本発明の遮光膜は、後述の隔壁(A-1)の他、カバー基材用加飾パターンなどのOGSタイプのタッチパネルにおける遮光パターンとして好適に用いることができる。遮光膜の膜厚は、10μm以上が好ましい。 Next, the light-shielding film of the present invention will be described. The light-shielding film of the present invention is obtained by curing the above-described resin composition of the present invention. The light-shielding film of the present invention can be suitably used as a light-shielding pattern in an OGS-type touch panel such as a decorative pattern for a cover substrate, in addition to a partition wall (A-1) described later. The thickness of the light-shielding film is preferably 10 μm or more.
 次に、本発明の遮光膜の製造方法について、例を挙げて説明する。本発明の遮光膜の製造方法は、下地基板上に本発明の樹脂組成物を塗布し、乾燥して乾燥膜を得る製膜工程、得られた乾燥膜をパターン露光する露光工程、露光後の乾燥膜における現像液に可溶な部分を溶解除去する現像工程および現像後の乾燥膜を加熱することにより硬化させる加熱工程を有することが好ましい。 Next, the method for producing the light-shielding film of the present invention will be described with reference to examples. The method for producing a light-shielding film of the present invention includes a step of applying the resin composition of the present invention on an undersubstrate and drying the film to obtain a dried film, an exposing step of pattern-exposing the obtained dried film, It is preferable to have a developing step of dissolving and removing a portion of the dried film that is soluble in the developer, and a heating step of heating the dried film to cure the dried film.
 本発明の遮光膜の製造方法は、前記加熱工程において、現像後の膜を120℃以上250℃以下の温度で加熱することにより、膜厚10μmあたりのOD値を0.3以上上昇させることを特徴とする。加熱工程時の加熱温度は、OD値をより向上する観点から、150℃以上が好ましく、180℃以上がより好ましい。加熱工程時の加熱温度は、加熱する膜のクラック発生を抑制する観点から、250℃以下が好ましく、240℃以下がより好ましい。加熱時間は15分間~2時間が好ましい。本発明の樹脂組成物から形成される膜は、露光時にはOD値が低く、かつ、パターン形成後にOD値が上昇することから、露光工程においては底部まで十分に光硬化させて、後述の好ましいテーパー角度を有する隔壁を得ることができる。加えて、パターン形成後の、OD値が高いことから高い反射率と遮光性を両立した隔壁を得ることができる。 In the method for producing a light-shielding film of the present invention, in the heating step, the OD value per 10 μm of film thickness is increased by 0.3 or more by heating the film after development at a temperature of 120 ° C. or more and 250 ° C. or less. Features. The heating temperature in the heating step is preferably 150 ° C. or higher, and more preferably 180 ° C. or higher, from the viewpoint of further improving the OD value. The heating temperature in the heating step is preferably 250 ° C. or lower, more preferably 240 ° C. or lower, from the viewpoint of suppressing the occurrence of cracks in the film to be heated. The heating time is preferably from 15 minutes to 2 hours. The film formed from the resin composition of the present invention has a low OD value at the time of exposure, and the OD value increases after pattern formation. An angled partition can be obtained. In addition, since the OD value after pattern formation is high, it is possible to obtain a partition having both high reflectance and light shielding properties.
 前記製膜工程における樹脂組成物の塗布方法としては、例えば、スリットコート法、スピンコート法などが挙げられる。乾燥装置としては、例えば、熱風オーブンやホットプレートなどが挙げられる。乾燥時間は80~120℃が好ましく、乾燥時間は1~15分間が好ましい。 塗布 As a method of applying the resin composition in the film forming step, for example, a slit coating method, a spin coating method and the like can be mentioned. Examples of the drying device include a hot air oven and a hot plate. The drying time is preferably from 80 to 120 ° C., and the drying time is preferably from 1 to 15 minutes.
 露光工程は、露光により乾燥膜の必要な部分を光硬化させて、または、乾燥膜の不要な部分を光分解させて、乾燥膜の任意の部分を、現像液に可溶とする工程である。露光工程においては、所定の開口部を有するフォトマスクを介して露光してもよいし、フォトマスクを用いずに、レーザー光等を用いて任意のパターンを直接描画してもよい。 The exposure step is a step of photo-curing a necessary portion of the dried film by exposure or photo-decomposing an unnecessary portion of the dried film to make any portion of the dried film soluble in a developer. . In the exposure step, exposure may be performed through a photomask having a predetermined opening, or an arbitrary pattern may be directly drawn using a laser beam or the like without using a photomask.
 露光装置としては、例えば、プロキシミティ露光機が挙げられる。露光工程において照射する活性光線としては、例えば、近赤外線、可視光線、紫外線が挙げられ、紫外線が好ましい。また、その光源としては、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプ、殺菌灯などが挙げられ、超高圧水銀灯が好ましい。 As an exposure apparatus, for example, a proximity exposure machine can be mentioned. The actinic rays irradiated in the exposure step include, for example, near infrared rays, visible rays, and ultraviolet rays, and ultraviolet rays are preferable. Examples of the light source include a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a halogen lamp, and a germicidal lamp, and an ultra-high-pressure mercury lamp is preferable.
 露光条件は露光する乾燥膜の厚さにより適宜選択することができる。一般的に、1~100mW/cmの出力の超高圧水銀灯を用いて、1~10,000mJ/cmの露光量で露光することが好ましい。 Exposure conditions can be appropriately selected depending on the thickness of the dried film to be exposed. In general, it is preferable to perform exposure with an exposure amount of 1 to 10,000 mJ / cm 2 using an ultrahigh pressure mercury lamp having an output of 1 to 100 mW / cm 2 .
 現像工程は、露光後の乾燥膜における現像液に可溶な部分を現像液で溶解除去して、現像液に不溶な部分のみが残存した、任意のパターン形状にパターン形成された乾燥膜(以下、加熱前パターンと呼ぶ)を得る工程である。パターン形状としては、例えば格子状、ストライプ状などの形状が挙げられる。 In the developing step, a portion of the dried film after exposure that is soluble in the developing solution is dissolved and removed with the developing solution, and only a portion that is insoluble in the developing solution remains. , A pattern before heating). Examples of the pattern shape include a lattice shape and a stripe shape.
 現像方法としては、例えば、浸漬法、スプレー法、ブラシ法などが挙げられる。 Examples of the developing method include an immersion method, a spray method, and a brush method.
 現像液としては、露光後の乾燥膜における不要な部分を溶解することが可能な溶媒を適宜選択することができ、水を主成分とする水溶液が好ましい。例えば、樹脂組成物がカルボキシル基を有するポリマーを含有する場合、現像液としては、アルカリ水溶液が好ましい。アルカリ水溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、水酸化カルシウム等の無機アルカリ水溶液;テトラメチルアンモニウムヒドロキサイド、トリメチルベンジルアンモニウムヒドロキサイド、モノエタノールアミン、ジエタノールアミン等の有機アルカリ水溶液などが挙げられる。これらの中でも、解像度を向上させる観点から、水酸化カリウム水溶液または水酸化テトラメチルアンモニウム水溶液が好ましい。アルカリ水溶液の濃度は、現像性を向上させる観点から、0.05重量%以上が好ましく、0.1重量%以上がより好ましい。一方、アルカリ水溶液の濃度は、加熱前パターンの剥離や腐食を抑制する観点から、5重量%以下が好ましく、1重量%以下がより好ましい。現像温度は、工程管理を容易にするため、20~50℃が好ましい。 (4) As the developer, a solvent capable of dissolving an unnecessary portion in the dried film after exposure can be appropriately selected, and an aqueous solution containing water as a main component is preferable. For example, when the resin composition contains a polymer having a carboxyl group, the developing solution is preferably an aqueous alkaline solution. Examples of the aqueous alkali solution include aqueous inorganic alkali solutions such as sodium hydroxide, potassium hydroxide, sodium carbonate, and calcium hydroxide; aqueous organic alkali solutions such as tetramethylammonium hydroxide, trimethylbenzylammonium hydroxide, monoethanolamine, and diethanolamine. Is mentioned. Among these, an aqueous solution of potassium hydroxide or an aqueous solution of tetramethylammonium hydroxide is preferred from the viewpoint of improving the resolution. The concentration of the aqueous alkali solution is preferably 0.05% by weight or more, and more preferably 0.1% by weight or more, from the viewpoint of improving developability. On the other hand, the concentration of the alkaline aqueous solution is preferably 5% by weight or less, more preferably 1% by weight or less, from the viewpoint of suppressing peeling and corrosion of the pattern before heating. The development temperature is preferably from 20 to 50 ° C. in order to facilitate the process control.
 加熱工程は、現像工程で形成された加熱前パターンを加熱硬化させる工程である。加熱装置としては、例えば、ホットプレート、オーブン等が挙げられる。好ましい加熱温度および加熱時間は先述の通りである。 The heating step is a step of heating and curing the pre-heating pattern formed in the developing step. Examples of the heating device include a hot plate and an oven. Preferred heating temperature and heating time are as described above.
 次に、本発明の隔壁付き基板について説明する。本発明の隔壁付き基板は、下地基板上に(A-1)パターン形成された隔壁(以下、「隔壁(A-1)」と記載する場合がある)を有する。下地基板は、隔壁付き基板における支持体としての機能を有する。隔壁は、後述する色変換発光材料を含有する画素を有する場合、隣接する画素間における光の混色を抑制する機能を有する。 Next, the substrate with a partition wall of the present invention will be described. The substrate with a partition according to the present invention has a partition (A-1) formed with a pattern on an undersubstrate (hereinafter, may be referred to as “partition (A-1)”). The base substrate has a function as a support in the substrate with partition walls. When the partition has a pixel containing a color conversion light-emitting material described later, the partition has a function of suppressing color mixture of light between adjacent pixels.
 本発明の隔壁付き基板において、隔壁(A-1)は、波長550nmにおける厚み10μmあたりの反射率が20%~60%、厚み10μmあたりのOD値が1.0~3.0であることを特徴とする。反射率を20%以上、OD値を3.0以下とすることにより、(A-1)隔壁側面における反射を利用して表示装置の輝度を向上させることができる。一方、反射率を60%以下、OD値を1.0以上とすることにより、隔壁(A-1)を透過する光を抑制して隣接画素間における光の混色を抑制することができる。 In the substrate with barrier ribs of the present invention, the barrier rib (A-1) has a reflectivity at a wavelength of 550 nm per 10 μm thickness of 20% to 60%, and an OD value per 10 μm thickness of 1.0 to 3.0. Features. By setting the reflectivity to 20% or more and the OD value to 3.0 or less, (A-1) the luminance of the display device can be improved by utilizing the reflection on the side wall of the partition wall. On the other hand, by setting the reflectance to 60% or less and the OD value to 1.0 or more, it is possible to suppress the light transmitted through the partition wall (A-1) and to suppress the color mixing of light between adjacent pixels.
 図1に、パターン形成された隔壁を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2を有する。 FIG. 1 shows a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a patterned partition wall. On an undersubstrate 1, a partition 2 having a pattern is formed.
 <下地基板>
 下地基板としては、例えば、ガラス板、樹脂板、樹脂フイルムなどが挙げられる。ガラス板の材質としては、無アルカリガラスが好ましい。樹脂板および樹脂フイルムの材質としては、ポリエステル、(メタ)アクリルポリマ、透明ポリイミド、ポリエーテルスルフォン等が好ましい。ガラス板および樹脂板の厚みは、1mm以下が好ましく、0.8mm以下が好ましい。樹脂フイルムの厚みは、100μm以下が好ましい。
<Underlying substrate>
Examples of the base substrate include a glass plate, a resin plate, and a resin film. As a material of the glass plate, non-alkali glass is preferable. As a material of the resin plate and the resin film, polyester, (meth) acrylic polymer, transparent polyimide, polyether sulfone, and the like are preferable. The thickness of the glass plate and the resin plate is preferably 1 mm or less, and more preferably 0.8 mm or less. The thickness of the resin film is preferably 100 μm or less.
 <隔壁(A-1)>
 隔壁(A-1)は、波長550nmにおける厚み10μmあたりの反射率が20~60%、OD値が1.0~3.0であることを特徴とする。ここで、隔壁(A-1)の厚みとは、隔壁(A-1)の下地基板と垂直な方向(高さ方向)の長さを指す。図1に示す隔壁付き基板の場合、隔壁2の厚みは符号Hで表される。なお、隔壁(A-1)の下地基板と水平な方向の長さは、隔壁(A-1)の幅とする。図1に示す隔壁付き基板の場合、隔壁2の幅は符号Lで表される。
<Partition (A-1)>
The partition wall (A-1) is characterized in that the reflectance per 10 μm thickness at a wavelength of 550 nm is 20 to 60% and the OD value is 1.0 to 3.0. Here, the thickness of the partition wall (A-1) refers to the length of the partition wall (A-1) in a direction perpendicular to the underlying substrate (height direction). In the case of the substrate with a partition shown in FIG. 1, the thickness of the partition 2 is represented by the symbol H. Note that the length of the partition wall (A-1) in a direction parallel to the base substrate is the width of the partition wall (A-1). In the case of the substrate with a partition shown in FIG. 1, the width of the partition 2 is represented by a reference symbol L.
 本発明においては、隔壁側面における反射率が表示装置の輝度向上に、隔壁の遮光性が混色抑制に、それぞれ寄与すると考えられる。一方で、厚みあたりの反射率およびOD値は、厚み方向、幅方向によらず同じであると考えられるため、本発明においては、隔壁の厚みあたりの反射率およびOD値に着目する。なお、後述するとおり、隔壁(A-1)の厚みは0.5~50μmが好ましく、幅は5~40μmが好ましい。そこで、本発明においては、隔壁(A-1)の厚みの代表値として10μmを選択し、厚み10μmあたりの反射率およびOD値に着目した。 In the present invention, it is considered that the reflectance on the side wall of the partition contributes to the improvement of the brightness of the display device, and the light blocking property of the partition contributes to the suppression of color mixing. On the other hand, since the reflectance and the OD value per thickness are considered to be the same regardless of the thickness direction and the width direction, the present invention focuses on the reflectance and the OD value per partition thickness. As described later, the thickness of the partition wall (A-1) is preferably 0.5 to 50 μm, and the width is preferably 5 to 40 μm. Therefore, in the present invention, 10 μm was selected as a representative value of the thickness of the partition wall (A-1), and attention was paid to the reflectance and the OD value per 10 μm of the thickness.
 厚み10μmあたりの反射率が20%未満であると、隔壁側面における反射が小さくなり、表示装置の輝度が不十分となる。厚み10μmあたりの反射率は、30%以上が好ましく、35%以上がより好ましい。反射率が高いほど、隔壁側面における反射が大きくなるため、表示装置の輝度を向上できるが、反射率が60%を超えると、隣接画素間において光の混色が発生する。厚み10μmあたりの反射率は、44%以下がより好ましい。 (4) When the reflectance per 10 μm thickness is less than 20%, the reflection on the side wall of the partition is small, and the luminance of the display device becomes insufficient. The reflectance per 10 μm thickness is preferably 30% or more, more preferably 35% or more. The higher the reflectance, the greater the reflection on the side wall of the partition wall, so that the brightness of the display device can be improved. However, if the reflectance exceeds 60%, color mixing of light occurs between adjacent pixels. The reflectance per 10 μm thickness is more preferably 44% or less.
 また、厚み10μmあたりのOD値が1.0未満であると、隣接画素間において光の混色が発生する。厚み10μmあたりのOD値は、1.5以上が好ましく、2.0以上がより好ましい。一方、厚み10μmあたりのOD値が3.0を超えると、隔壁側面における反射が小さくなり、表示装置の輝度が不十分となる。厚み10μmあたりのOD値は、2.5以下がより好ましい。 If the OD value per 10 μm thickness is less than 1.0, light color mixing occurs between adjacent pixels. The OD value per 10 μm thickness is preferably 1.5 or more, more preferably 2.0 or more. On the other hand, when the OD value per 10 μm thickness exceeds 3.0, the reflection on the side wall of the partition wall becomes small, and the luminance of the display device becomes insufficient. The OD value per 10 μm thickness is more preferably 2.5 or less.
 隔壁(A-1)の波長550nmにおける厚み10μmあたりの反射率は、厚み10μmの隔壁(A-1)について、上面から分光測色計(例えば、コニカミノルタ(株)製CM-2600d)を用いて、SCIモードにより測定することができる。ただし、測定に十分な面積を確保できない場合や、厚み10μmの測定サンプルが採取できない場合において、隔壁(A-1)の組成が既知である場合には、隔壁(A-1)と同組成の厚み10μmのベタ膜を作製し、隔壁(A-1)にかえてベタ膜について同様に反射率を測定することにより、厚み10μmあたりの反射率を求めてもよい。例えば、隔壁(A-1)を形成した材料を用いて、厚みを10μmとし、パターン形成しないこと以外は隔壁(A-1)の形成と同じ加工条件によりベタ膜を作製し、得られたベタ膜について、上面から、同様に反射率を測定してもよい。 The reflectance of the partition wall (A-1) per 10 μm thickness at a wavelength of 550 nm was measured using a spectrophotometer (for example, Konica Minolta Co., Ltd., CM-2600d) from above for the partition wall (A-1) having a thickness of 10 μm. Thus, it can be measured in the SCI mode. However, when a sufficient area for measurement cannot be secured, or when a measurement sample having a thickness of 10 μm cannot be obtained, if the composition of the partition wall (A-1) is known, the same composition as that of the partition wall (A-1) is used. The reflectivity per 10 μm thickness may be obtained by preparing a solid film having a thickness of 10 μm and measuring the reflectivity of the solid film similarly to the partition (A-1). For example, a solid film is formed using the material on which the partition wall (A-1) is formed, under the same processing conditions as the formation of the partition wall (A-1) except that the thickness is 10 μm and the pattern is not formed. The reflectance of the film may be measured from the upper surface in the same manner.
 隔壁(A-1)の厚み10μmあたりのOD値は、厚み10μmの隔壁(A-1)について、上面から光学濃度計(例えば、X-rite社製361T(visual))を用いて入射光および透過光の強度を測定し、下記式(1)により算出することができる。ただし、測定に十分な面積を確保できない場合や、厚み10μmの測定サンプルが採取できない場合において、隔壁(A-1)の組成が既知である場合には、反射率の測定と同様に、隔壁(A-1)と同組成の厚み10μmのベタ膜を作製し、隔壁(A-1)にかえてベタ膜について同様にOD値を測定することにより、厚み10μmあたりのOD値を求めてもよい。
OD値 = log10(I/I) ・・・ (1)
 : 入射光強度
I : 透過光強度。
The OD value of the partition wall (A-1) per 10 μm thickness is determined by using an optical densitometer (for example, 361T (visual) manufactured by X-rite) from above for the partition wall (A-1) having a thickness of 10 μm. The intensity of the transmitted light can be measured and calculated by the following equation (1). However, when a sufficient area for the measurement cannot be secured, or when a measurement sample having a thickness of 10 μm cannot be obtained, and when the composition of the partition (A-1) is known, the partition ( An OD value per 10 μm thickness may be obtained by preparing a solid film having the same composition as that of A-1) and having a thickness of 10 μm, and measuring the OD value of the solid film similarly to the partition wall (A-1). .
OD value = log10 (I 0 / I) ··· (1)
I 0 : incident light intensity I: transmitted light intensity
 なお、反射率およびOD値を上記範囲にするための手段としては、例えば、隔壁(A-1)を後述する好ましい組成とすることなどが挙げられる。 手段 As means for setting the reflectance and the OD value within the above ranges, for example, the partition wall (A-1) may have a preferable composition described later.
 隔壁(A-1)のテーパー角度は、45°~110°が好ましい。隔壁(A-1)のテーパー角度とは、隔壁断面の側辺と底辺とがなす角度を指す。図1に示す隔壁付き基板の場合、隔壁2のテーパー角度は符号θで表される。テーパー角度を45°以上とすることにより、隔壁(A-1)の上部と底部の幅の差が小さくなり、隔壁(A-1)の幅を後述する好ましい範囲に容易に形成することができる。テーパー角度は、70°以上がより好ましい。一方、テーパー角度を110°以下とすることにより、後述する(B)色変換発光材料を含有する画素を、インクジェット塗布により形成する際に、インクの決壊を抑制し、インクジェット塗布性を向上させることができる。ここで、インクの決壊とは、インクが隔壁を乗り越えて隣の画素部分に混入する現象のことを言う。テーパー角度は、95°以下がより好ましい。隔壁(A-1)のテーパー角度は、隔壁(A-1)の任意の断面を、光学顕微鏡(FE-SEM(例えば、(株)日立製作所製S-4800))を用いて、加速電圧3.0kV、倍率2,500倍で観察し、隔壁(A-1)の断面の側辺と底辺とがなす角度を測定することにより求めることができる。 The taper angle of the partition wall (A-1) is preferably 45 ° to 110 °. The taper angle of the partition (A-1) refers to an angle formed between a side and a bottom of the cross section of the partition. In the case of the substrate with a partition wall shown in FIG. 1, the taper angle of the partition wall 2 is represented by the symbol θ. By setting the taper angle to 45 ° or more, the difference in width between the top and bottom of the partition (A-1) is reduced, and the width of the partition (A-1) can be easily formed in a preferable range described later. . The taper angle is more preferably 70 ° or more. On the other hand, by setting the taper angle to 110 ° or less, when forming a pixel containing the color conversion luminescent material (B) described later by ink jet coating, it is possible to suppress breakage of the ink and improve ink jet coatability. Can be. Here, the breakage of the ink refers to a phenomenon in which the ink gets over the partition and mixes into the adjacent pixel portion. The taper angle is more preferably 95 ° or less. The taper angle of the partition wall (A-1) is determined by measuring an arbitrary cross section of the partition wall (A-1) by using an optical microscope (FE-SEM (eg, S-4800 manufactured by Hitachi, Ltd.)) and accelerating voltage 3 It can be obtained by observing at 0.0 kV and 2,500 times magnification and measuring the angle formed between the side and the bottom of the cross section of the partition wall (A-1).
 なお、隔壁(A-1)のテーパー角度を上記範囲にするための手段としては、例えば、隔壁(A-1)を後述する好ましい組成とすること、前述の本発明の樹脂組成物を用いて形成することなどが挙げられる。 Means for adjusting the taper angle of the partition wall (A-1) to the above range include, for example, the partition wall (A-1) having a preferable composition described later, and the use of the above-described resin composition of the present invention. And the like.
 隔壁(A-1)の厚みは、隔壁付き基板が後述する(B)色変換発光材料を含有する画素を有する場合には、その画素の厚みよりも大きいことが好ましい。具体的には、隔壁(A-1)の厚みは、0.5μm以上が好ましく、10μm以上がより好ましい。一方、画素底部における発光をより効率良く取り出す観点から、隔壁(A-1)の厚みは、50μm以下が好ましく、20μm以下がより好ましい。また、隔壁(A-1)の幅は、隔壁側面における光反射を利用し輝度をより向上させ、光漏れによる隣接画素における光の混色をより抑制するために十分なものであることが好ましい。具体的には、隔壁の幅は、5μm以上が好ましく、15μm以上がより好ましい。一方、画素の発光領域を多く確保して輝度をより向上させる観点から、隔壁(A-1)の幅は、50μm以下が好ましく、40μm以下がより好ましい。 (4) When the partition wall (A-1) has a pixel containing a color conversion luminescent material (B) to be described later, the thickness of the partition wall (A-1) is preferably larger than the thickness of the pixel. Specifically, the thickness of the partition wall (A-1) is preferably 0.5 μm or more, and more preferably 10 μm or more. On the other hand, the thickness of the partition wall (A-1) is preferably equal to or less than 50 μm, and more preferably equal to or less than 20 μm, from the viewpoint of more efficiently extracting light emitted from the bottom of the pixel. Further, it is preferable that the width of the partition wall (A-1) is sufficient to further improve luminance by utilizing light reflection on the side wall of the partition wall and to further suppress color mixture of light in adjacent pixels due to light leakage. Specifically, the width of the partition is preferably 5 μm or more, more preferably 15 μm or more. On the other hand, the width of the partition wall (A-1) is preferably equal to or less than 50 μm, and more preferably equal to or less than 40 μm, from the viewpoint of securing more light emitting regions of the pixels and further improving the luminance.
 隔壁(A-1)は、画像表示装置の画面サイズに応じた所定画素数分の繰り返しパターンを有している。画像表示装置の画素数としては、例えば、横に4000個、縦に2000個が挙げられる。画素数は、表示される画像の解像度(きめ細かさ)に影響する。そのため、要求される画像の解像度と画像表示装置の画面サイズに応じた数の画素を形成する必要があり、それに併せて、隔壁のパターン形成寸法を決定することが好ましい。 The partition wall (A-1) has a repetition pattern for a predetermined number of pixels according to the screen size of the image display device. The number of pixels of the image display device is, for example, 4000 in the horizontal direction and 2000 in the vertical direction. The number of pixels affects the resolution (fineness) of the displayed image. For this reason, it is necessary to form a number of pixels according to the required image resolution and the screen size of the image display device, and it is preferable to determine the pattern formation dimensions of the partition walls accordingly.
 隔壁(A-1)は、樹脂と、白色顔料と、酸化パラジウム、酸化白金、酸化金、酸化銀、パラジウム、白金、金および銀からなる群より選ばれる少なくとも1種の金属酸化物または金属からなる粒子(以下、「金属酸化物粒子または金属粒子」と記載する場合がある)とを含有することが好ましい。樹脂は、隔壁のクラック耐性および耐光性を向上させる機能を有する。白色顔料は、隔壁の反射率をより向上させる機能を有する。金属酸化物粒子または金属粒子は、OD値を調整し、隣接画素における光の混色を抑制する機能を有する。 The partition wall (A-1) is made of a resin, a white pigment, and at least one metal oxide or metal selected from the group consisting of palladium oxide, platinum oxide, gold oxide, silver oxide, palladium, platinum, gold and silver. (Hereinafter sometimes referred to as “metal oxide particles or metal particles”). The resin has a function of improving crack resistance and light resistance of the partition. The white pigment has a function of further improving the reflectance of the partition walls. The metal oxide particles or the metal particles have a function of adjusting the OD value and suppressing color mixing of light in adjacent pixels.
 樹脂と白色顔料は、樹脂組成物を構成する材料として先に説明した通りである。隔壁(A-1)中の樹脂の含有量は、熱処理における隔壁のクラック耐性を向上させる観点から、10重量%以上が好ましく、20重量%以上がより好ましい。一方、耐光性を向上させる観点から、隔壁(A-1)中の樹脂の含有量は、60重量%以下が好ましく、50重量%以下がより好ましい。 The resin and the white pigment are as described above as the materials constituting the resin composition. The content of the resin in the partition wall (A-1) is preferably 10% by weight or more, and more preferably 20% by weight or more, from the viewpoint of improving the crack resistance of the partition wall in the heat treatment. On the other hand, from the viewpoint of improving light resistance, the content of the resin in the partition wall (A-1) is preferably equal to or less than 60% by weight, and more preferably equal to or less than 50% by weight.
 隔壁(A-1)中の白色顔料の含有量は、反射率をより向上させる観点から、20重量%以上が好ましく、30重量%以上がより好ましい。一方、隔壁の表面平滑性を向上させる観点から、隔壁(A-1)中の白色顔料の含有量は、60重量%以下が好ましく、55重量%以下がより好ましい。 白色 The content of the white pigment in the partition wall (A-1) is preferably 20% by weight or more, and more preferably 30% by weight or more, from the viewpoint of further improving the reflectance. On the other hand, from the viewpoint of improving the surface smoothness of the partition walls, the content of the white pigment in the partition walls (A-1) is preferably 60% by weight or less, more preferably 55% by weight or less.
 金属酸化物粒子または金属粒子は、先述した樹脂組成物中の有機金属化合物が露光工程および/または加熱工程において、分解・凝集することにより発生した黒色粒子または黄色粒子を指す。隔壁(A-1)中の金属酸化物粒子または金属粒子の含有量は、反射率およびODを前述の範囲に調整して隣接画素における光の混色をより抑制する観点から、0.2重量%以上が好ましく、0.5重量%以上がより好ましい。一方、反射率およびODを前述の範囲に調整する観点から、隔壁(A-1)中の金属酸化物粒子または金属粒子の含有量は、5重量%以下が好ましく、3重量%以下がより好ましい。 The metal oxide particles or metal particles refer to black particles or yellow particles generated by the decomposition and aggregation of the above-mentioned organometallic compound in the resin composition in the exposure step and / or the heating step. The content of the metal oxide particles or the metal particles in the partition wall (A-1) is set at 0.2% by weight from the viewpoint of adjusting the reflectance and the OD to the above-mentioned ranges to further suppress color mixing of light in adjacent pixels. Or more, more preferably 0.5% by weight or more. On the other hand, from the viewpoint of adjusting the reflectance and the OD to the above ranges, the content of the metal oxide particles or the metal particles in the partition wall (A-1) is preferably 5% by weight or less, more preferably 3% by weight or less. .
 隔壁(A-1)は、さらに撥液化合物を含有することが好ましい。撥液化合物を含有することにより、隔壁(A-1)に撥液性能を付与することができ、例えば、後述する(B)色変換発光材料を含有する画素を形成する際に、それぞれの画素に、組成の異なる色変換発光材料を、容易に塗り分けることができる。撥液化合物は、樹脂組成物を構成する材料として先述した通りである。 The partition wall (A-1) preferably further contains a liquid repellent compound. By containing the liquid repellent compound, liquid repellency can be imparted to the partition wall (A-1). For example, when forming a pixel containing a color conversion luminescent material (B) described later, each pixel In addition, color conversion luminescent materials having different compositions can be easily applied. The liquid-repellent compound is as described above as a material constituting the resin composition.
 隔壁の撥液性能を向上させ、インクジェット塗布性を向上させる観点から、隔壁(A-1)中の撥液化合物の含有量は、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。一方、樹脂や白色顔料との相溶性を向上させる観点から、隔壁(A-1)中の撥液化合物の含有量は、10重量%以下が好ましく、5重量%以下がより好ましい。 From the viewpoint of improving the liquid repellency of the partition and improving the ink jet coating property, the content of the liquid repellent compound in the partition (A-1) is preferably 0.01% by weight or more, and more preferably 0.1% by weight or more. More preferred. On the other hand, from the viewpoint of improving the compatibility with the resin and the white pigment, the content of the liquid-repellent compound in the partition wall (A-1) is preferably 10% by weight or less, more preferably 5% by weight or less.
 隔壁(A-1)の、プロピレングリコールモノメチルエーテルアセテートに対する表面接触角は、インクジェット塗布性を向上させ、色変換発光材料の塗り分けを容易にする観点から、10°以上が好ましく、20°以上がより好ましく、40°以上がさらに好ましい。一方、隔壁と下地基板との密着性を向上させる観点から、隔壁(A-1)の表面接触角は、70°以下が好ましく、60°以下がより好ましい。ここで、隔壁(A-1)の表面接触角は、隔壁上部に対して、JIS R3257(制定年月日=1999/04/20)に規定される基板ガラス表面のぬれ性試験方法に準拠して測定することができる。なお、隔壁(A-1)の表面接触角を前記範囲にする方法としては、例えば、前述の撥液化合物を用いる方法などが挙げられる。 The surface contact angle of the partition wall (A-1) with propylene glycol monomethyl ether acetate is preferably 10 ° or more, and more preferably 20 ° or more, from the viewpoint of improving ink-jet coatability and facilitating separate application of the color conversion luminescent material. More preferably, it is more preferably 40 ° or more. On the other hand, from the viewpoint of improving the adhesion between the partition and the underlying substrate, the surface contact angle of the partition (A-1) is preferably 70 ° or less, more preferably 60 ° or less. Here, the surface contact angle of the partition (A-1) is based on the wettability test method for the surface of the substrate glass specified in JIS R3257 (established date = 1999/04/20) with respect to the upper part of the partition. Can be measured. As a method for setting the surface contact angle of the partition wall (A-1) to the above range, for example, a method using the above-described lyophobic compound and the like can be mentioned.
 下地基板上に隔壁(A-1)をパターン形成する方法としては、パターン形状の調整が容易であることから、感光性ペースト法が好ましい。感光性ペースト法により隔壁をパターン形成する方法としては、例えば、下地基板上に、前述の樹脂組成物を塗布し、乾燥して乾燥膜を得る塗布工程、得られた乾燥膜を、所望のパターン形状に応じてパターン露光する露光工程、露光後の乾燥膜における現像液に可溶な部分を溶解除去する現像工程および現像後の隔壁を硬化させる加熱工程を有する方法が好ましい。樹脂組成物は、ポジ型またはネガ型の感光性を持たせることが好ましい。パターン露光は、所定の開口部を有するフォトマスクを介して露光してもよいし、フォトマスクを用いずに、レーザー光等を用いて任意のパターンを直接描画してもよい。なお、隔壁付き基板が後述する遮光隔壁(A-2)を有する場合は、遮光隔壁(A-2)上に、同様にして隔壁(A-1)をパターン形成することができる。各工程については、遮光膜の製造方法として先に説明した通りである。 (4) A photosensitive paste method is preferable as a method for forming a pattern of the partition wall (A-1) on the base substrate because the pattern shape can be easily adjusted. As a method of patterning the partition walls by the photosensitive paste method, for example, a coating step of applying the above-described resin composition on a base substrate and drying to obtain a dry film, and applying the obtained dry film to a desired pattern A method including an exposure step of performing pattern exposure according to the shape, a development step of dissolving and removing a portion of the dried film after exposure that is soluble in a developer, and a heating step of curing the developed partition walls is preferable. The resin composition preferably has positive or negative photosensitivity. The pattern exposure may be performed through a photomask having a predetermined opening, or an arbitrary pattern may be directly drawn using a laser beam or the like without using a photomask. When the substrate with a partition has a light-shielding partition (A-2) described later, the partition (A-1) can be pattern-formed on the light-shielding partition (A-2) in the same manner. Each step is as described above as a method of manufacturing a light-shielding film.
 <遮光隔壁(A-2)>
 本発明の隔壁付き基板は、前記下地基板と(A-1)パターン形成された隔壁との間に、さらに、さらに、(A-2)厚み1.0μmあたりのOD値が0.5以上である、パターン形成された隔壁(以下、「遮光隔壁(A-2)」と記載する場合がある)を有することが好ましい。遮光隔壁(A-2)を有することにより、遮光性を向上させて表示装置におけるバックライトの光漏れを抑制し、高コントラストで鮮明な画像を得ることができる。
<Light shielding partition (A-2)>
The substrate with a partition wall according to the present invention further comprises (A-2) an OD value per 1.0 μm thickness of 0.5 or more between the base substrate and the (A-1) patterned partition wall. It is preferable to have a pattern-formed partition (hereinafter, sometimes referred to as “light-shielding partition (A-2)”). By having the light-shielding partition wall (A-2), light leakage from a backlight in a display device can be suppressed by improving light-shielding properties, and a clear image with high contrast can be obtained.
 図6に、遮光隔壁を有する本発明の隔壁付き基板の一態様を示す断面図を示す。下地基板1上に、パターン形成された隔壁2および遮光隔壁7を有し、隔壁2および遮光隔壁7によって隔てられた領域に画素3が配列されている。 FIG. 6 is a cross-sectional view illustrating one embodiment of a substrate with a partition wall of the present invention having a light-shielding partition wall. On a base substrate 1, a pattern-formed partition wall 2 and a light-blocking partition wall 7 are provided, and pixels 3 are arranged in a region separated by the partition wall 2 and the light-blocking partition wall 7.
 遮光隔壁(A-2)は、厚み1.0μmあたりのOD値が0.5以上である。ここで、遮光隔壁(A-2)の厚みは、後述するとおり、0.5~10μmが好ましい。そこで、本発明においては、隔壁(A-2)の厚みの代表値として1.0μmを選択し、厚み1.0μmあたりのOD値に着目した。厚み1.0μmあたりのOD値を0.5以上とすることにより、遮光性をより向上させ、より高コントラストで鮮明な画像を得ることができる。厚み1.0μmあたりのOD値は、1.0以上がより好ましい。一方、厚み1.0μmあたりのOD値は4.0以下が好ましく、パターン加工性を向上させることができる。厚み1.0μmあたりのOD値は、3.0以下がより好ましい。遮光隔壁(A-2)のOD値は、前述の隔壁(A-1)のOD値と同様に測定することができる。なお、OD値を上記範囲にするための手段としては、例えば、遮光隔壁(A-2)を後述する好ましい組成とすることなどが挙げられる。 The light-shielding partition wall (A-2) has an OD value of 0.5 or more per 1.0 μm thickness. Here, the thickness of the light-shielding partition wall (A-2) is preferably 0.5 to 10 μm as described later. Therefore, in the present invention, 1.0 μm was selected as a representative value of the thickness of the partition wall (A-2), and attention was paid to the OD value per 1.0 μm of the thickness. By setting the OD value per 1.0 μm thickness to 0.5 or more, the light-shielding property can be further improved, and a clearer and clearer image can be obtained. The OD value per 1.0 μm thickness is more preferably 1.0 or more. On the other hand, the OD value per 1.0 μm thickness is preferably 4.0 or less, and the pattern workability can be improved. The OD value per 1.0 μm thickness is more preferably 3.0 or less. The OD value of the light-shielding partition wall (A-2) can be measured in the same manner as the above-mentioned OD value of the partition wall (A-1). Means for setting the OD value in the above range include, for example, setting the light-shielding partition (A-2) to a preferable composition described later.
 遮光隔壁(A-2)の厚みは、遮光性を向上させる観点から、0.5μm以上が好ましく、1.0μm以上がより好ましい。一方、平坦性を向上させる観点から、遮光隔壁(A-2)の厚みは、10μm以下が好ましく、5μm以下がより好ましい。また、遮光隔壁(A-2)の幅は、前述の隔壁(A-1)と同程度が好ましい。 (4) The thickness of the light-shielding partition wall (A-2) is preferably 0.5 μm or more, more preferably 1.0 μm or more, from the viewpoint of improving light-shielding properties. On the other hand, from the viewpoint of improving the flatness, the thickness of the light-shielding partition wall (A-2) is preferably 10 μm or less, more preferably 5 μm or less. Further, the width of the light-shielding partition wall (A-2) is preferably about the same as that of the above-described partition wall (A-1).
 遮光隔壁(A-2)は、樹脂および黒色顔料を含有することが好ましい。樹脂は、隔壁のクラック耐性および耐光性を向上させる機能を有する。黒色顔料は、入射した光を吸収し、射出光を低減する機能を有する。 The light-shielding partition wall (A-2) preferably contains a resin and a black pigment. The resin has a function of improving crack resistance and light resistance of the partition. The black pigment has a function of absorbing incident light and reducing emitted light.
 樹脂としては、例えば、エポキシ樹脂、(メタ)アクリルポリマ、ポリウレタン、ポリエステル、ポリイミド、ポリオレフィン、ポリシロキサンなどが挙げられる。これらを2種以上含有してもよい。これらの中でも、耐熱性および溶媒耐性に優れることから、ポリイミドが好ましい。 Examples of the resin include an epoxy resin, a (meth) acrylic polymer, a polyurethane, a polyester, a polyimide, a polyolefin, and a polysiloxane. Two or more of these may be contained. Among these, polyimide is preferable because of its excellent heat resistance and solvent resistance.
 黒色顔料としては、前述の樹脂組成物中における黒色顔料として例示したものや、酸化パラジウム、酸化白金、酸化金、酸化銀などが挙げられる。高い遮光性を有することから、窒化チタン、窒化ジルコニウム、カーボンブラック、酸化パラジウム、酸化白金、酸化金および酸化銀から選ばれた黒色顔料が好ましい。 As the black pigment, those exemplified as the black pigment in the resin composition described above, palladium oxide, platinum oxide, gold oxide, silver oxide and the like can be mentioned. A black pigment selected from titanium nitride, zirconium nitride, carbon black, palladium oxide, platinum oxide, gold oxide and silver oxide is preferred because of its high light-shielding properties.
 下地基板上に遮光隔壁(A-2)をパターン形成する方法としては、例えば、特開2015-1654号公報に記載の感光性材料を用いて、前述の隔壁(A-1)と同様に感光性ペースト法によりパターン形成する方法が好ましい。 As a method for forming a pattern of the light-shielding partition (A-2) on the base substrate, for example, a photosensitive material described in JP-A-2015-1654 is used and exposed in the same manner as the partition (A-1). A method of forming a pattern by a conductive paste method is preferred.
 本発明の隔壁付き基板は、さらに、前記隔壁(A-1)によって隔てられて配列した(B)色変換発光材料を含有する画素(以下、「画素(B)」と記載する場合がある)を有することが好ましい。画素(B)は、入射光の波長領域の少なくとも一部を変換して、入射光とは異なる波長領域の出射光を放出することにより、カラー表示を可能にする機能を有する。 The substrate with a partition wall of the present invention further comprises a pixel (B) containing a color conversion luminescent material arranged and separated by the partition wall (A-1) (hereinafter, may be referred to as “pixel (B)”). It is preferable to have The pixel (B) has a function of converting at least a part of the wavelength region of the incident light and emitting outgoing light in a wavelength region different from the incident light, thereby enabling a color display.
 図2に、パターン形成された隔壁(A-1)と色変換発光材料を含有する画素(B)を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2を有し、隔壁2によって隔てられた領域に画素3が配列されている。 FIG. 2 is a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a patterned partition wall (A-1) and a pixel (B) containing a color conversion luminescent material. On a base substrate 1, a pattern-formed partition 2 is provided, and pixels 3 are arranged in a region separated by the partition 2.
 色変換材料は、無機蛍光体および有機蛍光体から選ばれた蛍光体を含有することが好ましい。 The color conversion material preferably contains a phosphor selected from an inorganic phosphor and an organic phosphor.
 本発明の隔壁付き基板は、例えば、青色光を発光するバックライトとTFT上に形成された液晶と画素(B)を組み合わせて、表示装置として用いることができる。この場合、赤色画素に対応する領域には、青色の励起光により励起されて赤色の蛍光を発する赤色用蛍光体を含有することが好ましい。同様に、緑色画素に対応する領域には、青色の励起光により励起されて緑色の蛍光を発する緑色用蛍光体を含有することが好ましい。青色画素に対応する領域には、蛍光体を含有しないことが好ましい。 The substrate with a partition wall of the present invention can be used as a display device by combining, for example, a backlight that emits blue light, a liquid crystal formed over a TFT, and a pixel (B). In this case, the region corresponding to the red pixel preferably contains a red phosphor that is excited by blue excitation light and emits red fluorescence. Similarly, the region corresponding to the green pixel preferably contains a green phosphor that is excited by blue excitation light and emits green fluorescence. It is preferable that the region corresponding to the blue pixel does not contain a phosphor.
 基板上に白色の隔壁によって分離された、各画素に対応した青色LEDを多数並べた青色マイクロLEDをバックライトとして用いる方式の表示装置にも、本発明の隔壁付き基板を用いることができる。各画素のON/OFFは、青色マイクロLEDのON/OFFによって可能となり、液晶は必要ない。本発明の隔壁付き基板は、各画素を分離する隔壁と、バックライトにおいて青色マイクロLEDを分離する隔壁のいずれにも用いることができる。 The substrate with a partition wall of the present invention can also be used in a display device using a blue micro LED in which a number of blue LEDs corresponding to each pixel are arranged on a substrate and separated by white partition walls as a backlight. ON / OFF of each pixel is enabled by ON / OFF of the blue micro LED, and no liquid crystal is required. The substrate with a partition according to the present invention can be used for both a partition for separating each pixel and a partition for separating a blue micro LED in a backlight.
 無機蛍光体としては、青色の励起光により緑色や赤色などの各色を発光するもの、すなわち、波長400~500nmの励起光により励起され、発光スペクトルが500~700nmの領域にピークを有するものが好ましい。かかる無機蛍光体としては、例えば、YAG系蛍光体、TAG系蛍光体、サイアロン系蛍光体、Mn4+付活フッ化物錯体蛍光体、量子ドットと称される無機半導体等が挙げられる。これらを2種以上用いてもよい。これらの中でも、量子ドットが好ましい。量子ドットは他の蛍光体に比較して平均粒子径が小さいことから、(B)画素の表面を平滑化して表面における光散乱を抑制することができるため、光の取り出し効率をより向上させ、輝度をより向上させることができる。 As the inorganic phosphor, those which emit light of each color such as green or red by blue excitation light, that is, those which are excited by excitation light having a wavelength of 400 to 500 nm and whose emission spectrum has a peak in a region of 500 to 700 nm are preferable. . Examples of such an inorganic phosphor include a YAG-based phosphor, a TAG-based phosphor, a sialon-based phosphor, a Mn 4+ activated fluoride complex phosphor, and an inorganic semiconductor called a quantum dot. Two or more of these may be used. Among these, quantum dots are preferred. Since the quantum dot has a smaller average particle size than other phosphors, (B) the surface of the pixel can be smoothed to suppress light scattering on the surface, so that the light extraction efficiency can be further improved, Brightness can be further improved.
 量子ドットとしては、例えば、II-IV族、III-V族、IV-VI族、IV族の半導体などからなる粒子が挙げられる。これらの無機半導体としては、例えば、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si、Ge、Alなどが挙げられる。これらを2種以上用いてもよい。 Examples of the quantum dot include particles made of II-IV group, III-V group, IV-VI group, and IV group semiconductors. Examples of these inorganic semiconductors include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeSe, GeSe, GeSe Examples thereof include SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , and Al 2 O 3 . Two or more of these may be used.
 量子ドットは、p型ドーパントまたはn型ドーパントを含有してもよい。また、量子ドットは、コアシェル構造を有してもよい。コアシェル構造においては、シェルの周囲に目的に応じて任意の適切な機能層(単一層または複数層)が形成されていてもよく、シェル表面に表面処理および/または化学修飾がなされていてもよい。 The quantum dot may contain a p-type dopant or an n-type dopant. Further, the quantum dots may have a core-shell structure. In the core-shell structure, any appropriate functional layer (single layer or plural layers) may be formed around the shell depending on the purpose, and the shell surface may be subjected to surface treatment and / or chemical modification. .
 量子ドットの形状としては、例えば、球状、柱状、燐片状、板状、不定形等が挙げられる。量子ドットの平均粒子径は、所望の発光波長に応じて任意に選択することができ、1~30nmが好ましい。量子ドットの平均粒子径が1~10nmであれば、青色、緑色および赤色のそれぞれにおいて、発光スペクトルにおけるピークをよりシャープにすることができる。量子ドットの平均粒子径は2nm以上が好ましく、8nm以下が好ましい。例えば、量子ドットの平均粒子径が約2nmの場合には青色光を、約3nmの場合には緑色光を、約6nmの場合には赤色光を発光する。量子ドットの平均粒子径は、動的光散乱法により測定することができる。平均粒子径の測定装置としては、ダイナミック光散乱光度計DLS-8000(大塚電子(株)製)などが挙げられる。 Examples of the shape of the quantum dot include a sphere, a column, a scale, a plate, and an irregular shape. The average particle size of the quantum dots can be arbitrarily selected according to the desired emission wavelength, and is preferably 1 to 30 nm. When the average particle diameter of the quantum dots is 1 to 10 nm, the peak in the emission spectrum can be sharpened in each of blue, green, and red. The average particle diameter of the quantum dots is preferably 2 nm or more, and more preferably 8 nm or less. For example, when the average particle diameter of the quantum dot is about 2 nm, blue light is emitted, when it is about 3 nm, green light is emitted, and when it is about 6 nm, red light is emitted. The average particle size of the quantum dots can be measured by a dynamic light scattering method. Examples of a device for measuring the average particle size include a dynamic light scattering photometer DLS-8000 (manufactured by Otsuka Electronics Co., Ltd.).
 有機蛍光体としては、青色の励起光により緑色や赤色などの各色を発光するものが好ましい。赤色の蛍光を発する蛍光体として、下記構造式(8)で表される基本骨格を有するピロメテン誘導体、緑色の蛍光を発する蛍光体として、下記構造式(9)で表される基本骨格を有するピロメテン誘導体などが挙げられる。その他には、置換基の選択により赤色または緑色の蛍光を発するペリレン系誘導体、ポルフィリン系誘導体、オキサジン系誘導体、ピラジン系誘導体などが挙げられる。これらを2種以上含有してもよい。これらの中でも、量子収率が高いことから、ピロメテン誘導体が好ましい。ピロメテン誘導体は、例えば、特開2011-241160号公報に記載の方法により得ることができる。 As the organic phosphor, one that emits each color such as green or red by blue excitation light is preferable. Pyromethene derivative having a basic skeleton represented by the following structural formula (8) as a phosphor emitting red fluorescence, and pyromethene having a basic skeleton represented by the following structural formula (9) as a phosphor emitting green fluorescence Derivatives and the like. Other examples include perylene derivatives, porphyrin derivatives, oxazine derivatives, and pyrazine derivatives that emit red or green fluorescence depending on the selection of the substituent. Two or more of these may be contained. Of these, pyromethene derivatives are preferred because of their high quantum yield. The pyrromethene derivative can be obtained, for example, by the method described in JP-A-2011-241160.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 有機蛍光体は溶媒に可溶なため、所望の厚みの画素(B)を容易に形成することができる。 (4) Since the organic phosphor is soluble in the solvent, the pixel (B) having a desired thickness can be easily formed.
 画素(B)の厚みは、色特性を向上させる観点から、0.5μm以上が好ましく、1μm以上がより好ましい。一方、画素(B)の厚みは、表示装置の薄型化や曲面加工性の観点から、30μm以下が好ましく、20μm以下がより好ましい。 The thickness of the pixel (B) is preferably 0.5 μm or more, more preferably 1 μm or more, from the viewpoint of improving color characteristics. On the other hand, the thickness of the pixel (B) is preferably equal to or less than 30 μm, and more preferably equal to or less than 20 μm, from the viewpoint of reducing the thickness of the display device and the workability of the curved surface.
 各画素(B)の大きさは、20~200μm程度が一般的である。 The size of each pixel (B) is generally about 20 to 200 μm.
 画素(B)は、隔壁(A-1)によって隔てられて配列していることが好ましい。画素と画素の間に隔壁を設けることにより、発光した光の拡散や混色をより抑制することができる。 It is preferable that the pixels (B) are arranged so as to be separated by the partition (A-1). By providing a partition wall between pixels, diffusion and color mixing of emitted light can be further suppressed.
 画素(B)の形成方法としては、例えば、色変換発光材料を含有する塗液(以下、色変換発光材料塗液)を、隔壁(A-1)によって隔てられた空間に充填する方法が挙げられる。色変換発光材料塗液は、さらに樹脂や溶媒を含有してもよい。 Examples of the method for forming the pixel (B) include a method of filling a space separated by the partition wall (A-1) with a coating liquid containing a color conversion luminescent material (hereinafter, a color conversion luminescent material coating liquid). Can be The color conversion luminescent material coating liquid may further contain a resin or a solvent.
 色変換発光材料塗液の充填方法としては、各画素に種類の異なる色変換発光材料を容易に塗り分ける観点から、インクジェット塗布法などが好ましい。 充填 As a method for filling the color conversion light emitting material coating liquid, an ink jet coating method is preferable from the viewpoint of easily applying different types of color conversion light emitting materials to each pixel.
 得られた塗布膜を減圧乾燥および/または加熱乾燥してもよい。減圧乾燥する場合、乾燥溶媒が減圧チャンバー内壁に再凝縮することを防ぐために、減圧乾燥温度は、80℃以下が好ましい。減圧乾燥の圧力は、塗布膜に含まれる溶媒の蒸気圧以下が好ましく、1~1000Paが好ましい。減圧乾燥時間は、10~600秒間が好ましい。加熱乾燥する場合、加熱乾燥装置としては、例えば、オーブンやホットプレートなどが挙げられる。加熱乾燥温度は、60~200℃が好ましい。加熱乾燥時間は、1~60分間が好ましい。 The obtained coating film may be dried under reduced pressure and / or dried by heating. When drying under reduced pressure, the drying temperature under reduced pressure is preferably 80 ° C. or lower in order to prevent the drying solvent from re-condensing on the inner wall of the reduced pressure chamber. The pressure for drying under reduced pressure is preferably equal to or lower than the vapor pressure of the solvent contained in the coating film, and more preferably 1 to 1000 Pa. The drying time under reduced pressure is preferably from 10 to 600 seconds. In the case of heating and drying, examples of the heating and drying device include an oven and a hot plate. The heating and drying temperature is preferably from 60 to 200 ° C. The heating and drying time is preferably from 1 to 60 minutes.
 本発明の隔壁付き基板は、画素(B)上に、さらに、(C)波長550nmにおける屈折率が1.20~1.35である低屈折率層(以下、「低屈折率層(C)」と記載する場合がある)を有することが好ましい。低屈折率層(C)を有することにより、光の取り出し効率をより向上させ、表示装置の輝度をより向上させることができる。 The substrate with a partition wall of the present invention further comprises (C) a low refractive index layer having a refractive index of 1.20 to 1.35 at a wavelength of 550 nm (hereinafter referred to as a “low refractive index layer (C)”). "May be described as"). By having the low refractive index layer (C), the light extraction efficiency can be further improved, and the luminance of the display device can be further improved.
 図3に、低屈折率層を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2および画素3を有し、これらの上に、さらに低屈折率層4を有する。 FIG. 3 is a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a low refractive index layer. On an undersubstrate 1, a patterned partition wall 2 and pixels 3 are provided, and a low refractive index layer 4 is further provided thereon.
 表示装置において、バックライトの光の反射を適度に抑えて画素(B)に効率よく光を入射させる観点から、低屈折率層(C)の屈折率は、1.20以上が好ましく、1.23以上がより好ましい。一方、輝度を向上させる観点から、低屈折率層(C)の屈折率は、1.35以下が好ましく、1.30以下がより好ましい。ここで、低屈折率層(C)の屈折率は、プリズムカプラーを用いて、大気圧下、20℃の条件で、硬化膜面に対し垂直方向から波長550nmの光を照射して測定することができる。 In the display device, the refractive index of the low-refractive-index layer (C) is preferably 1.20 or more, from the viewpoint of appropriately suppressing the reflection of light from the backlight and efficiently entering light into the pixel (B). 23 or more is more preferable. On the other hand, from the viewpoint of improving luminance, the refractive index of the low refractive index layer (C) is preferably equal to or less than 1.35, and more preferably equal to or less than 1.30. Here, the refractive index of the low refractive index layer (C) is measured by irradiating the cured film surface with light having a wavelength of 550 nm from the vertical direction under atmospheric pressure and 20 ° C. using a prism coupler. Can be.
 低屈折率層(C)は、ポリシロキサンおよび中空構造を有しないシリカ粒子を含有することが好ましい。ポリシロキサンは、シリカ粒子などの無機粒子との相溶性が高く、透明な層を形成することができるバインダーとして機能する。また、シリカ粒子を含有することにより、低屈折率層(C)の中に微小な空隙を効率よく形成して屈折率を低減することができ、屈折率を前述の範囲に容易に調整することができる。さらに、中空構造を有しないシリカ粒子を用いることにより、硬化収縮時のクラックを生じやすい中空構造を有しないため、クラックを抑制することができる。なお、低屈折率層(C)において、ポリシロキサンと中空構造を有しないシリカ粒子は、それぞれ独立して含有されていてもよいし、ポリシロキサンと中空構造を有しないシリカ粒子とが結合した状態で含有されていてもよい。低屈折率層(C)の均一性の観点から、ポリシロキサンと中空構造を有しないシリカ粒子とが結合した状態で含有されていることが好ましい。 The low refractive index layer (C) preferably contains polysiloxane and silica particles having no hollow structure. Polysiloxane has high compatibility with inorganic particles such as silica particles and functions as a binder capable of forming a transparent layer. Further, by containing silica particles, it is possible to efficiently form minute voids in the low refractive index layer (C) to reduce the refractive index, and to easily adjust the refractive index to the above-mentioned range. Can be. Furthermore, the use of silica particles having no hollow structure does not have a hollow structure that easily causes cracks during curing shrinkage, so that cracks can be suppressed. In the low refractive index layer (C), the polysiloxane and the silica particles having no hollow structure may be independently contained, or the polysiloxane and the silica particles having no hollow structure may be combined. May be contained. From the viewpoint of uniformity of the low refractive index layer (C), it is preferable that the polysiloxane and the silica particles having no hollow structure are contained in a bonded state.
 低屈折率層(C)に含まれるポリシロキサンは、フッ素を含有することが好ましい。フッ素を含有することにより、低屈折率層(C)の屈折率を1.20~1.35に容易に調整することができる。フッ素含有ポリシロキサンは、少なくとも下記一般式(10)で表されるフッ素含有アルコキシシラン化合物を含む複数のアルコキシシラン化合物を加水分解および重縮合することにより得ることができる。さらに他のアルコキシシラン化合物を用いてもよい。 (4) The polysiloxane contained in the low refractive index layer (C) preferably contains fluorine. By containing fluorine, the refractive index of the low refractive index layer (C) can be easily adjusted to 1.20 to 1.35. The fluorine-containing polysiloxane can be obtained by hydrolyzing and polycondensing a plurality of alkoxysilane compounds including at least a fluorine-containing alkoxysilane compound represented by the following general formula (10). Further, other alkoxysilane compounds may be used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(10)中、Rはフッ素数3~17のフルオロアルキル基を表す。Rは、一般式(5)~(7)におけるRと同じ基を表す。mは1または2を表す。4-m個のRおよびm個のRは、それぞれ同じでも異なってもよい。 In the general formula (10), R 7 represents a fluoroalkyl group having 3 to 17 fluorine atoms. R 6 represents the same group as R 6 in formulas (5) to (7). m represents 1 or 2. 4-m R 6 and m R 7 may be the same or different, respectively.
 一般式(10)で表されるフッ素含有アルコキシシラン化合物としては、例えば、トリフルオロエチルトリメトキシシラン、トリフルオロエチルトリエトキシシラン、トリフルオロエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリフルオロプロピルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、ヘプタデカフルオロデシルトリイソプロポキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、トリフルオロエチルメチルジメトキシシラン、トリフルオロエチルメチルジエトキシシラン、トリフルオロエチルメチルジイソプロポキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルメチルジイソプロポキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、ヘプタデカフルオロデシルメチルジエトキシシラン、ヘプタデカフルオロデシルメチルジイソプロポキシシラン、トリデカフルオロオクチルメチルジメトキシシラン、トリデカフルオロオクチルメチルジエトキシシラン、トリデカフルオロオクチルメチルジイソプロポキシシラン、トリフルオロエチルエチルジメトキシシラン、トリフルオロエチルエチルジエトキシシラン、トリフルオロエチルエチルジイソプロポキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリフルオロプロピルエチルジエトキシシラン、トリフルオロプロピルエチルジイソプロポキシシラン、ヘプタデカフルオロデシルエチルジメトキシシラン、ヘプタデカフルオロデシルエチルジエトキシシラン、ヘプタデカフルオロデシルエチルジイソプロポキシシラン、トリデカフルオロオクチルエチルジエトキシシラン、トリデカフルオロオクチルエチルジメトキシシラン、トリデカフルオロオクチルエチルジイソプロポキシシランなどが挙げられる。これらを2種以上用いてもよい。 As the fluorine-containing alkoxysilane compound represented by the general formula (10), for example, trifluoroethyltrimethoxysilane, trifluoroethyltriethoxysilane, trifluoroethyltriisopropoxysilane, trifluoropropyltrimethoxysilane, trifluoro Propyltriethoxysilane, trifluoropropyltriisopropoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, heptadecafluorodecyltriisopropoxysilane, tridecafluorooctyltriethoxysilane, tridecafluorooctyl Trimethoxysilane, tridecafluorooctyltriisopropoxysilane, trifluoroethylmethyldimethoxysilane, trifluoroethylmethyldi Toxisilane, trifluoroethylmethyldiisopropoxysilane, trifluoropropylmethyldimethoxysilane, trifluoropropylmethyldiethoxysilane, trifluoropropylmethyldiisopropoxysilane, heptadecafluorodecylmethyldimethoxysilane, heptadecafluorodecylmethyldiethoxysilane Silane, heptadecafluorodecylmethyldiisopropoxysilane, tridecafluorooctylmethyldimethoxysilane, tridecafluorooctylmethyldiethoxysilane, tridecafluorooctylmethyldiisopropoxysilane, trifluoroethylethyldimethoxysilane, trifluoroethylethyl Diethoxysilane, trifluoroethylethyldiisopropoxysilane, trifluoropropylethyldimethoate Sisilane, trifluoropropylethyldiethoxysilane, trifluoropropylethyldiisopropoxysilane, heptadecafluorodecylethyldimethoxysilane, heptadecafluorodecylethyldiethoxysilane, heptadecafluorodecylethyldiisopropoxysilane, tridecafluorooctyl Examples include ethyldiethoxysilane, tridecafluorooctylethyldimethoxysilane, and tridecafluorooctylethyldiisopropoxysilane. Two or more of these may be used.
 低屈折率層(C)におけるポリシロキサンの含有量は、クラックを抑制する観点から、4重量%以上が好ましい。一方、ポリシロキサンの含有量は、シリカ粒子間のネットワークによるチキソ性を確保し、低屈折率層(C)中に適度に空気層を保ち、屈折率をより低減する観点から、32重量%以下が好ましい。 ポ リ The content of polysiloxane in the low refractive index layer (C) is preferably 4% by weight or more from the viewpoint of suppressing cracks. On the other hand, the content of the polysiloxane is 32% by weight or less from the viewpoint of securing the thixotropy due to the network between the silica particles, appropriately maintaining the air layer in the low refractive index layer (C), and further reducing the refractive index. Is preferred.
 低屈折率層(C)における中空構造を有しないシリカ粒子としては、例えば、日産化学工業(株)製“スノーテックス”(登録商標)や“オルガノシリカゾル”(登録商標)シリーズ(イソプロピルアルコール分散液、エチレングリコール分散液、メチルエチルケトン分散液、ジメチルアセトアミド分散液、メチルイソブチルケトン分散液、プロピレングリコールモノメチルアセテート分散液、プロピレングリコールモノメチルエーテル分散液、メタノール分散液、酢酸エチル分散液、酢酸ブチル分散液、キシレン-n-ブタノール分散液、トルエン分散液など。品番PGM-ST、PMA-ST、IPA-ST、IPA-ST-L、IPA-ST-ZL、IPA-ST-UPなど)が挙げられる。これらを2種以上含有してもよい。 Examples of the silica particles having no hollow structure in the low refractive index layer (C) include, for example, "Snowtex" (registered trademark) manufactured by Nissan Chemical Industries, Ltd. and "Organosilica Sol" (registered trademark) series (isopropyl alcohol dispersion , Ethylene glycol dispersion, methyl ethyl ketone dispersion, dimethylacetamide dispersion, methyl isobutyl ketone dispersion, propylene glycol monomethyl acetate dispersion, propylene glycol monomethyl ether dispersion, methanol dispersion, ethyl acetate dispersion, butyl acetate dispersion, xylene -N-butanol dispersion, toluene dispersion, etc. Examples include PGM-ST, PMA-ST, IPA-ST, IPA-ST-L, IPA-ST-ZL, IPA-ST-UP, etc. Two or more of these may be contained.
 低屈折率層(C)中における中空構造を有しないシリカ粒子の含有量は、シリカ粒子間のネットワークによるチキソ性を確保し、低屈折率層(C)中に適度に空気層を保ち、屈折率をより低減する観点から、68重量%以上が好ましい。一方、中空構造を有しないシリカ粒子の含有量は、クラックを抑制する観点から、96重量%以下が好ましい。 The content of the silica particles having no hollow structure in the low-refractive-index layer (C) ensures thixotropic properties due to the network between the silica particles, keeps the air layer in the low-refractive-index layer (C) appropriately, and refracts. From the viewpoint of further reducing the rate, 68% by weight or more is preferable. On the other hand, the content of the silica particles having no hollow structure is preferably 96% by weight or less from the viewpoint of suppressing cracks.
 低屈折率層(C)の厚みは、画素(B)の段差をカバーして欠陥の発生を抑制する観点から、0.1μm以上が好ましく、0.5μm以上がより好ましい。一方、低屈折率層(C)の厚みは、低屈折率層(C)のクラックの原因となるストレスを低減する観点から、20μm以下が好ましく、10μm以下がより好ましい。 (4) The thickness of the low refractive index layer (C) is preferably 0.1 μm or more, more preferably 0.5 μm or more, from the viewpoint of covering the steps of the pixel (B) and suppressing the occurrence of defects. On the other hand, the thickness of the low refractive index layer (C) is preferably 20 μm or less, and more preferably 10 μm or less, from the viewpoint of reducing the stress that causes cracks in the low refractive index layer (C).
 低屈折率層(C)の形成方法としては、形成方法が容易であることから、塗布法が好ましい。例えば、ポリシロキサンとシリカ粒子を含有する低屈折率用樹脂組成物を画素(B)上に塗布し、乾燥した後、加熱することにより、低屈折率層(C)を形成することができる。 塗布 As a method of forming the low refractive index layer (C), a coating method is preferable because the forming method is easy. For example, a low-refractive-index layer (C) can be formed by applying a low-refractive-index resin composition containing polysiloxane and silica particles on the pixel (B), drying the resultant, and then heating.
 また、本発明の隔壁付き基板は、前記低屈折率層(C)上に、さらに、厚み50~1,000nmの無機保護層Iを有することが好ましい。無機保護層Iを有することにより、大気中の水分が低屈折率層(C)に到達しにくくなるため、低屈折率層(C)の屈折率変動を抑制し、輝度劣化を抑制することができる。 基板 Further, the substrate with a partition wall of the present invention preferably further has an inorganic protective layer I having a thickness of 50 to 1,000 nm on the low refractive index layer (C). The presence of the inorganic protective layer I makes it difficult for moisture in the air to reach the low refractive index layer (C). Therefore, it is possible to suppress the fluctuation of the refractive index of the low refractive index layer (C) and the deterioration of luminance. it can.
 図4に、低屈折率層および無機保護層Iを有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2および画素3を有し、これらの上に、さらに低屈折率層4および無機保護層I5を有する。 FIG. 4 is a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a low refractive index layer and an inorganic protective layer I. A pattern-formed partition 2 and pixels 3 are provided on a base substrate 1, and a low refractive index layer 4 and an inorganic protective layer I5 are further provided thereon.
 また、本発明の隔壁付き基板は、前記画素(B)と前記低屈折率層(C)の間に、さらに、厚み50~1,000nmの無機保護層IIを有することが好ましい。無機保護層IIを有することにより、画素(B)から、低屈折率層に、画素(B)を形成する原料が移動しにくくなるため、低屈折率層(C)の屈折率変動を抑制し、輝度劣化を抑制することができる。 基板 In addition, the substrate with a partition wall of the present invention preferably further has an inorganic protective layer II having a thickness of 50 to 1,000 nm between the pixel (B) and the low refractive index layer (C). The presence of the inorganic protective layer II makes it difficult for the raw material forming the pixel (B) to move from the pixel (B) to the low-refractive-index layer, thereby suppressing a change in the refractive index of the low-refractive-index layer (C). In addition, luminance degradation can be suppressed.
 図5に、低屈折率層および無機保護層IIを有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2および画素3を有し、これらの上に、さらに無機保護層II6および低屈折率層4を有する。 FIG. 5 is a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a low refractive index layer and an inorganic protective layer II. A pattern-formed partition wall 2 and pixels 3 are provided on a base substrate 1, and an inorganic protective layer II6 and a low refractive index layer 4 are further provided thereon.
 また、本発明の隔壁付き基板は、下地基板と前記画素(B)の間に、さらに、厚み1~5μmのカラーフィルター(以下、「カラーフィルター」と記載する場合がある)を有することが好ましい。カラーフィルターは、特定波長域の可視光を透過させて透過光を所望の色相とする機能を有する。カラーフィルターを有することにより、表示装置の色純度を向上させることができる。カラーフィルターの厚みを1μm以上とすることにより、色純度をより向上させることができる。一方、カラーフィルターの厚みを5μm以下とすることにより、輝度をより向上させることができる。 Further, the substrate with a partition wall of the present invention preferably further has a color filter having a thickness of 1 to 5 μm (hereinafter sometimes referred to as “color filter”) between the base substrate and the pixel (B). . The color filter has a function of transmitting visible light in a specific wavelength range and setting the transmitted light to a desired hue. With the color filter, the color purity of the display device can be improved. By setting the thickness of the color filter to 1 μm or more, the color purity can be further improved. On the other hand, by setting the thickness of the color filter to 5 μm or less, the luminance can be further improved.
 図6に、カラーフィルターを有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2およびカラーフィルター7を有し、カラーフィルター7上に画素3を有する。 FIG. 6 is a cross-sectional view of one embodiment of a substrate with a partition wall of the present invention having a color filter. On a base substrate 1, a pattern-formed partition 2 and a color filter 7 are provided, and on the color filter 7, pixels 3 are provided.
 カラーフィルターとしては、例えば、液晶ディスプレイ等のフラットパネルディスプレイに用いられる、フォトレジストに顔料を分散させた顔料分散型材料を用いたカラーフィルターなどが挙げられる。より具体的には、400nm~550nmの波長を選択的に透過する青色カラーフィルター、500nm~600nmの波長を選択的に透過する緑色カラーフィルター、500nm以上の波長を選択的に透過する黄色カラーフィルター、600nm以上の波長を選択的に透過する赤色カラーフィルターなどが挙げられる。また、カラーフィルターは、色変換発光材料を含有する画素(B)から離隔して積層されていてもよいし、一体化して積層されていてもよい。 Examples of the color filter include a color filter using a pigment-dispersed material in which a pigment is dispersed in a photoresist, which is used for a flat panel display such as a liquid crystal display. More specifically, a blue color filter that selectively transmits a wavelength of 400 nm to 550 nm, a green color filter that selectively transmits a wavelength of 500 nm to 600 nm, a yellow color filter that selectively transmits a wavelength of 500 nm or more, And a red color filter that selectively transmits a wavelength of 600 nm or more. In addition, the color filter may be laminated separately from the pixel (B) containing the color conversion luminescent material, or may be laminated integrally.
 また、本発明の隔壁付き基板は、カラーフィルターと前記画素(B)の間に、さらに厚み50~1,000nmの無機保護層IIIおよび/または黄色有機保護層を有することが好ましい。無機保護層IIIを有することにより、カラーフィルターから、色変換発光材料を含有する画素(B)に、カラーフィルターの形成原料が到達しにくくなるため、色変換発光材料を含有する画素(B)の輝度劣化を抑制することができる。また、黄色有機保護層を有することにより、色変換発光材料を含有する画素(B)によって変換しきれなかった青色漏れ光をカットし、色再現性を向上させることができる。 基板 In addition, the substrate with a partition wall of the present invention preferably further has an inorganic protective layer III and / or a yellow organic protective layer having a thickness of 50 to 1,000 nm between the color filter and the pixel (B). By having the inorganic protective layer III, the raw material for forming the color filter hardly reaches the pixel (B) containing the color conversion luminescent material from the color filter. Luminance degradation can be suppressed. Further, by having the yellow organic protective layer, blue leakage light that cannot be completely converted by the pixel (B) containing the color conversion luminescent material can be cut, and color reproducibility can be improved.
 図7に、カラーフィルターおよび無機保護層IIIおよび/または黄色有機保護層を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2およびカラーフィルター7を有し、これらの上に、無機保護層IIIおよび/または黄色有機保護層8を有し、無機保護層IIIおよび/または黄色有機保護層8で覆われた隔壁2で隔てられて配列した画素3を有する。 FIG. 7 is a cross-sectional view of one embodiment of the substrate with a partition wall of the present invention having a color filter and an inorganic protective layer III and / or a yellow organic protective layer. On the base substrate 1, a patterned partition wall 2 and a color filter 7 are provided, on which an inorganic protective layer III and / or a yellow organic protective layer 8 is provided. It has pixels 3 arranged and separated by a partition wall 2 covered with a protective layer 8.
 また、本発明の隔壁付き基板は、前記下地基板上に、さらに厚み50~1,000nmの無機保護層IVおよび/または黄色有機保護層を有することが好ましい。無機保護層IVおよび/または黄色有機保護層が屈折率調整層として作用し、画素(B)から出る光をより効率的に取り出し、表示装置の輝度をより向上させることができる。また、黄色有機保護層は、色変換発光材料を含有する画素(B)によって変換しきれなかった青色漏れ光をカットし、色再現性を向上させることができる。無機保護層IVおよび/または黄色有機保護層は、下地基板と隔壁(A)および画素(B)との間に設けられることがより好ましい。 The substrate with a partition wall of the present invention preferably further has an inorganic protective layer IV and / or a yellow organic protective layer having a thickness of 50 to 1,000 nm on the base substrate. The inorganic protective layer IV and / or the yellow organic protective layer act as a refractive index adjusting layer, and can extract light emitted from the pixel (B) more efficiently, thereby further improving the luminance of the display device. Further, the yellow organic protective layer can cut off blue leak light that cannot be converted by the pixel (B) containing the color conversion luminescent material, and can improve color reproducibility. More preferably, the inorganic protective layer IV and / or the yellow organic protective layer are provided between the base substrate and the partition (A) and the pixel (B).
 図8に、無機保護層IVおよび/または黄色有機保護層を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、無機保護層IVおよび/または黄色有機保護層9を有し、これらの上にパターン形成された隔壁2およびカラーフィルター7を有し、これらの上に、パターン形成された隔壁2および画素3を有する。 FIG. 8 is a cross-sectional view of one embodiment of the substrate with a partition wall of the present invention having an inorganic protective layer IV and / or a yellow organic protective layer. On the base substrate 1, an inorganic protective layer IV and / or a yellow organic protective layer 9 are provided, on which a patterned partition 2 and a color filter 7 are provided, on which a patterned barrier is provided. 2 and a pixel 3.
 無機保護層I~IVを構成する材料としては、例えば、酸化ケイ素、酸化インジウムスズ、酸化ガリウム亜鉛などの金属酸化物;窒化ケイ素などの金属窒化物;フッ化マグネシウムなどのフッ化物等が挙げられる。これらを2種以上含有してもよい。これらの中でも、水蒸気透過性が低く、透過性が高いことから、窒化ケイ素または酸化ケイ素がより好ましい。 Examples of the material constituting the inorganic protective layers I to IV include metal oxides such as silicon oxide, indium tin oxide, and gallium zinc oxide; metal nitrides such as silicon nitride; and fluorides such as magnesium fluoride. . Two or more of these may be contained. Among these, silicon nitride or silicon oxide is more preferable because of low water vapor permeability and high permeability.
 無機保護層I~IVの厚みは、水蒸気等の物質透過を充分に抑制する観点から、50nm以上が好ましく、100nm以上がより好ましい。一方、透過率の低下を抑制する観点から、無機保護層I~IVの厚みは、800nm以下が好ましく、500nm以下がより好ましい。 厚 み The thickness of the inorganic protective layers I to IV is preferably 50 nm or more, more preferably 100 nm or more, from the viewpoint of sufficiently suppressing the permeation of a substance such as water vapor. On the other hand, from the viewpoint of suppressing a decrease in transmittance, the thickness of the inorganic protective layers I to IV is preferably 800 nm or less, more preferably 500 nm or less.
 無機保護層I~IVの厚みは、クロスセクションポリッシャー等の研磨装置を用いて、下地基板に対して垂直な断面を露出させ、走査型電子顕微鏡または透過型電子顕微鏡を用いて断面を拡大観察することにより測定することができる。 The thickness of each of the inorganic protective layers I to IV is determined by exposing a cross section perpendicular to the underlying substrate using a polishing device such as a cross section polisher and observing the cross section using a scanning electron microscope or a transmission electron microscope. Can be measured.
 無機保護層I~IVの形成方法としては、例えば、スパッタ法などが挙げられる。無機保護層は、無色透明または黄色透明であることが好ましい。 (4) Examples of the method for forming the inorganic protective layers I to IV include a sputtering method. The inorganic protective layer is preferably colorless and transparent or yellow and transparent.
 黄色有機保護層は、例えば、有機金属化合物として、銀を含有する有機金属化合物を含有する本発明の樹脂組成物をパターン加工して得られる。銀を含有する有機金属化合物は、先述の通り、パターン形成に際し、加熱工程において分解・凝集することにより黄色粒子となり、保護層を黄色化する機能を有する。銀を含有する有機金属化合物としては、例えば、ネオデカン酸銀、オクチル酸銀、サリチル酸銀などが挙げられる。これらの中でも、より黄色化する観点から、ネオデカン酸銀が好ましい。黄色有機保護層用樹脂組成物において、銀を含有する有機金属化合物の含有量は、固形分中の0.2~5重量%が好ましい。銀を含有する有機金属化合物の含有量を0.2重量%以上とすることにより、より黄色化することができる。銀を含有する有機金属化合物の含有量は、固形分中の1.5重量%以上がより好ましい。一方、銀を含有する有機金属化合物の含有量を固形分中の5重量%以下とすることにより、透過率をより向上させることができる。 The yellow organic protective layer is obtained, for example, by patterning the resin composition of the present invention containing an organic metal compound containing silver as the organic metal compound. As described above, the organometallic compound containing silver has a function of decomposing and aggregating in a heating step to form yellow particles during pattern formation, thereby yellowing the protective layer. Examples of the organometallic compound containing silver include silver neodecanoate, silver octylate, and silver salicylate. Among these, silver neodecanoate is preferred from the viewpoint of yellowing. In the resin composition for a yellow organic protective layer, the content of the organometallic compound containing silver is preferably 0.2 to 5% by weight based on the solid content. By making the content of the organometallic compound containing silver 0.2% by weight or more, yellowing can be further achieved. The content of the organometallic compound containing silver is more preferably 1.5% by weight or more based on the solid content. On the other hand, by setting the content of the organometallic compound containing silver to 5% by weight or less in the solid content, the transmittance can be further improved.
 黄色有機保護層を形成する樹脂組成物は、黄色顔料を含有してもよい。黄色顔料としては、例えば、ピグメントイエロー(以下PYと略す)PY12、PY13、PY17、PY20、PY24、PY83、PY86、PY93、PY95、PY109、PY110、PY117、PY125、PY129、PY137、PY138、PY139、PY147、PY148、PY150、PY153、PY154、PY166、PY168、PY185などが挙げられる。中でも、青色光を選択的に遮光する観点から、PY139、PY147、PY148およびPY150から選ばれた黄色顔料が好ましい。
黄色有機保護層をパターン形成する方法としては、前述の隔壁(A-1)と同様に感光性ペースト法によりパターン形成する方法が好ましい。
The resin composition forming the yellow organic protective layer may contain a yellow pigment. As the yellow pigment, for example, Pigment Yellow (hereinafter abbreviated as PY) PY12, PY13, PY17, PY20, PY24, PY83, PY86, PY93, PY95, PY109, PY110, PY117, PY125, PY129, PY137, PY138, PY139, PY147 , PY148, PY150, PY153, PY154, PY166, PY168, PY185, and the like. Among them, a yellow pigment selected from PY139, PY147, PY148 and PY150 is preferable from the viewpoint of selectively blocking blue light.
As a method of forming a pattern of the yellow organic protective layer, a method of forming a pattern by a photosensitive paste method as in the case of the above-described partition wall (A-1) is preferable.
 図7のように、カラーフィルター7上に黄色有機保護層8を形成する場合、黄色有機保護層8は、カラーフィルターの各画素を平坦化するオーバーコート層としての役割を持たせてもよい。 In the case where the yellow organic protective layer 8 is formed on the color filter 7 as shown in FIG. 7, the yellow organic protective layer 8 may have a role as an overcoat layer for flattening each pixel of the color filter.
 黄色有機保護層の厚みは、青色漏れ光を充分に遮光する観点から、100nm以上が好ましく、500nm以上がより好ましい。一方、光取り出し効率の低下を抑制する観点から、黄色有機保護層の厚みは、3000nm以下が好ましく、2000nm以下がより好ましい。 (4) The thickness of the yellow organic protective layer is preferably 100 nm or more, more preferably 500 nm or more, from the viewpoint of sufficiently shielding blue leakage light. On the other hand, from the viewpoint of suppressing a decrease in light extraction efficiency, the thickness of the yellow organic protective layer is preferably equal to or less than 3000 nm, and more preferably equal to or less than 2000 nm.
 次に、本発明の表示装置について説明する。本発明の表示装置は、前記隔壁付き基板と、発光光源とを有する。発光光源としては、液晶セル、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源が好ましい。発光特性に優れることから、発光光源としては、有機ELセルがより好ましい。ここで、ミニLEDセルとは、縦横の長さが100μm~10mm程度であるLEDを多数並べたセルのことを指す。マイクロLEDセルとは、縦横の長さが100μm未満であるLEDを多数並べたセルのことを指す。 Next, the display device of the present invention will be described. The display device of the present invention includes the substrate with a partition and a light source. As the light source, a light source selected from a liquid crystal cell, an organic EL cell, a mini LED cell, and a micro LED cell is preferable. An organic EL cell is more preferable as the light source because of its excellent light emitting characteristics. Here, the mini LED cell refers to a cell in which a number of LEDs having a length and width of about 100 μm to 10 mm are arranged. The micro LED cell refers to a cell in which a number of LEDs having a length and width less than 100 μm are arranged.
 本発明の表示装置の製造方法について、本発明の隔壁付き基板と有機ELセルを有する表示装置の一例を挙げて説明する。ガラス基板上に、感光性ポリイミド樹脂を塗布し、フォトリソグラフィー法を用いて、開口部を有する絶縁膜を形成する。その上に、アルミニウムをスパッタした後、フォトリソグラフィー法によりアルミニウムのパターニングを行い、絶縁膜の無い開口部にアルミニウムからなる背面電極層を形成する。続いて、その上に、電子輸送層としてトリス(8-キノリノラト)アルミニウム(以下、Alq3と略す)を真空蒸着法により成膜した後、発光層としてAlq3にジシアノメチレンピラン、キナクリドンおよび4,4’-ビス(2,2-ジフェニルビニル)ビフェニルをドーピングした白色発光層を形成する。次に、正孔輸送層としてN,N’-ジフェニル-N,N’-ビス(α-ナフチル)-1,1’-ビフェニル-4,4’-ジアミンを真空蒸着法にて成膜する。最後に、透明電極としてITOをスパッタリングにて成膜し、白色発光層を有する有機ELセルを作製する。前述の隔壁付き基板と、このようにして得られた有機ELセルを対向させて封止剤により貼り合せることにより、表示装置を作製することができる。 The method for manufacturing the display device of the present invention will be described with reference to an example of a display device having the substrate with a partition wall and the organic EL cell of the present invention. A photosensitive polyimide resin is applied over a glass substrate, and an insulating film having an opening is formed by photolithography. After aluminum is sputtered thereon, aluminum is patterned by a photolithography method, and a back electrode layer made of aluminum is formed in an opening having no insulating film. Subsequently, tris (8-quinolinolato) aluminum (hereinafter abbreviated as Alq3) is formed thereon as an electron transporting layer by a vacuum evaporation method, and then dicyanomethylenepyran, quinacridone and 4,4 ′ A white light emitting layer doped with -bis (2,2-diphenylvinyl) biphenyl is formed. Next, N, N'-diphenyl-N, N'-bis (α-naphthyl) -1,1'-biphenyl-4,4'-diamine is formed as a hole transport layer by a vacuum evaporation method. Finally, ITO is formed as a transparent electrode by sputtering to produce an organic EL cell having a white light emitting layer. A display device can be manufactured by bonding the above-mentioned substrate with a partition wall and the organic EL cell obtained in this manner with a sealing agent.
 以下に実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの範囲に限定されない。なお、用いた化合物のうち略語を使用しているものについて、名称を以下に示す。
PGMEA:プロピレングリコールモノメチルエーテルアセテート
DAA:ジアセトンアルコール
BHT:ジブチルヒドロキシトルエン。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these ranges. In addition, the names of compounds using abbreviations among the used compounds are shown below.
PGMEA: propylene glycol monomethyl ether acetate DAA: diacetone alcohol BHT: dibutyl hydroxytoluene.
 合成例1~4におけるポリシロキサン溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分の重量を秤量して、加熱前の重量に対する割合からポリシロキサン溶液の固形分濃度を求めた。 固 形 The solid concentration of the polysiloxane solution in Synthesis Examples 1 to 4 was determined by the following method. 1.5 g of the polysiloxane solution was weighed into an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration of the polysiloxane solution was determined from the ratio to the weight before heating.
 合成例1~4におけるポリシロキサンの重量平均分子量は、以下の方法により求めた。GPC分析装置(HLC-8220;東ソー(株)製)を用い、移動相としてテトラヒドロフランを用いて、「JIS K7252-3(制定年月日=2008/03/20)」に基づきGPC分析を行い、ポリスチレン換算の重量平均分子量を測定した。 重量 The weight average molecular weight of the polysiloxane in Synthesis Examples 1 to 4 was determined by the following method. Using a GPC analyzer (HLC-8220; manufactured by Tosoh Corporation) and using tetrahydrofuran as a mobile phase, GPC analysis was performed according to "JIS @ K7252-3 (established date = 2008/03/20)". The weight average molecular weight in terms of polystyrene was measured.
 合成例1~4におけるポリシロキサン中の各繰り返し単位の含有比率は、以下の方法により求めた。ポリシロキサン溶液を直径10mmの“テフロン”(登録商標)製NMRサンプル管に注入して29Si-NMR測定を行い、オルガノシランに由来するSi全体の積分値に対する、特定のオルガノシランに由来するSiの積分値の割合から各繰り返し単位の含有比率を算出した。29Si-NMR測定条件を以下に示す。
装置:核磁気共鳴装置(JNM-GX270;日本電子(株)製)
測定法:ゲーテッドデカップリング法
測定核周波数:53.6693MHz(29Si核)
スペクトル幅:20000Hz
パルス幅:12μs(45°パルス)
パルス繰り返し時間:30.0秒
溶媒:アセトン-d6
基準物質:テトラメチルシラン
測定温度:23℃
試料回転数:0.0Hz。
The content ratio of each repeating unit in the polysiloxane in Synthesis Examples 1 to 4 was determined by the following method. The polysiloxane solution was injected into an NMR sample tube made of “Teflon” (registered trademark) having a diameter of 10 mm, 29 Si-NMR measurement was performed, and the Si derived from the specific organosilane was compared with the integrated value of the total Si derived from the organosilane. The content ratio of each repeating unit was calculated from the ratio of the integral value of. The 29 Si-NMR measurement conditions are shown below.
Apparatus: Nuclear magnetic resonance apparatus (JNM-GX270; manufactured by JEOL Ltd.)
Measurement method: gated decoupling method measurement nuclear frequency: 53.6693MHz (29 Si nucleus)
Spectral width: 20000Hz
Pulse width: 12 μs (45 ° pulse)
Pulse repetition time: 30.0 seconds Solvent: acetone-d6
Reference substance: tetramethylsilane Measurement temperature: 23 ° C
Sample rotation speed: 0.0 Hz.
 合成例1 ポリシロキサン(PSL-1)溶液
 1000mlの三口フラスコに、トリフルオロプロピルトリメトキシシランを147.32g(0.675mol)、3-メタクリロキシプロピルメチルジメトキシシランを40.66g(0.175mol)、3-トリメトキシシリルプロピルコハク酸無水物を26.23g(0.10mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを12.32g(0.05mol)、BHTを0.808g、およびPGMEAを171.62g仕込み、室温で撹拌しながら水52.65gにリン酸2.265g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて90分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計131.35g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-1)溶液を得た。なお、得られたポリシロキサン(PSL-1)の重量平均分子量は4,000であった。また、ポリシロキサン(PSL-1)における、トリフルオロプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、および3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランに由来する各繰り返し単位のモル比は、それぞれ67.5mol%、17.5mol%、10mol%および5mol%であった。
Synthesis Example 1 Polysiloxane (PSL-1) Solution In a 1000 ml three-necked flask, 147.32 g (0.675 mol) of trifluoropropyltrimethoxysilane and 40.66 g (0.175 mol) of 3-methacryloxypropylmethyldimethoxysilane. 26.23 g (0.10 mol) of 3-trimethoxysilylpropylsuccinic anhydride, 12.32 g (0.05 mol) of 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane, and 0.808 g of BHT And 171.62 g of PGMEA were added, and an aqueous phosphoric acid solution obtained by dissolving 2.265 g of phosphoric acid (1.0% by weight based on the charged monomers) in 52.65 g of water was added over 30 minutes while stirring at room temperature. Thereafter, the flask was immersed in a 70 ° C. oil bath and stirred for 90 minutes, and then the temperature of the oil bath was raised to 115 ° C. over 30 minutes. One hour after the start of the temperature rise, the solution temperature (internal temperature) reached 100 ° C., and the mixture was heated and stirred for 2 hours (internal temperature was 100 to 110 ° C.) to obtain a polysiloxane solution. During the heating and stirring, a mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter / minute. A total of 131.35 g of by-products methanol and water were distilled off during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration became 40% by weight, to obtain a polysiloxane (PSL-1) solution. The weight average molecular weight of the obtained polysiloxane (PSL-1) was 4,000. Also, trifluoropropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride, and 3- (3,4-epoxycyclohexyl) propyl in polysiloxane (PSL-1) The molar ratio of each repeating unit derived from trimethoxysilane was 67.5 mol%, 17.5 mol%, 10 mol%, and 5 mol%, respectively.
 合成例2 ポリシロキサン(PSL-2)溶液
 1000mlの三口フラスコに、ジフェニルジメトキシシランを116.07g(0.475mol)、ジメチルジメトキシシラン(0.20mol)、3-メタクリロキシプロピルトリメトキシシランを43.46g(0.175mol)、3-トリメトキシシリルプロピルコハク酸無水物を26.23g(0.10mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを12.32g(0.05mol)、BHTを0.843g、およびPGMEAを176.26g仕込み、室温で撹拌しながら水43.65gにリン酸2.221g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、合成例1と同様にしてポリシロキサン溶液を得た。反応中に副生成物であるメタノールおよび水が合計136.90g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-2)溶液を得た。なお、得られたポリシロキサン(PSL-2)の重量平均分子量は2,800であった。また、ポリシロキサン(PSL-2)における、ジフェニルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物および3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランに由来する各繰り返し単位のモル比は、それぞれ47.5mol%、20mol%、17.5mol%、10mol%および5mol%であった。
Synthesis Example 2 Polysiloxane (PSL-2) Solution In a 1000 ml three-necked flask, 116.07 g (0.475 mol) of diphenyldimethoxysilane, dimethyldimethoxysilane (0.20 mol), and 43.3-methacryloxypropyltrimethoxysilane. 46 g (0.175 mol), 26.23 g (0.10 mol) of 3-trimethoxysilylpropylsuccinic anhydride, and 12.32 g (0.05 mol) of 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane , 0.843 g of BHT and 176.26 g of PGMEA were charged, and while stirring at room temperature, an aqueous solution of phosphoric acid prepared by dissolving 2.221 g of phosphoric acid (1.0% by weight based on the charged monomers) in 43.65 g of water was added to 30 parts of the aqueous solution. Added over a period of minutes. Thereafter, a polysiloxane solution was obtained in the same manner as in Synthesis Example 1. During the reaction, a total of 136.90 g of by-products methanol and water were distilled off. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration became 40% by weight, to obtain a polysiloxane (PSL-2) solution. The weight average molecular weight of the obtained polysiloxane (PSL-2) was 2,800. In addition, diphenyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride and 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane in polysiloxane (PSL-2) The molar ratio of each repeating unit derived was 47.5 mol%, 20 mol%, 17.5 mol%, 10 mol% and 5 mol%, respectively.
 合成例3 ポリシロキサン(PSL-3)溶液
 1000mlの三口フラスコに、トリフルオロプロピルトリメトキシシランを147.32g(0.675mol)、3-メタクリロキシプロピルトリメトキシシシランを43.46g(0.175mol)、3-トリメトキシシリルプロピルコハク酸無水物を26.23g(0.10mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを12.32g(0.05mol)、BHTを0.810g、およびPGMEAを172.59g仕込み、室温で撹拌しながら水54.45gにリン酸2.293g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、合成例1と同様にしてポリシロキサン溶液を得た。反応中に副生成物であるメタノールおよび水が合計140.05g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-3)溶液を得た。なお、得られたポリシロキサン(PSL-3)の重量平均分子量は4,100であった。また、ポリシロキサン(PSL-3)における、トリフルオロプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物および3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランに由来する各繰り返し単位のモル比は、それぞれ67.5mol%、17.5mol%、10mol%および5mol%であった。
Synthesis Example 3 Polysiloxane (PSL-3) Solution In a 1000 ml three-necked flask, 147.32 g (0.675 mol) of trifluoropropyltrimethoxysilane and 43.46 g (0.175 mol) of 3-methacryloxypropyltrimethoxysilane were added. ), 26.23 g (0.10 mol) of 3-trimethoxysilylpropylsuccinic anhydride, 12.32 g (0.05 mol) of 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane, and 0.23 g (0.05 mol) of BHT. 810 g and 172.59 g of PGMEA were charged, and an aqueous phosphoric acid solution obtained by dissolving 2.293 g of phosphoric acid (1.0% by weight based on charged monomers) in 54.45 g of water was added over 30 minutes while stirring at room temperature. . Thereafter, a polysiloxane solution was obtained in the same manner as in Synthesis Example 1. A total of 140.05 g of methanol and water as by-products were distilled off during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration became 40% by weight to obtain a polysiloxane (PSL-3) solution. The weight average molecular weight of the obtained polysiloxane (PSL-3) was 4,100. Also, trifluoropropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride, and 3- (3,4-epoxycyclohexyl) propyltrisiloxane in polysiloxane (PSL-3) The molar ratio of each repeating unit derived from methoxysilane was 67.5 mol%, 17.5 mol%, 10 mol% and 5 mol%, respectively.
 合成例4 ポリシロキサン(PSL-4)溶液
 1000mlの三口フラスコに、メチルトリメトキシシランを34.05g(0.250mol)、フェニルトリメトキシシランを99.15g(0.500mol)、テトラエトキシシランを31.25g(0.150mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを24.64g(0.100mol)、およびPGMEAを174.95g仕込み、室温で撹拌しながら水56.70gにリン酸0.945g(仕込みモノマーに対して0.50重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、合成例1と同様にしてポリシロキサン溶液を得た。反応中に副生成物であるメタノールおよび水が合計129.15g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-4)溶液を得た。なお、得られたポリシロキサン(PSL-4)の重量平均分子量は4,200であった。また、ポリシロキサン(PSL-4)における、メチルトリメトキシシラン、フェニルトリメトキシシラン、テトラエトキシシラン、および3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランに由来する各繰り返し単位のモル比は、それぞれ25mol%、50mol%、15mol%および10mol%であった。
Synthesis Example 4 Polysiloxane (PSL-4) Solution In a 1000 ml three-necked flask, 34.05 g (0.250 mol) of methyltrimethoxysilane, 99.15 g (0.500 mol) of phenyltrimethoxysilane, and 31 of tetraethoxysilane were added. .25 g (0.150 mol), 24.64 g (0.100 mol) of 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane, and 174.95 g of PGMEA were charged and stirred at room temperature in 56.70 g of water. A phosphoric acid aqueous solution in which 0.945 g of phosphoric acid (0.50% by weight based on the charged monomer) was dissolved was added over 30 minutes. Thereafter, a polysiloxane solution was obtained in the same manner as in Synthesis Example 1. During the reaction, a total of 129.15 g of by-products methanol and water were distilled off. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration became 40% by weight, to obtain a polysiloxane (PSL-4) solution. The weight average molecular weight of the obtained polysiloxane (PSL-4) was 4,200. In the polysiloxane (PSL-4), the molar ratio of each repeating unit derived from methyltrimethoxysilane, phenyltrimethoxysilane, tetraethoxysilane, and 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane is as follows: , 25 mol%, 50 mol%, 15 mol% and 10 mol%, respectively.
 合成例1~4の組成をまとめて表1に示す。 Table 1 summarizes the compositions of Synthesis Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 合成例5 緑色有機蛍光体
 3,5-ジブロモベンズアルデヒド(3.0g)、4-t-ブチルフェニルボロン酸(5.3g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.4g)、および炭酸カリウム(2.0g)をフラスコに入れ、窒素置換した。ここに脱気したトルエン(30mL)および脱気した水(10mL)を加え、4時間還流した。反応溶液を室温まで冷却し、分液した後に、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。得られた反応生成物をシリカゲルカラムクロマトグラフィーにより精製し、3,5-ビス(4-t-ブチルフェニル)ベンズアルデヒド(3.5g)の白色固体を得た。次に、3,5-ビス(4-t-ブチルフェニル)ベンズアルデヒド(1.5g)と2,4-ジメチルピロール(0.7g)をフラスコに入れ、脱水ジクロロメタン(200mL)およびトリフルオロ酢酸(1滴)を加えて、窒素雰囲気下、4時間撹拌した。この反応混合物に2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(0.85g)の脱水ジクロロメタン溶液を加え、さらに1時間撹拌した。反応終了後、三弗化ホウ素ジエチルエーテル錯体(7.0mL)およびジイソプロピルエチルアミン(7.0mL)を加えて、4時間撹拌した後、さらに水(100mL)を加えて撹拌し、有機層を分液した。この有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。得られた反応生成物をシリカゲルカラムクロマトグラフィーにより精製し、緑色粉末0.4gを得た(収率17%)。得られた緑色粉末のH-NMR分析結果は次の通りであり、上記で得られた緑色粉末が、下記構造式で表される[G-1]であることが確認された。
H-NMR(CDCl(d=ppm)):7.95(s,1H)、7.63-7.48(m,10H)、6.00(s,2H)、2.58(s,6H)、1.50(s,6H)、1.37(s,18H)。
Synthesis Example 5 Green Organic Phosphor 3,5-dibromobenzaldehyde (3.0 g), 4-t-butylphenylboronic acid (5.3 g), tetrakis (triphenylphosphine) palladium (0) (0.4 g), and Potassium carbonate (2.0 g) was charged into the flask and purged with nitrogen. To this was added degassed toluene (30 mL) and degassed water (10 mL), and the mixture was refluxed for 4 hours. After the reaction solution was cooled to room temperature and separated, the organic layer was washed with saturated saline. The organic layer was dried over magnesium sulfate, and after filtration, the solvent was distilled off. The obtained reaction product was purified by silica gel column chromatography to obtain a white solid of 3,5-bis (4-t-butylphenyl) benzaldehyde (3.5 g). Next, 3,5-bis (4-t-butylphenyl) benzaldehyde (1.5 g) and 2,4-dimethylpyrrole (0.7 g) were placed in a flask, and dehydrated dichloromethane (200 mL) and trifluoroacetic acid (1 ) And stirred under a nitrogen atmosphere for 4 hours. To the reaction mixture was added a solution of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (0.85 g) in dehydrated dichloromethane, and the mixture was further stirred for 1 hour. After completion of the reaction, boron trifluoride diethyl ether complex (7.0 mL) and diisopropylethylamine (7.0 mL) were added, and the mixture was stirred for 4 hours. Water (100 mL) was further added and stirred, and the organic layer was separated. did. The organic layer was dried over magnesium sulfate, and after filtration, the solvent was distilled off. The obtained reaction product was purified by silica gel column chromatography to obtain 0.4 g of a green powder (yield 17%). The result of 1 H-NMR analysis of the obtained green powder is as follows, and it was confirmed that the green powder obtained above was [G-1] represented by the following structural formula.
1 H-NMR (CDCl 3 (d = ppm)): 7.95 (s, 1H), 7.63 to 7.48 (m, 10H), 6.00 (s, 2H), 2.58 (s , 6H), 1.50 (s, 6H), 1.37 (s, 18H).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 合成例6 赤色有機蛍光体
 4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール300mg、2-メトキシベンゾイルクロリド201mgおよびトルエン10mlの混合溶液を、窒素気流下、120℃で6時間加熱した。室温に冷却後、溶媒をエバポレートした。得られた残留物をエタノール20mlで洗浄し、真空乾燥することにより、2-(2-メトキシベンゾイル)-3-(4-t-ブチルフェニル)-5-(4-メトキシフェニル)ピロール260mgを得た。次に、2-(2-メトキシベンゾイル)-3-(4-t-ブチルフェニル)-5-(4-メトキシフェニル)ピロール260mg、4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール180mg、メタンスルホン酸無水物206mgおよび脱気したトルエン10mlの混合溶液を、窒素気流下、125℃で7時間加熱した。この反応混合物を室温に冷却後、水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄した後、エバポレートし、真空乾燥することにより、残留物としてピロメテン体を得た。次に、得られたピロメテン体とトルエン10mlの混合溶液に、窒素気流下、ジイソプロピルエチルアミン305mgおよび三フッ化ホウ素ジエチルエーテル錯体670mgを加え、室温で3時間撹拌した。この反応混合物に水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、赤紫色粉末0.27gを得た(収率70%)。得られた赤紫色粉末のH-NMR分析結果は次の通りであり、上記で得られた赤紫色粉末が、下記構造式で表される[R-1]であることが確認された。
H-NMR(CDCl(d=ppm)):1.19(s,18H),3.42(s,3H),3.85(s,6H),5.72(d,1H),6.20(t,1H),6.42-6.97(m,16H),7.89(d,4H)。
Synthesis Example 6 Red Organic Phosphor 4- (4-t-butylphenyl) -2- (4-methoxyphenyl) pyrrole 300 mg, 2-methoxybenzoyl chloride 201 mg and toluene 10 ml were mixed at 120 ° C. under a nitrogen stream. Heat for 6 hours. After cooling to room temperature, the solvent was evaporated. The obtained residue was washed with 20 ml of ethanol and dried under vacuum to obtain 260 mg of 2- (2-methoxybenzoyl) -3- (4-t-butylphenyl) -5- (4-methoxyphenyl) pyrrole. Was. Next, 260 mg of 2- (2-methoxybenzoyl) -3- (4-t-butylphenyl) -5- (4-methoxyphenyl) pyrrole and 4- (4-t-butylphenyl) -2- (4- A mixed solution of 180 mg of (methoxyphenyl) pyrrole, 206 mg of methanesulfonic anhydride and 10 ml of degassed toluene was heated at 125 ° C. for 7 hours under a nitrogen stream. After cooling the reaction mixture to room temperature, 20 ml of water was poured, and the mixture was extracted with 30 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, then evaporated and dried under vacuum to obtain a pyrromethene derivative as a residue. Next, 305 mg of diisopropylethylamine and 670 mg of boron trifluoride diethyl ether complex were added to a mixed solution of the obtained pyromethene compound and 10 ml of toluene under a nitrogen stream, and the mixture was stirred at room temperature for 3 hours. 20 ml of water was poured into the reaction mixture, and extracted with 30 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate, and evaporated. After purification by silica gel column chromatography and vacuum drying, 0.27 g of red-purple powder was obtained (70% yield). The result of 1 H-NMR analysis of the obtained red-purple powder was as follows, and it was confirmed that the red-purple powder obtained above was [R-1] represented by the following structural formula.
1 H-NMR (CDCl 3 (d = ppm)): 1.19 (s, 18H), 3.42 (s, 3H), 3.85 (s, 6H), 5.72 (d, 1H), 6.20 (t, 1H), 6.42-6.97 (m, 16H), 7.89 (d, 4H).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 合成例7 シリカ粒子含有ポリシロキサン溶液(LS-1)
 500mlの三口フラスコに、メチルトリメトキシシランを0.05g(0.4mmol)、トリフルオロプロピルトリメトキシシランを0.66g(3.0mmol)、トリメトキシシリルプロピルコハク酸無水物を0.10g(0.4mmol)、γ-アクリロキシプロピルトリメトキシシランを7.97g(34mmol)、および15.6重量%のシリカ粒子のイソプロピルアルコール分散液(IPA-ST-UP:日産化学工業(株)製)を224.37g入れ、エチレングリコールモノ-t-ブチルエーテル163.93gを加えた。室温で撹拌しながら、水4.09gにリン酸0.088gを溶かしたリン酸水溶液を3分間かけて添加した。その後、フラスコを40℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこからさらに2時間加熱撹拌することにより(内温は100~110℃)、シリカ粒子含有ポリシロキサン溶液(LS-1)を得た。なお、昇温および加熱撹拌中、窒素を0.05l(リットル)/分流した。反応中に副生成物であるメタノールおよび水が合計194.01g留出した。得られたシリカ粒子含有ポリシロキサン溶液(LS-1)の固形分濃度は24.3重量%、固形分中のポリシロキサンとシリカ粒子の含有量は、それぞれ15重量%および85重量%であった。得られたシリカ粒子含有ポリシロキサン(LS-1)におけるポリシロキサンの、メチルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、およびγ-アクリロキシプロピルトリメトキシシランに由来する各繰り返し単位のモル比は、それぞれ1.0mol%、8.0mol%、1.0mol%および90.0mol%であった。
Synthesis Example 7 Silica Particle-Containing Polysiloxane Solution (LS-1)
In a 500 ml three-necked flask, 0.05 g (0.4 mmol) of methyltrimethoxysilane, 0.66 g (3.0 mmol) of trifluoropropyltrimethoxysilane, and 0.10 g (0,0 g) of trimethoxysilylpropylsuccinic anhydride were added. .4 mmol), 7.97 g (34 mmol) of γ-acryloxypropyltrimethoxysilane, and an isopropyl alcohol dispersion of 15.6 wt% silica particles (IPA-ST-UP: manufactured by Nissan Chemical Industries, Ltd.). 224.37 g were added, and 163.93 g of ethylene glycol mono-t-butyl ether was added. While stirring at room temperature, a phosphoric acid aqueous solution in which 0.088 g of phosphoric acid was dissolved in 4.09 g of water was added over 3 minutes. Thereafter, the flask was immersed in a 40 ° C. oil bath and stirred for 60 minutes, and then the temperature of the oil bath was raised to 115 ° C. over 30 minutes. One hour after the start of the temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was further heated and stirred for 2 hours (the internal temperature was 100 to 110 ° C.) to obtain a polysiloxane solution (LS-1) containing silica particles. Was. During the heating and stirring with stirring, nitrogen was flowed at 0.05 l (liter) / minute. During the reaction, a total of 194.01 g of by-products methanol and water were distilled off. The solid concentration of the obtained silica particle-containing polysiloxane solution (LS-1) was 24.3% by weight, and the contents of the polysiloxane and the silica particles in the solid content were 15% by weight and 85% by weight, respectively. . Methyltrimethoxysilane, trifluoropropyltrimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride, and γ-acryloxypropyltrimethoxysilane of the polysiloxane in the obtained silica particle-containing polysiloxane (LS-1) Was 1.0 mol%, 8.0 mol%, 1.0 mol% and 90.0 mol%, respectively.
 実施例1 隔壁用樹脂組成物(P-1)
 白色顔料として、二酸化チタン顔料(R-960;BASFジャパン(株)製(以下「R-960」))5.00gに、樹脂として、合成例1により得られたポリシロキサン(PSL-1)溶液5.00gを混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-1)を得た。また、有機金属化合物として、ビス(アセチルアセトナト)パラジウムを1.00gと、リン原子を有する配位性化合物として、トリフェニルホスフィンを0.861g(有機金属化合物に対して等モル量)をDAA8.139gに溶解して、有機金属化合物溶液(OM-1)を得た。
Example 1 Resin composition for partition wall (P-1)
As a white pigment, 5.00 g of a titanium dioxide pigment (R-960; manufactured by BASF Japan Ltd. (hereinafter, “R-960”)), and as a resin, a solution of the polysiloxane (PSL-1) obtained in Synthesis Example 1 5.00 g were mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-1). Further, 1.00 g of bis (acetylacetonato) palladium as an organometallic compound and 0.861 g (equimolar amount with respect to the organometallic compound) of triphenylphosphine as a coordinating compound having a phosphorus atom are DAA8. .139 g to give an organometallic compound solution (OM-1).
 次に、前記顔料分散液(MW-1)9.98g、前記有機金属化合物溶液(OM-1)1.86g、ポリシロキサン(PSL-1)溶液0.98g、光重合開始剤として、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(О-アセチルオキシム)(“イルガキュア”(登録商標)OXE-02、BASFジャパン(株)製(以下「OXE-02」))0.050g、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(“イルガキュア”819、BASFジャパン(株)製(以下「IC-819」))0.400g、光塩基発生剤として、2-(3-ベンゾイルフェニル)プロピオン酸1,2-ジイソプロピル-3-[ビス(ジメチルアミノ)メチレン]グアニジニウム(WPBG-266(商品名)、富士フイルム和光純薬(株)製(以下「WPBG-266」))0.100g、光重合性化合物として、ジペンタエリスリトールヘキサアクリレート(“KAYARAD”(登録商標)DPHA、新日本薬業(株)製(以下「DPHA」))1.20g、撥液化合物として、光重合性フッ素含有化合物(“メガファック”(登録商標)RS-76-E、DIC(株)製(以下「RS-76-E」))の40重量%PGMEA希釈溶液1.00g、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(“セロキサイド”(登録商標)2021P、ダイセル(株)製(以下「セロキサイド(登録商標)2021P」))0.100g、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート](“イルガノックス”(登録商標)1010、BASFジャパン(株)製(以下「IRGANOX(登録商標)1010」))0.030g、およびアクリル系界面活性剤(“BYK”(登録商標)352、ビックケミージャパン(株)製(以下「BYK-352」))のPGMEA10重量%希釈溶液0.100g(濃度500ppmに相当)を、溶媒PGMEA4.20gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-1)を得た。 Next, 9.98 g of the pigment dispersion (MW-1), 1.86 g of the organometallic compound solution (OM-1), 0.98 g of the polysiloxane (PSL-1) solution, and ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (О-acetyloxime) (“IRGACURE” (registered trademark) OXE-02, BASF Japan Ltd. (Hereinafter referred to as “OXE-02”)), 0.050 g, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (“Irgacure” 819, manufactured by BASF Japan Ltd. (hereinafter “IC-819”) )) 0.400 g, 1,2-diisopropyl-3- [bis (dimethylamino) methyl 2- (3-benzoylphenyl) propionate as photobase generator 0.100 g of guanidinium (WPBG-266 (trade name), manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. (hereinafter, "WPBG-266")), and dipentaerythritol hexaacrylate ("KAYARAD" (registered) as a photopolymerizable compound. Trade name) DPHA, 1.20 g, manufactured by Shin Nippon Pharmaceutical Co., Ltd. (hereinafter "DPHA"), and a photopolymerizable fluorine-containing compound ("MegaFac" (registered trademark) RS-76-E, DIC) as a liquid repellent compound 1.00 g of a 40% by weight diluted solution of PGMEA (hereinafter referred to as “RS-76-E”) manufactured by K.K., and 3 ′, 4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (“CELLOXIDE” (registered) Trademark) 2021P, 0.100 g, manufactured by Daicel Co., Ltd. (hereinafter “Celoxide (registered trademark) 2021P”), ethylene bis (Oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate] (“Irganox” (registered trademark) 1010, manufactured by BASF Japan Ltd. (hereinafter “IRGANOX (registered trademark)”) 1010 ")) and 0.100 g of a 10% by weight diluted solution of an acrylic surfactant (" BYK "(registered trademark) 352, manufactured by BYK Japan KK (hereinafter," BYK-352 ")) in 10% by weight of PGMEA ( (Equivalent to a concentration of 500 ppm) was dissolved in 4.20 g of the solvent PGMEA and stirred. The resulting mixture was filtered through a 5.0 μm filter to obtain a partition wall resin composition (P-1).
 実施例2~3 隔壁用樹脂組成物(P-2)~(P-3)
 ポリシロキサン(PSL-1)溶液の代わりに、それぞれ前記ポリシロキサン(PSL-2)または(PSL-3)溶液を使用した以外は、実施例1と同様にして隔壁用樹脂組成物(P-2)および(P-3)を得た。
Examples 2 to 3 Resin compositions for partition walls (P-2) to (P-3)
A resin composition for partition walls (P-2) was prepared in the same manner as in Example 1 except that the polysiloxane (PSL-2) or (PSL-3) solution was used instead of the polysiloxane (PSL-1) solution. ) And (P-3).
 実施例4 隔壁用樹脂組成物(P-4)
 RS-76-Eの40重量%PGMEA希釈溶液の代わりに、“メガファック”(登録商標)F477(大日本インキ化学工業(株)製)40重量%PGMEA希釈溶液を用いた以外は、実施例1と同様にして隔壁用樹脂組成物(P-4)を得た。
Example 4 Resin composition for partition walls (P-4)
Example 10 Except that a 40% by weight PGMEA diluted solution of "MegaFac" (registered trademark) F477 (manufactured by Dainippon Ink and Chemicals, Inc.) was used instead of the 40% by weight PGMEA diluted solution of RS-76-E. In the same manner as in Example 1, a resin composition for partition walls (P-4) was obtained.
 実施例5 隔壁用樹脂組成物(P-5)
 白色顔料として、R-960を5.00g、樹脂としてポリシロキサン(PSL-4)溶液を5.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-4)を得た。前記顔料分散液(MW-4)を9.98g、前記有機金属化合物溶液(OM-1)を1.86g、前記ポリシロキサン(PSL-4)溶液を1.16g、光塩基発生剤としてWPBG-266を0.10g、撥液化合物としてF477の40重量%PGMEA希釈溶液を1.00g、セロキサイド(登録商標)2021Pを0.100g、キノンジアジド化合物としてTHP-17(商品名、東洋合成工業(株)製)を1.60g、界面活性剤BYK-352のPGMEA10重量%希釈溶液を0.100g、およびPGMEAを4.10g混合し、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-5)を得た。
Example 5 Resin composition for partition wall (P-5)
A mixture of 5.00 g of R-960 as a white pigment and 5.00 g of a polysiloxane (PSL-4) solution as a resin was dispersed using a mill-type disperser filled with zirconia beads, and dispersed in a pigment dispersion (MW). -4) was obtained. 9.98 g of the pigment dispersion (MW-4), 1.86 g of the organometallic compound solution (OM-1), 1.16 g of the polysiloxane (PSL-4) solution, and WPBG- as a photobase generator. 0.10 g of 266, 1.00 g of a 40% by weight PGMEA diluted solution of F477 as a liquid repellent compound, 0.100 g of Celloxide (registered trademark) 2021P, and THP-17 (trade name, Toyo Gosei Kogyo Co., Ltd.) as a quinonediazide compound 1.60 g), 0.100 g of a 10% by weight diluted solution of the surfactant BYK-352 in PGMEA, and 4.10 g of PGMEA were mixed and stirred. The obtained mixture was filtered through a 5.0 μm filter to obtain a partition wall resin composition (P-5).
 実施例6 隔壁用樹脂組成物(P-6)
 有機金属化合物として、ビス(アセチルアセトナト)パラジウムの代わりにネオデカン酸銀を用いた以外は、前記有機金属化合物溶液(OM-1)と同様にして、有機金属化合物溶液(OM-2)を調製した。有機金属化合物溶液(OM-1)の代わりに、有機金属化合物溶液(OM-2)を用いた以外は、実施例1と同様にして隔壁用樹脂組成物(P-6)を得た。
Example 6 Resin composition for partition wall (P-6)
An organometallic compound solution (OM-2) was prepared in the same manner as the organometallic compound solution (OM-1) except that silver neodecanoate was used instead of bis (acetylacetonato) palladium as the organometallic compound. did. A resin composition for partition walls (P-6) was obtained in the same manner as in Example 1, except that the organometallic compound solution (OM-2) was used instead of the organometallic compound solution (OM-1).
 実施例7 隔壁用樹脂組成物(P-7)
 有機金属化合物として、ビス(アセチルアセトナト)パラジウムの代わりにクロロトリフェニルホスフィン金を用いた以外は、前記有機金属化合物溶液(OM-1)と同様にして、有機金属化合物溶液(OM-3)を調製した。有機金属化合物溶液(OM-1)の代わりに、有機金属化合物溶液(OM-3)を用いた以外は、実施例1と同様にして隔壁用樹脂組成物(P-7)を得た。
Example 7 Resin composition for partition wall (P-7)
An organometallic compound solution (OM-3) was prepared in the same manner as the organometallic compound solution (OM-1) except that chlorotriphenylphosphine gold was used instead of bis (acetylacetonato) palladium as the organometallic compound. Was prepared. A resin composition for partition walls (P-7) was obtained in the same manner as in Example 1, except that the organometallic compound solution (OM-3) was used instead of the organometallic compound solution (OM-1).
 実施例8 隔壁用樹脂組成物(P-8)
 有機金属化合物として、ビス(アセチルアセトナト)パラジウムの代わりにビス(アセチルアセトナト)白金を用いた以外は、前記有機金属化合物溶液(OM-1)と同様にして、有機金属化合物溶液(OM-4)を調製した。有機金属化合物溶液(OM-1)の代わりに、有機金属化合物溶液(OM-4)を用いた以外は、実施例1と同様にして隔壁用樹脂組成物(P-8)を得た。
Example 8 Resin composition for partition wall (P-8)
An organometallic compound solution (OM-) was prepared in the same manner as the organometallic compound solution (OM-1) except that bis (acetylacetonato) platinum was used instead of bis (acetylacetonato) palladium as the organometallic compound. 4) was prepared. A resin composition for partition walls (P-8) was obtained in the same manner as in Example 1, except that the organometallic compound solution (OM-4) was used instead of the organometallic compound solution (OM-1).
 実施例9 隔壁用樹脂組成物(P-9)
 有機金属化合物溶液(OM-1)の添加量を0.929g、ポリシロキサン(PSL-1)溶液の添加量を1.41gに変更し、溶媒としてPGMEA4.20gをPGMEA4.70gに変更した以外は、実施例1と同様にして隔壁用樹脂組成物(P-9)を得た。
Example 9 Resin composition for partition wall (P-9)
Except that the amount of the organometallic compound solution (OM-1) was changed to 0.929 g, the amount of the polysiloxane (PSL-1) solution was changed to 1.41 g, and 4.20 g of PGMEA was changed to 4.70 g of PGMEA as a solvent. In the same manner as in Example 1, a resin composition for partition walls (P-9) was obtained.
 実施例10 隔壁用樹脂組成物(P-10)
 有機金属化合物溶液(OM-1)の添加量を0.400g、ポリシロキサン(PSL-1)溶液の添加量を1.940gに変更し、溶媒としてPGMEA4.20gをPGMEA6.27gに変更した以外は、実施例1と同様にして隔壁用樹脂組成物(P-10)を得た。
Example 10 Resin composition for partition wall (P-10)
Except that the addition amount of the organometallic compound solution (OM-1) was changed to 0.400 g, the addition amount of the polysiloxane (PSL-1) solution was changed to 1.940 g, and 4.20 g of PGMEA was changed to 6.27 g of PGMEA as a solvent. In the same manner as in Example 1, a resin composition for partition walls (P-10) was obtained.
 実施例11 隔壁用樹脂組成物(P-11)
 有機金属化合物溶液(OM-1)の添加量を4.595g、ポリシロキサン(PSL-1)溶液の添加量を0.010gに変更し、溶媒としてPGMEA4.20gをPGMEA2.92gに変更した以外は、実施例1と同様にして隔壁用樹脂組成物(P-11)を得た。
Example 11 Partition Resin Composition (P-11)
Except that the addition amount of the organometallic compound solution (OM-1) was changed to 4.595 g, the addition amount of the polysiloxane (PSL-1) solution was changed to 0.010 g, and 4.20 g of PGMEA was changed to 2.92 g of PGMEA as a solvent. In the same manner as in Example 1, a resin composition for partition walls (P-11) was obtained.
 実施例12 隔壁用樹脂組成物(P-12)
 白色顔料としてR-960を5.00g、樹脂として、ポリシロキサン(PSL-1)溶液を5.00g、黒色顔料として窒化チタンを0.01g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-2)を得た。顔料分散液(MW-1)の代わりに、顔料分散液(MW-2)を9.99g添加し、ポリシロキサン(PSL-1)溶液の添加量を1.38gに変更し、溶媒としてPGMEA4.72gを用いた以外は、実施例9と同様にして隔壁用樹脂組成物(P-12)を得た。
Example 12 Resin Composition for Partition Wall (P-12)
A mill type dispersing machine filled with zirconia beads was prepared by mixing 5.00 g of R-960 as a white pigment, 5.00 g of a polysiloxane (PSL-1) solution as a resin, and 0.01 g of titanium nitride as a black pigment. To obtain a pigment dispersion (MW-2). Instead of the pigment dispersion (MW-1), 9.99 g of the pigment dispersion (MW-2) was added, the amount of the polysiloxane (PSL-1) solution was changed to 1.38 g, and PGMEA4. Except for using 72 g, a resin composition for partition walls (P-12) was obtained in the same manner as in Example 9.
 実施例13 隔壁用樹脂組成物(P-13)
 樹脂として、ポリシロキサン(PSL-1)溶液を10.0g、黒色顔料として窒化チタンを0.15g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-3)を得た。顔料分散液(MW-1)の代わりに、顔料分散液(MW-3)を9.99g添加し、ポリシロキサン(PSL-1)溶液の添加量を15.16gに変更し、PGMEAの添加量を4.20gから0.11gに変更した以外は、実施例1と同様にして隔壁用樹脂組成物(P-13)を得た。
Example 13 Resin composition for partition wall (P-13)
As a resin, 10.0 g of a polysiloxane (PSL-1) solution and 0.15 g of titanium nitride as a black pigment were mixed, and dispersed using a mill-type disperser filled with zirconia beads. 3) was obtained. Instead of the pigment dispersion (MW-1), 9.99 g of the pigment dispersion (MW-3) was added, the amount of the polysiloxane (PSL-1) solution was changed to 15.16 g, and the amount of the PGMEA added. Was changed from 4.20 g to 0.11 g to obtain a resin composition for partition walls (P-13) in the same manner as in Example 1.
 実施例14 隔壁用樹脂組成物(P-14)
 有機金属化合物溶液(OM-1)の代わりに、有機金属化合物として、ビス(アセチルアセトナト)パラジウムの10%DAA溶液を1.85g用いて、ポリシロキサン(PSL-1)溶液の添加量を1.34gに変更し、溶媒としてPGMEA4.20gをPGMEA3.85gに変更した以外は、実施例1と同様にして隔壁用樹脂組成物(P-14)を得た。
Example 14 Resin Composition for Partition Wall (P-14)
Instead of the organometallic compound solution (OM-1), 1.85 g of a 10% DAA solution of bis (acetylacetonato) palladium was used as the organometallic compound, and the addition amount of the polysiloxane (PSL-1) solution was 1 The resin composition for a partition wall (P-14) was obtained in the same manner as in Example 1 except that PGMEA was changed to 3.85 g and PGMEA was changed to 3.85 g from PGMEA as a solvent.
 実施例15 隔壁用樹脂組成物(P-15)
 光塩基発生剤WPBG-266を添加せず、ポリシロキサン(PSL-1)溶液の添加量を1.21gに変更し、溶媒としてPGMEA4.20gをPGMEA4.07gに変更した以外は、実施例1と同様にして隔壁用樹脂組成物(P-15)を得た。
Example 15 Resin composition for partition wall (P-15)
Example 1 was repeated except that the photobase generator WPBG-266 was not added, the addition amount of the polysiloxane (PSL-1) solution was changed to 1.21 g, and 4.20 g of PGMEA was changed to 4.07 g of PGMEA as a solvent. Similarly, a partition wall resin composition (P-15) was obtained.
 実施例16 隔壁用樹脂組成物(P-16)
 撥液化合物RS-76-Eの40重量%PGMEA希釈溶液を添加せず、ポリシロキサン(PSL-1)溶液の添加量を2.01gに変更し、溶媒としてPGMEA4.20gをPGMEA4.17gに変更した以外は、実施例1と同様にして隔壁用樹脂組成物(P-16)を得た。
Example 16 Resin Composition for Partition Wall (P-16)
The addition amount of the polysiloxane (PSL-1) solution was changed to 2.01 g without adding the 40% by weight PGMEA diluted solution of the liquid repellent compound RS-76-E, and 4.20 g of PGMEA was changed to 4.17 g of PGMEA as a solvent. A resin composition for partition walls (P-16) was obtained in the same manner as in Example 1 except that the above procedure was repeated.
 比較例1 隔壁用樹脂組成物(P-17)
 有機金属化合物溶液(OM-1)の代わりに、リン原子を有する配位性化合物としてトリフェニルホスフィンを1.861g、DAAを8.139g用いて得た有機金属化合物溶液(OM-5)を0.867g添加し、ポリシロキサン(PSL-1)溶液の添加量を1.41gに変更し、PGMEAの添加量を4.20gから4.76gに変更した以外は、実施例1と同様にして隔壁用樹脂組成物(P-17)を得た。
Comparative Example 1 Resin Composition for Partition Wall (P-17)
Instead of the organometallic compound solution (OM-1), the organometallic compound solution (OM-5) obtained by using 1.861 g of triphenylphosphine and 8.139 g of DAA as a coordinating compound having a phosphorus atom was replaced with 0. 0.867 g, the amount of the polysiloxane (PSL-1) solution was changed to 1.41 g, and the amount of PGMEA was changed from 4.20 g to 4.76 g. A resin composition (P-17) was obtained.
 比較例2 隔壁用樹脂組成物(P-18)
 白色顔料としてR-960を5.00g、樹脂として、ポリシロキサン(PSL-1)溶液を5.00g、および黒色顔料として窒化チタンを0.10g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-4)を得た。次に、前記顔料分散液(MW-4)を10.02g、前記ポリシロキサン(PSL-1)溶液を1.73g、光重合開始剤としてOXE-02を0.050g、IC-819を0.400g、光塩基発生剤としてWPBG-266を0.10g、光重合性化合物としてDPHAを1.20g、撥液化合物としてRS-76-Eの40重量%PGMEA希釈溶液を1.00g、セロキサイド(登録商標)2021Pを0.100g、IRGANOX(登録商標)1010を0.030g、界面活性剤としてBYK-352のPGMEA10重量%希釈溶液を0.100g、および溶媒としてPGMEAを5.31g混合し、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-18)を得た。
Comparative Example 2 Resin composition for partition wall (P-18)
Mill type dispersing machine filled with zirconia beads by mixing 5.00 g of R-960 as a white pigment, 5.00 g of a polysiloxane (PSL-1) solution as a resin, and 0.10 g of titanium nitride as a black pigment To obtain a pigment dispersion (MW-4). Next, 10.02 g of the pigment dispersion (MW-4), 1.73 g of the polysiloxane (PSL-1) solution, 0.050 g of OXE-02 as a photopolymerization initiator, and 0.10 g of IC-819. 400 g, 0.10 g of WPBG-266 as a photobase generator, 1.20 g of DPHA as a photopolymerizable compound, 1.00 g of a 40% by weight PGMEA diluted solution of RS-76-E as a liquid repellent compound, celoxide (registered) (Trademark) 2021P, 0.130 g of IRGANOX (registered trademark) 1010, 0.100 g of a 10% by weight diluted solution of PGMEA of BYK-352 as a surfactant, and 5.31 g of PGMEA as a solvent were mixed and stirred. . The resulting mixture was filtered through a 5.0 μm filter to obtain a partition wall resin composition (P-18).
 比較例3 隔壁用樹脂組成物(P-19)
 白色顔料としてR-960を5.00g、樹脂として、ポリシロキサン(PSL-1)溶液を5.00g、および黒色顔料として窒化ジルコニウムを0.10g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-5)を得た。顔料分散液(MW-4)の代わりに、顔料分散液(MW-5)を用いた以外は、比較例2と同様にして隔壁用樹脂組成物(P-19)を得た。
Comparative Example 3 Resin composition for partition wall (P-19)
A mill type dispersing machine filled with zirconia beads by mixing 5.00 g of R-960 as a white pigment, 5.00 g of a polysiloxane (PSL-1) solution as a resin, and 0.10 g of zirconium nitride as a black pigment. To obtain a pigment dispersion (MW-5). A resin composition for partition walls (P-19) was obtained in the same manner as in Comparative Example 2, except that the pigment dispersion (MW-5) was used instead of the pigment dispersion (MW-4).
 比較例4 隔壁用樹脂組成物(P-20)
 白色顔料としてR-960を5.00g、樹脂として、ポリシロキサン(PSL-1)溶液を5.00g、および黒色顔料として、赤色顔料PR254と青色顔料PB64の重量比60/40の混合顔料を0.05g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-6)を得た。顔料分散液(MW-4)の代わりに、顔料分散液(MW-6)を用いた以外は、比較例2と同様にして隔壁用樹脂組成物(P-20)を得た。
Comparative Example 4 Resin Composition for Partition Wall (P-20)
5.00 g of R-960 as a white pigment, 5.00 g of a polysiloxane (PSL-1) solution as a resin, and 0 as a black pigment a mixed pigment of a red pigment PR254 and a blue pigment PB64 in a weight ratio of 60/40. .05 g were mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-6). A resin composition for partition walls (P-20) was obtained in the same manner as in Comparative Example 2, except that the pigment dispersion (MW-6) was used instead of the pigment dispersion (MW-4).
 比較例5 隔壁用樹脂組成物(P-21)
 有機金属化合物として、ビス(アセチルアセトナト)パラジウムの代わりにトリス(アセチルアセトナト)鉄を用いた以外は、前記有機金属化合物溶液(OM-1)と同様にして、有機金属化合物溶液(OM-5)を調製した。有機金属化合物溶液(OM-1)の代わりに、有機金属化合物溶液(OM-5)を用いた以外は、実施例1と同様にして隔壁用樹脂組成物(P-21)を得た。
Comparative Example 5 Resin Composition for Partition Wall (P-21)
An organometallic compound solution (OM-) was prepared in the same manner as the organometallic compound solution (OM-1) except that tris (acetylacetonato) iron was used instead of bis (acetylacetonato) palladium as the organometallic compound. 5) was prepared. A resin composition for partition walls (P-21) was obtained in the same manner as in Example 1, except that the organometallic compound solution (OM-5) was used instead of the organometallic compound solution (OM-1).
 比較例6 隔壁用樹脂組成物(P-22)
 有機金属化合物として、ビス(アセチルアセトナト)パラジウムの代わりにビス(アセチルアセトナト)ニッケルを用いた以外は、前記有機金属化合物溶液(OM-1)と同様にして、有機金属化合物溶液(OM-5)を調製した。有機金属化合物溶液(OM-1)の代わりに、有機金属化合物溶液(OM-6)を用いた以外は、実施例1と同様にして隔壁用樹脂組成物(P-22)を得た。
Comparative Example 6 Resin Composition for Partition Wall (P-22)
An organometallic compound solution (OM-) was prepared in the same manner as the organometallic compound solution (OM-1) except that bis (acetylacetonato) nickel was used instead of bis (acetylacetonato) palladium as the organometallic compound. 5) was prepared. A resin composition for partition walls (P-22) was obtained in the same manner as in Example 1, except that the organic metal compound solution (OM-6) was used instead of the organic metal compound solution (OM-1).
 実施例1~16および比較例1~6の組成をまとめて表2~3に示す。 Tables 2 and 3 show the compositions of Examples 1 to 16 and Comparative Examples 1 to 6.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 調製例1 色変換発光材料組成物(CL-1)
 緑色量子ドット材料(Lumidot 640 CdSe/ZnS、平均粒子径6.3nm:アルドリッチ社製)の0.5重量%トルエン溶液を20重量部、DPHAを45重量部、“イルガキュア”(登録商標)907(BASFジャパン(株)製)を5重量部、アクリル樹脂(SPCR-18(商品名)、昭和電工(株)製)の30重量%PGMEA溶液を166重量部およびトルエンを97重量部混合して撹拌し、均一に溶解した。得られた混合物を0.45μmのシリンジフィルターで濾過し、色変換発光材料組成物(CL-1)を調製した
 調製例2 色変換発光材料組成物(CL-2)
 緑色量子ドット材料にかえて合成例5により得られた緑色蛍光体G-1を0.4重量部用い、トルエンの添加量を117重量部に変更した以外は、調製例1と同様にして色変換発光材料組成物(CL-2)を調製した
 調製例3 色変換発光材料組成物(CL-3)
 緑色量子ドット材料にかえて合成例6により得られた赤色蛍光体R-1を0.4重量部用い、トルエンの添加量を117重量部に変更した以外は、調製例1と同様にして色変換発光材料組成物(CL-3)を調製した
 調製例4 カラーフィルター形成材料(CF-1)
 C.I.ピグメントグリーン59を90g、C.I.ピグメントイエロー150を60g、高分子分散剤(“BYK”(登録商標)-6919(商品名)ビックケミー社製(以下「BYK-6919」))を75g、バインダー樹脂(“アデカアークルズ”(登録商標)WR301(商品名)(株)ADEKA製)を100g、およびPGMEAを675g混合してスラリーを作製した。スラリーを入れたビーカーをダイノーミルとチューブでつなぎ、メディアとして直径0.5mmのジルコニアビーズを使用して、周速14m/sで8時間の分散処理を行い、ピグメントグリーン59分散液(GD-1)を作製した。
Preparation Example 1 Color conversion luminescent material composition (CL-1)
20 parts by weight of a 0.5% by weight toluene solution of a green quantum dot material (Lumidot 640 CdSe / ZnS, average particle diameter: 6.3 nm, manufactured by Aldrich), 45 parts by weight of DPHA, "IRGACURE" (registered trademark) 907 (registered trademark) 5 parts by weight of BASF Japan Co., Ltd., 166 parts by weight of a 30% by weight PGMEA solution of acrylic resin (SPCR-18 (trade name), manufactured by Showa Denko KK) and 97 parts by weight of toluene were mixed and stirred. And dissolved uniformly. The obtained mixture was filtered through a 0.45 μm syringe filter to prepare a color-converting luminescent material composition (CL-1). Preparation Example 2 Color-converting luminescent material composition (CL-2)
The same procedure as in Preparation Example 1 was repeated except that 0.4 parts by weight of the green phosphor G-1 obtained in Synthesis Example 5 was used instead of the green quantum dot material, and the amount of toluene was changed to 117 parts by weight. Preparation of Conversion Light Emitting Material Composition (CL-2) Preparation Example 3 Color Conversion Light Emitting Material Composition (CL-3)
The same procedure as in Preparation Example 1 was repeated except that 0.4 parts by weight of the red phosphor R-1 obtained in Synthesis Example 6 was used instead of the green quantum dot material, and the amount of toluene was changed to 117 parts by weight. Preparation of Conversion Light Emitting Material Composition (CL-3) Preparation Example 4 Color Filter Forming Material (CF-1)
C. I. Pigment Green 59, 90 g of C.I. I. Pigment Yellow 150, 75 g of a polymer dispersant ("BYK" (registered trademark) -6919 (trade name) manufactured by BYK Chemie (hereinafter, "BYK-6919")), and a binder resin ("ADEKA ARKULS" (registered trademark)) ) 100 g of WR301 (trade name, manufactured by ADEKA Corporation) and 675 g of PGMEA were mixed to prepare a slurry. The beaker containing the slurry was connected to a Dyno mill and a tube, and a dispersion treatment was performed for 8 hours at a peripheral speed of 14 m / s using zirconia beads having a diameter of 0.5 mm as a medium to obtain Pigment Green 59 dispersion (GD-1). Was prepared.
 ピグメントグリーン59分散液(GD-1)56.54g、アクリル樹脂(“サイクロマー”(登録商標)P(ACA)Z250(商品名)ダイセル・オルネクス(株)製(以下「P(ACA)Z250」))を3.14g、DPHAを2.64g、光重合開始剤(“オプトマー”(登録商標)NCI-831(商品名)(株)ADEKA製(以下「NCI-831」))0.330g、界面活性剤(BYK”(登録商標)-333(商品名)ビックケミー社製(以下「BYK-333」))を0.04g、重合禁止剤としてBHTを0.01g、および溶媒としてPGMEAを37.30g混合し、カラーフィルター形成材料(CF-1)を作製した。 Pigment Green 59 dispersion (GD-1) 56.54 g, acrylic resin (“Cyclomer” (registered trademark) P (ACA) Z250 (trade name) manufactured by Daicel Ornex Co., Ltd. (hereinafter “P (ACA) Z250”) )), 2.64 g of DPHA, 0.330 g of a photopolymerization initiator (“Optomer” (registered trademark) NCI-831 (trade name), manufactured by ADEKA Corporation (hereinafter “NCI-831”)), 0.04 g of a surfactant (BYK "(registered trademark) -333 (trade name) manufactured by BYK-Chemie, Inc. (hereinafter," BYK-333 ")), 0.01 g of BHT as a polymerization inhibitor, and 37 g of PGMEA as a solvent. 30 g were mixed to prepare a color filter forming material (CF-1).
 調製例5 遮光隔壁用樹脂組成物
 カーボンブラック(MA100(商品名)三菱化学(株)製)150g、高分子分散剤BYK-6919を75g、P(ACA)Z250を100g、およびPGMEAを675g混合してスラリーを作製した。スラリーを入れたビーカーをダイノーミルとチューブでつなぎ、メディアとして直径0.5mmのジルコニアビーズを使用して、周速14m/sで8時間の分散処理を行い、顔料分散液(MB-1)を作製した。
Preparation Example 5 150 g of carbon black (MA100 (trade name, manufactured by Mitsubishi Chemical Corporation)), 75 g of polymer dispersant BYK-6919, 100 g of P (ACA) Z250, and 675 g of PGMEA were prepared. To prepare a slurry. A beaker containing the slurry is connected with a Dyno mill and a tube, and a dispersion process is performed for 8 hours at a peripheral speed of 14 m / s using zirconia beads having a diameter of 0.5 mm as a medium to produce a pigment dispersion (MB-1). did.
 顔料分散液(MB-1)56.54g、P(ACA)Z250を3.14g、DPHAを2.64g、NCI-831を0.330g、BYK-333を0.04g、重合禁止剤としてターシャリブチルカテコール0.01g、およびPGMEA37.30gを混合し、遮光隔壁用樹脂組成物を作製した。 56.54 g of pigment dispersion (MB-1), 3.14 g of P (ACA) Z250, 2.64 g of DPHA, 0.330 g of NCI-831, 0.04 g of BYK-333, and tertiary as a polymerization inhibitor 0.01 g of butyl catechol and 37.30 g of PGMEA were mixed to prepare a resin composition for a light-shielding partition.
 調製例6 低屈折率層形成材料
 合成例6により得られたシリカ粒子含有ポリシロキサン溶液(LS-1)を5.350g、エチレングリコールモノ-t-ブチルエーテルを1.170g、およびDAAを3.48g混合した後、0.45μmのシリンジフィルターで濾過し、低屈折率層形成材料を調製した。
調製例7 黄色有機保護層形成材料(YL-1)
 C.I.ピグメントイエロー150を150g、高分子分散剤(“BYK”(登録商標)-6919(商品名)ビックケミー社製(以下「BYK-6919」))を75g、バインダー樹脂(“アデカアークルズ”(登録商標)WR301(商品名)(株)ADEKA製)を100g、およびPGMEAを675g混合してスラリーを作製した。スラリーを入れたビーカーをダイノーミルとチューブでつなぎ、メディアとして直径0.5mmのジルコニアビーズを使用して、周速14m/sで8時間の分散処理を行い、ピグメントイエロー150分散液(YD-1)を作製した。
Preparation Example 6 Low refractive index layer forming material 5.350 g of the silica particle-containing polysiloxane solution (LS-1) obtained in Synthesis Example 6, 1.170 g of ethylene glycol mono-t-butyl ether, and 3.48 g of DAA After mixing, the mixture was filtered with a 0.45 μm syringe filter to prepare a low refractive index layer forming material.
Preparation Example 7 Yellow organic protective layer forming material (YL-1)
C. I. Pigment Yellow 150, 75 g of a polymer dispersant ("BYK" (registered trademark) -6919 (trade name), manufactured by BYK Chemie (hereinafter, "BYK-6919")), and a binder resin ("ADEKA ARKULS" (registered trademark)) ) 100 g of WR301 (trade name, manufactured by ADEKA Corporation) and 675 g of PGMEA were mixed to prepare a slurry. The beaker containing the slurry was connected with a Dyno mill and a tube, and a dispersion treatment was performed for 8 hours at a peripheral speed of 14 m / s using zirconia beads having a diameter of 0.5 mm as a medium to obtain Pigment Yellow 150 dispersion (YD-1). Was prepared.
 ピグメントイエロー150分散液(YD-1)3.09g、樹脂としてポリシロキサン(PSL-1)溶液を23.54g、光重合性化合物としてDPHAを6.02g、有機金属化合物としてネオデカン酸銀を用いて調製した有機金属化合物溶液(OM-2)を6.02g、光重合開始剤としてOXE-02を0.20g、IC-819を0.40g、IRGANOX(登録商標)1010を0.060g、およびBYK-352のPGMEA10重量%希釈溶液0.050g(濃度500ppmに相当)を、溶媒PGMEA61.15gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、黄色有機保護層形成材料(YL-1)を得た。 Pigment Yellow 150 dispersion (YD-1) 3.09 g, polysiloxane (PSL-1) solution 23.54 g as a resin, DPHA 6.02 g as a photopolymerizable compound, and silver neodecanoate as an organometallic compound. 6.02 g of the prepared organometallic compound solution (OM-2), 0.20 g of OXE-02, 0.40 g of IC-819, 0.060 g of IRGANOX (registered trademark) 1010 as a photopolymerization initiator, and BYK 0.050 g (corresponding to a concentration of 500 ppm) of a 10% by weight diluted solution of -352 PGMEA was dissolved in 61.15 g of the solvent PGMEA and stirred. The obtained mixture was filtered through a 5.0 μm filter to obtain a yellow organic protective layer forming material (YL-1).
 (実施例17~20、実施例22~28、実施例38~45、比較例7~9)
 下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、表4~5に示す隔壁用樹脂組成物をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度90℃で2分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量200mJ/cm(i線)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.045重量%水酸化カリウム水溶液を用いて100秒間シャワー現像し、次いで水を用いて30秒間リンスした。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ10μm、幅20μmの隔壁が、短辺30μm、長辺150μmのピッチ間隔の格子状パターンに形成された隔壁を形成した。
(Examples 17 to 20, 22 to 28, 38 to 45, Comparative Examples 7 to 9)
As a base substrate, a 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used. The partition wall resin compositions shown in Tables 4 and 5 were spin-coated thereon, and dried at 90 ° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). Then, a dried film was prepared. Using a parallel light mask aligner (PLA-501F, manufactured by Canon Inc.), an ultra-high pressure mercury lamp as a light source and an exposure amount of 200 mJ / cm 2 (i-line) through a photomask, using a prepared dry film. Exposure. Thereafter, using an automatic developing device (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed for 100 seconds using a 0.045% by weight aqueous solution of potassium hydroxide, and then 30 minutes using water. Rinse for seconds. Further, it was heated in an air (trade name: IHPS-222, manufactured by Espec Corporation) at a temperature of 230 ° C. for 30 minutes in the air, and a partition having a height of 10 μm and a width of 20 μm was formed on a glass substrate by a short side of 30 μm. Then, partition walls formed in a lattice pattern with a pitch of 150 μm on the long side were formed.
 得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、表4~5に示す色変換発光材料組成物を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図2に示す構成の隔壁付き基板を得た。 The color-converting light-emitting material compositions shown in Tables 4 and 5 were applied to the regions separated by the partition walls of the obtained substrate with partition walls by an inkjet method under a nitrogen atmosphere, dried at 100 ° C. for 30 minutes, and dried. A 5.0 μm pixel was formed to obtain a substrate with a partition having the configuration shown in FIG.
 (実施例21)
 下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、表4に示す隔壁用樹脂組成物をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度90℃で2分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量200mJ/cm(i線)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、2.38重量%水酸化テトラメチルアンモニウム水溶液で90秒間シャワー現像し、次いで水で30秒間リンスした。その後、先と同様に、フォトマスクを介さずに露光量500mJ/cm(i線)で露光し、ブリーチを行った。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ10μm、幅20μmの隔壁が、短辺30μm、長辺150μmのピッチ間隔の格子状パターンに形成された隔壁を形成した。
(Example 21)
As a base substrate, a 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used. The resin composition for partition walls shown in Table 4 was spin-coated thereon, and dried at 90 ° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). A film was prepared. Using a parallel light mask aligner (PLA-501F, manufactured by Canon Inc.), an ultra-high pressure mercury lamp as a light source and an exposure amount of 200 mJ / cm 2 (i-line) through a photomask, using a prepared dry film. Exposure. Thereafter, using an automatic developing device (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 2.38% by weight aqueous solution of tetramethylammonium hydroxide for 90 seconds, and then rinsed with water for 30 seconds. did. Thereafter, exposure was performed at an exposure dose of 500 mJ / cm 2 (i-line) without using a photomask, and bleaching was performed as described above. Further, it was heated in an air (trade name: IHPS-222, manufactured by Espec Corporation) at a temperature of 230 ° C. for 30 minutes in the air, and a partition having a height of 10 μm and a width of 20 μm was formed on a glass substrate by a short side of 30 μm. Then, partition walls formed in a lattice pattern with a pitch of 150 μm on the long side were formed.
 得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、表4~5に示す色変換発光材料組成物を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図2に示す構成の隔壁付き基板を得た。 The color-converting light-emitting material compositions shown in Tables 4 and 5 were applied to the regions separated by the partition walls of the obtained substrate with partition walls by an inkjet method under a nitrogen atmosphere, dried at 100 ° C. for 30 minutes, and dried. A 5.0 μm pixel was formed to obtain a substrate with a partition having the configuration shown in FIG.
 (実施例29)
 実施例18と同様の方法により画素を形成した後の隔壁付き基板に、低屈折率層形成材料をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度90℃で2分間乾燥し、乾燥膜を作製した。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度90℃で30分間加熱し、低屈折率層を形成し、図3に示す構成の隔壁付き基板を得た。
(Example 29)
After forming pixels in the same manner as in Example 18, the substrate with the partition walls is spin-coated with a material for forming a low refractive index layer, and a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.) is used. Then, it was dried at a temperature of 90 ° C. for 2 minutes to produce a dried film. Further, by using an oven (trade name: IHPS-222, manufactured by Espec Corporation), the substrate was heated in air at a temperature of 90 ° C. for 30 minutes to form a low refractive index layer. Obtained.
 (実施例30)
 実施例29により得られた低屈折率層を有する隔壁付き基板の低屈折率層上に、プラズマCVD装置(PD-220NL、サムコ社製)を用いて、厚み50~1,000nmの無機保護層Iに相当する、膜厚300nmの窒化ケイ素膜を形成し、図4に示す構成の隔壁付き基板を得た。
(Example 30)
An inorganic protective layer having a thickness of 50 to 1,000 nm was formed on the low-refractive-index layer of the substrate with a low-refractive-index layer obtained in Example 29 using a plasma CVD apparatus (PD-220NL, manufactured by Samco). A 300-nm-thick silicon nitride film corresponding to I was formed, and a substrate with a partition having the configuration shown in FIG. 4 was obtained.
 (実施例31)
 実施例18により得られた隔壁付き基板上に、プラズマCVD装置(PD-220NL、サムコ社製)を用いて、厚み50~1,000nmの無機保護層IIに相当する、膜厚300nmの窒化ケイ素膜を画素上層に形成した。その後、無機保護層II上に、調製例6により得られた低率層形成材料を用いて、実施例29と同様の方法により厚み1.0μmの低屈折率層を形成し、図5に示す構成の隔壁付き基板を得た。
(Example 31)
Using a plasma CVD apparatus (PD-220NL, manufactured by SAMCO) on a substrate with partition walls obtained in Example 18, silicon nitride having a thickness of 300 nm corresponding to the inorganic protective layer II having a thickness of 50 to 1,000 nm A film was formed on the pixel. Thereafter, a low-refractive-index layer having a thickness of 1.0 μm was formed on the inorganic protective layer II by the same method as in Example 29, using the low-index layer-forming material obtained in Preparation Example 6, and shown in FIG. A substrate with a partition having the above configuration was obtained.
 (実施例32)
 実施例17と同様の方法により得られた、画素形成前の隔壁付き基板の隔壁で隔てられた領域に、硬化後の膜厚が2.5μmになるように、調製例4により得られたカラーフィルター形成材料(CF-1)を塗布し、真空乾燥した。隔壁付き基板の開口部の領域に露光されるように設計したフォトマスクを介して、露光量40mJ/cm(i線)で露光した。0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行った後、230℃で30分間加熱硬化を行い、隔壁で隔てられた領域に、厚み2.5μm、50μm幅のカラーフィルターを形成した。その後、カラーフィルター上に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図6に示す構成の隔壁付き基板を得た。
(Example 32)
The color obtained in Preparation Example 4 was obtained in the same manner as in Example 17 so that the film thickness after curing was 2.5 μm in the region separated by the partition walls of the substrate with partition walls before pixel formation. A filter forming material (CF-1) was applied and vacuum dried. Exposure was performed at a light exposure of 40 mJ / cm 2 (i-line) through a photomask designed to be exposed to the region of the opening of the substrate with a partition. After developing with a 0.3% by weight aqueous solution of tetramethylammonium for 50 seconds, the film was cured by heating at 230 ° C. for 30 minutes to form a color filter having a thickness of 2.5 μm and a width of 50 μm in regions separated by the partition walls. Thereafter, the color conversion luminescent material composition (CL-2) obtained in Preparation Example 2 was applied on a color filter in a nitrogen atmosphere by an inkjet method using an inkjet method, and dried at 100 ° C. for 30 minutes. Pixels of 0 μm were formed, and a substrate with a partition having the configuration shown in FIG. 6 was obtained.
 (実施例33)
 実施例32と同様の方法により得られた、厚み2.5μm、50μm幅のカラーフィルターが形成された、画素形成前の隔壁付き基板のカラーフィルター上に、プラズマCVD装置(PD-220NL、サムコ社製)を用いて、厚み50~1,000nmの無機保護層IIIに相当する、膜厚300nmの窒化ケイ素膜を形成した。さらに、無機保護層III上に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図7に示す構成の隔壁付き基板を得た。
(Example 33)
A plasma CVD device (PD-220NL, manufactured by SAMCO CORPORATION) was formed on a color filter of a substrate with a partition wall before pixel formation, on which a color filter having a thickness of 2.5 μm and a width of 50 μm was formed in the same manner as in Example 32. Was used to form a 300-nm-thick silicon nitride film corresponding to the inorganic protective layer III having a thickness of 50 to 1,000 nm. Further, the color conversion luminescent material composition (CL-2) obtained in Preparation Example 2 was applied on the inorganic protective layer III under a nitrogen atmosphere by an inkjet method, dried at 100 ° C. for 30 minutes, and dried. Pixels of 5.0 μm were formed, and a substrate with a partition having the configuration shown in FIG. 7 was obtained.
 (実施例34)
 下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、プラズマCVD装置(PD-220NL、サムコ社製)を用いて、厚み50~1,000nmの無機保護層IVに相当する、膜厚300nmの窒化ケイ素膜を形成した。上記基板を、10cm角の無アルカリガラス基板の代わりに使用する以外は、実施例31と同様の方法により、図8に示す構成の隔壁付き基板を得た。
(実施例35)
 実施例32と同様の方法により得られた、厚み2.5μm、50μm幅のカラーフィルターが形成された、画素形成前の隔壁付き基板のカラーフィルター上に、調製例7により得られた黄色有機保護層形成材料(YL-1)を塗布し、真空乾燥した。隔壁付き基板の開口部の領域に露光されるように設計したフォトマスクを介して、露光量40mJ/cm(i線)で露光した。0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行った後、230℃で30分間加熱硬化を行い、厚み1.0μm、50μm幅の黄色有機保護層を形成した。さらに、黄色有機保護層上に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図7に示す構成の隔壁付き基板を得た。
(Example 34)
As a base substrate, a 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used. A 300 nm-thick silicon nitride film corresponding to the 50-1,000 nm-thick inorganic protective layer IV was formed thereon using a plasma CVD device (PD-220NL, manufactured by Samco). A substrate with a partition having the configuration shown in FIG. 8 was obtained in the same manner as in Example 31, except that the above substrate was used instead of a 10 cm square alkali-free glass substrate.
(Example 35)
The yellow organic protection obtained in Preparation Example 7 was applied on a color filter of a substrate with a partition wall before pixel formation, on which a color filter having a thickness of 2.5 μm and a width of 50 μm was obtained in the same manner as in Example 32. The layer forming material (YL-1) was applied and vacuum dried. Exposure was performed at a light exposure of 40 mJ / cm 2 (i-line) through a photomask designed to be exposed to the region of the opening of the substrate with a partition. After developing with a 0.3% by weight aqueous solution of tetramethylammonium for 50 seconds, it was cured by heating at 230 ° C. for 30 minutes to form a yellow organic protective layer having a thickness of 1.0 μm and a width of 50 μm. Further, the color conversion luminescent material composition (CL-2) obtained in Preparation Example 2 was applied on a yellow organic protective layer under a nitrogen atmosphere by an inkjet method, and dried at 100 ° C. for 30 minutes. Pixels of 5.0 μm were formed, and a substrate with a partition having the configuration shown in FIG. 7 was obtained.
 (実施例36)
 下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、調製例7により得られた黄色有機保護層形成材料(YL-1)を塗布し、真空乾燥した。乾燥膜をフォトマスクを介さずに、露光量40mJ/cm(i線)で露光した後、0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行い、230℃で30分間加熱硬化を行うことで、厚み1.0μmの黄色有機保護層を形成した。上記基板を、10cm角の無アルカリガラス基板の代わりに使用する以外は、実施例31と同様の方法により、図8に示す構成の隔壁付き基板を得た。
(Example 36)
As a base substrate, a 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used. The yellow organic protective layer forming material (YL-1) obtained in Preparation Example 7 was applied thereon, and dried under vacuum. After exposing the dried film at a light exposure of 40 mJ / cm 2 (i-line) without using a photomask, the film is developed with a 0.3% by weight aqueous solution of tetramethylammonium for 50 seconds, and cured by heating at 230 ° C. for 30 minutes. As a result, a yellow organic protective layer having a thickness of 1.0 μm was formed. A substrate with a partition having the configuration shown in FIG. 8 was obtained in the same manner as in Example 31, except that the above substrate was used instead of a 10 cm square alkali-free glass substrate.
 (実施例37)
 下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、調製例5により得られた遮光隔壁形成材料をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度90℃で2分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量40mJ/cm(i線)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行い、次いで水を用いて30秒間リンスした。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ2.0μm、幅20μm、厚み1.0μmあたりのOD値が2.0である隔壁が、短辺30μm、長辺150μmのピッチ間隔の格子状パターンに形成された遮光隔壁付き基板を得た。その後、実施例17と同様の方法により、遮光隔壁上に、高さ10μm、幅20μmの隔壁が、短辺30μm、長辺150μmのピッチ間隔の遮光隔壁と同様の格子状パターンに形成された隔壁付き基板を得た。得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、調製例22により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図9に示す構成の隔壁付き基板を得た。
(Example 37)
As a base substrate, a 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used. The material for forming a light-shielding partition obtained in Preparation Example 5 was spin-coated thereon, and dried at 90 ° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). Then, a dried film was prepared. Using a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.), the produced dried film was exposed to light through a photomask using an ultra-high pressure mercury lamp as a light source and an exposure amount of 40 mJ / cm 2 (i-line). Exposure. Thereafter, development was performed for 50 seconds with a 0.3% by weight aqueous solution of tetramethylammonium using an automatic developing apparatus (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), and then rinsed with water for 30 seconds. did. Further, it was heated in an air (trade name: IHPS-222, manufactured by Espec Corporation) at a temperature of 230 ° C. for 30 minutes in the air, and then placed on a glass substrate at a height of 2.0 μm, a width of 20 μm, and a thickness of 1.0 μm. A substrate having a light-shielding partition wall in which partition walls having an OD value per unit area of 2.0 were formed in a grid pattern with a pitch of 30 μm on a short side and 150 μm on a long side was obtained. Thereafter, in the same manner as in Example 17, the partition having a height of 10 μm and a width of 20 μm was formed on the light-shielding partition in the same grid pattern as the light-shielding partition having a pitch of 30 μm on a short side and 150 μm on a long side. With this, a substrate was obtained. The color-converting light-emitting material composition (CL-2) obtained in Preparation Example 22 was applied to a region separated by the partition of the obtained substrate with a partition under an atmosphere of nitrogen by an inkjet method, and then heated at 100 ° C. After drying for 30 minutes, a pixel having a thickness of 5.0 μm was formed, and a substrate with a partition having the configuration shown in FIG. 9 was obtained.
 各実施例および比較例の構成を表4~5に示す。 Tables 4 and 5 show the configurations of the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 各実施例および比較例における評価方法を以下に示す。 評 価 Evaluation methods in each example and comparative example are shown below.
 <白色顔料の屈折率>
 各実施例および比較例に用いた白色顔料について、JIS K7142-2014(制定年月日=2014/04/20)に規定されるプラスチックの屈折率測定方法のうち、B法(顕微鏡を用いる液浸法(ベッケ線法))によって屈折率を測定した。測定波長は550nmとした。ただし、JIS K7142-2014で使用される浸液に代えて、(株)島津デバイス製造製「接触液」を使用し、浸液温度:20℃の条件で測定した。顕微鏡として、偏光顕微鏡「オプチフォト」((株)ニコン製)を使用した。白色顔料のサンプルを各30個準備し、それぞれの屈折率を測定し、その平均値を屈折率とした。
<Refractive index of white pigment>
For the white pigment used in each of the examples and comparative examples, among the methods for measuring the refractive index of plastics specified in JIS K7142-2014 (established date = 2014/04/20), method B (immersion using a microscope) Method (Becke line method)). The measurement wavelength was 550 nm. However, in place of the immersion liquid used in JIS K7142-2014, "contact liquid" manufactured by Shimadzu Corporation was used, and the measurement was performed at an immersion liquid temperature of 20 ° C. As a microscope, a polarizing microscope “Optiphoto” (manufactured by Nikon Corporation) was used. Thirty samples of the white pigment were prepared for each, the refractive index of each sample was measured, and the average value was defined as the refractive index.
 <ポリシロキサンおよび低屈折率層の屈折率>
 各実施例および比較例において用いた隔壁形成樹脂組成物の原料であるポリシロキサンおよび調製例26により得られた低屈折率層形成材料を、それぞれシリコンウェハ上に、スピナーにより塗布し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度90℃で2分間乾燥した。その後、オーブン(IHPS-222;エスペック(株)製)を用いて、空気中230℃で30分間加熱して、硬化膜を作製した。プリズムカプラー(PC-2000(Metricon(株)製))を用いて、大気圧下、20℃の条件で、硬化膜面に対し垂直方向から波長550nmの光を照射して、屈折率を測定し、小数点以下第三位を四捨五入した。
<Refractive index of polysiloxane and low refractive index layer>
Polysiloxane, which is a raw material of the partition wall forming resin composition used in each of Examples and Comparative Examples, and the material for forming a low refractive index layer obtained in Preparation Example 26 were each applied to a silicon wafer by a spinner, and were heated on a hot plate ( It was dried at a temperature of 90 ° C. for 2 minutes using SCW-636 (trade name, manufactured by Dainippon Screen Mfg. Co., Ltd.). Then, it was heated in an air at 230 ° C. for 30 minutes using an oven (IHPS-222; manufactured by Espec Corporation) to form a cured film. Using a prism coupler (PC-2000, manufactured by Metricon Co., Ltd.), the cured film was irradiated with light having a wavelength of 550 nm from the direction perpendicular to the surface of the cured film at 20 ° C. under atmospheric pressure to measure the refractive index. , Rounded to two decimal places.
 <解像度>
 スピンコーター(商品名1H-360S、ミカサ(株)製)を用いて、各実施例および比較例において用いた隔壁用樹脂組成物を、10cm角の無アルカリガラス基板上に、加熱後の膜厚が10μmとなるようにスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度90℃で2分間乾燥し、膜厚10μmの乾燥膜を作製した。
<Resolution>
Using a spin coater (trade name: 1H-360S, manufactured by Mikasa Corporation), the resin composition for a partition used in each of Examples and Comparative Examples was heated on an alkali-free glass substrate of 10 cm square to form a film after heating. Was dried at 90 ° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.) to produce a dry film having a film thickness of 10 μm. .
 作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、100μm、80μm、60μm、50μm、40μm、30μmおよび20μmの各幅のライン&スペースパターンを有するマスクを介して露光量200mJ/cm(i線)で、100μmのギャップで露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.045重量%水酸化カリウム水溶液を用いて100秒間シャワー現像し、次いで水を用いて30秒間リンスした。 Using a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.), the prepared dried film was used as an ultra-high pressure mercury lamp as a light source, and each width of 100 μm, 80 μm, 60 μm, 50 μm, 40 μm, 30 μm and 20 μm. Exposure was performed with a gap of 100 μm at an exposure dose of 200 mJ / cm 2 (i-line) through a mask having a line & space pattern of Thereafter, using an automatic developing device (“AD-2000 (trade name)” manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed for 100 seconds using a 0.045% by weight aqueous solution of potassium hydroxide, and then 30 minutes using water. Rinse for seconds.
 倍率100倍に調整した顕微鏡を用いて、現像後のパターンを拡大観察し、未露光部に残渣が認められないパターンのうち、最も狭い線幅を解像度とした。ただし、100μm幅のパターン付近の未露光部にも残渣がある場合は「>100μm」とした。 パ タ ー ン Using a microscope adjusted to a magnification of 100, the pattern after development was observed under magnification, and the narrowest line width among the patterns in which no residue was observed in the unexposed area was defined as the resolution. However, when there is a residue also in the unexposed portion near the pattern having a width of 100 μm, the value is set to “> 100 μm”.
 <反射率>
 各実施例および比較例において用いた隔壁形成樹脂組成物を、露光時にフォトマスクを介さずに全体を露光したこと以外は、各実施例および比較例と同条件で加工し、ガラス基板上にベタ膜を作製した。得られたベタ膜を各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、ベタ膜を有するガラス基板について、分光測色計(商品名CM-2600d、コニカミノルタ(株)製)を用いて、ベタ膜側からSCIモードで波長550nmにおける反射率を測定した。ただし、ベタ膜にクラックが発生した場合は、亀裂などが原因で正確な値を得ることができないため、反射率の測定は実施しなかった。
<Reflectance>
The partition wall forming resin composition used in each Example and Comparative Example was processed under the same conditions as in each Example and Comparative Example, except that the whole was exposed without using a photomask at the time of exposure. A film was prepared. Using the obtained solid film as a model of the partition wall of the substrate with a partition wall obtained in each of Examples and Comparative Examples, a glass substrate having a solid film was measured using a spectrophotometer (trade name: CM-2600d, manufactured by Konica Minolta, Inc.). ), The reflectance at a wavelength of 550 nm was measured in the SCI mode from the solid film side. However, when a crack was generated in the solid film, an accurate value could not be obtained due to a crack or the like, so that the reflectance was not measured.
 <クラック耐性>
 各実施例および比較例において用いた隔壁形成樹脂組成物を、加熱後の膜厚がそれぞれ5μm、10μm、15μmおよび20μmとなるようにスピンコートした。その後の工程については、露光時にフォトマスクを介さずに全体を露光したこと以外は、各実施例および比較例と同条件で加工し、ガラス基板上にベタ膜を作製した。得られたベタ膜を各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、ベタ膜を有するガラス基板を目視観察し、ベタ膜のクラックの有無を評価した。1つでもクラックが確認された場合には、その膜厚におけるクラック耐性はないと判断した。例えば、膜厚15μmではクラックがなく、膜厚20μmではクラックがあった場合には、耐クラック膜厚を「≧15μm」と判定した。また、20μmでもクラックがない場合の耐クラック膜厚を「≧20μm」、5μmでもクラックがある場合の耐クラック膜厚を「<5μm」と、それぞれ判定し、クラック耐性とした。
<Crack resistance>
The partition wall forming resin compositions used in each of the examples and comparative examples were spin-coated so that the film thickness after heating became 5 μm, 10 μm, 15 μm and 20 μm, respectively. In the subsequent steps, processing was performed under the same conditions as in the respective Examples and Comparative Examples except that the whole was exposed without using a photomask at the time of exposure, and a solid film was formed on a glass substrate. Using the obtained solid film as a model of a partition wall of the substrate with a partition wall obtained in each of Examples and Comparative Examples, a glass substrate having a solid film was visually observed, and the presence or absence of cracks in the solid film was evaluated. When even one crack was confirmed, it was determined that there was no crack resistance at the film thickness. For example, when there was no crack at a film thickness of 15 μm and there was a crack at a film thickness of 20 μm, the crack resistant film thickness was determined to be “≧ 15 μm”. The crack-resistant film thickness in the case where there was no crack even at 20 μm was determined as “≧ 20 μm”, and the crack-resistant film thickness in the case where cracks occurred even at 5 μm was determined as “<5 μm”.
 <OD値>
 各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、反射率の評価と同様に、ガラス基板上にベタ膜を作製した。得られたベタ膜を有するガラス基板について、光学濃度計(361T(visual);X-rite社製)を用いて入射光および透過光の強度を測定し、先述の式(1)によりOD値を算出した。なお、OD値については、加熱工程前のベタ膜と、加熱工程後のOD値をそれぞれ測定し、その差を含め表6~7に記載した。
<OD value>
As a model of the partition wall of the substrate with a partition wall obtained in each of the examples and comparative examples, a solid film was formed on a glass substrate in the same manner as in the evaluation of the reflectance. With respect to the obtained glass substrate having a solid film, the intensity of incident light and transmitted light was measured using an optical densitometer (361T (visual); manufactured by X-rite), and the OD value was calculated by the above-described equation (1). Calculated. For the OD value, the solid film before the heating step and the OD value after the heating step were measured, and the results are shown in Tables 6 and 7 including the difference.
 また、実施例37について、遮光隔壁(A-2)のモデルとして、同様にガラス基板上にベタ膜を作製した。得られたベタ膜を有するガラス基板について、光学濃度計(361T(visual);X-rite社製)を用いて入射光および透過光の強度を測定し、先述の式(1)により算出した。 に つ い て In Example 37, a solid film was similarly formed on a glass substrate as a model of the light-shielding partition wall (A-2). With respect to the obtained glass substrate having a solid film, the intensities of incident light and transmitted light were measured using an optical densitometer (361T (visual); manufactured by X-rite), and were calculated by the above-described equation (1).
 <テーパー角度>
 各実施例および比較例において、画素形成前の隔壁付き基板の任意の断面を、光学顕微鏡(FE-SEM(S-4800);(株)日立製作所製)を用いて、加速電圧3.0kVで観測し、テーパー角度を測定した。
<Taper angle>
In each of the examples and comparative examples, an arbitrary cross section of the substrate with the partition wall before pixel formation was measured at an accelerating voltage of 3.0 kV using an optical microscope (FE-SEM (S-4800); manufactured by Hitachi, Ltd.). Observation was made and the taper angle was measured.
 <表面接触角>
 各実施例および比較例により得られた隔壁付き基板における隔壁のモデルとして、反射率の評価と同様に、ガラス基板上にベタ膜を作製した。得られたベタ膜の表面について、協和界面科学(株)製 DM-700、マイクロシリンジ:協和界面科学(株)製 接触角計用テフロン(登録商標)コート針22Gを用いて、25℃、大気中において、JIS R3257(制定年月日=1999/04/20)に規定される基板ガラス表面のぬれ性試験方法に準拠して、表面接触角を測定した。ただし、水の代わりにプロピレングリコールモノメチルエーテルアセテートを使用し、ベタ膜の表面とプロピレングリコールモノメチルエーテルアセテートとの接触角を測定した。
<Surface contact angle>
A solid film was formed on a glass substrate as a model of a partition in the substrate with a partition obtained in each of the examples and comparative examples, in the same manner as in the evaluation of the reflectance. About the surface of the obtained solid film, DM-700 manufactured by Kyowa Interface Science Co., Ltd., micro syringe: Teflon (registered trademark) for contact angle meter, manufactured by Kyowa Interface Science Co., Ltd. In the table, the surface contact angle was measured in accordance with the wettability test method for the substrate glass surface specified in JIS R3257 (established date = 1999/04/20). However, propylene glycol monomethyl ether acetate was used instead of water, and the contact angle between the surface of the solid film and propylene glycol monomethyl ether acetate was measured.
 <インクジェット塗布性>
 各実施例および比較例により得られた、画素を形成する前の隔壁付き基板において、格子状の隔壁で囲われた画素部分に対して、PGMEAをインクとして、インクジェット塗布装置(InkjetLabo、クラスターテクノロジー(株)製)を用いて、インクジェット塗布を行った。1つの格子状パターンあたり160pLのPGMEAを塗布して、決壊(インクが隔壁を乗り越えて隣の画素部分に混入する現象)の有無を観察し、下記基準によりインクジェット塗布性を評価した。決壊が少ないほど撥液性能が高く、インクジェット塗布性が優れていることを示す。
A:インクが画素内からあふれなかった。
B:一部分においてインクが画素内から隔壁の上面にあふれ出した。
C:全面においてインクが画素内から隔壁の上面にあふれ出した。
<Inkjet coatability>
In the substrate with the partition walls before forming the pixels obtained in each of the examples and the comparative examples, the pixel portion surrounded by the grid-like partition walls is subjected to an ink jet coating apparatus (InkjetLabo, cluster technology (PGM)) using PGMEA as ink. Ink-jet coating was performed using the following method. 160 pL of PGMEA was applied per one grid-like pattern, and the presence or absence of breakage (phenomenon in which ink crossed the partition walls and mixed into the adjacent pixel portion) was observed, and the ink jet coatability was evaluated based on the following criteria. The smaller the break, the higher the liquid repellency and the better the ink jet coating property.
A: Ink did not overflow from inside the pixel.
B: In some portions, the ink overflowed from the inside of the pixel to the upper surface of the partition wall.
C: The ink overflowed from the inside of the pixel to the upper surface of the partition wall over the entire surface.
 <厚み>
 各実施例および比較例により得られた隔壁付き基板について、サーフコム触針式膜厚測定装置を用いて、画素(B)形成前後の構造体の高さを測定し、その差分を算出することにより、画素(B)の厚みを測定した。実施例29~31についてはさらに低屈折率層(C)の膜厚を、実施例32~36についてはさらにカラーフィルターの膜厚を、実施例37についてはさらに遮光隔壁の厚み(高さ)を、それぞれ同様に測定した。
<Thickness>
The height of the structure before and after the formation of the pixel (B) was measured using a Surfcom stylus-type film thickness measuring device for the substrate with a partition wall obtained in each of the examples and comparative examples, and the difference was calculated. The thickness of the pixel (B) was measured. In Examples 29 to 31, the film thickness of the low refractive index layer (C) was further reduced, in Examples 32 to 36, the thickness of the color filter was further reduced, and in Example 37, the thickness (height) of the light shielding partition was further reduced. Were similarly measured.
 また、実施例30~31および33~34については、クロスセクションポリッシャー等の研磨装置を用いて、下地基板に対して垂直な断面を露出させ、走査型電子顕微鏡または透過型電子顕微鏡で断面を拡大観察することにより、それぞれ無機保護層I~IVの厚みを測定した。 In Examples 30 to 31 and 33 to 34, a cross section perpendicular to the base substrate was exposed using a polishing device such as a cross section polisher, and the cross sections were enlarged with a scanning electron microscope or a transmission electron microscope. By observation, the thickness of each of the inorganic protective layers I to IV was measured.
 <輝度>
 市販のLEDバックライト(ピーク波長465nm)を搭載した面状発光装置を光源として、画素部が光源側になるように各実施例および比較例により得られた隔壁付き基板を設置した。この面状発光装置に30mAの電流を流してLED素子を点灯させ、分光放射輝度計(CS-1000、コニカミノルタ社製)を用いて、CIE1931規格に基づく輝度(単位:cd/m)を測定し、初期輝度とした。ただし、輝度の評価は、実施例45の初期輝度を標準の100とする相対値により行った。
<Brightness>
Using a planar light emitting device equipped with a commercially available LED backlight (peak wavelength: 465 nm) as a light source, the substrates with partition walls obtained in each of the examples and comparative examples were installed such that the pixel portion was on the light source side. A current of 30 mA is passed through the surface light-emitting device to turn on the LED element, and a luminance (unit: cd / m 2 ) based on the CIE1931 standard is measured using a spectral radiance meter (CS-1000, manufactured by Konica Minolta). It measured and made it the initial luminance. However, the evaluation of the luminance was performed by a relative value with the initial luminance of Example 45 being 100 as a standard.
 また、室温(23℃)にて、LED素子を、48時間点灯した後、同様に輝度を測定し、輝度の経時変化を評価した。ただし、輝度の評価は、実施例45の初期輝度を標準の100とする相対値により行った。 {Circle around (2)} After the LED element was turned on for 48 hours at room temperature (23 ° C.), the luminance was measured in the same manner, and the change with time of the luminance was evaluated. However, the evaluation of the luminance was performed by a relative value with the initial luminance of Example 45 being 100 as a standard.
 <色特性>
 市販の白色反射板上に、各実施例および比較例により得られた隔壁付き基板を、画素が白色反射板側に配置されるように設置した。分光測色計(CM-2600d、コニカミノルタ社製、測定径φ8mm)を用いて、隔壁付き基板の下地基板側から光を照射し、正反射光込みのスペクトルを測定した。
<Color characteristics>
On a commercially available white reflector, the substrates with the partition walls obtained in each of the examples and comparative examples were installed such that pixels were arranged on the white reflector side. Using a spectrophotometer (CM-2600d, manufactured by Konica Minolta, measurement diameter φ8 mm), light was irradiated from the base substrate side of the substrate with partition walls, and the spectrum including specular reflection light was measured.
 自然界の色をほぼ再現できる色規格BT.2020が定める色域は、色度図に示されるスペクトル軌跡上の赤、緑および青を三原色として規定されており、赤、緑および青の波長はそれぞれ630nm、532nmおよび467nmに相当している。得られた反射スペクトルの470nm、530nmおよび630nmの3つの波長の反射率(R)から、画素の発光色について以下の基準により評価した。
A:R530/(R630+R530+R470)≧0.55
B:R530/(R630+R530+R470)<0.55。
A color standard BT. That can almost reproduce natural colors. The color gamut defined by 2020 is defined as red, green, and blue on the spectrum locus shown in the chromaticity diagram as three primary colors, and the wavelengths of red, green, and blue correspond to 630 nm, 532 nm, and 467 nm, respectively. Based on the reflectance (R) of the obtained reflection spectrum at three wavelengths of 470 nm, 530 nm, and 630 nm, the emission color of the pixel was evaluated according to the following criteria.
A: R 530 / (R 630 + R 530 + R 470 ) ≧ 0.55
B: R 530 / (R 630 + R 530 + R 470 ) <0.55.
 <表示特性>
 各実施例および比較例により得られた隔壁付き基板と有機EL素子を組み合わせて作製した表示装置の表示特性を、以下の基準に基づき評価した。
A:緑表示が非常に色鮮やかであり、鮮明でコントラストに優れた表示装置である。
B:色彩にやや不自然さが見られるものの、問題のない表示装置である。
<Display characteristics>
The display characteristics of a display device manufactured by combining the substrate with a partition wall obtained in each of the examples and the comparative examples and the organic EL element were evaluated based on the following criteria.
A: A display device in which green display is very colorful, clear and excellent in contrast.
B: A display device with some unnatural colors but no problem.
 <混色>
 各実施例および比較例により得られた、画素を形成する前の隔壁付き基板において、格子状の隔壁で囲われた画素部分の一部に、インクジェット法を用いて、色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成した。その後、格子状の隔壁で囲われた画素部分のうち、色変換発光材料組成物(CL-2)を塗布した領域の隣の領域に、インクジェット法を用いて、色変換発光材料組成物(CL-3)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成した。
<Color mixture>
In the substrate with a partition wall before forming a pixel obtained in each of the Examples and Comparative Examples, a part of a pixel portion surrounded by a grid-like partition wall is provided with a color conversion luminescent material composition ( CL-2) was applied and dried at 100 ° C. for 30 minutes to form a pixel having a thickness of 5.0 μm. Thereafter, in the pixel portion surrounded by the lattice-shaped partition walls, a region adjacent to the region where the color conversion light emitting material composition (CL-2) is applied is applied to the color conversion light emitting material composition (CL -3) was applied and dried at 100 ° C. for 30 minutes to form a pixel having a thickness of 5.0 μm.
 一方、格子状の隔壁で囲われた画素部分と同じ幅をもつ青色有機ELセルを作製し、前述の隔壁付き基板と青色有機ELセルを対向させて封止剤により貼り合せ、図10に示す構成の表示装置を得た。 On the other hand, a blue organic EL cell having the same width as that of the pixel portion surrounded by the lattice-shaped partition is manufactured, and the above-described substrate with a partition and the blue organic EL cell are bonded to each other with a sealing agent so as to face each other, as shown in FIG. A display device having the above configuration was obtained.
 図10における青色有機ELセル11のうち、色変換発光材料組成物(CL-2)で形成された画素3(CL-2)の直下に貼り合わせた青色有機ELセルのみを点灯させた状態で、色変換発光材料組成物(CL-3)で形成された画素3(CL-3)部分について、顕微分光光度計LVmicro-V(ラムダビジョン(株)製)を用いて、波長630nmにおける吸光強度A(630nm)を測定した。吸光強度A(630nm)の値が小さいほど、混色を起こしにくいことを示している。下記の判定基準により混色を判定した。
A:A(630nm)<0.01
B:0.01≦A(630nm)≦0.5
C:0.5<A(630nm)。
In the state where only the blue organic EL cell bonded to immediately below the pixel 3 (CL-2) formed of the color conversion luminescent material composition (CL-2) among the blue organic EL cells 11 in FIG. 10 is lit. Of the pixel 3 (CL-3) formed of the color-converting luminescent material composition (CL-3) using a microspectrophotometer LVmicro-V (manufactured by Lambda Vision Co., Ltd.) at a wavelength of 630 nm. A (630 nm) was measured. The smaller the value of the light absorption intensity A (630 nm), the less the occurrence of color mixing. Color mixing was determined according to the following criteria.
A: A (630 nm) <0.01
B: 0.01 ≦ A (630 nm) ≦ 0.5
C: 0.5 <A (630 nm).
 各実施例および比較例評価結果を表6~7に示す。 評 価 Each Example and Comparative Example Evaluation results are shown in Tables 6 and 7.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
1:下地基板
2:隔壁
3:画素
3(CL-2):色変換発光材料組成物(CL-2)で形成された画素
3(CL-3):色変換発光材料組成物(CL-3)で形成された画素
4:低屈折率層
5:無機保護層I
6:無機保護層II
7:カラーフィルター
8:無機保護層IIIおよび/または黄色有機保護層
9:無機保護層IVおよび/または黄色有機保護層
10:遮光隔壁
11:青色有機ELセル
H:隔壁の厚み
L:隔壁の幅
θ:テーパー角度
1: Base substrate 2: Partition wall 3: Pixel 3 (CL-2): Pixel 3 (CL-3) formed of color conversion luminescent material composition (CL-2): Color conversion luminescent material composition (CL-3) 4): low refractive index layer 5: inorganic protective layer I
6: inorganic protective layer II
7: Color filter 8: Inorganic protective layer III and / or yellow organic protective layer 9: Inorganic protective layer IV and / or yellow organic protective layer 10: Light-shielding partition 11: Blue organic EL cell H: Partition thickness L: Partition width θ: taper angle

Claims (21)

  1. 樹脂と、銀、金、白金およびパラジウムからなる群より選ばれる少なくとも1種の金属を含有する有機金属化合物と、光重合開始剤またはキノンジアジド化合物と、溶媒とを含有する樹脂組成物。 A resin composition containing a resin, an organometallic compound containing at least one metal selected from the group consisting of silver, gold, platinum and palladium, a photopolymerization initiator or a quinonediazide compound, and a solvent.
  2. さらに、リン原子を有する配位性化合物を含有する請求項1記載の樹脂組成物。 The resin composition according to claim 1, further comprising a coordinating compound having a phosphorus atom.
  3. 前記樹脂が、ポリシロキサン、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体および(メタ)アクリルポリマから選ばれた樹脂である請求項1または2記載の樹脂組成物。 The resin composition according to claim 1, wherein the resin is a resin selected from polysiloxane, polyimide, a polyimide precursor, polybenzoxazole, a polybenzoxazole precursor, and a (meth) acrylic polymer.
  4. 前記樹脂が、ポリシロキサンである請求項1~3のいずれか記載の樹脂組成物。 4. The resin composition according to claim 1, wherein the resin is a polysiloxane.
  5. さらに、白色顔料および/または黒色顔料を含有する請求項1~4のいずれか記載の樹脂組成物。 5. The resin composition according to claim 1, further comprising a white pigment and / or a black pigment.
  6. 白色顔料を含有し、前記白色顔料が、二酸化チタン、酸化ジルコニウム、酸化亜鉛、硫酸バリウムおよびこれらの複合化合物から選ばれた顔料である請求項5記載の樹脂組成物。 The resin composition according to claim 5, further comprising a white pigment, wherein the white pigment is a pigment selected from titanium dioxide, zirconium oxide, zinc oxide, barium sulfate, and a composite compound thereof.
  7. 黒色顔料を含有し、前記黒色顔料が、窒化チタン、窒化ジルコニウム、カーボンブラック、および赤色顔料と青色顔料との重量比20/80~80/20の混合顔料から選ばれた顔料である請求項5または6記載の樹脂組成物。 6. A pigment containing a black pigment, wherein the black pigment is selected from titanium nitride, zirconium nitride, carbon black, and a mixed pigment of a red pigment and a blue pigment in a weight ratio of 20/80 to 80/20. Or the resin composition according to 6.
  8. さらに、光塩基発生剤を含有する請求項1~7のいずれか記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, further comprising a photobase generator.
  9. 請求項1~8いずれか記載の樹脂組成物を硬化させてなる遮光膜。 A light-shielding film obtained by curing the resin composition according to any one of claims 1 to 8.
  10. 下地基板上に請求項1~8いずれか記載の樹脂組成物を塗布し、乾燥して乾燥膜を得る製膜工程、得られた乾燥膜をパターン露光する露光工程、露光後の乾燥膜における現像液に可溶な部分を溶解除去する現像工程および現像後の乾燥膜を加熱することにより硬化させる加熱工程を有する遮光膜の製造方法であって、前記加熱工程において、現像後の乾燥膜を120℃以上250℃以下の温度で加熱することにより、膜厚10μmあたりのOD値を0.3以上上昇させる、遮光膜の製造方法。 A film forming step of applying the resin composition according to any one of claims 1 to 8 on an undersubstrate and drying it to obtain a dried film, an exposure step of pattern-exposing the obtained dried film, and a development of the dried film after exposure. A method for producing a light-shielding film, comprising: a developing step of dissolving and removing a portion soluble in a liquid; and a heating step of heating and curing the dried film after development. A method for manufacturing a light-shielding film, wherein the OD value per 10 μm of film thickness is increased by 0.3 or more by heating at a temperature of from 250 ° C. to 250 ° C.
  11. 下地基板上に(A-1)パターン形成された隔壁を有する隔壁付き基板であって、波長550nmにおける厚み10μmあたりの反射率が20%~60%、厚み10μmあたりのOD値が1.0~3.0である隔壁付き基板。 A substrate with a partition wall having a pattern (A-1) formed on an undersubstrate, wherein the reflectance per 10 μm thickness at a wavelength of 550 nm is 20% to 60%, and the OD value per 10 μm thickness is 1.0 to 1.0%. A substrate with a partition wall of 3.0.
  12. 前記(A-1)パターン形成された隔壁が、樹脂と、白色顔料と、酸化パラジウム、酸化白金、酸化金、酸化銀、パラジウム、白金、金および銀からなる群より選ばれる少なくとも1種の金属酸化物または金属からなる粒子とを含有する請求項11記載の隔壁付き基板。 (A-1) The pattern-formed partition wall is made of a resin, a white pigment, and at least one metal selected from the group consisting of palladium oxide, platinum oxide, gold oxide, silver oxide, palladium, platinum, gold and silver. The substrate with a partition wall according to claim 11, further comprising particles made of an oxide or a metal.
  13. 前記(A-1)パターン形成された隔壁が、さらに撥液化合物を含有し、(A-1)パターン形成された隔壁中の撥液化合物の含有量が0.01重量%~10重量%である、請求項11または12記載の隔壁付き基板。 The (A-1) pattern-formed partition further contains a liquid-repellent compound, and the (A-1) pattern-formed partition contains 0.01% to 10% by weight of the liquid-repellent compound. 13. The substrate with a partition according to claim 11 or 12.
  14. 前記(A-1)パターン形成された隔壁の、プロピレングリコールモノメチルエーテルアセテートに対する表面接触角が10°~70°である請求項11~13のいずれか記載の隔壁付き基板。 14. The substrate with a partition wall according to any one of claims 11 to 13, wherein the (A-1) pattern-formed partition wall has a surface contact angle of 10 ° to 70 ° with propylene glycol monomethyl ether acetate.
  15. 前記(A-1)パターン形成された隔壁のテーパー角度が45°~110°である請求項11~14のいずれか記載の隔壁付き基板。 The substrate with a partition according to any one of claims 11 to 14, wherein the tapered angle of the partition formed with the pattern (A-1) is 45 ° to 110 °.
  16. 前記下地基板と(A-1)パターン形成された隔壁との間に、さらに、(A-2)厚み1.0μmあたりのOD値が0.5以上である、パターン形成された遮光隔壁を有する、請求項11~15いずれか記載の隔壁付き基板。 Further, (A-2) a patterned light-shielding partition having an OD value of 0.5 or more per 1.0 μm thickness is provided between the base substrate and the (A-1) patterned partition. The substrate with a partition according to any one of claims 11 to 15.
  17. さらに、前記(A-1)パターン形成された隔壁によって隔てられて配列した(B)色変換発光材料を含有する画素を有する請求項11~16いずれかに記載の隔壁付き基板。 17. The substrate with a partition according to any of claims 11 to 16, further comprising (B-1) a pixel containing a color conversion luminescent material arranged and separated by the (A-1) patterned partition.
  18. 前記色変換発光材料が量子ドットおよびピロメテン誘導体から選ばれた蛍光体を含有する請求項17記載の隔壁付き基板。 18. The substrate with a partition according to claim 17, wherein the color conversion luminescent material contains a phosphor selected from quantum dots and a pyromethene derivative.
  19. 前記下地基板と(B)色変換発光材料を含有する画素の間に、さらに、厚み1~5μmのカラーフィルターを有する請求項17または18記載の隔壁付き基板。 19. The substrate with a partition wall according to claim 17, further comprising a color filter having a thickness of 1 to 5 μm between the base substrate and the pixel containing the color conversion luminescent material (B).
  20. 前記下地基板上、または、前記厚み1~5μmのカラーフィルターと(B)色変換発光材料を含有する画素層の間に、さらに、厚み50~1,000nmの無機保護層および/または黄色有機保護層を有する請求項19記載の隔壁付き基板。 On the undersubstrate or between the color filter having a thickness of 1 to 5 μm and the pixel layer containing the color conversion luminescent material (B), an inorganic protective layer and / or a yellow organic protective layer having a thickness of 50 to 1,000 nm is further provided. 20. The substrate with a partition wall according to claim 19, comprising a layer.
  21. 請求項11~20いずれか記載の隔壁付き基板と、液晶セル、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源とを有する表示装置。 A display device comprising: the substrate with a partition according to any one of claims 11 to 20; and a light source selected from a liquid crystal cell, an organic EL cell, a mini LED cell, and a micro LED cell.
PCT/JP2019/025291 2018-07-05 2019-06-26 Resin composition, light-blocking film, method for producing light-blocking film, and substrate having partitioning wall attached thereto WO2020008969A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980041920.9A CN112368611B (en) 2018-07-05 2019-06-26 Resin composition, light-shielding film, method for producing light-shielding film, and substrate with partition
JP2019536119A JP6908116B2 (en) 2018-07-05 2019-06-26 Method for manufacturing resin composition, light-shielding film and light-shielding film
KR1020217000149A KR102432033B1 (en) 2018-07-05 2019-06-26 Resin composition, light-shielding film, manufacturing method of light-shielding film, and substrate with barrier ribs
CN202210992042.2A CN115356873A (en) 2018-07-05 2019-06-26 Resin composition, light-shielding film, method for producing light-shielding film, and substrate with partition
KR1020227011384A KR102624898B1 (en) 2018-07-05 2019-06-26 Resin composition, light-blocking film, method for producing light-blocking film, and substrate having partitioning wall attached thereto

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018128004 2018-07-05
JP2018-128004 2018-07-05
JP2019-043434 2019-03-11
JP2019043434 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020008969A1 true WO2020008969A1 (en) 2020-01-09

Family

ID=69059606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025291 WO2020008969A1 (en) 2018-07-05 2019-06-26 Resin composition, light-blocking film, method for producing light-blocking film, and substrate having partitioning wall attached thereto

Country Status (5)

Country Link
JP (3) JP6908116B2 (en)
KR (2) KR102432033B1 (en)
CN (2) CN112368611B (en)
TW (2) TWI816371B (en)
WO (1) WO2020008969A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016878A (en) * 2018-07-17 2020-01-30 信越化学工業株式会社 Photosensitive resin composition and patterning method
JP2020034913A (en) * 2018-08-27 2020-03-05 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Color filter, method for manufacturing the same, and image display device including color filter
CN111205646A (en) * 2020-03-20 2020-05-29 株洲时代华鑫新材料技术有限公司 Black matte polyimide film and preparation method thereof
JP2021110896A (en) * 2020-01-15 2021-08-02 太陽インキ製造株式会社 Display partition
JP2021520024A (en) * 2019-03-26 2021-08-12 武漢華星光電半導体顕示技術有限公司Wuhan China Star Optoelectronics Semiconductor Disolay Technology Co.,Ltd Organic light emitting diode display device and its manufacturing method
WO2021177252A1 (en) * 2020-03-04 2021-09-10 Agc株式会社 Positive-type photosensitive resin composition
JPWO2021200357A1 (en) * 2020-03-30 2021-10-07
WO2022176976A1 (en) * 2021-02-18 2022-08-25 三菱ケミカル株式会社 Photosensitive colored composition, cured object, banks, organic electroluminescent element, and image display device
CN114981690A (en) * 2020-02-13 2022-08-30 东丽株式会社 Method for manufacturing wavelength conversion substrate, and display
WO2022181350A1 (en) * 2021-02-24 2022-09-01 東レ株式会社 Photosensitive resin composition, cured object, layered product, display device, and method for producing display device
WO2023054046A1 (en) * 2021-09-29 2023-04-06 東レ株式会社 Method for manufacturing cured-film-coated substrate, cured-film-coated substrate, and element comprising cured-film-coated substrate
WO2023223833A1 (en) * 2022-05-17 2023-11-23 凸版印刷株式会社 Black matrix substrate and display device
EP4133023A4 (en) * 2020-04-08 2023-12-20 E Ink Corporation Quantum dot film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779832B (en) * 2021-09-14 2022-10-01 立勇發科技股份有限公司 Backlight module and display device used in quantum dot display field
CN114038984B (en) * 2021-12-02 2023-03-31 业成科技(成都)有限公司 Micro light emitting diode display and forming method thereof
WO2024042106A1 (en) 2022-08-26 2024-02-29 Merck Patent Gmbh Composition
WO2024042107A1 (en) 2022-08-26 2024-02-29 Merck Patent Gmbh Composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004295116A (en) * 2003-03-10 2004-10-21 Fuji Photo Film Co Ltd Dye-containing hardening composition, color filter, and its manufacturing method
JP2007206345A (en) * 2006-02-01 2007-08-16 Fujifilm Corp Color filter, method for manufacturing color filter, and display device
JP2010092785A (en) * 2008-10-10 2010-04-22 Toray Ind Inc Photosensitive paste, manufacturing method of plasma display member using the same, and plasma display
JP2011505589A (en) * 2007-11-20 2011-02-24 イーストマン コダック カンパニー Method of using a colored mask in combination with selective area deposition
JP2011075612A (en) * 2009-09-29 2011-04-14 Toray Ind Inc Photosensitive paste, method of forming insulating pattern, and method of producing panel for flat display
JP2012088694A (en) * 2010-09-22 2012-05-10 Toray Ind Inc Film and molding using the same, electronic apparatus
WO2015012228A1 (en) * 2013-07-25 2015-01-29 東レ株式会社 Negative-type photosensitive white composition for touch panel, touch panel, and production method for touch panel
JP2017173812A (en) * 2016-03-18 2017-09-28 Jsr株式会社 Substrate for display element, method for manufacturing substrate for display element and display element
JP2018084823A (en) * 2016-11-22 2018-05-31 三星電子株式会社Samsung Electronics Co., Ltd. Photosensitive resin composition, complex, laminated structure, and display device and electronic device that employ the same

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131683A (en) 1998-10-29 2000-05-12 Hitachi Ltd Color display device
JP2001051266A (en) * 1999-06-01 2001-02-23 Toray Ind Inc Color filter and liquid crystal display device
JP4352509B2 (en) 1999-06-07 2009-10-28 東レ株式会社 Photosensitive paste and display member manufacturing method
DE10015502A1 (en) * 2000-03-14 2001-09-27 Bosch Gmbh Robert Photostructurizable paste, for producing structurized resistance film or wiring trace on green ceramic substrate, contains platinum (compound) powder and optionally ceramic (precursor) as filler in light-sensitive organic binder
JP4639530B2 (en) * 2000-06-01 2011-02-23 パナソニック株式会社 Photosensitive paste and plasma display
JP2002250803A (en) * 2001-02-23 2002-09-06 Sumitomo Chem Co Ltd Light scattering resin and liquid crystal display device using the same
JP2003177229A (en) * 2001-12-11 2003-06-27 Fuji Photo Film Co Ltd Method for forming circuit board attached with color filter and circuit board attached with color filter
JP2004059683A (en) * 2002-07-26 2004-02-26 Fuji Photo Film Co Ltd Colored composition, inkjet recording ink, inkjet recording method, thermal recording material, color toner, color filter
JP4694157B2 (en) * 2004-06-28 2011-06-08 富士フイルム株式会社 Substrate with light-shielding image, method for producing light-shielding image, transfer material, color filter, and display device
JP4197177B2 (en) 2005-03-18 2008-12-17 東京応化工業株式会社 Photo-curable resin composition for forming black matrix, photosensitive film using the same, method for forming black matrix, black matrix and plasma display panel having the black matrix
TWI561312B (en) * 2006-03-31 2016-12-11 Toray Industries Coating method, coating device and manufacturing method and manufacturing device for components of a display
JP4963951B2 (en) * 2006-05-24 2012-06-27 富士フイルム株式会社 Green photosensitive resin composition, photosensitive resin transfer material, color filter, and display device
TW200811249A (en) * 2006-06-02 2008-03-01 Fujifilm Corp Organic pigment nano-particle dispersion, its producing method, and ink-jet ink, colored photosensitive resin composition, photosensitive resin transcription material containing it, and color filter, liquid crystal display device, CCD device using it
JP5046731B2 (en) * 2007-04-26 2012-10-10 富士フイルム株式会社 Color filter, manufacturing method thereof, and display device
CN101349865B (en) * 2007-07-17 2012-10-03 富士胶片株式会社 Photosensitive compositions, curable compositions, color filters, and method for manufacturing the same
JP2009079121A (en) * 2007-09-26 2009-04-16 Fujifilm Corp Pigment dispersion composition, photocurable composition, color filter and method for producing color filter
CN101440236A (en) * 2007-11-22 2009-05-27 富士胶片株式会社 Print ink for ink jet, color filter, manufacturing method thereof, liquid display device using the color filter and image display element
JP2009204816A (en) * 2008-02-27 2009-09-10 Fujifilm Corp Colored curable composition, color filter and liquid crystal display
JP2009244383A (en) 2008-03-28 2009-10-22 Fujifilm Corp Liquid crystal display device
JP2010256887A (en) * 2009-03-31 2010-11-11 Fujifilm Corp Photosensitive color composition, color filter, manufacturing method thereof, and liquid crystal display device
JP5498051B2 (en) * 2009-04-24 2014-05-21 新日鉄住金化学株式会社 Bulkhead and color filter
KR20120022903A (en) * 2009-05-20 2012-03-12 아사히 가라스 가부시키가이샤 Method for manufacturing optical elements
KR101486641B1 (en) * 2010-06-07 2015-01-26 히타치가세이가부시끼가이샤 Photosensitive resin composition, photosensitive element comprising the composition, method for formation of septum for image display device, process for production of image display device, and image display device
JP5472241B2 (en) * 2011-09-16 2014-04-16 信越化学工業株式会社 Method for producing cured thin film using photocurable silicone resin composition
JP5938895B2 (en) * 2011-12-26 2016-06-22 住友化学株式会社 Colored curable resin composition
JP2013196919A (en) * 2012-03-21 2013-09-30 Sony Corp Organic el display device, organic el display device manufacturing method, and color filter substrate
CN102707484B (en) * 2012-04-24 2014-07-09 京东方科技集团股份有限公司 Semi-transmission and semi-reflection color-film substrate and manufacturing method thereof as well as liquid crystal display device
JP2014052606A (en) * 2012-09-10 2014-03-20 Sharp Corp Phosphor substrate, light-emitting device, display device and luminaire
JP5505569B1 (en) * 2012-12-11 2014-05-28 東レ株式会社 Thermosetting coloring composition and cured film, touch panel provided with the cured film, and method for producing touch panel using the thermosetting coloring composition
CN105026963B (en) * 2013-03-07 2018-01-23 东丽株式会社 Black matrix substrate
JP2015001654A (en) * 2013-06-17 2015-01-05 東レ株式会社 Method for manufacturing laminate resin black matrix substrate
US9698204B2 (en) * 2013-12-06 2017-07-04 Sharp Kabushiki Kaisha Light-emitting substrate, photovoltaic cell, display device, lighting device, electronic device, organic light-emitting diode, and method of manufacturing light-emitting substrate
CN105807351B (en) * 2014-12-31 2019-03-19 上海仪电显示材料有限公司 Production method, colour filter and the liquid crystal display device of colour filter
JP6544634B2 (en) * 2015-07-27 2019-07-17 大日本印刷株式会社 Color filter and display device
CN108027561B (en) * 2015-09-30 2021-10-08 东丽株式会社 Negative photosensitive resin composition, cured film, element and display device provided with cured film, and method for producing same
JP6713746B2 (en) * 2015-10-08 2020-06-24 日鉄ケミカル&マテリアル株式会社 Photosensitive resin composition for light-shielding film having spacer function, light-shielding film, liquid crystal display device, method for producing photosensitive resin composition for light-shielding film having spacer function, method for producing light-shielding film, and production of liquid crystal display device Method
JP6700710B2 (en) * 2015-10-16 2020-05-27 日鉄ケミカル&マテリアル株式会社 Photosensitive resin composition for black column spacer, black column spacer, liquid crystal display device, method for producing photosensitive resin composition for black column spacer, method for producing black column spacer, and method for producing liquid crystal display device
CN106793732A (en) * 2017-01-03 2017-05-31 哈尔滨工业大学 Geometric center type infrared band dual band pass optical window electromagnetic armouring structure
JP7047642B2 (en) * 2017-09-05 2022-04-05 Jsr株式会社 Photosensitive composition for partition wall formation, partition wall and display element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004295116A (en) * 2003-03-10 2004-10-21 Fuji Photo Film Co Ltd Dye-containing hardening composition, color filter, and its manufacturing method
JP2007206345A (en) * 2006-02-01 2007-08-16 Fujifilm Corp Color filter, method for manufacturing color filter, and display device
JP2011505589A (en) * 2007-11-20 2011-02-24 イーストマン コダック カンパニー Method of using a colored mask in combination with selective area deposition
JP2010092785A (en) * 2008-10-10 2010-04-22 Toray Ind Inc Photosensitive paste, manufacturing method of plasma display member using the same, and plasma display
JP2011075612A (en) * 2009-09-29 2011-04-14 Toray Ind Inc Photosensitive paste, method of forming insulating pattern, and method of producing panel for flat display
JP2012088694A (en) * 2010-09-22 2012-05-10 Toray Ind Inc Film and molding using the same, electronic apparatus
WO2015012228A1 (en) * 2013-07-25 2015-01-29 東レ株式会社 Negative-type photosensitive white composition for touch panel, touch panel, and production method for touch panel
JP2017173812A (en) * 2016-03-18 2017-09-28 Jsr株式会社 Substrate for display element, method for manufacturing substrate for display element and display element
JP2018084823A (en) * 2016-11-22 2018-05-31 三星電子株式会社Samsung Electronics Co., Ltd. Photosensitive resin composition, complex, laminated structure, and display device and electronic device that employ the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016878A (en) * 2018-07-17 2020-01-30 信越化学工業株式会社 Photosensitive resin composition and patterning method
JP7151646B2 (en) 2018-07-17 2022-10-12 信越化学工業株式会社 Photosensitive resin composition and pattern forming method
JP2020034913A (en) * 2018-08-27 2020-03-05 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Color filter, method for manufacturing the same, and image display device including color filter
US11626453B2 (en) 2018-08-27 2023-04-11 Dongwoo Fine-Chem Co., Ltd. Color filter, and method of manufacturing same
US11877492B2 (en) 2019-03-26 2024-01-16 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED display device including touch sensors and method for manufacturing same
JP2021520024A (en) * 2019-03-26 2021-08-12 武漢華星光電半導体顕示技術有限公司Wuhan China Star Optoelectronics Semiconductor Disolay Technology Co.,Ltd Organic light emitting diode display device and its manufacturing method
JP2021110896A (en) * 2020-01-15 2021-08-02 太陽インキ製造株式会社 Display partition
CN114981690A (en) * 2020-02-13 2022-08-30 东丽株式会社 Method for manufacturing wavelength conversion substrate, and display
WO2021177252A1 (en) * 2020-03-04 2021-09-10 Agc株式会社 Positive-type photosensitive resin composition
CN111205646B (en) * 2020-03-20 2022-09-09 株洲时代华鑫新材料技术有限公司 Black matte polyimide film and preparation method thereof
CN111205646A (en) * 2020-03-20 2020-05-29 株洲时代华鑫新材料技术有限公司 Black matte polyimide film and preparation method thereof
KR20220161259A (en) 2020-03-30 2022-12-06 도레이 카부시키가이샤 Resin composition, light shielding film, and substrate on which barrier ribs are formed
WO2021200357A1 (en) * 2020-03-30 2021-10-07 東レ株式会社 Resin composition, light-shielding film, and substrate with partition wall
CN115427514A (en) * 2020-03-30 2022-12-02 东丽株式会社 Resin composition, light-shielding film and substrate with partition wall
JPWO2021200357A1 (en) * 2020-03-30 2021-10-07
CN115427514B (en) * 2020-03-30 2024-01-02 东丽株式会社 Resin composition, light-shielding film, and substrate with partition wall
JP7115635B2 (en) 2020-03-30 2022-08-09 東レ株式会社 Resin composition, light-shielding film, and substrate with partition
EP4133023A4 (en) * 2020-04-08 2023-12-20 E Ink Corporation Quantum dot film
WO2022176976A1 (en) * 2021-02-18 2022-08-25 三菱ケミカル株式会社 Photosensitive colored composition, cured object, banks, organic electroluminescent element, and image display device
WO2022181350A1 (en) * 2021-02-24 2022-09-01 東レ株式会社 Photosensitive resin composition, cured object, layered product, display device, and method for producing display device
WO2023054046A1 (en) * 2021-09-29 2023-04-06 東レ株式会社 Method for manufacturing cured-film-coated substrate, cured-film-coated substrate, and element comprising cured-film-coated substrate
WO2023223833A1 (en) * 2022-05-17 2023-11-23 凸版印刷株式会社 Black matrix substrate and display device

Also Published As

Publication number Publication date
JP6908116B2 (en) 2021-07-21
TW202006045A (en) 2020-02-01
KR20210029764A (en) 2021-03-16
JP2022033154A (en) 2022-02-28
JPWO2020008969A1 (en) 2021-05-13
JP7044187B2 (en) 2022-03-30
TW202229443A (en) 2022-08-01
CN115356873A (en) 2022-11-18
JP7201062B2 (en) 2023-01-10
KR102432033B1 (en) 2022-08-12
CN112368611A (en) 2021-02-12
JP2021113977A (en) 2021-08-05
TWI783160B (en) 2022-11-11
CN112368611B (en) 2022-11-22
TWI816371B (en) 2023-09-21
KR20220049046A (en) 2022-04-20
KR102624898B1 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP7044187B2 (en) Board with bulkhead and display device
KR102617582B1 (en) Negative photosensitive coloring composition, cured film, touch panel using the same
CN106415393B (en) Negative photosensitive resin composition, cured film obtained by curing the same, method for producing the same, optical device having the same, and back-illuminated CMOS image sensor
JP2021161401A (en) Resin composition, light blocking film, method for producing light blocking film, and substrate with partition
US10067421B2 (en) Negative photosensitive resin composition, cured resin film, partition walls and optical element
JP2021005083A (en) Yellow color filter and substrate with the same
JP7115635B2 (en) Resin composition, light-shielding film, and substrate with partition
JP2021162860A (en) Negative type photosensitive coloring composition, cured film, method for producing cured film, substrate with partition wall, and image display device
JP2022150305A (en) Resin composition, ultraviolet absorption layer, and substrate with ultraviolet absorption layer
WO2023048016A1 (en) Resin composition, light-shielding film, and substrate with partitioning wall
WO2023157713A1 (en) Resin composition, light-blocking film, method for producing light-blocking film, substrate having partitioning wall attached thereto, and display device
JP2023031448A (en) Substrate with partition wall, wavelength conversion substrate and method of manufacturing wavelength conversion substrate, and display device
JP2023119574A (en) Resin composition, light-shielding film, method for manufacturing light-shielding film, substrate with partition wall and display device
KR20240058111A (en) Substrate with resin composition, light shielding film, and partition wall
KR20230157944A (en) Organic EL display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019536119

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830308

Country of ref document: EP

Kind code of ref document: A1