JP7115635B2 - Resin composition, light-shielding film, and substrate with partition - Google Patents
Resin composition, light-shielding film, and substrate with partition Download PDFInfo
- Publication number
- JP7115635B2 JP7115635B2 JP2021516844A JP2021516844A JP7115635B2 JP 7115635 B2 JP7115635 B2 JP 7115635B2 JP 2021516844 A JP2021516844 A JP 2021516844A JP 2021516844 A JP2021516844 A JP 2021516844A JP 7115635 B2 JP7115635 B2 JP 7115635B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- resin composition
- substrate
- compound
- partition walls
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0005—Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
- G03F7/0007—Filters, e.g. additive colour filters; Components for display devices
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
- G03F7/0233—Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/06—Silver salts
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Materials For Photolithography (AREA)
Description
本発明は、樹脂組成物と、樹脂組成物から形成される遮光膜、およびパターン形成された隔壁を有する隔壁付き基板に関する。 TECHNICAL FIELD The present invention relates to a resin composition, a light-shielding film formed from the resin composition, and a substrate with partition walls having patterned partition walls.
近年、光利用効率を高くしたカラー表示装置として、波長変換用蛍光体からなる波長変換部と、偏光分離手段と偏光変換手段を備えたカラー表示装置が提案されている(例えば、特許文献1参照)。例えば、青色光源と、液晶素子と、青色光により励起されて赤色の蛍光を発する蛍光体、青色光により励起されて緑色の蛍光を発する蛍光体、および青色光を散乱させる光散乱層を有する波長変換部を含むカラー表示装置が提案されている(例えば、特許文献2参照)。 In recent years, as a color display device with high light utilization efficiency, a color display device including a wavelength conversion section made of a wavelength conversion phosphor, a polarization separation means, and a polarization conversion means has been proposed (see, for example, Patent Document 1). ). For example, a blue light source, a liquid crystal element, a phosphor that emits red fluorescence when excited by blue light, a phosphor that emits green fluorescence when excited by blue light, and a light scattering layer that scatters blue light. A color display device including a conversion unit has been proposed (see, for example, Patent Document 2).
しかし、特許文献1、2に記載されるような色変換蛍光体を含むカラーフィルターは、蛍光があらゆる方向に発生することから、光の取り出し効率が低く、輝度が不十分である。特に、4K、8Kと言われる高精細表示装置においては、画素サイズが小さくなるため、輝度の課題が顕著となることから、より高い輝度が求められている。
However, color filters containing color-converting phosphors, such as those described in
一般に、このような表示装置では、色変換蛍光体を隔壁で隔てることにより、隣接間画素の光の混色を防いでいる。特に、色変換蛍光体の励起光が隣接画素へ漏れると、隣接画素内で発光し混色の原因となるため、多くの場合、隔壁の青色光(波長450nm)の遮光性が極めて重要となる。また、表示装置の輝度を向上させるためには、色変換蛍光体を、反射性の高い隔壁で隔てることが有効である。以上から、青色光の高遮光性と可視光全体の高反射性とを両立した隔壁材料が求められている。 Generally, in such a display device, the color-converting phosphors are separated by partition walls to prevent color mixture of light between adjacent pixels. In particular, if the excitation light of the color-converting phosphor leaks into adjacent pixels, it will emit light in the adjacent pixels and cause color mixture. Also, in order to improve the brightness of the display device, it is effective to separate the color conversion phosphors with highly reflective partition walls. From the above, there is a demand for a barrier rib material that achieves both high light shielding properties for blue light and high reflectance for all visible light.
発明者らは、青色光の高遮光性と可視光全体の高反射性とを両立した隔壁を形成するために、まず、高反射率を発現する酸化チタン白色顔料を用いた白色隔壁材料に、青色の補色である黄色の顔料を添加した材料を使用する方法を検討した。しかし、この方法では、白色顔料と黄色顔料によって露光光全体が吸収され、露光時に膜の底部まで光が届かず、パターン加工性が悪いという課題が明らかになった。 In order to form barrier ribs that achieve both high light-shielding properties for blue light and high reflectivity for all visible light, the inventors firstly added a white barrier rib material using a titanium oxide white pigment that exhibits high reflectance, A method of using a material added with a yellow pigment, which is a complementary color of blue, was investigated. However, in this method, the entire exposure light is absorbed by the white pigment and the yellow pigment, and the light does not reach the bottom of the film during exposure, resulting in poor pattern processability.
そこで発明者らは、製膜後にパターン露光する工程時には露光光を透過し、露光した膜を120℃以上250℃以下の温度で加熱した後に、遮光性を上昇させる設計を考案した。また、樹脂と、銀、金、白金およびパラジウムからなる群より選ばれる少なくとも1種の金属を含有する有機金属化合物と、光重合開始剤またはキノンジアジド化合物と、溶媒とを含有する樹脂組成物を用いることで、これを達成した(特許文献5参照)。特に有機銀化合物を用いると、加熱後に銀ナノ粒子の生成によって膜が黄色化し、青色光の遮光性が上昇することを見出した。 Therefore, the inventors devised a design in which the exposure light is transmitted during the process of pattern exposure after film formation, and the light shielding property is increased after heating the exposed film at a temperature of 120° C. or more and 250° C. or less. Also, a resin composition containing a resin, an organometallic compound containing at least one metal selected from the group consisting of silver, gold, platinum and palladium, a photopolymerization initiator or a quinonediazide compound, and a solvent is used. This was achieved by doing so (see Patent Document 5). In particular, it was found that when an organic silver compound is used, the film turns yellow due to the formation of silver nanoparticles after heating, and the blue light shielding property increases.
しかしながら、この技術は、加熱後の膜に未反応の有機銀化合物が残存すると、光や熱により分解し、膜色が変化するため、耐候性に課題があることが新たに明らかとなった。また、高価な有機銀化合物を、多量(固形分中1%以上)用いる必要があるため、コストにも課題があった。さらに、膜の遮光性を十分に上昇させるためには、150℃以上の加熱が必要であり、100~120℃程度の低温での加熱条件が求められる場合には、本技術が適用できなかった。 However, it was newly revealed that this technology has a problem with weather resistance because if unreacted organic silver compounds remain in the film after heating, they are decomposed by light or heat, changing the color of the film. Moreover, since it is necessary to use a large amount (1% or more of the solid content) of an expensive organic silver compound, there is also a problem of cost. Furthermore, in order to sufficiently improve the light shielding property of the film, heating at 150° C. or higher is necessary, and this technology cannot be applied when heating conditions at a low temperature of about 100 to 120° C. are required. .
そこで、本発明は、100~120℃程度の加熱条件においても、耐候性に優れ、青色光の高遮光性と可視光全体の高反射性とを両立した隔壁を形成可能である樹脂組成物を比較的安価に提供することを目的とする。 Therefore, the present invention provides a resin composition which is excellent in weather resistance even under heating conditions of about 100 to 120° C. and capable of forming barrier ribs having both high light shielding properties for blue light and high reflectance for all visible light. The purpose is to provide it at a relatively low cost.
本願発明者らは、鋭意研究の結果、樹脂と、光重合開始剤またはキノンジアジド化合物と、白色顔料および/または遮光顔料と、有機銀化合物と、還元剤とを含有する樹脂組成物により、耐候性に優れ、可視光全体の高反射性と青色光の高遮光性を両立した隔壁を形成可能であることを見出し、本発明に到達した。 As a result of intensive research, the inventors of the present application have found that a resin composition containing a resin, a photopolymerization initiator or a quinonediazide compound, a white pigment and/or a light-shielding pigment, an organic silver compound, and a reducing agent exhibits weather resistance. The inventors have found that it is possible to form a partition wall which is excellent in both high reflectivity for all visible light and high light shielding performance for blue light, and have arrived at the present invention.
すなわち、本願発明は以下のものを提供する。
(1) 樹脂と、光重合開始剤またはキノンジアジド化合物と、白色顔料および/または遮光顔料と、有機銀化合物と、還元剤とを含有し、前記白色顔料は、SiO
2
、Al
2
O
3
及びZrO
2
から選ばれる少なくとも一種により表面処理されたものであり、前記遮光顔料は、赤色顔料、青色顔料、黒色顔料、緑色顔料、黄色顔料の少なくとも1つを含有する、樹脂組成物。
(2) 樹脂と、光重合開始剤またはキノンジアジド化合物と、白色顔料および/または遮光顔料と、有機銀化合物と、還元剤とを含有する樹脂組成物であって、前記還元剤が、分子内に2つ以上のフェノール性水酸基を含有する化合物またはエンジオール基を含有する化合物である、樹脂組成物。
(3) 前記有機銀化合物が、下記一般式(1)で表される化合物である(1)または(2)記載の樹脂組成物。
That is, the present invention provides the following.
(1) a resin, a photoinitiator or a quinonediazide compound, a white pigment and/or a light-shielding pigment, an organic silver compound, and a reducing agent , wherein the white pigment is SiO 2 , Al 2 O 3 and ZrO ; 2 , wherein the light-shielding pigment contains at least one of a red pigment, a blue pigment, a black pigment, a green pigment, and a yellow pigment .
(2) A resin composition containing a resin, a photopolymerization initiator or a quinonediazide compound, a white pigment and/or a light-shielding pigment, an organic silver compound, and a reducing agent, wherein the reducing agent is A resin composition which is a compound containing two or more phenolic hydroxyl groups or a compound containing an enediol group.
(3) The resin composition according to (1) or (2), wherein the organic silver compound is a compound represented by the following general formula (1).
(一般式(1)中、R1は水素または炭素数1~30の有機基を表す。)
(4) 前記有機銀化合物が、少なくとも下記一般式(2)で表される構造を有する重合体化合物である(1)または(2)記載の樹脂組成物。(In general formula (1), R 1 represents hydrogen or an organic group having 1 to 30 carbon atoms.)
(4) The resin composition according to (1) or (2), wherein the organic silver compound is a polymer compound having at least a structure represented by the following general formula (2).
(一般式(2)中、R2およびR3はそれぞれ独立に水素または炭素数1~30の有機基を表し、aは1以上の整数を表す)。
前記還元剤が、下記一般式(3)で表されるヒドロキノン化合物である(1)~(4)のいずれか1項に記載の樹脂組成物。
(In general formula (2), R 2 and R 3 each independently represent hydrogen or an organic group having 1 to 30 carbon atoms , and a represents an integer of 1 or more ).
The resin composition according to any one of (1) to (4), wherein the reducing agent is a hydroquinone compound represented by the following general formula (3).
(一般式(3)中、R4、R5、R6およびR7はそれぞれ独立に水素、ヒドロキシ基、または炭素数1~30の有機基を表す)。
(6) 前記樹脂が、スチリル基を有するポリシロキサンである(1)~(5)のいずれか1項に記載の樹脂組成物。
(7) 光ラジカル重合性基を有する撥液化合物をさらに含有する(1)~(6)のいずれか1項に記載の樹脂組成物。
(8) (1)~(7)のいずれか1項に記載の樹脂組成物を硬化させてなる遮光膜。
(9) 下地基板上に、(1)~(7)のいずれか1項に記載の樹脂組成物によって(A-1)パターン形成された隔壁を有する隔壁付き基板であって、波長450nmにおける厚み10μmあたりの反射率が10%~60%、波長450nmにおける厚み10μmあたりのOD値が1.5~5.0である隔壁付き基板。
(10) 下地基板上に、(A-1)パターン形成された隔壁を有する隔壁付き基板であって、前記パターン形成された隔壁が、樹脂と、白色顔料および/または遮光顔料と、酸化銀および/または銀粒子と、キノン化合物とを含有する隔壁付き基板。
(11) 前記(A-1)パターン形成された隔壁が、樹脂と、白色顔料と、酸化銀および/または銀粒子とを含有する(9)記載の隔壁付き基板。
(12) 前記(A-1)パターン形成された隔壁が、撥液化合物をさらに含有し、(A-1)パターン形成された隔壁中の撥液化合物の含有量が0.01重量%~10重量%である、(9)~(11)のいずれか1項に記載の隔壁付き基板。
(13) 前記下地基板と(A-1)パターン形成された隔壁との間に、(A-2)厚み1.0μmあたりのOD値が0.5以上である、パターン形成された遮光隔壁をさらに有する、(9)~(12)のいずれか1項に記載の隔壁付き基板。
(14) 前記(A-1)パターン形成された隔壁によって隔てられて配列した(B)色変換発光材料を含有する画素層をさらに有する(9)~(13)のいずれか1項に記載の隔壁付き基板。
(15) 前記色変換発光材料が量子ドットおよびピロメテン誘導体から選ばれた蛍光体を含有する(14)記載の隔壁付き基板。
(16) 前記下地基板と(B)色変換発光材料を含有する画素層の間に、厚み1~5μmのカラーフィルターをさらに有する(14)または(15)記載の隔壁付き基板。
(17) (9)~(16)のいずれか1項に記載の隔壁付き基板と、液晶セル、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源とを有する表示装置。(In general formula (3), R 4 , R 5 , R 6 and R 7 each independently represent hydrogen, a hydroxy group, or an organic group having 1 to 30 carbon atoms).
(6) The resin composition according to any one of (1) to (5), wherein the resin is polysiloxane having a styryl group.
(7) The resin composition according to any one of (1) to (6), further containing a liquid-repellent compound having a radically photopolymerizable group.
(8) A light-shielding film obtained by curing the resin composition according to any one of (1) to (7).
(9) A substrate with barrier ribs having (A-1) a pattern of the resin composition according to any one of (1) to (7) formed on a base substrate, the thickness at a wavelength of 450 nm. A substrate with partition walls having a reflectance of 10% to 60% per 10 μm and an OD value of 1.5 to 5.0 per 10 μm thickness at a wavelength of 450 nm.
(10) A substrate with barrier ribs having (A-1) patterned barrier ribs on a base substrate, wherein the patterned barrier ribs comprise a resin, a white pigment and/or a light-shielding pigment, silver oxide and / Or a board|substrate with a partition containing a silver particle and a quinone compound.
(11) The substrate with barrier ribs according to (9), wherein (A-1) the patterned barrier ribs contain a resin, a white pigment, and silver oxide and/or silver particles.
(12) The (A-1) patterned partition wall further contains a liquid-repellent compound, and the content of the liquid-repellent compound in the (A-1) patterned partition wall is 0.01% by weight to 10% by weight. % by weight, the substrate with partition walls according to any one of (9) to (11).
(13) Between the base substrate and (A-1) patterned barrier ribs, (A-2) patterned light shielding barrier ribs having an OD value of 0.5 or more per 1.0 μm of thickness are provided. The substrate with partition walls according to any one of (9) to (12), further comprising:
(14) The pixel layer according to any one of (9) to (13), further comprising (A-1) a pixel layer containing (B) a color-converting luminescent material arranged and separated by patterned partition walls. Substrate with partition.
(15) The substrate with partition walls according to (14), wherein the color-converting luminescent material contains a phosphor selected from quantum dots and pyrromethene derivatives.
(16) The substrate with partition walls according to (14) or (15), further comprising a color filter having a thickness of 1 to 5 μm between the base substrate and (B) the pixel layer containing the color-converting luminescent material.
(17) A display device comprising the substrate with partition walls according to any one of (9) to (16) and a light source selected from a liquid crystal cell, an organic EL cell, a mini-LED cell and a micro-LED cell.
本発明の樹脂組成物は、製膜後にパターン露光する工程時には露光光を通すが、露光した膜を100℃以上250℃以下の温度で加熱すると、膜中で還元剤によって有機銀化合物が還元されて効率的に黄色粒子が生成され、青色光の遮光性が向上するため、耐候性に優れ、可視光全体の高反射性と青色光の高遮光性を両立した微細厚膜隔壁パターンの形成が可能である。 The resin composition of the present invention allows exposure light to pass through during the process of pattern exposure after film formation, but when the exposed film is heated at a temperature of 100° C. or more and 250° C. or less, the organic silver compound is reduced by the reducing agent in the film. Since yellow particles are efficiently generated in the process and the blue light shielding property is improved, it is possible to form a fine thick film barrier rib pattern that is excellent in weather resistance and has both high reflectivity for all visible light and high light shielding property for blue light. It is possible.
以下、本発明に係る樹脂組成物、樹脂組成物から形成される遮光膜、および隔壁付き基板の好適な実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。 Preferred embodiments of the resin composition, the light-shielding film formed from the resin composition, and the substrate with partition walls according to the present invention will be specifically described below, but the present invention is limited to the following embodiments. Instead, it can be implemented with various changes depending on the purpose and application.
本発明の樹脂組成物は、色変換蛍光体や、有機ELセル、ミニLEDセル、マイクロLEDセルから選ばれた発光光源等を隔てる隔壁を形成するための材料として好適に用いることができる。本発明の樹脂組成物は、樹脂と、光重合開始剤またはキノンジアジド化合物と、白色顔料および/または遮光顔料と、有機銀化合物と、還元剤とを含有する。 INDUSTRIAL APPLICABILITY The resin composition of the present invention can be suitably used as a material for forming a color-converting phosphor, a partition wall separating light sources selected from organic EL cells, mini-LED cells, and micro-LED cells. The resin composition of the present invention contains a resin, a photopolymerization initiator or a quinonediazide compound, a white pigment and/or a light-shielding pigment, an organic silver compound, and a reducing agent.
樹脂は、隔壁のクラック耐性および耐光性を向上させる機能を有する。樹脂組成物の固形分中に占める樹脂の含有量は、熱処理における隔壁のクラック耐性を向上させる観点から、10重量%以上が好ましく、20重量%以上がより好ましい。一方、耐光性を向上させる観点から、樹脂組成物の固形分中に占める樹脂の含有量は、60重量%以下が好ましく、50重量%以下がより好ましい。ここで、固形分とは、樹脂組成物に含まれる成分のうち、溶媒等の揮発性の成分を除いた全成分のことを意味する。固形分の量は、樹脂組成物を加熱して揮発性の成分を蒸発させた残分を計ることにより求めることができる。 The resin has a function of improving crack resistance and light resistance of the partition walls. The content of the resin in the solid content of the resin composition is preferably 10% by weight or more, more preferably 20% by weight or more, from the viewpoint of improving the crack resistance of the partition walls during heat treatment. On the other hand, from the viewpoint of improving light resistance, the resin content in the solid content of the resin composition is preferably 60% by weight or less, more preferably 50% by weight or less. Here, the solid content means all the components excluding volatile components such as solvent among the components contained in the resin composition. The amount of solids can be determined by heating the resin composition to evaporate the volatile components and weighing the residue.
樹脂としては、例えば、ポリシロキサン、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、(メタ)アクリルポリマなどが挙げられる。ここで、(メタ)アクリルポリマとは、メタクリル酸エステルおよび/またはアクリル酸エステルの重合体を意味する。これらを2種以上含有してもよい。これらの中でも、耐熱性および耐光性に優れることから、ポリシロキサンが好ましい。 Examples of resins include polysiloxane, polyimide, polyimide precursors, polybenzoxazole, polybenzoxazole precursors, and (meth)acrylic polymers. Here, (meth)acrylic polymer means a polymer of methacrylic acid ester and/or acrylic acid ester. You may contain 2 or more types of these. Among these, polysiloxane is preferable because it is excellent in heat resistance and light resistance.
ポリシロキサンは、オルガノシランの加水分解・脱水縮合物である。本発明の樹脂組成物がネガ型感光性を有する場合、ポリシロキサンは、少なくとも下記一般式(4)で表される繰り返し単位を含むことが好ましい。さらに他の繰り返し単位を含んでもよい。一般式(4)で表される2官能アルコキシシラン化合物由来の繰り返し単位を含むことにより、加熱によるポリシロキサンの過剰な熱重合(縮合)を抑制し、隔壁のクラック耐性を向上させることができる。ポリシロキサンにおける全繰り返し単位中、一般式(4)で表される繰り返し単位を10~80モル%含有することが好ましい。一般式(4)で表される繰り返し単位を10モル%以上含むことにより、クラック耐性をより向上させることができる。一般式(4)で表される繰り返し単位の含有量は、15モル%以上がより好ましく、20モル%以上がさらに好ましい。一方、一般式(4)で表される繰り返し単位を80モル%以下含むことにより、重合時にポリシロキサンの分子量を十分に高め、塗布性を向上させることができる。一般式(4)で表される繰り返し単位の含有量は、70モル%以下がより好ましい。 Polysiloxane is a hydrolysis/dehydration condensate of organosilane. When the resin composition of the present invention has negative photosensitivity, the polysiloxane preferably contains at least a repeating unit represented by the following general formula (4). Further, other repeating units may be included. By including repeating units derived from the bifunctional alkoxysilane compound represented by the general formula (4), excessive thermal polymerization (condensation) of polysiloxane due to heating can be suppressed, and the crack resistance of the partition walls can be improved. It is preferable that the polysiloxane contains 10 to 80 mol % of repeating units represented by the general formula (4) in all repeating units. By including 10 mol % or more of the repeating unit represented by the general formula (4), the crack resistance can be further improved. The content of the repeating unit represented by formula (4) is more preferably 15 mol % or more, and even more preferably 20 mol % or more. On the other hand, by including 80 mol % or less of the repeating unit represented by the general formula (4), the molecular weight of the polysiloxane can be sufficiently increased during polymerization, and the coatability can be improved. The content of the repeating unit represented by formula (4) is more preferably 70 mol % or less.
上記一般式(4)中、R8およびR9は、それぞれ同じでも異なってもよく、炭素数1~20の1価の有機基を表す。R8およびR9は、重合時のポリシロキサンの分子量調整を容易にする観点から、炭素数1~6のアルキル基および炭素数6~12のアリール基から選ばれた基が好ましい。ただし、アルキル基およびアリール基は、その水素の少なくとも一部がラジカル重合性基により置換されていてもよい。この場合、ネガ型感光性樹脂組成物の硬化物中においては、ラジカル重合性基はラジカル重合されていてもよい。In general formula (4) above, R 8 and R 9 , which may be the same or different, each represent a monovalent organic group having 1 to 20 carbon atoms. R 8 and R 9 are preferably groups selected from an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms, from the viewpoint of facilitating adjustment of the molecular weight of polysiloxane during polymerization. However, in the alkyl group and the aryl group, at least part of the hydrogen atoms may be substituted with a radically polymerizable group. In this case, the radically polymerizable group may be radically polymerized in the cured product of the negative photosensitive resin composition.
ポリシロキサンは、さらに、下記一般式(5)で表される繰り返し単位を含むことが好ましい。一般式(5)で表される3官能アルコキシシラン化合物由来の繰り返し単位を含むことにより、製膜後にポリシロキサンの架橋密度が高くなり、膜の硬度と耐薬品性を向上させることができる。ポリシロキサンにおける全繰り返し単位中、一般式(5)で表される繰り返し単位を10~80モル%含有することが好ましい。一般式(5)で表される繰り返し単位の含有量は、15モル%以上がより好ましく、20モル%以上がさらに好ましい。一方、一般式(5)で表される繰り返し単位を80モル%以下含むことにより、加熱によるポリシロキサンの過剰な熱重合(縮合)を抑制し、隔壁のクラック耐性を向上させることができる。一般式(5)で表される繰り返し単位の含有量は、70モル%以下がより好ましい。 Polysiloxane preferably further contains a repeating unit represented by the following general formula (5). By containing the repeating unit derived from the trifunctional alkoxysilane compound represented by the general formula (5), the crosslink density of the polysiloxane increases after film formation, and the hardness and chemical resistance of the film can be improved. It is preferable that the polysiloxane contains 10 to 80 mol % of repeating units represented by the general formula (5) in all repeating units. The content of the repeating unit represented by formula (5) is more preferably 15 mol % or more, and even more preferably 20 mol % or more. On the other hand, by containing 80 mol % or less of the repeating unit represented by the general formula (5), excessive thermal polymerization (condensation) of polysiloxane due to heating can be suppressed, and the crack resistance of the partition walls can be improved. The content of the repeating unit represented by formula (5) is more preferably 70 mol % or less.
上記一般式(5)中、R10は炭素数1~20の1価の有機基を表す。R10は、重合時のポリシロキサンの分子量調整を容易にする観点から、炭素数1~6のアルキル基および炭素数6~12のアリール基から選ばれた基が好ましい。ただし、アルキル基およびアリール基は、その水素の少なくとも一部がラジカル重合性基により置換されていてもよい。この場合、ネガ型感光性樹脂組成物の硬化物中においては、ラジカル重合性基はラジカル重合されていてもよい。また、ポリシロキサン中に、異なるR10を有する一般式(5)で表される繰り返し単位を2種類以上含んでもよい。一般式(5)中、R10として、スチリル基を含有する繰り返し単位を含むことが好ましい。スチリル基を含有する3官能アルコキシシラン化合物由来の繰り返し単位を含むことにより、100~120℃程度の低温加熱条件においても、製膜後にポリシロキサンの架橋密度が高くなり、膜の硬度と耐薬品性を向上させることができる。In general formula (5) above, R 10 represents a monovalent organic group having 1 to 20 carbon atoms. R 10 is preferably a group selected from an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms, from the viewpoint of facilitating adjustment of the molecular weight of polysiloxane during polymerization. However, in the alkyl group and the aryl group, at least part of the hydrogen atoms may be substituted with a radically polymerizable group. In this case, the radically polymerizable group may be radically polymerized in the cured product of the negative photosensitive resin composition. Moreover, two or more kinds of repeating units represented by the general formula (5) having different R 10 may be included in the polysiloxane. In general formula (5), R 10 preferably contains a repeating unit containing a styryl group. By including a repeating unit derived from a trifunctional alkoxysilane compound containing a styryl group, even under low temperature heating conditions of about 100 to 120 ° C., the crosslink density of the polysiloxane increases after film formation, resulting in film hardness and chemical resistance. can be improved.
上記一般式(4)および(5)で表される繰り返し単位は、それぞれ下記一般式(6)および(7)で表されるアルコキシシラン化合物に由来する。すなわち、前記一般式(4)および(5)で表される繰り返し単位を含むポリシロキサンは、下記一般式(6)および(7)で表されるアルコキシシラン化合物を含むアルコキシシラン化合物を加水分解および重縮合することによって得ることができる。さらに他のアルコキシシラン化合物を用いてもよい。なお、一般式(6)および(7)中、「―(OR11)2」及び「―(OR11)3」なる表記は、Si原子に「―(OR11)」がそれぞれ2個及び3個結合していることを意味する。The repeating units represented by the general formulas (4) and (5) are derived from alkoxysilane compounds represented by the following general formulas (6) and (7), respectively. That is, polysiloxanes containing repeating units represented by the general formulas (4) and (5) are hydrolyzed and alkoxysilane compounds containing alkoxysilane compounds represented by the following general formulas (6) and (7). It can be obtained by polycondensation. Other alkoxysilane compounds may also be used. In the general formulas (6) and (7), the notations "-(OR 11 ) 2 " and "-(OR 11 ) 3 " mean that the Si atom has two "-(OR 11 )" and three It means that they are individually connected.
上記一般式(6)および(7)中、R8~R10は、それぞれ一般式(4)および(5)における、R8~R10と同じ基を表す。R11は、同じでも異なってもよく、炭素数1~20の1価の有機基を表し、炭素数1~6のアルキル基が好ましい。In general formulas (6) and (7) above, R 8 to R 10 represent the same groups as R 8 to R 10 in general formulas (4) and (5), respectively. R 11 , which may be the same or different, represents a monovalent organic group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
一般式(6)で表されるアルコキシシラン化合物としては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、エチルメチルジメトキシシラン、エチルメチルジエトキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、スチリルメチルジメトキシシラン、スチリルメチルジエトキシシラン、γ-メタクリロイルプロピルメチルジメトキシシラン、γ-メタクリロイルプロピルメチルジエトキシシラン、γ-アクリロイルプロピルメチルジメトキシシラン、γ-アクリロイルプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルエチルジメトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、3-ジメチルメトキシシリルプロピルコハク酸無水物、3-ジメチルエトキシシリルプロピルコハク酸無水物、3-ジメチルメトキシシリルプロピオン酸、3-ジメチルエトキシシリルプロピオン酸、3-ジメチルメトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-ジメチルエトキシシリルプロピルシクロヘキシルジカルボン酸無水物、ビス(トリフルオロメチル)ジメトキシシラン、ビス(トリフルオロプロピル)ジメトキシシラン、ビス(トリフルオロプロピル)ジエトキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリフルオロプロピルエチルジエトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン等が挙げられる。これらを2種以上用いてもよい。 Examples of the alkoxysilane compound represented by the general formula (6) include dimethyldimethoxysilane, dimethyldiethoxysilane, ethylmethyldimethoxysilane, ethylmethyldiethoxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, diphenyldimethoxysilane. Silane, diphenyldiethoxysilane, styrylmethyldimethoxysilane, styrylmethyldiethoxysilane, γ-methacryloylpropylmethyldimethoxysilane, γ-methacryloylpropylmethyldiethoxysilane, γ-acryloylpropylmethyldimethoxysilane, γ-acryloylpropylmethyldiethoxy Silane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-(3,4-epoxycyclohexyl)ethylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethylethyl Dimethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, 3-dimethylmethoxysilylpropylsuccinic anhydride, 3-dimethylethoxysilylpropylsuccinic anhydride, 3-dimethylmethoxysilylpropionic acid, 3-dimethylethoxysilylpropion acid, 3-dimethylmethoxysilylpropylcyclohexyldicarboxylic anhydride, 3-dimethylethoxysilylpropylcyclohexyldicarboxylic anhydride, bis(trifluoromethyl)dimethoxysilane, bis(trifluoropropyl)dimethoxysilane, bis(trifluoropropyl) diethoxysilane, trifluoropropylmethyldimethoxysilane, trifluoropropylmethyldiethoxysilane, trifluoropropylethyldimethoxysilane, trifluoropropylethyldiethoxysilane, heptadecafluorodecylmethyldimethoxysilane and the like. You may use 2 or more types of these.
一般式(7)で表されるアルコキシシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシランなどの3官能アルコキシシラン化合物;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-エチル-3-{[3-(トリメトキシシリル)プロポキシ]メチル}オキセタン、3-エチル-3-{[3-(トリエトキシシリル)プロポキシ]メチル}オキセタンなどのエポキシ基またはオキセタン基含有アルコキシシラン化合物:フェニルトリメトキシシラン、フェニルトリエトキシシラン、1-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、トリルトリメトキシシラン、トリルトリエトキシシラン、1-フェニルエチルトリメトキシシラン、1-フェニルエチルトリエトキシシラン、2-フェニルエチルトリメトキシシラン、2-フェニルエチルトリエトキシシラン、3-トリメトキシシリルプロピルフタル酸無水物、3-トリエトキシシリルプロピルフタル酸無水物などの芳香環含有アルコキシシラン化合物;スチリルトリメトキシシラン、スチリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、γ-アクリロイルプロピルトリメトキシシラン、γ-アクリロイルプロピルトリエトキシシラン、γ-メタクリロイルプロピルトリメトキシシラン、γ-メタクリロイルプロピルトリエトキシシランなどのラジカル重合性基含有アルコキシシラン化合物;3-トリメトキシシリルプロピオン酸、3-トリエトキシシリルプロピオン酸、4-トリメトキシシリル酪酸、4-トリエトキシシリル酪酸、5-トリメトキシシリル吉草酸、5-トリエトキシシリル吉草酸、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-トリメトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリエトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリメトキシシリルプロピルフタル酸無水物、3-トリエトキシシリルプロピルフタル酸無水物などのカルボキシル基含有アルコキシシラン化合物;トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、パーフルオロペンチルトリメトキシシラン、パーフルオロペンチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリプロポキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシランなどのフッ素基含有アルコキシシラン化合物等が挙げられる。これらを2種以上用いてもよい。 Examples of alkoxysilane compounds represented by general formula (7) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltrimethoxysilane, silane, isobutyltriethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3 - trifunctional alkoxysilane compounds such as ureidopropyltrimethoxysilane and 3-ureidopropyltriethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2-(3,4-epoxy cyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 3-ethyl-3-{[3-(trimethoxysilyl)propoxy]methyl}oxetane, 3-ethyl-3-{ Epoxy or oxetane group-containing alkoxysilane compounds such as [3-(triethoxysilyl)propoxy]methyl}oxetane: phenyltrimethoxysilane, phenyltriethoxysilane, 1-naphthyltrimethoxysilane, 2-naphthyltrimethoxysilane, 2 -naphthyltrimethoxysilane, 2-naphthyltrimethoxysilane, tolyltrimethoxysilane, tolyltriethoxysilane, 1-phenylethyltrimethoxysilane, 1-phenylethyltriethoxysilane, 2-phenylethyltrimethoxysilane, 2-phenyl aromatic ring-containing alkoxysilane compounds such as ethyltriethoxysilane, 3-trimethoxysilylpropylphthalic anhydride, 3-triethoxysilylpropylphthalic anhydride; styryltrimethoxysilane, styryltriethoxysilane, vinyltrimethoxysilane, Radical polymerization of vinyltriethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, γ-acryloylpropyltrimethoxysilane, γ-acryloylpropyltriethoxysilane, γ-methacryloylpropyltrimethoxysilane, γ-methacryloylpropyltriethoxysilane, etc. Alkoxysilane compound containing a functional group; 3-trimethoxysilylpropio acid, 3-triethoxysilylpropionic acid, 4-trimethoxysilylbutyric acid, 4-triethoxysilylbutyric acid, 5-trimethoxysilylvaleric acid, 5-triethoxysilylvaleric acid, 3-trimethoxysilylpropylsuccinic anhydride 3-triethoxysilylpropyl succinic anhydride, 3-trimethoxysilylpropyl cyclohexyldicarboxylic anhydride, 3-triethoxysilylpropyl cyclohexyldicarboxylic anhydride, 3-trimethoxysilylpropyl phthalic anhydride, 3 - Carboxyl group-containing alkoxysilane compounds such as triethoxysilylpropyl phthalic anhydride; trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, perfluoropentyltrimethoxysilane, perfluoropentyltriethoxysilane, tridecafluorooctyl fluorine group-containing alkoxy such as trimethoxysilane, tridecafluorooctyltriethoxysilane, tridecafluorooctyltripropoxysilane, tridecafluorooctyltriisopropoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane; Examples include silane compounds. You may use 2 or more types of these.
本発明の樹脂組成物がネガ型感光性を有する場合、一般式(6)および/または(7)で表されるアルコキシシラン化合物として、少なくとも1種のラジカル重合性基含有アルコキシシラン化合物を含有することが好ましい。ラジカル重合性基含有アルコキシシラン化合物を含有することで、露光部で発生したラジカルで架橋反応が進行し、露光部の硬化度を高めることができる。また、本発明の樹脂組成物がネガ型感光性を有する場合、一般式(6)および/または(7)で表されるアルコキシシラン化合物として、少なくとも1種のカルボキシル基含有アルコキシシラン化合物を含有することが好ましい。カルボキシル基含有アルコキシシラン化合物を含有することで、未露光部の溶解性が向上し、パターン加工時に解像度を向上させることができる。 When the resin composition of the present invention has negative photosensitivity, it contains at least one radically polymerizable group-containing alkoxysilane compound as the alkoxysilane compound represented by general formulas (6) and/or (7). is preferred. By containing the radically polymerizable group-containing alkoxysilane compound, a crosslinking reaction proceeds with the radicals generated in the exposed area, and the degree of curing of the exposed area can be increased. When the resin composition of the present invention has negative photosensitivity, it contains at least one carboxyl group-containing alkoxysilane compound as the alkoxysilane compound represented by the general formulas (6) and/or (7). is preferred. Containing a carboxyl group-containing alkoxysilane compound improves the solubility of the unexposed area, and can improve the resolution during pattern processing.
その他のアルコキシシラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、シリケート51(テトラエトキシシランオリゴマー)などの4官能アルコキシシラン化合物;トリメチルメトキシシラン、トリフェニルメトキシシランなどの単官能アルコキシシラン化合物等が挙げられる。これらを2種以上用いてもよい。 Other alkoxysilane compounds include, for example, tetrafunctional alkoxysilane compounds such as tetramethoxysilane, tetraethoxysilane, and silicate 51 (tetraethoxysilane oligomer); monofunctional alkoxysilane compounds such as trimethylmethoxysilane and triphenylmethoxysilane; are mentioned. You may use 2 or more types of these.
ポリシロキサンの原料となるアルコキシシラン化合物中における、一般式(6)で表されるアルコキシシラン化合物の含有量は、ポリシロキサンの全繰り返し単位中の一般式(4)で表される繰り返し単位の含有量を前述の範囲にする観点から、10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましい。一方、一般式(7)で表されるアルコキシシラン化合物の含有量は、同様の観点から、80モル%以下が好ましく、70モル%以下がより好ましい。 The content of the alkoxysilane compound represented by the general formula (6) in the alkoxysilane compound that is the raw material of the polysiloxane is the content of the repeating unit represented by the general formula (4) in all the repeating units of the polysiloxane. From the viewpoint of setting the amount within the above range, it is preferably 10 mol % or more, more preferably 15 mol % or more, and even more preferably 20 mol % or more. On the other hand, the content of the alkoxysilane compound represented by general formula (7) is preferably 80 mol % or less, more preferably 70 mol % or less, from the same viewpoint.
ポリシロキサンの重量平均分子量(Mw)は、塗布性の観点から、1,000以上が好ましく、2,000以上がより好ましい。一方、現像性の観点から、ポリシロキサンのMwは、500,000以下が好ましく、300,000以下がより好ましい。ここで、本発明におけるポリシロキサンのMwとは、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算値を言う。測定方法は、後述の実施例で記載の通りである。 From the viewpoint of coatability, the weight average molecular weight (Mw) of polysiloxane is preferably 1,000 or more, more preferably 2,000 or more. On the other hand, from the viewpoint of developability, Mw of polysiloxane is preferably 500,000 or less, more preferably 300,000 or less. Here, the Mw of polysiloxane in the present invention refers to a polystyrene conversion value measured by gel permeation chromatography (GPC). The measuring method is as described in Examples below.
ポリシロキサンは、前述のオルガノシラン化合物を加水分解した後、該加水分解物を溶媒の存在下または無溶媒で脱水縮合反応させることによって得ることができる。 Polysiloxane can be obtained by hydrolyzing the aforementioned organosilane compound and then subjecting the hydrolyzate to a dehydration condensation reaction in the presence or absence of a solvent.
加水分解における各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して、目的とする用途に適した物性に合わせて設定することができる。各種条件としては、例えば、酸濃度、反応温度、反応時間などが挙げられる。 Various conditions for hydrolysis can be set according to physical properties suitable for the intended use, taking into consideration the reaction scale, the size and shape of the reaction vessel, and the like. Various conditions include, for example, acid concentration, reaction temperature, and reaction time.
加水分解反応には、塩酸、酢酸、蟻酸、硝酸、蓚酸、塩酸、硫酸、リン酸、ポリリン酸、多価カルボン酸やその無水物、イオン交換樹脂などの酸触媒を用いることができる。これらの中でも、蟻酸、酢酸およびリン酸から選ばれた酸を含む酸性水溶液が好ましい。 Acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acids and their anhydrides, and ion exchange resins can be used for the hydrolysis reaction. Among these, an acidic aqueous solution containing an acid selected from formic acid, acetic acid and phosphoric acid is preferred.
加水分解反応に酸触媒を用いる場合、酸触媒の添加量は、加水分解をより速やかに進行させる観点から、加水分解反応に使用される全アルコキシシラン化合物100重量部に対して、0.05重量部以上が好ましく、0.1重量部以上がより好ましい。一方、加水分解反応の進行を適度に調整する観点から、酸触媒の添加量は、全アルコキシシラン化合物100重量部に対して、20重量部以下が好ましく、10重量部以下がより好ましい。ここで、全アルコキシシラン化合物量とは、アルコキシシラン化合物、その加水分解物およびその縮合物の全てを含む量のことを言う。以下同じとする。 When an acid catalyst is used for the hydrolysis reaction, the amount of the acid catalyst added is 0.05 parts by weight with respect to 100 parts by weight of all the alkoxysilane compounds used in the hydrolysis reaction, from the viewpoint of making the hydrolysis proceed more rapidly. part or more is preferable, and 0.1 part by weight or more is more preferable. On the other hand, from the viewpoint of appropriately adjusting the progress of the hydrolysis reaction, the amount of the acid catalyst to be added is preferably 20 parts by weight or less, more preferably 10 parts by weight or less with respect to 100 parts by weight of all the alkoxysilane compounds. Here, the total amount of alkoxysilane compound means the amount including all of the alkoxysilane compound, its hydrolyzate and its condensate. The same shall apply hereinafter.
加水分解反応は、溶媒中で行うことができる。溶媒は、樹脂組成物の安定性、濡れ性、揮発性などを考慮して、適宜選択することができる。 A hydrolysis reaction can be performed in a solvent. The solvent can be appropriately selected in consideration of the stability, wettability, volatility, etc. of the resin composition.
加水分解反応によって溶媒が生成する場合には、無溶媒で加水分解を行うことも可能である。樹脂組成物に用いる場合には、加水分解反応終了後に、さらに溶媒を添加することにより、樹脂組成物を適切な濃度に調整することも好ましい。また、加水分解後に加熱および/または減圧下により生成アルコール等の全量あるいは一部を留出、除去し、その後好適な溶媒を添加することも可能である。 When a solvent is generated by the hydrolysis reaction, hydrolysis can be performed without a solvent. When used in a resin composition, it is also preferable to adjust the resin composition to an appropriate concentration by further adding a solvent after the hydrolysis reaction is completed. It is also possible to distill off and remove all or part of the alcohol produced by heating and/or under reduced pressure after hydrolysis, and then add a suitable solvent.
脱水縮合反応の方法としては、例えば、オルガノシラン化合物の加水分解反応により得られたシラノール化合物溶液をそのまま加熱する方法などが挙げられる。加熱温度は、50℃以上、溶媒の沸点以下が好ましく、加熱時間は、1~100時間が好ましい。また、ポリシロキサンの重合度を高めるために、再加熱または塩基触媒の添加を行ってもよい。また、目的に応じて、脱水縮合反応後に、生成アルコールなどの適量を加熱および/または減圧下にて留出、除去し、その後好適な溶媒を添加してもよい。 Examples of the dehydration-condensation reaction method include a method of directly heating a silanol compound solution obtained by a hydrolysis reaction of an organosilane compound. The heating temperature is preferably 50° C. or higher and the boiling point of the solvent or lower, and the heating time is preferably 1 to 100 hours. Further, reheating or addition of a base catalyst may be performed in order to increase the degree of polymerization of polysiloxane. Depending on the purpose, after the dehydration condensation reaction, an appropriate amount of the alcohol produced may be distilled off under heating and/or under reduced pressure, and then a suitable solvent may be added.
本発明の樹脂組成物は、後述の隔壁(A-1)のパターン形成に用いられる場合、ネガ型またはポジ型の感光性を有することが好ましい。ネガ型感光性を付与する場合は、光重合開始剤を含有することが好ましく、高精細なパターン形状の隔壁を形成することができる。ネガ型感光性樹脂組成物は、さらに、光重合性化合物を含有することが好ましい。一方、ポジ型感光性を付与する場合はキノンジアジド化合物を含有することが好ましい。 The resin composition of the present invention preferably has negative or positive photosensitivity when used for pattern formation of partition walls (A-1) described below. When imparting negative photosensitivity, it is preferable to contain a photopolymerization initiator, and partition walls having a highly precise pattern can be formed. The negative photosensitive resin composition preferably further contains a photopolymerizable compound. On the other hand, when imparting positive photosensitivity, it is preferable to contain a quinonediazide compound.
光重合開始剤は、光(紫外線、電子線を含む)の照射によって分解および/または反応し、ラジカルを発生させるものであればどのようなものでもよい。例えば、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1などのα-アミノアルキルフェノン化合物;2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-フォスフィンオキサイドなどのアシルホスフィンオキサイド化合物;1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)などのオキシムエステル化合物;2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトンなどのα-ヒドロキシケトン化合物;2,2-ジエトキシアセトフェノン、2,3-ジエトキシアセトフェノン、4-t-ブチルジクロロアセトフェノン、ベンザルアセトフェノン、4-アジドベンザルアセトフェノンなどのアセトフェノン化合物などが挙げられる。これらを2種以上含有してもよい。 Any photopolymerization initiator can be used as long as it decomposes and/or reacts with irradiation of light (including ultraviolet rays and electron beams) to generate radicals. For example, 2-methyl-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholin-4-yl α-Aminoalkylphenone compounds such as -phenyl)-butan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1; 2,4,6-trimethylbenzoylphenyl Acylphosphine oxide compounds such as phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)-phosphine oxide ; 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)oxime, 1,2-octanedione-1-[4-(phenylthio)-2-(O-benzoyloxime)], 1- Phenyl-1,2-butadione-2-(O-methoxycarbonyl)oxime, 1,3-diphenylpropanetrione-2-(O-ethoxycarbonyl)oxime, ethanone-1-[9-ethyl-6-(2- oxime ester compounds such as methylbenzoyl)-9H-carbazol-3-yl]-1-(O-acetyloxime); 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropyl α-hydroxyketones such as phenyl)-2-hydroxy-2-methylpropan-1-one, 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone, 1-hydroxycyclohexyl-phenylketone Compound; Acetophenone compounds such as 2,2-diethoxyacetophenone, 2,3-diethoxyacetophenone, 4-t-butyldichloroacetophenone, benzalacetophenone, 4-azidobenzalacetophenone, and the like. You may contain 2 or more types of these.
本発明の樹脂組成物中における光重合開始剤の含有量は、ラジカル硬化を効果的に進める観点から、固形分中、0.01重量%以上が好ましく、1重量%以上がより好ましい。一方、残留した光重合開始剤の溶出等を抑制させる観点から、光重合開始剤の含有量は、固形分中、20重量%以下が好ましく、10重量%以下がより好ましい。 From the viewpoint of effectively promoting radical curing, the content of the photopolymerization initiator in the resin composition of the present invention is preferably 0.01% by weight or more, more preferably 1% by weight or more, based on the solid content. On the other hand, the content of the photopolymerization initiator is preferably 20% by weight or less, more preferably 10% by weight or less, based on the solid content, from the viewpoint of suppressing elution of the remaining photopolymerization initiator.
本発明における光重合性化合物とは、分子中に2つ以上のエチレン性不飽和二重結合を有する化合物をいう。ラジカル重合性のしやすさを考えると、光重合性化合物は、(メタ)アクリル基を有することが好ましい。 The photopolymerizable compound in the present invention refers to a compound having two or more ethylenically unsaturated double bonds in its molecule. Considering the easiness of radical polymerization, the photopolymerizable compound preferably has a (meth)acrylic group.
光重合性化合物としては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート、ペンタペンタエリスリトールウンデカアクリレート、ペンタペンタエリスリトールドデカアクリレート、トリペンタエリスリトールヘプタメタクリレート、トリペンタエリスリトールオクタメタクリレート、テトラペンタエリスリトールノナメタクリレート、テトラペンタエリスリトールデカメタクリレート、ペンタペンタエリスリトールウンデカメタクリレート、ペンタペンタエリスリトールドデカメタクリレート、ジメチロール-トリシクロデカンジアクリレートなどが挙げられる。これらを2種以上含有してもよい。 Examples of photopolymerizable compounds include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, and trimethylolpropane. triacrylate, trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, neopentyl glycol diacrylate, 1,4-butanediol diacrylate, 1, 4-butanediol dimethacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, pentaerythritol triacrylate, pentaerythritol tetra Acrylates, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tripentaerythritol heptaacrylate, tripentaerythritol octaacrylate, tetrapentaerythritol nonaacrylate, tetrapentaerythritol decaacrylate, pentapenta Erythritol undecaacrylate, pentapentaerythritol dodecaacrylate, tripentaerythritol heptamethacrylate, tripentaerythritol octamethacrylate, tetrapentaerythritol nona methacrylate, tetrapentaerythritol decamethacrylate, pentapentaerythritol undecamethacrylate, pentapentaerythritol dodecamethacrylate, dimethylol- and tricyclodecane diacrylate. You may contain 2 or more types of these.
本発明の樹脂組成物中における光重合性化合物の含有量は、ラジカル硬化を効果的に進める観点から、固形分中、1重量%以上が好ましい。一方、ラジカルの過剰反応を抑制し解像度を向上させる観点から、光重合性化合物の含有量は、固形分中、50重量%以下が好ましい。 From the viewpoint of effectively promoting radical curing, the content of the photopolymerizable compound in the resin composition of the present invention is preferably 1% by weight or more based on the solid content. On the other hand, from the viewpoint of suppressing excessive reaction of radicals and improving resolution, the content of the photopolymerizable compound is preferably 50% by weight or less in the solid content.
キノンジアジド化合物としては、フェノール性水酸基を有する化合物にナフトキノンジアジドのスルホン酸がエステルで結合した化合物が好ましい。ここで用いられるフェノール性水酸基を有する化合物としては、例えば、BIs-Z、TekP-4HBPA(テトラキスP-DO-BPA)、TrIsP-HAP、TrIsP-PA、BIsRS-2P、BIsRS-3P(以上、商品名、本州化学工業(株)製)、BIR-PC、BIR-PTBP、BIR-BIPC-F(以上、商品名、旭有機材工業(株)製)、4,4’-スルホニルジフェノール、BPFL(商品名、JFEケミカル(株)製)などが挙げられる。キノンジアジド化合物としては、これらフェノール性水酸基を有する化合物に、4-ナフトキノンジアジドスルホン酸または5-ナフトキノンジアジドスルホン酸をエステル結合で導入したものが好ましく、例えば、THP-17、TDF-517(商品名、東洋合成工業(株)製)、SBF-525(商品名、AZエレクトロニックマテリアルズ(株)製)などが挙げられる。 As the quinonediazide compound, a compound in which a sulfonic acid of naphthoquinonediazide is bonded to a compound having a phenolic hydroxyl group via an ester is preferable. Compounds having a phenolic hydroxyl group used here include, for example, BIs-Z, TekP-4HBPA (tetrakis P-DO-BPA), TrIsP-HAP, TrIsP-PA, BIsRS-2P, BIsRS-3P (the above, commercial products name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-PC, BIR-PTBP, BIR-BIPC-F (trade names, manufactured by Asahi Organic Chemicals Industry Co., Ltd.), 4,4'-sulfonyldiphenol, BPFL (trade name, manufactured by JFE Chemical Co., Ltd.). As the quinonediazide compound, those obtained by introducing 4-naphthoquinonediazide sulfonic acid or 5-naphthoquinonediazide sulfonic acid into these compounds having a phenolic hydroxyl group via an ester bond are preferable. manufactured by Toyo Gosei Co., Ltd.), SBF-525 (trade name, manufactured by AZ Electronic Materials Co., Ltd.), and the like.
本発明の樹脂組成物中におけるキノンジアジド化合物の含有量は、感度を向上させる観点から、固形分中、0.5重量%以上が好ましく、1重量%以上がより好ましい。一方、キノンジアジド化合物の含有量は、解像度を向上させる観点から、固形分中、25重量%以下が好ましく、20重量%以下がより好ましい。 From the viewpoint of improving sensitivity, the content of the quinonediazide compound in the resin composition of the present invention is preferably 0.5% by weight or more, more preferably 1% by weight or more, based on the solid content. On the other hand, the content of the quinonediazide compound is preferably 25% by weight or less, more preferably 20% by weight or less, based on the solid content, from the viewpoint of improving resolution.
本発明の樹脂組成物は、さらに、白色顔料および/または遮光顔料を含有することが好ましい。白色顔料は、隔壁の反射率をより向上させる機能を有する。遮光顔料は、隔壁の特定の波長の光の遮光性をより向上させる機能を有する。 The resin composition of the present invention preferably further contains a white pigment and/or a light-shielding pigment. A white pigment has a function of further improving the reflectance of the partition wall. The light-shielding pigment has a function of further improving the light-shielding property of the partition wall against light of a specific wavelength.
顔料として、樹脂組成物中に白色顔料のみを含有する場合と、白色顔料および遮光顔料を同時に含む場合は、高反射性と高遮光性を両立した隔壁を得ることができる。一方、顔料として、樹脂組成物中に遮光顔料のみを含有する場合、特定の波長に対して高い遮光性を有する隔壁を得ることができる。 When only a white pigment is contained in the resin composition as the pigment, or when both the white pigment and the light-shielding pigment are contained in the resin composition, partition walls having both high reflectivity and high light-shielding property can be obtained. On the other hand, when only a light-shielding pigment is contained in the resin composition as the pigment, partition walls having high light-shielding properties for a specific wavelength can be obtained.
白色顔料としては、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、硫酸バリウム、これらの複合化合物などが挙げられる。これらを2種以上含有してもよい。これらの中でも、反射率が高く工業的利用が容易な二酸化チタンが好ましい。 Examples of white pigments include titanium dioxide, zirconium oxide, zinc oxide, barium sulfate, and composite compounds thereof. You may contain 2 or more types of these. Among these, titanium dioxide is preferable because of its high reflectance and easy industrial use.
二酸化チタンの結晶構造は、アナターゼ型、ルチル型およびブルッカイト型に分類される。これらの中でも、光触媒活性が低いことから、ルチル型酸化チタンが好ましい。 The crystal structure of titanium dioxide is classified into anatase, rutile and brookite types. Among these, rutile-type titanium oxide is preferable because of its low photocatalytic activity.
白色顔料には、表面処理が施されていてもよい。Al、SiおよびZrから選ばれた金属による表面処理が好ましく、形成した隔壁の耐光性および耐熱性を向上させることができる。 The white pigment may be surface-treated. Surface treatment with a metal selected from Al, Si and Zr is preferable, and the light resistance and heat resistance of the formed partition walls can be improved.
白色顔料の平均一次粒子径は、隔壁の反射率をより向上させる観点から、100~500nmが好ましく、150nm~350nmがより好ましい。ここで、白色顔料の平均一次粒子径は、粒度分布測定装置(N4-PLUS;ベックマン・コールター(株)製)などを用いてレーザー回折法により測定することができる。 The average primary particle size of the white pigment is preferably from 100 to 500 nm, more preferably from 150 nm to 350 nm, from the viewpoint of further improving the reflectance of the partition walls. Here, the average primary particle size of the white pigment can be measured by a laser diffraction method using a particle size distribution analyzer (N4-PLUS; manufactured by Beckman Coulter, Inc.).
白色顔料として好ましく用いられる二酸化チタン顔料としては、例えば、R960;デュポン(株)製(ルチル型、SiO2/Al2O3処理、平均一次粒子径210nm)、CR-97;石原産業(株)製(ルチル型、Al2O3/ZrO2処理、平均一次粒子径250nm)、JR-301;テイカ(株)製(ルチル型、Al2O3処理、平均一次粒子径300nm)、JR-405;テイカ(株)製(ルチル型、Al2O3処理、平均一次粒子径210nm)、JR-600A;テイカ(株)(ルチル型、Al2O3処理、平均一次粒子径250nm)、JR-603;テイカ(株)(ルチル型、Al2O3/ZrO2処理、平均一次粒子径280nm)等が挙げられる。これらを2種以上含有してもよい。Titanium dioxide pigments preferably used as white pigments include, for example, R960 manufactured by DuPont (rutile type, SiO 2 /Al 2 O 3 treatment, average primary particle size 210 nm), CR-97 manufactured by Ishihara Sangyo Co., Ltd. (rutile type, Al 2 O 3 /ZrO 2 treatment, average primary particle size 250 nm), JR-301; Teika Co., Ltd. (rutile type, Al 2 O 3 treatment, average primary particle size 300 nm), JR-405 Tayca Co., Ltd. (rutile type, Al 2 O 3 treatment, average primary particle size 210 nm), JR-600A; Tayca Co., Ltd. (rutile type, Al 2 O 3 treatment, average primary particle size 250 nm), JR- 603; Teika Co., Ltd. (rutile type, Al 2 O 3 /ZrO 2 treatment, average primary particle size 280 nm), and the like. You may contain 2 or more types of these.
樹脂組成物における白色顔料の含有量は、反射率をより向上させる観点から、固形分中の10重量%以上が好ましく、15重量%以上がより好ましい。一方、隔壁の表面平滑性を向上させる観点から、白色顔料の含有量は、固形分中の60重量%以下が好ましく、55重量%以下がより好ましい。 From the viewpoint of further improving the reflectance, the content of the white pigment in the resin composition is preferably 10% by weight or more, more preferably 15% by weight or more, based on the solid content. On the other hand, from the viewpoint of improving the surface smoothness of the partition walls, the content of the white pigment is preferably 60% by weight or less, more preferably 55% by weight or less in the solid content.
遮光顔料は、波長の光の遮光性を向上するものであればどのようなものでもよいが、例えば、赤色顔料、青色顔料、黒色顔料、緑色顔料、黄色顔料等が挙げられる。 Any light-shielding pigment can be used as long as it improves the light-shielding property of light of a wavelength, and examples thereof include red pigments, blue pigments, black pigments, green pigments, yellow pigments, and the like.
赤色顔料としては、例えば、ピグメントレッド(以下PRと略す)9、PR177、PR179、PR180、PR192、PR209、PR215、PR216、PR217、PR220、PR223、PR224、PR226、PR227、PR228、PR240、PR254などが挙げられる。これらを2種以上含有してもよい。 Examples of red pigments include Pigment Red (hereinafter abbreviated as PR) 9, PR177, PR179, PR180, PR192, PR209, PR215, PR216, PR217, PR220, PR223, PR224, PR226, PR227, PR228, PR240, and PR254. mentioned. You may contain 2 or more types of these.
青色顔料としては、例えば、ピグメントブルー(以下PBと略す)15、PB15:3、PB15:4、PB15:6などが挙げられる。これらを2種以上含有してもよい。 Examples of blue pigments include Pigment Blue (hereinafter abbreviated as PB) 15, PB15:3, PB15:4 and PB15:6. You may contain 2 or more types of these.
黒色顔料としては、例えば、黒色有機顔料、混色有機顔料、黒色無機顔料等が挙げられる。 Examples of black pigments include black organic pigments, mixed-color organic pigments, and black inorganic pigments.
黒色有機顔料としては、例えば、カーボンブラック、ペリレンブラック、アニリンブラック、ベンゾフラノン系顔料などが挙げられる。これらは、樹脂で被覆されていてもよい。 Examples of black organic pigments include carbon black, perylene black, aniline black, and benzofuranone pigments. These may be coated with a resin.
混色有機顔料としては、例えば、赤、青、緑、紫、黄色、マゼンダおよびシアン等から選ばれた2種以上の顔料を混合して疑似黒色化したものが挙げられる。これらの中でも、適度に高いOD値とパターン加工性を両立する観点から、赤色顔料と青色顔料との混合顔料が好ましい。混合顔料における赤色顔料と青色顔料の重量比は、20/80~80/20が好ましく、30/70~70/30がより好ましい。 Mixed organic pigments include, for example, pseudo-black pigments obtained by mixing two or more pigments selected from red, blue, green, purple, yellow, magenta, cyan, and the like. Among these, a mixed pigment of a red pigment and a blue pigment is preferable from the viewpoint of achieving both a moderately high OD value and pattern workability. The weight ratio of the red pigment and the blue pigment in the mixed pigment is preferably 20/80 to 80/20, more preferably 30/70 to 70/30.
黒色無機顔料としては、例えば、グラファイト;チタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、ジルコニウム、亜鉛、カルシウム、銀、金、白金、パラジウム等の金属の微粒子;金属酸化物;金属複合酸化物;金属硫化物;金属窒化物;金属酸窒化物;金属炭化物などが挙げられる。これらを2種以上含有してもよい。 Black inorganic pigments include, for example, graphite; fine particles of metals such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zirconium, zinc, calcium, silver, gold, platinum, and palladium; metal oxides; metal sulfides; metal nitrides; metal oxynitrides; and metal carbides. You may contain 2 or more types of these.
緑色顔料としては、例えば、C.I.ピグメントグリーン(以下PGと略す)7、PG36、PG58、PG37、PG59などが挙げられる。これらを2種以上含有してもよい。 Examples of green pigments include C.I. I. Pigment Green (hereinafter abbreviated as PG) 7, PG36, PG58, PG37, PG59 and the like. You may contain 2 or more types of these.
黄色顔料としては、例えば、ピグメントイエロー(以下PYと略す)PY137、PY138、PY139、PY147、PY148、PY150、PY153、PY154、PY166、PY168、PY185などが挙げられる。これらを2種以上含有してもよい。 Examples of yellow pigments include pigment yellow (hereinafter abbreviated as PY) PY137, PY138, PY139, PY147, PY148, PY150, PY153, PY154, PY166, PY168 and PY185. You may contain 2 or more types of these.
樹脂組成物の固形分中に占める遮光顔料の含有量は、特定の波長の光の遮光性を向上する観点から、固形分中の0.005重量%以上が好ましく、0.05重量%以上がより好ましい。一方、パターン加工性の観点から、30重量%以下が好ましく、15重量%以下がより好ましい。遮光顔料の平均一次粒子径は、隔壁の遮光性とパターン加工性を両立する観点から、1~300nmが好ましく、2nm~50nmがより好ましい。ここで、遮光顔料の平均一次粒子径は、粒度分布測定装置(N4-PLUS;ベックマン・コールター(株)製)などを用いてレーザー回折法により測定することができる。 The content of the light-shielding pigment in the solid content of the resin composition is preferably 0.005% by weight or more, more preferably 0.05% by weight or more, based on the solid content, from the viewpoint of improving the light-shielding property of light of a specific wavelength. more preferred. On the other hand, from the viewpoint of pattern workability, it is preferably 30% by weight or less, more preferably 15% by weight or less. The average primary particle size of the light-shielding pigment is preferably from 1 to 300 nm, more preferably from 2 nm to 50 nm, from the viewpoint of achieving both the light-shielding properties of the partition walls and the pattern workability. Here, the average primary particle size of the light-shielding pigment can be measured by a laser diffraction method using a particle size distribution analyzer (N4-PLUS; manufactured by Beckman Coulter, Inc.).
本発明の樹脂組成物は、さらに、有機銀化合物を含有することが好ましい。有機銀化合物は、露光工程および/または加熱工程において、分解・凝集することにより銀ナノ粒子等の黄色粒子を発生し、膜の遮光性を向上させることができる。有機銀化合物としては、露光工程および/または加熱工程において黄色粒子を発生する化合物であればどのようなものでもよい。従来知られている有機銀化合物としては、例えば、特開平10-62899号公報の段落「0048」~「0049」、欧州特許出願公開第803,764A1号明細書の第18ページ第24行~第19ページ第37行、欧州特許出願公開第962,812A1号明細書、特開平11-349591号公報、特開2000-7683号公報、同2000-72711号公報、同2002-23301号公報、同2002-23303号公報、同2002-49119号公報、196446号公報、欧州特許出願公開第1246001A1号明細書、欧州特許出願公開第1258775A1号明細書、特開2003-140290号公報、特開2003-195445号公報、同2003-295378号公報、同2003-295379号公報、同2003-295380号公報、同2003-295381号公報、特開2003-270755号公報等に記載されている有機銀化合物や、脂肪族カルボン酸の銀塩などが挙げられる。 The resin composition of the present invention preferably further contains an organic silver compound. The organic silver compound generates yellow particles such as silver nanoparticles by decomposing and aggregating in the exposure step and/or the heating step, and can improve the light shielding property of the film. Any organic silver compound may be used as long as it generates yellow particles in the exposure process and/or the heating process. Examples of conventionally known organic silver compounds include, for example, paragraphs "0048" to "0049" of JP-A-10-62899; Page 19, line 37, European Patent Application Publication No. 962,812A1, JP-A-11-349591, JP-A-2000-7683, JP-A-2000-72711, JP-A-2002-23301, JP-A-2002 -23303, 2002-49119, 196446, European Patent Application Publication No. 1246001A1, European Patent Application Publication No. 1258775A1, JP 2003-140290, JP 2003-195445 JP, No. 2003-295378, No. 2003-295379, No. 2003-295380, No. 2003-295381, No. 2003-270755, and organic silver compounds described in JP 2003-270755, etc., and aliphatic silver salts of carboxylic acids;
これらの中でも、より黄色化する観点から、下記一般式(1)で表される化合物および/または下記一般式(2)で表される構造を有する重合体化合物あることが好ましい。 Among these, a compound represented by the following general formula (1) and/or a polymer compound having a structure represented by the following general formula (2) is preferred from the viewpoint of further yellowing.
一般式(1)中、R1は水素または炭素数1~30の有機基を表す。ここで、「炭素数1~30の有機基」としては、炭素数1~30のアルキル基(直鎖状及び分枝状アルキル基を包含する)および/または炭素数6~30の芳香族炭化水素基が好ましい。これらの好ましい具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、フェニル基、ベンジル基、トリル基、ビフェニル基およびナフチル基を挙げることができる。In general formula (1), R 1 represents hydrogen or an organic group having 1 to 30 carbon atoms. Here, the "organic group having 1 to 30 carbon atoms" includes alkyl groups having 1 to 30 carbon atoms (including linear and branched alkyl groups) and/or aromatic carbonized groups having 6 to 30 carbon atoms. A hydrogen group is preferred. Preferred specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl phenyl, benzyl, tolyl, biphenyl and naphthyl radicals.
一般式(2)中、R2およびR3はそれぞれ独立に水素または炭素数1~30の有機基を表す。ここで、「炭素数1~30の有機基」としては、炭素数1~30のアルキル基(直鎖状及び分枝状アルキル基を包含する)および/または炭素数6~30の芳香族炭化水素基が好ましい。これらの好ましい具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、フェニル基、ベンジル基、トリル基、ビフェニル基およびナフチル基を挙げることができる。また、aは1以上の整数であり、好ましくは1~10000、さらに好ましくは5~1000である。In general formula (2), R 2 and R 3 each independently represent hydrogen or an organic group having 1 to 30 carbon atoms. Here, the "organic group having 1 to 30 carbon atoms" includes alkyl groups having 1 to 30 carbon atoms (including linear and branched alkyl groups) and/or aromatic carbonized groups having 6 to 30 carbon atoms. A hydrogen group is preferred. Preferred specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl phenyl, benzyl, tolyl, biphenyl and naphthyl radicals. Also, a is an integer of 1 or more, preferably 1 to 10,000, more preferably 5 to 1,000.
一般式(1)で表される有機銀化合物としては、例えば、酢酸銀、プロピオン酸銀、酪酸銀、吉草酸銀、ヘキサン酸銀、エナント酸銀、オクチル酸銀、ペラルゴン酸銀、カプリン酸銀、ネオデカン酸銀、サリチル酸銀、炭酸銀、パラトルエンスルホン酸銀、トリフルオロ酢酸銀、2-エチルヘキサン酸銀、ジエチルジチオカルバミン酸銀、安息香酸銀、ピリジン-2-カルボン酸銀、ベヘン酸銀、アラキジン酸銀、ステアリン酸銀、オレイン酸銀、ラウリン酸銀、カプロン酸銀、ミリスチン酸銀、パルミチン酸銀等が挙げられる。これらを2種以上含有してもよい。これらのうち、より有機溶剤への溶解性と黄色化の観点から、ネオデカン酸銀、オクチル酸銀、サリチル酸銀が好ましい。 Examples of organic silver compounds represented by formula (1) include silver acetate, silver propionate, silver butyrate, silver valerate, silver hexanoate, silver enanthate, silver octylate, silver pelargonate, and silver caprate. , silver neodecanoate, silver salicylate, silver carbonate, silver p-toluenesulfonate, silver trifluoroacetate, silver 2-ethylhexanoate, silver diethyldithiocarbamate, silver benzoate, silver pyridine-2-carboxylate, silver behenate, Silver arachidate, silver stearate, silver oleate, silver laurate, silver caproate, silver myristate, silver palmitate and the like. You may contain 2 or more types of these. Among these, silver neodecanoate, silver octylate, and silver salicylate are preferable from the viewpoint of solubility in organic solvents and yellowing.
一般式(2)で表される有機銀化合物は、カルボキシル基を有する(メタ)アクリルポリマ中のカルボキシル基が銀塩となった構造を有する。一般式(2)で表される有機銀化合物は、例えば、後述の調製例のようにカルボキシル基を有する(メタ)アクリルポリマと硝酸銀を、アミン触媒存在下、有機溶媒中で撹拌することにより得られる。 The organic silver compound represented by the general formula (2) has a structure in which the carboxyl group in the (meth)acrylic polymer having the carboxyl group is converted into a silver salt. The organic silver compound represented by the general formula (2) is obtained, for example, by stirring a (meth)acrylic polymer having a carboxyl group and silver nitrate in an organic solvent in the presence of an amine catalyst, as in the preparation examples described later. be done.
前記カルボキシル基を有する(メタ)アクリルポリマは、不飽和カルボン酸を重合することにより得られる。不飽和カルボン酸の例としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸、あるいは酸無水物などがあげられる。これらは単独で用いても良いが、他の共重合可能なエチレン性不飽和化合物と組み合わせて用いても良い。共重合可能なエチレン性不飽和化合物としては、具体的には、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、メタクリル酸nープロピル、メタクリル酸イソプロピル、アクリル酸n-ブチル、メタクリル酸n-ブチル、アクリル酸sec-ブチル、メタクリル酸sec-ブチル、アクリル酸イソ-ブチル、メタクリル酸イソ-ブチル、アクリル酸tert-ブチル、メタクリル酸tert-ブチル、アクリル酸n-ペンチル、メタクリル酸n-ペンチル、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、ベンジルアクリレート、ベンジルメタクリレートなどの不飽和カルボン酸アルキルエステル、スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレンなどの芳香族ビニル化合物、アミノエチルアクリレートなどの不飽和カルボン酸アミノアルキルエステル、グリシジルアクリレート、グリシジルメタクリレートなどの不飽和カルボン酸グリシジルエステル、酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリルなどのシアン化ビニル化合物、1,3-ブタジエン、イソプレンなどの脂肪族共役ジエン、それぞれ末端にアクリロイル基、あるいはメタクリロイル基を有するポリスチレン、ポリメチルアクリレート、ポリメチルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート、ポリシリコーンなどのマクロモノマなどがあげられるが、これらに限定されるものではない。(メタ)アクリルポリマに関しては、特に限定するわけではない。 The (meth)acrylic polymer having a carboxyl group is obtained by polymerizing an unsaturated carboxylic acid. Examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinylacetic acid, and acid anhydrides. These may be used alone, or may be used in combination with other copolymerizable ethylenically unsaturated compounds. Specific examples of copolymerizable ethylenically unsaturated compounds include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, isopropyl acrylate, n-propyl methacrylate, and methacrylic acid. isopropyl, n-butyl acrylate, n-butyl methacrylate, sec-butyl acrylate, sec-butyl methacrylate, iso-butyl acrylate, iso-butyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, unsaturated carboxylic acid alkyl esters such as n-pentyl acrylate, n-pentyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, benzyl acrylate, benzyl methacrylate, styrene, p-methylstyrene, o-methylstyrene, Aromatic vinyl compounds such as m-methylstyrene and α-methylstyrene, unsaturated carboxylic acid aminoalkyl esters such as aminoethyl acrylate, unsaturated carboxylic acid glycidyl esters such as glycidyl acrylate and glycidyl methacrylate, vinyl acetate, vinyl propionate, etc. carboxylic acid vinyl esters, vinyl cyanide compounds such as acrylonitrile, methacrylonitrile and α-chloroacrylonitrile, aliphatic conjugated dienes such as 1,3-butadiene and isoprene, polystyrenes having acryloyl groups or methacryloyl groups at their ends, Examples include, but are not limited to, macromonomers such as polymethyl acrylate, polymethyl methacrylate, polybutyl acrylate, polybutyl methacrylate, and polysilicone. The (meth)acrylic polymer is not particularly limited.
前記カルボキシル基を有する(メタ)アクリルポリマは、市販の製品を使用してもよい。市販のカルボキシル基を有する(メタ)アクリルポリマとしては、例えば、AX3-BX-TR-101、AX3-BX-TR-102、AX3-BX-TR-106、AX3-BX-TR-107、AX3-BX-TR-108、AX3-BX-TR-109、AX3-BX-TR-110、AX3-RD-TR-501、AX3-RD-TR-502、AX3-RD-TR-503、AX3-RD-TR-504、AX3-RD-TR-103、AX3-RD-TR-104(商品名、日本触媒株式会社製)、SPCR-10X、SPCR-10P、SPCR-24X、SPCR-18X、SPCR-215X(商品名、昭和電工株式会社製)、X-4007(商品名、日油株式会社製)などが挙げられる。これらの中でも、SPCR-10X、SPCR-10P、SPCR-24X、SPCR-18X、SPCR-215Xが好ましい。これらを2種類以上用いてもよい。 A commercially available product may be used as the (meth)acrylic polymer having the carboxyl group. Commercially available (meth)acrylic polymers having a carboxyl group include, for example, AX3-BX-TR-101, AX3-BX-TR-102, AX3-BX-TR-106, AX3-BX-TR-107, AX3- BX-TR-108, AX3-BX-TR-109, AX3-BX-TR-110, AX3-RD-TR-501, AX3-RD-TR-502, AX3-RD-TR-503, AX3-RD- TR-504, AX3-RD-TR-103, AX3-RD-TR-104 (trade name, manufactured by Nippon Shokubai Co., Ltd.), SPCR-10X, SPCR-10P, SPCR-24X, SPCR-18X, SPCR-215X ( (trade name, manufactured by Showa Denko KK), X-4007 (trade name, manufactured by NOF Corporation), and the like. Among these, SPCR-10X, SPCR-10P, SPCR-24X, SPCR-18X and SPCR-215X are preferred. Two or more of these may be used.
また、一般式(2)で表される重合体化合物の重量平均分子量(Mw)に特に制限は無いが、好ましくはGPCで測定されるポリスチレン換算で5000~50000、さらに好ましくは8000~35000である。Mwが5000より小さいと、熱硬化時にパターンだれが起こり、解像度が低下する。一方、Mwが50000より大きいと、銀が還元されにくく、黄色粒子を形成しにくい。 Further, the weight average molecular weight (Mw) of the polymer compound represented by the general formula (2) is not particularly limited, but is preferably 5000 to 50000, more preferably 8000 to 35000 in terms of polystyrene measured by GPC. . If Mw is less than 5,000, pattern drooping will occur during heat curing, resulting in lower resolution. On the other hand, when Mw is more than 50,000, silver is difficult to be reduced and yellow particles are difficult to form.
樹脂組成物の固形分中に占める有機銀化合物の含有量は、0.1重量%以上が好ましく、0.4重量%以上がより好ましい。有機銀化合物の含有量を0.4重量%以上とすることにより、得られる隔壁をより黄色化させることができ、隔壁の青色光の遮光性が向上する。一方、有機銀化合物の含有量が多すぎると、有機銀化合物の分解によって部分的に生じるラジカルによって過剰反応を起こし、パターン形成が困難になる。また、有機銀化合物は高価なため、含有量が多すぎると、樹脂組成物のコストが高くなってしまう。そのため、樹脂組成物の固形分中に占める有機銀化合物の含有量は、10重量%以下が好ましく、5.0重量%以下がより好ましい。 The content of the organic silver compound in the solid content of the resin composition is preferably 0.1% by weight or more, more preferably 0.4% by weight or more. By setting the content of the organic silver compound to 0.4% by weight or more, the partition walls obtained can be made more yellow, and the blue light shielding properties of the partition walls are improved. On the other hand, if the content of the organic silver compound is too large, radicals partially generated by decomposition of the organic silver compound cause an excessive reaction, making pattern formation difficult. Moreover, since the organic silver compound is expensive, if the content is too large, the cost of the resin composition will increase. Therefore, the content of the organic silver compound in the solid content of the resin composition is preferably 10% by weight or less, more preferably 5.0% by weight or less.
本発明の樹脂組成物は、さらに、還元剤を含有することが好ましい。還元剤は、有機銀化合物の還元を促進することで、より効率的に黄色粒子を生成し、100~120℃程度の低温加熱条件においても、膜の遮光性を向上させることができる。これにより、例えば、有機EL材料のような耐熱性に懸念がある材料が下地にあり、低温加熱条件が必須の用途においても、本技術の適用が可能となる。また、樹脂組成物中の有機銀化合物の含有量を低減することができるため、樹脂組成物をより安価で提供することが可能になる。また、加熱後の膜に未反応の有機銀化合物が残存すると、光や熱により分解し、膜色が変化してしまうため耐候性が悪い膜となってしまうが、還元剤を含有することにより、硬化後に膜中に残存する有機銀化合物の量が低減され、耐候性が向上する。 The resin composition of the present invention preferably further contains a reducing agent. The reducing agent accelerates the reduction of the organic silver compound, thereby more efficiently producing yellow particles, and can improve the light-shielding property of the film even under low-temperature heating conditions of about 100 to 120°C. As a result, for example, the present technology can be applied even in applications in which a material such as an organic EL material that is concerned about heat resistance exists as an underlying layer and low-temperature heating conditions are essential. Moreover, since the content of the organic silver compound in the resin composition can be reduced, the resin composition can be provided at a lower cost. In addition, if an unreacted organic silver compound remains in the film after heating, it will be decomposed by light or heat, and the film color will change, resulting in a film with poor weather resistance. , the amount of the organic silver compound remaining in the film after curing is reduced, and the weather resistance is improved.
還元剤は、有機銀化合物の還元を促進する化合物であればどのようなものでもよいが、より効率的に有機銀化合物を還元する観点から、分子内に2つ以上のフェノール性水酸基を含有する化合物またはエンジオール基を含有する化合物であることが好ましい。 The reducing agent may be any compound as long as it promotes the reduction of the organic silver compound, but from the viewpoint of reducing the organic silver compound more efficiently, it contains two or more phenolic hydroxyl groups in the molecule. Compounds or compounds containing enediol groups are preferred.
分子内に2つ以上のフェノール性水酸基を含有する化合物としては、例えば、カテコール化合物、ヒドロキノン化合物、レゾシノール化合物、アントラヒドロキノン化合物等の二価フェノール化合物や、3つ以上のフェノール性水酸基を含有するポリフェノール化合物が挙げられる。これらの中でも、還元性の観点から、下記一般式(3)で表されるヒドロキノン化合物であることがより好ましい。 Compounds containing two or more phenolic hydroxyl groups in the molecule include, for example, dihydric phenol compounds such as catechol compounds, hydroquinone compounds, resorcinol compounds, anthrahydroquinone compounds, and polyphenols containing three or more phenolic hydroxyl groups. compound. Among these, a hydroquinone compound represented by the following general formula (3) is more preferable from the viewpoint of reducing properties.
一般式(3)中、R4、R5、R6およびR7はそれぞれ独立に水素、ヒドロキシ基、または炭素数1~30の有機基を表す。ここで、「炭素数1~30の有機基」としては、炭素数1~30のアルキル基(直鎖状及び分枝状アルキル基を包含する)および/または炭素数6~30の芳香族炭化水素基が好ましい。これらの好ましい具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、フェニル基、ベンジル基、トリル基、ビフェニル基およびナフチル基を挙げることができる。In general formula (3), R 4 , R 5 , R 6 and R 7 each independently represent hydrogen, a hydroxy group, or an organic group having 1 to 30 carbon atoms. Here, the "organic group having 1 to 30 carbon atoms" includes alkyl groups having 1 to 30 carbon atoms (including linear and branched alkyl groups) and/or aromatic carbonized groups having 6 to 30 carbon atoms. A hydrogen group is preferred. Preferred specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl phenyl, benzyl, tolyl, biphenyl and naphthyl radicals.
下記一般式(3)で表されるヒドロキノン化合物としては、例えば、ヒドロキノン、メチルヒドロキノン、エチルヒドロキノン、プロピルヒドロキノン、ブチルヒドロキノン、t-ブチルヒドロキノン、2,3-ジメチルヒドロキノン、2,3-ジエチルヒドロキノン、2,3-ジプロピルヒドロキノン、2,3-ジブチルヒドロキノン、2,3-ジt-ブチルヒドロキノン、2,5-ジメチルヒドロキノン、2,5-ジエチルヒドロキノン、2,5-ジプロピルヒドロキノン、2,5-ジブチルヒドロキノン、2,5-ジt-ブチルヒドロキノン、ヒドロキノンジメチルエーテル、ヒドロキノンジエチルエーテル、1,2,4-ベンゼントリオール、2,5-ジヒドロキシアセトフェノン、2,5-ジヒドロキシ安息香酸、フェニルヒドロキノン、2,6-ジメチルヒドロキノン、2,6-ジエチルヒドロキノン、2,6-ジプロピルヒドロキノン、2,6-ジブチルヒドロキノン、2,6-ジt-ブチルヒドロキノン、2,6-ジヒドロキシアセトフェノン、2,6-ジヒドロキシ安息香酸、フェニルヒドロキノン、フェニルヒドロキノン、2,5-t-アミルヒドロキノン等が挙げられる。これらの中でも、還元性、有機溶剤への溶解性、および保存安定性の観点から、t-ブチルヒドロキノン、2,3-ジメチルヒドロキノン、2,6-ジメチルヒドロキノン、2,5-t-アミルヒドロキノン、2,3-ジプロピルヒドロキノン、2,3-ジブチルヒドロキノン、2,3-ジt-ブチルヒドロキノン、2,5-ジプロピルヒドロキノン、2,5-ジブチルヒドロキノン、2,5-ジt-ブチルヒドロキノンが好ましい。 Examples of hydroquinone compounds represented by the following general formula (3) include hydroquinone, methylhydroquinone, ethylhydroquinone, propylhydroquinone, butylhydroquinone, t-butylhydroquinone, 2,3-dimethylhydroquinone, 2,3-diethylhydroquinone, 2,3-dipropylhydroquinone, 2,3-dibutylhydroquinone, 2,3-di-t-butylhydroquinone, 2,5-dimethylhydroquinone, 2,5-diethylhydroquinone, 2,5-dipropylhydroquinone, 2,5 -dibutylhydroquinone, 2,5-di-t-butylhydroquinone, hydroquinone dimethyl ether, hydroquinone diethyl ether, 1,2,4-benzenetriol, 2,5-dihydroxyacetophenone, 2,5-dihydroxybenzoic acid, phenylhydroquinone, 2, 6-dimethylhydroquinone, 2,6-diethylhydroquinone, 2,6-dipropylhydroquinone, 2,6-dibutylhydroquinone, 2,6-di-t-butylhydroquinone, 2,6-dihydroxyacetophenone, 2,6-dihydroxybenzoin acid, phenylhydroquinone, phenylhydroquinone, 2,5-t-amylhydroquinone and the like. Among them, t-butylhydroquinone, 2,3-dimethylhydroquinone, 2,6-dimethylhydroquinone, 2,5-t-amylhydroquinone, 2,3-dipropylhydroquinone, 2,3-dibutylhydroquinone, 2,3-di-t-butylhydroquinone, 2,5-dipropylhydroquinone, 2,5-dibutylhydroquinone, 2,5-di-t-butylhydroquinone preferable.
エンジオール基を含有する化合物としては、例えば、アスコルビン酸、α―ピリドイン、フラクトース、キシロース、グルコース、ジオキシアセトン、グリコールアルデヒド、ベンゾイン、モノオキシアセトン、ベンゾイルカルビノールが挙げられる。これらの中でも、還元性と有機溶剤への溶解性の観点から、グリコールアルデヒドが好ましい。 Compounds containing an enediol group include, for example, ascorbic acid, α-pyridoin, fructose, xylose, glucose, dioxyacetone, glycolaldehyde, benzoin, monooxyacetone, benzoylcarbinol. Among these, glycolaldehyde is preferable from the viewpoint of reducing properties and solubility in organic solvents.
樹脂組成物の固形分中に占める還元剤の含有量は、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。還元剤の含有量を0.1重量%以上とすることにより、有機銀化合物をより効果的に還元し、得られる隔壁をより黄色化させることができ、隔壁の青色光の遮光性が向上する。また、硬化後に膜中に残存する有機銀化合物の量が低減され、耐候性が向上する。 The content of the reducing agent in the solid content of the resin composition is preferably 0.01% by weight or more, more preferably 0.1% by weight or more. By setting the content of the reducing agent to 0.1% by weight or more, the organic silver compound can be reduced more effectively, the partition walls obtained can be further yellowed, and the blue light blocking properties of the partition walls are improved. . In addition, the amount of the organic silver compound remaining in the film after curing is reduced, improving the weather resistance.
一方、樹脂組成物がネガ型感光性樹脂組成物の場合、還元剤の含有量が多すぎると、露光時に光重合開始剤の分解によって発生したラジカルを還元剤がトラップしてしまい、露光感度が低下する。そのため、樹脂組成物の固形分中に占める還元剤の含有量は、3.0重量%以下が好ましく、1.5重量%以下がより好ましい。 On the other hand, when the resin composition is a negative photosensitive resin composition, if the content of the reducing agent is too large, the reducing agent traps radicals generated by the decomposition of the photopolymerization initiator during exposure, resulting in decreased exposure sensitivity. descend. Therefore, the content of the reducing agent in the solid content of the resin composition is preferably 3.0% by weight or less, more preferably 1.5% by weight or less.
本発明の樹脂組成物は、さらに、撥液化合物を含有することが好ましい。撥液化合物とは、樹脂組成物に水や有機溶媒をはじく性質(撥液性能)を付与する化合物である。このような性質を有する化合物であれば特に限定されないが、具体的には、フルオロアルキル基を有する化合物が好ましく用いられる。撥液化合物を含有することにより、後述する隔壁(A-1)を形成後に、隔壁の頂部に撥液性能を付与することができる。それにより、例えば、後述する(B)色変換発光材料を含有する画素を形成する際に、それぞれの画素に、組成の異なる色変換発光材料を、容易に塗り分けることができる。 The resin composition of the present invention preferably further contains a liquid-repellent compound. A liquid-repellent compound is a compound that imparts a property of repelling water or an organic solvent (liquid-repellent performance) to a resin composition. The compound is not particularly limited as long as it has such properties, but specifically, a compound having a fluoroalkyl group is preferably used. By containing the liquid-repellent compound, liquid-repellent performance can be imparted to the top of the partition walls (A-1) described later after the partition walls (A-1) are formed. As a result, for example, when forming pixels containing the (B) color-converting light-emitting material described later, color-converting light-emitting materials having different compositions can be easily applied to each pixel.
撥液化合物は、光ラジカル重合性基を有する撥液化合物であることが好ましい。光ラジカル重合性基を有することにより、樹脂と強固な結合を形成することができるため、より容易に隔壁の頂部に撥液性能を付与することができる。 The liquid-repellent compound is preferably a liquid-repellent compound having a radically photopolymerizable group. By having a photoradical polymerizable group, it is possible to form a strong bond with a resin, so that liquid repellency can be more easily imparted to the top of the partition wall.
撥液化合物としては、例えば、1,1,2,2-テトラフロロオクチル(1,1,2,2-テトラフロロプロピル)エーテル、1,1,2,2-テトラフロロオクチルヘキシルエーテル、オクタエチレングリコールジ(1,1,2,2-テトラフロロブチル)エーテル、パーフルオロアルキル-N-エチルスルホニルグリシン塩、リン酸ビス(N-パーフルオロオクチルスルホニル-N-エチルアミノエチル)、モノパーフルオロアルキルエチルリン酸エステルなどの末端、主鎖および/または側鎖にフルオロアルキルまたはフルオロアルキレン基を有する化合物などが挙げられる。また、市販の撥液化合物としては、“メガファック”(登録商標)F142D、F172、F173、F183、F444、F477(以上、大日本インキ化学工業(株)製)、エフトップEF301、303、352(新秋田化成(株)製)、フロラードFC-430、FC-431(住友スリーエム(株)製))、“アサヒガード”(登録商標)AG710、“サーフロン”(登録商標)S-382、SC-101、SC-102、SC-103、SC-104、SC-105、SC-106(旭硝子(株)製)、BM-1000、BM-1100(裕商(株)製)、NBX-15、FTX-218、DFX-18((株)ネオス製)などが挙げられる。これらを2種以上含有してもよい。 Examples of liquid-repellent compounds include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, 1,1,2,2-tetrafluorooctylhexyl ether, and octaethylene. Glycol di(1,1,2,2-tetrafluorobutyl) ether, perfluoroalkyl-N-ethylsulfonylglycinate, bis(N-perfluorooctylsulfonyl-N-ethylaminoethyl) phosphate, monoperfluoroalkyl Examples thereof include compounds having fluoroalkyl or fluoroalkylene groups at the terminal, main chain and/or side chain such as ethyl phosphate. In addition, commercially available liquid-repellent compounds include "Megafac" (registered trademark) F142D, F172, F173, F183, F444, and F477 (manufactured by Dainippon Ink and Chemicals Co., Ltd.), F-top EF301, 303, and 352. (manufactured by Shin-Akita Kasei Co., Ltd.), Florard FC-430, FC-431 (manufactured by Sumitomo 3M Co., Ltd.), “Asahi Guard” (registered trademark) AG710, “Surflon” (registered trademark) S-382, SC -101, SC-102, SC-103, SC-104, SC-105, SC-106 (manufactured by Asahi Glass Co., Ltd.), BM-1000, BM-1100 (manufactured by Yusho Co., Ltd.), NBX-15, Examples include FTX-218 and DFX-18 (manufactured by Neos Co., Ltd.). You may contain 2 or more types of these.
光ラジカル重合性基を有する撥液化合物としては、例えば、“メガファック”(登録商標)RS-72-A、RS-75-A、RS-76-E、RS-56、RS-72-K、RS-75、RS-76-E、RS-76-NS、RS-76、RS-90(以上、商品名、DIC(株)製)等が挙げられる。なお、この場合、ネガ型感光性樹脂組成物の光硬化物からなる隔壁(A-1)中においては、光重合性基は光重合されていてもよい。 Liquid-repellent compounds having photoradical polymerizable groups include, for example, “Megafac” (registered trademark) RS-72-A, RS-75-A, RS-76-E, RS-56, RS-72-K , RS-75, RS-76-E, RS-76-NS, RS-76, and RS-90 (all trade names, manufactured by DIC Corporation). In this case, the photopolymerizable group may be photopolymerized in the partition walls (A-1) made of the photocured product of the negative photosensitive resin composition.
隔壁の撥液性能を向上させ、インクジェット塗布性を向上させる観点から、樹脂組成物における撥液化合物の含有量は、固形分中の0.01重量%以上が好ましく、0.1重量%以上がより好ましい。一方、樹脂や白色顔料との相溶性を向上させる観点から、撥液化合物の含有量は、固形分中の10重量%以下が好ましく、5重量%以下がより好ましい。 From the viewpoint of improving the liquid-repellent performance of the partition wall and improving the inkjet applicability, the content of the liquid-repellent compound in the resin composition is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, based on the solid content. more preferred. On the other hand, from the viewpoint of improving compatibility with resins and white pigments, the content of the liquid-repellent compound is preferably 10% by weight or less, more preferably 5% by weight or less, based on the solid content.
本発明の樹脂組成物は、さらに、有機銀化合物以外の有機金属化合物を含有してもよい。有機銀化合物以外の有機金属化合物としては、金、白金およびパラジウムからなる群より選ばれる少なくとも1種の金属を含有する有機金属化合物であることが好ましい。金、白金およびパラジウムからなる群より選ばれる少なくとも1種の金属を含有する有機金属化合物は、露光工程および/または加熱工程において、分解・凝集することにより黒色粒子となるため、パターン加工性を悪化させることなく、膜の遮光性をより向上させることができる。 The resin composition of the present invention may further contain an organic metal compound other than the organic silver compound. The organometallic compound other than the organosilver compound is preferably an organometallic compound containing at least one metal selected from the group consisting of gold, platinum and palladium. An organometallic compound containing at least one metal selected from the group consisting of gold, platinum and palladium decomposes and agglomerates in the exposure step and/or the heating step to form black particles, which deteriorates pattern processability. The light-shielding property of the film can be further improved without reducing the
有機銀化合物以外の有機金属化合物としては、例えば、クロロ(トリフェニルホスフィン)金、金レジネートMR7901-P、テトラクロロ金酸四水和物などの有機金化合物;ビス(アセチルアセトナト)白金、ジクロロビス(トリフェニルホスフィン)白金、ジクロロビス(ベンゾニトリル)白金などの有機白金化合物;ビス(アセチルアセトナト)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロビス(ベンゾニトリル)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、ジベンジリデンアセトンパラジウムなどの有機パラジウム化合物などが挙げられる。これらを2種以上含有してもよい。 Examples of organic metal compounds other than organic silver compounds include organic gold compounds such as chloro(triphenylphosphine) gold, gold resinate MR7901-P, and tetrachloroauric acid tetrahydrate; bis(acetylacetonato)platinum, dichlorobis organoplatinum compounds such as (triphenylphosphine)platinum and dichlorobis(benzonitrile)platinum; and organic palladium compounds such as dibenzylideneacetone palladium. You may contain 2 or more types of these.
これらの中でも、遮光性をより向上させる観点から、ビス(アセチルアセトナト)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロビス(ベンゾニトリル)パラジウムおよびテトラキス(トリフェニルホスフィン)パラジウムから選ばれた有機金属化合物が好ましい。 Among these, an organometallic compound selected from bis(acetylacetonato)palladium, dichlorobis(triphenylphosphine)palladium, dichlorobis(benzonitrile)palladium and tetrakis(triphenylphosphine)palladium from the viewpoint of further improving light shielding properties. is preferred.
本発明の樹脂組成物において、固形分中に占める有機銀化合物以外の有機金属化合物の含有量は、0.2~5重量%が好ましい。0.2重量%以上とすることにより、得られる膜の遮光性をより向上させることができる。0.5重量%以上がより好ましい。一方、有機銀化合物以外の有機金属化合物の含有量を5重量%以下とすることにより、反射率をより向上させることができる。3重量%以下がより好ましい。 In the resin composition of the present invention, the content of the organic metal compound other than the organic silver compound in the solid content is preferably 0.2 to 5% by weight. By making it 0.2% by weight or more, the light shielding property of the obtained film can be further improved. 0.5% by weight or more is more preferable. On the other hand, by setting the content of the organic metal compound other than the organic silver compound to 5% by weight or less, the reflectance can be further improved. 3% by weight or less is more preferable.
本発明の樹脂組成物は、さらに、リン原子を有する配位性化合物(以下、「配位性化合物」と記載する場合がある)を含有してもよい。配位性化合物は、樹脂組成物中の有機金属化合物に配位し、有機金属化合物の溶媒への溶解性を向上させて有機金属化合物の分解を促進し、得られる膜の遮光性をより向上させることができる。配位性化合物としては、例えば、トリフェニルホスフィン、トリ-t-ブチルホスフィン、トリメチルホスフィン、トリシクロヘキシルホスフィン、テトラフルオロホウ酸トリ-t-ブチルホスフィン、トリ(2-フリル)ホスフィン、トリス(1-アダマンチル)ホスフィン、トリス(ジエチルアミノ)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(O-トリル)ホスフィンなどが挙げられる。これらを2種以上含有してもよい。本発明の樹脂組成物の固形分中に占める配位性化合物の含有量は、有機金属化合物に対して0.5~3.0モル当量が好ましい。 The resin composition of the present invention may further contain a coordinating compound having a phosphorus atom (hereinafter sometimes referred to as "coordinating compound"). The coordinating compound coordinates to the organometallic compound in the resin composition, improves the solubility of the organometallic compound in the solvent, promotes the decomposition of the organometallic compound, and further improves the light-shielding properties of the resulting film. can be made Coordinating compounds include, for example, triphenylphosphine, tri-t-butylphosphine, trimethylphosphine, tricyclohexylphosphine, tri-t-butylphosphine tetrafluoroborate, tri(2-furyl)phosphine, tris(1- adamantyl)phosphine, tris(diethylamino)phosphine, tris(4-methoxyphenyl)phosphine, tris(O-tolyl)phosphine and the like. You may contain 2 or more types of these. The content of the coordinating compound in the solid content of the resin composition of the present invention is preferably 0.5 to 3.0 molar equivalents relative to the organometallic compound.
また、本発明の樹脂組成物は、必要に応じて、重合禁止剤、界面活性剤、密着性改良剤などを含有してもよい。 Moreover, the resin composition of the present invention may contain a polymerization inhibitor, a surfactant, an adhesion improver, and the like, if necessary.
本発明の樹脂組成物中に界面活性剤を含有することにより、塗布時のフロー性を向上させることができる。界面活性剤としては、例えば、“メガファック”(登録商標)F142D、F172、F173、F183、F445、F470、F475、F477(以上、商品名、大日本インキ化学工業(株)製)、NBX-15、FTX-218(以上、商品名、(株)ネオス製)などのフッ素系界面活性剤;“BYK”(登録商標)-333、301、331、345、307(以上、商品名、ビックケミージャパン(株)製)などのシリコーン系界面活性剤;ポリアルキレンオキシド系界面活性剤;ポリ(メタ)アクリレート系界面活性剤などが挙げられる。これらを2種以上含有してもよい。 By including a surfactant in the resin composition of the present invention, it is possible to improve flowability during application. Surfactants include, for example, "Megafac" (registered trademark) F142D, F172, F173, F183, F445, F470, F475, F477 (trade names, manufactured by Dainippon Ink & Chemicals, Inc.), NBX- 15, fluorine-based surfactants such as FTX-218 (trade name, manufactured by Neos Co., Ltd.); Japan Co., Ltd.), polyalkylene oxide surfactants, poly(meth)acrylate surfactants, and the like. You may contain 2 or more types of these.
本発明の樹脂組成物中に密着性改良剤を含有することにより、下地基板との密着性が向上し、信頼性の高い隔壁を得ることができる。密着性改良剤としては、例えば、脂環式エポキシ化合物や、シランカップリング剤などが挙げられる。これらの中でも、耐熱性の観点から、脂環式エポキシ化合物が好ましい。 By including an adhesion improving agent in the resin composition of the present invention, the adhesion to the underlying substrate is improved, and highly reliable partition walls can be obtained. Examples of adhesion improvers include alicyclic epoxy compounds and silane coupling agents. Among these, alicyclic epoxy compounds are preferred from the viewpoint of heat resistance.
脂環式エポキシ化合物としては、例えば、3’,4’-エポキシシクロヘキシメチル-3,4-エポキシシクロヘキサンカルボキシレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、ε-カプロラクトン変性3’,4’-エポキシシクロヘキシルメチル3’,4’-エポキシシクロヘキサンカルボキシレート、1,2-エポキシ-4-ビニルシクロヘキサン、ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン、3,4-エポキシシクロヘキシルメチルメタアクリレート、等が挙げられる。これらを2種以上含有してもよい。
Examples of alicyclic epoxy compounds include 3′,4′-epoxycyclohexymethyl-3,4-epoxycyclohexanecarboxylate, 2,2-bis(hydroxymethyl)-1-butanol and 1,2-epoxy- 4-(2-oxiranyl)cyclohexane adduct, ε-caprolactone-modified 3′,4′-
本発明の樹脂組成物中における密着性改良剤の含有量は、下地基板との密着性をより向上させる観点から、固形分中の0.1重量%以上が好ましく、1重量%以上がより好ましい。一方、密着性改良剤の含有量は、パターン加工性の観点から、固形分中の20重量%以下が好ましく、10重量%以下がより好ましい。 The content of the adhesion improving agent in the resin composition of the present invention is preferably 0.1% by weight or more, more preferably 1% by weight or more, based on the solid content, from the viewpoint of further improving the adhesion to the underlying substrate. . On the other hand, the content of the adhesion improver is preferably 20% by weight or less, more preferably 10% by weight or less, in the solid content from the viewpoint of pattern processability.
本発明の樹脂組成物は、さらに、溶剤を含有することが好ましい。溶媒は、樹脂組成物の粘度を塗布に適した範囲に調整し、隔壁の均一性を向上させる機能を有する。溶媒としては、大気圧下の沸点が150℃を超えて250℃以下の溶媒と、150℃以下の溶媒を組み合わせることが好ましい。 The resin composition of the present invention preferably further contains a solvent. The solvent has the function of adjusting the viscosity of the resin composition to a range suitable for application and improving the uniformity of the partition walls. As the solvent, it is preferable to combine a solvent having a boiling point of more than 150° C. and 250° C. or less under atmospheric pressure and a solvent having a boiling point of 150° C. or less.
溶媒としては、例えば、イソプロパノール、ジアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなどのエーテル類;メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族あるいは脂肪族炭化水素、γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなどを挙げることができる。これらを2種以上含有してもよい。これらの中でも、塗布性の観点から、大気圧下の沸点が150℃を超えて250℃以下の溶媒としてジアセトンアルコールと、150℃以下の溶媒としてプロピレングリコールモノメチルエーテルを組み合わせることが好ましい。 Examples of solvents include alcohols such as isopropanol and diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol. ethers such as monopropyl ether and propylene glycol monobutyl ether; ketones such as methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone and cyclopentanone; amides such as dimethylformamide and dimethylacetamide; Ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate, etc. acetates; aromatic or aliphatic hydrocarbons such as toluene, xylene, hexane, cyclohexane; γ-butyrolactone, N-methyl-2-pyrrolidone, dimethyl sulfoxide; You may contain 2 or more types of these. Among these, it is preferable to combine diacetone alcohol as a solvent with a boiling point of more than 150° C. and 250° C. or less under atmospheric pressure and propylene glycol monomethyl ether as a solvent with a boiling point of 150° C. or less from the viewpoint of coating properties.
溶媒の含有量は、塗布方法などに応じて任意に設定することができる。例えば、スピンコーティングにより膜形成を行う場合には、溶媒の含有量は、樹脂組成物中、50重量%以上、95重量%以下とすることが一般的である。 The content of the solvent can be arbitrarily set according to the coating method and the like. For example, when forming a film by spin coating, the content of the solvent is generally 50% by weight or more and 95% by weight or less in the resin composition.
本発明の樹脂組成物は、例えば、前述の樹脂、光重合開始剤またはキノンジアジド化合物、白色顔料および/または遮光顔料、有機銀化合物、還元剤および必要に応じてその他成分を混合することにより製造することができる。 The resin composition of the present invention is produced by, for example, mixing the aforementioned resin, photopolymerization initiator or quinonediazide compound, white pigment and/or light-shielding pigment, organic silver compound, reducing agent and, if necessary, other components. be able to.
次に、本発明の遮光膜について説明する。本発明の遮光膜は、前述の本発明の樹脂組成物を硬化して得られる。本発明の遮光膜は、後述の隔壁(A-1)の他、カバー基材用加飾パターンなどのOGSタイプのタッチパネルにおける遮光パターンとして好適に用いることができる。遮光膜の膜厚は、10μm以上が好ましい。 Next, the light shielding film of the present invention will be explained. The light-shielding film of the present invention is obtained by curing the resin composition of the present invention described above. The light-shielding film of the present invention can be suitably used as a light-shielding pattern in an OGS type touch panel, such as a decorative pattern for a cover base material, in addition to the barrier ribs (A-1) described later. The film thickness of the light shielding film is preferably 10 μm or more.
次に、本発明の遮光膜の製造方法について、例を挙げて説明する。本発明の遮光膜の製造方法は、下地基板上に本発明の樹脂組成物を塗布し、乾燥して乾燥膜を得る製膜工程、得られた乾燥膜をパターン露光する露光工程、露光後の乾燥膜における現像液に可溶な部分を溶解除去する現像工程および現像後の乾燥膜を加熱することにより硬化させる加熱工程を有することが好ましい。 Next, the method for producing the light-shielding film of the present invention will be described with an example. The method for producing a light-shielding film of the present invention includes a film-forming step of applying the resin composition of the present invention on a base substrate and drying to obtain a dry film, an exposure step of pattern-exposing the obtained dry film, and a It is preferable to have a developing step of dissolving and removing a portion of the dry film that is soluble in a developer and a heating step of heating and curing the dry film after development.
本発明の遮光膜の製造方法は、前記加熱工程において、現像後の膜を100℃以上250℃以下の温度で加熱することにより、波長450nmにおける膜厚10μmあたりのOD値を1.0以上上昇させることを特徴とする。加熱工程時の加熱温度は、OD値をより向上する観点から、150℃以上が好ましく、180℃以上がより好ましい。 In the method for producing a light-shielding film of the present invention, in the heating step, the film after development is heated at a temperature of 100° C. or more and 250° C. or less, thereby increasing the OD value per 10 μm of film thickness at a wavelength of 450 nm by 1.0 or more. It is characterized by From the viewpoint of further improving the OD value, the heating temperature in the heating step is preferably 150° C. or higher, more preferably 180° C. or higher.
加熱工程時の加熱温度は、加熱する膜のクラック発生を抑制する観点から、250℃以下が好ましく、240℃以下がより好ましい。加熱時間は15分間~2時間が好ましい。本発明の樹脂組成物から形成される膜は、露光時にはOD値が低く、かつ、パターン形成後にOD値が上昇することから、露光工程においては底部まで十分に光硬化させて、後述の好ましいテーパー角度を有する隔壁を得ることができる。加えて、パターン形成後の、波長450nmにおけるOD値が高いことから可視光全体の高い反射性と青色光の高い遮光性を両立した隔壁を得ることができる。 The heating temperature during the heating step is preferably 250° C. or lower, more preferably 240° C. or lower, from the viewpoint of suppressing crack generation in the heated film. The heating time is preferably 15 minutes to 2 hours. The film formed from the resin composition of the present invention has a low OD value at the time of exposure, and the OD value increases after pattern formation. Angular diaphragms can be obtained. In addition, since the OD value at a wavelength of 450 nm after pattern formation is high, it is possible to obtain partition walls that have both high reflectivity for all visible light and high light shielding performance for blue light.
前記製膜工程における樹脂組成物の塗布方法としては、例えば、スリットコート法、スピンコート法などが挙げられる。乾燥装置としては、例えば、熱風オーブンやホットプレートなどが挙げられる。乾燥時間は80~120℃が好ましく、乾燥時間は1~15分間が好ましい。 Examples of the method of applying the resin composition in the film-forming step include a slit coating method and a spin coating method. Examples of the drying device include a hot air oven and a hot plate. The drying time is preferably 80 to 120° C., preferably 1 to 15 minutes.
露光工程は、露光により乾燥膜の必要な部分を光硬化させて、または、乾燥膜の不要な部分を光分解させて、乾燥膜の任意の部分を、現像液に可溶とする工程である。露光工程においては、所定の開口部を有するフォトマスクを介して露光してもよいし、フォトマスクを用いずに、レーザー光等を用いて任意のパターンを直接描画してもよい。 The exposure step is a step of photocuring the necessary portion of the dry film by exposure or photolyzing the unnecessary portion of the dry film to make any portion of the dry film soluble in the developer. . In the exposure step, exposure may be performed through a photomask having a predetermined opening, or an arbitrary pattern may be directly drawn using a laser beam or the like without using a photomask.
露光装置としては、例えば、プロキシミティ露光機が挙げられる。露光工程において照射する活性光線としては、例えば、近赤外線、可視光線、紫外線が挙げられ、紫外線が好ましい。また、その光源としては、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプ、殺菌灯などが挙げられ、超高圧水銀灯が好ましい。 Examples of the exposure device include a proximity exposure machine. The actinic rays irradiated in the exposure step include, for example, near-infrared rays, visible rays, and ultraviolet rays, and ultraviolet rays are preferred. Examples of the light source include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, halogen lamps, germicidal lamps, etc. Ultra-high-pressure mercury lamps are preferred.
露光条件は露光する乾燥膜の厚さにより適宜選択することができる。一般的に、1~100mW/cm2の出力の超高圧水銀灯を用いて、1~10,000mJ/cm2の露光量で露光することが好ましい。Exposure conditions can be appropriately selected depending on the thickness of the dry film to be exposed. In general, it is preferable to perform exposure using an ultra-high pressure mercury lamp with an output of 1 to 100 mW/cm 2 and an exposure amount of 1 to 10,000 mJ/cm 2 .
現像工程は、露光後の乾燥膜における現像液に可溶な部分を現像液で溶解除去して、現像液に不溶な部分のみが残存した、任意のパターン形状にパターン形成された乾燥膜(以下、加熱前パターンと呼ぶ)を得る工程である。パターン形状としては、例えば格子状、ストライプ状、ホール状などの形状が挙げられる。 In the development process, the developer-soluble portion of the dry film after exposure is dissolved and removed with the developer, leaving only the developer-insoluble portion, and the dry film patterned in an arbitrary pattern shape (hereinafter referred to as , which is called a pre-heating pattern). The pattern shape includes, for example, a lattice shape, a stripe shape, a hole shape, and the like.
現像方法としては、例えば、浸漬法、スプレー法、ブラシ法などが挙げられる。 The developing method includes, for example, an immersion method, a spray method, a brush method, and the like.
現像液としては、露光後の乾燥膜における不要な部分を溶解することが可能な溶媒を適宜選択することができ、水を主成分とする水溶液が好ましい。例えば、樹脂組成物がカルボキシル基を有するポリマーを含有する場合、現像液としては、アルカリ水溶液が好ましい。アルカリ水溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、水酸化カルシウム等の無機アルカリ水溶液;テトラメチルアンモニウムヒドロキサイド、トリメチルベンジルアンモニウムヒドロキサイド等の有機アルカリ水溶液などが挙げられる。これらの中でも、解像度を向上させる観点から、水酸化カリウム水溶液または水酸化テトラメチルアンモニウム水溶液が好ましい。アルカリ水溶液の濃度は、現像性を向上させる観点から、0.05重量%以上が好ましく、0.1重量%以上がより好ましい。一方、アルカリ水溶液の濃度は、加熱前パターンの剥離や腐食を抑制する観点から、5重量%以下が好ましく、1重量%以下がより好ましい。また、解像度を向上させる観点から、現像液に界面活性剤を含有してもよい。現像温度は、工程管理を容易にするため、20~50℃が好ましい。 As the developer, a solvent capable of dissolving unnecessary portions in the dry film after exposure can be appropriately selected, and an aqueous solution containing water as a main component is preferable. For example, when the resin composition contains a polymer having a carboxyl group, the developer is preferably an alkaline aqueous solution. Examples of alkaline aqueous solutions include inorganic alkaline aqueous solutions such as sodium hydroxide, potassium hydroxide, sodium carbonate and calcium hydroxide; organic alkaline aqueous solutions such as tetramethylammonium hydroxide and trimethylbenzylammonium hydroxide. Among these, a potassium hydroxide aqueous solution or a tetramethylammonium hydroxide aqueous solution is preferable from the viewpoint of improving resolution. From the viewpoint of improving developability, the concentration of the alkaline aqueous solution is preferably 0.05% by weight or more, more preferably 0.1% by weight or more. On the other hand, the concentration of the alkaline aqueous solution is preferably 5% by weight or less, more preferably 1% by weight or less, from the viewpoint of suppressing peeling and corrosion of the pattern before heating. Moreover, from the viewpoint of improving the resolution, the developer may contain a surfactant. The developing temperature is preferably 20 to 50° C. in order to facilitate process control.
加熱工程は、現像工程で形成された加熱前パターンを加熱硬化させる工程である。加熱装置としては、例えば、ホットプレート、オーブン等が挙げられる。好ましい加熱温度および加熱時間は先述の通りである。 The heating step is a step of heating and curing the preheated pattern formed in the developing step. Examples of heating devices include hot plates and ovens. Preferred heating temperature and heating time are as described above.
次に、本発明の隔壁付き基板について説明する。本発明の隔壁付き基板は、下地基板上に(A-1)パターン形成された隔壁(以下、「隔壁(A-1)」と記載する場合がある)を有する。下地基板は、隔壁付き基板における支持体としての機能を有する。隔壁は、後述する色変換発光材料を含有する画素を有する場合、隣接する画素間における光の混色を抑制する機能を有する。 Next, the board|substrate with a partition of this invention is demonstrated. The substrate with partition walls of the present invention has (A-1) patterned partition walls (hereinafter sometimes referred to as “partition walls (A-1)”) formed on an underlying substrate. The underlying substrate functions as a support for the substrate with partition walls. When pixels containing a color-converting luminescent material, which will be described later, are included, the partition has a function of suppressing color mixture of light between adjacent pixels.
本発明の隔壁付き基板において、隔壁(A-1)は、波長450nmにおける厚み10μmあたりの反射率が10%~60%、波長450nmにおける厚み10μmあたりのOD値が1.5~5.0であることを特徴とする。反射率を10%以上、OD値を5.0以下とすることにより、(A-1)隔壁側面における反射を利用して表示装置の輝度を向上させることができる。一方、波長450nmにおける反射率を60%以下、OD値を1.5以上とすることにより、隔壁(A-1)を透過する青色光を抑制して隣接画素間における光の混色を抑制することができる。 In the substrate with partition walls of the present invention, the partition walls (A-1) have a reflectance of 10% to 60% per 10 μm thickness at a wavelength of 450 nm and an OD value of 1.5 to 5.0 per 10 μm thickness at a wavelength of 450 nm. characterized by being By setting the reflectance to 10% or more and the OD value to 5.0 or less, (A-1) the luminance of the display device can be improved by utilizing the reflection on the side surface of the partition wall. On the other hand, by setting the reflectance at a wavelength of 450 nm to 60% or less and the OD value to 1.5 or more, blue light passing through the partition wall (A-1) is suppressed and color mixture of light between adjacent pixels is suppressed. can be done.
図1に、パターン形成された隔壁を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2を有する。
FIG. 1 shows a cross-sectional view of one mode of the substrate with partitions of the present invention having patterned partitions. A
<下地基板>
下地基板としては、例えば、ガラス板、樹脂板、樹脂フイルムなどが挙げられる。ガラス板の材質としては、無アルカリガラスが好ましい。樹脂板および樹脂フイルムの材質としては、ポリエステル、(メタ)アクリルポリマ、透明ポリイミド、ポリエーテルスルフォン等が好ましい。ガラス板および樹脂板の厚みは、1mm以下が好ましく、0.8mm以下が好ましい。樹脂フイルムの厚みは、100μm以下が好ましい。<Underlying substrate>
Examples of the base substrate include a glass plate, a resin plate, and a resin film. Non-alkali glass is preferable as the material of the glass plate. Polyester, (meth)acrylic polymer, transparent polyimide, polyethersulfone and the like are preferable as materials for the resin plate and the resin film. The thickness of the glass plate and the resin plate is preferably 1 mm or less, more preferably 0.8 mm or less. The thickness of the resin film is preferably 100 μm or less.
<隔壁(A-1)>
隔壁(A-1)は、波長450nmにおける厚み10μmあたりの反射率が10%~60%、波長450nmにおける厚み10μmあたりのOD値が1.5~5.0であることを特徴とする。ここで、隔壁(A-1)の厚みとは、隔壁(A-1)の高さおよび/または隔壁(A-1)の幅を指す。隔壁(A-1)の高さとは、隔壁(A-1)の下地基板と垂直な方向(高さ方向)の長さを指す。図1に示す隔壁付き基板の場合、隔壁2の高さは符号Hで表される。また、隔壁(A-1)の幅とは、隔壁(A-1)の下地基板と水平な方向の長さを指す。図1に示す隔壁付き基板の場合、隔壁2の幅は符号Lで表される。なお、本明細書において、「高さ」は「厚み」と呼ぶこともある。<Partition (A-1)>
The barrier rib (A-1) has a reflectance of 10% to 60% per 10 μm thickness at a wavelength of 450 nm and an OD value of 1.5 to 5.0 per 10 μm thickness at a wavelength of 450 nm. Here, the thickness of the partition (A-1) refers to the height of the partition (A-1) and/or the width of the partition (A-1). The height of the partition (A-1) refers to the length of the partition (A-1) in the direction perpendicular to the base substrate (height direction). In the case of the substrate with partition walls shown in FIG. 1, the height of the
本発明においては、隔壁側面における反射率が表示装置の輝度向上に、遮光性が混色抑制に、それぞれ寄与すると考えられる。一方で、厚みあたりの反射率およびOD値は、高さ方向、幅方向によらず同じであると考えられるため、本発明においては、隔壁の厚みあたりの反射率およびOD値に着目する。なお、後述する通り、隔壁(A-1)の厚みは0.5~100μmが好ましく、幅は1~100μmが好ましい。そこで、本発明においては、隔壁(A-1)の厚みの代表値として10μmを選択し、厚み10μmあたりの反射率およびOD値に着目した。 In the present invention, it is considered that the reflectance on the side surface of the partition wall contributes to the improvement of the brightness of the display device, and the light shielding property contributes to the suppression of color mixture. On the other hand, since the reflectance and OD value per thickness are considered to be the same regardless of the height direction and width direction, the present invention focuses on the reflectance and OD value per thickness of the partition walls. As will be described later, the partition wall (A-1) preferably has a thickness of 0.5 to 100 μm and a width of 1 to 100 μm. Therefore, in the present invention, 10 μm is selected as a representative value of the thickness of the partition (A-1), and the reflectance and OD value per 10 μm of thickness are focused on.
波長450nmにおける厚み10μmあたりの反射率が10%未満であると、隔壁側面における反射が小さくなり、表示装置の輝度が不十分となる。波長450nmにおける厚み10μmあたりの反射率は、10%以上が好ましく、20%以上がより好ましく、30%以上がさらに好ましい。波長450nmにおける厚み10μmあたりの反射率が高いほど、隔壁側面における青色励起光の反射が大きくなるため、隔壁間に後述の(B)色変換発光材料を含有する画素を含有する場合、色変換効率が向上し、表示装置の輝度を向上できる。 If the reflectance per 10 μm of thickness at a wavelength of 450 nm is less than 10%, the reflection on the side surfaces of the barrier ribs becomes small, resulting in insufficient luminance of the display device. The reflectance per 10 μm thickness at a wavelength of 450 nm is preferably 10% or more, more preferably 20% or more, and even more preferably 30% or more. The higher the reflectance per 10 μm thickness at a wavelength of 450 nm, the greater the reflection of the blue excitation light on the side surface of the partition wall. is improved, and the brightness of the display device can be improved.
また、波長550nmにおける隔壁(A-1)の厚み10μmあたりの反射率は、30%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましい。波長550nmにおける厚み10μmあたりの反射率が高いほど、隔壁側面における緑色光の反射が大きくなるため、隔壁間に後述の(B)色変換発光材料を含有する画素を含有する場合、画素内で発光した緑色光を効率的に反射し、表示装置の輝度を向上できる。 Further, the reflectance per 10 μm thickness of the partition wall (A-1) at a wavelength of 550 nm is preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more. The higher the reflectance per 10 μm thickness at a wavelength of 550 nm, the greater the reflection of green light on the side surface of the partition wall. The emitted green light can be efficiently reflected and the brightness of the display device can be improved.
さらに、波長630nmにおける隔壁(A-1)の厚み10μmあたりの反射率は、30%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましい。波長630nmにおける厚み10μmあたりの反射率が高いほど、隔壁側面における赤色光の反射が大きくなるため、隔壁間に後述の(B)色変換発光材料を含有する画素を含有する場合、画素内で発光した赤色光を効率的に反射し、表示装置の輝度を向上できる。 Furthermore, the reflectance per 10 μm thickness of the partition (A-1) at a wavelength of 630 nm is preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more. The higher the reflectance per 10 μm of thickness at a wavelength of 630 nm, the greater the reflection of red light on the side surface of the partition wall. The reflected red light can be efficiently reflected and the brightness of the display device can be improved.
また、波長450nmにおける隔壁(A-1)の厚み10μmあたりのOD値が1.5未満であると、隣接画素に青色励起光が漏れることで、光の混色が発生する。波長450nmにおける隔壁(A-1)の厚み10μmあたりのOD値は、1.5以上が好ましく、2.0以上がより好ましく、2.5以上がさらに好ましい。 Further, if the OD value per 10 μm thickness of the partition wall (A-1) at a wavelength of 450 nm is less than 1.5, the blue excitation light leaks to adjacent pixels, resulting in light color mixture. The OD value per 10 μm thickness of the partition (A-1) at a wavelength of 450 nm is preferably 1.5 or more, more preferably 2.0 or more, and even more preferably 2.5 or more.
また、波長550nmにおける隔壁(A-1)の厚み10μmあたりのOD値は、1.0以上が好ましく、1.5以上がより好ましく、2.0以上がさらに好ましい。波長550nmにおける厚み10μmあたりのOD値が高いほど、隔壁側面における緑色光の遮光性が大きくなるため、隔壁間に後述の(B)色変換発光材料を含有する画素を含有する場合、画素内で発光した緑色光を効率的に遮光して混色を防止し、表示装置のコントラストを向上できる。 Further, the OD value per 10 μm thickness of the partition (A-1) at a wavelength of 550 nm is preferably 1.0 or more, more preferably 1.5 or more, and even more preferably 2.0 or more. The higher the OD value per 10 μm of thickness at a wavelength of 550 nm, the greater the light-blocking property of green light on the side surface of the partition wall. Emitted green light can be efficiently shielded to prevent color mixture and improve the contrast of the display device.
さらに、波長630nmにおける隔壁(A-1)の厚み10μmあたりのOD値は、1.0以上が好ましく、1.5以上がより好ましく、2.0以上がさらに好ましい。波長630nmにおける厚み10μmあたりのOD値が高いほど、隔壁側面における赤色光の遮光性が大きくなるため、隔壁間に後述の(B)色変換発光材料を含有する画素を含有する場合、画素内で発光した赤色光を効率的に遮光して混色を防止し、表示装置のコントラストを向上できる。 Furthermore, the OD value per 10 μm thickness of the partition wall (A-1) at a wavelength of 630 nm is preferably 1.0 or more, more preferably 1.5 or more, and even more preferably 2.0 or more. The higher the OD value per 10 μm thickness at a wavelength of 630 nm, the greater the red light-blocking property of the partition wall side surfaces. Emitted red light is efficiently shielded to prevent color mixture and improve the contrast of the display device.
隔壁(A-1)の波長450nm、550nm、および630nmにおける厚み10μmあたりの反射率は、厚み10μmの隔壁(A-1)について、上面から分光測色計(例えば、コニカミノルタ(株)製CM-2600d)を用いて、SCIモードにより測定することができる。ただし、測定に十分な面積を確保できない場合や、厚み10μmの測定サンプルが採取できない場合において、隔壁(A-1)の組成が既知である場合には、隔壁(A-1)と同組成の厚み10μmのベタ膜を作製し、隔壁(A-1)にかえてベタ膜について同様に反射率を測定することにより、厚み10μmあたりの反射率を求めてもよい。例えば、隔壁(A-1)を形成した材料を用いて、厚みを10μmとし、パターン形成しないこと以外は隔壁(A-1)の形成と同じ加工条件によりベタ膜を作製し、得られたベタ膜について、上面から、同様に反射率を測定してもよい。 The reflectance per 10 μm thickness of the partition wall (A-1) at wavelengths of 450 nm, 550 nm, and 630 nm was measured from the upper surface of the partition wall (A-1) with a thickness of 10 μm using a spectrophotometer (for example, CM manufactured by Konica Minolta Co., Ltd. -2600d) can be used to measure by SCI mode. However, when a sufficient area for measurement cannot be secured, or when a measurement sample with a thickness of 10 μm cannot be collected, and the composition of the partition wall (A-1) is known, the same composition as the partition wall (A-1) A solid film having a thickness of 10 μm may be prepared, and the reflectance per 10 μm thickness may be obtained by similarly measuring the reflectance of the solid film instead of the partition wall (A-1). For example, using the material for forming the partition wall (A-1), a solid film was prepared under the same processing conditions as for the formation of the partition wall (A-1) except that the thickness was 10 μm and no pattern was formed. Reflectance may be similarly measured from the top surface of the film.
隔壁(A-1)の波長450nm、550nm、および630nmにおける厚み10μmあたりのOD値は、厚み10μmの隔壁(A-1)について、上面から光学濃度計(例えば、日立ハイテクサイエンス製U-4100)を用いて入射光および透過光の強度を測定し、下記式(1)により算出することができる。ただし、測定に十分な面積を確保できない場合や、厚み10μmの測定サンプルが採取できない場合において、隔壁(A-1)の組成が既知である場合には、反射率の測定と同様に、隔壁(A-1)と同組成の厚み10μmのベタ膜を作製し、隔壁(A-1)にかえてベタ膜について同様にOD値を測定することにより、厚み10μmあたりのOD値を求めてもよい。 The OD value per 10 μm thickness of the partition wall (A-1) at wavelengths of 450 nm, 550 nm, and 630 nm is obtained from the top surface of the partition wall (A-1) with a thickness of 10 μm using an optical densitometer (for example, Hitachi High-Tech Science U-4100). can be used to measure the intensity of incident light and transmitted light, and the intensity can be calculated by the following formula (1). However, when a sufficient area for measurement cannot be secured, or when a measurement sample with a thickness of 10 μm cannot be collected, and the composition of the partition (A-1) is known, the partition (A-1) A 10 μm-thick solid film having the same composition as A-1) may be prepared, and the OD value per 10 μm thickness may be obtained by similarly measuring the OD value of the solid film instead of the partition wall (A-1). .
OD値 = log10(I0/I) ・・・ (1)
I0 : 入射光強度
I : 透過光強度。OD value = log10( I0 /I) (1)
I 0 : incident light intensity I : transmitted light intensity.
なお、反射率およびOD値を上記範囲にするための手段としては、例えば、隔壁(A-1)を後述する好ましい組成とすることなどが挙げられる。 In addition, as means for adjusting the reflectance and the OD value within the above ranges, for example, the partition (A-1) is made to have a preferable composition described later.
隔壁(A-1)のテーパー角度は、45°~110°が好ましい。隔壁(A-1)のテーパー角度とは、隔壁断面の側辺と底辺とがなす角度を指す。図1に示す隔壁付き基板の場合、隔壁2のテーパー角度は符号θで表される。テーパー角度を45°以上とすることにより、隔壁(A-1)の上部と底部の幅の差が小さくなり、隔壁(A-1)の幅を後述する好ましい範囲に容易に形成することができる。テーパー角度は、70°以上がより好ましい。一方、テーパー角度を110°以下とすることにより、後述する(B)色変換発光材料を含有する画素を、インクジェット塗布により形成する際に、インクの決壊を抑制し、インクジェット塗布性を向上させることができる。ここで、インクの決壊とは、インクが隔壁を乗り越えて隣の画素部分に混入する現象のことを言う。テーパー角度は、95°以下がより好ましい。隔壁(A-1)のテーパー角度は、隔壁(A-1)の任意の断面を、光学顕微鏡(FE-SEM(例えば、(株)日立製作所製S-4800))を用いて、加速電圧3.0kV、倍率2,500倍で観察し、隔壁(A-1)の断面の側辺と底辺とがなす角度を測定することにより求めることができる。
The taper angle of the partition wall (A-1) is preferably 45° to 110°. The taper angle of the partition wall (A-1) refers to the angle formed by the side and bottom sides of the cross section of the partition wall. In the case of the substrate with partition walls shown in FIG. 1, the taper angle of the
なお、隔壁(A-1)のテーパー角度を上記範囲にするための手段としては、例えば、隔壁(A-1)を後述する好ましい組成とすること、前述の本発明の樹脂組成物を用いて形成することなどが挙げられる。 As means for adjusting the taper angle of the partition wall (A-1) within the above range, for example, the partition wall (A-1) is made to have a preferable composition described later, or the resin composition of the present invention described above is used. forming.
隔壁(A-1)の厚みは、隔壁付き基板が後述する(B)色変換発光材料を含有する画素を有する場合には、その画素の厚みよりも大きいことが好ましい。具体的には、隔壁(A-1)の厚みは、0.5μm以上が好ましく、10μm以上がより好ましい。一方、画素底部における発光をより効率良く取り出す観点から、隔壁(A-1)の厚みは、100μm以下が好ましく、50μm以下がより好ましい。また、隔壁(A-1)の幅は、隔壁側面における光反射を利用し輝度をより向上させ、光漏れによる隣接画素における光の混色をより抑制するために十分なものであることが好ましい。具体的には、隔壁の幅は、1μm以上が好ましく、5μm以上がより好ましい。一方、画素の発光領域を多く確保して輝度をより向上させる観点から、隔壁(A-1)の幅は、100μm以下が好ましく、50μm以下がより好ましい。 When the substrate with partition walls has pixels containing (B) a color-converting luminescent material described later, the thickness of the partition walls (A-1) is preferably larger than the thickness of the pixels. Specifically, the thickness of the partition wall (A-1) is preferably 0.5 μm or more, more preferably 10 μm or more. On the other hand, the thickness of the partition wall (A-1) is preferably 100 μm or less, more preferably 50 μm or less, from the viewpoint of extracting light emitted from the bottom of the pixel more efficiently. In addition, the width of the partition (A-1) is preferably sufficient to further improve the brightness by utilizing light reflection on the side of the partition and to further suppress color mixture of light in adjacent pixels due to light leakage. Specifically, the width of the partition is preferably 1 μm or more, more preferably 5 μm or more. On the other hand, the width of the partition wall (A-1) is preferably 100 μm or less, more preferably 50 μm or less, from the viewpoint of securing a large light-emitting region of the pixel and further improving luminance.
隔壁(A-1)は、画像表示装置の画面サイズに応じた所定画素数分の繰り返しパターンを有している。画像表示装置の画素数としては、例えば、横に4000個、縦に2000個が挙げられる。画素数は、表示される画像の解像度(きめ細かさ)に影響する。そのため、要求される画像の解像度と画像表示装置の画面サイズに応じた数の画素を形成する必要があり、それに併せて、隔壁のパターン形成寸法を決定することが好ましい。 The partition wall (A-1) has a repeating pattern for a predetermined number of pixels corresponding to the screen size of the image display device. The number of pixels of the image display device is, for example, 4000 horizontally and 2000 vertically. The number of pixels affects the resolution (fineness) of the displayed image. Therefore, it is necessary to form the number of pixels corresponding to the required image resolution and the screen size of the image display device, and it is preferable to determine the partition pattern formation dimensions accordingly.
隔壁(A-1)は、樹脂と、白色顔料および/または遮光顔料と、酸化銀および/または銀粒子と、キノン化合物とを含有することが好ましい。樹脂は、隔壁のクラック耐性および耐光性を向上させる機能を有する。白色顔料は、隔壁の反射率をより向上させる機能を有する。遮光顔料は、隔壁の特定の波長の光の遮光性を向上させる機能を有する。酸化銀および/または銀粒子は、OD値を調整し、隣接画素における光の混色を抑制する機能を有する。キノン化合物は、樹脂組成物中に還元剤としてヒドロキノン化合物を含有する場合、ヒドロキノン化合物が有機銀化合物の還元を促進する際、自身が酸化されることによって隔壁中に生成される。 The partition wall (A-1) preferably contains a resin, a white pigment and/or a light-shielding pigment, silver oxide and/or silver particles, and a quinone compound. The resin has a function of improving crack resistance and light resistance of the partition walls. A white pigment has a function of further improving the reflectance of the partition wall. The light-shielding pigment has a function of improving the light-shielding properties of the partition wall against light of a specific wavelength. Silver oxide and/or silver particles have the function of adjusting the OD value and suppressing color mixture of light in adjacent pixels. When the resin composition contains a hydroquinone compound as a reducing agent, the quinone compound is generated in the partition wall by being oxidized when the hydroquinone compound promotes reduction of the organic silver compound.
樹脂、白色顔料、遮光顔料は、樹脂組成物を構成する材料として先に説明した通りである。隔壁(A-1)中の樹脂の含有量は、熱処理における隔壁のクラック耐性を向上させる観点から、10重量%以上が好ましく、20重量%以上がより好ましい。一方、耐光性を向上させる観点から、隔壁(A-1)中の樹脂の含有量は、60重量%以下が好ましく、50重量%以下がより好ましい。 The resin, white pigment, and light-shielding pigment are as described above as materials constituting the resin composition. The resin content in the partition walls (A-1) is preferably 10% by weight or more, more preferably 20% by weight or more, from the viewpoint of improving the crack resistance of the partition walls during heat treatment. On the other hand, from the viewpoint of improving light resistance, the resin content in the partition (A-1) is preferably 60% by weight or less, more preferably 50% by weight or less.
隔壁(A-1)中の白色顔料の含有量は、反射率をより向上させる観点から、20重量%以上が好ましく、30重量%以上がより好ましい。一方、隔壁の表面平滑性を向上させる観点から、隔壁(A-1)中の白色顔料の含有量は、60重量%以下が好ましく、55重量%以下がより好ましい。 The content of the white pigment in the partition wall (A-1) is preferably 20% by weight or more, more preferably 30% by weight or more, from the viewpoint of further improving the reflectance. On the other hand, from the viewpoint of improving the surface smoothness of the partition walls, the content of the white pigment in the partition walls (A-1) is preferably 60% by weight or less, more preferably 55% by weight or less.
隔壁(A-1)中の遮光顔料の含有量は、特定の波長の光の遮光性を向上する観点から、固形分中の0.005重量%以上が好ましく、0.05重量%以上がより好ましい。一方、隔壁の反射率を損なわない観点から、30重量%以下が好ましく、15重量%以下がより好ましい。 The content of the light-shielding pigment in the partition wall (A-1) is preferably 0.005% by weight or more, more preferably 0.05% by weight or more, based on the solid content, from the viewpoint of improving the light-shielding property of light of a specific wavelength. preferable. On the other hand, it is preferably 30% by weight or less, more preferably 15% by weight or less, from the viewpoint of not impairing the reflectance of the partition walls.
酸化銀および/または銀粒子は、先述した樹脂組成物中の有機銀化合物が露光工程および/または加熱工程において、分解・凝集することにより発生した黄色粒子または黒色粒子を指す。隔壁(A-1)中の酸化銀および/または銀粒子の含有量は、反射率およびODを前述の範囲に調整して隣接画素における光の混色をより抑制する観点から、0.1重量%以上が好ましく、0.4重量%以上がより好ましい。一方、反射率およびODを前述の範囲に調整する観点から、隔壁(A-1)中の酸化銀および/または銀粒子の含有量は、10重量%以下が好ましく、3.0重量%以下がより好ましい。 Silver oxide and/or silver particles refer to yellow particles or black particles generated by decomposition/aggregation of the organic silver compound in the aforementioned resin composition during the exposure step and/or heating step. The content of silver oxide and/or silver particles in the partition wall (A-1) is 0.1% by weight from the viewpoint of further suppressing color mixing of light in adjacent pixels by adjusting the reflectance and OD within the ranges described above. 0.4% by weight or more is more preferable. On the other hand, from the viewpoint of adjusting the reflectance and OD to the ranges described above, the content of silver oxide and/or silver particles in the partition wall (A-1) is preferably 10% by weight or less, and 3.0% by weight or less. more preferred.
隔壁(A-1)は、さらに撥液化合物を含有することが好ましい。撥液化合物を含有することにより、隔壁(A-1)に撥液性能を付与することができ、例えば、後述する(B)色変換発光材料を含有する画素を形成する際に、それぞれの画素に、組成の異なる色変換発光材料を、容易に塗り分けることができる。撥液化合物は、樹脂組成物を構成する材料として先述した通りである。 The partition (A-1) preferably further contains a liquid-repellent compound. By containing the liquid-repellent compound, liquid-repellent performance can be imparted to the partition wall (A-1). In addition, color-converting light-emitting materials having different compositions can be easily applied separately. The liquid-repellent compound is as described above as a material constituting the resin composition.
隔壁の撥液性能を向上させ、インクジェット塗布性を向上させる観点から、隔壁(A-1)中の撥液化合物の含有量は、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。一方、樹脂や白色顔料との相溶性を向上させる観点から、隔壁(A-1)中の撥液化合物の含有量は、10重量%以下が好ましく、5重量%以下がより好ましい。 From the viewpoint of improving the liquid-repellent performance of the partition walls and improving the inkjet applicability, the content of the liquid-repellent compound in the partition walls (A-1) is preferably 0.01% by weight or more, more preferably 0.1% by weight or more. more preferred. On the other hand, from the viewpoint of improving compatibility with resins and white pigments, the content of the liquid-repellent compound in the partition wall (A-1) is preferably 10% by weight or less, more preferably 5% by weight or less.
隔壁(A-1)の、プロピレングリコールモノメチルエーテルアセテートに対する表面接触角は、インクジェット塗布性を向上させ、色変換発光材料の塗り分けを容易にする観点から、10°以上が好ましく、20°以上がより好ましく、40°以上がさらに好ましい。一方、隔壁と下地基板との密着性を向上させる観点から、隔壁(A-1)の表面接触角は、70°以下が好ましく、60°以下がより好ましい。ここで、隔壁(A-1)の表面接触角は、隔壁上部に対して、JIS R3257(制定年月日=1999/04/20)に規定される基板ガラス表面のぬれ性試験方法に準拠して測定することができる。なお、隔壁(A-1)の表面接触角を前記範囲にする方法としては、例えば、前述の撥液化合物を用いる方法などが挙げられる。 The surface contact angle of the partition wall (A-1) with respect to propylene glycol monomethyl ether acetate is preferably 10° or more, more preferably 20° or more, from the viewpoint of improving inkjet applicability and facilitating separate coating of the color-converting luminescent material. More preferably, 40° or more is even more preferable. On the other hand, from the viewpoint of improving the adhesion between the partition wall and the underlying substrate, the surface contact angle of the partition wall (A-1) is preferably 70° or less, more preferably 60° or less. Here, the surface contact angle of the partition wall (A-1) conforms to the substrate glass surface wettability test method specified in JIS R3257 (enacted date = 1999/04/20) for the upper part of the partition wall. can be measured by As a method for adjusting the surface contact angle of the partition wall (A-1) to the above range, for example, a method using the liquid-repellent compound described above can be used.
下地基板上に隔壁(A-1)をパターン形成する方法としては、パターン形状の調整が容易であることから、感光性ペースト法が好ましい。感光性ペースト法により隔壁をパターン形成する方法としては、例えば、下地基板上に、前述の樹脂組成物を塗布し、乾燥して乾燥膜を得る塗布工程、得られた乾燥膜を、所望のパターン形状に応じてパターン露光する露光工程、露光後の乾燥膜における現像液に可溶な部分を溶解除去する現像工程および現像後の隔壁を硬化させる加熱工程を有する方法が好ましい。樹脂組成物は、ポジ型またはネガ型の感光性を持たせることが好ましい。パターン露光は、所定の開口部を有するフォトマスクを介して露光してもよいし、フォトマスクを用いずに、レーザー光等を用いて任意のパターンを直接描画してもよい。なお、隔壁付き基板が後述するカラーフィルターおよび/または遮光隔壁(A-2)を有する場合は、カラーフィルターおよび/または遮光隔壁(A-2)上に、同様にして隔壁(A-1)をパターン形成することができる。各工程については、遮光膜の製造方法として先に説明した通りである。 As a method for patterning the barrier ribs (A-1) on the base substrate, a photosensitive paste method is preferable because the pattern shape can be easily adjusted. As a method for patterning barrier ribs by a photosensitive paste method, for example, the above-mentioned resin composition is applied onto a base substrate and dried to obtain a dry film. A method comprising an exposure step of pattern-wise exposing according to the shape, a developing step of dissolving and removing portions soluble in the developer in the dry film after exposure, and a heating step of curing the barrier ribs after development is preferred. The resin composition preferably has positive or negative photosensitivity. Pattern exposure may be performed through a photomask having a predetermined opening, or an arbitrary pattern may be directly drawn using a laser beam or the like without using a photomask. When the substrate with partition walls has color filters and/or light-shielding partition walls (A-2), which will be described later, partition walls (A-1) are similarly formed on the color filters and/or light-shielding partition walls (A-2). Can be patterned. Each step is as described above for the method of manufacturing the light shielding film.
本発明の隔壁付き基板は、さらに、前記隔壁(A-1)によって隔てられて配列した(B)色変換発光材料を含有する画素(以下、「画素(B)」と記載する場合がある)を有することが好ましい。 The substrate with partition walls of the present invention further includes pixels (hereinafter sometimes referred to as “pixels (B)”) containing (B) color-converting luminescent materials arranged separated by the partition walls (A-1). It is preferred to have
画素(B)は、入射光の波長領域の少なくとも一部を変換して、入射光とは異なる波長領域の出射光を放出することにより、カラー表示を可能にする機能を有する。 The pixel (B) has a function of enabling color display by converting at least part of the wavelength range of incident light and emitting output light in a wavelength range different from that of the incident light.
図2に、パターン形成された隔壁(A-1)と画素(B)を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2を有し、隔壁2によって隔てられた領域に画素3が配列されている。
FIG. 2 shows a cross-sectional view of one mode of the substrate with partitions of the present invention having patterned partitions (A-1) and pixels (B). A
色変換材料は、無機蛍光体および有機蛍光体から選ばれた蛍光体を含有することが好ましい。 The color conversion material preferably contains a phosphor selected from inorganic phosphors and organic phosphors.
本発明の隔壁付き基板は、例えば、青色光を発光するバックライトとTFT上に形成された液晶と画素(B)を組み合わせて、表示装置として用いることができる。この場合、赤色画素に対応する領域には、青色の励起光により励起されて赤色の蛍光を発する赤色用蛍光体を含有することが好ましい。同様に、緑色画素に対応する領域には、青色の励起光により励起されて緑色の蛍光を発する緑色用蛍光体を含有することが好ましい。青色画素に対応する領域には、蛍光体を含有しないことが好ましい。 The substrate with partition walls of the present invention can be used as a display device by combining, for example, a backlight that emits blue light, liquid crystals formed on TFTs, and pixels (B). In this case, the region corresponding to the red pixel preferably contains a red phosphor that emits red fluorescence when excited by blue excitation light. Similarly, the region corresponding to the green pixel preferably contains a green phosphor that emits green fluorescence when excited by blue excitation light. A region corresponding to a blue pixel preferably does not contain a phosphor.
無機蛍光体としては、青色の励起光により緑色や赤色などの各色を発光するもの、すなわち、波長400~500nmの励起光により励起され、発光スペクトルが500~700nmの領域にピークを有するものが好ましい。かかる無機蛍光体としては、例えば、YAG系蛍光体、TAG系蛍光体、サイアロン系蛍光体、Mn4+付活フッ化物錯体蛍光体、量子ドットと称される無機半導体等が挙げられる。これらを2種以上用いてもよい。これらの中でも、量子ドットが好ましい。量子ドットは他の蛍光体に比較して平均粒子径が小さいことから、(B)画素の表面を平滑化して表面における光散乱を抑制することができるため、光の取り出し効率をより向上させ、輝度をより向上させることができる。The inorganic phosphor is preferably one that emits green or red light by blue excitation light, that is, one that is excited by excitation light with a wavelength of 400 to 500 nm and has a peak emission spectrum in the region of 500 to 700 nm. . Examples of such inorganic phosphors include YAG-based phosphors, TAG-based phosphors, sialon-based phosphors, Mn 4+ -activated fluoride complex phosphors, and inorganic semiconductors called quantum dots. You may use 2 or more types of these. Among these, quantum dots are preferred. Since quantum dots have a smaller average particle size than other phosphors, (B) the surface of the pixel can be smoothed to suppress light scattering on the surface, so that the light extraction efficiency is further improved. Brightness can be further improved.
量子ドットの材料としては、例えば、II-IV族、III-V族、IV-VI族、IV族の半導体などが挙げられる。これらの無機半導体としては、例えば、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si3N4、Ge3N4、Al2O3などが挙げられる。これらを2種以上用いてもよい。Quantum dot materials include, for example, II-IV group, III-V group, IV-VI group, and IV group semiconductors. Examples of these inorganic semiconductors include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe , SnTe , PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si3N4 , Ge3N4 , Al2O3 and the like. You may use 2 or more types of these.
有機蛍光体としては、青色の励起光により緑色や赤色などの各色を発光するものが好ましい。赤色の蛍光を発する蛍光体として、下記構造式(8)で表される基本骨格を有するピロメテン誘導体、緑色の蛍光を発する蛍光体として、下記構造式(9)で表される基本骨格を有するピロメテン誘導体などが挙げられる。その他には、置換基の選択により赤色または緑色の蛍光を発するペリレン系誘導体、ポルフィリン系誘導体、オキサジン系誘導体、ピラジン系誘導体などが挙げられる。これらを2種以上含有してもよい。これらの中でも、量子収率が高いことから、ピロメテン誘導体が好ましい。ピロメテン誘導体は、例えば、特開2011-241160号公報に記載の方法により得ることができる。 As the organic phosphor, one that emits green, red, or other colors by blue excitation light is preferable. A pyrromethene derivative having a basic skeleton represented by the following structural formula (8) as a phosphor emitting red fluorescence, and a pyrromethene derivative having a basic skeleton represented by the following structural formula (9) as a phosphor emitting green fluorescence derivatives and the like. Other examples include perylene-based derivatives, porphyrin-based derivatives, oxazine-based derivatives, and pyrazine-based derivatives that emit red or green fluorescence depending on the selection of substituents. You may contain 2 or more types of these. Among these, pyrromethene derivatives are preferred because of their high quantum yield. A pyrromethene derivative can be obtained, for example, by the method described in JP-A-2011-241160.
有機蛍光体は溶媒に可溶なため、所望の厚みの画素(B)を容易に形成することができる。 Since the organic phosphor is soluble in a solvent, it is possible to easily form pixels (B) with a desired thickness.
画素(B)の厚みは、色特性を向上させる観点から、0.5μm以上が好ましく、1μm以上がより好ましい。一方、画素(B)の厚みは、表示装置の薄型化や曲面加工性の観点から、30μm以下が好ましく、20μm以下がより好ましい。 From the viewpoint of improving color characteristics, the thickness of the pixel (B) is preferably 0.5 μm or more, more preferably 1 μm or more. On the other hand, the thickness of the pixel (B) is preferably 30 μm or less, more preferably 20 μm or less, from the viewpoint of thinning the display device and curved surface processing.
各画素(B)の大きさは、20~200μm程度が一般的である。 The size of each pixel (B) is generally about 20 to 200 μm.
画素(B)は、隔壁(A-1)によって隔てられて配列していることが好ましい。画素と画素の間に隔壁を設けることにより、発光した光の拡散や混色をより抑制することができる。 The pixels (B) are preferably arranged separated by partitions (A-1). By providing a partition between pixels, diffusion and color mixture of emitted light can be further suppressed.
画素(B)の形成方法としては、例えば、色変換発光材料を含有する塗液(以下、色変換発光材料塗液)を、隔壁(A-1)によって隔てられた空間に充填する方法が挙げられる。色変換発光材料塗液は、さらに樹脂や溶媒を含有してもよい。 As a method for forming the pixel (B), for example, a method of filling a space separated by a partition (A-1) with a coating liquid containing a color-converting luminescent material (hereinafter referred to as a color-converting luminescent material coating liquid) can be mentioned. be done. The color-converting luminescent material coating liquid may further contain a resin and a solvent.
色変換発光材料塗液の充填方法としては、フォトリソ法、インクジェット法などが挙げられるが、各画素に種類の異なる色変換発光材料を容易に塗り分ける観点から、インクジェット塗布法が好ましい。 As a method for filling the color-converting luminescent material coating liquid, a photolithographic method, an inkjet method, and the like can be mentioned, but the inkjet coating method is preferable from the viewpoint of easily separately coating each pixel with different types of color-converting luminescent materials.
得られた塗布膜を減圧乾燥および/または加熱乾燥してもよい。減圧乾燥する場合、乾燥溶媒が減圧チャンバー内壁に再凝縮することを防ぐために、減圧乾燥温度は、80℃以下が好ましい。減圧乾燥の圧力は、塗布膜に含まれる溶媒の蒸気圧以下が好ましく、1~1000Paが好ましい。減圧乾燥時間は、10~600秒間が好ましい。加熱乾燥する場合、加熱乾燥装置としては、例えば、オーブンやホットプレートなどが挙げられる。加熱乾燥温度は、60~200℃が好ましい。加熱乾燥時間は、1~60分間が好ましい。 The obtained coating film may be dried under reduced pressure and/or dried by heating. When drying under reduced pressure, the drying temperature under reduced pressure is preferably 80° C. or lower in order to prevent the drying solvent from re-condensing on the inner wall of the reduced pressure chamber. The pressure for drying under reduced pressure is preferably lower than the vapor pressure of the solvent contained in the coating film, and preferably 1 to 1000 Pa. The drying time under reduced pressure is preferably 10 to 600 seconds. In the case of heat drying, the heat drying apparatus includes, for example, an oven and a hot plate. The heat drying temperature is preferably 60 to 200°C. The heat drying time is preferably 1 to 60 minutes.
<遮光隔壁(A-2)>
本発明の隔壁付き基板は、前記下地基板と(A-1)パターン形成された隔壁との間に、さらに、さらに、(A-2)厚み1.0μmあたりのOD値が0.5以上である、パターン形成された隔壁(以下、「遮光隔壁(A-2)」と記載する場合がある)を有することが好ましい。遮光隔壁(A-2)を有することにより、遮光性を向上させて表示装置におけるバックライトの光漏れを抑制し、高コントラストで鮮明な画像を得ることができる。<Light shielding partition (A-2)>
In the substrate with partition walls of the present invention, (A-1) between the underlying substrate and the patterned partition walls, and (A-2) an OD value per 1.0 μm of thickness of 0.5 or more. It is preferable to have a pattern-formed partition (hereinafter sometimes referred to as a “light-shielding partition (A-2)”). By having the light-shielding partition (A-2), it is possible to improve light-shielding properties, suppress light leakage from the backlight in the display device, and obtain a high-contrast and clear image.
図3に、遮光隔壁を有する本発明の隔壁付き基板の一態様を示す断面図を示す。下地基板1上に、パターン形成された隔壁2および遮光隔壁4を有し、隔壁2および遮光隔壁4によって隔てられた領域に画素3が配列されている。
FIG. 3 shows a cross-sectional view showing one embodiment of the partition-attached substrate of the present invention having light-shielding partitions. It has
遮光隔壁(A-2)は、厚み1.0μmあたりのOD値が0.5以上である。ここで、遮光隔壁(A-2)の厚みは、後述するとおり、0.5~10μmが好ましい。本発明においては、遮光隔壁(A-2)の厚みの代表値として1.0μmを選択し、厚み1.0μmあたりのOD値に着目した。厚み1.0μmあたりのOD値を0.5以上とすることにより、遮光性をより向上させ、より高コントラストで鮮明な画像を得ることができる。厚み1.0μmあたりのOD値は、1.0以上がより好ましい。一方、厚み1.0μmあたりのOD値は4.0以下が好ましく、パターン加工性を向上させることができる。厚み1.0μmあたりのOD値は、3.0以下がより好ましい。遮光隔壁(A-2)のOD値は、前述の隔壁(A-1)のOD値と同様に測定することができる。なお、OD値を上記範囲にするための手段としては、例えば、遮光隔壁(A-2)を後述する好ましい組成とすることなどが挙げられる。 The light-shielding partition (A-2) has an OD value of 0.5 or more per 1.0 μm of thickness. Here, the thickness of the light shielding partition (A-2) is preferably 0.5 to 10 μm, as will be described later. In the present invention, 1.0 μm was selected as a representative value of the thickness of the light-shielding barrier ribs (A-2), and attention was paid to the OD value per 1.0 μm of thickness. By setting the OD value per 1.0 μm of thickness to 0.5 or more, the light shielding property can be further improved, and a clearer image with higher contrast can be obtained. The OD value per 1.0 μm of thickness is more preferably 1.0 or more. On the other hand, the OD value per 1.0 μm of thickness is preferably 4.0 or less, which can improve pattern workability. The OD value per 1.0 μm of thickness is more preferably 3.0 or less. The OD value of the light-shielding partition wall (A-2) can be measured in the same manner as the OD value of the partition wall (A-1) described above. Incidentally, as a means for setting the OD value within the above range, for example, the light-shielding partition (A-2) is made to have a preferable composition described later.
遮光隔壁(A-2)の厚みは、遮光性を向上させる観点から、0.5μm以上が好ましく、1.0μm以上がより好ましい。一方、平坦性を向上させる観点から、遮光隔壁(A-2)の厚みは、10μm以下が好ましく、5μm以下がより好ましい。また、遮光隔壁(A-2)の幅は、前述の隔壁(A-1)と同程度が好ましい。 The thickness of the light-shielding partition (A-2) is preferably 0.5 μm or more, more preferably 1.0 μm or more, from the viewpoint of improving light-shielding properties. On the other hand, from the viewpoint of improving flatness, the thickness of the light shielding partition (A-2) is preferably 10 μm or less, more preferably 5 μm or less. Further, the width of the light-shielding partition (A-2) is preferably approximately the same as that of the above-described partition (A-1).
遮光隔壁(A-2)は、樹脂および黒色顔料を含有することが好ましい。樹脂は、隔壁のクラック耐性および耐光性を向上させる機能を有する。黒色顔料は、入射した光を吸収し、射出光を低減する機能を有する。 The light shielding partition (A-2) preferably contains a resin and a black pigment. The resin has a function of improving crack resistance and light resistance of the partition walls. The black pigment has a function of absorbing incident light and reducing emitted light.
樹脂としては、例えば、エポキシ樹脂、(メタ)アクリルポリマ、ポリウレタン、ポリエステル、ポリイミド、ポリオレフィン、ポリシロキサンなどが挙げられる。これらを2種以上含有してもよい。これらの中でも、耐熱性および溶媒耐性に優れることから、ポリイミドが好ましい。 Examples of resins include epoxy resins, (meth)acrylic polymers, polyurethanes, polyesters, polyimides, polyolefins, and polysiloxanes. You may contain 2 or more types of these. Among these, polyimide is preferable because it is excellent in heat resistance and solvent resistance.
黒色顔料としては、前述の樹脂組成物中における黒色顔料として例示したものや、酸化パラジウム、酸化白金、酸化金、酸化銀などが挙げられる。高い遮光性を有することから、窒化チタン、窒化ジルコニウム、カーボンブラック、酸化パラジウム、酸化白金、酸化金および酸化銀から選ばれた黒色顔料が好ましい。 Examples of the black pigment include those exemplified as the black pigment in the resin composition described above, palladium oxide, platinum oxide, gold oxide, silver oxide, and the like. A black pigment selected from titanium nitride, zirconium nitride, carbon black, palladium oxide, platinum oxide, gold oxide and silver oxide is preferred because it has high light-shielding properties.
下地基板上に遮光隔壁(A-2)をパターン形成する方法としては、例えば、特開2015-1654号公報に記載の感光性材料を用いて、前述の隔壁(A-1)と同様に感光性ペースト法によりパターン形成する方法が好ましい。 As a method for patterning the light-shielding partition (A-2) on the underlying substrate, for example, a photosensitive material described in JP-A-2015-1654 is used, and the above-described partition (A-1) is photosensitive. A method of forming a pattern by a transparent paste method is preferred.
また、本発明の隔壁付き基板は、下地基板と前記画素(B)の間に、さらに、厚み1~5μmのカラーフィルター(以下、「カラーフィルター」と記載する場合がある)を有することが好ましい。カラーフィルターは、特定波長域の可視光を透過させて透過光を所望の色相とする機能を有する。カラーフィルターを有することにより、表示装置の色純度を向上させることができる。カラーフィルターの厚みを1μm以上とすることにより、色純度をより向上させることができる。一方、カラーフィルターの厚みを5μm以下とすることにより、輝度をより向上させることができる。 In addition, the substrate with partition walls of the present invention preferably further has a color filter (hereinafter sometimes referred to as “color filter”) having a thickness of 1 to 5 μm between the base substrate and the pixels (B). . A color filter has a function of transmitting visible light in a specific wavelength range and making the transmitted light have a desired hue. By including the color filter, the color purity of the display device can be improved. Color purity can be further improved by setting the thickness of the color filter to 1 μm or more. On the other hand, by setting the thickness of the color filter to 5 μm or less, the luminance can be further improved.
図4に、カラーフィルターを有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2およびカラーフィルター5を有し、カラーフィルター5上に画素3を有する。
FIG. 4 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention having a color filter. It has patterned
カラーフィルターとしては、例えば、液晶ディスプレイ等のフラットパネルディスプレイに用いられる、フォトレジストに顔料を分散させた顔料分散型材料を用いたカラーフィルターなどが挙げられる。より具体的には、400nm~550nmの波長を選択的に透過する青色カラーフィルター、500nm~600nmの波長を選択的に透過する緑色カラーフィルター、500nm以上の波長を選択的に透過する黄色カラーフィルター、600nm以上の波長を選択的に透過する赤色カラーフィルターなどが挙げられる。 Examples of the color filter include a color filter using a pigment-dispersed material in which a pigment is dispersed in a photoresist, which is used for flat panel displays such as liquid crystal displays. More specifically, a blue color filter that selectively transmits a wavelength of 400 nm to 550 nm, a green color filter that selectively transmits a wavelength of 500 nm to 600 nm, a yellow color filter that selectively transmits a wavelength of 500 nm or more, A red color filter that selectively transmits wavelengths of 600 nm or more may be used.
また、カラーフィルターは、色変換発光材料を含有する画素(B)から離隔して積層されていてもよいし、一体化して積層されていてもよい。 Moreover, the color filter may be laminated separately from the pixel (B) containing the color-converting luminescent material, or may be integrally laminated.
本発明の隔壁付き基板は、下地基板と前記画素(B)の間に、さらに、遮光隔壁で隔てられた厚み1~5μmのカラーフィルターを有することが好ましい。 The substrate with partition walls of the present invention preferably further has a color filter with a thickness of 1 to 5 μm separated by a light-shielding partition wall between the underlying substrate and the pixels (B).
図5に、遮光隔壁で隔てられたカラーフィルターを有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された遮光隔壁4に隔てられたカラーフィルター5を有し、その上に隔壁2および画素3を有する。
FIG. 5 shows a cross-sectional view of one embodiment of the partition-attached substrate of the present invention having color filters separated by light-shielding partition walls.
本発明の隔壁付き基板は、画素(B)の上部または下部に、さらに、(C)波長550nmにおける屈折率が1.20~1.35である低屈折率層(以下、「低屈折率層(C)」と記載する場合がある)を有することが好ましい。低屈折率層(C)を有することにより、光の取り出し効率をより向上させ、表示装置の輝度をより向上させることができる。 The substrate with partition walls of the present invention further includes (C) a low refractive index layer having a refractive index of 1.20 to 1.35 at a wavelength of 550 nm (hereinafter referred to as "low refractive index layer (C)” may be described). By having the low refractive index layer (C), the light extraction efficiency can be further improved, and the luminance of the display device can be further improved.
図6に、低屈折率層を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2および画素3を有し、これらの上に、さらに低屈折率層6を有する。
FIG. 6 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention having a low refractive index layer. It has patterned
表示装置において、バックライトの光の反射を適度に抑えて画素(B)に効率よく光を入射させる観点から、低屈折率層(C)の屈折率は、1.20以上が好ましく、1.23以上がより好ましい。一方、輝度を向上させる観点から、低屈折率層(C)の屈折率は、1.35以下が好ましく、1.30以下がより好ましい。ここで、低屈折率層(C)の屈折率は、プリズムカプラーを用いて、大気圧下、20℃の条件で、硬化膜面に対し垂直方向から波長550nmの光を照射して測定することができる。 In the display device, the refractive index of the low refractive index layer (C) is preferably 1.20 or more from the viewpoint of appropriately suppressing the reflection of light from the backlight and allowing light to enter the pixels (B) efficiently. 23 or more is more preferable. On the other hand, from the viewpoint of improving brightness, the refractive index of the low refractive index layer (C) is preferably 1.35 or less, more preferably 1.30 or less. Here, the refractive index of the low refractive index layer (C) is measured by irradiating light with a wavelength of 550 nm from a direction perpendicular to the cured film surface under atmospheric pressure and at 20° C. using a prism coupler. can be done.
低屈折率層(C)は、ポリシロキサンおよび中空構造を有しないシリカ粒子を含有することが好ましい。ポリシロキサンは、シリカ粒子などの無機粒子との相溶性が高く、透明な層を形成することができるバインダーとして機能する。また、シリカ粒子を含有することにより、低屈折率層(C)の中に微小な空隙を効率よく形成して屈折率を低減することができ、屈折率を前述の範囲に容易に調整することができる。さらに、中空構造を有しないシリカ粒子を用いることにより、硬化収縮時のクラックを生じやすい中空構造を有しないため、クラックを抑制することができる。 The low refractive index layer (C) preferably contains polysiloxane and silica particles having no hollow structure. Polysiloxane has high compatibility with inorganic particles such as silica particles and functions as a binder capable of forming a transparent layer. In addition, by containing silica particles, minute voids can be efficiently formed in the low refractive index layer (C) to reduce the refractive index, and the refractive index can be easily adjusted within the above range. can be done. Furthermore, by using silica particles that do not have a hollow structure, cracks can be suppressed because they do not have a hollow structure that tends to cause cracks during curing shrinkage.
低屈折率層(C)に含まれるポリシロキサンは、フッ素を含有することが好ましい。フッ素を含有することにより、低屈折率層(C)の屈折率を1.20~1.35に容易に調整することができる。フッ素含有ポリシロキサンは、少なくとも下記一般式(10)で表されるフッ素含有アルコキシシラン化合物を含む複数のアルコキシシラン化合物を加水分解および重縮合することにより得ることができる。さらに他のアルコキシシラン化合物を用いてもよい。なお、一般式(10)中、「―(OR12)4―m」なる表記は、Si原子に「―(OR12)」が(4-m)個結合していることを意味する。The polysiloxane contained in the low refractive index layer (C) preferably contains fluorine. By containing fluorine, the refractive index of the low refractive index layer (C) can be easily adjusted to 1.20 to 1.35. Fluorine-containing polysiloxane can be obtained by hydrolyzing and polycondensing a plurality of alkoxysilane compounds including at least a fluorine-containing alkoxysilane compound represented by the following general formula (10). Other alkoxysilane compounds may also be used. In general formula (10), the notation "-(OR 12 ) 4-m " means that (4-m) "-(OR 12 )" are bonded to the Si atom.
上記一般式(10)中、R13はフッ素数3~17のフルオロアルキル基を表す。フルオロアルキル基の炭素数は、好ましくは1~20である。R12は、一般式(6)~(7)におけるR11と同じ基を表す。mは1または2を表す。4-m個のR12およびm個のR13は、それぞれ同じでも異なってもよい。In general formula (10) above, R 13 represents a fluoroalkyl group having 3 to 17 fluorine atoms. The fluoroalkyl group preferably has 1 to 20 carbon atoms. R 12 represents the same group as R 11 in general formulas (6) to (7). m represents 1 or 2; 4-m R 12 and m R 13 may be the same or different.
一般式(10)で表されるフッ素含有アルコキシシラン化合物としては、例えば、トリフルオロエチルトリメトキシシラン、トリフルオロエチルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラントリフルオロエチルエチルジメトキシシラン、トリフルオロエチルエチルジエトキシシラン、トリフルオロエチルエチルジイソプロポキシシランなどが挙げられる。これらを2種以上用いてもよい。 Examples of fluorine-containing alkoxysilane compounds represented by general formula (10) include trifluoroethyltrimethoxysilane, trifluoroethyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, trifluoroethylethyl dimethoxysilane, trifluoroethylethyldiethoxysilane, trifluoroethylethyldiisopropoxysilane, and the like. You may use 2 or more types of these.
低屈折率層(C)におけるポリシロキサンの含有量は、クラックを抑制する観点から、4重量%以上が好ましい。一方、ポリシロキサンの含有量は、シリカ粒子間のネットワークによるチキソ性を確保し、低屈折率層(C)中に適度に空気層を保ち、屈折率をより低減する観点から、32重量%以下が好ましい。 The content of polysiloxane in the low refractive index layer (C) is preferably 4% by weight or more from the viewpoint of suppressing cracks. On the other hand, the content of polysiloxane is 32% by weight or less from the viewpoint of ensuring thixotropic properties due to the network between silica particles, maintaining an appropriate air layer in the low refractive index layer (C), and further reducing the refractive index. is preferred.
低屈折率層(C)における中空構造を有しないシリカ粒子としては、例えば、日産化学工業(株)製“スノーテックス”(登録商標)や“オルガノシリカゾル”(登録商標)シリーズ(イソプロピルアルコール分散液、メチルエチルケトン分散液、プロピレングリコールモノメチルエーテル分散液、メタノール分散液など。品番PGM-ST、PMA-ST、IPA-ST、IPA-ST-L、IPA-ST-ZL、IPA-ST-UP、MEK-ST-UPなど)が挙げられる。これらを2種以上含有してもよい。 Silica particles having no hollow structure in the low refractive index layer (C) include, for example, "Snowtex" (registered trademark) manufactured by Nissan Chemical Industries, Ltd. and "Organo Silica Sol" (registered trademark) series (isopropyl alcohol dispersion , methyl ethyl ketone dispersion, propylene glycol monomethyl ether dispersion, methanol dispersion, etc. Product numbers PGM-ST, PMA-ST, IPA-ST, IPA-ST-L, IPA-ST-ZL, IPA-ST-UP, MEK- ST-UP, etc.). You may contain 2 or more types of these.
低屈折率層(C)中における中空構造を有しないシリカ粒子の含有量は、シリカ粒子間のネットワークによるチキソ性を確保し、低屈折率層(C)中に適度に空気層を保ち、屈折率をより低減する観点から、68重量%以上が好ましい。一方、中空構造を有しないシリカ粒子の含有量は、クラックを抑制する観点から、96重量%以下が好ましい。 The content of silica particles that do not have a hollow structure in the low refractive index layer (C) ensures thixotropy due to the network between silica particles, maintains an appropriate air layer in the low refractive index layer (C), and refraction From the viewpoint of further reducing the rate, 68% by weight or more is preferable. On the other hand, the content of silica particles having no hollow structure is preferably 96% by weight or less from the viewpoint of suppressing cracks.
低屈折率層(C)の厚みは、画素(B)の段差をカバーして欠陥の発生を抑制する観点から、0.1μm以上が好ましく、0.5μm以上がより好ましい。一方、低屈折率層(C)の厚みは、低屈折率層(C)のクラックの原因となるストレスを低減する観点から、20μm以下が好ましく、10μm以下がより好ましい。 The thickness of the low refractive index layer (C) is preferably 0.1 μm or more, more preferably 0.5 μm or more, from the viewpoint of covering the steps of the pixels (B) and suppressing the occurrence of defects. On the other hand, the thickness of the low refractive index layer (C) is preferably 20 μm or less, more preferably 10 μm or less, from the viewpoint of reducing stress that causes cracks in the low refractive index layer (C).
低屈折率層(C)の形成方法としては、形成方法が容易であることから、塗布法が好ましい。例えば、ポリシロキサンとシリカ粒子を含有する低屈折率用樹脂組成物を画素(B)上に塗布し、乾燥した後、加熱することにより、低屈折率層(C)を形成することができる。 As a method for forming the low refractive index layer (C), a coating method is preferable because the forming method is easy. For example, the low refractive index layer (C) can be formed by applying a low refractive index resin composition containing polysiloxane and silica particles onto the pixels (B), drying, and then heating.
また、本発明の隔壁付き基板は、前記低屈折率層(C)上に、さらに、厚み50~1,000nmの無機保護層Iを有することが好ましい。無機保護層Iを有することにより、大気中の水分が低屈折率層(C)に到達しにくくなるため、低屈折率層(C)の屈折率変動を抑制し、輝度劣化を抑制することができる。 The substrate with partition walls of the present invention preferably further has an inorganic protective layer I having a thickness of 50 to 1,000 nm on the low refractive index layer (C). Since the presence of the inorganic protective layer I makes it difficult for moisture in the atmosphere to reach the low refractive index layer (C), it is possible to suppress fluctuations in the refractive index of the low refractive index layer (C) and suppress luminance degradation. can.
図7および図8に、低屈折率層および無機保護層Iを有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2および画素3を有し、これらの上または下に、さらに低屈折率層6および無機保護層I7を有する。
7 and 8 show cross-sectional views of one embodiment of the substrate with partition walls of the present invention having a low refractive index layer and an inorganic protective layer I. FIG. It has patterned
本発明の隔壁付き基板は、画素(B)とカラーフィルターの間に前記低屈折率層(C)を有することが好ましく、さらに、前記低屈折率層(C)上に、さらに、厚み50~1,000nmの無機保護層(I)を有することが好ましい。画素(B)とカラーフィルターの間に前記低屈折率層(C)を有することで、発光した光の光取り出し向上効果が高くなり、ディスプレイの輝度が向上する。 The substrate with partition walls of the present invention preferably has the low refractive index layer (C) between the pixel (B) and the color filter. It is preferred to have an inorganic protective layer (I) of 1,000 nm. By having the low refractive index layer (C) between the pixel (B) and the color filter, the effect of improving the light extraction of emitted light is increased, and the brightness of the display is improved.
図9に、画素(B)とカラーフィルターの間に前記低屈折率層および無機保護層(I)を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、遮光隔壁4で隔てられたカラーフィルター5を有し、それらの上に低屈折率層6および無機保護層(I)7を有し、さらにそれらの上にパターン形成された隔壁2および画素3を有する。
FIG. 9 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention having the low refractive index layer and the inorganic protective layer (I) between the pixels (B) and the color filters. A
また、本発明の隔壁付き基板は、前記画素(B)と前記低屈折率層(C)の間に、さらに、厚み50~1,000nmの無機保護層(II)を有することが好ましい。無機保護層(II)を有することにより、画素(B)から、低屈折率層に、画素(B)を形成する原料が移動しにくくなるため、低屈折率層(C)の屈折率変動を抑制し、輝度劣化を抑制することができる。 Further, the substrate with partition walls of the present invention preferably further has an inorganic protective layer (II) having a thickness of 50 to 1,000 nm between the pixel (B) and the low refractive index layer (C). By having the inorganic protective layer (II), it becomes difficult for the raw material forming the pixel (B) to move from the pixel (B) to the low refractive index layer. It is possible to suppress luminance deterioration.
図10に、低屈折率層および無機保護層(II)を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2および画素3を有し、これらの上に、さらに無機保護層(II)8および低屈折率層6を有する。
FIG. 10 shows a cross-sectional view of one mode of the substrate with partition walls of the present invention having a low refractive index layer and an inorganic protective layer (II). It has patterned
また、本発明の隔壁付き基板は、カラーフィルターと前記画素(B)の間に、さらに厚み50~1,000nmの無機保護層(III)および/または黄色有機保護層を有することが好ましい。無機保護層(III)を有することにより、カラーフィルターから、色変換発光材料を含有する画素(B)に、カラーフィルターの形成原料が到達しにくくなるため、色変換発光材料を含有する画素(B)の輝度劣化を抑制することができる。また、黄色有機保護層を有することにより、色変換発光材料を含有する画素(B)によって変換しきれなかった青色漏れ光をカットし、色再現性を向上させることができる。 Further, the substrate with partition walls of the present invention preferably further has an inorganic protective layer (III) and/or a yellow organic protective layer having a thickness of 50 to 1,000 nm between the color filter and the pixel (B). By having the inorganic protective layer (III), it becomes difficult for the raw materials for forming the color filter to reach the pixel (B) containing the color conversion light emitting material from the color filter. ) can be suppressed. In addition, by having the yellow organic protective layer, it is possible to cut blue leakage light that has not been completely converted by the pixels (B) containing the color-converting light-emitting material, thereby improving color reproducibility.
図11に、カラーフィルターおよび無機保護層(III)および/または黄色有機保護層を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2およびカラーフィルター5を有し、これらの上に、無機保護層(III)および/または黄色有機保護層9を有し、さらにこれらの上に、隔壁2で隔てられて配列した画素3を有する。
FIG. 11 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention having a color filter and an inorganic protective layer (III) and/or a yellow organic protective layer. It has patterned
また、本発明の隔壁付き基板は、前記下地基板上に、さらに厚み50~1,000nmの無機保護層(IV)および/または黄色有機保護層を有することが好ましい。無機保護層(IV)および/または黄色有機保護層が屈折率調整層として作用し、画素(B)から出る光をより効率的に取り出し、表示装置の輝度をより向上させることができる。また、黄色有機保護層は、色変換発光材料を含有する画素(B)によって変換しきれなかった青色漏れ光をカットし、色再現性を向上させることができる。無機保護層(IV)および/または黄色有機保護層は、下地基板と隔壁(A)および画素(B)との間に設けられることがより好ましい。 Further, the substrate with partition walls of the present invention preferably further has an inorganic protective layer (IV) and/or a yellow organic protective layer having a thickness of 50 to 1,000 nm on the underlying substrate. The inorganic protective layer (IV) and/or the yellow organic protective layer act as a refractive index adjusting layer, extracting light emitted from the pixels (B) more efficiently, and can further improve the luminance of the display device. In addition, the yellow organic protective layer cuts the blue leakage light that has not been completely converted by the pixels (B) containing the color-converting light-emitting material, and can improve color reproducibility. The inorganic protective layer (IV) and/or the yellow organic protective layer are more preferably provided between the underlying substrate and the partition walls (A) and the pixels (B).
図12に、無機保護層(IV)および/または黄色有機保護層を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、無機保護層(IV)および/または黄色有機保護層10を有し、これらの上に、パターン形成された隔壁2および画素3を有する。
FIG. 12 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention having an inorganic protective layer (IV) and/or a yellow organic protective layer. It has an inorganic protective layer (IV) and/or a yellow organic
無機保護層(I)~(IV)を構成する材料としては、例えば、酸化ケイ素、酸化インジウムスズ、酸化ガリウム亜鉛などの金属酸化物;窒化ケイ素などの金属窒化物;フッ化マグネシウムなどのフッ化物等が挙げられる。これらを2種以上含有してもよい。これらの中でも、水蒸気透過性が低く、透過性が高いことから、窒化ケイ素または酸化ケイ素がより好ましい。 Examples of materials constituting the inorganic protective layers (I) to (IV) include metal oxides such as silicon oxide, indium tin oxide and gallium zinc oxide; metal nitrides such as silicon nitride; and fluorides such as magnesium fluoride. etc. You may contain 2 or more types of these. Among these, silicon nitride or silicon oxide is more preferable because of its low water vapor permeability and high permeability.
無機保護層(I)~(IV)の厚みは、水蒸気等の物質透過を充分に抑制する観点から、50nm以上が好ましく、100nm以上がより好ましい。一方、透過率の低下を抑制する観点から、無機保護層(I)~(IV)の厚みは、800nm以下が好ましく、500nm以下がより好ましい。 The thickness of the inorganic protective layers (I) to (IV) is preferably 50 nm or more, more preferably 100 nm or more, from the viewpoint of sufficiently suppressing permeation of substances such as water vapor. On the other hand, from the viewpoint of suppressing a decrease in transmittance, the thickness of the inorganic protective layers (I) to (IV) is preferably 800 nm or less, more preferably 500 nm or less.
無機保護層(I)~(IV)の厚みは、クロスセクションポリッシャー等の研磨装置を用いて、下地基板に対して垂直な断面を露出させ、走査型電子顕微鏡または透過型電子顕微鏡を用いて断面を拡大観察することにより測定することができる。 The thickness of the inorganic protective layers (I) to (IV) is determined by exposing a cross section perpendicular to the underlying substrate using a polishing apparatus such as a cross section polisher, and examining the cross section using a scanning electron microscope or a transmission electron microscope. can be measured by magnified observation.
無機保護層(I)~(IV)の形成方法としては、例えば、スパッタ法などが挙げられる。無機保護層は、無色透明または黄色透明であることが好ましい。 Examples of the method for forming the inorganic protective layers (I) to (IV) include a sputtering method. The inorganic protective layer is preferably colorless and transparent or yellow and transparent.
黄色有機保護層は、例えば、先述の有機銀化合物を含有する樹脂組成物をパターン加工して得られる。有機銀化合物は、先述の通り、パターン形成に際し、加熱工程において分解・凝集することにより黄色粒子となり、保護層を黄色化する機能を有する。黄色有機保護層用樹脂組成物において、有機銀化合物の含有量は、固形分中の0.2~5重量%が好ましい。有機銀化合物の含有量を0.2重量%以上とすることにより、より黄色化することができる。有機銀化合物の含有量は、固形分中の1.5重量%以上がより好ましい。一方、有機銀化合物の含有量を固形分中の5重量%以下とすることにより、透過率をより向上させることができる。 The yellow organic protective layer is obtained, for example, by patterning the resin composition containing the above-mentioned organic silver compound. As described above, the organic silver compound has the function of yellowing the protective layer by decomposing and aggregating in the heating process during pattern formation to form yellow particles. In the yellow organic protective layer resin composition, the content of the organic silver compound is preferably 0.2 to 5% by weight based on the solid content. By setting the content of the organic silver compound to 0.2% by weight or more, yellowing can be further achieved. The content of the organic silver compound is more preferably 1.5% by weight or more based on the solid content. On the other hand, by setting the content of the organic silver compound to 5% by weight or less in the solid content, the transmittance can be further improved.
黄色有機保護層を形成する樹脂組成物は、黄色顔料を含有してもよい。黄色顔料としては、例えば、ピグメントイエロー(以下PYと略す)PY137、PY138、PY139、PY147、PY148、PY150、PY153、PY154、PY166、PY168、PY185などが挙げられる。中でも、青色光を選択的に遮光する観点から、PY139、PY147、PY148およびPY150から選ばれた黄色顔料が好ましい。 The resin composition forming the yellow organic protective layer may contain a yellow pigment. Examples of yellow pigments include Pigment Yellow (hereinafter abbreviated as PY) PY137, PY138, PY139, PY147, PY148, PY150, PY153, PY154, PY166, PY168 and PY185. Among them, a yellow pigment selected from PY139, PY147, PY148 and PY150 is preferable from the viewpoint of selectively shielding blue light.
黄色有機保護層をパターン形成する方法としては、前述の隔壁(A-1)と同様に感光性ペースト法によりパターン形成する方法が好ましい。 As a method of patterning the yellow organic protective layer, a method of forming a pattern by a photosensitive paste method is preferable, as in the case of the barrier ribs (A-1) described above.
図7のように、カラーフィルター7上に黄色有機保護層8を形成する場合、黄色有機保護層8は、カラーフィルターの各画素を平坦化するオーバーコート層としての役割を持たせてもよい。
When the yellow organic
黄色有機保護層の厚みは、青色漏れ光を充分に遮光する観点から、100nm以上が好ましく、500nm以上がより好ましい。一方、光取り出し効率の低下を抑制する観点から、黄色有機保護層の厚みは、3000nm以下が好ましく、2000nm以下がより好ましい。 The thickness of the yellow organic protective layer is preferably 100 nm or more, more preferably 500 nm or more, from the viewpoint of sufficiently shielding blue leakage light. On the other hand, the thickness of the yellow organic protective layer is preferably 3000 nm or less, more preferably 2000 nm or less, from the viewpoint of suppressing a decrease in light extraction efficiency.
本発明の隔壁付き基板は、基板上に形成された隔壁によって分離された各画素に対応したLEDを多数並べた、ミニまたはマイクロLEDを用いた表示装置にも用いることができる。各画素のON/OFFは、ミニまたはマイクロLEDのON/OFFによって可能となり、液晶は必要ない。すなわち、本発明の隔壁付き基板は、各画素を分離する隔壁に加えて、バックライトにおけるミニまたはマイクロLEDを分離する隔壁にも用いることができる。 The substrate with partition walls of the present invention can also be used in display devices using mini- or micro-LEDs, in which a large number of LEDs corresponding to pixels separated by partition walls formed on the substrate are arranged. ON/OFF of each pixel is enabled by ON/OFF of a mini or micro LED, no liquid crystal is required. In other words, the substrate with partition walls of the present invention can be used not only for partition walls for separating pixels, but also for partition walls for separating mini or micro LEDs in a backlight.
例えば、本発明の隔壁付き基板は、前記下地基板上に、さらに有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源を有することが好ましい。有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源を隔壁で隔てることで、各画素間の混色を防止しディスプレイの表示色純度を向上することができる。 For example, the substrate with partition walls of the present invention preferably further has a light emitting source selected from organic EL cells, mini-LED cells and micro-LED cells on the underlying substrate. By separating the light-emitting light sources selected from the organic EL cells, the mini-LED cells and the micro-LED cells by partition walls, it is possible to prevent color mixture between pixels and improve the display color purity of the display.
図13に、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上にパターン形成された隔壁2の間に、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源11を有する。
FIG. 13 shows a cross-sectional view of one mode of the substrate with partition walls of the present invention, which has a light-emitting light source selected from organic EL cells, mini-LED cells, and micro-LED cells. A
また、本発明の隔壁付き基板は、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源の上に、さらに画素(B)を有することが好ましい。 Moreover, the substrate with partition walls of the present invention preferably further has pixels (B) on the light emitting light sources selected from organic EL cells, mini-LED cells and micro-LED cells.
図14に、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源と画素を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上にパターン形成された隔壁2の間に、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源11を有し、さらにその上に画素3を有する。
FIG. 14 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention, which has light-emitting light sources and pixels selected from organic EL cells, mini-LED cells, and micro-LED cells. A
次に、本発明の表示装置について説明する。本発明の表示装置は、前記隔壁付き基板と、発光光源とを有する。発光光源としては、液晶セル、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源が好ましい。発光特性に優れることから、発光光源としては、有機ELセルがより好ましい。ミニLEDセルとは、縦横の長さが100μm~10mm程度であるLEDを多数並べたセルのことを指す。マイクロLEDセルとは、縦横の長さが100μm未満であるLEDを多数並べたセルのことを指す。 Next, the display device of the present invention will be described. A display device of the present invention includes the substrate with partition walls and a light emitting source. As the light emission source, a light emission source selected from a liquid crystal cell, an organic EL cell, a mini LED cell and a micro LED cell is preferable. An organic EL cell is more preferable as the light source because of its excellent light emission characteristics. A mini-LED cell is a cell in which a large number of LEDs each having a length and width of about 100 μm to 10 mm are arranged. A micro LED cell refers to a cell in which a large number of LEDs each having a length and width of less than 100 μm are arranged.
本発明の表示装置の製造方法について、本発明の隔壁付き基板と有機ELセルを有する表示装置の一例を挙げて説明する。ガラス基板上に、感光性ポリイミド樹脂を塗布し、フォトリソグラフィー法を用いて、開口部を有する絶縁膜を形成する。その上に、アルミニウムをスパッタした後、フォトリソグラフィー法によりアルミニウムのパターニングを行い、絶縁膜の無い開口部にアルミニウムからなる背面電極層を形成する。続いて、その上に、電子輸送層としてトリス(8-キノリノラト)アルミニウム(以下、Alq3と略す)を真空蒸着法により成膜した後、発光層としてAlq3にジシアノメチレンピラン、キナクリドンおよび4,4’-ビス(2,2-ジフェニルビニル)ビフェニルをドーピングした白色発光層を形成する。次に、正孔輸送層としてN,N’-ジフェニル-N,N’-ビス(α-ナフチル)-1,1’-ビフェニル-4,4’-ジアミンを真空蒸着法にて成膜する。最後に、透明電極としてITOをスパッタリングにて成膜し、白色発光層を有する有機ELセルを作製する。前述の隔壁付き基板と、このようにして得られた有機ELセルを対向させて封止剤により貼り合せることにより、表示装置を作製することができる。 A method for manufacturing a display device of the present invention will be described by taking an example of a display device having a substrate with partition walls and an organic EL cell of the present invention. A photosensitive polyimide resin is applied on a glass substrate, and an insulating film having an opening is formed by photolithography. After aluminum is sputtered thereon, the aluminum is patterned by photolithography to form a back electrode layer made of aluminum in the openings where there is no insulating film. Subsequently, tris(8-quinolinolato)aluminum (hereinafter abbreviated as Alq3) was formed thereon as an electron transport layer by vacuum vapor deposition, and then Alq3 as a light-emitting layer was formed with dicyanomethylenepyran, quinacridone and 4,4′. forming a white light-emitting layer doped with bis(2,2-diphenylvinyl)biphenyl; Next, N,N'-diphenyl-N,N'-bis(α-naphthyl)-1,1'-biphenyl-4,4'-diamine is deposited as a hole transport layer by vacuum deposition. Finally, ITO is deposited as a transparent electrode by sputtering to fabricate an organic EL cell having a white light-emitting layer. A display device can be produced by bonding the aforementioned substrate with partition walls to the organic EL cell obtained in this manner so as to face each other with a sealant.
以下に実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの範囲に限定されない。なお、用いた化合物のうち略語を使用しているものについて、名称を以下に示す。 EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to these scopes. The names of the compounds using abbreviations among the compounds used are shown below.
PGMEA:プロピレングリコールモノメチルエーテルアセテート
EDM:ジエチレングリコールエチルメチルエーテル
DAA:ジアセトンアルコール
BHT:ジブチルヒドロキシトルエン。PGMEA: propylene glycol monomethyl ether acetate EDM: diethylene glycol ethyl methyl ether DAA: diacetone alcohol BHT: dibutylhydroxytoluene.
合成例1~6におけるポリシロキサン溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分の重量を秤量して、加熱前の重量に対する割合から固形分濃度を求めた。 The solid content concentrations of the polysiloxane solutions in Synthesis Examples 1 to 6 were determined by the following method. 1.5 g of the polysiloxane solution was put into an aluminum cup and heated at 250° C. for 30 minutes using a hot plate to evaporate the liquid. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration was obtained from the ratio to the weight before heating.
合成例1~6におけるポリシロキサン溶液の重量平均分子量は、以下の方法によりポリスチレン換算の重量平均分子量を測定した。
装置: Waters社製 RI検出器付きGPC測定装置(2695)
カラム: PLgel MIXED-Cカラム(ポリマーラボラトリーズ社製,300mm)×2本(直列連結)
測定温度:40℃
流速:1mL/min
溶媒:テトラヒドロフラン(THF) 0.5質量%溶液
標準物質:ポリスチレン
検出モード:RIThe weight average molecular weights of the polysiloxane solutions in Synthesis Examples 1 to 6 were measured as polystyrene-equivalent weight average molecular weights by the following method.
Apparatus: Waters GPC measuring apparatus with RI detector (2695)
Column: PLgel MIXED-C column (manufactured by Polymer Laboratories, 300 mm) x 2 (connected in series)
Measurement temperature: 40°C
Flow rate: 1 mL/min
Solvent: Tetrahydrofuran (THF) 0.5% by mass solution Standard substance: polystyrene Detection mode: RI
合成例1~6におけるポリシロキサン中の各繰り返し単位の含有比率は、以下の方法により求めた。ポリシロキサン溶液を直径10mmの“テフロン”(登録商標)製NMRサンプル管に注入して29Si-NMR測定を行い、オルガノシランに由来するSi全体の積分値に対する、特定のオルガノシランに由来するSiの積分値の割合から各繰り返し単位の含有比率を算出した。29Si-NMR測定条件を以下に示す。The content ratio of each repeating unit in polysiloxane in Synthesis Examples 1 to 6 was obtained by the following method. A polysiloxane solution is injected into a “Teflon” (registered trademark) NMR sample tube with a diameter of 10 mm and 29 Si-NMR measurement is performed, and the Si derived from a specific organosilane is compared with the integrated value of the entire Si derived from the organosilane. The content ratio of each repeating unit was calculated from the ratio of the integrated value of. 29 Si-NMR measurement conditions are shown below.
装置:核磁気共鳴装置(JNM-GX270;日本電子(株)製)
測定法:ゲーテッドデカップリング法
測定核周波数:53.6693MHz(29Si核)
スペクトル幅:20000Hz
パルス幅:12μs(45°パルス)
パルス繰り返し時間:30.0秒
溶媒:アセトン-d6
基準物質:テトラメチルシラン
測定温度:23℃
試料回転数:0.0Hz。Apparatus: Nuclear magnetic resonance apparatus (JNM-GX270; manufactured by JEOL Ltd.)
Measurement method: Gated decoupling method Measurement nucleus frequency: 53.6693 MHz ( 29 Si nuclei)
Spectrum width: 20000Hz
Pulse width: 12 μs (45° pulse)
Pulse repetition time: 30.0 seconds Solvent: Acetone-d6
Reference substance: Tetramethylsilane Measurement temperature: 23°C
Sample rotation speed: 0.0 Hz.
合成例1 ポリシロキサン(PSL-1)溶液
1000mlの三口フラスコに、ジフェニルジメトキシシランを203.13g(0.831mol)、3-メタクリロキシプロピルトリメトキシシランを76.06g(0.306mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、ジメチルジメトキシシランを42.08g(0.350mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを1.475g、およびPGMEAを308.45g仕込み、40℃で撹拌しながら水76.39gにリン酸3.887g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計173.99g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-1)溶液を得た。なお、得られたポリシロキサン(PSL-1)の重量平均分子量は6,000であった。また、ポリシロキサン(PSL-1)における、ジフェニルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、ジメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ47.5mol%、17.5mol%、5mol%、20mol%および10mol%であった。Synthesis Example 1 Polysiloxane (PSL-1) solution In a 1000 ml three-necked flask, 203.13 g (0.831 mol) of diphenyldimethoxysilane, 76.06 g (0.306 mol) of 3-methacryloxypropyltrimethoxysilane, 3- 21.56 g (0.088 mol) of (3,4-epoxycyclohexyl)propyltrimethoxysilane, 42.08 g (0.350 mol) of dimethyldimethoxysilane, 45.91 g of 3-trimethoxysilylpropylsuccinic anhydride ( 0.175 mol), 1.475 g of BHT, and 308.45 g of PGMEA were charged, and 3.887 g of phosphoric acid (1.0% by weight based on the charged monomer) was dissolved in 76.39 g of water while stirring at 40°C. Aqueous phosphoric acid was added over 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. A mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 173.99 g of methanol and water, which are by-products, were distilled during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-1) solution. The weight average molecular weight of the obtained polysiloxane (PSL-1) was 6,000. Also, diphenyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, dimethyldimethoxysilane, 3-trimethoxysilylpropylsuccinate in polysiloxane (PSL-1) The molar ratio of each repeating unit derived from acid anhydride was 47.5 mol %, 17.5 mol %, 5 mol %, 20 mol % and 10 mol %, respectively.
合成例2 ポリシロキサン(PSL-2)溶液
1000mlの三口フラスコに、フェニルトリメトキシシランを164.83g(0.831mol)、3-メタクリロキシプロピルメチルジメトキシシランを76.06g(0.306mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、ジメチルジメトキシシランを42.08g(0.350mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを1.186g、およびPGMEAを255.58g仕込み、40℃で撹拌しながら水91.35gにリン酸3.504g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計208.08g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-2)溶液を得た。なお、得られたポリシロキサン(PSL-2)の重量平均分子量は5,500であった。また、ポリシロキサン(PSL-2)における、フェニルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、ジメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ47.5mol%、17.5mol%、5mol%、20mol%および10mol%であった。Synthesis Example 2 Polysiloxane (PSL-2) solution In a 1000 ml three-necked flask, 164.83 g (0.831 mol) of phenyltrimethoxysilane, 76.06 g (0.306 mol) of 3-methacryloxypropylmethyldimethoxysilane, 3 21.56 g (0.088 mol) of -(3,4-epoxycyclohexyl)propyltrimethoxysilane, 42.08 g (0.350 mol) of dimethyldimethoxysilane, and 45.91 g of 3-trimethoxysilylpropylsuccinic anhydride (0.175 mol), 1.186 g of BHT, and 255.58 g of PGMEA were charged, and 3.504 g of phosphoric acid (1.0% by weight based on the charged monomers) was dissolved in 91.35 g of water while stirring at 40°C. An aqueous phosphoric acid solution was added over 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. A mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 208.08 g of methanol and water, which are by-products, were distilled during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-2) solution. The weight average molecular weight of the obtained polysiloxane (PSL-2) was 5,500. Phenyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, dimethyldimethoxysilane, 3-trimethoxysilylpropyl in polysiloxane (PSL-2) The molar ratio of each repeating unit derived from succinic anhydride was 47.5 mol %, 17.5 mol %, 5 mol %, 20 mol % and 10 mol %, respectively.
合成例3 ポリシロキサン(PSL-3)溶液
1000mlの三口フラスコに、3-メタクリロキシプロピルメチルジメトキシシランを71.16g(0.306mol)、スチリルトリメトキシシランを78.52g(0.35mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、メチルトリメトキシシランを113.22g(0.83mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを1.080g、およびPGMEAを234.92g仕込み、40℃で撹拌しながら水92.14gにリン酸3.304g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計209g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-3)溶液を得た。なお、得られたポリシロキサン(PSL-3)の重量平均分子量は12,000であった。また、ポリシロキサン(PSL-3)における、3-メタクリロキシプロピルメチルジメトキシシラン、スチリルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、メチルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ17.5mol%、20mol%、5mol%、47.5mol%および10mol%であった。Synthesis Example 3 Polysiloxane (PSL-3) solution In a 1000 ml three-necked flask, 71.16 g (0.306 mol) of 3-methacryloxypropylmethyldimethoxysilane, 78.52 g (0.35 mol) of styryltrimethoxysilane, 3 21.56 g (0.088 mol) of -(3,4-epoxycyclohexyl)propyltrimethoxysilane, 113.22 g (0.83 mol) of methyltrimethoxysilane, and 45 g of 3-trimethoxysilylpropylsuccinic anhydride. 91 g (0.175 mol), 1.080 g of BHT, and 234.92 g of PGMEA were charged, and 3.304 g of phosphoric acid (1.0% by weight based on the charged monomers) was added to 92.14 g of water while stirring at 40°C. A dissolved aqueous solution of phosphoric acid was added over a period of 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. A mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 209 g of methanol and water, which are by-products, were distilled during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-3) solution. The weight average molecular weight of the obtained polysiloxane (PSL-3) was 12,000. Also, 3-methacryloxypropylmethyldimethoxysilane, styryltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, methyltrimethoxysilane, 3-trimethoxysilyl in polysiloxane (PSL-3) The molar ratio of each repeating unit derived from propylsuccinic anhydride was 17.5 mol %, 20 mol %, 5 mol %, 47.5 mol % and 10 mol %, respectively.
合成例4 ポリシロキサン(PSL-4)溶液
1000mlの三口フラスコに、3-メタクリロキシプロピルメチルジメトキシシランを71.16g(0.306mol)、スチリルトリメトキシシランを19.63g(0.088mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、メチルトリメトキシシランを148.97g(1.09mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを0.963g、およびPGMEAを212.01g仕込み、40℃で撹拌しながら水92.14gにリン酸3.072g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計209g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-4)溶液を得た。なお、得られたポリシロキサン(PSL-4)の重量平均分子量は10,000であった。また、ポリシロキサン(PSL-4)における、3-メタクリロキシプロピルメチルジメトキシシラン、スチリルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、メチルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ17.5mol%、5mol%、5mol%、62.5mol%および10mol%であった。Synthesis Example 4 Polysiloxane (PSL-4) solution In a 1000 ml three-necked flask, 71.16 g (0.306 mol) of 3-methacryloxypropylmethyldimethoxysilane, 19.63 g (0.088 mol) of styryltrimethoxysilane, 3 21.56 g (0.088 mol) of -(3,4-epoxycyclohexyl)propyltrimethoxysilane, 148.97 g (1.09 mol) of methyltrimethoxysilane, and 45 g of 3-trimethoxysilylpropylsuccinic anhydride. 91 g (0.175 mol), 0.963 g of BHT, and 212.01 g of PGMEA were charged, and 3.072 g of phosphoric acid (1.0% by weight based on the charged monomers) was added to 92.14 g of water while stirring at 40°C. A dissolved aqueous solution of phosphoric acid was added over a period of 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. A mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 209 g of methanol and water, which are by-products, were distilled during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-4) solution. The weight average molecular weight of the obtained polysiloxane (PSL-4) was 10,000. Also, 3-methacryloxypropylmethyldimethoxysilane, styryltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, methyltrimethoxysilane, 3-trimethoxysilyl in polysiloxane (PSL-4) The molar ratio of each repeating unit derived from propylsuccinic anhydride was 17.5 mol %, 5 mol %, 5 mol %, 62.5 mol % and 10 mol %, respectively.
合成例5 ポリシロキサン(PSL-5)溶液
1000mlの三口フラスコに、3-メタクリロキシプロピルメチルジメトキシシランを71.16g(0.306mol)、スチリルトリメトキシシランを157.03g(0.70mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、メチルトリメトキシシランを65.55g(0.481mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを1.235g、およびPGMEAを265.45g仕込み、40℃で撹拌しながら水92.14gにリン酸3.072g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計209g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-5)溶液を得た。なお、得られたポリシロキサン(PSL-5)の重量平均分子量は10,000であった。また、ポリシロキサン(PSL-5)における、3-メタクリロキシプロピルメチルジメトキシシラン、スチリルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、メチルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ17.5mol%、40mol%、5mol%、27.5mol%および10mol%であった。Synthesis Example 5 Polysiloxane (PSL-5) solution In a 1000 ml three-necked flask, 71.16 g (0.306 mol) of 3-methacryloxypropylmethyldimethoxysilane, 157.03 g (0.70 mol) of styryltrimethoxysilane, 3 21.56 g (0.088 mol) of -(3,4-epoxycyclohexyl)propyltrimethoxysilane, 65.55 g (0.481 mol) of methyltrimethoxysilane, and 45 g (0.481 mol) of 3-trimethoxysilylpropylsuccinic anhydride. 91 g (0.175 mol), 1.235 g of BHT, and 265.45 g of PGMEA were charged, and 3.072 g of phosphoric acid (1.0% by weight based on the charged monomers) was added to 92.14 g of water while stirring at 40°C. A dissolved aqueous solution of phosphoric acid was added over a period of 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. A mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 209 g of methanol and water, which are by-products, were distilled during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-5) solution. The weight average molecular weight of the obtained polysiloxane (PSL-5) was 10,000. Also, 3-methacryloxypropylmethyldimethoxysilane, styryltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, methyltrimethoxysilane, 3-trimethoxysilyl in polysiloxane (PSL-5) The molar ratio of each repeating unit derived from propylsuccinic anhydride was 17.5 mol %, 40 mol %, 5 mol %, 27.5 mol % and 10 mol %, respectively.
合成例6 ポリシロキサン(PSL-6)溶液
1000mlの三口フラスコに、ジフェニルジメトキシシランを213.82g(0.875mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを43.12g(0.175mol)、テトラエトキシシランを68.86g(0.263mol)、メチルトリメトキシシランを59.59g(0.438mol)、BHTを1.413g、およびPGMEAを298.06g仕込み、40℃で撹拌しながら水83.48gにリン酸3.854g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計282.58g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-6)溶液を得た。なお、得られたポリシロキサン(PSL-6)の重量平均分子量は5,500であった。また、ポリシロキサン(PSL-6)における、ジフェニルジメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、テトラエトキシシラン、メチルトリメトキシシランに由来する各繰り返し単位のモル比は、それぞれ50mol%、10mol%、15mol%、および25mol%であった。Synthesis Example 6 Polysiloxane (PSL-6) solution In a 1000 ml three-necked flask, 213.82 g (0.875 mol) of diphenyldimethoxysilane and 43.12 g (0.875 mol) of 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane were added. .175 mol), 68.86 g (0.263 mol) of tetraethoxysilane, 59.59 g (0.438 mol) of methyltrimethoxysilane, 1.413 g of BHT, and 298.06 g of PGMEA were charged and stirred at 40°C. An aqueous phosphoric acid solution prepared by dissolving 3.854 g of phosphoric acid (1.0% by weight with respect to the charged monomers) in 83.48 g of water was added over 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. A mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 282.58 g of methanol and water, which are by-products, were distilled during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-6) solution. The weight average molecular weight of the obtained polysiloxane (PSL-6) was 5,500. Further, the molar ratio of each repeating unit derived from diphenyldimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, tetraethoxysilane, and methyltrimethoxysilane in polysiloxane (PSL-6) is 50 mol %, 10 mol %, 15 mol %, and 25 mol %.
合成例1~6の組成をまとめて表1に示す。 The compositions of Synthesis Examples 1 to 6 are summarized in Table 1.
合成例7 緑色有機蛍光体
3,5-ジブロモベンズアルデヒド(3.0g)、4-t-ブチルフェニルボロン酸(5.3g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.4g)、および炭酸カリウム(2.0g)をフラスコに入れ、窒素置換した。ここに脱気したトルエン(30mL)および脱気した水(10mL)を加え、4時間還流した。反応溶液を室温まで冷却し、分液した後に、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。得られた反応生成物をシリカゲルカラムクロマトグラフィーにより精製し、3,5-ビス(4-t-ブチルフェニル)ベンズアルデヒド(3.5g)の白色固体を得た。次に、3,5-ビス(4-t-ブチルフェニル)ベンズアルデヒド(1.5g)と2,4-ジメチルピロール(0.7g)をフラスコに入れ、脱水ジクロロメタン(200mL)およびトリフルオロ酢酸(1滴)を加えて、窒素雰囲気下、4時間撹拌した。この反応混合物に2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(0.85g)の脱水ジクロロメタン溶液を加え、さらに1時間撹拌した。反応終了後、三弗化ホウ素ジエチルエーテル錯体(7.0mL)およびジイソプロピルエチルアミン(7.0mL)を加えて、4時間撹拌した後、さらに水(100mL)を加えて撹拌し、有機層を分液した。この有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。得られた反応生成物をシリカゲルカラムクロマトグラフィーにより精製し、緑色粉末0.4gを得た(収率17%)。得られた緑色粉末の1H-NMR分析結果は次の通りであり、上記で得られた緑色粉末が、下記構造式で表される[G-1]であることが確認された。Synthesis Example 7 Green
1H-NMR(CDCl3(d=ppm)):7.95(s,1H)、7.63-7.48(m,10H)、6.00(s,2H)、2.58(s,6H)、1.50(s,6H)、1.37(s,18H)。 1 H-NMR (CDCl 3 (d = ppm)): 7.95 (s, 1H), 7.63-7.48 (m, 10H), 6.00 (s, 2H), 2.58 (s , 6H), 1.50 (s, 6H), 1.37 (s, 18H).
合成例8 赤色有機蛍光体
4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール300mg、2-メトキシベンゾイルクロリド201mgおよびトルエン10mlの混合溶液を、窒素気流下、120℃で6時間加熱した。室温に冷却後、溶媒をエバポレートした。得られた残留物をエタノール20mlで洗浄し、真空乾燥することにより、2-(2-メトキシベンゾイル)-3-(4-t-ブチルフェニル)-5-(4-メトキシフェニル)ピロール260mgを得た。次に、2-(2-メトキシベンゾイル)-3-(4-t-ブチルフェニル)-5-(4-メトキシフェニル)ピロール260mg、4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール180mg、メタンスルホン酸無水物206mgおよび脱気したトルエン10mlの混合溶液を、窒素気流下、125℃で7時間加熱した。この反応混合物を室温に冷却後、水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄した後、エバポレートし、真空乾燥することにより、残留物としてピロメテン体を得た。次に、得られたピロメテン体とトルエン10mlの混合溶液に、窒素気流下、ジイソプロピルエチルアミン305mgおよび三フッ化ホウ素ジエチルエーテル錯体670mgを加え、室温で3時間撹拌した。この反応混合物に水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、赤紫色粉末0.27gを得た(収率70%)。得られた赤紫色粉末の1H-NMR分析結果は次の通りであり、上記で得られた赤紫色粉末が、下記構造式で表される[R-1]であることが確認された。Synthesis Example 8 Red organic phosphor A mixed solution of 300 mg of 4-(4-t-butylphenyl)-2-(4-methoxyphenyl)pyrrole, 201 mg of 2-methoxybenzoyl chloride and 10 ml of toluene was heated at 120° C. under a nitrogen stream. Heated for 6 hours. After cooling to room temperature, the solvent was evaporated. The obtained residue was washed with 20 ml of ethanol and vacuum dried to obtain 260 mg of 2-(2-methoxybenzoyl)-3-(4-t-butylphenyl)-5-(4-methoxyphenyl)pyrrole. rice field. Next, 2-(2-methoxybenzoyl)-3-(4-t-butylphenyl)-5-(4-methoxyphenyl)pyrrole 260 mg, 4-(4-t-butylphenyl)-2-(4- A mixed solution of 180 mg of methoxyphenyl)pyrrole, 206 mg of methanesulfonic anhydride and 10 ml of degassed toluene was heated at 125° C. for 7 hours under a nitrogen stream. After cooling the reaction mixture to room temperature, 20 ml of water was added and extracted with 30 ml of dichloromethane. After the organic layer was washed twice with 20 ml of water, it was evaporated and dried in a vacuum to obtain a pyrromethene compound as a residue. Next, 305 mg of diisopropylethylamine and 670 mg of boron trifluoride diethyl ether complex were added to a mixed solution of the obtained pyrromethene derivative and 10 ml of toluene under a nitrogen stream, and the mixture was stirred at room temperature for 3 hours. 20 ml of water was poured into the reaction mixture and extracted with 30 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate, and evaporated. After purification by silica gel column chromatography and vacuum drying, 0.27 g of reddish purple powder was obtained (yield 70%). The results of 1 H-NMR analysis of the obtained reddish purple powder are as follows, and it was confirmed that the reddish purple powder obtained above was [R-1] represented by the following structural formula.
1H-NMR(CDCl3(d=ppm)):1.19(s,18H),3.42(s,3H),3.85(s,6H),5.72(d,1H),6.20(t,1H),6.42-6.97(m,16H),7.89(d,4H)。 1 H-NMR (CDCl 3 (d=ppm)): 1.19 (s, 18H), 3.42 (s, 3H), 3.85 (s, 6H), 5.72 (d, 1H), 6.20 (t, 1H), 6.42-6.97 (m, 16H), 7.89 (d, 4H).
合成例9 シリカ粒子含有ポリシロキサン溶液(LS-1)
500mlの三口フラスコに、メチルトリメトキシシランを0.05g(0.4mmol)、トリフルオロプロピルトリメトキシシランを0.66g(3.0mmol)、トリメトキシシリルプロピルコハク酸無水物を0.10g(0.4mmol)、γ-アクリロキシプロピルトリメトキシシランを7.97g(34mmol)、および15.6重量%のシリカ粒子のイソプロピルアルコール分散液(IPA-ST-UP:日産化学工業(株)製)を224.37g入れ、エチレングリコールモノ-t-ブチルエーテル163.93gを加えた。室温で撹拌しながら、水4.09gにリン酸0.088gを溶かしたリン酸水溶液を3分間かけて添加した。その後、フラスコを40℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこからさらに2時間加熱撹拌することにより(内温は100~110℃)、シリカ粒子含有ポリシロキサン溶液(LS-1)を得た。なお、昇温および加熱撹拌中、窒素を0.05l(リットル)/分流した。反応中に副生成物であるメタノールおよび水が合計194.01g留出した。得られたシリカ粒子含有ポリシロキサン溶液(LS-1)の固形分濃度は24.3重量%、固形分中のポリシロキサンとシリカ粒子の含有量は、それぞれ15重量%および85重量%であった。得られたシリカ粒子含有ポリシロキサン(LS-1)におけるポリシロキサンの、メチルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、およびγ-アクリロキシプロピルトリメトキシシランに由来する各繰り返し単位のモル比は、それぞれ1.0mol%、8.0mol%、1.0mol%および90.0mol%であった。Synthesis Example 9 Silica Particle-Containing Polysiloxane Solution (LS-1)
0.05 g (0.4 mmol) of methyltrimethoxysilane, 0.66 g (3.0 mmol) of trifluoropropyltrimethoxysilane, and 0.10 g (0.0 mmol) of trimethoxysilylpropylsuccinic anhydride are placed in a 500 ml three-necked flask. .4 mmol), 7.97 g (34 mmol) of γ-acryloxypropyltrimethoxysilane, and 15.6% by weight of an isopropyl alcohol dispersion of silica particles (IPA-ST-UP: manufactured by Nissan Chemical Industries, Ltd.). 224.37 g was added, and 163.93 g of ethylene glycol mono-t-butyl ether was added. An aqueous phosphoric acid solution prepared by dissolving 0.088 g of phosphoric acid in 4.09 g of water was added over 3 minutes while stirring at room temperature. After that, the flask was immersed in an oil bath at 40° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the internal temperature of the solution reached 100° C., and by further heating and stirring for 2 hours (the internal temperature was 100 to 110° C.), a silica particle-containing polysiloxane solution (LS-1) was obtained. rice field. During the temperature rise and heating and stirring, 0.05 l (liter) of nitrogen was flowed per minute. A total of 194.01 g of methanol and water, which are by-products, were distilled during the reaction. The obtained silica particle-containing polysiloxane solution (LS-1) had a solid content concentration of 24.3% by weight, and the content of polysiloxane and silica particles in the solid content was 15% by weight and 85% by weight, respectively. . Polysiloxanes methyltrimethoxysilane, trifluoropropyltrimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride, and γ-acryloxypropyltrimethoxysilane in the obtained silica particle-containing polysiloxane (LS-1) The molar ratio of each repeating unit derived from was 1.0 mol%, 8.0 mol%, 1.0 mol% and 90.0 mol%, respectively.
実施例1 隔壁用樹脂組成物(P-1)
白色顔料として二酸化チタン顔料(R-960;BASFジャパン(株)製(以下「R-960」))を5.00g、樹脂として、合成例1により得られたポリシロキサン(PSL-1)溶液を5.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-1)を得た。また、有機銀化合物として、ネオデカン酸銀0.50gを、EDM4.50gに溶解して、有機銀化合物溶液(OA-1)を得た。Example 1 Partition wall resin composition (P-1)
5.00 g of titanium dioxide pigment (R-960; manufactured by BASF Japan Co., Ltd. (hereinafter "R-960")) as a white pigment, and polysiloxane (PSL-1) solution obtained in Synthesis Example 1 as a resin. 5.00 g was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-1). As an organic silver compound, 0.50 g of silver neodecanoate was dissolved in 4.50 g of EDM to obtain an organic silver compound solution (OA-1).
次に、前記顔料分散液(MW-1)8.25g、ポリシロキサン(PSL-1)溶液7.025g、前記有機銀化合物溶液(OA-1)1.031g、還元剤として、t-ブチルヒドロキノン0.026g、光重合開始剤として、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(О-アセチルオキシム)(“イルガキュア”(登録商標)OXE-02、BASFジャパン(株)製(以下「OXE-02」))0.155g、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(“イルガキュア”819、BASFジャパン(株)製(以下「IC-819」))0.258g、光重合性化合物として、ジペンタエリスリトールヘキサアクリレート(“KAYARAD”(登録商標)DPHA、新日本薬業(株)製(以下「DPHA」))2.063g、撥液化合物として、光重合性フッ素含有化合物(“メガファック”(登録商標)RS-72A、20重量%PGMEA希釈溶液品、DIC(株)製(以下「RS-72A」))0.258g、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(“セロキサイド”(登録商標)2021P、ダイセル(株)製(以下「セロキサイド(登録商標)2021P」))0.021g、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート](“イルガノックス”(登録商標)1010、BASFジャパン(株)製(以下「IRGANOX(登録商標)1010」))0.031g、およびアクリル系界面活性剤(“BYK”(登録商標)352、ビックケミージャパン(株)製(以下「BYK-352」))のPGMEA10重量%希釈溶液0.103g(濃度500ppmに相当)を、溶媒PGMEA1.405gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-1)を得た。 Next, 8.25 g of the pigment dispersion (MW-1), 7.025 g of the polysiloxane (PSL-1) solution, 1.031 g of the organic silver compound solution (OA-1), t-butylhydroquinone as a reducing agent 0.026 g, as a photoinitiator, ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(O-acetyloxime) ("Irgacure" (registered trademark) OXE-02, manufactured by BASF Japan Ltd. (hereinafter “OXE-02”)) 0.155 g, bis (2,4,6-trimethylbenzoyl)-phenylphosphine oxide (“Irgacure” 819, BASF Japan Co., Ltd. (hereinafter “IC-819”)) 0.258 g, as a photopolymerizable compound, dipentaerythritol hexaacrylate (“KAYARAD” (registered trademark) DPHA, manufactured by Shin Nihon Yakugyo Co., Ltd. (hereinafter “ DPHA")) 2.063 g, and as a liquid-repellent compound, a photopolymerizable fluorine-containing compound ("Megafac" (registered trademark) RS-72A, 20% by weight PGMEA diluted solution product, manufactured by DIC Corporation (hereinafter "RS- 72A”)) 0.258 g, 3′,4′-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate (“Celoxide” (registered trademark) 2021P, manufactured by Daicel Corporation (hereinafter “Celoxide (registered trademark) 2021P ”)) 0.021 g, ethylene bis (oxyethylene) bis [3-(5-tert-butyl-4-hydroxy-m-tolyl) propionate] (“Irganox” (registered trademark) 1010, BASF Japan Ltd. (hereinafter “IRGANOX (registered trademark) 1010”)) 0.031 g, and acrylic surfactant (“BYK” (registered trademark) 352, manufactured by BYK Chemie Japan Co., Ltd. (hereinafter “BYK-352”)) 0.103 g of a 10% by weight diluted solution of PGMEA (corresponding to a concentration of 500 ppm) was dissolved in 1.405 g of solvent PGMEA and stirred. The resulting mixture was filtered through a 5.0 μm filter to obtain a partition wall resin composition (P-1).
実施例2 隔壁用樹脂組成物(P-2)
前記有機銀化合物溶液(OA-1)の添加量を0.722g、ポリシロキサン(PSL-1)溶液の添加量を7.10g、PGMEAの添加量を1.64gとした以外は、実施例1と同様にして隔壁用樹脂組成物(P-2)を得た。Example 2 Partition wall resin composition (P-2)
Example 1 except that the amount of the organic silver compound solution (OA-1) added was 0.722 g, the amount of the polysiloxane (PSL-1) solution added was 7.10 g, and the amount of PGMEA added was 1.64 g. A partition wall resin composition (P-2) was obtained in the same manner as above.
実施例3 隔壁用樹脂組成物(P-3)
前記有機銀化合物溶液(OA-1)の添加量を0.516g、ポリシロキサン(PSL-1)溶液の添加量を7.15g、PGMEAの添加量を1.79gとした以外は、実施例1と同様にして隔壁用樹脂組成物(P-3)を得た。Example 3 Partition wall resin composition (P-3)
Example 1 except that the amount of the organic silver compound solution (OA-1) added was 0.516 g, the amount of the polysiloxane (PSL-1) solution added was 7.15 g, and the amount of PGMEA added was 1.79 g. A partition wall resin composition (P-3) was obtained in the same manner as above.
実施例4 隔壁用樹脂組成物(P-4)
前記有機銀化合物溶液(OA-1)の添加量を0.206g、ポリシロキサン(PSL-1)溶液の添加量を7.32g、PGMEAの添加量を2.02gとした以外は、実施例1と同様にして隔壁用樹脂組成物(P-4)を得た。Example 4 Resin composition for partition walls (P-4)
Example 1 except that the added amount of the organic silver compound solution (OA-1) was 0.206 g, the added amount of the polysiloxane (PSL-1) solution was 7.32 g, and the added amount of PGMEA was 2.02 g. A partition wall resin composition (P-4) was obtained in the same manner as above.
実施例5 隔壁用樹脂組成物(P-5)
前記顔料分散液(MW-1)6.59g、ポリシロキサン(PSL-1)溶液4.78g、前記有機銀化合物溶液(OA-1)4.12g、還元剤として、t-ブチルヒドロキノン0.021g、光重合開始剤として、OXE-02を0.124g、IC-819を0.206g、光重合性化合物として、DPHAを1.648g、撥液化合物として、RS-72Aを0.206gと、セロキサイド2021Pを0.016g、IRGANOX1010を0.025g、およびBYK-352のPGMEA10重量%希釈溶液0.103gを、溶媒PGMEA2.76gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-5)を得た。Example 5 Partition wall resin composition (P-5)
6.59 g of the pigment dispersion (MW-1), 4.78 g of the polysiloxane (PSL-1) solution, 4.12 g of the organic silver compound solution (OA-1), and 0.021 g of t-butylhydroquinone as a reducing agent. , 0.124 g of OXE-02 as a photopolymerization initiator, 0.206 g of IC-819, 1.648 g of DPHA as a photopolymerizable compound, 0.206 g of RS-72A as a liquid repellent compound, and celoxide 0.016 g of 2021P, 0.025 g of IRGANOX 1010, and 0.103 g of a 10 wt % PGMEA diluted solution of BYK-352 were dissolved in 2.76 g of solvent PGMEA and stirred. The resulting mixture was filtered through a 5.0 μm filter to obtain a partition wall resin composition (P-5).
実施例6 隔壁用樹脂組成物(P-6)
前記有機銀化合物溶液(OA-1)の添加量を0.516g、ポリシロキサン(PSL-1)溶液の添加量を7.19g、t-ブチルヒドロキノンの添加量を0.010g、PGMEAの添加量を1.77gとした以外は、実施例1と同様にして隔壁用樹脂組成物(P-6)を得た。Example 6 Partition wall resin composition (P-6)
The added amount of the organic silver compound solution (OA-1) was 0.516 g, the added amount of the polysiloxane (PSL-1) solution was 7.19 g, the added amount of t-butylhydroquinone was 0.010 g, and the added amount of PGMEA. A resin composition for partition walls (P-6) was obtained in the same manner as in Example 1, except that the weight was changed to 1.77 g.
実施例7 隔壁用樹脂組成物(P-7)
有機銀化合物として、サリチル酸銀0.50gを、EDM4.50gに溶解して、有機銀化合物溶液(OA-2)を得た。前記有機銀化合物溶液(OA-1)の代わりに、有機銀化合物溶液(OA-2)を用いた以外は、実施例2と同様にして隔壁用樹脂組成物(P-7)を得た。Example 7 Partition wall resin composition (P-7)
As an organic silver compound, 0.50 g of silver salicylate was dissolved in 4.50 g of EDM to obtain an organic silver compound solution (OA-2). A partition wall resin composition (P-7) was obtained in the same manner as in Example 2, except that the organic silver compound solution (OA-2) was used instead of the organic silver compound solution (OA-1).
実施例8 隔壁用樹脂組成物(P-8)
有機銀化合物として、オクチル酸銀0.50gを、EDM4.50gに溶解して、有機銀化合物溶液(OA-3)を得た。前記有機銀化合物溶液(OA-1)の代わりに、有機銀化合物溶液(OA-3)を用いた以外は、実施例2と同様にして隔壁用樹脂組成物(P-8)を得た。Example 8 Partition wall resin composition (P-8)
As an organic silver compound, 0.50 g of silver octylate was dissolved in 4.50 g of EDM to obtain an organic silver compound solution (OA-3). A partition wall resin composition (P-8) was obtained in the same manner as in Example 2, except that the organic silver compound solution (OA-3) was used instead of the organic silver compound solution (OA-1).
実施例9 隔壁用樹脂組成物(P-9)
有機銀化合物として、後述の調製例8で得た有機銀化合物(APAG-1)2.50gを、EDM2.50gに溶解して、有機銀化合物溶液(OA-4)を得た。前記有機銀化合物溶液(OA-1)の代わりに、有機銀化合物溶液(OA-4)を用いた以外は、実施例2と同様にして隔壁用樹脂組成物(P-9)を得た。Example 9 Partition wall resin composition (P-9)
As the organic silver compound, 2.50 g of the organic silver compound (APAG-1) obtained in Preparation Example 8 described later was dissolved in 2.50 g of EDM to obtain an organic silver compound solution (OA-4). A resin composition for partition walls (P-9) was obtained in the same manner as in Example 2, except that the organic silver compound solution (OA-4) was used instead of the organic silver compound solution (OA-1).
実施例10 隔壁用樹脂組成物(P-10)
還元剤として、t-ブチルヒドロキノンの代わりに、2,3-ジメチルヒドロキノンを用いた以外は、実施例2と同様にして隔壁用樹脂組成物(P-10)を得た。Example 10 Partition wall resin composition (P-10)
A partition wall resin composition (P-10) was obtained in the same manner as in Example 2, except that 2,3-dimethylhydroquinone was used as the reducing agent instead of t-butylhydroquinone.
実施例11 隔壁用樹脂組成物(P-11)
還元剤として、t-ブチルヒドロキノンの代わりに、トリメチルヒドロキノンを用いた以外は、実施例2と同様にして隔壁用樹脂組成物(P-11)を得た。Example 11 Partition wall resin composition (P-11)
A partition wall resin composition (P-11) was obtained in the same manner as in Example 2, except that trimethylhydroquinone was used as the reducing agent instead of t-butylhydroquinone.
実施例12 隔壁用樹脂組成物(P-12)
還元剤として、t-ブチルヒドロキノンの代わりに、2,6-ジメチルヒドロキノンを用いた以外は、実施例2と同様にして隔壁用樹脂組成物(P-12)を得た。Example 12 Partition wall resin composition (P-12)
A partition wall resin composition (P-12) was obtained in the same manner as in Example 2, except that 2,6-dimethylhydroquinone was used as the reducing agent instead of t-butylhydroquinone.
実施例13 隔壁用樹脂組成物(P-13)
還元剤として、t-ブチルヒドロキノンの代わりに、フェニルヒドロキノンを用いた以外は、実施例2と同様にして隔壁用樹脂組成物(P-13)を得た。Example 13 Partition wall resin composition (P-13)
A partition wall resin composition (P-13) was obtained in the same manner as in Example 2, except that phenylhydroquinone was used as the reducing agent instead of t-butylhydroquinone.
実施例14 隔壁用樹脂組成物(P-14)
還元剤として、t-ブチルヒドロキノンの代わりに、2,5-t-アミルヒドロキノンを用いた以外は、実施例2と同様にして隔壁用樹脂組成物(P-14)を得た。Example 14 Partition wall resin composition (P-14)
A partition wall resin composition (P-14) was obtained in the same manner as in Example 2, except that 2,5-t-amylhydroquinone was used as the reducing agent instead of t-butylhydroquinone.
実施例15 隔壁用樹脂組成物(P-15)
還元剤として、t-ブチルヒドロキノンの代わりに、ヒドロキノンを用いた以外は、実施例2と同様にして隔壁用樹脂組成物(P-15)を得た。Example 15 Partition wall resin composition (P-15)
A partition wall resin composition (P-15) was obtained in the same manner as in Example 2, except that hydroquinone was used as the reducing agent instead of t-butylhydroquinone.
実施例16 隔壁用樹脂組成物(P-16)
還元剤として、t-ブチルヒドロキノンの代わりに、グリコールアルデヒドを用いた以外は、実施例2と同様にして隔壁用樹脂組成物(P-16)を得た。Example 16 Partition wall resin composition (P-16)
A partition wall resin composition (P-16) was obtained in the same manner as in Example 2, except that glycolaldehyde was used as the reducing agent instead of t-butylhydroquinone.
実施例17 隔壁用樹脂組成物(P-17)
t-ブチルヒドロキノンの添加量を0.005g、ポリシロキサン(PSL-1)溶液の添加量を7.15g、PGMEAの添加量を1.61gとした以外は、実施例2と同様にして隔壁用樹脂組成物(P-17)を得た。Example 17 Partition wall resin composition (P-17)
For partition walls in the same manner as in Example 2 except that the amount of t-butylhydroquinone added was 0.005 g, the amount of polysiloxane (PSL-1) solution added was 7.15 g, and the amount of PGMEA added was 1.61 g. A resin composition (P-17) was obtained.
実施例18 隔壁用樹脂組成物(P-18)
t-ブチルヒドロキノンの添加量を0.413g、ポリシロキサン(PSL-1)溶液の添加量を6.14g、PGMEAの添加量を2.22gとした以外は、実施例2と同様にして隔壁用樹脂組成物(P-18)を得た。Example 18 Partition wall resin composition (P-18)
For partition walls in the same manner as in Example 2 except that the amount of t-butylhydroquinone added was 0.413 g, the amount of polysiloxane (PSL-1) solution added was 6.14 g, and the amount of PGMEA added was 2.22 g. A resin composition (P-18) was obtained.
実施例19 隔壁用樹脂組成物(P-19)
白色顔料として、R-960を5.00g、樹脂としてポリシロキサン(PSL-2)溶液を5.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-2)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-2)を8.25g添加し、前記ポリシロキサン(PSL-1)溶液の代わりに、ポリシロキサン(PSL-2)溶液を7.10g添加し、PGMEAを1.64g添加した以外は、実施例2と同様にして隔壁用樹脂組成物(P-19)を得た。Example 19 Partition wall resin composition (P-19)
5.00 g of R-960 as a white pigment and 5.00 g of a polysiloxane (PSL-2) solution as a resin are mixed and dispersed using a mill-type dispersing machine filled with zirconia beads to obtain a pigment dispersion (MW -2) was obtained. Add 8.25 g of pigment dispersion (MW-2) instead of the pigment dispersion (MW-1), and add 7 polysiloxane (PSL-2) solutions instead of the polysiloxane (PSL-1) solution. A resin composition for partition walls (P-19) was obtained in the same manner as in Example 2, except that 10 g of PGMEA was added and 1.64 g of PGMEA was added.
実施例20 隔壁用樹脂組成物(P-20)
白色顔料として、R-960を5.00g、樹脂としてポリシロキサン(PSL-3)溶液を5.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-3)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-3)を8.25g添加し、前記ポリシロキサン(PSL-1)溶液の代わりに、ポリシロキサン(PSL-3)溶液を7.10g添加し、PGMEAを1.64g添加した以外は、実施例2と同様にして隔壁用樹脂組成物(P-20)を得た。Example 20 Partition wall resin composition (P-20)
5.00 g of R-960 as a white pigment and 5.00 g of a polysiloxane (PSL-3) solution as a resin are mixed and dispersed using a mill-type dispersing machine filled with zirconia beads to obtain a pigment dispersion (MW -3) was obtained. 8.25 g of pigment dispersion (MW-3) was added instead of the pigment dispersion (MW-1), and 7 polysiloxane (PSL-3) solutions were added instead of the polysiloxane (PSL-1) solution. A resin composition for partition walls (P-20) was obtained in the same manner as in Example 2, except that 10 g of PGMEA was added and 1.64 g of PGMEA was added.
実施例21 隔壁用樹脂組成物(P-21)
白色顔料として、R-960を5.00g、樹脂としてポリシロキサン(PSL-4)溶液を5.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-4)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-4)を8.25g添加し、前記ポリシロキサン(PSL-1)溶液の代わりに、ポリシロキサン(PSL-4)溶液を7.10g添加し、PGMEAを1.64g添加した以外は、実施例2と同様にして隔壁用樹脂組成物(P-21)を得た。Example 21 Partition wall resin composition (P-21)
5.00 g of R-960 as a white pigment and 5.00 g of a polysiloxane (PSL-4) solution as a resin are mixed and dispersed using a mill-type dispersing machine filled with zirconia beads to obtain a pigment dispersion (MW -4) was obtained. 8.25 g of pigment dispersion (MW-4) was added instead of the pigment dispersion (MW-1), and 7 polysiloxane (PSL-4) solutions were added instead of the polysiloxane (PSL-1) solution. A resin composition for partition walls (P-21) was obtained in the same manner as in Example 2, except that 10 g of PGMEA was added and 1.64 g of PGMEA was added.
実施例22 隔壁用樹脂組成物(P-22)
白色顔料として、R-960を5.00g、樹脂としてポリシロキサン(PSL-5)溶液を5.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-5)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-5)を8.25g添加し、前記ポリシロキサン(PSL-1)溶液の代わりに、ポリシロキサン(PSL-5)溶液を7.10g添加し、PGMEAを1.64g添加した以外は、実施例2と同様にして隔壁用樹脂組成物(P-22)を得た。Example 22 Partition wall resin composition (P-22)
5.00 g of R-960 as a white pigment and 5.00 g of a polysiloxane (PSL-5) solution as a resin are mixed and dispersed using a mill-type dispersing machine filled with zirconia beads to obtain a pigment dispersion (MW -5) was obtained. Add 8.25 g of pigment dispersion (MW-5) instead of the pigment dispersion (MW-1), and add 7 polysiloxane (PSL-5) solutions instead of the polysiloxane (PSL-1) solution. A resin composition for partition walls (P-22) was obtained in the same manner as in Example 2, except that 10 g of PGMEA was added and 1.64 g of PGMEA was added.
実施例23 隔壁用樹脂組成物(P-23)
白色顔料として、R-960を5.00g、樹脂としてポリシロキサン(PSL-6)溶液を5.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-6)を得た。顔料分散液(MW-6)8.25g、ポリシロキサン(PSL-6)溶液7.941g、前記有機銀化合物溶液(OA-1)0.722g、還元剤として、t-ブチルヒドロキノン0.026g、キノンジアジド化合物としてTHP-17(商品名、東洋合成工業(株)製)を2.063g、撥液化合物として、RS-72Aを0.258g、セロキサイド2021Pを0.021g、IRGANOX1010を0.031g、およびBYK-352のPGMEA10重量%希釈溶液0.103gを、溶媒PGMEA1.018gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-23)を得た。Example 23 Partition wall resin composition (P-23)
5.00 g of R-960 as a white pigment and 5.00 g of a polysiloxane (PSL-6) solution as a resin are mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW -6) was obtained. 8.25 g of pigment dispersion (MW-6), 7.941 g of polysiloxane (PSL-6) solution, 0.722 g of the organic silver compound solution (OA-1), 0.026 g of t-butylhydroquinone as a reducing agent, 2.063 g of THP-17 (trade name, manufactured by Toyo Gosei Co., Ltd.) as a quinonediazide compound, 0.258 g of RS-72A, 0.021 g of Celoxide 2021P, and 0.031 g of IRGANOX1010 as liquid-repellent compounds, and 0.103 g of a 10% by weight PGMEA diluted solution of BYK-352 was dissolved in 1.018 g of solvent PGMEA and stirred. The resulting mixture was filtered through a 5.0 μm filter to obtain a partition wall resin composition (P-23).
実施例24 隔壁用樹脂組成物(P-24)
撥液化合物RS-72Aを添加せずに、ポリシロキサン(PSL-1)溶液の添加量を7.23g、PGMEAの添加量を1.77gとした以外は、実施例2と同様にして隔壁用樹脂組成物(P-24)を得た。Example 24 Partition wall resin composition (P-24)
For partition walls in the same manner as in Example 2, except that the amount of polysiloxane (PSL-1) solution added was 7.23 g and the amount of PGMEA was 1.77 g without adding the liquid-repellent compound RS-72A. A resin composition (P-24) was obtained.
実施例25 隔壁用樹脂組成物(P-25)
白色顔料としてR-960を5.00g、樹脂として、ポリシロキサン(PSL-1)溶液を5.00g、遮光顔料として窒化チタンを0.0188g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-7)を得た。前記顔料分散液(MW-1)の代わりに、顔料分散液(MW-7)を8.27g添加し、ポリシロキサン(PSL-1)溶液の添加量を7.06g、PGMEAの添加量を2.31gとした以外は、実施例2と同様にして隔壁用樹脂組成物(P-25)を得た。Example 25 Partition wall resin composition (P-25)
5.00 g of R-960 as a white pigment, 5.00 g of polysiloxane (PSL-1) solution as a resin, and 0.0188 g of titanium nitride as a light-shielding pigment are mixed, and a mill-type disperser filled with zirconia beads is used. to obtain a pigment dispersion (MW-7). Instead of the pigment dispersion (MW-1), 8.27 g of pigment dispersion (MW-7) was added, the amount of polysiloxane (PSL-1) solution added was 7.06 g, and the amount of PGMEA added was 2. A partition wall resin composition (P-25) was obtained in the same manner as in Example 2, except that the weight was 31 g.
実施例26 隔壁用樹脂組成物(P-26)
白色顔料としてR-960を5.00g、樹脂として、ポリシロキサン(PSL-1)溶液を5.00g、遮光顔料としてピグメントレッド254(PR254)を0.0113g、ピグメントブルー15:6N(PB15:6N)を0.0075g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-8)を得た。前記顔料分散液(MW-1)の代わりに、顔料分散液(MW-8)を8.27g添加し、ポリシロキサン(PSL-1)溶液の添加量を7.06g、PGMEAの添加量を2.31gとした以外は、実施例2と同様にして隔壁用樹脂組成物(P-26)を得た。Example 26 Partition wall resin composition (P-26)
5.00 g of R-960 as a white pigment, 5.00 g of polysiloxane (PSL-1) solution as a resin, 0.0113 g of Pigment Red 254 (PR254) as a light-shielding pigment, Pigment Blue 15:6N (PB15:6N) ) was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-8). Instead of the pigment dispersion (MW-1), add 8.27 g of the pigment dispersion (MW-8), add 7.06 g of the polysiloxane (PSL-1) solution, and add 2 of PGMEA. A partition wall resin composition (P-26) was obtained in the same manner as in Example 2, except that the weight was 31 g.
実施例27 隔壁用樹脂組成物(P-27)
有機金属化合物として、ビス(アセチルアセトナト)パラジウムを0.103gと、リン原子を有する配位性化合物として、トリフェニルホスフィンを0.089g(有機金属化合物に対して等モル量)をDAA1.726gに溶解して、有機金属化合物溶液(OM-1)を得た。有機金属化合物溶液(OM-1)を1.17g添加し、ポリシロキサン(PSL-1)溶液の添加量を6.86g、PGMEAの添加量を0.92gとした以外は、実施例2と同様にして隔壁用樹脂組成物(P-27)を得た。Example 27 Partition wall resin composition (P-27)
0.103 g of bis(acetylacetonato)palladium as an organometallic compound and 0.089 g of triphenylphosphine as a coordinating compound having a phosphorus atom (equimolar amount relative to the organometallic compound) were added to 1.726 g of DAA. to obtain an organometallic compound solution (OM-1). Same as Example 2 except that 1.17 g of the organometallic compound solution (OM-1) was added, the amount of the polysiloxane (PSL-1) solution added was 6.86 g, and the amount of PGMEA added was 0.92 g. to obtain a partition wall resin composition (P-27).
実施例28 隔壁用樹脂組成物(P-28)
遮光顔料として窒化チタン5.00g、樹脂としてポリシロキサン(PSL-1)溶液を5.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-9)を得た。前記顔料分散液(MW-9)を0.164g、ポリシロキサン(PSL-1)溶液を14.51g、還元剤として、t-ブチルヒドロキノン0.021g、光重合開始剤として、OXE-02を0.164g、IC-819を0.328g、光重合性化合物として、DPHAを1.640g、撥液化合物として、RS-72Aを0.205gと、セロキサイド2021Pを0.016g、IRGANOX1010を0.025g、およびBYK-352のPGMEA10重量%希釈溶液0.103gを、溶媒PGMEA2.75gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-28)を得た。Example 28 Partition wall resin composition (P-28)
5.00 g of titanium nitride as a light-shielding pigment and 5.00 g of a polysiloxane (PSL-1) solution as a resin are mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-9). Obtained. 0.164 g of the pigment dispersion (MW-9), 14.51 g of polysiloxane (PSL-1) solution, 0.021 g of t-butylhydroquinone as a reducing agent, and 0 OXE-02 as a photopolymerization initiator. .164 g, 0.328 g of IC-819, 1.640 g of DPHA as a photopolymerizable compound, 0.205 g of RS-72A, 0.016 g of celoxide 2021P and 0.025 g of IRGANOX 1010 as liquid repellent compounds, and BYK-352 were dissolved in 2.75 g of solvent PGMEA and stirred. The resulting mixture was filtered through a 5.0 μm filter to obtain a partition wall resin composition (P-28).
実施例29 隔壁用樹脂組成物(P-29)
遮光顔料としてPR254を3.00g、PB15:6Nを2.00g、樹脂としてポリシロキサン(PSL-1)溶液を5.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-10)を得た。前記顔料分散液(MW-10)を0.574g添加し、ポリシロキサン(PSL-1)溶液の添加量を13.49g、PGMEAの添加量を3.37gとした以外は、実施例28と同様にして隔壁用樹脂組成物(P-29)を得た。Example 29 Partition wall resin composition (P-29)
3.00 g of PR254 as a light-shielding pigment, 2.00 g of PB15:6N, and 5.00 g of polysiloxane (PSL-1) solution as a resin are mixed, and dispersed using a mill-type disperser filled with zirconia beads. A dispersion (MW-10) was obtained. The same as in Example 28 except that 0.574 g of the pigment dispersion (MW-10) was added, the amount of polysiloxane (PSL-1) solution added was 13.49 g, and the amount of PGMEA added was 3.37 g. to obtain a partition wall resin composition (P-29).
比較例1 隔壁用樹脂組成物(P-30)
ポリシロキサン(PSL-1)溶液13.40g、前記有機銀化合物溶液(OA-1)0.574gg、還元剤として、t-ブチルヒドロキノン0.021g、光重合開始剤として、OXE-02を0.123g、IC-819を0.246g、光重合性化合物として、DPHAを1.640g、撥液化合物として、RS-72Aを0.205gと、セロキサイド2021Pを0.016g、IRGANOX1010を0.025g、およびBYK-352のPGMEA10重量%希釈溶液0.103gを、溶媒PGMEA0.02gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-30)を得た。Comparative Example 1 Partition wall resin composition (P-30)
13.40 g of polysiloxane (PSL-1) solution, 0.574 g of the organic silver compound solution (OA-1), 0.021 g of t-butylhydroquinone as a reducing agent, and 0.02 g of OXE-02 as a photopolymerization initiator. 123 g, 0.246 g of IC-819, 1.640 g of DPHA as a photopolymerizable compound, 0.205 g of RS-72A, 0.016 g of Celoxide 2021P and 0.025 g of IRGANOX 1010 as liquid repellent compounds, and 0.103 g of a 10% by weight PGMEA diluted solution of BYK-352 was dissolved in 0.02 g of solvent PGMEA and stirred. The resulting mixture was filtered through a 5.0 μm filter to obtain a partition wall resin composition (P-30).
比較例2 隔壁用樹脂組成物(P-31)
前記有機銀化合物溶液(OA-1)を添加せずに、ポリシロキサン(PSL-1)溶液の添加量を7.28g、PGMEAの添加量を2.18gとした以外は、実施例2と同様にして隔壁用樹脂組成物(P-31)を得た。Comparative Example 2 Partition wall resin composition (P-31)
Same as Example 2 except that the amount of polysiloxane (PSL-1) solution added was 7.28 g and the amount of PGMEA was 2.18 g without adding the organic silver compound solution (OA-1). to obtain a partition wall resin composition (P-31).
比較例3 隔壁用樹脂組成物(P-32)
還元剤t-ブチルヒドロキノンを添加せずに、ポリシロキサン(PSL-1)溶液の添加量を7.09g、PGMEAの添加量を1.37gとした以外は、実施例1と同様にして隔壁用樹脂組成物(P-32)を得た。Comparative Example 3 Partition wall resin composition (P-32)
For partition walls in the same manner as in Example 1 except that the amount of polysiloxane (PSL-1) solution added was 7.09 g and the amount of PGMEA was 1.37 g without adding the reducing agent t-butylhydroquinone. A resin composition (P-32) was obtained.
実施例1~29および比較例1~3の組成をまとめて表2に示す。 The compositions of Examples 1-29 and Comparative Examples 1-3 are summarized in Table 2.
調製例1 色変換発光材料組成物(CL-1)
緑色量子ドット材料(Lumidot 640 CdSe/ZnS、平均粒子径6.3nm:アルドリッチ社製)の0.5重量%トルエン溶液を20重量部、DPHAを45重量部、“イルガキュア”(登録商標)907(BASFジャパン(株)製)を5重量部、アクリル樹脂(SPCR-18(商品名)、昭和電工(株)製)の30重量%PGMEA溶液を166重量部およびトルエンを97重量部混合して撹拌し、均一に溶解した。得られた混合物を0.45μmのシリンジフィルターで濾過し、色変換発光材料組成物(CL-1)を調製した。Preparation Example 1 Color Conversion Luminescent Material Composition (CL-1)
Green quantum dot material (Lumidot 640 CdSe / ZnS, average particle size 6.3 nm: manufactured by Aldrich) 0.5 wt% toluene solution 20 parts by weight, DPHA 45 parts by weight, "Irgacure" (registered trademark) 907 ( 5 parts by weight of BASF Japan Co., Ltd.), 166 parts by weight of 30% by weight PGMEA solution of acrylic resin (SPCR-18 (trade name), Showa Denko Co., Ltd.) and 97 parts by weight of toluene are mixed and stirred. and dissolved uniformly. The resulting mixture was filtered through a 0.45 μm syringe filter to prepare a color-converting luminescent material composition (CL-1).
調製例2 色変換発光材料組成物(CL-2)
緑色量子ドット材料にかえて合成例10により得られた緑色蛍光体G-1を0.4重量部用い、トルエンの添加量を117重量部に変更した以外は、調製例1と同様にして色変換発光材料組成物(CL-2)を調製した。Preparation Example 2 Color-converting luminescent material composition (CL-2)
Color in the same manner as in Preparation Example 1, except that 0.4 parts by weight of the green phosphor G-1 obtained in Synthesis Example 10 was used instead of the green quantum dot material, and the amount of toluene added was changed to 117 parts by weight. A conversion luminescent material composition (CL-2) was prepared.
調製例3 色変換発光材料組成物(CL-3)
緑色量子ドット材料にかえて合成例11により得られた赤色蛍光体R-1を0.4重量部用い、トルエンの添加量を117重量部に変更した以外は、調製例1と同様にして色変換発光材料組成物(CL-3)を調製した。Preparation Example 3 Color conversion luminescent material composition (CL-3)
Color in the same manner as in Preparation Example 1, except that 0.4 parts by weight of the red phosphor R-1 obtained in Synthesis Example 11 was used instead of the green quantum dot material, and the amount of toluene added was changed to 117 parts by weight. A conversion luminescent material composition (CL-3) was prepared.
調製例4 カラーフィルター形成材料(CF-1)
C.I.ピグメントグリーン59を90g、C.I.ピグメントイエロー150を60g、高分子分散剤(“BYK”(登録商標)-6919(商品名)ビックケミー社製(以下「BYK-6919」))を75g、バインダー樹脂(“アデカアークルズ”(登録商標)WR301(商品名)(株)ADEKA製)を100g、およびPGMEAを675g混合してスラリーを作製した。スラリーを入れたビーカーをダイノーミルとチューブでつなぎ、メディアとして直径0.5mmのジルコニアビーズを使用して、周速14m/sで8時間の分散処理を行い、ピグメントグリーン59分散液(GD-1)を作製した。Preparation Example 4 Color filter forming material (CF-1)
C. I. Pigment Green 59, 90 g, C.I. I. 60 g of Pigment Yellow 150, 75 g of a polymer dispersant (“BYK” (registered trademark)-6919 (trade name) manufactured by BYK Chemie (hereinafter “BYK-6919”)), a binder resin (“Adeka Arkles” (registered trademark) ) 100 g of WR301 (trade name, manufactured by ADEKA Corporation) and 675 g of PGMEA were mixed to prepare a slurry. A beaker containing the slurry was connected to a Dyno mill and a tube, and zirconia beads with a diameter of 0.5 mm were used as media to perform dispersion treatment at a peripheral speed of 14 m/s for 8 hours to obtain Pigment Green 59 dispersion (GD-1). was made.
ピグメントグリーン59分散液(GD-1)56.54g、アクリル樹脂(“サイクロマー”(登録商標)P(ACA)Z250(商品名)ダイセル・オルネクス(株)製(以下「P(ACA)Z250」))を3.14g、DPHAを2.64g、光重合開始剤(“オプトマー”(登録商標)NCI-831(商品名)(株)ADEKA製(以下「NCI-831」))0.330g、界面活性剤(BYK”(登録商標)-333(商品名)ビックケミー社製(以下「BYK-333」))を0.04g、重合禁止剤としてBHTを0.01g、および溶媒としてPGMEAを37.30g混合し、カラーフィルター形成材料(CF-1)を作製した。 Pigment Green 59 dispersion (GD-1) 56.54 g, acrylic resin (“Cyclomer” (registered trademark) P (ACA) Z250 (trade name) manufactured by Daicel Allnex Co., Ltd. (hereinafter “P (ACA) Z250” )) 3.14 g, DPHA 2.64 g, a photopolymerization initiator (“OPTOMER” (registered trademark) NCI-831 (trade name) manufactured by ADEKA Corporation (hereinafter “NCI-831”)) 0.330 g, 0.04 g of a surfactant (BYK” (registered trademark)-333 (trade name) manufactured by BYK-Chemie (hereinafter “BYK-333”)), 0.01 g of BHT as a polymerization inhibitor, and 37 g of PGMEA as a solvent. 30 g were mixed to prepare a color filter forming material (CF-1).
調製例5 遮光隔壁用樹脂組成物
カーボンブラック(MA100(商品名)三菱化学(株)製)150g、高分子分散剤BYK-6919を75g、P(ACA)Z250を100g、およびPGMEAを675g混合してスラリーを作製した。スラリーを入れたビーカーをダイノーミルとチューブでつなぎ、メディアとして直径0.5mmのジルコニアビーズを使用して、周速14m/sで8時間の分散処理を行い、顔料分散液(MB-1)を作製した。Preparation Example 5 Resin composition for light-shielding barrier ribs 150 g of carbon black (MA100 (trade name) manufactured by Mitsubishi Chemical Corporation), 75 g of polymer dispersant BYK-6919, 100 g of P(ACA)Z250, and 675 g of PGMEA were mixed. to prepare a slurry. A beaker containing the slurry was connected to a Dyno mill and a tube, and zirconia beads with a diameter of 0.5 mm were used as media to perform dispersion treatment at a peripheral speed of 14 m/s for 8 hours to prepare a pigment dispersion liquid (MB-1). did.
顔料分散液(MB-1)56.54g、P(ACA)Z250を3.14g、DPHAを2.64g、NCI-831を0.330g、BYK-333を0.04g、重合禁止剤としてターシャリブチルカテコール0.01g、およびPGMEA37.30gを混合し、遮光隔壁用樹脂組成物を作製した。 Pigment dispersion (MB-1) 56.54 g, P (ACA) Z250 3.14 g, DPHA 2.64 g, NCI-831 0.330 g, BYK-333 0.04 g, tertiary polymerization inhibitor 0.01 g of butylcatechol and 37.30 g of PGMEA were mixed to prepare a resin composition for light-shielding partition walls.
調製例6 低屈折率層形成材料
合成例7により得られたシリカ粒子含有ポリシロキサン溶液(LS-1)を5.350g、エチレングリコールモノ-t-ブチルエーテルを1.170g、およびDAAを3.48g混合した後、0.45μmのシリンジフィルターで濾過し、低屈折率層形成材料を調製した。Preparation Example 6 Low refractive index layer-forming material 5.350 g of the silica particle-containing polysiloxane solution (LS-1) obtained in Synthesis Example 7, 1.170 g of ethylene glycol mono-t-butyl ether, and 3.48 g of DAA After mixing, the mixture was filtered through a 0.45 μm syringe filter to prepare a low refractive index layer-forming material.
調製例7 黄色有機保護層形成材料(YL-1)
C.I.ピグメントイエロー150を150g、高分子分散剤(“BYK”(登録商標)-6919(商品名)ビックケミー社製(以下「BYK-6919」))を75g、バインダー樹脂(“アデカアークルズ”(登録商標)WR301(商品名)(株)ADEKA製)を100g、およびPGMEAを675g混合してスラリーを作製した。スラリーを入れたビーカーをダイノーミルとチューブでつなぎ、メディアとして直径0.5mmのジルコニアビーズを使用して、周速14m/sで8時間の分散処理を行い、ピグメントイエロー150分散液(YD-1)を作製した。Preparation Example 7 Yellow organic protective layer-forming material (YL-1)
C. I. 150 g of Pigment Yellow 150, 75 g of polymer dispersant (“BYK” (registered trademark)-6919 (trade name) manufactured by BYK-Chemie Co., Ltd. (hereinafter “BYK-6919”)), a binder resin (“ADEKA Arkles” (registered trademark) ) 100 g of WR301 (trade name, manufactured by ADEKA Corporation) and 675 g of PGMEA were mixed to prepare a slurry. A beaker containing the slurry was connected to a Dyno mill and a tube, and zirconia beads with a diameter of 0.5 mm were used as media to perform dispersion treatment at a peripheral speed of 14 m/s for 8 hours to obtain Pigment Yellow 150 dispersion (YD-1). was made.
ピグメントイエロー150分散液(YD-1)3.09g、樹脂としてポリシロキサン(PSL-1)溶液を23.54g、光重合性化合物としてDPHAを6.02g、有機金属化合物としてネオデカン酸銀を用いて調製した有機金属化合物溶液(OM-2)を6.02g、光重合開始剤としてOXE-02を0.20g、IC-819を0.40g、IRGANOX(登録商標)1010を0.060g、およびBYK-352のPGMEA10重量%希釈溶液0.050g(濃度500ppmに相当)を、溶媒PGMEA61.15gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、黄色有機保護層形成材料(YL-1)を得た。 Pigment Yellow 150 dispersion liquid (YD-1) 3.09 g, polysiloxane (PSL-1) solution 23.54 g as resin, DPHA 6.02 g as photopolymerizable compound, silver neodecanoate as organometallic compound 6.02 g of the prepared organometallic compound solution (OM-2), 0.20 g of OXE-02 as a photopolymerization initiator, 0.40 g of IC-819, 0.060 g of IRGANOX (registered trademark) 1010, and BYK 0.050 g of a 10% by weight diluted solution of PGMEA of -352 (equivalent to a concentration of 500 ppm) was dissolved in 61.15 g of solvent PGMEA and stirred. The resulting mixture was filtered through a 5.0 μm filter to obtain a yellow organic protective layer-forming material (YL-1).
調製例8 有機銀化合物(APAG-1)
(メタ)アクリルポリマ溶液としてSPCR-10P((商品名)、昭和電工(株)製)の30重量%PGMEA溶液5.0gをアセトン5.0gに溶解させ、ジエタノールアミン0.0555g((メタ)アクリルポリマに対して1.5モル当量)を滴下し、室温で1時間撹拌して(メタ)アクリルポリマ溶液のアミン塩を生成した。次に、この溶液に硝酸銀(I)0.0287gを添加し、室温で1時間撹拌したところ沈殿が生じた。5.0μmのフィルターでろ過した後、固形分が20%になるようにPGMEAを添加し、有機銀化合物(APAG-1)を得た。Preparation Example 8 Organic silver compound (APAG-1)
As a (meth)acrylic polymer solution, 5.0 g of a 30% by weight PGMEA solution of SPCR-10P ((trade name), manufactured by Showa Denko KK) was dissolved in 5.0 g of acetone, and 0.0555 g of diethanolamine ((meth)acrylic 1.5 molar equivalents relative to the polymer) was added dropwise and stirred at room temperature for 1 hour to produce an amine salt of the (meth)acrylic polymer solution. Next, 0.0287 g of silver nitrate (I) was added to this solution, and the mixture was stirred at room temperature for 1 hour to form a precipitate. After filtering through a 5.0 μm filter, PGMEA was added so that the solid content was 20%, to obtain an organic silver compound (APAG-1).
実施例30~52、実施例54~59、比較例4~6
下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、表2~5に示す隔壁用樹脂組成物をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で3分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量300mJ/cm2(g、h、i線)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.045重量%水酸化カリウム水溶液を用いて100秒間シャワー現像し、次いで水を用いて30秒間リンスした。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ10μm、幅20μmの隔壁が、短辺80μm、長辺280μmのピッチ間隔の格子状パターンに形成された隔壁を形成した。Examples 30-52, Examples 54-59, Comparative Examples 4-6
A 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used as the base substrate. A partition wall resin composition shown in Tables 2 to 5 was applied thereon by spin coating, and dried at a temperature of 100° C. for 3 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). , to prepare a dry film. The prepared dried film was exposed through a photomask using a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) with an ultra-high pressure mercury lamp as a light source, with an exposure amount of 300 mJ/cm 2 (g, h , i-line). Then, using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.), shower development is performed using a 0.045% by weight potassium hydroxide aqueous solution for 100 seconds, and then water is used for 30 seconds. Rinse for seconds. Furthermore, using an oven (trade name IHPS-222, manufactured by ESPEC Co., Ltd.), it was heated in the air at a temperature of 230 ° C. for 30 minutes, and a partition with a height of 10 µm and a width of 20 µm was formed on the glass substrate, and the short side was 80 µm. , were formed in a grid-like pattern with a pitch interval of 280 μm on the long side.
得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、表3~5に示す色変換発光材料組成物を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図2に示す構成の隔壁付き基板を得た。 The regions separated by the partition walls of the obtained substrate with partition walls were coated with the color-converting luminescent material compositions shown in Tables 3 to 5 using an inkjet method in a nitrogen atmosphere, dried at 100° C. for 30 minutes, and the thickness was reduced. Pixels of 5.0 μm were formed to obtain a substrate with partition walls having the configuration shown in FIG.
実施例53
下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、隔壁用樹脂組成物(P-23)をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で3分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量300mJ/cm2(g、h、i線)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、2.38重量%水酸化テトラメチルアンモニウム水溶液で90秒間シャワー現像し、次いで水で30秒間リンスした。その後、先と同様に、フォトマスクを介さずに露光量500mJ/cm2(g、h、i線)で露光し、ブリーチを行った。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ10μm、幅20μmの隔壁が、短辺80μm、長辺280μmのピッチ間隔の格子状パターンに形成された隔壁を形成した。Example 53
A 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used as the base substrate. A partition wall resin composition (P-23) was spin-coated thereon, and dried at a temperature of 100° C. for 3 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). A dry film was prepared. The prepared dried film was exposed through a photomask using a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) with an ultra-high pressure mercury lamp as a light source, with an exposure amount of 300 mJ/cm 2 (g, h , i-line). Then, using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.), shower development is performed with a 2.38% by weight tetramethylammonium hydroxide aqueous solution for 90 seconds, and then rinsed with water for 30 seconds. did. Then, similarly to the above, bleaching was performed by exposing with an exposure dose of 500 mJ/cm 2 (g, h, i lines) without passing through a photomask. Furthermore, using an oven (trade name IHPS-222, manufactured by ESPEC Co., Ltd.), it was heated in the air at a temperature of 230 ° C. for 30 minutes, and a partition with a height of 10 µm and a width of 20 µm was formed on the glass substrate, and the short side was 80 µm. , were formed in a grid-like pattern with a pitch interval of 280 μm on the long side.
得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図2に示す構成の隔壁付き基板を得た。 The color-converting luminescent material composition (CL-2) was applied to the regions separated by the partition walls of the obtained substrate with partition walls using an inkjet method under a nitrogen atmosphere, dried at 100° C. for 30 minutes, and formed to a thickness of 5. Pixels of 0.0 μm were formed to obtain a substrate with partition walls having the structure shown in FIG.
実施例60
下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、調製例5により得られた遮光隔壁形成材料をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度90℃で2分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量40mJ/cm2(g、h、i線)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行い、次いで水を用いて30秒間リンスした。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ2.0μm、幅20μmで、厚み1.0μmあたりのOD値が2.0である隔壁が、短辺40μm、長辺280μmのピッチ間隔の格子状パターンに形成された遮光隔壁付き基板を得た。Example 60
A 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used as the base substrate. The material for forming light-shielding barrier ribs obtained in Preparation Example 5 was spin-coated thereon, and dried at a temperature of 90° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). , to prepare a dry film. The prepared dried film was exposed through a photomask using a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) with an ultra-high pressure mercury lamp as a light source, with an exposure amount of 40 mJ/cm 2 (g, h , i-line). Thereafter, using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.), development is performed with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, and then rinsed with water for 30 seconds. did. Furthermore, using an oven (trade name: IHPS-222, manufactured by ESPEC Co., Ltd.), it was heated in the air at a temperature of 230° C. for 30 minutes, and a layer having a height of 2.0 μm, a width of 20 μm, and a thickness of 1.0 μm was formed on the glass substrate. A substrate with light-shielding barrier ribs was obtained, in which barrier ribs having an OD value of 2.0 per 0 μm were formed in a lattice pattern with a pitch of 40 μm on the short side and 280 μm on the long side.
その後、実施例32と同様の方法により、遮光隔壁上に、高さ10μm、幅20μmの隔壁が、短辺40μm、長辺280μmのピッチ間隔の遮光隔壁と同様の格子状パターンに形成された隔壁付き基板を得た。得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図3に示す構成の隔壁付き基板を得た。 Then, by the same method as in Example 32, barrier ribs having a height of 10 μm and a width of 20 μm were formed on the light shielding barrier ribs in a lattice pattern similar to that of the light shielding barrier ribs having a pitch of 40 μm on the short side and 280 μm on the long side. obtained a substrate with The color-converting luminescent material composition (CL-2) obtained in Preparation Example 2 was applied to the regions separated by the partition walls of the obtained substrate with partition walls using an inkjet method in a nitrogen atmosphere, and the mixture was heated at 100°C. After drying for 30 minutes, pixels with a thickness of 5.0 μm were formed to obtain a substrate with partition walls having the structure shown in FIG.
実施例61
実施例32と同様の方法により得られた、画素形成前の隔壁付き基板の隔壁で隔てられた領域に、硬化後の膜厚が2.5μmになるように、調製例4により得られたカラーフィルター形成材料(CF-1)を塗布し、真空乾燥した。隔壁付き基板の開口部の領域に露光されるように設計したフォトマスクを介して、露光量40mJ/cm2(g、h、i線)で露光した。0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行った後、230℃で30分間加熱硬化を行い、隔壁で隔てられた領域に、高さ2.5μm、短辺40μm、長辺280μmのカラーフィルター層を形成した。その後、カラーフィルター上に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図4に示す構成の隔壁付き基板を得た。Example 61
The colorant obtained in Preparation Example 4 was applied to the regions separated by the partition walls of the substrate with partition walls before pixel formation, which was obtained by the same method as in Example 32, so that the film thickness after curing was 2.5 μm. A filter-forming material (CF-1) was applied and vacuum dried. Exposure was performed at an exposure dose of 40 mJ/cm 2 (g, h, i lines) through a photomask designed to expose the regions of the openings of the substrate with partition walls. After developing with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, heat curing was performed at 230° C. for 30 minutes. A color filter layer was formed. Thereafter, the color-converting light-emitting material composition (CL-2) obtained in Preparation Example 2 was applied onto the color filter in a nitrogen atmosphere using an inkjet method and dried at 100° C. for 30 minutes to obtain a thickness of 5.5. Pixels of 0 μm were formed to obtain a substrate with partition walls having the structure shown in FIG.
実施例62
下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、調製例5により得られた遮光隔壁形成材料をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度90℃で2分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量40mJ/cm2(g、h、i線)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行い、次いで水を用いて30秒間リンスした。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ2.0μm、幅20μmで、厚み1.0μmあたりのOD値が2.0である隔壁が、短辺40μm、長辺280μmのピッチ間隔の格子状パターンに形成された遮光隔壁付き基板を得た。Example 62
A 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used as the base substrate. The material for forming light-shielding barrier ribs obtained in Preparation Example 5 was spin-coated thereon, and dried at a temperature of 90° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). , to prepare a dry film. The prepared dried film was exposed through a photomask using a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) with an ultra-high pressure mercury lamp as a light source, with an exposure amount of 40 mJ/cm 2 (g, h , i-line). Thereafter, using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.), development is performed with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, and then rinsed with water for 30 seconds. did. Furthermore, using an oven (trade name: IHPS-222, manufactured by ESPEC Co., Ltd.), it was heated in the air at a temperature of 230° C. for 30 minutes, and a layer having a height of 2.0 μm, a width of 20 μm, and a thickness of 1.0 μm was formed on the glass substrate. A substrate with light-shielding barrier ribs was obtained, in which barrier ribs having an OD value of 2.0 per 0 μm were formed in a lattice pattern with a pitch of 40 μm on the short side and 280 μm on the long side.
その後、遮光隔壁で隔てられた領域に、硬化後の膜厚が2.5μmになるように、調製例4により得られたカラーフィルター形成材料(CF-1)を塗布し、真空乾燥した。隔壁付き基板の開口部の領域に露光されるように設計したフォトマスクを介して、露光量40mJ/cm2(g、h、i線)で露光した。0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行った後、230℃で30分間加熱硬化を行い、隔壁で隔てられた領域に、高さ2.5μm、短辺40μm、長辺280μmのカラーフィルター層を形成した。After that, the color filter forming material (CF-1) obtained in Preparation Example 4 was applied to the regions separated by the light-shielding partition walls so that the film thickness after curing was 2.5 μm, and dried in a vacuum. Exposure was performed at an exposure dose of 40 mJ/cm 2 (g, h, i lines) through a photomask designed to expose the regions of the openings of the substrate with partition walls. After developing with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, heat curing was performed at 230° C. for 30 minutes. A color filter layer was formed.
その後、調製例6により得られた低屈折率層形成材料をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度90℃で2分間乾燥し、乾燥膜を作製した。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度90℃で30分間加熱し、高さ1.0μm、屈折率1.25の低屈折率層を形成した。 Thereafter, the low refractive index layer-forming material obtained in Preparation Example 6 was spin-coated and dried at a temperature of 90° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). , to prepare a dry film. Furthermore, using an oven (trade name IHPS-222, manufactured by ESPEC Co., Ltd.), the mixture is heated in air at a temperature of 90°C for 30 minutes to form a low refractive index layer having a height of 1.0 µm and a refractive index of 1.25. did.
さらにその後、低屈折率層上に、プラズマCVD装置(PD-220NL、サムコ社製)を用いて、高さ50~1,000nmの無機保護層Iに相当する、膜厚300nmの窒化ケイ素膜を形成した。 Furthermore, after that, on the low refractive index layer, a silicon nitride film with a thickness of 300 nm, which corresponds to the inorganic protective layer I with a height of 50 to 1,000 nm, is formed using a plasma CVD apparatus (PD-220NL, manufactured by Samco). formed.
これらの上に、実施例32と同様の方法で、高さ10μm、幅20μmの隔壁が、短辺40μm、長辺280μmのピッチ間隔の遮光隔壁と同様の格子状パターンに形成された隔壁付き基板を得た。得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図9に示す構成の隔壁付き基板を得た。 A substrate with barrier ribs was formed thereon by the same method as in Example 32, with barrier ribs having a height of 10 μm and a width of 20 μm formed in a lattice pattern similar to the light-shielding barrier ribs having a pitch of 40 μm on the short side and 280 μm on the long side. got The color-converting luminescent material composition (CL-2) obtained in Preparation Example 2 was applied to the regions separated by the partition walls of the obtained substrate with partition walls using an inkjet method in a nitrogen atmosphere, and the mixture was heated at 100°C. After drying for 30 minutes, pixels having a thickness of 5.0 μm were formed to obtain a substrate with partition walls having the structure shown in FIG.
実施例63
実施例61と同様の方法により得られた、厚み2.5μm、短辺40μm、長辺280μmのカラーフィルター層が形成された、画素形成前の隔壁付き基板のカラーフィルター上に、プラズマCVD装置(PD-220NL、サムコ社製)を用いて、厚み50~1,000nmの無機保護層IIIに相当する、膜厚300nmの窒化ケイ素膜を形成した。さらに、無機保護層III上に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図11に示す構成の隔壁付き基板を得た。Example 63
A plasma CVD device ( PD-220NL (manufactured by Samco) was used to form a silicon nitride film with a thickness of 300 nm, which corresponds to the inorganic protective layer III with a thickness of 50 to 1,000 nm. Furthermore, on the inorganic protective layer III, in a nitrogen atmosphere, the color-converting light-emitting material composition (CL-2) obtained in Preparation Example 2 is applied using an inkjet method, dried at 100° C. for 30 minutes, and the thickness is Pixels of 5.0 μm were formed to obtain a substrate with partitions having the configuration shown in FIG. 11 .
実施例64
実施例61と同様の方法により得られた、厚み2.5μm、短辺40μm、長辺280μmのカラーフィルター層が形成された、画素形成前の隔壁付き基板のカラーフィルター上に、調製例7により得られた黄色有機保護層形成材料(YL-1)を塗布し、真空乾燥した。隔壁付き基板の開口部の領域に露光されるように設計したフォトマスクを介して、露光量300mJ/cm2(g、h、i線)で露光した。0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行った後、230℃で30分間加熱硬化を行い、厚み1.0μm、短辺40μm、長辺280μmの黄色有機保護層を形成した。さらに、黄色有機保護層上に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図11に示す構成の隔壁付き基板を得た。Example 64
A color filter layer having a thickness of 2.5 μm, a short side of 40 μm and a long side of 280 μm was formed by the same method as in Example 61. The resulting yellow organic protective layer-forming material (YL-1) was applied and vacuum-dried. Exposure was performed at an exposure amount of 300 mJ/cm 2 (g, h, i lines) through a photomask designed to expose the regions of the openings of the substrate with partition walls. After developing with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, heat curing was performed at 230° C. for 30 minutes to form a yellow organic protective layer having a thickness of 1.0 μm, a short side of 40 μm and a long side of 280 μm. Furthermore, on the yellow organic protective layer, in a nitrogen atmosphere, using an inkjet method, the color conversion light-emitting material composition (CL-2) obtained in Preparation Example 2 is applied, dried at 100 ° C. for 30 minutes, and the thickness is Pixels of 5.0 μm were formed to obtain a substrate with partitions having the configuration shown in FIG. 11 .
各実施例および比較例の構成を表3~5に示す。 Tables 3 to 5 show the configurations of each example and comparative example.
各実施例および比較例における評価方法を以下に示す。 Evaluation methods in each example and comparative example are shown below.
<低屈折率層の屈折率>
各実施例において用いた低屈折率層形成材料を、シリコンウェハ上に、スピナーにより塗布し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度90℃で2分間乾燥した。その後、オーブン(IHPS-222;エスペック(株)製)を用いて、空気中90℃で30分間加熱して、硬化膜を作製した。プリズムカプラー(PC-2000(Metricon(株)製))を用いて、大気圧下、20℃の条件で、硬化膜面に対し垂直方向から波長550nmの光を照射して、屈折率を測定し、小数点以下第三位を四捨五入した。<Refractive index of low refractive index layer>
The low refractive index layer-forming material used in each example was applied onto a silicon wafer using a spinner, and a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.) was used at a temperature of 90°C. Dried for 2 minutes. After that, using an oven (IHPS-222; manufactured by ESPEC Co., Ltd.), it was heated in the air at 90° C. for 30 minutes to prepare a cured film. Using a prism coupler (PC-2000 (manufactured by Metricon Co., Ltd.)), the refractive index was measured by irradiating light with a wavelength of 550 nm from the direction perpendicular to the surface of the cured film at 20° C. under atmospheric pressure. , rounded to the second decimal place.
<クラック耐性>
各実施例および比較例において用いた隔壁形成樹脂組成物を、加熱後の膜厚がそれぞれ10μm、15μm、20μmおよび25μmとなるようにスピンコートした。実施例36~60、実施例62~71および比較例5~8において用いた隔壁形成樹脂組成物のその後の工程については、露光時にフォトマスクを介さずに全体を露光したこと以外は、各実施例および比較例と同条件で加工し、ガラス基板上にベタ膜を作製した。実施例61において用いた隔壁形成樹脂組成物のその後の工程については、露光せずに現像した後にブリーチングを行った以外は、実施例62と同条件で加工し、ガラス基板上にベタ膜を作製した。得られたベタ膜を各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、ベタ膜を有するガラス基板を目視観察し、ベタ膜のクラックの有無を評価した。1つでもクラックが確認された場合には、その膜厚におけるクラック耐性はないと判断した。例えば、膜厚15μmではクラックがなく、膜厚20μmではクラックがあった場合には、耐クラック膜厚を「≧15μm」と判定した。また、25μmでもクラックがない場合の耐クラック膜厚を「≧25μm」、10μmでもクラックがある場合の耐クラック膜厚を「<10μm」と、それぞれ判定し、クラック耐性とした。<Crack resistance>
The barrier rib-forming resin composition used in each example and comparative example was spin-coated so that the film thickness after heating was 10 μm, 15 μm, 20 μm and 25 μm, respectively. In the subsequent steps of the barrier rib-forming resin compositions used in Examples 36 to 60, Examples 62 to 71 and Comparative Examples 5 to 8, the entirety was exposed without using a photomask during exposure. A solid film was formed on a glass substrate by processing under the same conditions as in Examples and Comparative Examples. Subsequent steps of the partition-forming resin composition used in Example 61 were processed under the same conditions as in Example 62, except that bleaching was performed after development without exposure, and a solid film was formed on the glass substrate. made. Using the resulting solid film as a model of the barrier ribs of the substrates with barrier ribs obtained in Examples and Comparative Examples, the glass substrate having the solid film was visually observed to evaluate the presence or absence of cracks in the solid film. If even one crack was confirmed, it was determined that the film had no crack resistance at that film thickness. For example, when there were no cracks at a film thickness of 15 μm and cracks at a film thickness of 20 μm, the crack resistant film thickness was judged to be “≧15 μm”. In addition, the crack resistant film thickness was determined as "≧25 μm" when there was no crack even at 25 μm, and the crack resistant film thickness was determined as "<10 μm" when there was a crack even at 10 μm, and the crack resistance was determined.
<解像度>
スピンコーター(商品名1H-360S、ミカサ(株)製)を用いて、各実施例および比較例において用いた隔壁用樹脂組成物を、10cm角の無アルカリガラス基板上に、加熱後の膜厚が10μmとなるようにスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で3分間乾燥し、膜厚10μmの乾燥膜を作製した。<Resolution>
Using a spin coater (trade name 1H-360S, manufactured by Mikasa Co., Ltd.), the partition wall resin composition used in each example and comparative example was coated on a 10 cm square non-alkali glass substrate to determine the film thickness after heating. was spin-coated to a thickness of 10 μm, and dried at a temperature of 100° C. for 3 minutes using a hot plate (trade name SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.) to prepare a dry film with a thickness of 10 μm. .
作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、100μm、80μm、60μm、50μm、40μm、30μmおよび20μmの各幅のライン&スペースパターンを有するマスクを介して露光量300mJ/cm2(g、h、i線)で、100μmのギャップで露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.045重量%水酸化カリウム水溶液を用いて100秒間シャワー現像し、次いで水を用いて30秒間リンスした。The prepared dry film was measured using a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) with an ultra-high pressure mercury lamp as a light source, and each width of 100 μm, 80 μm, 60 μm, 50 μm, 40 μm, 30 μm and 20 μm. was exposed at an exposure amount of 300 mJ/cm 2 (g, h, i lines) with a gap of 100 μm through a mask having a line and space pattern of . Then, using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.), shower development is performed using a 0.045% by weight potassium hydroxide aqueous solution for 100 seconds, and then water is used for 30 seconds. Rinse for seconds.
倍率100倍に調整した顕微鏡を用いて、現像後のパターンを拡大観察し、未露光部に残渣が認められないパターンのうち、最も狭い線幅を解像度とした。ただし、100μm幅のパターン付近の未露光部にも残渣がある場合は「>100μm」とした。 Using a microscope adjusted to a magnification of 100, the pattern after development was enlarged and observed, and the narrowest line width among the patterns in which no residue was observed in the unexposed area was defined as the resolution. However, when there was also a residue in the unexposed area near the pattern with a width of 100 μm, it was defined as “>100 μm”.
<反射率>
実施例30~52、実施例54~59および比較例4~6において用いた隔壁形成樹脂組成物を、露光時にフォトマスクを介さずに全体を露光したこと以外は、各実施例および比較例と同条件で加工し、ガラス基板上に高さ10μmのベタ膜を作製した。実施例53において用いた隔壁形成樹脂組成物については、露光せずに現像した後にブリーチングを行った以外は、実施例53と同条件で加工し、ガラス基板上に高さ10μmのベタ膜を作製した。得られたベタ膜を有するガラス基板について、分光測色計(商品名CM-2600d、コニカミノルタ(株)製)を用いて、ベタ膜側からSCIモードで波長450nm、550nmおよび630nmにおける反射率を測定した。ただし、ベタ膜にクラックやシワが発生した場合は、亀裂などが原因で正確な値を得ることができないため、反射率の測定は実施しなかった。<Reflectance>
Except that the partition-forming resin compositions used in Examples 30 to 52, Examples 54 to 59 and Comparative Examples 4 to 6 were entirely exposed without passing through a photomask during the exposure, each of the examples and comparative examples was performed. A solid film having a height of 10 μm was formed on a glass substrate by processing under the same conditions. The partition-forming resin composition used in Example 53 was processed under the same conditions as in Example 53, except that it was developed without being exposed to light and then bleached, and a solid film having a height of 10 μm was formed on a glass substrate. made. Using a spectrophotometer (trade name: CM-2600d, manufactured by Konica Minolta, Inc.), the glass substrate having the obtained solid film was measured for reflectance at wavelengths of 450 nm, 550 nm and 630 nm in SCI mode from the solid film side. It was measured. However, when cracks or wrinkles occurred in the solid film, the reflectance was not measured because accurate values could not be obtained due to such cracks.
<OD値>
各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、反射率の評価と同様に、ガラス基板上に高さ10μmのベタ膜を作製した。得られたベタ膜を有するガラス基板について、光学濃度計(日立ハイテクサイエンス製U-4100)を用いて入射光および透過光の強度を測定し、先述の式(1)により波長450nm、550nmおよび630nmにおけるOD値を算出した。なお、OD値については、加熱工程前のベタ膜と、加熱工程後のOD値をそれぞれ測定し、その差を含め表6~8に記載した。<OD value>
As a model of the barrier ribs of the substrate with barrier ribs obtained in each example and comparative example, a solid film having a height of 10 μm was formed on a glass substrate in the same manner as in the evaluation of the reflectance. For the glass substrate having the obtained solid film, the intensity of incident light and transmitted light was measured using an optical densitometer (Hitachi High-Tech Science U-4100), and the wavelengths of 450 nm, 550 nm and 630 nm were measured according to the above formula (1). The OD value in was calculated. As for the OD value, the solid film before the heating process and the OD value after the heating process were measured, and the differences are shown in Tables 6 to 8.
また、実施例60および62について、遮光隔壁(A-2)のモデルとして、同様にガラス基板上にベタ膜を作製した。得られたベタ膜を有するガラス基板について、光学濃度計(日立ハイテクサイエンス製U-4100)を用いて入射光および透過光の強度を測定し、先述の式(1)により算出した。 Further, for Examples 60 and 62, a solid film was similarly formed on a glass substrate as a model of the light shielding partition (A-2). The intensity of incident light and transmitted light on the obtained glass substrate having the solid film was measured using an optical densitometer (Hitachi High-Tech Science U-4100), and the intensity was calculated according to the above formula (1).
<耐候性>
各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、反射率の評価と同様に、ガラス基板上に高さ10μmのベタ膜を作製した。得られたベタ膜を有するガラス基板について、分光測色計(商品名CM-2600d、コニカミノルタ(株)製)を用いて、ベタ膜側からSCIモードで、色度(L*値、a*およびb*値)を測定した。その後、各ベタ膜を有するガラス基板を、卓上型キセノン促進耐候性試験機(商品名Q-SUN Xe-1、Q-Lab社製)にセットし、波長340nmの光を照射量0.42W/m2、チャンバー温度45℃の条件で耐候性試験を100h行った。その後、各ベタ膜を有するガラス基板を、再びベタ膜側からSCIモードで、色度(L*値、a*およびb*値)を測定して、反射色度座標の変化量ΔEを以下式(2)により求めた。<Weather resistance>
As a model of the barrier ribs of the substrate with barrier ribs obtained in each example and comparative example, a solid film having a height of 10 μm was formed on a glass substrate in the same manner as in the evaluation of the reflectance. For the glass substrate having the obtained solid film, using a spectrophotometer (trade name CM-2600d, manufactured by Konica Minolta, Inc.) in SCI mode from the solid film side, chromaticity (L* value, a* and b* values) were measured. After that, the glass substrate having each solid film was set in a desktop xenon accelerated weathering tester (trade name Q-SUN Xe-1, manufactured by Q-Lab), and irradiated with light having a wavelength of 340 nm at an irradiation amount of 0.42 W/ A weather resistance test was performed for 100 hours under the conditions of m 2 and chamber temperature of 45°C. Thereafter, the chromaticity (L* value, a* and b* values) of the glass substrate having each solid film is measured again from the solid film side in the SCI mode, and the amount of change ΔE in the reflection chromaticity coordinate is calculated by the following formula. (2).
ΔE = {(ΔL*)2+(Δa*)2+(Δb*)2}1/2 ・・・ (2)
算出したΔEについて、下記基準により耐候性を評価した。ΔEが小さいほど、耐候性が高いことを示す。ΔE = {(ΔL*) 2 + (Δa*) 2 + (Δb*) 2 } 1/2 (2)
The calculated ΔE was evaluated for weather resistance according to the following criteria. A smaller ΔE indicates higher weather resistance.
A:ΔE<3.0
B:3.0≦ΔE≦6.0
C:6.0≦ΔEA: ΔE<3.0
B: 3.0≤ΔE≤6.0
C: 6.0≤ΔE
<テーパー角度>
各実施例および比較例において、画素形成前の隔壁付き基板の任意の断面を、光学顕微鏡(FE-SEM(S-4800);(株)日立製作所製)を用いて、加速電圧3.0kVで観測し、テーパー角度を測定した。<Taper angle>
In each of the examples and comparative examples, an arbitrary cross section of the substrate with partition walls before pixel formation was measured using an optical microscope (FE-SEM (S-4800); manufactured by Hitachi, Ltd.) at an acceleration voltage of 3.0 kV. was observed and the taper angle was measured.
<表面接触角>
各実施例および比較例により得られた隔壁付き基板における隔壁のモデルとして、反射率の評価と同様に、ガラス基板上に高さ10μmのベタ膜を作製した。得られたベタ膜の表面について、協和界面科学(株)製 DM-700、マイクロシリンジ:協和界面科学(株)製 接触角計用テフロン(登録商標)コート針22Gを用いて、25℃、大気中において、JIS R3257(制定年月日=1999/04/20)に規定される基板ガラス表面のぬれ性試験方法に準拠して、表面接触角を測定した。ただし、水の代わりにプロピレングリコールモノメチルエーテルアセテートを使用し、ベタ膜の表面とプロピレングリコールモノメチルエーテルアセテートとの接触角を測定した。<Surface contact angle>
As a model of the barrier ribs in the substrates with barrier ribs obtained in each example and comparative example, a solid film with a height of 10 μm was formed on a glass substrate in the same manner as in the evaluation of the reflectance. The surface of the obtained solid film was measured at 25 ° C. in the atmosphere using DM-700 manufactured by Kyowa Interface Science Co., Ltd., microsyringe: Teflon (registered trademark) coated needle 22G for contact angle meter manufactured by Kyowa Interface Science Co., Ltd. The surface contact angle was measured in accordance with the substrate glass surface wettability test method defined in JIS R3257 (enacted date = 1999/04/20). However, propylene glycol monomethyl ether acetate was used instead of water, and the contact angle between the surface of the solid film and propylene glycol monomethyl ether acetate was measured.
<インクジェット塗布性>
各実施例および比較例により得られた、画素を形成する前の隔壁付き基板において、格子状の隔壁で囲われた画素部分に対して、PGMEAをインクとして、インクジェット塗布装置(InkjetLabo、クラスターテクノロジー(株)製)を用いて、インクジェット塗布を行った。1つの格子状パターンあたり160pLのPGMEAを塗布して、決壊(インクが隔壁を乗り越えて隣の画素部分に混入する現象)の有無を観察し、下記基準によりインクジェット塗布性を評価した。決壊が少ないほど撥液性能が高く、インクジェット塗布性が優れていることを示す。<Inkjet coatability>
In the substrates with partition walls before forming the pixels obtained in each example and comparative example, PGMEA was used as an ink for the pixel portions surrounded by the grid-like partition walls, and an inkjet coating device (InkjetLabo, cluster technology ( Co., Ltd.) was used for inkjet coating. 160 pL of PGMEA was applied to each grid pattern, and the presence or absence of breakage (a phenomenon in which ink crosses over the partition wall and mixes into the adjacent pixel portion) was observed, and the inkjet applicability was evaluated according to the following criteria. The smaller the breakage, the higher the liquid repellency and the better the inkjet applicability.
A:インクが画素内からあふれなかった。
B:一部分においてインクが画素内から隔壁の上面にあふれ出した。
C:全面においてインクが画素内から隔壁の上面にあふれ出した。A: Ink did not overflow from the pixel.
B: Ink overflowed from the inside of the pixel to the upper surface of the partition in a part.
C: Ink overflowed from the inside of the pixel to the upper surface of the partition on the entire surface.
<高さ>
各実施例および比較例により得られた隔壁付き基板の各層について、サーフコム触針式膜厚測定装置を用いて、各層形成前後の膜厚を測定し、その差分を算出することにより、高さを測定した。<Height>
For each layer of the substrate with partition walls obtained in each example and comparative example, the film thickness before and after the formation of each layer was measured using a Surfcom stylus film thickness measurement device, and the difference was calculated to determine the height. It was measured.
また、実施例62~63については、クロスセクションポリッシャー等の研磨装置を用いて、下地基板に対して垂直な断面を露出させ、走査型電子顕微鏡または透過型電子顕微鏡で断面を拡大観察することにより、各無機保護層の高さを測定した。 In addition, for Examples 62 and 63, a cross section perpendicular to the underlying substrate was exposed using a polishing apparatus such as a cross section polisher, and the cross section was enlarged and observed with a scanning electron microscope or a transmission electron microscope. , the height of each inorganic protective layer was measured.
<低温加熱後のOD値変化>
各実施例および比較例において用いた隔壁形成用樹脂組成物を用いて、最後の加熱条件を、空気中100℃で60分間に変更した以外は、前述のOD値の評価と同様にして、ガラス基板上に高さ10μmのベタ膜を作製した。得られたベタ膜について、前述のOD値の評価と同様に、光学濃度計(日立ハイテクサイエンス製U-4100)を用いて入射光および透過光の強度を測定した後、OD値を算出した。加熱工程前のベタ膜と、加熱工程後の波長450nmのOD値をそれぞれ測定し、その差を算出することで、下記基準により低温加熱時のOD値変化を評価した。<OD value change after low temperature heating>
Glass was prepared in the same manner as in the evaluation of the OD value described above, except that the partition wall-forming resin composition used in each example and comparative example was used and the final heating conditions were changed to 100° C. in air for 60 minutes. A solid film with a height of 10 μm was formed on the substrate. For the obtained solid film, the intensity of incident light and transmitted light was measured using an optical densitometer (Hitachi High-Tech Science U-4100) in the same manner as in the evaluation of the OD value, and then the OD value was calculated. The solid film before the heating process and the OD value at a wavelength of 450 nm after the heating process were measured, and the difference was calculated to evaluate the change in the OD value during low-temperature heating according to the following criteria.
A:ΔOD値>1.5
B:0.5≦ΔOD値≦1.5
C:ΔOD値<0.5A: ΔOD value>1.5
B: 0.5 ≤ ΔOD value ≤ 1.5
C: ΔOD value <0.5
<低温硬化性>
各実施例および比較例において用いた隔壁形成用樹脂組成物を用いて、最後の加熱条件を、空気中100℃で60分間に変更した以外は同様にして、隔壁を形成した。得られた隔壁付き基板について、前述のインクジェット塗布性の評価と同様に、1,6-ヘキサンジオールジアクリレートをインクとして隔壁内にインクジェット塗布を行った。その後、画素内を1時間後、3時間後に観察し、下記基準により隔壁の低温硬化性を評価した。隣接画素への浸み出しがないほど、隔壁の低温硬化性が優れていることを示す。<Low temperature curability>
Using the partition-forming resin composition used in each example and comparative example, partition walls were formed in the same manner, except that the final heating conditions were changed to 100° C. in air for 60 minutes. Regarding the obtained substrate with partition walls, 1,6-hexanedioldiacrylate was used as an ink and ink jet coating was performed on the inside of the partition walls in the same manner as in the evaluation of the ink jet applicability described above. Then, the inside of the pixel was observed after 1 hour and 3 hours, and the low-temperature curability of the partition walls was evaluated according to the following criteria. It shows that the low-temperature curability of the partition wall is so excellent that there is no seepage into adjacent pixels.
A:インクジェット塗布から3時間後にも、隣接画素へのインクの浸み出しが見られない
B:インクジェット塗布から1時間後に、隣接画素へのインクの浸み出しが見られないが、3時間後に浸み出しが見られた
C:インクジェット塗布直後に、隣接画素へのインクの浸み出しが見られたA: Even after 3 hours from inkjet application, no ink seepage into adjacent pixels was observed. B: No ink seepage into adjacent pixels was observed after 1 hour from inkjet application, but after 3 hours. Bleeding was observed C: Immediately after ink-jet application, ink was seen to bleed into adjacent pixels
<保存安定性>
各実施例および比較例において用いた隔壁形成用樹脂組成物について、調製直後、調製から25℃で3日保管後、および7日保管後に、前述の解像度の評価と同様の評価を行うことで、保存安定性を下記基準により評価した。<Storage stability>
The partition wall-forming resin composition used in each example and comparative example was evaluated in the same manner as the evaluation of resolution immediately after preparation, after storage at 25° C. for 3 days from preparation, and after storage for 7 days. Storage stability was evaluated according to the following criteria.
A:調製直後、25℃で3日間保管後、および25℃で7日間保管後による評価で、それぞれ加工可能な解像度に変化がなかった
B:調製直後、および25℃で3日間保管後による評価で、それぞれ加工可能な解像度に変化がなかったが、25℃で7日間保管後による評価では、加工可能な解像度が悪化した
C:調製直後と比べ、25℃で3日間保管後による評価では、加工可能な解像度が悪化した A: Evaluation immediately after preparation, after storage at 25°C for 3 days, and after storage at 25°C for 7 days showed no change in processable resolution. B: Evaluation immediately after preparation and after storage at 25°C for 3 days. There was no change in the resolution that can be processed, respectively, but in the evaluation after storage at 25 ° C. for 7 days, the resolution that can be processed deteriorated. Processable resolution deteriorated
<輝度>
市販のLEDバックライト(ピーク波長465nm)を搭載した面状発光装置を光源として、画素部が光源側になるように各実施例および比較例により得られた隔壁付き基板を設置した。この面状発光装置に30mAの電流を流してLED素子を点灯させ、分光放射輝度計(CS-1000、コニカミノルタ社製)を用いて、CIE1931規格に基づく輝度(単位:cd/m2)を測定し、初期輝度とした。ただし、輝度の評価は、実施例69の初期輝度を標準の100とする相対値により行った。<Brightness>
A planar light-emitting device equipped with a commercially available LED backlight (peak wavelength 465 nm) was used as a light source, and the substrates with partition walls obtained in each example and comparative example were placed so that the pixel portion was on the light source side. A current of 30 mA is passed through this planar light emitting device to light the LED element, and the luminance (unit: cd/m 2 ) based on the CIE1931 standard is measured using a spectral radiance meter (CS-1000, manufactured by Konica Minolta). measured and taken as the initial luminance. However, the evaluation of luminance was performed using a relative value with the initial luminance of Example 69 being 100 as the standard.
また、室温(23℃)にて、LED素子を、48時間点灯した後、同様に輝度を測定し、輝度の経時変化を評価した。ただし、輝度の評価は、実施例69の初期輝度を標準の100とする相対値により行った。 In addition, after lighting the LED element for 48 hours at room temperature (23° C.), the luminance was similarly measured to evaluate the change in luminance over time. However, the evaluation of luminance was performed using a relative value with the initial luminance of Example 69 being 100 as the standard.
<色特性>
市販の白色反射板上に、各実施例および比較例により得られた隔壁付き基板を、画素が白色反射板側に配置されるように設置した。分光測色計(CM-2600d、コニカミノルタ社製、測定径φ8mm)を用いて、隔壁付き基板の下地基板側から光を照射し、正反射光込みのスペクトルを測定した。<Color characteristics>
The substrate with partition walls obtained in each example and comparative example was placed on a commercially available white reflector such that the pixels were arranged on the side of the white reflector. Using a spectrophotometer (CM-2600d, manufactured by Konica Minolta, measuring diameter φ8 mm), the substrate with partition walls was irradiated with light from the underlying substrate side, and the spectrum including regular reflection light was measured.
自然界の色をほぼ再現できる色規格BT.2020が定める色域は、色度図に示されるスペクトル軌跡上の赤、緑および青を三原色として規定されており、赤、緑および青の波長はそれぞれ630nm、532nmおよび467nmに相当している。得られた反射スペクトルの470nm、530nmおよび630nmの3つの波長の反射率(R)から、画素の発光色について以下の基準により評価した。 Color standard BT. The color gamut defined by 2020 is defined as the three primary colors red, green and blue on the spectral locus shown in the chromaticity diagram, with the wavelengths of red, green and blue corresponding to 630 nm, 532 nm and 467 nm respectively. From the reflectance (R) at three wavelengths of 470 nm, 530 nm and 630 nm of the obtained reflection spectrum, the emission color of the pixel was evaluated according to the following criteria.
A:R530/(R630+R530+R470)≧0.55
B:R530/(R630+R530+R470)<0.55。A: R530 /( R630 + R530 + R470 )≧0.55
B: R530 /( R630 + R530 + R470 ) < 0.55.
<表示特性>
各実施例および比較例により得られた隔壁付き基板と有機EL素子を組み合わせて作製した表示装置の表示特性を、以下の基準に基づき評価した。<Display characteristics>
The display characteristics of the display devices produced by combining the substrates with partition walls and the organic EL elements obtained in Examples and Comparative Examples were evaluated based on the following criteria.
A:緑表示が非常に色鮮やかであり、鮮明でコントラストに優れた表示装置である。
B:色彩にやや不自然さが見られるものの、問題のない表示装置である。A: The display device has a very vivid green display, and is clear and excellent in contrast.
B: The display device has no problem, although the colors are somewhat unnatural.
<混色>
各実施例および比較例により得られた、画素を形成する前の隔壁付き基板において、格子状の隔壁で囲われた画素部分の一部に、インクジェット法を用いて、色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成した。その後、格子状の隔壁で囲われた画素部分のうち、色変換発光材料組成物(CL-2)を塗布した領域の隣の領域に、インクジェット法を用いて、色変換発光材料組成物(CL-3)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成した。<Mixed color>
In the substrates with partition walls before forming pixels obtained in each of Examples and Comparative Examples, a color-converting luminescent material composition ( CL-2) was applied and dried at 100° C. for 30 minutes to form pixels with a thickness of 5.0 μm. After that, among the pixel portions surrounded by the grid-like partition walls, the color-converting luminescent material composition (CL -3) was applied and dried at 100° C. for 30 minutes to form pixels with a thickness of 5.0 μm.
一方、格子状の隔壁で囲われた画素部分と同じ幅をもつ青色有機ELセルを作製し、前述の隔壁付き基板と青色有機ELセルを対向させて封止剤により貼り合せ、図15に示す構成の表示装置を得た。 On the other hand, a blue organic EL cell having the same width as the pixel portion surrounded by the grid-like partition walls was prepared, and the substrate with the partition walls and the blue organic EL cell were opposed to each other and bonded with a sealant, as shown in FIG. A display device of the composition was obtained.
図15における青色有機ELセル11のうち、色変換発光材料組成物(CL-2)で形成された画素3(CL-2)の直下に貼り合わせた青色有機ELセルのみを点灯させた状態で、色変換発光材料組成物(CL-3)で形成された画素3(CL-3)部分について、顕微分光光度計LVmicro-V(ラムダビジョン(株)製)を用いて、波長630nmにおける吸光強度A(630nm)を測定した。吸光強度A(630nm)の値が小さいほど、混色を起こしにくいことを示している。下記の判定基準により混色を判定した。
Of the blue
A:A(630nm)<0.01
B:0.01≦A(630nm)≦0.5
C:0.5<A(630nm)。A: A (630 nm) < 0.01
B: 0.01≦A (630 nm)≦0.5
C: 0.5<A (630 nm).
各実施例および比較例評価結果を表6~8に示す。 Tables 6 to 8 show the evaluation results of each example and comparative example.
1 下地基板
2 隔壁
3 画素
3(CL-2) 色変換発光材料組成物(CL-2)で形成された画素
3(CL-3) 色変換発光材料組成物(CL-3)で形成された画素
4 遮光隔壁
5 カラーフィルター
6 低屈折率層
7 無機保護層I
8 無機保護層II
9 無機保護層IIIおよび/または黄色有機保護層
10 無機保護層IVおよび/または黄色有機保護層
11 有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源
12 青色有機ELセル
H 隔壁の厚み
L 隔壁の幅
θ テーパー角度1
8 inorganic protective layer II
9 inorganic protective layer III and/or yellow organic
Claims (17)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020061244 | 2020-03-30 | ||
JP2020061244 | 2020-03-30 | ||
PCT/JP2021/011831 WO2021200357A1 (en) | 2020-03-30 | 2021-03-23 | Resin composition, light-shielding film, and substrate with partition wall |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2021200357A1 JPWO2021200357A1 (en) | 2021-10-07 |
JP7115635B2 true JP7115635B2 (en) | 2022-08-09 |
Family
ID=77929869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021516844A Active JP7115635B2 (en) | 2020-03-30 | 2021-03-23 | Resin composition, light-shielding film, and substrate with partition |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7115635B2 (en) |
KR (1) | KR20220161259A (en) |
CN (1) | CN115427514B (en) |
TW (1) | TW202138459A (en) |
WO (1) | WO2021200357A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118511126A (en) * | 2022-02-16 | 2024-08-16 | 东丽株式会社 | Resin composition, light-shielding film, method for producing light-shielding film, substrate with partition wall, and display device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001166419A (en) | 1999-12-06 | 2001-06-22 | Konica Corp | Heat developable photosensitive material and image forming method for same |
JP2008516039A (en) | 2004-10-08 | 2008-05-15 | キネテイツク・リミテツド | Active filler particles in ink |
US20160332145A1 (en) | 2015-05-11 | 2016-11-17 | Eastman Kodak Company | Metal catalytic compositions and articles therefrom |
WO2020008969A1 (en) | 2018-07-05 | 2020-01-09 | 東レ株式会社 | Resin composition, light-blocking film, method for producing light-blocking film, and substrate having partitioning wall attached thereto |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5393638A (en) * | 1990-06-12 | 1995-02-28 | Canon Kabushiki Kaisha | Image forming method |
JP2000131683A (en) | 1998-10-29 | 2000-05-12 | Hitachi Ltd | Color display device |
JP4352509B2 (en) | 1999-06-07 | 2009-10-28 | 東レ株式会社 | Photosensitive paste and display member manufacturing method |
JP4401196B2 (en) * | 2003-03-10 | 2010-01-20 | 富士フイルム株式会社 | Dye-containing curable composition, color filter and method for producing the same |
JP4197177B2 (en) | 2005-03-18 | 2008-12-17 | 東京応化工業株式会社 | Photo-curable resin composition for forming black matrix, photosensitive film using the same, method for forming black matrix, black matrix and plasma display panel having the black matrix |
JP2008051934A (en) * | 2006-08-23 | 2008-03-06 | Fujifilm Corp | Photosensitive composition and photosensitive transfer material using the same, light-shielding film for display device and method for producing the same, substrate with the light-shielding film, and the display device |
JP2009244383A (en) | 2008-03-28 | 2009-10-22 | Fujifilm Corp | Liquid crystal display device |
KR101972723B1 (en) * | 2015-09-30 | 2019-04-25 | 도레이 카부시키가이샤 | Negative-type colored photosensitive resin composition, cured film, element and display device |
KR102247840B1 (en) * | 2016-03-18 | 2021-05-03 | 제이에스알 가부시끼가이샤 | Substrate for display device, manufacturing method of the substrate for display device, and display device |
US10889755B2 (en) * | 2016-11-22 | 2021-01-12 | Samsung Electronics Co., Ltd. | Photosensitive resin composition, complex, laminated structure and display device, and electronic device including the same |
-
2021
- 2021-03-23 CN CN202180026967.5A patent/CN115427514B/en active Active
- 2021-03-23 KR KR1020227023516A patent/KR20220161259A/en active Search and Examination
- 2021-03-23 WO PCT/JP2021/011831 patent/WO2021200357A1/en active Application Filing
- 2021-03-23 JP JP2021516844A patent/JP7115635B2/en active Active
- 2021-03-25 TW TW110110900A patent/TW202138459A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001166419A (en) | 1999-12-06 | 2001-06-22 | Konica Corp | Heat developable photosensitive material and image forming method for same |
JP2008516039A (en) | 2004-10-08 | 2008-05-15 | キネテイツク・リミテツド | Active filler particles in ink |
US20160332145A1 (en) | 2015-05-11 | 2016-11-17 | Eastman Kodak Company | Metal catalytic compositions and articles therefrom |
WO2020008969A1 (en) | 2018-07-05 | 2020-01-09 | 東レ株式会社 | Resin composition, light-blocking film, method for producing light-blocking film, and substrate having partitioning wall attached thereto |
Also Published As
Publication number | Publication date |
---|---|
WO2021200357A1 (en) | 2021-10-07 |
TW202138459A (en) | 2021-10-16 |
JPWO2021200357A1 (en) | 2021-10-07 |
CN115427514B (en) | 2024-01-02 |
KR20220161259A (en) | 2022-12-06 |
CN115427514A (en) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7201062B2 (en) | Substrate with partition wall and display device | |
JP7306264B2 (en) | Negative photosensitive coloring composition, cured film, and touch panel using the same | |
JP6295950B2 (en) | Photosensitive resin composition, protective film or insulating film, touch panel and manufacturing method thereof | |
US9977329B2 (en) | Negative photosensitive resin composition, cured film obtained by curing same, method for producing cured film, optical device provided with cured film, and backside-illuminated CMOS image sensor | |
JP2021161401A (en) | Resin composition, light blocking film, method for producing light blocking film, and substrate with partition | |
JP2021005083A (en) | Yellow color filter and substrate with the same | |
JP7115635B2 (en) | Resin composition, light-shielding film, and substrate with partition | |
JP2021162860A (en) | Negative type photosensitive coloring composition, cured film, method for producing cured film, substrate with partition wall, and image display device | |
JP2022150305A (en) | Resin composition, ultraviolet absorption layer, and substrate with ultraviolet absorption layer | |
WO2023157713A1 (en) | Resin composition, light-blocking film, method for producing light-blocking film, substrate having partitioning wall attached thereto, and display device | |
WO2023048016A1 (en) | Resin composition, light-shielding film, and substrate with partitioning wall | |
JP2023119574A (en) | Resin composition, light-shielding film, method for manufacturing light-shielding film, substrate with partition wall and display device | |
JP2023031448A (en) | Substrate with partition wall, wavelength conversion substrate and method of manufacturing wavelength conversion substrate, and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220228 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220711 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7115635 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |