WO2023157713A1 - Resin composition, light-blocking film, method for producing light-blocking film, substrate having partitioning wall attached thereto, and display device - Google Patents

Resin composition, light-blocking film, method for producing light-blocking film, substrate having partitioning wall attached thereto, and display device Download PDF

Info

Publication number
WO2023157713A1
WO2023157713A1 PCT/JP2023/003935 JP2023003935W WO2023157713A1 WO 2023157713 A1 WO2023157713 A1 WO 2023157713A1 JP 2023003935 W JP2023003935 W JP 2023003935W WO 2023157713 A1 WO2023157713 A1 WO 2023157713A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pigment
resin composition
substrate
partition walls
Prior art date
Application number
PCT/JP2023/003935
Other languages
French (fr)
Japanese (ja)
Inventor
飯塚英祐
諏訪充史
谷野貴広
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023157713A1 publication Critical patent/WO2023157713A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/35Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a resin composition, a light-shielding film formed from the resin composition, a method for manufacturing the light-shielding film, a substrate with partition walls having patterned partition walls, and a display device.
  • a color display device with high light utilization efficiency a color display device including a wavelength conversion section made of a wavelength conversion phosphor, a polarization separation means, and a polarization conversion means has been proposed (see, for example, Patent Document 1). ).
  • a blue light source a liquid crystal element, a phosphor that emits red fluorescence when excited by blue light, a phosphor that emits green fluorescence when excited by blue light, and a light scattering layer that scatters blue light.
  • a color display device including a conversion unit has been proposed (see, for example, Patent Document 2).
  • color filters containing color-converting phosphors such as those described in Patent Documents 1 and 2
  • generate fluorescence in all directions resulting in low light extraction efficiency and insufficient brightness.
  • high-definition display devices called 4K and 8K
  • the problem of brightness becomes significant, and higher brightness is required.
  • barrier ribs having both high reflectivity and high light-shielding properties
  • the inventors first prepared a material obtained by adding a black pigment to a white barrier rib material using a titanium oxide white pigment that exhibits high reflectance. Considered how to use it. However, in this method, the entire exposure light is absorbed by the white pigment and the black pigment, and the light does not reach the bottom of the film during exposure, resulting in poor pattern workability.
  • the inventors devised a design in which the exposure light is transmitted during the process of pattern exposure after film formation, and the light shielding property is increased after heating the exposed film at a temperature of 120°C or higher and 250°C or lower.
  • a resin composition containing a resin, an organometallic compound containing at least one metal selected from the group consisting of silver, gold, platinum and palladium, a photopolymerization initiator or a quinonediazide compound, and a solvent is used. This was achieved by doing so (see Patent Document 5).
  • Patent Document 5 it was found that when an organic palladium compound is used, palladium oxide particles are produced after heating to effectively turn the film black, thereby increasing the light shielding property against visible light.
  • the inventors have found that when an organic silver compound is used, the film turns yellow due to the formation of silver nanoparticles after heating, and the blue light shielding property increases.
  • the reducing agent is It promotes the production of silver nanoparticles, has excellent weather resistance even under low-temperature heating conditions of about 100 to 120 ° C., and can form barrier ribs that have both high light blocking properties for blue light and high reflectivity for all visible light. We found that (see Patent Document 6).
  • this technology has the problem that although the blue light shielding property is improved by the generation of yellow silver nanoparticles, the light shielding property of green to red light (wavelength range 500 nm to 630 nm) is not improved.
  • the above-mentioned technology using an organic palladium compound has problems in that the organic palladium compound is expensive and that palladium oxide particles cannot be generated under low temperature heating conditions of about 100 to 120 ° C., and the light shielding property is not improved. Ta.
  • the present invention provides a relatively inexpensive resin composition capable of forming gray partition walls having both high reflectivity and high light shielding performance for all visible light even under low-temperature heating conditions of about 100 to 120°C. for the purpose.
  • the present invention is as follows.
  • the resin composition according to (1), wherein the white pigment is treated with ZrO2 , Al2O3 and SiO2 .
  • the resin composition according to (1), wherein the weight ratio of the blue pigment and the purple pigment is 20/80 to 80/20.
  • a resin composition containing a photosensitive agent, a white pigment, and a yellow precursor compound, wherein the white pigment is at least one selected from the group consisting of SiO 2 and Al 2 O 3 and ZrO 2 A resin composition characterized by being treated.
  • the resin composition according to (1) or (5), wherein the yellow precursor compound is an organic silver compound.
  • a film-forming step of applying the resin composition according to (1) or (5) onto a base substrate and drying to obtain a dry film, an exposure step of pattern-exposing the obtained dry film, and a post-exposure A method for producing a light-shielding film comprising a developing step of dissolving and removing a portion soluble in a developer in a dry film and a heating step of curing the dry film after development by heating, wherein in the heating step, after development, A method for producing a light-shielding film, wherein the dry film is heated at a temperature of 100° C. or more and 250° C.
  • a substrate with partition walls containing silver and/or silver particles (16)
  • a substrate with partitions having (A-1) patterned partitions on a base substrate, wherein the patterned partitions are composed of a resin, a white pigment, a blue pigment and a purple pigment, and an oxidized The substrate with partition walls according to (13), containing silver and/or silver particles.
  • a barrier rib-attached substrate having (A-1) patterned barrier ribs on a base substrate, wherein the patterned barrier ribs are composed of a resin, a white pigment, a blue pigment and a purple pigment, and an oxidized
  • the substrate with partition walls according to (18) further comprising a color filter having a thickness of 1 to 5 ⁇ m between the base substrate and (B) the pixel layer containing the color-converting luminescent material.
  • a display device comprising the substrate with partition walls according to (13) and a light source selected from a liquid crystal cell, an organic EL cell, a mini-LED cell and a micro-LED cell.
  • the resin composition of the present invention contains a resin, a photosensitive agent, a white pigment, a yellow precursor compound, and a blue pigment and a violet pigment. is heated at a temperature of 100° C. or higher and 250° C. or lower, yellow particles are generated in the film, and it is possible to form a fine thick-film gray partition pattern that achieves both high reflectivity and high light shielding for all visible light.
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having patterned partitions.
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having pixels containing patterned partitions and a color-converting luminescent material;
  • FIG. 2 is a cross-sectional view showing one embodiment of the partition-attached substrate of the present invention, which has patterned partitions, a color-converting luminescent material, and light-shielding partitions.
  • FIG. 2 is a cross-sectional view showing one embodiment of the substrate with partitions of the present invention, which has patterned partitions, a color-converting luminescent material, and a color filter.
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having patterned partitions.
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having pixels containing patterned partitions and a
  • FIG. 2 is a cross-sectional view showing one embodiment of the substrate with partitions of the present invention, which has patterned partitions, color-converting luminescent material, light-shielding partitions, and color filters.
  • 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having pixels containing patterned partitions and light-emitting light sources selected from organic EL cells, mini-LED cells, and micro-LED cells.
  • FIG. 2 is a cross-sectional view showing the configuration of a display device used for color mixture evaluation in Examples.
  • the resin composition of the present invention can be suitably used as a material for forming partitions separating color-converting phosphors, light-emitting light sources selected from organic EL cells, mini-LED cells, and micro-LED cells.
  • the resin composition of the present invention is a resin composition containing a resin, a photosensitive agent, a white pigment, a yellow precursor compound and a light-shielding pigment, wherein the light-shielding pigment is a resin composition containing a blue pigment and a violet pigment. be.
  • the resin composition of the present invention is a resin composition containing a photosensitizer, a white pigment, and a yellow precursor compound, wherein the white pigment is at least one selected from the group consisting of SiO 2 and Al 2 O 3 . 1 and ZrO 2 are treated resin compositions.
  • This resin composition preferably further contains a light-shielding pigment.
  • Resin Resin has the function of improving the crack resistance and light resistance of the partition walls.
  • the content of the resin in the solid content of the resin composition is preferably 10% by weight or more, more preferably 20% by weight or more, from the viewpoint of improving the crack resistance of the partition walls during heat treatment.
  • the resin content in the solid content of the resin composition is preferably 60% by weight or less, more preferably 50% by weight or less.
  • the solid content means all the components excluding volatile components such as solvent among the components contained in the resin composition. The amount of solids can be determined by heating the resin composition to evaporate volatile components and weighing the residue.
  • resins examples include polysiloxane, polyimide, polyimide precursors, polybenzoxazole, polybenzoxazole precursors, and (meth)acrylic polymers.
  • (meth)acrylic polymer means a polymer of methacrylic acid ester and/or acrylic acid ester. You may contain 2 or more types of these. Among these, polysiloxane is preferable because it is excellent in heat resistance and light resistance.
  • Polysiloxane is a hydrolysis/dehydration condensate of organosilane.
  • the polysiloxane preferably contains at least a repeating unit represented by the following general formula (1). Further, other repeating units may be included.
  • repeating units derived from the bifunctional alkoxysilane compound represented by the general formula (1) excessive thermal polymerization (condensation) of polysiloxane due to heating can be suppressed, and the crack resistance of the partition walls can be improved. It is preferable that the polysiloxane contains 10 to 80 mol % of repeating units represented by the general formula (1) in all repeating units.
  • the crack resistance can be further improved.
  • the content of the repeating unit represented by formula (1) is more preferably 12.5 mol % or more, and even more preferably 15 mol % or more.
  • the molecular weight of the polysiloxane can be sufficiently increased during polymerization, and the coatability can be improved.
  • the content of the repeating unit represented by formula (1) is more preferably 70 mol % or less.
  • R 1 and R 2 which may be the same or different, each represent a monovalent organic group having 1 to 20 carbon atoms.
  • R 1 and R 2 are preferably groups selected from alkyl groups having 1 to 6 carbon atoms and aryl groups having 6 to 12 carbon atoms, from the viewpoint of facilitating adjustment of the molecular weight of polysiloxane during polymerization.
  • at least part of the hydrogen atoms may be substituted with a radically polymerizable group.
  • the radically polymerizable group may be radically polymerized in the cured product of the negative photosensitive resin composition.
  • the polysiloxane preferably further contains a repeating unit represented by the following general formula (2).
  • a repeating unit represented by the following general formula (2) By including the repeating unit derived from the trifunctional alkoxysilane compound represented by the general formula (2), the crosslink density of the polysiloxane increases after film formation, and the hardness and chemical resistance of the film can be improved. It is preferable that the polysiloxane contains 10 to 80 mol % of repeating units represented by the general formula (2) in all repeating units. The content of the repeating unit represented by formula (2) is more preferably 15 mol % or more, and even more preferably 20 mol % or more.
  • the repeating unit represented by the general formula (2) by including 80 mol % or less of the repeating unit represented by the general formula (2), excessive thermal polymerization (condensation) of polysiloxane due to heating can be suppressed, and the crack resistance of the partition walls can be improved.
  • the content of the repeating unit represented by formula (2) is more preferably 70 mol % or less.
  • R 3 represents a monovalent organic group having 1 to 20 carbon atoms. Two or more types of repeating units represented by the general formula (2) having different R3 may be included in the polysiloxane.
  • R 3 preferably contains a group selected from an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms, from the viewpoint of facilitating adjustment of the molecular weight of polysiloxane during polymerization.
  • the alkyl group and the aryl group at least part of the hydrogen atoms may be substituted with a radically polymerizable group.
  • the radically polymerizable group may be radically polymerized in the cured product of the negative photosensitive resin composition.
  • the repeating units represented by the general formulas (1) and (2) are derived from alkoxysilane compounds represented by the following general formulas (3) and (4), respectively. That is, polysiloxane containing repeating units represented by the general formulas (1) and (2) is hydrolyzed and alkoxysilane compounds containing alkoxysilane compounds represented by the following general formulas (3) and (4). It can be obtained by polycondensation. Other alkoxysilane compounds may also be used.
  • "-(OR 4 ) 2 " and "-(OR 4 ) 3 " represent two and three Si atoms with "-(OR 4 )", respectively. It means that they are individually connected.
  • R 1 to R 2 represent the same groups as R 1 to R 2 in general formula (1) above.
  • R 3 represents the same group as R 3 in general formula (2) above.
  • R 4 which may be the same or different, represents a monovalent organic group having 1 to 20 carbon atoms or hydrogen, preferably an alkyl group having 1 to 6 carbon atoms.
  • alkoxysilane compound represented by the general formula (3) examples include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenylsilanediol, styrylmethyldimethoxysilane, styrylmethyldiethoxysilane, ⁇ -Methacryloylpropylmethyldimethoxysilane, ⁇ -Methacryloylpropylmethyldiethoxysilane, ⁇ -Acryloylpropylmethyldimethoxysilane, ⁇ -Acryloylpropylmethyldiethoxysilane, 3-Glycidoxypropylmethyldimethoxysilane, 3-Glycidoxypropyl methyldiethoxysilane, 2-(3,4-epoxycyclohexyl)ethylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl
  • alkoxysilane compounds represented by general formula (4) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltrimethoxysilane, Silane, isobutyltriethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltri Ethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrieth
  • the resin composition of the present invention contains at least one radically polymerizable group-containing alkoxysilane compound as the alkoxysilane compound represented by general formulas (3) and/or (4). is preferred.
  • the radically polymerizable group-containing alkoxysilane compound By containing the radically polymerizable group-containing alkoxysilane compound, a crosslinking reaction proceeds with the radicals generated in the exposed area, and the degree of curing of the exposed area can be increased.
  • the resin composition of the present invention contains at least one carboxyl group-containing alkoxysilane compound as the alkoxysilane compound represented by the general formulas (3) and/or (4). is preferred. Containing a carboxyl group-containing alkoxysilane compound improves the solubility of the unexposed area, and can improve the resolution during pattern processing.
  • alkoxysilane compounds may be contained as raw materials for polysiloxane.
  • alkoxysilane compounds include tetrafunctional alkoxysilane compounds such as tetramethoxysilane, tetraethoxysilane, and silicate 51 (tetramethoxysilane oligomer). You may use 2 or more types of these.
  • the content of the alkoxysilane compound represented by the general formula (3) in the alkoxysilane compound that is the raw material of the polysiloxane is the content of the repeating unit represented by the general formula (1) in all the repeating units of the polysiloxane. From the viewpoint of setting the amount within the above range, it is preferably 10 mol % or more, more preferably 12.5 mol % or more, and even more preferably 15 mol % or more. On the other hand, from the same viewpoint, the content of the alkoxysilane compound represented by the general formula (4) is preferably 80 mol % or less, more preferably 70 mol % or less.
  • the polysiloxane in the resin composition of the present invention preferably has a styryl group.
  • a styryl group By having a styryl group, curing can be sufficiently accelerated even under low-temperature curing conditions of 85°C to 120°C.
  • the weight average molecular weight (Mw) of polysiloxane is preferably 1,000 or more, more preferably 2,000 or more, from the viewpoint of coatability.
  • Mw of polysiloxane is preferably 500,000 or less, more preferably 300,000 or less.
  • the Mw of polysiloxane in the present invention refers to a polystyrene conversion value measured by gel permeation chromatography (GPC). The measuring method is as described in Examples below.
  • Polysiloxane can be obtained by hydrolyzing the aforementioned organosilane compound and then subjecting the hydrolyzate to a dehydration condensation reaction in the presence or absence of a solvent.
  • the resin composition of the present invention When the resin composition of the present invention is used for pattern formation of partition walls (A-1) described below, it preferably has negative or positive photosensitivity.
  • the resin composition of the present invention preferably contains a photosensitizer.
  • a photopolymerization initiator When imparting negative photosensitivity, it is preferable to contain a photopolymerization initiator as a photosensitizer, so that partition walls having a highly precise pattern can be formed.
  • the negative photosensitive resin composition preferably further contains a photopolymerizable compound.
  • Any photopolymerization initiator can be used as long as it decomposes and/or reacts with irradiation of light (including ultraviolet rays and electron beams) to generate radicals.
  • 2-methyl-[4-(methylthio)phenyl]-2-morpholinopropan-1-one 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholin-4-yl ⁇ -Aminoalkylphenone compounds such as -phenyl)-butan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1; 2,4,6-trimethylbenzoylphenyl Acylphosphine oxide compounds such as phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)-phosphine oxide ; 1-phenyl
  • the content of the photopolymerization initiator in the resin composition of the present invention is preferably 0.01% by weight or more, more preferably 1% by weight or more, based on the solid content.
  • the content of the photopolymerization initiator is preferably 20% by weight or less, more preferably 10% by weight or less, based on the solid content, from the viewpoint of suppressing elution of the remaining photopolymerization initiator.
  • the photopolymerizable compound in the present invention refers to a compound having two or more ethylenically unsaturated double bonds in its molecule. Considering the easiness of radical polymerization, the photopolymerizable compound preferably has a (meth)acrylic group.
  • photopolymerizable compounds include pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate. You may contain 2 or more types of these.
  • the content of the photopolymerizable compound in the resin composition of the present invention is preferably 1% by weight or more based on the solid content.
  • the content of the photopolymerizable compound is preferably 50% by weight or less in the solid content.
  • quinonediazide compound a compound in which the sulfonic acid of naphthoquinonediazide is bonded to a compound having a phenolic hydroxyl group via an ester is preferable.
  • Compounds having a phenolic hydroxyl group used here include, for example, BIs-Z, TekP-4HBPA (tetrakis P-DO-BPA), TrIsP-HAP, TrIsP-PA, BIsRS-2P, BIsRS-3P (the above, commercial products name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-PC, BIR-PTBP, BIR-BIPC-F (trade names, manufactured by Asahi Organic Chemicals Industry Co., Ltd.), 4,4'-sulfonyldiphenol, BPFL (trade name, manufactured by JFE Chemical Co., Ltd.).
  • quinonediazide compound those obtained by introducing 4-naphthoquinonediazide sulfonic acid or 5-naphthoquinonediazide sulfonic acid into these compounds having a phenolic hydroxyl group via an ester bond are preferable. manufactured by Toyo Gosei Co., Ltd.), SBF-525 (trade name, manufactured by AZ Electronic Materials Co., Ltd.), and the like.
  • the content of the quinonediazide compound in the resin composition of the present invention is preferably 0.5% by weight or more, more preferably 1% by weight or more, based on the solid content.
  • the content of the quinonediazide compound is preferably 25% by weight or less, more preferably 20% by weight or less, based on the solid content, from the viewpoint of improving resolution.
  • the resin composition of the present invention preferably further contains a white pigment.
  • a white pigment has a function of further improving the reflectance of the partition wall.
  • white pigments examples include titanium dioxide, zirconium oxide, zinc oxide, barium sulfate, and composite compounds thereof. You may contain 2 or more types of these. Among these, titanium dioxide is preferable because of its high reflectance and easy industrial use.
  • the crystal structure of titanium dioxide is classified into anatase, rutile and brookite types. Among these, rutile-type titanium oxide is preferable because of its low photocatalytic activity.
  • the white pigment may be surface-treated. Surface treatment with a metal selected from Al, Si and Zr is preferable, and the light resistance and heat resistance of the formed partition walls can be improved. More preferably, the white pigment is treated with at least one selected from the group consisting of SiO 2 and Al 2 O 3 and ZrO 2 , and the white pigment is treated with ZrO 2 , Al 2 O 3 and SiO 2 More preferably, it is surface-treated. From the viewpoint of light resistance and reflectivity, the white pigment is more preferably titanium dioxide surface-treated with ZrO 2 , Al 2 O 3 and SiO 2 .
  • the particle diameter D50 of the white pigment based on scattered light is preferably 100 to 500 nm, more preferably 150 to 350 nm, from the viewpoint of further improving the reflectance of the partition walls.
  • the particle diameter D50 of the white pigment can be measured using a particle size distribution analyzer (SZ-100; manufactured by HORIBA Ltd.) or the like.
  • the average primary particle size of the white pigment is preferably 100 to 500 nm, more preferably 150 nm to 350 nm, from the viewpoint of further improving the reflectance of the partition walls.
  • the average primary particle size of the white pigment can be measured by a laser diffraction method using a particle size distribution analyzer (N4-PLUS; manufactured by Beckman Coulter, Inc.).
  • Titanium dioxide pigments preferably used as white pigments include, for example, R960 manufactured by DuPont (rutile type, SiO 2 /Al 2 O 3 treatment, average primary particle size 210 nm), R996 manufactured by Ronmon Billions Co., Ltd. (rutile type, ZrO 2 /Al 2 O 3 treatment, average primary particle size 230 nm), CR-97; manufactured by Ishihara Sangyo Co., Ltd. (rutile type, Al 2 O 3 /ZrO 2 treatment, average primary particle size 250 nm) , PFC105; manufactured by Ishihara Sangyo Co., Ltd.
  • the content of the white pigment in the resin composition is preferably 10% by weight or more, more preferably 15% by weight or more, based on the solid content, from the viewpoint of further improving the reflectance.
  • the content of the white pigment is preferably 60% by weight or less, more preferably 55% by weight or less in the solid content.
  • the resin composition of the present invention preferably further contains a yellow precursor compound.
  • a yellow precursor compound refers to a compound that absorbs light in the wavelength region of 380 nm to 500 nm and becomes yellowish due to reaction, decomposition, structural change, or the like due to heat and/or light energy. In particular, it is preferable that the absorption at a wavelength of 450 nm increases.
  • the blue light shielding property of the partition wall can be improved. If the resin composition contains a yellow component from the beginning, the exposure light is greatly absorbed in the exposure step when forming the partition wall (A-1) pattern, which will be described later, and the exposure light does not reach the bottom, and curing does not proceed.
  • the exposure light is transmitted and curing progresses to the bottom, so that it is possible to form a fine thick film barrier rib pattern with high blue light shielding properties. Therefore, it is more preferable that the light absorption in the wavelength range of 380 nm to 500 nm does not change in the exposure process and the light absorption in the wavelength range of 380 nm to 500 nm increases in the subsequent heating process.
  • yellow precursor compounds examples include phenolic compounds, organic polymer resins, and organometallic compounds. Organometallic compounds are preferred from the viewpoint of the light resistance of the resulting yellow component.
  • Phenolic compounds are oxidized by heat and/or light energy to produce quinone compounds. It is preferred to use a phenolic compound that produces a yellow quinone compound. Examples of phenolic compounds include 1,4-dihydroxynaphthalene, 1,4-dihydroxyanthrahydroquinone, quinizarin, 1,4-dihydroxy-2-sulfoanthraquinone and the like. You may contain 2 or more types of these.
  • the organic polymer resin is not particularly limited as long as it yellows due to heat and/or light energy.
  • organic polymer resins include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polycarbonate, and ABS resins. You may contain 2 or more types of these.
  • Polyolefin turns yellow when hydrogen in its structure is extracted by heat or light, and polyene is generated by an oxidation reaction.
  • Polyvinyl chloride turns yellow due to the progress of dehydrochlorination reaction due to heat or light and the increase in conjugated double bonds such as polyene.
  • Polycarbonate turns yellow by producing a phenylsalicylate structure and further a dihydroxybenzophenone structure by a photoreaction called Fries transition.
  • ABS resin is known to yellow due to radical species generated by oxidation due to heat or light.
  • the organometallic compound is not particularly limited as long as it produces yellow particles with absorption in the range of 380 nm to 500 nm by heat and/or light energy.
  • yellow particles having absorption at 380 nm to 500 nm include iron oxide particles, copper oxide particles, iridium oxide particles, bismuth oxide, tungsten oxide, gold oxide particles, nano gold particles, silver oxide and/or silver particles, silver nano
  • organic metal compounds include organic iron compounds, organic copper compounds, organic iridium compounds, organic bismuth compounds, organic tungsten compounds, organic gold compounds, and organic silver compounds. Two or more of these may be included.
  • the yellow precursor compound is preferably an organic silver compound from the viewpoint that it can be produced to improve the light-shielding properties of the film.
  • organic iron compounds include tris(2,4-pentadionato)iron, ferrocene, iron cyanide, iron carbonate, iron pentacarbonyl, iron oxalate, iron nonacarbonyl, iron acetate, iron formate, hexacyanide ferrate, and the like.
  • organic copper compounds include bis(2,4-pentadionato)copper, copper neodecanoate, copper acetate, copper formate, copper formate hydrate, copper oxalate, and copper oxalate hydrate.
  • organic iridium compounds include tris(2,4-pentadionato)iridium, dodecacarbonyltetrairidium, bis(triphenylphosphine)iridiumcarbonyl chloride, and idridocene.
  • organic bismuth compounds include bismuth subcarbonate, bismuth carbonate, bismuth subgallate and the like.
  • organic tungsten compounds include hexacarbonyltungsten and hexamethyltungsten.
  • Organic gold compounds include chloro(triphenylphosphine) gold, gold resinate MR7901-P, tetrachloroauric acid tetrahydrate, and the like.
  • organic silver compounds examples include those described in paragraphs [0048] to [0049] of JP-A-10-62899, page 18, line 24 to page 19, line 37 of European Patent Application Publication No. 803,764A1.
  • organic silver compounds and aliphatic carbons Examples include silver salts of acids.
  • a compound represented by the following general formula (5) and/or a polymer compound having a structure represented by the following general formula (6) is preferable from the viewpoint of further yellowing.
  • R 5 represents hydrogen or an organic group having 1 to 30 carbon atoms.
  • the "organic group having 1 to 30 carbon atoms” includes an alkyl group having 1 to 30 carbon atoms (including linear and branched alkyl groups) and/or an aromatic carbonized group having 6 to 30 carbon atoms.
  • a hydrogen group is preferred.
  • Preferred specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl phenyl, benzyl, tolyl, biphenyl and naphthyl radicals.
  • R 6 and R 7 each independently represent hydrogen or an organic group having 1 to 30 carbon atoms.
  • the "organic group having 1 to 30 carbon atoms” includes an alkyl group having 1 to 30 carbon atoms (including linear and branched alkyl groups) and/or an aromatic carbonized group having 6 to 30 carbon atoms.
  • a hydrogen group is preferred.
  • Preferred specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl phenyl, benzyl, tolyl, biphenyl and naphthyl radicals. Also, a is an integer
  • Examples of organic silver compounds represented by formula (5) include silver acetate, silver propionate, silver butyrate, silver valerate, silver hexanoate, silver enanthate, silver octylate, silver pelargonate, and silver caprate.
  • the organic silver compound represented by the general formula (6) has a structure in which the carboxyl group in a (meth)acrylic polymer having a carboxyl group has become a silver salt.
  • the organic silver compound represented by the general formula (6) is obtained, for example, by stirring a (meth)acrylic polymer having a carboxyl group and silver nitrate in an organic solvent in the presence of an amine catalyst, as in the preparation examples described below. be done.
  • the (meth)acrylic polymer having a carboxyl group is obtained by polymerizing an unsaturated carboxylic acid.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinylacetic acid, and acid anhydrides. These may be used alone, or may be used in combination with other copolymerizable ethylenically unsaturated compounds.
  • copolymerizable ethylenically unsaturated compounds include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, isopropyl acrylate, n-propyl methacrylate, and methacrylic acid.
  • carboxylic acid vinyl esters vinyl cyanide compounds such as acrylonitrile, methacrylonitrile and ⁇ -chloroacrylonitrile, aliphatic conjugated dienes such as 1,3-butadiene and isoprene, polystyrenes having acryloyl groups or methacryloyl groups at their ends, Examples include, but are not limited to, macromonomers such as polymethyl acrylate, polymethyl methacrylate, polybutyl acrylate, polybutyl methacrylate, and polysilicone.
  • the (meth)acrylic polymer is not particularly limited.
  • a commercially available product may be used as the (meth)acrylic polymer having a carboxyl group.
  • Commercially available (meth)acrylic polymers having a carboxyl group include, for example, AX3-BX-TR-101, AX3-BX-TR-102, AX3-BX-TR-106, AX3-BX-TR-107, AX3- BX-TR-108, AX3-BX-TR-109, AX3-BX-TR-110, AX3-RD-TR-501, AX3-RD-TR-502, AX3-RD-TR-503, AX3-RD- TR-504, AX3-RD-TR-103, AX3-RD-TR-104 (trade name, manufactured by Nippon Shokubai Co., Ltd.), SPCR-10X, SPCR-10P, SPCR-24X, SPCR-18X, SPCR-215X ( (trade name, manufactured by Showa Denko KK), X-4007 (trade name, manufactured by NOF Corporation
  • the weight average molecular weight (Mw) of the polymer compound represented by the general formula (6) is not particularly limited, but is preferably 5000 to 50000, more preferably 8000 to 35000 in terms of polystyrene measured by GPC. . If Mw is less than 5,000, pattern drooping will occur during heat curing, resulting in lower resolution. On the other hand, when Mw is more than 50,000, it is difficult to be reduced, and it is difficult to form yellow particles.
  • the content of the yellow precursor compound in the solid content of the resin composition is preferably 0.1% by weight or more, more preferably 0.4% by weight or more.
  • the partition walls obtained can be made more yellow, and the blue light shielding properties of the partition walls are improved.
  • the content of the yellow precursor compound in the solid content of the resin composition is preferably 10% by weight or less, more preferably 5.0% by weight or less.
  • Light-shielding pigment The resin composition of the present invention preferably further contains a light-shielding pigment.
  • the light-shielding pigment has a function of further improving the light-shielding property of the partition wall against light of a specific wavelength.
  • the light-shielding pigment preferably contains a blue pigment and a violet pigment.
  • a blue pigment and a violet pigment it is possible to improve the light-shielding property of the film in a wavelength range of 500 nm to 630 nm (green light to red light).
  • the blue pigment and purple pigment are selected from inorganic pigments, organic pigments, and mixed pigments thereof, and the ingredients are not particularly limited.
  • Blue pigments include, for example, Pigment Blue (hereinafter abbreviated as PB) 1, PB9, PB18, PB25, PB28, PB29, PB36, PB15, PB15:1, PB15:2, PB15:3, PB15:4, PB15:6 , PB17:1, PB60, PB66, PB75, PB79 and the like. You may contain 2 or more types of these. Among these, the phthalocyanine pigments PB15, PB15:1, PB15:2, PB15:3, PB15:4 and PB15:6 are preferred, and PB15:6 is more preferred, from the viewpoint of excellent light resistance.
  • PB Pigment Blue
  • purple pigments examples include pigment violet (hereinafter abbreviated as PV) 1, PV3, PV3:3, PV19, PV23, PV29, PV37, PV38, PV39, and PV50.
  • PV19, PV23, PV29, PV37, and PV38, which are condensed polycyclic pigments are preferable from the viewpoint of excellent heat resistance
  • PV23, PV29, and PV37 are more preferable from the viewpoint of excellent light-shielding properties in the wavelength region of 500 nm to 550 nm.
  • the total content of the blue pigment and the purple pigment in the solid content of the resin composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and even more preferably 0.10% by weight or more.
  • the total content of the blue pigment and the violet pigment By setting the total content of the blue pigment and the violet pigment to 0.10% by weight or more, it is possible to further improve the light-shielding properties of the obtained partition wall in the wavelength range of 500 nm to 630 nm (green light to red light).
  • the total content of the blue pigment and the purple pigment in the solid content of the resin composition is preferably 3.0% by weight or less, more preferably 1.0% by weight or less, and even more preferably 0.75% by weight or less.
  • the weight ratio of the blue pigment and the purple pigment is preferably 20/80 to 80/20.
  • the weight ratio of the blue pigment and the violet pigment is more preferably 30/70 to 70/30, still more preferably 50/50 to 65/35.
  • the weight of the yellow precursor compound in the solid content of the resin composition of the present invention is 0.2 to 20 with respect to 100 weight of the white pigment, and the blue pigment and the purple pigment in the solid content. It is preferred that the total weight is between 0.05 and 10 per 100 weight of the white pigment. By setting this ratio, it is possible to obtain a gray partition pattern that is excellent in high light shielding properties and high reflectance for the entire visible light (wavelength range of 430 to 630 nm).
  • the weight of the yellow precursor compound in the solid content of the resin composition of the present invention is 0.5 to 10 with respect to the weight of the white pigment 100, and the total weight of the blue pigment and the purple pigment in the solid content. is more preferably 0.01 to 5 per 100 weight of the white pigment.
  • the resin composition of the present invention may contain, as a light-shielding pigment, a light-shielding pigment other than the blue pigment and the purple pigment.
  • a light-shielding pigment include, for example, red pigments, black pigments, green pigments, yellow pigments, and the like.
  • red pigments examples include Pigment Red (hereinafter abbreviated as PR) 9, PR177, PR179, PR180, PR192, PR209, PR215, PR216, PR217, PR220, PR223, PR224, PR226, PR227, PR228, PR240, and PR254. mentioned. You may contain 2 or more types of these.
  • black pigments include black organic pigments and black inorganic pigments.
  • color organic pigments include carbon black, perylene black, aniline black, and benzofuranone pigments. These may be coated with a resin.
  • Black inorganic pigments include, for example, graphite; fine particles of metals such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zirconium, zinc, calcium, silver, gold, platinum, and palladium; metal oxides; metal sulfides; metal nitrides; metal oxynitrides; and metal carbides. You may contain 2 or more types of these.
  • C.I. I. Pigment Green hereinafter abbreviated as PG 7
  • PG36 PG36
  • PG58 PG37
  • PG59 PG59
  • You may contain 2 or more types of these.
  • yellow pigments examples include Pigment Yellow (hereinafter abbreviated as PY) PY137, PY138, PY139, PY147, PY148, PY150, PY153, PY154, PY166, PY168, and PY185. You may contain 2 or more types of these.
  • PY Pigment Yellow
  • the resin composition of the present invention preferably further contains a reducing agent.
  • the reducing agent promotes the reduction of the yellow precursor compound (particularly the organic silver compound), thereby more efficiently producing yellow particles, and improves the light-shielding properties of the film even under low-temperature heating conditions of about 100 to 120°C. can be improved.
  • the present technology can be applied even in applications where a material such as an organic EL material that is concerned about heat resistance exists as an underlying layer and low-temperature heating conditions are essential.
  • an unreacted organic silver compound remains in the film after heating, it will be decomposed by light or heat, and the film color will change, resulting in a film with poor weather resistance. , the amount of the organic silver compound remaining in the film after curing is reduced, and the weather resistance is improved.
  • the reducing agent may be any compound as long as it promotes the reduction of the organic silver compound, but from the viewpoint of reducing the organic silver compound more efficiently, it contains two or more phenolic hydroxyl groups in the molecule.
  • Compounds or compounds containing enediol groups are preferred.
  • Compounds containing two or more phenolic hydroxyl groups in the molecule are themselves oxidized to produce quinone compounds when reducing the organic silver compound, but they produce colored quinone compounds like the above-mentioned yellow precursor compound. A structure that does not generate is preferred.
  • Compounds containing two or more phenolic hydroxyl groups in the molecule include, for example, dihydric phenol compounds such as catechol compounds, hydroquinone compounds, resorcinol compounds, anthrahydroquinone compounds, and polyphenols containing three or more phenolic hydroxyl groups. compound.
  • dihydric phenol compounds such as catechol compounds, hydroquinone compounds, resorcinol compounds, anthrahydroquinone compounds, and polyphenols containing three or more phenolic hydroxyl groups.
  • a hydroquinone compound represented by the following general formula (7) is more preferable from the viewpoint of reducing properties.
  • R 8 , R 9 , R 10 and R 11 each independently represent hydrogen, a hydroxy group, or an organic group having 1 to 30 carbon atoms.
  • the "organic group having 1 to 30 carbon atoms” includes an alkyl group having 1 to 30 carbon atoms (including linear and branched alkyl groups) and/or an aromatic carbonized group having 6 to 30 carbon atoms.
  • a hydrogen group is preferred.
  • Preferred specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl phenyl, benzyl, tolyl, biphenyl and naphthyl radicals.
  • Hydroquinone compounds represented by the following general formula (7) include, for example, hydroquinone, methylhydroquinone, ethylhydroquinone, propylhydroquinone, butylhydroquinone, t-butylhydroquinone, 2,3-dimethylhydroquinone, 2,3-diethylhydroquinone, 2,3-dipropylhydroquinone, 2,3-dibutylhydroquinone, 2,3-di-t-butylhydroquinone, 2,5-dimethylhydroquinone, 2,5-diethylhydroquinone, 2,5-dipropylhydroquinone, 2,5 -dibutylhydroquinone, 2,5-di-t-butylhydroquinone, hydroquinone dimethyl ether, hydroquinone diethyl ether, 1,2,4-benzenetriol, 2,5-dihydroxyacetophenone, 2,
  • Compounds containing an enediol group include, for example, ascorbic acid, ⁇ -pyridoin, fructose, xylose, glucose, dioxyacetone, glycolaldehyde, benzoin, monooxyacetone, and benzoylcarbinol.
  • glycolaldehyde is preferable from the viewpoint of reducing properties and solubility in organic solvents.
  • the content of the reducing agent in the solid content of the resin composition is preferably 0.01% by weight or more, more preferably 0.1% by weight or more.
  • the organic silver compound can be reduced more effectively, the partition walls obtained can be further yellowed, and the blue light blocking properties of the partition walls are improved.
  • the amount of the organic silver compound remaining in the film after curing is reduced, improving the weather resistance.
  • the content of the reducing agent in the solid content of the resin composition is preferably 3.0% by weight or less, more preferably 1.5% by weight or less.
  • the resin composition of the present invention preferably further contains phosphate polyester.
  • the phosphate polyester is not particularly limited as long as it is a polymer containing a phosphate group, a polyphosphate group, or a phosphate group.
  • Phosphoric polyester has the function of improving the stability of the white pigment and the organic silver compound.
  • the phosphoric polyester is preferably used as a dispersing agent when dispersing the pigment.
  • Examples of phosphoric polyester include Phosphanol (registered trademark) RA-600, ML-200, ML-220, RS-610, RB-410, RD-720N (manufactured by Toho Chemical Industry Co., Ltd.), Solsperse (registered trademark) SOLSPERSE26000, SOLSPERSE36000, SOLSPERSE41000 (manufactured by ZENECA), “DISPERBYK” (registered trademark)-110, 111, 142, 145, 180, “BYK” (registered trademark)-110, 111, W969, W9010 (above, manufactured by Big Chemie Japan Co., Ltd.), Price Surf (registered trademark) A-208B, A-208F, A-208N, A-219B, DB-01, M208F (above, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) , Disparon (registered trademark) PW-36, DA-375 (
  • Phosphanol ML-220, DISPERBYK-110, DISPERBYK-111 and PLYSURF A-208B are preferable from the viewpoint of improving the stability of the white pigment and the organic silver compound.
  • the content of the phosphate polyester in the solid content of the resin composition is preferably 0.50% by weight or more, more preferably 1.0% by weight or more.
  • the white pigment and the organic silver compound are stabilized more by setting the content of the phosphoric acid polyester to 0.50% by weight or more.
  • the content of the phosphate polyester in the solid content of the resin composition is preferably 15% by weight or less, more preferably 10% by weight or less.
  • the resin composition of the present invention preferably further contains a liquid-repellent compound.
  • a liquid-repellent compound is a compound that imparts the property of repelling water and organic solvents (liquid-repellent performance) to a resin composition.
  • the compound is not particularly limited as long as it has such properties, but specifically, a compound having a fluoroalkyl group is preferably used.
  • liquid-repellent performance can be imparted to the top of the partition walls (A-1) described later after the partition walls (A-1) are formed.
  • color-converting light-emitting materials having different compositions can be easily applied to each pixel.
  • the liquid-repellent compound is preferably a liquid-repellent compound having a photoradical polymerizable group.
  • a photoradical polymerizable group By having a photoradical polymerizable group, it is possible to form a strong bond with a resin, so that liquid repellency can be more easily imparted to the top of the partition wall.
  • Liquid-repellent compounds having photoradical polymerizable groups include, for example, “Megafac” (registered trademark) RS-72-A, RS-75-A, RS-76-E, RS-56, RS-72-K , RS-75, RS-76-E, RS-76-NS, RS-76, and RS-90 (all trade names, manufactured by DIC Corporation).
  • the photopolymerizable group may be photopolymerized in the partition walls (A-1) made of the photocured product of the negative photosensitive resin composition.
  • the content of the liquid-repellent compound in the resin composition is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, based on the solid content. more preferred.
  • the content of the liquid-repellent compound is preferably 10% by weight or less, more preferably 5% by weight or less, based on the solid content.
  • the resin composition of the present invention may further contain an organometallic compound other than the yellow precursor compound.
  • an organometallic compound other than the yellow precursor compound an organoplatinum compound or an organopalladium compound is preferred.
  • the organoplatinum compound or the organopalladium compound is decomposed and aggregated into black particles in the exposure step and/or the heating step, so that the light shielding property of the film can be further improved without deteriorating the pattern workability. .
  • organic platinum compounds include bis(acetylacetonato)platinum, dichlorobis(triphenylphosphine)platinum, and dichlorobis(benzonitrile)platinum.
  • organic palladium compounds include bis(acetylacetonato)palladium, dichlorobis(triphenylphosphine)palladium, dichlorobis(benzonitrile)palladium, tetrakis(triphenylphosphine)palladium, and dibenzylideneacetonepalladium. You may contain 2 or more types of these.
  • the content of the organometallic compound other than the yellow precursor compound in the solid content is preferably 0.2 to 5% by weight. By making it 0.2% by weight or more, the light shielding property of the obtained film can be further improved. 0.5% by weight or more is more preferable. On the other hand, by setting the content of the organometallic compound other than the yellow precursor compound to 5% by weight or less, the reflectance can be further improved. 3% by weight or less is more preferable.
  • the resin composition of the present invention may contain a polymerization inhibitor, a surfactant, an adhesion improver, etc., if necessary.
  • surfactants include "Megafac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475, F477 (trade names, manufactured by Dainippon Ink and Chemicals, Inc.), NBX- 15, fluorine-based surfactants such as FTX-218 (trade name, manufactured by Neos Co., Ltd.); Japan Co., Ltd.), polyalkylene oxide surfactants, poly(meth)acrylate surfactants, and the like. You may contain 2 or more types of these.
  • adhesion improvers include alicyclic epoxy compounds and silane coupling agents. Among these, alicyclic epoxy compounds are preferred from the viewpoint of heat resistance.
  • Examples of alicyclic epoxy compounds include 3′,4′-epoxycyclohexymethyl-3,4-epoxycyclohexanecarboxylate, 2,2-bis(hydroxymethyl)-1-butanol and 1,2-epoxy- 4-(2-oxiranyl)cyclohexane adduct, ⁇ -caprolactone-modified 3′,4′-epoxycyclohexylmethyl 3′,4′-epoxycyclohexane carboxylate, 1,2-epoxy-4-vinylcyclohexane, butanetetracarboxylic acid tetra(3,4-epoxycyclohexylmethyl)-modified ⁇ -caprolactone, 3,4-epoxycyclohexylmethyl methacrylate, and the like. You may contain 2 or more types of these.
  • the content of the adhesion improving agent in the resin composition of the present invention is preferably 0.1% by weight or more, more preferably 1% by weight or more, based on the solid content, from the viewpoint of further improving the adhesion to the underlying substrate.
  • the content of the adhesion improver is preferably 20% by weight or less, more preferably 10% by weight or less, in the solid content from the viewpoint of pattern processability.
  • the resin composition of the present invention preferably further contains a solvent.
  • the solvent has the function of adjusting the viscosity of the resin composition to a range suitable for application and improving the uniformity of the partition walls.
  • As the solvent it is preferable to combine a solvent having a boiling point of more than 150° C. and 250° C. or less under atmospheric pressure and a solvent having a boiling point of 150° C. or less.
  • solvents examples include alcohols such as isopropanol and diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol.
  • Ethers such as monopropyl ether, propylene glycol monobutyl ether, and diethylene glycol ethyl methyl ether; Ketones such as methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, and cyclopentanone; dimethylformamide, dimethylacetamide amides such as ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, lactic acid Acetates such as ethyl and butyl lactate; aromatic or aliphatic hydrocarbons such as toluene, xy
  • diacetone alcohol or diethylene glycol ethyl methyl ether as a solvent with a boiling point of more than 150 ° C. and 250 ° C. or less under atmospheric pressure, and propylene glycol monomethyl ether as a solvent with a boiling point of 150 ° C. or less are combined from the viewpoint of applicability. is preferred.
  • the content of the solvent can be arbitrarily set according to the application method.
  • the content of the solvent is generally 50% by weight or more and 95% by weight or less in the resin composition.
  • the resin composition of the present invention can be produced, for example, by mixing the aforementioned resin, photosensitizer, yellow precursor compound, light-shielding pigment, and, if necessary, other components.
  • the light shielding film of the present invention is obtained by curing the aforementioned resin composition of the present invention.
  • the light-shielding film of the present invention can be suitably used as a light-shielding pattern in an OGS type touch panel, such as a decorative pattern for a cover base material, in addition to the barrier ribs (A-1) described later.
  • the film thickness of the light shielding film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the method for producing a light-shielding film of the present invention includes a film-forming step of applying the resin composition of the present invention on a base substrate and drying to obtain a dry film, an exposure step of pattern-exposing the obtained dry film, and a It has a developing step of dissolving and removing the portion soluble in the developer in the dry film and a heating step of curing the dried film after development by heating in this order, and in the heating step, the dried film after development is heated to 100 ° C It is preferable to increase the b* value per 10 ⁇ m of film thickness measured by the SCI method by 10 or more by heating at a temperature of 250° C. or more.
  • the heating step the dry film after development is heated at a temperature of 100° C. or more and 250° C. or less, so that the b* value per 10 ⁇ m of film thickness measured by the SCI method is 10. It is characterized in that it is raised more than From the viewpoint of further improving the b* value, the heating temperature in the heating step is preferably 150° C. or higher, more preferably 180° C. or higher.
  • the heating temperature during the heating step is preferably 250°C or lower, more preferably 240°C or lower, from the viewpoint of suppressing the generation of cracks in the heated film.
  • the heating time is preferably 15 minutes to 2 hours.
  • the light-shielding film formed from the resin composition of the present invention has a high transmittance of exposure light (wavelength range of 365 nm to 436 nm) during exposure, and the b* value and the OD value in the wavelength range of 400 nm to 500 nm are increased after pattern formation. Therefore, in the exposure step, the bottom portion is sufficiently photo-cured, and partition walls having a preferable taper angle described later can be obtained.
  • the blue pigment and the purple pigment have a high light blocking effect in the wavelength range of 500 nm to 630 nm (green light to red light), and after the heating process, the light blocking effect in the wavelength range of 400 nm to 500 nm (blue light). Since the properties are improved, it is possible to obtain gray partition walls having both high light-shielding properties and high reflectance for the entire visible light.
  • Examples of methods for applying the resin composition in the film forming process include slit coating and spin coating.
  • Examples of the drying device include a hot air oven and a hot plate.
  • the drying temperature is preferably 80 to 120°C, and the drying time is preferably 1 to 60 minutes. In the resin composition of the present invention, the drying temperature is more preferably 80 to 100°C because the transmittance of the film changes under heating conditions of 100°C or higher.
  • the exposure step is a step of photocuring a necessary portion of the dry film by exposure or photodegrading an unnecessary portion of the dry film to make any portion of the dry film soluble in a developer.
  • exposure may be performed through a photomask having a predetermined opening, or an arbitrary pattern may be directly drawn using a laser beam or the like without using a photomask.
  • An example of an exposure device is a proximity exposure machine.
  • the actinic rays irradiated in the exposure step include, for example, near-infrared rays, visible rays, and ultraviolet rays, and ultraviolet rays are preferred.
  • Examples of the light source include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, halogen lamps, germicidal lamps, etc., and high-pressure mercury lamps and ultra-high-pressure mercury lamps are preferred.
  • Exposure conditions can be appropriately selected depending on the thickness of the dry film to be exposed. In general, it is preferable to perform exposure using an ultra-high pressure mercury lamp with an output of 1 to 100 mW/cm 2 and an exposure amount of 1 to 10,000 mJ/cm 2 .
  • the developer-soluble portion of the dry film after exposure is dissolved and removed with the developer, leaving only the developer-insoluble portion, and the dry film patterned in an arbitrary pattern shape (hereinafter referred to as , which is called a pre-heating pattern).
  • the pattern shape includes, for example, a lattice shape, a stripe shape, a hole shape, and the like.
  • Examples of developing methods include immersion, spraying, and brushing.
  • the developer a solvent capable of dissolving the unnecessary portion of the dry film after exposure can be appropriately selected, and an aqueous solution containing water as the main component is preferable.
  • the developer is preferably an alkaline aqueous solution.
  • alkaline aqueous solutions include inorganic alkaline aqueous solutions such as sodium hydroxide, potassium hydroxide, sodium carbonate and calcium hydroxide; organic alkaline aqueous solutions such as tetramethylammonium hydroxide and trimethylbenzylammonium hydroxide.
  • a potassium hydroxide aqueous solution or a tetramethylammonium hydroxide aqueous solution is preferable from the viewpoint of improving resolution.
  • the concentration of the alkaline aqueous solution is preferably 0.01% by weight or more, more preferably 0.1% by weight or more.
  • the concentration of the alkaline aqueous solution is preferably 5% by weight or less, more preferably 1% by weight or less, from the viewpoint of suppressing peeling and corrosion of the pattern before heating.
  • the developer may contain a surfactant.
  • the developing temperature is preferably 20 to 50° C. in order to facilitate process control.
  • the heating process is a process of heating and curing the preheated pattern formed in the developing process.
  • Examples of heating devices include hot plates and ovens.
  • the atmosphere of the heating device is not particularly limited, and examples thereof include nitrogen and air. Preferred heating temperature and heating time are as described above.
  • the substrate with partition walls of the present invention is a substrate with partition walls having (A-1) patterned partition walls formed by the resin composition of the present invention on a base substrate, wherein the reflection per 10 ⁇ m thickness in the wavelength region of 430 to 630 nm It is preferable that the ratio is in the range of 20% to 50% and the OD value per 10 ⁇ m of thickness in the wavelength range of 430 to 630 nm is in the range of 1.5 to 3.0.
  • the substrate with partition walls of the present invention has (A-1) patterned partition walls (hereinafter sometimes referred to as "partition walls (A-1)") on an underlying substrate.
  • the underlying substrate functions as a support for the substrate with partition walls.
  • the substrate with partitions of the present invention preferably further has (A-1) a pixel layer containing (B) a color-converting luminescent material arranged and separated by patterned partitions.
  • the partition When pixels containing a color-converting luminescent material, which will be described later, are included in the partition, the partition has a function of suppressing color mixture of light between adjacent pixels.
  • the partition walls (A-1) have a reflectance of 20% to 50% per 10 ⁇ m thickness in the wavelength range of 430 to 630 nm, and the wavelength range of 430 to 630 nm. It is preferable that the OD value per 10 ⁇ m of thickness is in the range of 1.5 to 3.0.
  • the substrate with partition walls of the present invention has partition walls (A-1) pattern formed by the resin composition of the present invention on the base substrate, and the L* value per 10 ⁇ m of film thickness measured by the SCI method is is 50 to 70, a* value is -5.0 to 5.0, and b* value is -5.0 to 5.0.
  • the wavelength dependence of the reflectance and OD value of the partition wall (A-1) is small in the entire visible light range (wavelength range 430 to 630 nm).
  • a neutral gray barrier can be provided to improve the color properties of the display.
  • FIG. 1 shows a cross-sectional view of one embodiment of the substrate with partitions of the present invention having patterned partitions.
  • a base substrate 1 has partition walls 2 patterned thereon.
  • the substrate with partition walls of the present invention is a substrate with partition walls having (A-1) pattern-formed partition walls on a base substrate, wherein the pattern-formed partition walls are made of a resin, a white pigment, a blue pigment, It preferably contains violet pigment, silver oxide and/or silver particles.
  • white pigment blue pigment, purple pigment, silver oxide, and silver particles, those described above can be used.
  • the base substrate examples include a glass plate, a resin plate, a resin film, and a drive substrate such as a TFT or PCB.
  • Non-alkali glass is preferable as the material of the glass plate.
  • Polyester, (meth)acrylic polymer, transparent polyimide, polyethersulfone and the like are preferable as materials for the resin plate and the resin film.
  • the thickness of the glass plate and the resin plate is preferably 1 mm or less, more preferably 0.8 mm or less.
  • the thickness of the resin film is preferably 100 ⁇ m or less.
  • a driving substrate such as a TFT or PCB
  • a light emitting source selected from organic EL cells, mini-LED cells and micro-LED cells, which will be described later, on the base substrate.
  • the thickness of the partition (A-1) refers to the height of the partition (A-1) and/or the width of the partition (A-1).
  • the height of the partition (A-1) refers to the length of the partition (A-1) in the direction perpendicular to the base substrate (height direction). In the case of the substrate with partition walls shown in FIG. 1, the height of the partition walls 2 is represented by symbol H.
  • the width of the partition (A-1) refers to the length of the partition (A-1) in the direction horizontal to the base substrate. In the case of the substrate with partition walls shown in FIG. 1, the width of the partition walls 2 is represented by symbol L.
  • "height" may be called "thickness.”
  • the reflectance on the side surface of the partition wall contributes to the improvement of the brightness of the display device, and the light shielding property contributes to the suppression of color mixture.
  • the present invention focuses on the reflectance and OD value per thickness of the partition walls.
  • the partition wall (A-1) preferably has a thickness of 0.5 to 100 ⁇ m and a width of 1 to 100 ⁇ m. Therefore, in the present invention, 10 ⁇ m is selected as a representative value of the thickness of the partition (A-1), and the reflectance and OD value per 10 ⁇ m of thickness are focused on.
  • the reflectance per 10 ⁇ m of thickness in the wavelength region of 430 to 630 nm is less than 20%, the reflection on the side walls of the barrier ribs becomes small, resulting in insufficient brightness of the display device.
  • the reflectance per 10 ⁇ m thickness in the wavelength region of 430 to 630 nm is preferably 20% or more, more preferably 25% or more, and even more preferably 30% or more. The higher the reflectance per 10 ⁇ m thickness in the wavelength region of 430 to 630 nm, the greater the reflection of visible light on the side walls of the partition walls. The conversion efficiency is improved, and the brightness of the display device can be improved.
  • the OD value per 10 ⁇ m of thickness in the wavelength region of 430 to 630 nm is less than 1.5, visible light leaks into adjacent pixels, and color mixture of light tends to occur.
  • the OD value per 10 ⁇ m thickness in the wavelength region of 430 to 630 nm is preferably 1.5 or more, more preferably 1.7 or more, and even more preferably 2.0 or more.
  • the higher the OD value per 10 ⁇ m thickness in the wavelength region of 430 to 630 nm the greater the light-shielding property of the side walls of the barrier ribs against visible light. It is possible to efficiently block the light emitted in the pixel, prevent color mixture, and improve the contrast of the display device.
  • the partition wall (A-1) has an L* value of 50 to 70, an a* value of -5.0 to 5.0, and a b* value of -5.0 to -5.0 per 10 ⁇ m film thickness measured by the SCI method. 5.0. If the L* value per 10 ⁇ m of film thickness measured by the SCI method is less than 50, the reflection on the side surface of the partition wall becomes small, resulting in insufficient luminance of the display device. When the a* value per 10 ⁇ m film thickness measured by the SCI method is less than -5.0, the barrier ribs exhibit green color, and when the a* value exceeds 5.0, the barrier ribs exhibit red color characteristics.
  • the partition wall when the b* value per 10 ⁇ m of film thickness measured by the SCI method is less than ⁇ 5.0, the partition wall exhibits a blue color, and when the b* value exceeds 5.0, the partition wall exhibits a yellow color. It causes deterioration of color characteristics. That is, by setting the L* value to 50 to 70, the a* value to ⁇ 5.0 to 5.0, and the b* value to ⁇ 5.0 to 5.0 per 10 ⁇ m of film thickness measured by the SCI method, In the entire visible light range (wavelength region 430 to 630 nm), the reflectance and OD value of the barrier rib (A-1) are less dependent on the wavelength, giving a neutral gray barrier rib and improving the color characteristics of the display.
  • the reflectance per 10 ⁇ m thickness in the wavelength region of 430 to 630 nm of the partition wall (A-1) and the L* value, a* value, and b* value per 10 ⁇ m film thickness are obtained for the partition wall (A-1) having a thickness of 10 ⁇ m. , using a spectrophotometer (for example, CM-2600d manufactured by Konica Minolta Co., Ltd.) from above in SCI mode.
  • a spectrophotometer for example, CM-2600d manufactured by Konica Minolta Co., Ltd.
  • the same composition as the partition wall (A-1) A solid film having a thickness of 10 ⁇ m may be prepared, and the reflectance per 10 ⁇ m thickness may be obtained by similarly measuring the reflectance of the solid film instead of the partition wall (A-1).
  • a solid film was prepared under the same processing conditions as for the formation of the partition wall (A-1) except that the thickness was 10 ⁇ m and no pattern was formed. Reflectance may be similarly measured from the top surface of the film.
  • the OD value per 10 ⁇ m thickness in the wavelength region of 430 to 630 nm of the partition wall (A-1) was obtained by using an optical densitometer/spectrophotometer (for example, Hitachi High-Tech Science U- 4100), and the transmittance can be calculated by the following formula (1).
  • an optical densitometer/spectrophotometer for example, Hitachi High-Tech Science U- 4100
  • the transmittance can be calculated by the following formula (1).
  • the partition (A-1) A 10 ⁇ m-thick solid film having the same composition as A-1) may be prepared, and the OD value per 10 ⁇ m thickness may be obtained by similarly measuring the OD value of the solid film instead of the partition wall (A-1).
  • OD value -log10 (T/100) (1)
  • Examples of means for adjusting the reflectance, the OD value, the L* value, the a* value, and the b* value within the above ranges include making the partition wall (A-1) have a preferable composition described later. be done.
  • the taper angle of the partition wall (A-1) is preferably 45° to 110°.
  • the taper angle of the partition wall (A-1) refers to the angle formed by the side and bottom sides of the cross section of the partition wall. In the case of the substrate with partition walls shown in FIG. 1, the taper angle of the partition walls 2 is represented by the symbol ⁇ .
  • the taper angle is 80° or more.
  • the taper angle is more preferably 95° or less.
  • the taper angle of the partition wall (A-1) is measured using an optical microscope (FE-SEM (eg, S-4800 manufactured by Hitachi, Ltd.)) at an acceleration voltage of 3. It can be obtained by observing at 0 kV and a magnification of 2,500 times and measuring the angle formed by the side and base of the cross section of the partition wall (A-1).
  • the partition wall (A-1) is formed with a preferable composition described later or using the resin composition of the present invention. etc.
  • the thickness of the partition (A-1) is preferably larger than the thickness of the pixel when the substrate with the partition has a pixel containing the (B) color-converting luminescent material described later.
  • the thickness of the partition wall (A-1) is preferably 0.5 ⁇ m or more, more preferably 5.0 ⁇ m or more, and even more preferably 10 ⁇ m or more.
  • the thickness of the partition wall (A-1) is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, from the viewpoint of extracting light emitted from the bottom of the pixel more efficiently.
  • the width of the partition (A-1) is preferably sufficient to further improve the brightness by utilizing light reflection on the side of the partition and to further suppress color mixture of light in adjacent pixels due to light leakage.
  • the width of the partition is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the width of the partition wall (A-1) is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, from the viewpoint of securing a large amount of light emitting region of the pixel and further improving luminance.
  • the partition (A-1) has a repeating pattern for a predetermined number of pixels according to the screen size of the image display device.
  • the number of pixels of the image display device is, for example, 4000 horizontally and 2000 vertically.
  • the number of pixels affects the resolution (fineness) of the displayed image. Therefore, it is necessary to form the number of pixels corresponding to the required image resolution and the screen size of the image display device, and it is preferable to determine the partition pattern formation dimensions accordingly.
  • the partition wall (A-1) preferably contains a resin, a white pigment, blue and purple pigments, and silver oxide and/or silver particles.
  • the resin has a function of improving crack resistance and light resistance of the partition walls.
  • a white pigment has a function of further improving the reflectance of the partition wall.
  • the blue pigment and violet pigment have the function of further improving the light shielding properties of the partition wall in the wavelength range of 500 nm to 630 nm (green light to red light).
  • the silver oxide and/or silver particles have the function of further improving the light shielding properties of the barrier ribs in the wavelength range of 380 nm to 500 nm (blue light).
  • the resin, white pigment, blue pigment, and purple pigment are as described above as materials constituting the resin composition.
  • the content of the resin in the partition (A-1) is preferably 10% by weight or more, more preferably 20% by weight or more, from the viewpoint of improving crack resistance of the partition during heat treatment.
  • the resin content in the partition (A-1) is preferably 60% by weight or less, more preferably 50% by weight or less.
  • the content of the white pigment in the partition wall (A-1) is preferably 10% by weight or more, more preferably 15% by weight or more, from the viewpoint of further improving the reflectance.
  • the content of the white pigment in the partition walls (A-1) is preferably 60% by weight or less, more preferably 55% by weight or less.
  • the content of the blue pigment and the purple pigment in the partition wall (A-1) is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, from the viewpoint of improving the light-shielding properties of light of a specific wavelength. , more preferably 0.10% by weight or more. On the other hand, it is preferably 3.0% by weight or less, more preferably 1.0% by weight or less, and even more preferably 0.75% by weight or less, from the viewpoint of not impairing the reflectance of the partition walls.
  • the weight ratio of the blue pigment and the purple pigment in the partition wall (A-1) is preferably 20/80 to 80/20.
  • the weight ratio of the blue pigment and the violet pigment is more preferably 30/70 to 70/30, still more preferably 50/50 to 65/35.
  • the silver oxide and/or silver particles are yellow particles or mixed particles of yellow particles and black particles generated by decomposition/aggregation of the organic silver compound in the resin composition described above in the exposure step and/or heating step. Point.
  • the content of silver oxide and/or silver particles in the partition wall (A-1) is 0.1% by weight from the viewpoint of further suppressing color mixing of light in adjacent pixels by adjusting the reflectance and OD within the ranges described above. 0.4% by weight or more is more preferable.
  • the content of silver oxide and/or silver particles in the partition wall (A-1) is preferably 10% by weight or less, and 3.0% by weight or less. more preferred.
  • the weight of silver oxide and/or silver particles in the partition wall (A-1) is 0.2 to 20 with respect to 100 weight of the white pigment, and the sum of the blue pigment and the purple pigment in the solid content
  • the weight is preferably 0.05 to 10 to 100 weight of the white pigment.
  • the weight of silver oxide and/or silver particles in the partition wall (A-1) is 0.5 to 10 with respect to 100 weight of the white pigment, and the total weight of the blue pigment and the purple pigment in the solid content is It is more preferably 0.1 to 5 with respect to 100 weight of the white pigment.
  • the partition (A-1) preferably further contains a liquid-repellent compound.
  • a liquid-repellent compound By containing the liquid-repellent compound, liquid-repellent performance can be imparted to the partition wall (A-1).
  • color-converting light-emitting materials having different compositions can be easily applied separately.
  • the liquid-repellent compound is as described above as a material constituting the resin composition.
  • the content of the liquid-repellent compound in the partition walls (A-1) is preferably 0.01% by weight or more, more preferably 0.1% by weight or more. more preferred.
  • the content of the liquid-repellent compound in the partition wall (A-1) is preferably 10% by weight or less, more preferably 5% by weight or less.
  • the surface contact angle of the partition wall (A-1) with respect to propylene glycol monomethyl ether acetate is preferably 10° or more, more preferably 20° or more, from the viewpoint of improving inkjet applicability and facilitating separate coating of the color-converting luminescent material. More preferably, 40° or more is even more preferable.
  • the surface contact angle of the partition wall (A-1) is preferably 70° or less, more preferably 60° or less.
  • the photosensitive paste method is preferable because the pattern shape can be easily adjusted.
  • the above-mentioned resin composition is applied onto a base substrate and dried to obtain a dry film.
  • a method comprising an exposure step of pattern-wise exposing according to the shape, a developing step of dissolving and removing portions soluble in the developer in the dry film after exposure, and a heating step of curing the barrier ribs after development is preferred.
  • the resin composition preferably has negative or positive photosensitivity.
  • Pattern exposure may be performed through a photomask having a predetermined opening, or an arbitrary pattern may be directly drawn using a laser beam or the like without using a photomask.
  • partition walls (A-1) are similarly formed on the color filters and/or light-shielding partition walls (A-2). Can be patterned. Each step is as described above for the method of manufacturing the light shielding film.
  • the substrate with partition walls of the present invention further includes pixels (hereinafter sometimes referred to as “pixels (B)”) containing (B) color-converting luminescent materials arranged separated by the partition walls (A-1). It is preferred to have
  • the pixel (B) has a function of enabling color display by converting at least part of the wavelength range of incident light and emitting output light in a wavelength range different from that of the incident light.
  • FIG. 2 shows a cross-sectional view of one mode of the substrate with partitions of the present invention having patterned partitions (A-1) and pixels (B).
  • a base substrate 1 has partition walls 2 patterned thereon, and pixels 3 are arranged in regions separated by the partition walls 2 .
  • the color conversion material preferably contains a phosphor selected from inorganic phosphors and organic phosphors.
  • the substrate with partition walls of the present invention can be used as a display device by combining, for example, a backlight that emits blue light, liquid crystals formed on TFTs, and pixels (B).
  • the region corresponding to the red pixel preferably contains a red phosphor that emits red fluorescence when excited by blue excitation light.
  • the region corresponding to the green pixel preferably contains a green phosphor that emits green fluorescence when excited by blue excitation light.
  • a region corresponding to a blue pixel preferably does not contain a phosphor.
  • the inorganic phosphor is preferably one that emits green or red light by blue excitation light, that is, one that is excited by excitation light with a wavelength of 400 to 500 nm and has a peak emission spectrum in the region of 500 to 700 nm.
  • examples of such inorganic phosphors include YAG-based phosphors, TAG-based phosphors, sialon-based phosphors, Mn 4+ -activated fluoride complex phosphors, and inorganic semiconductors called quantum dots. You may use 2 or more types of these. Among these, quantum dots are preferred. Since quantum dots have a smaller average particle size than other phosphors, (B) the surface of the pixel can be smoothed to suppress light scattering on the surface, so that the light extraction efficiency is further improved. Brightness can be further improved.
  • Quantum dot materials include, for example, II-IV group, III-V group, IV-VI group, and IV group semiconductors.
  • these inorganic semiconductors include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS , PbSe, PbTe , Si3N4 , Ge3N4 , Al2O3 and the like. You may use 2 or
  • the organic phosphor is preferably one that emits green, red, or other colors when excited by blue light.
  • a pyrromethene derivative having a basic skeleton represented by the following structural formula (8) as a phosphor emitting red fluorescence and a pyrromethene derivative having a basic skeleton represented by the following structural formula (9) as a phosphor emitting green fluorescence derivatives and the like.
  • Other examples include perylene-based derivatives, porphyrin-based derivatives, oxazine-based derivatives, and pyrazine-based derivatives that emit red or green fluorescence depending on the selection of substituents. You may contain 2 or more types of these. Among these, pyrromethene derivatives are preferred because of their high quantum yield.
  • a pyrromethene derivative can be obtained, for example, by the method described in JP-A-2011-241160.
  • the thickness of the pixel (B) is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the thickness of the pixel (B) is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, from the viewpoint of thinning of the display device and curved surface workability.
  • the pixels (B) are preferably arranged separated by partition walls (A-1). By providing a partition between pixels, diffusion and color mixture of emitted light can be further suppressed.
  • a method of forming the pixel (B) for example, a method of filling a space separated by a partition wall (A-1) with a coating liquid containing a color-converting luminescent material (hereinafter referred to as a color-converting luminescent material coating liquid) can be mentioned. be done.
  • the color-converting luminescent material coating liquid may further contain a resin and a solvent.
  • Examples of methods for filling the color-converting luminescent material coating liquid include photolithography and inkjet methods, but the inkjet coating method is preferable from the viewpoint of easily separately coating different types of color-converting luminescent materials on each pixel.
  • ⁇ Light shielding partition (A-2)> In the substrate with partition walls of the present invention, (A-1) between the base substrate and the patterned partition walls, and (A-2) an OD value per 1.0 ⁇ m of thickness of 0.5 or more. It is preferable to have a pattern-formed partition (hereinafter sometimes referred to as a “light-shielding partition (A-2)”). By having the light-shielding partition (A-2), the light-shielding property is improved, light leakage from the backlight is suppressed, and a high-contrast and clear image can be obtained.
  • FIG. 3 shows a cross-sectional view showing one embodiment of the partition-attached substrate of the present invention having light-shielding partitions. It has partition walls 2 and light-shielding partition walls 4 patterned on a base substrate 1 , and pixels 3 are arranged in regions separated by the partition walls 2 and the light-shielding partition walls 4 .
  • the light-shielding partition (A-2) has an OD value of 0.5 or more per 1.0 ⁇ m of thickness.
  • the thickness of the light shielding partition (A-2) is preferably 0.5 to 10 ⁇ m, as will be described later.
  • 1.0 ⁇ m was selected as a representative value of the thickness of the light-shielding barrier ribs (A-2), and attention was paid to the OD value per 1.0 ⁇ m of thickness.
  • the OD value per 1.0 ⁇ m of thickness is preferably 4.0 or less, which can improve pattern workability.
  • the OD value of the light-shielding partition wall (A-2) can be measured in the same manner as the OD value of the partition wall (A-1) described above.
  • the thickness of the light-shielding partition (A-2) is preferably 0.5 ⁇ m or more from the viewpoint of improving light-shielding properties. On the other hand, from the viewpoint of improving flatness, the thickness of the light shielding partition (A-2) is preferably 10 ⁇ m or less. Further, the width of the light-shielding partition (A-2) is preferably approximately the same as that of the above-described partition (A-1).
  • the light shielding partition (A-2) preferably contains a resin and a black pigment.
  • the resin has a function of improving crack resistance and light resistance of the partition walls.
  • the black pigment has a function of absorbing incident light and reducing emitted light.
  • Examples of the resin include those exemplified as the resin in the resin composition described above. (Meth)acrylic polymers and polyimides are preferred because of their excellent heat resistance and solvent resistance.
  • black pigments include those exemplified as black pigments in the resin composition described above, palladium oxide, platinum oxide, gold oxide, and silver oxide. Titanium nitride, zirconium nitride, and carbon black are preferred because of their high light-shielding properties.
  • a method for patterning the light-shielding partition (A-2) on the underlying substrate for example, a photosensitive material described in JP-A-2015-1654 is used, and the above-described partition (A-1) is photosensitive.
  • a method of forming a pattern by a transparent paste method is preferred.
  • a color filter layer having a thickness of 1 to 5 ⁇ m (hereinafter sometimes referred to as a “color filter”) is provided between the base substrate and the pixel layer containing the (B) color-converting luminescent material. It is preferable to further have A color filter has a function of transmitting visible light in a specific wavelength range and making the transmitted light have a desired hue.
  • the color purity of the display device can be improved. Color purity can be further improved by setting the thickness of the color filter to 1 ⁇ m or more. On the other hand, by setting the thickness of the color filter to 5 ⁇ m or less, the luminance can be further improved.
  • FIG. 4 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention having a color filter. It has patterned partition walls 2 and color filters 5 on a base substrate 1 , and pixels 3 on the color filters 5 .
  • color filters include color filters that use pigment-dispersed materials in which pigments are dispersed in photoresist, which are used in flat panel displays such as liquid crystal displays. More specifically, a blue color filter that selectively transmits a wavelength of 400 nm to 550 nm, a green color filter that selectively transmits a wavelength of 500 nm to 600 nm, a yellow color filter that selectively transmits a wavelength of 500 nm or more, A red color filter that selectively transmits wavelengths of 600 nm or more may be used.
  • the color filter may be laminated separately from the pixel (B) containing the color-converting luminescent material, or may be integrally laminated.
  • the substrate with partition walls of the present invention preferably further has a color filter with a thickness of 1 to 5 ⁇ m separated by a light-shielding partition wall between the base substrate and the pixels (B).
  • FIG. 5 shows a cross-sectional view of one embodiment of the partition-attached substrate of the present invention having color filters separated by light-shielding partitions.
  • Color filters 5 separated by patterned light-shielding barrier ribs 4 are provided on a base substrate 1, and barrier ribs 2 and pixels 3 are provided thereon.
  • the substrate with partition walls of the present invention further includes (C) a low refractive index layer having a refractive index of 1.20 to 1.35 at a wavelength of 550 nm (hereinafter referred to as "low refractive index layer (C)” may be described).
  • low refractive index layer (C) a low refractive index layer having a refractive index of 1.20 to 1.35 at a wavelength of 550 nm.
  • the refractive index of the low refractive index layer (C) is preferably 1.20 or more from the viewpoint of appropriately suppressing the reflection of light from the backlight and allowing light to enter the pixels (B) efficiently.
  • the refractive index of the low refractive index layer (C) is preferably 1.35 or less.
  • the refractive index of the low refractive index layer (C) is measured by irradiating light with a wavelength of 550 nm from a direction perpendicular to the cured film surface under atmospheric pressure and 20° C. using a prism coupler. can be done.
  • the substrate with partition walls of the present invention preferably further has an inorganic protective layer I with a thickness of 50 to 1,000 nm on the low refractive index layer (C). Since the presence of the inorganic protective layer I makes it difficult for moisture in the atmosphere to reach the low refractive index layer (C), it is possible to suppress fluctuations in the refractive index of the low refractive index layer (C) and suppress luminance degradation. can.
  • the substrate with partition walls of the present invention preferably has the low refractive index layer (C) between the pixel (B) and the color filter. It is preferred to have an inorganic protective layer (I) of 1,000 nm. By having the low refractive index layer (C) between the pixel (B) and the color filter, the effect of improving the light extraction of emitted light is increased, and the brightness of the display is improved.
  • the substrate with partition walls of the present invention preferably further has an inorganic protective layer (II) with a thickness of 50 to 1,000 nm between the pixels (B) and the low refractive index layer (C).
  • an inorganic protective layer (II) with a thickness of 50 to 1,000 nm between the pixels (B) and the low refractive index layer (C).
  • the substrate with partition walls of the present invention preferably further has an inorganic protective layer (III) with a thickness of 50 to 1,000 nm and/or a yellow organic protective layer between the color filter and the pixel (B).
  • an inorganic protective layer (III) With a thickness of 50 to 1,000 nm and/or a yellow organic protective layer between the color filter and the pixel (B).
  • the inorganic protective layer (III) it becomes difficult for the raw materials for forming the color filter to reach the pixel (B) containing the color conversion light emitting material from the color filter. ) can be suppressed.
  • the yellow organic protective layer it is possible to cut blue leakage light that has not been completely converted by the pixels (B) containing the color-converting light-emitting material, thereby improving color reproducibility.
  • the yellow organic protective layer may not be formed on pixels corresponding to blue pixels.
  • the substrate with partition walls of the present invention preferably further has an inorganic protective layer (IV) with a thickness of 50 to 1,000 nm and/or a yellow organic protective layer on the underlying substrate.
  • the inorganic protective layer (IV) and/or the yellow organic protective layer act as a refractive index adjusting layer, extracting light emitted from the pixels (B) more efficiently, and can further improve the brightness of the display device.
  • the yellow organic protective layer cuts the blue leakage light that has not been completely converted by the pixels (B) containing the color-converting light-emitting material, and can improve color reproducibility.
  • the inorganic protective layer (IV) and/or the yellow organic protective layer are more preferably provided between the underlying substrate and the partition walls (A) and the pixels (B).
  • Examples of materials constituting the inorganic protective layers (I) to (IV) include metal oxides such as silicon oxide, indium tin oxide and gallium zinc oxide; metal nitrides such as silicon nitride; and fluorides such as magnesium fluoride. etc. You may contain 2 or more types of these. Among these, silicon nitride or silicon oxide is more preferable because of its low water vapor permeability and high permeability.
  • the thickness of the inorganic protective layers (I) to (IV) is preferably 50 nm or more from the viewpoint of sufficiently suppressing permeation of substances such as water vapor. On the other hand, from the viewpoint of suppressing a decrease in transmittance, the thickness of the inorganic protective layers (I) to (IV) is preferably 800 nm or less.
  • the thickness of the inorganic protective layers (I) to (IV) is determined by exposing a cross section perpendicular to the underlying substrate using a polishing apparatus such as a cross section polisher, and examining the cross section using a scanning electron microscope or a transmission electron microscope. can be measured by magnified observation.
  • Examples of methods for forming the inorganic protective layers (I) to (IV) include sputtering.
  • the inorganic protective layer is preferably colorless and transparent or yellow and transparent.
  • the yellow organic protective layer is obtained, for example, by patterning a resin composition containing a yellow precursor compound and/or a yellow pigment.
  • the yellow precursor compound and the yellow pigment are as described above as materials constituting the resin composition.
  • the yellow organic protective layer As a method of patterning the yellow organic protective layer, a method of patterning by a photosensitive paste method is preferable, as in the case of the partition walls (A-1) described above.
  • the yellow organic protective layer When the yellow organic protective layer is formed on the color filter, the yellow organic protective layer may serve as an overcoat layer that planarizes each pixel of the color filter.
  • the thickness of the yellow organic protective layer is preferably 100 nm or more from the viewpoint of sufficiently shielding the blue leakage light. On the other hand, the thickness of the yellow organic protective layer is preferably 3000 nm or less from the viewpoint of suppressing a decrease in light extraction efficiency.
  • the substrate with partition walls of the present invention can also be used in a display device using mini or micro LEDs, in which a large number of LEDs corresponding to pixels separated by partition walls formed on a base substrate are arranged. ON/OFF of each pixel is enabled by ON/OFF of a mini or micro LED, no liquid crystal is required. That is, the substrate with partitions of the present invention can be used not only for partitions for separating pixels, but also for partitions for separating mini- or micro-LEDs in a backlight or the like.
  • the substrate with partition walls of the present invention preferably further has a light emitting source selected from organic EL cells, mini-LED cells and micro-LED cells on the underlying substrate.
  • a light emitting source selected from organic EL cells, mini-LED cells and micro-LED cells on the underlying substrate.
  • FIG. 6 shows a cross-sectional view of one embodiment of the partition-furnished substrate of the present invention having a light-emitting light source selected from organic EL cells, mini-LED cells and micro-LED cells.
  • a light emitting source 6 selected from organic EL cells, mini LED cells and micro LED cells is provided between partition walls 2 patterned on a base substrate 1 .
  • the substrate with partition walls of the present invention preferably further has pixels (B) on the light emitting light sources selected from organic EL cells, mini-LED cells and micro-LED cells.
  • FIG. 7 shows a cross-sectional view of one embodiment of the partition-furnished substrate of the present invention having light-emitting light sources and pixels selected from organic EL cells, mini-LED cells and micro-LED cells.
  • a light emitting source 6 selected from organic EL cells, mini LED cells and micro LED cells is provided between partition walls 2 patterned on a base substrate 1, and pixels 3 are provided thereon.
  • the display device of the present invention includes the substrate with partition walls and a light emitting source.
  • the display device of the present invention preferably has the partition-attached substrate of the present invention and a light-emitting light source selected from a liquid crystal cell, an organic EL cell, a mini-LED cell and a micro-LED cell.
  • a light emitting source selected from a liquid crystal cell, an organic EL cell, a mini LED cell and a micro LED cell is preferable as the light emitting source.
  • An organic EL cell is more preferable as the light source because of its excellent light emission characteristics.
  • a mini-LED cell is a cell in which a large number of LEDs each having a length and width of about 100 ⁇ m to 1 mm are arranged.
  • a micro LED cell refers to a cell in which a large number of LEDs each having a length and width of less than 100 ⁇ m are arranged.
  • the method for manufacturing the display device of the present invention will be described by taking an example of the display device having the substrate with partition walls and the organic EL cell of the present invention.
  • a photosensitive polyimide resin is applied on a glass substrate, and an insulating film having an opening is formed by photolithography. After aluminum is sputtered thereon, the aluminum is patterned by photolithography to form a back electrode layer made of aluminum in the openings where there is no insulating film.
  • Alq3 tris(8-quinolinolato)aluminum
  • Alq3 tris(8-quinolinolato)aluminum
  • ITO is deposited as a transparent electrode by sputtering to fabricate an organic EL cell having a white light-emitting layer.
  • a display device can be produced by bonding the above-described substrate with partition walls to the organic EL cell thus obtained so as to face each other with a sealant.
  • the solid content concentrations of the polysiloxane solutions in Synthesis Examples 1 to 3 were obtained by the following method. 1.5 g of the polysiloxane solution was put into an aluminum cup and heated at 250° C. for 30 minutes using a hot plate to evaporate the liquid. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration was obtained from the ratio to the weight before heating.
  • the weight average molecular weights of the polysiloxane solutions in Synthesis Examples 1 to 3 were measured as polystyrene-equivalent weight average molecular weights by the following method.
  • Apparatus Waters GPC measuring apparatus with RI detector (2695) Column: PLgel MIXED-C column (manufactured by Polymer Laboratories, 300 mm) x 2 (connected in series) Measurement temperature: 40°C Flow rate: 1 mL/min Solvent: Tetrahydrofuran (THF) 0.5% by weight solution Standard substance: polystyrene Detection mode: RI.
  • the content ratio of each repeating unit in polysiloxane in Synthesis Examples 1 to 3 was obtained by the following method.
  • a polysiloxane solution is injected into a “Teflon” (registered trademark) NMR sample tube with a diameter of 10 mm and 29 Si-NMR measurement is performed, and the Si derived from a specific organosilane is compared with the integrated value of the entire Si derived from the organosilane.
  • the content ratio of each repeating unit was calculated from the ratio of the integrated value of. 29 Si-NMR measurement conditions are shown below.
  • Apparatus Nuclear magnetic resonance apparatus (JNM-GX270; manufactured by JEOL Ltd.) Measurement method: Gated decoupling method Measurement nucleus frequency: 53.6693 MHz ( 29 Si nucleus) Spectrum width: 20000Hz Pulse width: 12 ⁇ s (45° pulse) Pulse repetition time: 30.0 seconds Solvent: Acetone-d6 Reference substance: Tetramethylsilane Measurement temperature: 23°C Sample rotation speed: 0.0 Hz.
  • the weight average molecular weight of the obtained polysiloxane (PSL-1) was 12,000. Also, 3-methacryloxypropylmethyldimethoxysilane, styryltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, methyltrimethoxysilane, 3-trimethoxysilyl in polysiloxane (PSL-1)
  • the molar ratio of each repeating unit derived from propylsuccinic anhydride was 17.5 mol %, 20 mol %, 5 mol %, 47.5 mol % and 10 mol %, respectively.
  • Aqueous phosphoric acid was added over 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution.
  • a mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 173.99 g of methanol and water, which are by-products, were distilled during the reaction.
  • PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-2) solution.
  • the weight average molecular weight of the obtained polysiloxane (PSL-2) was 6,000.
  • PSL-2 polysiloxane
  • aqueous phosphoric acid solution prepared by dissolving 3.854 g of phosphoric acid (1.0% by weight with respect to the charged monomers) in 83.48 g of water was added over 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution.
  • a mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring.
  • PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-3) solution.
  • the weight average molecular weight of the obtained polysiloxane (PSL-3) was 5,500.
  • the molar ratio of each repeating unit derived from diphenyldimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, tetraethoxysilane, and methyltrimethoxysilane in polysiloxane is 50 mol %, 10 mol %, 15 mol %, and 25 mol %.
  • the compositions of Synthesis Examples 1 to 3 are summarized in Table 1.
  • the resulting reaction product was purified by silica gel column chromatography to give 3,5-bis(4-t-butylphenyl)benzaldehyde (3.5 g) as a white solid.
  • 3,5-bis(4-t-butylphenyl)benzaldehyde (1.5 g) and 2,4-dimethylpyrrole (0.7 g) were placed in a flask, followed by anhydrous dichloromethane (200 mL) and trifluoroacetic acid (1 drop) was added and stirred for 4 hours under a nitrogen atmosphere.
  • reddish purple powder After purification by silica gel column chromatography and vacuum drying, 0.27 g of reddish purple powder was obtained (yield 70%).
  • the results of 1 H-NMR analysis of the obtained reddish purple powder are as follows, and it was confirmed that the reddish purple powder obtained above was [R-1] represented by the following structural formula.
  • CR-97 titanium dioxide pigment
  • PB15:6N blue pigment
  • PV23 0.02 g of purple pigment
  • phosphate polyester DISPERBYK” (registered trademark)-111; BYK Chemie Japan Co., Ltd.
  • DISPERBYK-111 a pigment dispersion
  • PGMEA a pigment dispersion
  • MW-1 a pigment dispersion
  • 0.20 g of an organic silver compound (silver neodecanoate) was dissolved in 1.80 g of EDM to obtain a yellow precursor compound solution (YZ-1).
  • OXE-02 bis(2,4,6-trimethylbenzoyl)-phenyl Phosphine oxide
  • Irgacure 819 bis(2,4,6-trimethylbenzoyl)-phenyl Phosphine oxide
  • BASF Japan Ltd. (hereinafter “Omnirad-819”)) 0.200 g
  • dipentaerythritol hexaacrylate (“KAYARAD” (registered trademark) DPHA, new Nihon Yakugyo Co., Ltd.
  • DPHA photopolymerizable fluorine-containing compound
  • RS-72A photopolymerizable fluorine-containing compound
  • DIC Corporation DIC Corporation
  • RS-72A photopolymerizable fluorine-containing compound
  • DIC Corporation DIC Corporation
  • BYK-352 0.10 g of a 10% by weight diluted solution of PGMEA (corresponding to a concentration of 500 ppm) was dissolved in 0.76 g of solvent PGMEA and stirred. The resulting mixture was filtered through a 5.0 ⁇ m filter to obtain a partition wall resin composition (P-1).
  • Example 2 Partition wall resin composition (P-2) 5.00 g of CR-97 as white pigment, 0.015 g of blue pigment PB15:6N as light-shielding pigment, 0.035 g of purple pigment PV23, 1.00 g of phosphate polyester DISPERBYK-111 as dispersant, solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-2). A partition wall resin composition (P-2) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-2) was used instead of the pigment dispersion (MW-1).
  • Example 3 Partition wall resin composition (P-3) 5.00 g of CR-97 as a white pigment, 0.035 g of a blue pigment PB15:6N as a light-shielding pigment, 0.015 g of a purple pigment PV23, 1.00 g of a phosphate polyester DISPERBYK-111 as a dispersant, and a solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-3).
  • a partition wall resin composition (P-3) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-3) was used instead of the pigment dispersion (MW-1).
  • Example 4 Resin composition for partition walls (P-4) 5.00 g of CR-97 as a white pigment, 0.008 g of a blue pigment PB15:6N as a light-shielding pigment, 0.043 g of a purple pigment PV23, 1.00 g of a phosphate polyester DISPERBYK-111 as a dispersant, and a solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-4).
  • a partition wall resin composition (P-4) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-4) was used instead of the pigment dispersion (MW-1).
  • Example 5 Partition wall resin composition (P-5) 5.00 g of CR-97 as white pigment, 0.043 g of blue pigment PB15:6N as light-shielding pigment, 0.008 g of purple pigment PV23, 1.00 g of phosphate polyester DISPERBYK-111 as dispersant, solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-5). A partition wall resin composition (P-5) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-5) was used instead of the pigment dispersion (MW-1).
  • Example 6 Partition wall resin composition (P-6) 5.00 g of CR-97 as white pigment, 0.060 g of blue pigment PB15:6N as light-shielding pigment, 0.040 g of purple pigment PV23, 1.00 g of phosphate polyester DISPERBYK-111 as dispersant, solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-6).
  • a partition wall resin composition (P-6) was obtained in the same manner as in Example 1, except that the weight was 81 g.
  • Example 7 Partition wall resin composition (P-7) 5.00 g of CR-97 as white pigment, 0.10 g of blue pigment PB15:6N as light-shielding pigment, 0.067 g of purple pigment PV23, 1.00 g of phosphate polyester DISPERBYK-111 as dispersant, solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-7). Instead of the pigment dispersion (MW-1), 6.10 g of pigment dispersion (MW-7) was added, the amount of polysiloxane (PSL-1) solution added was 9.24 g, and the amount of PGMEA added was 0.24 g. A partition wall resin composition (P-7) was obtained in the same manner as in Example 1, except that the weight was 87 g.
  • Example 8 Partition wall resin composition (P-8) 5.00 g of CR-97 as a white pigment, 0.36 g of a blue pigment PB15:6N as a light-shielding pigment, 0.24 g of a purple pigment PV23, 1.00 g of a phosphate polyester DISPERBYK-111 as a dispersant, and a solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-8).
  • a partition wall resin composition (P-8) was obtained in the same manner as in Example 1, except that the content was 26 g.
  • Example 9 Partition wall resin composition (P-9) 5.00 g of CR-97 as a white pigment, 0.020 g of a blue pigment PB15:6N as a light-shielding pigment, 0.013 g of a purple pigment PV23, 1.00 g of a phosphate polyester DISPERBYK-111 as a dispersant, and a solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-9).
  • a partition wall resin composition (P-9) was obtained in the same manner as in Example 1, except that the amount was 75 g.
  • Example 10 Partition wall resin composition (P-10) 5.00 g of CR-97 as a white pigment, 0.010 g of a blue pigment PB15:6N as a light-shielding pigment, 0.0067 g of a purple pigment PV23, 1.00 g of a phosphate polyester DISPERBYK-111 as a dispersant, and a solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-10).
  • a partition wall resin composition (P-10) was obtained in the same manner as in Example 1, except that the amount was 73 g.
  • Example 11 Partition wall resin composition (P-11) 5.00 g of CR-97 as white pigment, 0.00050 g of blue pigment PB15:6N as light-shielding pigment, 0.00033 g of purple pigment PV23, 1.00 g of phosphate polyester DISPERBYK-111 as dispersant, solvent 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-11). Instead of the pigment dispersion (MW-1), 6.00 g of the pigment dispersion (MW-11) was added. A partition wall resin composition (P-11) was obtained in the same manner as in Example 1, except that the content was 72 g.
  • Example 12 Partition wall resin composition (P-12) As the yellow precursor compound, instead of the yellow precursor compound solution (YZ-1), a 10% PGMEA solution of the organic silver compound (APAG-01) obtained in Preparation Example 8 described later was used, and the amount of PGMEA added was changed to A resin composition for partition walls (P-12) was obtained in the same manner as in Example 1, except that the content was 0.063 g and 0.70 g of EDM was added.
  • Example 13 Partition wall resin composition (P-13) As a yellow precursor compound, 0.20 g of an organic copper compound (copper neodecanoate) was dissolved in 1.80 g of EDM to obtain a yellow precursor compound solution (YZ-2). Partition wall resin composition (P -13) was obtained.
  • Example 14 Partition wall resin composition (P-14) As a yellow precursor compound, 0.20 g of a phenolic compound (1,4-dihydroxyanthrahydroquinone) was dissolved in 1.80 g of EDM to obtain a yellow precursor compound solution (YZ-3).
  • Example 15 Partition wall resin composition (P-15) As a yellow precursor compound, 1.60 g of yellow precursor compound solution (YZ-1) was added instead of yellow precursor compound solution (YZ-3), and the amount of polysiloxane (PSL-1) solution added was 7. A resin composition for partition walls (P-15) was obtained in the same manner as in Example 14, except that the added amount of PGMEA was changed to 0.33 g and 4.00 g.
  • Example 16 Partition wall resin composition (P-16) Example 15 except that the amount of yellow precursor compound solution (YZ-1) added was 4.80 g, the amount of polysiloxane (PSL-1) solution added was 6.53 g, and the amount of PGMEA added was 1.60 g. A partition wall resin composition (P-16) was obtained in the same manner as above.
  • Example 17 Partition wall resin composition (P-17) Example 1 except that the amount of yellow precursor compound solution (YZ-1) added was 0.50 g, the amount of polysiloxane (PSL-1) solution added was 9.54 g, and the amount of PGMEA added was 1.14 g.
  • a partition wall resin composition (P-17) was obtained in the same manner as above.
  • Example 18 Partition wall resin composition (P-18) Example 1 except that the amount of yellow precursor compound solution (YZ-1) added was 0.080 g, the amount of polysiloxane (PSL-1) solution added was 9.64 g, and the amount of PGMEA added was 1.45 g.
  • a partition wall resin composition (P-18) was obtained in the same manner as above.
  • Example 19 Partition wall resin composition (P-19) Ethylenebis(oxyethylene)bis[3-(5-tert-butyl-4-hydroxy-m-tolyl)propionate] (“Irganox” (registered trademark)) is used as a polymerization inhibitor instead of the reducing agent t-butylhydroquinone. 1010, manufactured by BASF Japan Ltd. (hereinafter "IRGANOX (registered trademark) 1010”)) was added in the same manner as in Example 1 to obtain a partition wall resin composition (P-19).
  • IRGANOX registered trademark
  • Example 20 Partition wall resin composition (P-20) 5.00 g of CR-97 as a white pigment, 0.030 g of a blue pigment PB15:6N as a light-shielding pigment, 0.020 g of a purple pigment PV23, and 1 portion of an alkylolaminoamide-based dispersant DISPERBYK-109 as a dispersant. .00 g and 4.00 g of PGMEA as a solvent were mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-12).
  • a partition wall resin composition (P-20) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-12) was added instead of the pigment dispersion (MW-1).
  • Example 21 Partition wall resin composition (P-21) A partition wall resin composition (P-21) was obtained in the same manner as in Example 1, except that a polysiloxane (PSL-2) solution was added as the resin instead of the polysiloxane (PSL-1) solution.
  • PSL-2 polysiloxane
  • Example 22 Partition wall resin composition (P-22) 5.00 g of CR-97 as a white pigment, 1.00 g of DISPERBYK-111 as a dispersant, and 4.00 g of PGMEA as a solvent are mixed and dispersed using a mill-type disperser filled with zirconia beads to disperse the pigment.
  • a liquid (MW-13) was obtained.
  • the pigment dispersion (MW-1) 6.00 g of the pigment dispersion (MW-13) was added, the amount of polysiloxane (PSL-1) solution added was 9.49 g, and the amount of PGMEA added was 0.49 g.
  • a partition wall resin composition (P-22) was obtained in the same manner as in Example 1, except that the weight was 72 g.
  • Example 23 Partition wall resin composition (P-23) 5.00 g of CR-97 as a white pigment, 0.050 g of a purple pigment PV23 as a light-shielding pigment, 1.00 g of DISPERBYK-111 as a dispersant, and 4.00 g of PGMEA as a solvent were mixed and filled with zirconia beads.
  • a pigment dispersion liquid (MW-14) was obtained by dispersing using a mill-type dispersing machine.
  • a partition wall resin composition (P-23) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-14) was added instead of the pigment dispersion (MW-1).
  • Example 24 Partition wall resin composition (P-24) 5.00 g of CR-97 as a white pigment, 0.050 g of a blue pigment PB15:6N as a light-shielding pigment, 1.00 g of DISPERBYK-111 as a dispersant, and 4.00 g of PGMEA as a solvent were mixed to form zirconia beads.
  • a pigment dispersion (MW-15) was obtained by dispersing using a filled mill-type dispersing machine.
  • a resin composition for partition walls (P-24) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-15) was added instead of the pigment dispersion (MW-1).
  • Example 25 Partition wall resin composition (P-25) 5.00 g of titanium dioxide pigment (PFC105; manufactured by Ishihara Sangyo Co., Ltd. (hereinafter "PFC105")) as a white pigment, 0.030 g of a blue pigment PB15:6N as a light-shielding pigment, 0.020 g of a purple pigment PV23, 1.00 g of DISPERBYK-111 as a dispersant and 4.00 g of PGMEA as a solvent were mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-16).
  • a partition wall resin composition (P-25) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-16) was added instead of the pigment dispersion (MW-1).
  • Example 26 Partition wall resin composition (P-26) As a white pigment, 5.00 g of titanium dioxide pigment (R960; manufactured by Ishihara Sangyo Co., Ltd. (hereinafter "R960”)), as a light-shielding pigment, 0.030 g of blue pigment PB15:6N, 0.020 g of purple pigment PV23, 1.00 g of DISPERBYK-111 as a dispersant and 4.00 g of PGMEA as a solvent were mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-17).
  • a partition wall resin composition (P-26) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-17) was added instead of the pigment dispersion (MW-1).
  • Example 27 Partition wall resin composition (P-27) 10.4 g of polysiloxane (PSL-3) solution, 6.03 g of MW-1, 1.00 g of yellow precursor compound solution (YZ-1), 0.025 g of t-butylhydroquinone, THP-17 as a quinonediazide compound (trade name, manufactured by Toyo Gosei Co., Ltd.) 2.00 g, RS-72A 0.25 g, Celoxide 2021P 0.020 g BYK-352 PGMEA 10 wt% diluted solution 0.10 g dissolved in solvent PGMEA 0.16 g and stirred. The resulting mixture was filtered through a 5.0 ⁇ m filter to obtain a partition wall resin composition (P-27).
  • PSL-3 polysiloxane
  • YZ-1 yellow precursor compound solution
  • THP-17 0.025 g
  • RS-72A 0.25 g
  • Comparative Example 1 Partition wall resin composition (P-28) A mill filled with zirconia beads mixed with 0.030 g of blue pigment PB15:6N as light-shielding pigment, 0.020 g of purple pigment PV23, 1.00 g of DISPERBYK-111 as dispersant, and 4.00 g of PGMEA as solvent. A pigment dispersion liquid (MW-18) was obtained by dispersing using a type dispersing machine. 13.4 g of polysiloxane (PSL-1) solution, 2.42 g of MW-18, 0.80 g of yellow precursor compound solution (YZ-1), 0.16 g of OXE-02, and 0.0 g of Omnirad-819.
  • PSL-1 polysiloxane
  • Comparative Example 3 Partition wall resin composition (P-30) 5.00 g of CR-97 as a white pigment, 0.033 g of titanium nitride as a black pigment as a light-shielding pigment, 1.00 g of DISPERBYK-111 as a dispersant, and 4.00 g of PGMEA as a solvent are mixed and filled with zirconia beads.
  • a pigment dispersion liquid (MW-19) was obtained by dispersing using a mill-type dispersing machine. Instead of the pigment dispersion (MW-1), 6.02 g of pigment dispersion (MW-19) was added, the amount of polysiloxane (PSL-1) solution added was 9.42 g, and the amount of PGMEA added was 0.42 g.
  • a partition wall resin composition (P-30) was obtained in the same manner as in Example 1, except that the amount was 75 g.
  • the compositions of Examples 1-27 and Comparative Examples 1-3 are summarized in Table 2.
  • Color Conversion Luminescent Material Composition (CL-1) Green quantum dot material (Lumidot 640 CdSe / ZnS, average particle size 6.3 nm: manufactured by Aldrich) 0.5 wt% toluene solution 20 parts by weight, DPHA 45 parts by weight, "Irgacure” (registered trademark) 907 ( 5 parts by weight of BASF Japan Co., Ltd.), 166 parts by weight of 30% by weight PGMEA solution of acrylic resin (SPCR-18 (trade name), Showa Denko Co., Ltd.) and 97 parts by weight of toluene are mixed and stirred. and dissolved uniformly. The resulting mixture was filtered through a 0.45 ⁇ m syringe filter to prepare a color-converting luminescent material composition (CL-1).
  • Preparation Example 2 Color-converting luminescent material composition (CL-2) Color in the same manner as in Preparation Example 1, except that 0.4 parts by weight of the green phosphor G-1 obtained in Synthesis Example 4 was used instead of the green quantum dot material, and the amount of toluene added was changed to 117 parts by weight. A conversion luminescent material composition (CL-2) was prepared.
  • Preparation Example 3 Color conversion luminescent material composition (CL-3) Color in the same manner as in Preparation Example 1, except that 0.4 parts by weight of the red phosphor R-1 obtained in Synthesis Example 5 was used instead of the green quantum dot material, and the amount of toluene added was changed to 117 parts by weight. A conversion luminescent material composition (CL-3) was prepared.
  • Color filter forming material C. I. Pigment Green 59, 90 g, C.I. I. 60 g of Pigment Yellow 150, 75 g of a polymer dispersant (“BYK” (registered trademark)-6919 (trade name) manufactured by BYK-Chemie (hereinafter “BYK-6919”)), a binder resin (“Adeka Arkles” (registered trademark) ) 100 g of WR301 (trade name, manufactured by ADEKA Corporation) and 675 g of PGMEA were mixed to prepare a slurry.
  • BYK polymer dispersant
  • Alka Arkles registered trademark
  • a beaker containing the slurry was connected to a Dyno mill and a tube, and zirconia beads with a diameter of 0.5 mm were used as media to perform dispersion treatment at a peripheral speed of 14 m/s for 8 hours to obtain Pigment Green 59 dispersion (GD-1). was made.
  • Pigment Green 59 dispersion (GD-1) 56.54 g, acrylic resin (“Cyclomer” (registered trademark) P (ACA) Z250 (trade name) manufactured by Daicel Allnex Co., Ltd. (hereinafter “P (ACA) Z250” )) 3.14 g, DPHA 2.64 g, a photopolymerization initiator (“OPTOMER” (registered trademark) NCI-831 (trade name) manufactured by ADEKA Corporation (hereinafter “NCI-831”)) 0.330 g, 0.04 g of a surfactant (BYK” (registered trademark)-333 (trade name) manufactured by BYK-Chemie (hereinafter “BYK-333”)), 0.01 g of BHT as a polymerization inhibitor, and 37 g of PGMEA as a solvent. 30 g were mixed to prepare a color filter forming material (CF-1).
  • CF-1 color filter forming material
  • Preparation Example 5 Resin composition for light-shielding partition wall 150 g of carbon black (MA100 (trade name) manufactured by Mitsubishi Chemical Corporation), 75 g of polymer dispersant BYK-6919, 100 g of P(ACA)Z250, and 675 g of PGMEA were mixed. to prepare a slurry. A beaker containing the slurry was connected to a Dyno mill and a tube, and zirconia beads with a diameter of 0.5 mm were used as media for dispersion treatment at a peripheral speed of 14 m/s for 8 hours to prepare a pigment dispersion liquid (MB-1). did.
  • Pigment dispersion (MB-1) 56.54 g, P (ACA) Z250 3.14 g, DPHA 2.64 g, NCI-831 0.330 g, BYK-333 0.04 g, tertiary polymerization inhibitor 0.01 g of butylcatechol and 37.30 g of PGMEA were mixed to prepare a resin composition for light-shielding partition walls.
  • Examples 28-54, Comparative Examples 4-6 A 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness: 0.7 mm; hereinafter the same) was used as the base substrate. Thereon, a resin composition for partition walls shown in Tables 2 to 4 was spin-coated, and a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.; hereinafter the same) was applied at a temperature of 80° C. for 3 minutes. It was dried for a minute to prepare a dry film. The prepared dried film was subjected to an exposure amount of 300 mJ/cm 2 (300 mJ/cm 2 ( g, h, i lines).
  • the regions separated by the partition walls of the obtained substrate with partition walls were coated with the color-converting luminescent material compositions shown in Tables 3 and 4 using an inkjet method in a nitrogen atmosphere, dried at 100° C. for 30 minutes, and the thickness was reduced. Pixels of 5.0 ⁇ m were formed to obtain a substrate with partition walls having the configuration shown in FIG.
  • Example 55 A non-alkali glass substrate of 10 cm square was used as the base substrate.
  • the partition wall resin composition (P-27) was applied thereon by spin coating, and dried at a temperature of 80° C. for 3 minutes using a hot plate to prepare a dry film.
  • the prepared dry film was exposed through a photomask with an exposure amount of 300 mJ/cm 2 (g, h, i lines) using a parallel light mask aligner with an ultra-high pressure mercury lamp as a light source. Thereafter, using an automatic developing device, the film was developed with a 2.38% by weight tetramethylammonium hydroxide aqueous solution for 90 seconds, and then rinsed with water for 30 seconds.
  • bleaching was performed by exposing with an exposure amount of 500 mJ/cm 2 (g, h, i lines) without passing through a photomask. Furthermore, using an oven, the mixture is heated in the air at a temperature of 230° C. for 30 minutes to form barrier ribs with a height of 10 ⁇ m and a width of 20 ⁇ m on the glass substrate in a lattice pattern with a pitch of 80 ⁇ m on the short side and 280 ⁇ m on the long side. formed a partition wall.
  • the color-converting luminescent material composition (CL-2) was applied to the regions separated by the partition walls of the obtained substrate with partition walls using an inkjet method under a nitrogen atmosphere, dried at 100° C. for 30 minutes, and formed to a thickness of 5. Pixels of 0.0 ⁇ m were formed to obtain a substrate with partition walls having the structure shown in FIG.
  • Example 56 A non-alkali glass substrate of 10 cm square was used as the base substrate.
  • the light-shielding barrier rib forming material obtained in Preparation Example 5 was applied thereon by spin coating, and dried at a temperature of 90° C. for 2 minutes using a hot plate to prepare a dry film.
  • the prepared dry film was exposed through a photomask at an exposure dose of 40 mJ/cm 2 (g, h, i lines) using a parallel light mask aligner with an ultra-high pressure mercury lamp as a light source. Thereafter, using an automatic developing device, the film was developed with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, and then rinsed with water for 30 seconds.
  • the glass substrate was heated at a temperature of 230° C. in the air for 30 minutes, and barrier ribs having a height of 2.0 ⁇ m, a width of 20 ⁇ m, and an OD value of 2.0 per 1.0 ⁇ m of thickness were formed on the glass substrate. , and a substrate with light-shielding barrier ribs formed in a lattice pattern with a pitch of 40 ⁇ m on the short sides and 280 ⁇ m on the long sides.
  • barrier ribs having a height of 10 ⁇ m and a width of 20 ⁇ m were formed on the light shielding barrier ribs in a lattice pattern similar to the light shielding barrier ribs having a pitch of 40 ⁇ m on the short side and 280 ⁇ m on the long side. obtained a substrate with The color-converting luminescent material composition (CL-2) obtained in Preparation Example 2 was applied to the regions separated by the partition walls of the obtained substrate with partition walls using an inkjet method in a nitrogen atmosphere, and the mixture was heated at 100°C. After drying for 30 minutes, pixels with a thickness of 5.0 ⁇ m were formed to obtain a substrate with partition walls having the structure shown in FIG.
  • Example 57 The colorant obtained in Preparation Example 4 was applied to the regions separated by the partition walls of the substrate with partition walls before pixel formation, which was obtained by the same method as in Example 29, so that the film thickness after curing was 2.5 ⁇ m.
  • a filter-forming material (CF-1) was applied and vacuum dried. Exposure was performed at an exposure amount of 40 mJ/cm 2 (g, h, i lines) through a photomask designed to expose the regions of the openings of the substrate with partition walls. After developing with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, heat curing was performed at 230° C. for 30 minutes. A color filter layer was formed.
  • the color-converting light-emitting material composition (CL-2) obtained in Preparation Example 2 was applied onto the color filter in a nitrogen atmosphere using an inkjet method and dried at 100° C. for 30 minutes to obtain a thickness of 5.5. Pixels of 0 ⁇ m were formed to obtain a substrate with partition walls having the structure shown in FIG. Tables 3 and 4 show the configurations of each example and comparative example.
  • the barrier rib-forming resin composition used in each example and comparative example was spin-coated so that the film thickness after heating was 10 ⁇ m, 15 ⁇ m, 20 ⁇ m and 25 ⁇ m, respectively.
  • each step was performed except that the whole was exposed without a photomask at the time of exposure.
  • a solid film was formed on a glass substrate by processing under the same conditions as in Examples and Comparative Examples.
  • processing was carried out under the same conditions except that the resin composition was developed without being exposed to light and then bleached, to prepare a solid film on a glass substrate.
  • the glass substrate having the solid film was visually observed to evaluate the presence or absence of cracks in the solid film. If even one crack was confirmed, it was determined that the film had no crack resistance at that film thickness. For example, when there were no cracks at a film thickness of 15 ⁇ m and there were cracks at a film thickness of 20 ⁇ m, the crack-resistant film thickness was judged to be “ ⁇ 15 ⁇ m”.
  • the crack resistant film thickness was determined as " ⁇ 25 ⁇ m” when there was no crack even at 25 ⁇ m, and the crack resistant film thickness was determined as " ⁇ 10 ⁇ m” when there was a crack even at 10 ⁇ m, and the crack resistance was determined.
  • the partition wall resin composition used in each example and comparative example was spin-coated on a 10 cm square non-alkali glass substrate so that the film thickness after heating was 10 ⁇ m, and the temperature was 100° C. using a hot plate. and dried for 3 minutes to form a dry film having a thickness of 10 ⁇ m.
  • the prepared dry film was exposed using a parallel light mask aligner with an ultra-high pressure mercury lamp as a light source through a mask having line and space patterns with widths of 100 ⁇ m, 80 ⁇ m, 60 ⁇ m, 50 ⁇ m, 40 ⁇ m, 30 ⁇ m and 20 ⁇ m. It was exposed at 150 mJ/cm 2 (g, h, i lines) with a gap of 100 ⁇ m. After that, using an automatic developing device, shower development was performed using a 0.045% by weight potassium hydroxide aqueous solution for 100 seconds, followed by rinsing with water for 30 seconds.
  • Example and Comparative Example A solid film having a height of 10 ⁇ m was formed on a glass substrate by processing under the same conditions.
  • the barrier rib-forming resin composition used in Example 55 was processed under the same conditions except that it was developed without being exposed to light and then bleached to form a solid film having a height of 10 ⁇ m on a glass substrate.
  • CM-2600d manufactured by Konica Minolta, Inc.
  • the minimum and maximum reflectance values in the wavelength range of 430 nm to 630 nm were defined as "minimum reflectance” and "maximum reflectance", respectively.
  • ⁇ OD value> As a model of the barrier ribs of the substrate with barrier ribs obtained in each example and comparative example, a solid film having a height of 10 ⁇ m was formed on a glass substrate in the same manner as in the evaluation of the reflectance.
  • a spectrophotometer U-4100 manufactured by Hitachi High-Tech Science
  • the transmittance in the wavelength range of 360 nm to 740 nm is measured, and the wavelength range of 360 nm to 740 nm is measured by the above formula (1).
  • OD values at 740 nm were calculated.
  • the minimum and maximum OD values in the wavelength range of 430 nm to 630 nm are defined as "minimum OD value" and "maximum OD value", respectively.
  • Example 56 a solid film was similarly prepared on a glass substrate as a model of the light-shielding partition wall (A-2).
  • the transmittance in the wavelength range of 360 nm to 740 nm was measured using a spectrophotometer (Hitachi High-Tech Science U-4100), and the OD value at a wavelength of 550 nm was calculated by the above formula (1).
  • ⁇ Chromaticity> As a model of the barrier ribs of the substrate with barrier ribs obtained in each example and comparative example, a solid film having a height of 10 ⁇ m was formed on a glass substrate in the same manner as in the evaluation of the reflectance. The resulting glass substrate having a solid film was measured for chromaticity (L* value, a* and b* value) was measured. As for the b* value, the solid film before the heating process and the b* value after the heating process were measured, and the difference ( ⁇ b*) was defined as " ⁇ b* before and after the heating process", and is shown in Tables 5 and 6. Described.
  • the partition wall resin composition used in each of Examples and Comparative Examples was spin-coated on a 10 cm square non-alkali glass substrate and dried at a temperature of 90° C. for 3 minutes using a hot plate to form a dry film having a thickness of 10 ⁇ m. was made.
  • the transmittance at a wavelength of 436 nm was measured using a spectrophotometer (Hitachi High-Tech Science U-4100) for the obtained glass substrate having the dried film.
  • the prepared dry film was exposed to light of 1000 mJ/cm 2 (g, h, i lines) using a parallel light mask aligner with an ultra-high pressure mercury lamp as a light source without a mask.
  • the transmittance at a wavelength of 436 nm was measured again for the obtained glass substrate having the film after exposure.
  • the transmittance difference ( ⁇ T 436 nm ) of the film before and after exposure was evaluated according to the following criteria.
  • partition walls were formed in the same manner, except that the final heating conditions were changed to 100° C. in air for 60 minutes.
  • the pixel portions surrounded by the grid-like partition walls were coated with 1,6-hexanediol diacrylate as an ink using an inkjet coating device (Inkjet Labo, manufactured by Cluster Technology Co., Ltd.). , inkjet coating was performed. Then, the inside of the pixel was observed after 1 hour and 3 hours, and the low-temperature curability of the partition walls was evaluated according to the following criteria.
  • ⁇ Taper angle> In each of the examples and comparative examples, an arbitrary cross section of the substrate with partition walls before pixel formation was measured using an optical microscope (FE-SEM (S-4800); manufactured by Hitachi, Ltd.) at an acceleration voltage of 3.0 kV. was observed and the taper angle was measured.
  • the barrier rib-forming resin composition used in each of Examples and Comparative Examples was spin-coated on a glass substrate after being stored at 25° C. for 7 days and after being stored for 30 days.
  • the properties were evaluated according to the following criteria.
  • C After storage at 25 ° C.
  • a current of 30 mA is passed through this planar light emitting device to light the LED element, and the luminance (unit: cd/m 2 ) based on the CIE1931 standard is measured using a spectral radiance meter (CS-1000, manufactured by Konica Minolta). measured and taken as the initial luminance.
  • CS-1000 spectral radiance meter
  • the evaluation of luminance was performed using a relative value with the initial luminance of Comparative Example 7 being 100 as the standard.
  • the luminance was similarly measured to evaluate the change in luminance over time.
  • the evaluation of luminance was performed using a relative value with the initial luminance of Comparative Example 4 being 100 as the standard.
  • CM-2600d manufactured by Konica Minolta, measuring diameter ⁇ 8 mm
  • the substrate with partition walls was irradiated with light from the underlying substrate side, and the spectrum including regular reflection light was measured.
  • Color standard BT The color gamut defined by 2020 is defined as the three primary colors red, green and blue on the spectral locus shown in the chromaticity diagram, with the wavelengths of red, green and blue corresponding to 630 nm, 532 nm and 467 nm respectively.
  • R reflectance
  • Display characteristics The display characteristics of the display device produced by combining the substrate with partition walls obtained in each example and comparative example and the organic EL element were evaluated based on the following criteria.
  • a color-converting luminescent material composition ( CL-2) was applied and dried at 100° C. for 30 minutes to form pixels with a thickness of 5.0 ⁇ m. Then, of the pixel portions surrounded by the grid-like partition walls, the color-converting light-emitting material composition (CL -3) was applied and dried at 100° C. for 30 minutes to form pixels with a thickness of 5.0 ⁇ m.
  • a blue organic EL cell having the same width as the pixel portion surrounded by the grid-like partition walls was prepared, and the substrate with the partition walls and the blue organic EL cell were opposed to each other and bonded with a sealant, as shown in FIG. A display device of the configuration was obtained.
  • Tables 5 and 6 show the evaluation results of each example and comparative example.

Abstract

The purpose of the present invention is to provide a resin composition that enables the formation of a gray partitioning wall having both of high reflectivity of entire visible light and high light-blocking properties even under a low-temperature heating condition of about 100 to 120°C, at relatively low cost. Provided is a resin composition comprising a resin, a photosensitizing agent, a white pigment, a yellow precursor compound and a light-blocking pigment, the resin composition being characterized in that the light-blocking pigment comprises a blue pigment and a violet pigment.

Description

樹脂組成物、遮光膜、遮光膜の製造方法および隔壁付き基板、表示装置Resin composition, light-shielding film, method for producing light-shielding film, substrate with partition, and display device
 本発明は、樹脂組成物と、樹脂組成物から形成される遮光膜、遮光膜の製造方法、およびパターン形成された隔壁を有する隔壁付き基板、並びに表示装置に関する。 The present invention relates to a resin composition, a light-shielding film formed from the resin composition, a method for manufacturing the light-shielding film, a substrate with partition walls having patterned partition walls, and a display device.
 近年、光利用効率を高くしたカラー表示装置として、波長変換用蛍光体からなる波長変換部と、偏光分離手段と偏光変換手段を備えたカラー表示装置が提案されている(例えば、特許文献1参照)。例えば、青色光源と、液晶素子と、青色光により励起されて赤色の蛍光を発する蛍光体、青色光により励起されて緑色の蛍光を発する蛍光体、および青色光を散乱させる光散乱層を有する波長変換部を含むカラー表示装置が提案されている(例えば、特許文献2参照)。
しかし、特許文献1、2に記載されるような色変換蛍光体を含むカラーフィルターは、蛍光があらゆる方向に発生することから、光の取り出し効率が低く、輝度が不十分である。特に、4K、8Kと言われる高精細表示装置においては、画素サイズが小さくなるため、輝度の課題が顕著となることから、より高い輝度が求められている。
In recent years, as a color display device with high light utilization efficiency, a color display device including a wavelength conversion section made of a wavelength conversion phosphor, a polarization separation means, and a polarization conversion means has been proposed (see, for example, Patent Document 1). ). For example, a blue light source, a liquid crystal element, a phosphor that emits red fluorescence when excited by blue light, a phosphor that emits green fluorescence when excited by blue light, and a light scattering layer that scatters blue light. A color display device including a conversion unit has been proposed (see, for example, Patent Document 2).
However, color filters containing color-converting phosphors, such as those described in Patent Documents 1 and 2, generate fluorescence in all directions, resulting in low light extraction efficiency and insufficient brightness. In particular, in high-definition display devices called 4K and 8K, since the pixel size is small, the problem of brightness becomes significant, and higher brightness is required.
  
特開2000-131683号公報 特開2009-244383号公報 特開2000-347394号公報 特開2006-259421号公報 国際公開第2020/008969号 国際公開第2021/200357号

JP-A-2000-131683 JP 2009-244383 A JP-A-2000-347394 JP 2006-259421 A WO2020/008969 WO2021/200357
 一般に、このような表示装置の輝度を向上させるためには、色変換蛍光体を隔てる隔壁の反射率を高くすることが有効である。また、隣接画素間において光の混色が発生しないためには、隔壁の遮光性を高くする必要がある。以上から、高い反射性と遮光性を両立した隔壁材料が求められている。 In general, in order to improve the brightness of such a display device, it is effective to increase the reflectance of the barrier ribs that separate the color conversion phosphors. Moreover, in order to prevent color mixture of light between adjacent pixels, it is necessary to improve the light shielding property of the partition walls. From the above, there is a demand for a barrier rib material that achieves both high reflectivity and light shielding properties.
 発明者らは、高反射性と高遮光性とを両立した隔壁を形成するために、まず、高反射率を発現する酸化チタン白色顔料を用いた白色隔壁材料に、黒顔料を添加した材料を使用する方法を検討した。しかし、この方法では、白色顔料と黒顔料によって露光光全体が吸収され、露光時に膜の底部まで光が届かず、パターン加工性が悪いという課題が明らかになった。 In order to form barrier ribs having both high reflectivity and high light-shielding properties, the inventors first prepared a material obtained by adding a black pigment to a white barrier rib material using a titanium oxide white pigment that exhibits high reflectance. Considered how to use it. However, in this method, the entire exposure light is absorbed by the white pigment and the black pigment, and the light does not reach the bottom of the film during exposure, resulting in poor pattern workability.
 そこで発明者らは、製膜後にパターン露光する工程時には露光光を透過し、露光した膜を120℃以上250℃以下の温度で加熱した後に、遮光性を上昇させる設計を考案した。また、樹脂と、銀、金、白金およびパラジウムからなる群より選ばれる少なくとも1種の金属を含有する有機金属化合物と、光重合開始剤またはキノンジアジド化合物と、溶媒とを含有する樹脂組成物を用いることで、これを達成した(特許文献5参照)。特に有機パラジウム化合物を用いると、加熱後に酸化パラジウム粒子の生成によって膜が効率的に黒色化し、可視光の遮光性が上昇することを見出した。また、有機銀化合物を用いると、加熱後に銀ナノ粒子の生成によって膜が黄色化し、青色光の遮光性が上昇することを見出した。 Therefore, the inventors devised a design in which the exposure light is transmitted during the process of pattern exposure after film formation, and the light shielding property is increased after heating the exposed film at a temperature of 120°C or higher and 250°C or lower. Also, a resin composition containing a resin, an organometallic compound containing at least one metal selected from the group consisting of silver, gold, platinum and palladium, a photopolymerization initiator or a quinonediazide compound, and a solvent is used. This was achieved by doing so (see Patent Document 5). In particular, it was found that when an organic palladium compound is used, palladium oxide particles are produced after heating to effectively turn the film black, thereby increasing the light shielding property against visible light. In addition, the inventors have found that when an organic silver compound is used, the film turns yellow due to the formation of silver nanoparticles after heating, and the blue light shielding property increases.
 さらに、発明者らは、樹脂と、光重合開始剤またはキノンジアジド化合物と、白色顔料および/または遮光顔料と、有機銀化合物と、還元剤とを含有する樹脂組成物を用いることで、還元剤が銀ナノ粒子の生成を促進し、100~120℃程度の低温加熱条件においても、耐候性に優れ、青色光の高遮光性と可視光全体の高反射性とを両立した隔壁を形成可能であることを見出した(特許文献6参照)。 Furthermore, the inventors have found that the reducing agent is It promotes the production of silver nanoparticles, has excellent weather resistance even under low-temperature heating conditions of about 100 to 120 ° C., and can form barrier ribs that have both high light blocking properties for blue light and high reflectivity for all visible light. We found that (see Patent Document 6).
 しかし、この技術は、黄色の銀ナノ粒子の生成によって青色光の遮光性は向上するが、緑色光~赤色光(波長領域500nm~630nm)の遮光性は上がらないという課題があった。また、先述の有機パラジウム化合物を用いる技術は、有機パラジウム化合物が高価である点と、100~120℃程度の低温加熱条件では酸化パラジウム粒子を生成できずに遮光性が上がらない点に課題があった。 However, this technology has the problem that although the blue light shielding property is improved by the generation of yellow silver nanoparticles, the light shielding property of green to red light (wavelength range 500 nm to 630 nm) is not improved. In addition, the above-mentioned technology using an organic palladium compound has problems in that the organic palladium compound is expensive and that palladium oxide particles cannot be generated under low temperature heating conditions of about 100 to 120 ° C., and the light shielding property is not improved. Ta.
 そこで、本発明は、100~120℃程度の低温加熱条件においても、可視光全体の高反射性と高遮光性とを両立した灰色隔壁を形成可能である樹脂組成物を比較的安価に提供することを目的とする。 Therefore, the present invention provides a relatively inexpensive resin composition capable of forming gray partition walls having both high reflectivity and high light shielding performance for all visible light even under low-temperature heating conditions of about 100 to 120°C. for the purpose.
 本願発明者らは、鋭意研究の結果、可視光全体の高反射性と高遮光性を両立した灰色隔壁を形成可能であることを見出し、本発明に到達した。 As a result of intensive research, the inventors of the present application found that it is possible to form a gray partition that achieves both high reflectivity and high light shielding for all visible light, and arrived at the present invention.
 すなわち、本願発明は以下の通りである。
(1)樹脂、感光剤、白色顔料、黄色前駆体化合物および遮光顔料を含有する樹脂組成物であって、前記遮光顔料が、青色顔料および紫色顔料を含有する樹脂組成物。
(2)前記白色顔料が、SiOおよびAlからなる群から選ばれる少なくとも一つと、ZrOと、によって処理されている(1)に記載の樹脂組成物。
(3)前記白色顔料が、ZrOとAlとSiOによって処理されている(1)に記載の樹脂組成物。
(4)前記青色顔料および紫色顔料の重量比が20/80~80/20である(1)に記載の樹脂組成物。
(5)感光剤、白色顔料、黄色前駆体化合物を含有する樹脂組成物であって、前記白色顔料が、SiOおよびAlからなる群から選ばれる少なくとも一つと、ZrOと、によって処理されていることを特徴とする樹脂組成物。
(6)前記白色顔料が、ZrOとAlとSiOによって処理されている(5)に記載の樹脂組成物。
(7)さらに、遮光顔料を含有する(5)に記載の樹脂組成物。
(8)前記黄色前駆体化合物が、有機銀化合物である(1)または(5)に記載の樹脂組成物。
(9)還元剤を含有する(1)または(5)に記載の樹脂組成物。
(10)リン酸ポリエステルを含有する(1)または(5)に記載の樹脂組成物。
(11)(1)または(5)に記載の樹脂組成物を硬化させてなる遮光膜。
(12)下地基板上に(1)または(5)に記載の樹脂組成物を塗布し、乾燥して乾燥膜を得る製膜工程、得られた乾燥膜をパターン露光する露光工程、露光後の乾燥膜における現像液に可溶な部分を溶解除去する現像工程および現像後の乾燥膜を加熱することにより硬化させる加熱工程を有する遮光膜の製造方法であって、前記加熱工程において、現像後の乾燥膜を100℃以上250℃以下の温度で加熱することにより、SCI方式で測定した膜厚10μmあたりのb*値を10以上上昇させる、遮光膜の製造方法。
(13)下地基板上に、(1)または(5)に記載の樹脂組成物によって(A-1)パターン形成された隔壁を有する隔壁付き基板であって、波長領域430~630nmにおける厚み10μmあたりの反射率が20%~50%の範囲内であって、かつ、波長領域430~630nmの範囲における厚み10μmあたりのOD値が1.5~3.0の範囲内である隔壁付き基板。
(14)下地基板上に、(1)または(5)に記載の樹脂組成物によって(A-1)パターン形成された隔壁を有する隔壁付き基板であって、SCI方式で測定した膜厚10μmあたりのL*値が50~70、a*値が-5.0~5.0、b*値が-5.0~5.0である隔壁付き基板。
(15)下地基板上に、(A-1)パターン形成された隔壁を有する隔壁付き基板であって、前記パターン形成された隔壁が、樹脂と、白色顔料と、青色顔料および紫色顔料と、酸化銀および/または銀粒子とを含有する隔壁付き基板。
(16)下地基板上に、(A-1)パターン形成された隔壁を有する隔壁付き基板であって、前記パターン形成された隔壁が、樹脂と、白色顔料と、青色顔料および紫色顔料と、酸化銀および/または銀粒子とを含有する(13)に記載の隔壁付き基板。
(17)下地基板上に、(A-1)パターン形成された隔壁を有する隔壁付き基板であって、前記パターン形成された隔壁が、樹脂と、白色顔料と、青色顔料および紫色顔料と、酸化銀および/または銀粒子とを含有する(14)に記載の隔壁付き基板。
(18)前記(A-1)パターン形成された隔壁によって隔てられて配列した(B)色変換発光材料を含有する画素層をさらに有する(13)に記載の隔壁付き基板。
(19)前記下地基板と(B)色変換発光材料を含有する画素層の間に、厚み1~5μmのカラーフィルターをさらに有する(18)に記載の隔壁付き基板。
(20)(13)に記載の隔壁付き基板と、液晶セル、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源とを有する表示装置。
That is, the present invention is as follows.
(1) A resin composition containing a resin, a photosensitive agent, a white pigment, a yellow precursor compound, and a light-shielding pigment, wherein the light-shielding pigment contains a blue pigment and a violet pigment.
(2) The resin composition according to (1), wherein the white pigment is treated with at least one selected from the group consisting of SiO 2 and Al 2 O 3 and ZrO 2 .
(3) The resin composition according to (1), wherein the white pigment is treated with ZrO2 , Al2O3 and SiO2 .
(4) The resin composition according to (1), wherein the weight ratio of the blue pigment and the purple pigment is 20/80 to 80/20.
(5) A resin composition containing a photosensitive agent, a white pigment, and a yellow precursor compound, wherein the white pigment is at least one selected from the group consisting of SiO 2 and Al 2 O 3 and ZrO 2 A resin composition characterized by being treated.
(6) The resin composition according to (5), wherein the white pigment is treated with ZrO2 , Al2O3 and SiO2 .
(7) The resin composition according to (5), which further contains a light-shielding pigment.
(8) The resin composition according to (1) or (5), wherein the yellow precursor compound is an organic silver compound.
(9) The resin composition according to (1) or (5), which contains a reducing agent.
(10) The resin composition according to (1) or (5), which contains a phosphoric acid polyester.
(11) A light-shielding film obtained by curing the resin composition according to (1) or (5).
(12) A film-forming step of applying the resin composition according to (1) or (5) onto a base substrate and drying to obtain a dry film, an exposure step of pattern-exposing the obtained dry film, and a post-exposure A method for producing a light-shielding film comprising a developing step of dissolving and removing a portion soluble in a developer in a dry film and a heating step of curing the dry film after development by heating, wherein in the heating step, after development, A method for producing a light-shielding film, wherein the dry film is heated at a temperature of 100° C. or more and 250° C. or less to increase the b* value per 10 μm of film thickness measured by the SCI method by 10 or more.
(13) A substrate with partition walls having (A-1) patterned partition walls made of the resin composition according to (1) or (5) on a base substrate, and having a thickness of 10 μm in a wavelength region of 430 to 630 nm. a reflectance of 20% to 50%, and an OD value of 1.5 to 3.0 per 10 μm of thickness in a wavelength range of 430 to 630 nm.
(14) A substrate with partition walls having (A-1) pattern-formed partition walls of the resin composition according to (1) or (5) on a base substrate, and having a thickness of 10 μm measured by the SCI method. L* value of 50 to 70, a* value of −5.0 to 5.0, and b* value of −5.0 to 5.0.
(15) A substrate with barrier ribs having (A-1) patterned barrier ribs on a base substrate, wherein the patterned barrier ribs are composed of a resin, a white pigment, a blue pigment and a purple pigment, and an oxidized A substrate with partition walls containing silver and/or silver particles.
(16) A substrate with partitions having (A-1) patterned partitions on a base substrate, wherein the patterned partitions are composed of a resin, a white pigment, a blue pigment and a purple pigment, and an oxidized The substrate with partition walls according to (13), containing silver and/or silver particles.
(17) A barrier rib-attached substrate having (A-1) patterned barrier ribs on a base substrate, wherein the patterned barrier ribs are composed of a resin, a white pigment, a blue pigment and a purple pigment, and an oxidized The substrate with partition walls according to (14), containing silver and/or silver particles.
(18) The partition-furnished substrate according to (13), further comprising (A-1) a pixel layer containing the (B) color-converting luminescent material arranged and separated by the patterned partition.
(19) The substrate with partition walls according to (18), further comprising a color filter having a thickness of 1 to 5 μm between the base substrate and (B) the pixel layer containing the color-converting luminescent material.
(20) A display device comprising the substrate with partition walls according to (13) and a light source selected from a liquid crystal cell, an organic EL cell, a mini-LED cell and a micro-LED cell.
 本発明の樹脂組成物は、樹脂、感光剤、白色顔料、黄色前駆体化合物と、青色顔料および紫色顔料を含有することにより、製膜後にパターン露光する工程時には露光光を通すが、露光した膜を100℃以上250℃以下の温度で加熱すると、膜中で黄色粒子が生成され、可視光全体の高反射性と高遮光性を両立した微細厚膜灰色隔壁パターンの形成が可能である。 The resin composition of the present invention contains a resin, a photosensitive agent, a white pigment, a yellow precursor compound, and a blue pigment and a violet pigment. is heated at a temperature of 100° C. or higher and 250° C. or lower, yellow particles are generated in the film, and it is possible to form a fine thick-film gray partition pattern that achieves both high reflectivity and high light shielding for all visible light.
パターン形成された隔壁を有する本発明の隔壁付き基板の一態様を示す断面図である。1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having patterned partitions. FIG. パターン形成された隔壁と色変換発光材料を含有する画素を有する本発明の隔壁付き基板の一態様を示す断面図である。1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having pixels containing patterned partitions and a color-converting luminescent material; FIG. パターン形成された隔壁と色変換発光材料と遮光隔壁を有する本発明の隔壁付き基板の一態様を示す断面図である。FIG. 2 is a cross-sectional view showing one embodiment of the partition-attached substrate of the present invention, which has patterned partitions, a color-converting luminescent material, and light-shielding partitions. パターン形成された隔壁と色変換発光材料とカラーフィルターを有する本発明の隔壁付き基板の一態様を示す断面図である。FIG. 2 is a cross-sectional view showing one embodiment of the substrate with partitions of the present invention, which has patterned partitions, a color-converting luminescent material, and a color filter. パターン形成された隔壁と色変換発光材料と遮光隔壁とカラーフィルターを有する本発明の隔壁付き基板の一態様を示す断面図である。FIG. 2 is a cross-sectional view showing one embodiment of the substrate with partitions of the present invention, which has patterned partitions, color-converting luminescent material, light-shielding partitions, and color filters. パターン形成された隔壁と、有機ELセル、ミニLEDセル、マイクロLEDセルから選ばれた発光光源とを含有する画素を有する本発明の隔壁付き基板の一態様を示す断面図である。1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having pixels containing patterned partitions and light-emitting light sources selected from organic EL cells, mini-LED cells, and micro-LED cells. FIG. パターン形成された隔壁と色変換発光材料と、有機ELセル、ミニLEDセル、マイクロLEDセルから選ばれた発光光源とを含有する画素を有する本発明の隔壁付き基板の一態様を示す断面図である。A cross-sectional view showing one embodiment of a substrate with partitions of the present invention having pixels containing patterned partitions, a color-converting luminescent material, and a light-emitting light source selected from an organic EL cell, a mini-LED cell, and a micro-LED cell. be. 実施例において混色評価に用いた表示装置の構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of a display device used for color mixture evaluation in Examples.
 以下、本発明の樹脂組成物、樹脂組成物から形成される遮光膜、遮光膜の製造方法、および隔壁付き基板の好適な実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。 Hereinafter, preferred embodiments of the resin composition, the light-shielding film formed from the resin composition, the method for producing the light-shielding film, and the substrate with partition walls of the present invention will be specifically described. The form is not limited, and various changes can be made according to the purpose and application.
 本発明の樹脂組成物は、色変換蛍光体や、有機ELセル、ミニLEDセル、マイクロLEDセルから選ばれた発光光源等を隔てる隔壁を形成するための材料として好適に用いることができる。本発明の樹脂組成物は、樹脂、感光剤、白色顔料、黄色前駆体化合物および遮光顔料を含有する樹脂組成物であって、前記遮光顔料が、青色顔料および紫色顔料を含有する樹脂組成物である。 The resin composition of the present invention can be suitably used as a material for forming partitions separating color-converting phosphors, light-emitting light sources selected from organic EL cells, mini-LED cells, and micro-LED cells. The resin composition of the present invention is a resin composition containing a resin, a photosensitive agent, a white pigment, a yellow precursor compound and a light-shielding pigment, wherein the light-shielding pigment is a resin composition containing a blue pigment and a violet pigment. be.
 また、本発明の樹脂組成物は、感光剤、白色顔料、黄色前駆体化合物を含有する樹脂組成物であって、前記白色顔料が、SiOおよびAlからなる群から選ばれる少なくとも一つと、ZrOと、によって処理されている樹脂組成物である。この樹脂組成物は、さらに、遮光顔料を含有することが好ましい。 Further, the resin composition of the present invention is a resin composition containing a photosensitizer, a white pigment, and a yellow precursor compound, wherein the white pigment is at least one selected from the group consisting of SiO 2 and Al 2 O 3 . 1 and ZrO 2 are treated resin compositions. This resin composition preferably further contains a light-shielding pigment.
 樹脂
 樹脂は、隔壁のクラック耐性および耐光性を向上させる機能を有する。樹脂組成物の固形分中に占める樹脂の含有量は、熱処理における隔壁のクラック耐性を向上させる観点から、10重量%以上が好ましく、20重量%以上がより好ましい。一方、耐光性を向上させる観点から、樹脂組成物の固形分中に占める樹脂の含有量は、60重量%以下が好ましく、50重量%以下がより好ましい。ここで、固形分とは、樹脂組成物に含まれる成分のうち、溶媒等の揮発性の成分を除いた全成分のことを意味する。固形分の量は、樹脂組成物を加熱して揮発性の成分を蒸発させた残分を計ることにより求めることができる。
樹脂としては、例えば、ポリシロキサン、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、(メタ)アクリルポリマなどが挙げられる。ここで、(メタ)アクリルポリマとは、メタクリル酸エステルおよび/またはアクリル酸エステルの重合体を意味する。これらを2種以上含有してもよい。これらの中でも、耐熱性および耐光性に優れることから、ポリシロキサンが好ましい。
Resin Resin has the function of improving the crack resistance and light resistance of the partition walls. The content of the resin in the solid content of the resin composition is preferably 10% by weight or more, more preferably 20% by weight or more, from the viewpoint of improving the crack resistance of the partition walls during heat treatment. On the other hand, from the viewpoint of improving light resistance, the resin content in the solid content of the resin composition is preferably 60% by weight or less, more preferably 50% by weight or less. Here, the solid content means all the components excluding volatile components such as solvent among the components contained in the resin composition. The amount of solids can be determined by heating the resin composition to evaporate volatile components and weighing the residue.
Examples of resins include polysiloxane, polyimide, polyimide precursors, polybenzoxazole, polybenzoxazole precursors, and (meth)acrylic polymers. Here, (meth)acrylic polymer means a polymer of methacrylic acid ester and/or acrylic acid ester. You may contain 2 or more types of these. Among these, polysiloxane is preferable because it is excellent in heat resistance and light resistance.
 ポリシロキサンは、オルガノシランの加水分解・脱水縮合物である。本発明の樹脂組成物がネガ型感光性を有する場合、ポリシロキサンは、少なくとも下記一般式(1)で表される繰り返し単位を含むことが好ましい。さらに他の繰り返し単位を含んでもよい。一般式(1)で表される2官能アルコキシシラン化合物由来の繰り返し単位を含むことにより、加熱によるポリシロキサンの過剰な熱重合(縮合)を抑制し、隔壁のクラック耐性を向上させることができる。ポリシロキサンにおける全繰り返し単位中、一般式(1)で表される繰り返し単位を10~80モル%含有することが好ましい。一般式(1)で表される繰り返し単位を10モル%以上含むことにより、クラック耐性をより向上させることができる。一般式(1)で表される繰り返し単位の含有量は、12.5モル%以上がより好ましく、15モル%以上がさらに好ましい。一方、一般式(1)で表される繰り返し単位を80モル%以下含むことにより、重合時にポリシロキサンの分子量を十分に高め、塗布性を向上させることができる。一般式(1)で表される繰り返し単位の含有量は、70モル%以下がより好ましい。 Polysiloxane is a hydrolysis/dehydration condensate of organosilane. When the resin composition of the present invention has negative photosensitivity, the polysiloxane preferably contains at least a repeating unit represented by the following general formula (1). Further, other repeating units may be included. By including repeating units derived from the bifunctional alkoxysilane compound represented by the general formula (1), excessive thermal polymerization (condensation) of polysiloxane due to heating can be suppressed, and the crack resistance of the partition walls can be improved. It is preferable that the polysiloxane contains 10 to 80 mol % of repeating units represented by the general formula (1) in all repeating units. By including 10 mol % or more of the repeating unit represented by the general formula (1), the crack resistance can be further improved. The content of the repeating unit represented by formula (1) is more preferably 12.5 mol % or more, and even more preferably 15 mol % or more. On the other hand, by containing 80 mol % or less of the repeating unit represented by the general formula (1), the molecular weight of the polysiloxane can be sufficiently increased during polymerization, and the coatability can be improved. The content of the repeating unit represented by formula (1) is more preferably 70 mol % or less.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)中、RおよびRは、それぞれ同じでも異なってもよく、炭素数1~20の1価の有機基を表す。RおよびRは、重合時のポリシロキサンの分子量調整を容易にする観点から、炭素数1~6のアルキル基および炭素数6~12のアリール基から選ばれた基が好ましい。ただし、アルキル基およびアリール基は、その水素の少なくとも一部がラジカル重合性基により置換されていてもよい。この場合、ネガ型感光性樹脂組成物の硬化物中においては、ラジカル重合性基はラジカル重合されていてもよい。 In general formula (1) above, R 1 and R 2 , which may be the same or different, each represent a monovalent organic group having 1 to 20 carbon atoms. R 1 and R 2 are preferably groups selected from alkyl groups having 1 to 6 carbon atoms and aryl groups having 6 to 12 carbon atoms, from the viewpoint of facilitating adjustment of the molecular weight of polysiloxane during polymerization. However, in the alkyl group and the aryl group, at least part of the hydrogen atoms may be substituted with a radically polymerizable group. In this case, the radically polymerizable group may be radically polymerized in the cured product of the negative photosensitive resin composition.
 ポリシロキサンは、さらに、下記一般式(2)で表される繰り返し単位を含むことが好ましい。一般式(2)で表される3官能アルコキシシラン化合物由来の繰り返し単位を含むことにより、製膜後にポリシロキサンの架橋密度が高くなり、膜の硬度と耐薬品性を向上させることができる。ポリシロキサンにおける全繰り返し単位中、一般式(2)で表される繰り返し単位を10~80モル%含有することが好ましい。一般式(2)で表される繰り返し単位の含有量は、15モル%以上がより好ましく、20モル%以上がさらに好ましい。一方、一般式(2)で表される繰り返し単位を80モル%以下含むことにより、加熱によるポリシロキサンの過剰な熱重合(縮合)を抑制し、隔壁のクラック耐性を向上させることができる。一般式(2)で表される繰り返し単位の含有量は、70モル%以下がより好ましい。 The polysiloxane preferably further contains a repeating unit represented by the following general formula (2). By including the repeating unit derived from the trifunctional alkoxysilane compound represented by the general formula (2), the crosslink density of the polysiloxane increases after film formation, and the hardness and chemical resistance of the film can be improved. It is preferable that the polysiloxane contains 10 to 80 mol % of repeating units represented by the general formula (2) in all repeating units. The content of the repeating unit represented by formula (2) is more preferably 15 mol % or more, and even more preferably 20 mol % or more. On the other hand, by including 80 mol % or less of the repeating unit represented by the general formula (2), excessive thermal polymerization (condensation) of polysiloxane due to heating can be suppressed, and the crack resistance of the partition walls can be improved. The content of the repeating unit represented by formula (2) is more preferably 70 mol % or less.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(2)中、Rは炭素数1~20の1価の有機基を表す。ポリシロキサン中に、異なるRを有する一般式(2)で表される繰り返し単位を2種類以上含んでもよい。Rは、重合時のポリシロキサンの分子量調整を容易にする観点から、炭素数1~6のアルキル基および炭素数6~12のアリール基から選ばれた基を含有することが好ましい。ただし、アルキル基およびアリール基は、その水素の少なくとも一部がラジカル重合性基により置換されていてもよい。この場合、ネガ型感光性樹脂組成物の硬化物中においては、ラジカル重合性基はラジカル重合されていてもよい。 In general formula (2) above, R 3 represents a monovalent organic group having 1 to 20 carbon atoms. Two or more types of repeating units represented by the general formula (2) having different R3 may be included in the polysiloxane. R 3 preferably contains a group selected from an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 12 carbon atoms, from the viewpoint of facilitating adjustment of the molecular weight of polysiloxane during polymerization. However, in the alkyl group and the aryl group, at least part of the hydrogen atoms may be substituted with a radically polymerizable group. In this case, the radically polymerizable group may be radically polymerized in the cured product of the negative photosensitive resin composition.
 上記一般式(1)および(2)で表される繰り返し単位は、それぞれ下記一般式(3)および(4)で表されるアルコキシシラン化合物に由来する。すなわち、前記一般式(1)および(2)で表される繰り返し単位を含むポリシロキサンは、下記一般式(3)および(4)で表されるアルコキシシラン化合物を含むアルコキシシラン化合物を加水分解および重縮合することによって得ることができる。さらに他のアルコキシシラン化合物を用いてもよい。なお、一般式(3)および(4)中、「-(OR」及び「-(OR」なる表記は、Si原子に「-(OR)」がそれぞれ2個及び3個結合していることを意味する。 The repeating units represented by the general formulas (1) and (2) are derived from alkoxysilane compounds represented by the following general formulas (3) and (4), respectively. That is, polysiloxane containing repeating units represented by the general formulas (1) and (2) is hydrolyzed and alkoxysilane compounds containing alkoxysilane compounds represented by the following general formulas (3) and (4). It can be obtained by polycondensation. Other alkoxysilane compounds may also be used. In general formulas (3) and (4), "-(OR 4 ) 2 " and "-(OR 4 ) 3 " represent two and three Si atoms with "-(OR 4 )", respectively. It means that they are individually connected.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(3)中、R~Rは、上記一般式(1)における、R~Rと同じ基を表す。上記一般式(4)中、Rは、上記一般式(2)における、Rと同じ基を表す。上記一般式(3)および(4)中、Rは、同じでも異なってもよく、炭素数1~20の1価の有機基または水素を表し、炭素数1~6のアルキル基が好ましい。 In general formula (3) above, R 1 to R 2 represent the same groups as R 1 to R 2 in general formula (1) above. In general formula (4) above, R 3 represents the same group as R 3 in general formula (2) above. In general formulas (3) and (4) above, R 4 , which may be the same or different, represents a monovalent organic group having 1 to 20 carbon atoms or hydrogen, preferably an alkyl group having 1 to 6 carbon atoms.
 一般式(3)で表されるアルコキシシラン化合物としては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルシランジオール、スチリルメチルジメトキシシラン、スチリルメチルジエトキシシラン、γ-メタクリロイルプロピルメチルジメトキシシラン、γ-メタクリロイルプロピルメチルジエトキシシラン、γ-アクリロイルプロピルメチルジメトキシシラン、γ-アクリロイルプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルエチルジメトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、3-ジメチルメトキシシリルプロピルコハク酸無水物、3-ジメチルエトキシシリルプロピルコハク酸無水物、3-ジメチルメトキシシリルプロピオン酸、3-ジメチルエトキシシリルプロピオン酸、3-ジメチルメトキシシリルプロピルシクロヘキシルジカルボン酸無水物等が挙げられる。これらを2種以上用いてもよい。 Examples of the alkoxysilane compound represented by the general formula (3) include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenylsilanediol, styrylmethyldimethoxysilane, styrylmethyldiethoxysilane, γ-Methacryloylpropylmethyldimethoxysilane, γ-Methacryloylpropylmethyldiethoxysilane, γ-Acryloylpropylmethyldimethoxysilane, γ-Acryloylpropylmethyldiethoxysilane, 3-Glycidoxypropylmethyldimethoxysilane, 3-Glycidoxypropyl methyldiethoxysilane, 2-(3,4-epoxycyclohexyl)ethylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethylethyldimethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, 3-dimethylmethoxysilane silylpropylsuccinic anhydride, 3-dimethylethoxysilylpropylsuccinic anhydride, 3-dimethylmethoxysilylpropionic acid, 3-dimethylethoxysilylpropionic acid, 3-dimethylmethoxysilylpropylcyclohexyldicarboxylic anhydride and the like. You may use 2 or more types of these.
 一般式(4)で表されるアルコキシシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-エチル-3-{[3-(トリメトキシシリル)プロポキシ]メチル}オキセタン、3-エチル-3-{[3-(トリエトキシシリル)プロポキシ]メチル}オキセタン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、1-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、トリルトリメトキシシラン、トリルトリエトキシシラン、スチリルトリメトキシシラン、スチリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、γ-アクリロイルプロピルトリメトキシシラン、γ-アクリロイルプロピルトリエトキシシラン、γ-メタクリロイルプロピルトリメトキシシラン、γ-メタクリロイルプロピルトリエトキシシラン、3-トリメトキシシリルプロピオン酸、3-トリエトキシシリルプロピオン酸、4-トリメトキシシリル酪酸、4-トリエトキシシリル酪酸、5-トリメトキシシリル吉草酸、5-トリエトキシシリル吉草酸、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-トリメトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリエトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリメトキシシリルプロピルフタル酸無水物、3-トリエトキシシリルプロピルフタル酸無水物、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン等が挙げられる。これらを2種以上用いてもよい。 Examples of alkoxysilane compounds represented by general formula (4) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltrimethoxysilane, Silane, isobutyltriethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltri Ethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 3-ethyl-3-{[3-(trimethoxysilyl)propoxy] methyl}oxetane, 3-ethyl-3-{[3-(triethoxysilyl)propoxy]methyl}oxetane, phenyltrimethoxysilane, phenyltriethoxysilane, 1-naphthyltrimethoxysilane, 2-naphthyltrimethoxysilane, 2 -naphthyltrimethoxysilane, 2-naphthyltrimethoxysilane, tolyltrimethoxysilane, tolyltriethoxysilane, styryltrimethoxysilane, styryltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, allyltrimethoxysilane, Ethoxysilane, γ-Acryloylpropyltrimethoxysilane, γ-Acryloylpropyltriethoxysilane, γ-Methacryloylpropyltrimethoxysilane, γ-Methacryloylpropyltriethoxysilane, 3-trimethoxysilylpropionic acid, 3-triethoxysilylpropionic acid , 4-trimethoxysilylbutyric acid, 4-triethoxysilylbutyric acid, 5-trimethoxysilylvaleric acid, 5-triethoxysilylvaleric acid, 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilylpropylsuccinate acid anhydride, 3-trimethoxysilylpropylcyclohexyldicarboxylic anhydride, 3-triethoxysilylpropylcyclohexyldicarboxylic anhydride, 3-trimethoxysilylpropyl phthalic anhydride, 3-triethoxysilylpropyl phthalic anhydride, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, and the like. You may use 2 or more types of these.
 本発明の樹脂組成物がネガ型感光性を有する場合、一般式(3)および/または(4)で表されるアルコキシシラン化合物として、少なくとも1種のラジカル重合性基含有アルコキシシラン化合物を含有することが好ましい。ラジカル重合性基含有アルコキシシラン化合物を含有することで、露光部で発生したラジカルで架橋反応が進行し、露光部の硬化度を高めることができる。また、本発明の樹脂組成物がネガ型感光性を有する場合、一般式(3)および/または(4)で表されるアルコキシシラン化合物として、少なくとも1種のカルボキシル基含有アルコキシシラン化合物を含有することが好ましい。カルボキシル基含有アルコキシシラン化合物を含有することで、未露光部の溶解性が向上し、パターン加工時に解像度を向上させることができる。 When the resin composition of the present invention has negative photosensitivity, it contains at least one radically polymerizable group-containing alkoxysilane compound as the alkoxysilane compound represented by general formulas (3) and/or (4). is preferred. By containing the radically polymerizable group-containing alkoxysilane compound, a crosslinking reaction proceeds with the radicals generated in the exposed area, and the degree of curing of the exposed area can be increased. When the resin composition of the present invention has negative photosensitivity, it contains at least one carboxyl group-containing alkoxysilane compound as the alkoxysilane compound represented by the general formulas (3) and/or (4). is preferred. Containing a carboxyl group-containing alkoxysilane compound improves the solubility of the unexposed area, and can improve the resolution during pattern processing.
 さらに、ポリシロキサンの原料として、その他のアルコキシシラン化合物を含有してもよい。その他のアルコキシシラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、シリケート51(テトラメトキシシランオリゴマー)などの4官能アルコキシシラン化合物等が挙げられる。これらを2種以上用いてもよい。 Furthermore, other alkoxysilane compounds may be contained as raw materials for polysiloxane. Examples of other alkoxysilane compounds include tetrafunctional alkoxysilane compounds such as tetramethoxysilane, tetraethoxysilane, and silicate 51 (tetramethoxysilane oligomer). You may use 2 or more types of these.
 ポリシロキサンの原料となるアルコキシシラン化合物中における、一般式(3)で表されるアルコキシシラン化合物の含有量は、ポリシロキサンの全繰り返し単位中の一般式(1)で表される繰り返し単位の含有量を前述の範囲にする観点から、10モル%以上が好ましく、12.5モル%以上がより好ましく、15モル%以上がさらに好ましい。一方、一般式(4)で表されるアルコキシシラン化合物の含有量は、同様の観点から、80モル%以下が好ましく、70モル%以下がより好ましい。 The content of the alkoxysilane compound represented by the general formula (3) in the alkoxysilane compound that is the raw material of the polysiloxane is the content of the repeating unit represented by the general formula (1) in all the repeating units of the polysiloxane. From the viewpoint of setting the amount within the above range, it is preferably 10 mol % or more, more preferably 12.5 mol % or more, and even more preferably 15 mol % or more. On the other hand, from the same viewpoint, the content of the alkoxysilane compound represented by the general formula (4) is preferably 80 mol % or less, more preferably 70 mol % or less.
 本発明の樹脂組成物中のポリシロキサンは、スチリル基を有することが好ましい。スチリル基を有することで、85℃~120℃の低温硬化条件においても十分に硬化を促進できる。 The polysiloxane in the resin composition of the present invention preferably has a styryl group. By having a styryl group, curing can be sufficiently accelerated even under low-temperature curing conditions of 85°C to 120°C.
 ポリシロキサンの重量平均分子量(Mw)は、塗布性の観点から、1,000以上が好ましく、2,000以上がより好ましい。一方、現像性の観点から、ポリシロキサンのMwは、500,000以下が好ましく、300,000以下がより好ましい。ここで、本発明におけるポリシロキサンのMwとは、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算値を言う。測定方法は、後述の実施例で記載の通りである。 The weight average molecular weight (Mw) of polysiloxane is preferably 1,000 or more, more preferably 2,000 or more, from the viewpoint of coatability. On the other hand, from the viewpoint of developability, Mw of polysiloxane is preferably 500,000 or less, more preferably 300,000 or less. Here, the Mw of polysiloxane in the present invention refers to a polystyrene conversion value measured by gel permeation chromatography (GPC). The measuring method is as described in Examples below.
 ポリシロキサンは、前述のオルガノシラン化合物を加水分解した後、該加水分解物を溶媒の存在下または無溶媒で脱水縮合反応させることによって得ることができる。 Polysiloxane can be obtained by hydrolyzing the aforementioned organosilane compound and then subjecting the hydrolyzate to a dehydration condensation reaction in the presence or absence of a solvent.
 感光剤
 本発明の樹脂組成物は、後述の隔壁(A-1)のパターン形成に用いられる場合、ネガ型またはポジ型の感光性を有することが好ましい。感光性を付与するために、本発明の樹脂組成物は、感光剤を含有することが好ましい。ネガ型感光性を付与する場合は、感光剤として、光重合開始剤を含有することが好ましく、高精細なパターン形状の隔壁を形成することができる。ネガ型感光性樹脂組成物は、さらに、光重合性化合物を含有することが好ましい。一方、ポジ型感光性を付与する場合は、感光剤として、キノンジアジド化合物を含有することが好ましい。
Photosensitizer When the resin composition of the present invention is used for pattern formation of partition walls (A-1) described below, it preferably has negative or positive photosensitivity. In order to impart photosensitivity, the resin composition of the present invention preferably contains a photosensitizer. When imparting negative photosensitivity, it is preferable to contain a photopolymerization initiator as a photosensitizer, so that partition walls having a highly precise pattern can be formed. The negative photosensitive resin composition preferably further contains a photopolymerizable compound. On the other hand, when imparting positive photosensitivity, it is preferable to contain a quinonediazide compound as a photosensitizer.
 光重合開始剤は、光(紫外線、電子線を含む)の照射によって分解および/または反応し、ラジカルを発生させるものであればどのようなものでもよい。例えば、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1などのα-アミノアルキルフェノン化合物;2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-フォスフィンオキサイドなどのアシルホスフィンオキサイド化合物;1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)などのオキシムエステル化合物;2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトンなどのα-ヒドロキシケトン化合物;2,2-ジエトキシアセトフェノン、2,3-ジエトキシアセトフェノン、4-t-ブチルジクロロアセトフェノン、ベンザルアセトフェノン、4-アジドベンザルアセトフェノンなどのアセトフェノン化合物などが挙げられる。これらを2種以上含有してもよい。 Any photopolymerization initiator can be used as long as it decomposes and/or reacts with irradiation of light (including ultraviolet rays and electron beams) to generate radicals. For example, 2-methyl-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholin-4-yl α-Aminoalkylphenone compounds such as -phenyl)-butan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1; 2,4,6-trimethylbenzoylphenyl Acylphosphine oxide compounds such as phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)-phosphine oxide ; 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)oxime, 1,2-octanedione-1-[4-(phenylthio)-2-(O-benzoyloxime)], 1- Phenyl-1,2-butadione-2-(O-methoxycarbonyl)oxime, 1,3-diphenylpropanetrione-2-(O-ethoxycarbonyl)oxime, ethanone-1-[9-ethyl-6-(2- oxime ester compounds such as methylbenzoyl)-9H-carbazol-3-yl]-1-(O-acetyloxime); 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropyl α-hydroxyketones such as phenyl)-2-hydroxy-2-methylpropan-1-one, 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone, 1-hydroxycyclohexyl-phenylketone Compound; Acetophenone compounds such as 2,2-diethoxyacetophenone, 2,3-diethoxyacetophenone, 4-t-butyldichloroacetophenone, benzalacetophenone, 4-azidobenzalacetophenone, and the like. You may contain 2 or more types of these.
 本発明の樹脂組成物中における光重合開始剤の含有量は、ラジカル硬化を効果的に進める観点から、固形分中、0.01重量%以上が好ましく、1重量%以上がより好ましい。一方、残留した光重合開始剤の溶出等を抑制させる観点から、光重合開始剤の含有量は、固形分中、20重量%以下が好ましく、10重量%以下がより好ましい。 From the viewpoint of effectively promoting radical curing, the content of the photopolymerization initiator in the resin composition of the present invention is preferably 0.01% by weight or more, more preferably 1% by weight or more, based on the solid content. On the other hand, the content of the photopolymerization initiator is preferably 20% by weight or less, more preferably 10% by weight or less, based on the solid content, from the viewpoint of suppressing elution of the remaining photopolymerization initiator.
 本発明における光重合性化合物とは、分子中に2つ以上のエチレン性不飽和二重結合を有する化合物をいう。ラジカル重合性のしやすさを考えると、光重合性化合物は、(メタ)アクリル基を有することが好ましい。 The photopolymerizable compound in the present invention refers to a compound having two or more ethylenically unsaturated double bonds in its molecule. Considering the easiness of radical polymerization, the photopolymerizable compound preferably has a (meth)acrylic group.
 光重合性化合物としては、例えば、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートなどが挙げられる。これらを2種以上含有してもよい。 Examples of photopolymerizable compounds include pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate. You may contain 2 or more types of these.
 本発明の樹脂組成物中における光重合性化合物の含有量は、ラジカル硬化を効果的に進める観点から、固形分中、1重量%以上が好ましい。一方、ラジカルの過剰反応を抑制し解像度を向上させる観点から、光重合性化合物の含有量は、固形分中、50重量%以下が好ましい。 From the viewpoint of effectively promoting radical curing, the content of the photopolymerizable compound in the resin composition of the present invention is preferably 1% by weight or more based on the solid content. On the other hand, from the viewpoint of suppressing excessive reaction of radicals and improving resolution, the content of the photopolymerizable compound is preferably 50% by weight or less in the solid content.
 キノンジアジド化合物としては、フェノール性水酸基を有する化合物にナフトキノンジアジドのスルホン酸がエステルで結合した化合物が好ましい。ここで用いられるフェノール性水酸基を有する化合物としては、例えば、BIs-Z、TekP-4HBPA(テトラキスP-DO-BPA)、TrIsP-HAP、TrIsP-PA、BIsRS-2P、BIsRS-3P(以上、商品名、本州化学工業(株)製)、BIR-PC、BIR-PTBP、BIR-BIPC-F(以上、商品名、旭有機材工業(株)製)、4,4’-スルホニルジフェノール、BPFL(商品名、JFEケミカル(株)製)などが挙げられる。キノンジアジド化合物としては、これらフェノール性水酸基を有する化合物に、4-ナフトキノンジアジドスルホン酸または5-ナフトキノンジアジドスルホン酸をエステル結合で導入したものが好ましく、例えば、THP-17、TDF-517(商品名、東洋合成工業(株)製)、SBF-525(商品名、AZエレクトロニックマテリアルズ(株)製)などが挙げられる。 As the quinonediazide compound, a compound in which the sulfonic acid of naphthoquinonediazide is bonded to a compound having a phenolic hydroxyl group via an ester is preferable. Compounds having a phenolic hydroxyl group used here include, for example, BIs-Z, TekP-4HBPA (tetrakis P-DO-BPA), TrIsP-HAP, TrIsP-PA, BIsRS-2P, BIsRS-3P (the above, commercial products name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-PC, BIR-PTBP, BIR-BIPC-F (trade names, manufactured by Asahi Organic Chemicals Industry Co., Ltd.), 4,4'-sulfonyldiphenol, BPFL (trade name, manufactured by JFE Chemical Co., Ltd.). As the quinonediazide compound, those obtained by introducing 4-naphthoquinonediazide sulfonic acid or 5-naphthoquinonediazide sulfonic acid into these compounds having a phenolic hydroxyl group via an ester bond are preferable. manufactured by Toyo Gosei Co., Ltd.), SBF-525 (trade name, manufactured by AZ Electronic Materials Co., Ltd.), and the like.
 本発明の樹脂組成物中におけるキノンジアジド化合物の含有量は、感度を向上させる観点から、固形分中、0.5重量%以上が好ましく、1重量%以上がより好ましい。一方、キノンジアジド化合物の含有量は、解像度を向上させる観点から、固形分中、25重量%以下が好ましく、20重量%以下がより好ましい。 From the viewpoint of improving sensitivity, the content of the quinonediazide compound in the resin composition of the present invention is preferably 0.5% by weight or more, more preferably 1% by weight or more, based on the solid content. On the other hand, the content of the quinonediazide compound is preferably 25% by weight or less, more preferably 20% by weight or less, based on the solid content, from the viewpoint of improving resolution.
 白色顔料
 本発明の樹脂組成物は、さらに、白色顔料を含有することが好ましい。白色顔料は、隔壁の反射率をより向上させる機能を有する。
White Pigment The resin composition of the present invention preferably further contains a white pigment. A white pigment has a function of further improving the reflectance of the partition wall.
 白色顔料としては、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、硫酸バリウム、これらの複合化合物などが挙げられる。これらを2種以上含有してもよい。これらの中でも、反射率が高く工業的利用が容易な二酸化チタンが好ましい。 Examples of white pigments include titanium dioxide, zirconium oxide, zinc oxide, barium sulfate, and composite compounds thereof. You may contain 2 or more types of these. Among these, titanium dioxide is preferable because of its high reflectance and easy industrial use.
 二酸化チタンの結晶構造は、アナターゼ型、ルチル型およびブルッカイト型に分類される。これらの中でも、光触媒活性が低いことから、ルチル型酸化チタンが好ましい。 The crystal structure of titanium dioxide is classified into anatase, rutile and brookite types. Among these, rutile-type titanium oxide is preferable because of its low photocatalytic activity.
 白色顔料には、表面処理が施されていてもよい。Al、SiおよびZrから選ばれた金属による表面処理が好ましく、形成した隔壁の耐光性および耐熱性を向上させることができる。白色顔料が、SiOおよびAlからなる群から選ばれる少なくとも一つと、ZrOと、によって処理されていることがより好ましく、白色顔料が、ZrOとAlとSiOによって表面処理されていることがさらに好ましい。耐光性と反射性の観点から、白色顔料は、ZrOとAlとSiOで表面処理された二酸化チタンがさらに好ましい。 The white pigment may be surface-treated. Surface treatment with a metal selected from Al, Si and Zr is preferable, and the light resistance and heat resistance of the formed partition walls can be improved. More preferably, the white pigment is treated with at least one selected from the group consisting of SiO 2 and Al 2 O 3 and ZrO 2 , and the white pigment is treated with ZrO 2 , Al 2 O 3 and SiO 2 More preferably, it is surface-treated. From the viewpoint of light resistance and reflectivity, the white pigment is more preferably titanium dioxide surface-treated with ZrO 2 , Al 2 O 3 and SiO 2 .
 白色顔料の散乱光基準の粒子径D50は、隔壁の反射率をより向上させる観点から、100~500nmが好ましく、150nm~350nmがより好ましい。ここで、白色顔料の粒子径D50は、粒度分布測定装置(SZ-100;HORIBA(株)製)などを用いて測定することができる。 The particle diameter D50 of the white pigment based on scattered light is preferably 100 to 500 nm, more preferably 150 to 350 nm, from the viewpoint of further improving the reflectance of the partition walls. Here, the particle diameter D50 of the white pigment can be measured using a particle size distribution analyzer (SZ-100; manufactured by HORIBA Ltd.) or the like.
 また、白色顔料の平均一次粒子径は、隔壁の反射率をより向上させる観点から、100~500nmが好ましく、150nm~350nmがより好ましい。ここで、白色顔料の平均一次粒子径は、粒度分布測定装置(N4-PLUS;ベックマン・コールター(株)製)などを用いてレーザー回折法により測定することができる。 In addition, the average primary particle size of the white pigment is preferably 100 to 500 nm, more preferably 150 nm to 350 nm, from the viewpoint of further improving the reflectance of the partition walls. Here, the average primary particle size of the white pigment can be measured by a laser diffraction method using a particle size distribution analyzer (N4-PLUS; manufactured by Beckman Coulter, Inc.).
 白色顔料として好ましく用いられる二酸化チタン顔料としては、例えば、R960;デュポン(株)製(ルチル型、SiO/Al処理、平均一次粒子径210nm)、R996;ロンモンビリオンズ(株)製(ルチル型、ZrO/Al処理、平均一次粒子径230nm)、CR-97;石原産業(株)製(ルチル型、Al/ZrO処理、平均一次粒子径250nm)、PFC105;石原産業(株)製(ルチル型、SiO/Al/ZrO処理、平均一次粒子径280nm)、JR-301;テイカ(株)製(ルチル型、Al処理、平均一次粒子径300nm)、JR-405;テイカ(株)製(ルチル型、Al処理、平均一次粒子径210nm)、JR-600A;テイカ(株)(ルチル型、Al処理、平均一次粒子径250nm)、JR-603;テイカ(株)(ルチル型、Al/ZrO処理、平均一次粒子径280nm)等が挙げられる。これらを2種以上含有してもよい。 Titanium dioxide pigments preferably used as white pigments include, for example, R960 manufactured by DuPont (rutile type, SiO 2 /Al 2 O 3 treatment, average primary particle size 210 nm), R996 manufactured by Ronmon Billions Co., Ltd. (rutile type, ZrO 2 /Al 2 O 3 treatment, average primary particle size 230 nm), CR-97; manufactured by Ishihara Sangyo Co., Ltd. (rutile type, Al 2 O 3 /ZrO 2 treatment, average primary particle size 250 nm) , PFC105; manufactured by Ishihara Sangyo Co., Ltd. (rutile type, SiO 2 /Al 2 O 3 /ZrO 2 treatment, average primary particle size 280 nm), JR-301; manufactured by Tayca Corporation (rutile type, Al 2 O 3 treatment) , average primary particle size 300 nm), JR-405; Teica Co., Ltd. (rutile type, Al 2 O 3 treatment, average primary particle size 210 nm), JR-600A; Teica Co., Ltd. (rutile type, Al 2 O 3 treatment, average primary particle size 250 nm), JR-603; Teika Co., Ltd. (rutile type, Al 2 O 3 /ZrO 2 treatment, average primary particle size 280 nm). You may contain 2 or more types of these.
 樹脂組成物における白色顔料の含有量は、反射率をより向上させる観点から、固形分中の10重量%以上が好ましく、15重量%以上がより好ましい。一方、隔壁の表面平滑性を向上させる観点から、白色顔料の含有量は、固形分中の60重量%以下が好ましく、55重量%以下がより好ましい。 The content of the white pigment in the resin composition is preferably 10% by weight or more, more preferably 15% by weight or more, based on the solid content, from the viewpoint of further improving the reflectance. On the other hand, from the viewpoint of improving the surface smoothness of the partition walls, the content of the white pigment is preferably 60% by weight or less, more preferably 55% by weight or less in the solid content.
 黄色前駆体化合物
 本発明の樹脂組成物は、さらに、黄色前駆体化合物を含有することが好ましい。黄色前駆体化合物とは、熱および/または光のエネルギーによる反応・分解・構造変化などによって、波長領域380nm~500nmの光吸収が大きくなり黄色味を帯びる化合物を指す。特に、波長450nmの吸収が大きくなることが好ましい。
Yellow Precursor Compound The resin composition of the present invention preferably further contains a yellow precursor compound. A yellow precursor compound refers to a compound that absorbs light in the wavelength region of 380 nm to 500 nm and becomes yellowish due to reaction, decomposition, structural change, or the like due to heat and/or light energy. In particular, it is preferable that the absorption at a wavelength of 450 nm increases.
 樹脂組成物中に黄色前駆体化合物を含有することによって、隔壁の青色光の遮光性を向上することができる。樹脂組成物中に初めから黄色成分を含有すると、後述の隔壁(A-1)パターンの形成を行う際、露光工程で露光光を大きく吸収し、底部まで露光光が届かず硬化が進まないが、黄色前駆体化合物を含有することによって、露光工程では露光光を透過して底部まで硬化が進行するため、青色光の遮光性が高い微細厚膜隔壁パターンの形成を可能にする。従って、露光工程では波長領域380nm~500nmの光吸収が変わらず、その後の加熱工程で波長領域380nm~500nmの光吸収が上昇することがより好ましい。 By including a yellow precursor compound in the resin composition, the blue light shielding property of the partition wall can be improved. If the resin composition contains a yellow component from the beginning, the exposure light is greatly absorbed in the exposure step when forming the partition wall (A-1) pattern, which will be described later, and the exposure light does not reach the bottom, and curing does not proceed. By containing the yellow precursor compound, in the exposure step, the exposure light is transmitted and curing progresses to the bottom, so that it is possible to form a fine thick film barrier rib pattern with high blue light shielding properties. Therefore, it is more preferable that the light absorption in the wavelength range of 380 nm to 500 nm does not change in the exposure process and the light absorption in the wavelength range of 380 nm to 500 nm increases in the subsequent heating process.
 黄色前駆体化合物としては、例えば、フェノール系化合物、有機ポリマー樹脂、有機金属化合物等が挙げられる。生成する黄色成分の耐光性の観点から、有機金属化合物が好ましい。 Examples of yellow precursor compounds include phenolic compounds, organic polymer resins, and organometallic compounds. Organometallic compounds are preferred from the viewpoint of the light resistance of the resulting yellow component.
 フェノール系化合物は、熱および/または光のエネルギーによって酸化され、キノン系化合物を生成する。生成するキノン系化合物が黄色であるフェノール系化合物を使用することが好ましい。フェノール系化合物としては、例えば、1,4-ジヒドロキシナフタレン、1,4-ジヒドロキシアントラヒドロキノン、キニザリン、1,4-ジヒドロキシ-2-スルホアントラキノンなどが挙げられる。これらを2種以上含有してもよい。 Phenolic compounds are oxidized by heat and/or light energy to produce quinone compounds. It is preferred to use a phenolic compound that produces a yellow quinone compound. Examples of phenolic compounds include 1,4-dihydroxynaphthalene, 1,4-dihydroxyanthrahydroquinone, quinizarin, 1,4-dihydroxy-2-sulfoanthraquinone and the like. You may contain 2 or more types of these.
 有機ポリマー樹脂は、熱および/または光のエネルギーによって黄変する樹脂であれば特に限定されない。有機ポリマー樹脂としては、例えば、ポリエチレンやポリプロピレンなどのポリオレフィンや、ポリ塩化ビニル、ポリカーボネート、ABS樹脂などが挙げられる。これらを2種以上含有してもよい。ポリオレフィンは、熱や光によって構造中の水素が引き抜かれ、酸化反応によってポリエンが生成することで黄変する。ポリ塩化ビニルは、熱や光によって脱塩酸反応が進行し、ポリエン等の共役二重結合が増加することで黄変する。ポリカーボネートは、フリース転移と言われる光反応によって、フェニルサリシレート構造、さらにはジヒドロキシベンゾフェノン構造を生成して黄変する。ABS樹脂は、熱や光による酸化によって生成したラジカル種が原因で黄変することが知られている。 The organic polymer resin is not particularly limited as long as it yellows due to heat and/or light energy. Examples of organic polymer resins include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polycarbonate, and ABS resins. You may contain 2 or more types of these. Polyolefin turns yellow when hydrogen in its structure is extracted by heat or light, and polyene is generated by an oxidation reaction. Polyvinyl chloride turns yellow due to the progress of dehydrochlorination reaction due to heat or light and the increase in conjugated double bonds such as polyene. Polycarbonate turns yellow by producing a phenylsalicylate structure and further a dihydroxybenzophenone structure by a photoreaction called Fries transition. ABS resin is known to yellow due to radical species generated by oxidation due to heat or light.
 有機金属化合物は、熱および/または光のエネルギーによって、380nm~500nmに吸収をもつ黄色粒子を生成するものであれば、特に限定されない。380nm~500nmに吸収をもつ黄色粒子としては、例えば、酸化鉄粒子、酸化銅粒子、酸化イリジウム粒子、酸化ビスマス、酸化タングステン、酸化金粒子、ナノ金粒子、酸化銀および/または銀粒子、銀ナノ粒子などが挙げられ、有機金属化合物としては、例えば、有機鉄化合物、有機銅化合物、有機イリジウム化合物、有機ビスマス化合物、有機タングステン化合物、有機金化合物、有機銀化合物などが挙げられる。これらを2種以上含んでもよい。これらの中でも、化合物として空気中で安定であり、また、露光工程および/または加熱工程において、分解・凝集することにより、効率的に黄色粒子(酸化銀および/または銀粒子、銀ナノ粒子)を生成して膜の遮光性を向上させることができる観点から、黄色前駆体化合物が有機銀化合物であることが好ましい。 The organometallic compound is not particularly limited as long as it produces yellow particles with absorption in the range of 380 nm to 500 nm by heat and/or light energy. Examples of yellow particles having absorption at 380 nm to 500 nm include iron oxide particles, copper oxide particles, iridium oxide particles, bismuth oxide, tungsten oxide, gold oxide particles, nano gold particles, silver oxide and/or silver particles, silver nano Examples of organic metal compounds include organic iron compounds, organic copper compounds, organic iridium compounds, organic bismuth compounds, organic tungsten compounds, organic gold compounds, and organic silver compounds. Two or more of these may be included. Among these, it is stable in the air as a compound, and in the exposure process and / or heating process, by decomposing and aggregating, yellow particles (silver oxide and / or silver particles, silver nanoparticles) are efficiently produced. The yellow precursor compound is preferably an organic silver compound from the viewpoint that it can be produced to improve the light-shielding properties of the film.
 有機鉄化合物としては、トリス(2,4-ペンタジオナト)鉄、フェロセン、シアン化鉄、炭酸鉄、ペンタカルボニル鉄、シュウ酸鉄、ノナカルボニル鉄、酢酸鉄、蟻酸鉄、ヘキサシアニド鉄酸などが挙げられる。有機銅化合物としては、例えば、ビス(2,4-ペンタジオナト)銅、ネオデカン酸銅、酢酸銅、蟻酸銅、蟻酸銅水和物、シュウ酸銅、シュウ酸銅水和物などが挙げられる。有機イリジウム化合物としては、トリス(2,4-ペンタジオナト)イリジウム、ドデカカルボニル四イリジウム、ビス(トリフェニルホスフィン)イリジウムカルボニル塩化物、イドリドセンなどが挙げられる。有機ビスマス化合物としては、次炭酸ビスマス、炭酸酸化ビスマス、次没食子酸ビスマスなどが挙げられる。有機タングステン化合物としては、ヘキサカルボニルタングステン、ヘキサメチルタングステンなどが挙げられる。有機金化合物としては、クロロ(トリフェニルホスフィン)金、金レジネートMR7901-P、テトラクロロ金酸四水和物などが挙げられる。 Examples of organic iron compounds include tris(2,4-pentadionato)iron, ferrocene, iron cyanide, iron carbonate, iron pentacarbonyl, iron oxalate, iron nonacarbonyl, iron acetate, iron formate, hexacyanide ferrate, and the like. . Examples of organic copper compounds include bis(2,4-pentadionato)copper, copper neodecanoate, copper acetate, copper formate, copper formate hydrate, copper oxalate, and copper oxalate hydrate. Examples of organic iridium compounds include tris(2,4-pentadionato)iridium, dodecacarbonyltetrairidium, bis(triphenylphosphine)iridiumcarbonyl chloride, and idridocene. Examples of organic bismuth compounds include bismuth subcarbonate, bismuth carbonate, bismuth subgallate and the like. Examples of organic tungsten compounds include hexacarbonyltungsten and hexamethyltungsten. Organic gold compounds include chloro(triphenylphosphine) gold, gold resinate MR7901-P, tetrachloroauric acid tetrahydrate, and the like.
 有機銀化合物としては、例えば、特開平10-62899号公報の段落[0048]~[0049]、欧州特許出願公開第803,764A1号明細書の第18ページ第24行~第19ページ第37行、欧州特許出願公開第962,812A1号明細書、特開平11-349591号公報、特開2000-7683号公報、特開2000-72711号公報、特開2002-23301号公報、特開2002-23303号公報、特開2002-49119号公報、欧州特許出願公開第1246001A1号明細書、欧州特許出願公開第1258775A1号明細書、特開2003-140290号公報、特開2003-195445号公報、特開2003-295378号公報、特開2003-295379号公報、特開2003-295380号公報、特開2003-295381号公報、特開2003-270755号公報等に記載されている有機銀化合物や、脂肪族カルボン酸の銀塩などが挙げられる。 Examples of organic silver compounds include those described in paragraphs [0048] to [0049] of JP-A-10-62899, page 18, line 24 to page 19, line 37 of European Patent Application Publication No. 803,764A1. , European Patent Application Publication No. 962,812A1, JP-A-11-349591, JP-A-2000-7683, JP-A-2000-72711, JP-A-2002-23301, JP-A-2002-23303 Publication, JP 2002-49119, EP 1246001A1, EP 1258775A1, JP 2003-140290, JP 2003-195445, JP 2003 -295378, JP-A-2003-295379, JP-A-2003-295380, JP-A-2003-295381, JP-A-2003-270755, etc. organic silver compounds and aliphatic carbons Examples include silver salts of acids.
 これらの中でも、より黄色化する観点から、下記一般式(5)で表される化合物および/または下記一般式(6)で表される構造を有する重合体化合物であることが好ましい。 Among these, a compound represented by the following general formula (5) and/or a polymer compound having a structure represented by the following general formula (6) is preferable from the viewpoint of further yellowing.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(5)中、Rは水素または炭素数1~30の有機基を表す。ここで、「炭素数1~30の有機基」としては、炭素数1~30のアルキル基(直鎖状及び分枝状アルキル基を包含する)および/または炭素数6~30の芳香族炭化水素基が好ましい。これらの好ましい具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、フェニル基、ベンジル基、トリル基、ビフェニル基およびナフチル基を挙げることができる。 In general formula (5), R 5 represents hydrogen or an organic group having 1 to 30 carbon atoms. Here, the "organic group having 1 to 30 carbon atoms" includes an alkyl group having 1 to 30 carbon atoms (including linear and branched alkyl groups) and/or an aromatic carbonized group having 6 to 30 carbon atoms. A hydrogen group is preferred. Preferred specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl phenyl, benzyl, tolyl, biphenyl and naphthyl radicals.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(6)中、RおよびRはそれぞれ独立に水素または炭素数1~30の有機基を表す。ここで、「炭素数1~30の有機基」としては、炭素数1~30のアルキル基(直鎖状及び分枝状アルキル基を包含する)および/または炭素数6~30の芳香族炭化水素基が好ましい。これらの好ましい具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、フェニル基、ベンジル基、トリル基、ビフェニル基およびナフチル基を挙げることができる。また、aは1以上の整数であり、好ましくは1~10000、さらに好ましくは5~1000である。 In general formula (6), R 6 and R 7 each independently represent hydrogen or an organic group having 1 to 30 carbon atoms. Here, the "organic group having 1 to 30 carbon atoms" includes an alkyl group having 1 to 30 carbon atoms (including linear and branched alkyl groups) and/or an aromatic carbonized group having 6 to 30 carbon atoms. A hydrogen group is preferred. Preferred specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl phenyl, benzyl, tolyl, biphenyl and naphthyl radicals. Also, a is an integer of 1 or more, preferably 1 to 10,000, more preferably 5 to 1,000.
 一般式(5)で表される有機銀化合物としては、例えば、酢酸銀、プロピオン酸銀、酪酸銀、吉草酸銀、ヘキサン酸銀、エナント酸銀、オクチル酸銀、ペラルゴン酸銀、カプリン酸銀、ネオデカン酸銀、サリチル酸銀、炭酸銀、パラトルエンスルホン酸銀、トリフルオロ酢酸銀、2-エチルヘキサン酸銀、ジエチルジチオカルバミン酸銀、安息香酸銀、ピリジン-2-カルボン酸銀、ベヘン酸銀、アラキジン酸銀、ステアリン酸銀、オレイン酸銀、ラウリン酸銀、カプロン酸銀、ミリスチン酸銀、パルミチン酸銀等が挙げられる。これらを2種以上含有してもよい。これらのうち、より有機溶剤への溶解性と黄色化の観点から、ネオデカン酸銀、オクチル酸銀、サリチル酸銀、安息香酸銀が好ましい。 Examples of organic silver compounds represented by formula (5) include silver acetate, silver propionate, silver butyrate, silver valerate, silver hexanoate, silver enanthate, silver octylate, silver pelargonate, and silver caprate. , silver neodecanoate, silver salicylate, silver carbonate, silver p-toluenesulfonate, silver trifluoroacetate, silver 2-ethylhexanoate, silver diethyldithiocarbamate, silver benzoate, silver pyridine-2-carboxylate, silver behenate, Silver arachidate, silver stearate, silver oleate, silver laurate, silver caproate, silver myristate, silver palmitate and the like. You may contain 2 or more types of these. Among these, silver neodecanoate, silver octylate, silver salicylate, and silver benzoate are preferable from the viewpoint of solubility in organic solvents and yellowing.
 一般式(6)で表される有機銀化合物は、カルボキシル基を有する(メタ)アクリルポリマ中のカルボキシル基が銀塩となった構造を有する。一般式(6)で表される有機銀化合物は、例えば、後述の調製例のようにカルボキシル基を有する(メタ)アクリルポリマと硝酸銀を、アミン触媒存在下、有機溶媒中で撹拌することにより得られる。 The organic silver compound represented by the general formula (6) has a structure in which the carboxyl group in a (meth)acrylic polymer having a carboxyl group has become a silver salt. The organic silver compound represented by the general formula (6) is obtained, for example, by stirring a (meth)acrylic polymer having a carboxyl group and silver nitrate in an organic solvent in the presence of an amine catalyst, as in the preparation examples described below. be done.
 前記カルボキシル基を有する(メタ)アクリルポリマは、不飽和カルボン酸を重合することにより得られる。不飽和カルボン酸の例としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸、あるいは酸無水物などがあげられる。これらは単独で用いても良いが、他の共重合可能なエチレン性不飽和化合物と組み合わせて用いても良い。共重合可能なエチレン性不飽和化合物としては、具体的には、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、メタクリル酸nープロピル、メタクリル酸イソプロピル、アクリル酸n-ブチル、メタクリル酸n-ブチル、アクリル酸sec-ブチル、メタクリル酸sec-ブチル、アクリル酸イソ-ブチル、メタクリル酸イソ-ブチル、アクリル酸tert-ブチル、メタクリル酸tert-ブチル、アクリル酸n-ペンチル、メタクリル酸n-ペンチル、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、ベンジルアクリレート、ベンジルメタクリレートなどの不飽和カルボン酸アルキルエステル、スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレンなどの芳香族ビニル化合物、アミノエチルアクリレートなどの不飽和カルボン酸アミノアルキルエステル、グリシジルアクリレート、グリシジルメタクリレートなどの不飽和カルボン酸グリシジルエステル、酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリルなどのシアン化ビニル化合物、1,3-ブタジエン、イソプレンなどの脂肪族共役ジエン、それぞれ末端にアクリロイル基、あるいはメタクリロイル基を有するポリスチレン、ポリメチルアクリレート、ポリメチルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート、ポリシリコーンなどのマクロモノマなどがあげられるが、これらに限定されるものではない。(メタ)アクリルポリマに関しては、特に限定するわけではない。 The (meth)acrylic polymer having a carboxyl group is obtained by polymerizing an unsaturated carboxylic acid. Examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinylacetic acid, and acid anhydrides. These may be used alone, or may be used in combination with other copolymerizable ethylenically unsaturated compounds. Specific examples of copolymerizable ethylenically unsaturated compounds include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, isopropyl acrylate, n-propyl methacrylate, and methacrylic acid. isopropyl, n-butyl acrylate, n-butyl methacrylate, sec-butyl acrylate, sec-butyl methacrylate, iso-butyl acrylate, iso-butyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, unsaturated carboxylic acid alkyl esters such as n-pentyl acrylate, n-pentyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, benzyl acrylate, benzyl methacrylate, styrene, p-methylstyrene, o-methylstyrene, Aromatic vinyl compounds such as m-methylstyrene and α-methylstyrene, unsaturated carboxylic acid aminoalkyl esters such as aminoethyl acrylate, unsaturated carboxylic acid glycidyl esters such as glycidyl acrylate and glycidyl methacrylate, vinyl acetate, vinyl propionate, etc. carboxylic acid vinyl esters, vinyl cyanide compounds such as acrylonitrile, methacrylonitrile and α-chloroacrylonitrile, aliphatic conjugated dienes such as 1,3-butadiene and isoprene, polystyrenes having acryloyl groups or methacryloyl groups at their ends, Examples include, but are not limited to, macromonomers such as polymethyl acrylate, polymethyl methacrylate, polybutyl acrylate, polybutyl methacrylate, and polysilicone. The (meth)acrylic polymer is not particularly limited.
 前記カルボキシル基を有する(メタ)アクリルポリマは、市販の製品を使用してもよい。市販のカルボキシル基を有する(メタ)アクリルポリマとしては、例えば、AX3-BX-TR-101、AX3-BX-TR-102、AX3-BX-TR-106、AX3-BX-TR-107、AX3-BX-TR-108、AX3-BX-TR-109、AX3-BX-TR-110、AX3-RD-TR-501、AX3-RD-TR-502、AX3-RD-TR-503、AX3-RD-TR-504、AX3-RD-TR-103、AX3-RD-TR-104(商品名、日本触媒株式会社製)、SPCR-10X、SPCR-10P、SPCR-24X、SPCR-18X、SPCR-215X(商品名、昭和電工株式会社製)、X-4007(商品名、日油株式会社製)などが挙げられる。これらの中でも、SPCR-10X、SPCR-10P、SPCR-24X、SPCR-18X、SPCR-215Xが好ましい。これらを2種類以上用いてもよい。 A commercially available product may be used as the (meth)acrylic polymer having a carboxyl group. Commercially available (meth)acrylic polymers having a carboxyl group include, for example, AX3-BX-TR-101, AX3-BX-TR-102, AX3-BX-TR-106, AX3-BX-TR-107, AX3- BX-TR-108, AX3-BX-TR-109, AX3-BX-TR-110, AX3-RD-TR-501, AX3-RD-TR-502, AX3-RD-TR-503, AX3-RD- TR-504, AX3-RD-TR-103, AX3-RD-TR-104 (trade name, manufactured by Nippon Shokubai Co., Ltd.), SPCR-10X, SPCR-10P, SPCR-24X, SPCR-18X, SPCR-215X ( (trade name, manufactured by Showa Denko KK), X-4007 (trade name, manufactured by NOF Corporation), and the like. Among these, SPCR-10X, SPCR-10P, SPCR-24X, SPCR-18X and SPCR-215X are preferred. Two or more of these may be used.
 また、一般式(6)で表される重合体化合物の重量平均分子量(Mw)に特に制限は無いが、好ましくはGPCで測定されるポリスチレン換算で5000~50000、さらに好ましくは8000~35000である。Mwが5000より小さいと、熱硬化時にパターンだれが起こり、解像度が低下する。一方、Mwが50000より大きいと、還元されにくく、黄色粒子を形成しにくい。 Further, the weight average molecular weight (Mw) of the polymer compound represented by the general formula (6) is not particularly limited, but is preferably 5000 to 50000, more preferably 8000 to 35000 in terms of polystyrene measured by GPC. . If Mw is less than 5,000, pattern drooping will occur during heat curing, resulting in lower resolution. On the other hand, when Mw is more than 50,000, it is difficult to be reduced, and it is difficult to form yellow particles.
 樹脂組成物の固形分中に占める黄色前駆体化合物の含有量は、0.1重量%以上が好ましく、0.4重量%以上がより好ましい。黄色前駆体化合物の含有量を0.4重量%以上とすることにより、得られる隔壁をより黄色化させることができ、隔壁の青色光の遮光性が向上する。一方、黄色前駆体化合物の含有量が多すぎると、黄色前駆体化合物の分解によって部分的に生じるラジカルによって過剰反応を起こし、パターン形成が困難になる。そのため、樹脂組成物の固形分中に占める黄色前駆体化合物の含有量は、10重量%以下が好ましく、5.0重量%以下がより好ましい。 The content of the yellow precursor compound in the solid content of the resin composition is preferably 0.1% by weight or more, more preferably 0.4% by weight or more. By setting the content of the yellow precursor compound to 0.4% by weight or more, the partition walls obtained can be made more yellow, and the blue light shielding properties of the partition walls are improved. On the other hand, if the content of the yellow precursor compound is too high, the radicals partially generated by the decomposition of the yellow precursor compound cause excessive reaction, making pattern formation difficult. Therefore, the content of the yellow precursor compound in the solid content of the resin composition is preferably 10% by weight or less, more preferably 5.0% by weight or less.
 遮光顔料
 本発明の樹脂組成物は、さらに、遮光顔料を含有することが好ましい。遮光顔料は、隔壁の特定の波長の光の遮光性をより向上させる機能を有する。
Light-shielding pigment The resin composition of the present invention preferably further contains a light-shielding pigment. The light-shielding pigment has a function of further improving the light-shielding property of the partition wall against light of a specific wavelength.
 青色顔料および紫色顔料
 遮光顔料は、青色顔料および紫色顔料を含有することが好ましい。青色顔料および紫色顔料を含有することで、膜の波長領域500nm~630nm(緑色光~赤色光)の遮光性を向上することができる。
Blue Pigment and Violet Pigment The light-shielding pigment preferably contains a blue pigment and a violet pigment. By containing a blue pigment and a violet pigment, it is possible to improve the light-shielding property of the film in a wavelength range of 500 nm to 630 nm (green light to red light).
 青色顔料および紫色顔料は、無機顔料、有機顔料、およびその混合顔料から選ばれ、成分は特に限定されない。 The blue pigment and purple pigment are selected from inorganic pigments, organic pigments, and mixed pigments thereof, and the ingredients are not particularly limited.
 青色顔料としては、例えば、ピグメントブルー(以下PBと略す)1、PB9、PB18、PB25、PB28、PB29、PB36、PB15、PB15:1、PB15:2、PB15:3、PB15:4、PB15:6、PB17:1、PB60、PB66、PB75、PB79などが挙げられる。これらを2種以上含有してもよい。これらの中でも、耐光性に優れる観点から、フタロシアニン顔料であるPB15、PB15:1、PB15:2、PB15:3、PB15:4、PB15:6が好ましく、PB15:6がより好ましい。 Blue pigments include, for example, Pigment Blue (hereinafter abbreviated as PB) 1, PB9, PB18, PB25, PB28, PB29, PB36, PB15, PB15:1, PB15:2, PB15:3, PB15:4, PB15:6 , PB17:1, PB60, PB66, PB75, PB79 and the like. You may contain 2 or more types of these. Among these, the phthalocyanine pigments PB15, PB15:1, PB15:2, PB15:3, PB15:4 and PB15:6 are preferred, and PB15:6 is more preferred, from the viewpoint of excellent light resistance.
 紫色顔料としては、例えば、ピグメントバイオレット(以下PVと略す)1、PV3、PV3:3、PV19、PV23、PV29、PV37、PV38、PV39、PV50などが挙げられる。これらの中でも、耐熱性に優れる観点から、縮合多環系顔料であるPV19、PV23、PV29、PV37、PV38が好ましく、波長領域500nm~550nmの遮光性に優れる観点から、PV23、PV29、PV37がより好ましい。
樹脂組成物の固形分中に占める青色顔料および紫色顔料の合計含有量は、0.01重量%以上が好ましく、0.05重量%以上がより好ましく、0.10重量%以上がさらに好ましい。青色顔料および紫色顔料の合計含有量を0.10重量%以上とすることにより、得られる隔壁の波長領域500nm~630nm(緑色光~赤色光)の遮光性をより向上させることができる。樹脂組成物の固形分中に占める青色顔料および紫色顔料の合計含有量は、3.0重量%以下が好ましく、1.0重量%以下がより好ましく、0.75重量%以下がさらに好ましい。青色顔料および紫色顔料の合計含有量を0.75重量%以下とすることにより、露光光を十分に透過し、微細な隔壁パターンの形成を可能とする。
Examples of purple pigments include pigment violet (hereinafter abbreviated as PV) 1, PV3, PV3:3, PV19, PV23, PV29, PV37, PV38, PV39, and PV50. Among these, PV19, PV23, PV29, PV37, and PV38, which are condensed polycyclic pigments, are preferable from the viewpoint of excellent heat resistance, and PV23, PV29, and PV37 are more preferable from the viewpoint of excellent light-shielding properties in the wavelength region of 500 nm to 550 nm. preferable.
The total content of the blue pigment and the purple pigment in the solid content of the resin composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and even more preferably 0.10% by weight or more. By setting the total content of the blue pigment and the violet pigment to 0.10% by weight or more, it is possible to further improve the light-shielding properties of the obtained partition wall in the wavelength range of 500 nm to 630 nm (green light to red light). The total content of the blue pigment and the purple pigment in the solid content of the resin composition is preferably 3.0% by weight or less, more preferably 1.0% by weight or less, and even more preferably 0.75% by weight or less. By setting the total content of the blue pigment and the violet pigment to 0.75% by weight or less, the exposure light can be sufficiently transmitted and a fine partition wall pattern can be formed.
 青色顔料と紫色顔料の重量比が20/80~80/20であることが好ましい。青色顔料および紫色顔料の重量比を、20/80~80/20とすることにより、顔料の分散性と、波長領域500nm~630nm(緑色光~赤色光)の遮光性を両立することができる。青色顔料および紫色顔料の重量比は、30/70~70/30がより好ましく、50/50~65/35がさらに好ましい。 The weight ratio of the blue pigment and the purple pigment is preferably 20/80 to 80/20. By setting the weight ratio of the blue pigment and the violet pigment to 20/80 to 80/20, both the dispersibility of the pigment and the light shielding property in the wavelength range of 500 nm to 630 nm (green light to red light) can be achieved. The weight ratio of the blue pigment and the purple pigment is more preferably 30/70 to 70/30, still more preferably 50/50 to 65/35.
 また、本発明の樹脂組成物の固形分中に占める黄色前駆体化合物の重量が白色顔料の重量100に対して0.2~20であり、かつ、固形分中に占める青色顔料および紫色顔料の合計重量が白色顔料の重量100に対して0.05~10であることが好ましい。この比率とすることで、可視光全体(波長領域430~630nm)の高遮光性と高反射性に優れた灰色の隔壁パターンを得ることができる。本発明の樹脂組成物の固形分中に占める黄色前駆体化合物の重量が白色顔料の重量100に対して0.5~10であり、かつ、固形分中に占める青色顔料および紫色顔料の合計重量が白色顔料の重量100に対して0.01~5であることがより好ましい。 Further, the weight of the yellow precursor compound in the solid content of the resin composition of the present invention is 0.2 to 20 with respect to 100 weight of the white pigment, and the blue pigment and the purple pigment in the solid content. It is preferred that the total weight is between 0.05 and 10 per 100 weight of the white pigment. By setting this ratio, it is possible to obtain a gray partition pattern that is excellent in high light shielding properties and high reflectance for the entire visible light (wavelength range of 430 to 630 nm). The weight of the yellow precursor compound in the solid content of the resin composition of the present invention is 0.5 to 10 with respect to the weight of the white pigment 100, and the total weight of the blue pigment and the purple pigment in the solid content. is more preferably 0.01 to 5 per 100 weight of the white pigment.
 本発明の樹脂組成物は、遮光顔料として、青色顔料および紫色顔料以外のその他の遮光顔料を含有してもよい。その他の遮光顔料としては、例えば、赤色顔料、黒色顔料、緑色顔料、黄色顔料等が挙げられる。 The resin composition of the present invention may contain, as a light-shielding pigment, a light-shielding pigment other than the blue pigment and the purple pigment. Other light-shielding pigments include, for example, red pigments, black pigments, green pigments, yellow pigments, and the like.
 赤色顔料としては、例えば、ピグメントレッド(以下PRと略す)9、PR177、PR179、PR180、PR192、PR209、PR215、PR216、PR217、PR220、PR223、PR224、PR226、PR227、PR228、PR240、PR254などが挙げられる。これらを2種以上含有してもよい。 Examples of red pigments include Pigment Red (hereinafter abbreviated as PR) 9, PR177, PR179, PR180, PR192, PR209, PR215, PR216, PR217, PR220, PR223, PR224, PR226, PR227, PR228, PR240, and PR254. mentioned. You may contain 2 or more types of these.
 黒色顔料としては、例えば、黒色有機顔料、黒色無機顔料等が挙げられる。 Examples of black pigments include black organic pigments and black inorganic pigments.
 色有機顔料としては、例えば、カーボンブラック、ペリレンブラック、アニリンブラック、ベンゾフラノン系顔料などが挙げられる。これらは、樹脂で被覆されていてもよい。
黒色無機顔料としては、例えば、グラファイト;チタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、ジルコニウム、亜鉛、カルシウム、銀、金、白金、パラジウム等の金属の微粒子;金属酸化物;金属複合酸化物;金属硫化物;金属窒化物;金属酸窒化物;金属炭化物などが挙げられる。これらを2種以上含有してもよい。
Examples of color organic pigments include carbon black, perylene black, aniline black, and benzofuranone pigments. These may be coated with a resin.
Black inorganic pigments include, for example, graphite; fine particles of metals such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zirconium, zinc, calcium, silver, gold, platinum, and palladium; metal oxides; metal sulfides; metal nitrides; metal oxynitrides; and metal carbides. You may contain 2 or more types of these.
 緑色顔料としては、例えば、C.I.ピグメントグリーン(以下PGと略す)7、PG36、PG58、PG37、PG59などが挙げられる。これらを2種以上含有してもよい。 As a green pigment, for example, C.I. I. Pigment Green (hereinafter abbreviated as PG) 7, PG36, PG58, PG37, PG59 and the like. You may contain 2 or more types of these.
 黄色顔料としては、例えば、ピグメントイエロー(以下PYと略す)PY137、PY138、PY139、PY147、PY148、PY150、PY153、PY154、PY166、PY168、PY185などが挙げられる。これらを2種以上含有してもよい。 Examples of yellow pigments include Pigment Yellow (hereinafter abbreviated as PY) PY137, PY138, PY139, PY147, PY148, PY150, PY153, PY154, PY166, PY168, and PY185. You may contain 2 or more types of these.
 本発明の樹脂組成物は、さらに、還元剤を含有することが好ましい。還元剤は、黄色前駆体化合物(特に、有機銀化合物)の還元を促進することで、より効率的に黄色粒子を生成し、100~120℃程度の低温加熱条件においても、膜の遮光性を向上させることができる。これにより、例えば、有機EL材料のような耐熱性に懸念がある材料が下地にあり、低温加熱条件が必須の用途においても、本技術の適用が可能となる。また、加熱後の膜に未反応の有機銀化合物が残存すると、光や熱により分解し、膜色が変化してしまうため耐候性が悪い膜となってしまうが、還元剤を含有することにより、硬化後に膜中に残存する有機銀化合物の量が低減され、耐候性が向上する。  The resin composition of the present invention preferably further contains a reducing agent. The reducing agent promotes the reduction of the yellow precursor compound (particularly the organic silver compound), thereby more efficiently producing yellow particles, and improves the light-shielding properties of the film even under low-temperature heating conditions of about 100 to 120°C. can be improved. As a result, for example, the present technology can be applied even in applications where a material such as an organic EL material that is concerned about heat resistance exists as an underlying layer and low-temperature heating conditions are essential. In addition, if an unreacted organic silver compound remains in the film after heating, it will be decomposed by light or heat, and the film color will change, resulting in a film with poor weather resistance. , the amount of the organic silver compound remaining in the film after curing is reduced, and the weather resistance is improved. 
 還元剤は、有機銀化合物の還元を促進する化合物であればどのようなものでもよいが、より効率的に有機銀化合物を還元する観点から、分子内に2つ以上のフェノール性水酸基を含有する化合物またはエンジオール基を含有する化合物であることが好ましい。
分子内に2つ以上のフェノール性水酸基を含有する化合物は、有機銀化合物を還元する際、自身は酸化されてキノン化合物を生成するが、前述の黄色前駆体化合物のように有色のキノン化合物を生成しない構造であることが好ましい。分子内に2つ以上のフェノール性水酸基を含有する化合物としては、例えば、カテコール化合物、ヒドロキノン化合物、レゾシノール化合物、アントラヒドロキノン化合物等の二価フェノール化合物や、3つ以上のフェノール性水酸基を含有するポリフェノール化合物が挙げられる。これらの中でも、還元性の観点から、下記一般式(7)で表されるヒドロキノン化合物であることがより好ましい。
The reducing agent may be any compound as long as it promotes the reduction of the organic silver compound, but from the viewpoint of reducing the organic silver compound more efficiently, it contains two or more phenolic hydroxyl groups in the molecule. Compounds or compounds containing enediol groups are preferred.
Compounds containing two or more phenolic hydroxyl groups in the molecule are themselves oxidized to produce quinone compounds when reducing the organic silver compound, but they produce colored quinone compounds like the above-mentioned yellow precursor compound. A structure that does not generate is preferred. Compounds containing two or more phenolic hydroxyl groups in the molecule include, for example, dihydric phenol compounds such as catechol compounds, hydroquinone compounds, resorcinol compounds, anthrahydroquinone compounds, and polyphenols containing three or more phenolic hydroxyl groups. compound. Among these, a hydroquinone compound represented by the following general formula (7) is more preferable from the viewpoint of reducing properties.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(7)中、R、R、R10およびR11はそれぞれ独立に水素、ヒドロキシ基、または炭素数1~30の有機基を表す。ここで、「炭素数1~30の有機基」としては、炭素数1~30のアルキル基(直鎖状及び分枝状アルキル基を包含する)および/または炭素数6~30の芳香族炭化水素基が好ましい。これらの好ましい具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、フェニル基、ベンジル基、トリル基、ビフェニル基およびナフチル基を挙げることができる。 In general formula (7), R 8 , R 9 , R 10 and R 11 each independently represent hydrogen, a hydroxy group, or an organic group having 1 to 30 carbon atoms. Here, the "organic group having 1 to 30 carbon atoms" includes an alkyl group having 1 to 30 carbon atoms (including linear and branched alkyl groups) and/or an aromatic carbonized group having 6 to 30 carbon atoms. A hydrogen group is preferred. Preferred specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, n-heptyl group, isoheptyl group, n-octyl group, isooctyl group, n-nonyl group, isononyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl phenyl, benzyl, tolyl, biphenyl and naphthyl radicals.
 下記一般式(7)で表されるヒドロキノン化合物としては、例えば、ヒドロキノン、メチルヒドロキノン、エチルヒドロキノン、プロピルヒドロキノン、ブチルヒドロキノン、t-ブチルヒドロキノン、2,3-ジメチルヒドロキノン、2,3-ジエチルヒドロキノン、2,3-ジプロピルヒドロキノン、2,3-ジブチルヒドロキノン、2,3-ジt-ブチルヒドロキノン、2,5-ジメチルヒドロキノン、2,5-ジエチルヒドロキノン、2,5-ジプロピルヒドロキノン、2,5-ジブチルヒドロキノン、2,5-ジt-ブチルヒドロキノン、ヒドロキノンジメチルエーテル、ヒドロキノンジエチルエーテル、1,2,4-ベンゼントリオール、2,5-ジヒドロキシアセトフェノン、2,5-ジヒドロキシ安息香酸、フェニルヒドロキノン、2,6-ジメチルヒドロキノン、2,6-ジエチルヒドロキノン、2,6-ジプロピルヒドロキノン、2,6-ジブチルヒドロキノン、2,6-ジt-ブチルヒドロキノン、2,6-ジヒドロキシアセトフェノン、2,6-ジヒドロキシ安息香酸、フェニルヒドロキノン、フェニルヒドロキノン、2,5-t-アミルヒドロキノン等が挙げられる。これらの中でも、還元性、有機溶剤への溶解性、および保存安定性の観点から、t-ブチルヒドロキノン、2,3-ジメチルヒドロキノン、2,6-ジメチルヒドロキノン、2,5-t-アミルヒドロキノン、2,3-ジプロピルヒドロキノン、2,3-ジブチルヒドロキノン、2,3-ジt-ブチルヒドロキノン、2,5-ジプロピルヒドロキノン、2,5-ジブチルヒドロキノン、2,5-ジt-ブチルヒドロキノンが好ましい。 Hydroquinone compounds represented by the following general formula (7) include, for example, hydroquinone, methylhydroquinone, ethylhydroquinone, propylhydroquinone, butylhydroquinone, t-butylhydroquinone, 2,3-dimethylhydroquinone, 2,3-diethylhydroquinone, 2,3-dipropylhydroquinone, 2,3-dibutylhydroquinone, 2,3-di-t-butylhydroquinone, 2,5-dimethylhydroquinone, 2,5-diethylhydroquinone, 2,5-dipropylhydroquinone, 2,5 -dibutylhydroquinone, 2,5-di-t-butylhydroquinone, hydroquinone dimethyl ether, hydroquinone diethyl ether, 1,2,4-benzenetriol, 2,5-dihydroxyacetophenone, 2,5-dihydroxybenzoic acid, phenylhydroquinone, 2, 6-dimethylhydroquinone, 2,6-diethylhydroquinone, 2,6-dipropylhydroquinone, 2,6-dibutylhydroquinone, 2,6-di-t-butylhydroquinone, 2,6-dihydroxyacetophenone, 2,6-dihydroxybenzoin acid, phenylhydroquinone, phenylhydroquinone, 2,5-t-amylhydroquinone and the like. Among them, t-butylhydroquinone, 2,3-dimethylhydroquinone, 2,6-dimethylhydroquinone, 2,5-t-amylhydroquinone, 2,3-dipropylhydroquinone, 2,3-dibutylhydroquinone, 2,3-di-t-butylhydroquinone, 2,5-dipropylhydroquinone, 2,5-dibutylhydroquinone, 2,5-di-t-butylhydroquinone preferable.
 エンジオール基を含有する化合物としては、例えば、アスコルビン酸、α―ピリドイン、フラクトース、キシロース、グルコース、ジオキシアセトン、グリコールアルデヒド、ベンゾイン、モノオキシアセトン、ベンゾイルカルビノールが挙げられる。これらの中でも、還元性と有機溶剤への溶解性の観点から、グリコールアルデヒドが好ましい。 Compounds containing an enediol group include, for example, ascorbic acid, α-pyridoin, fructose, xylose, glucose, dioxyacetone, glycolaldehyde, benzoin, monooxyacetone, and benzoylcarbinol. Among these, glycolaldehyde is preferable from the viewpoint of reducing properties and solubility in organic solvents.
 樹脂組成物の固形分中に占める還元剤の含有量は、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。還元剤の含有量を0.1重量%以上とすることにより、有機銀化合物をより効果的に還元し、得られる隔壁をより黄色化させることができ、隔壁の青色光の遮光性が向上する。また、硬化後に膜中に残存する有機銀化合物の量が低減され、耐候性が向上する。 The content of the reducing agent in the solid content of the resin composition is preferably 0.01% by weight or more, more preferably 0.1% by weight or more. By setting the content of the reducing agent to 0.1% by weight or more, the organic silver compound can be reduced more effectively, the partition walls obtained can be further yellowed, and the blue light blocking properties of the partition walls are improved. . In addition, the amount of the organic silver compound remaining in the film after curing is reduced, improving the weather resistance.
 一方、樹脂組成物がネガ型感光性樹脂組成物の場合、還元剤の含有量が多すぎると、露光時に光重合開始剤の分解によって発生したラジカルを還元剤がトラップしてしまい、露光感度が低下する。そのため、樹脂組成物の固形分中に占める還元剤の含有量は、3.0重量%以下が好ましく、1.5重量%以下がより好ましい。 On the other hand, when the resin composition is a negative photosensitive resin composition, if the content of the reducing agent is too large, the reducing agent traps radicals generated by the decomposition of the photopolymerization initiator during exposure, resulting in decreased exposure sensitivity. descend. Therefore, the content of the reducing agent in the solid content of the resin composition is preferably 3.0% by weight or less, more preferably 1.5% by weight or less.
 本発明の樹脂組成物は、さらに、リン酸ポリエステルを含有することが好ましい。リン酸ポリエステルは、リン酸エステル基、ポリリン酸エステル基、またはリン酸基を含有するポリマーであれば特に限定されない。リン酸ポリエステルは、白色顔料および有機銀化合物の安定性を向上する機能を有する。リン酸ポリエステルは、顔料を分散する際の分散剤として使用することが好ましい。 The resin composition of the present invention preferably further contains phosphate polyester. The phosphate polyester is not particularly limited as long as it is a polymer containing a phosphate group, a polyphosphate group, or a phosphate group. Phosphoric polyester has the function of improving the stability of the white pigment and the organic silver compound. The phosphoric polyester is preferably used as a dispersing agent when dispersing the pigment.
 リン酸ポリエステルとしては、例えば、フォスファノール(登録商標)RA-600、ML-200、ML-220、RS-610、RB-410、RD-720N(以上、東邦化学工業株式会社製)、ソルスパース(登録商標)SOLSPERSE26000、SOLSPERSE36000、SOLSPERSE41000(以上、ZENECA社製)、“DISPERBYK”(登録商標)-110、111、142、145、180、“BYK”(登録商標)-110、111、W969、W9010(以上、ビックケミージャパン(株)製)、プライサーフ(登録商標)A-208B、A-208F、A-208N、A-219B、DB-01、M208F(以上、第一工業製薬株式会社製)、ディスパロン(登録商標)PW-36、DA-375(楠本化成株式会社製)などが挙げられる。これらを2種以上含有してもよい。これらの中でも、白色顔料および有機銀化合物の安定性を向上する観点から、フォスファノールML-220、DISPERBYK-110、DISPERBYK-111、プライサーフA-208Bが好ましい。 Examples of phosphoric polyester include Phosphanol (registered trademark) RA-600, ML-200, ML-220, RS-610, RB-410, RD-720N (manufactured by Toho Chemical Industry Co., Ltd.), Solsperse (registered trademark) SOLSPERSE26000, SOLSPERSE36000, SOLSPERSE41000 (manufactured by ZENECA), “DISPERBYK” (registered trademark)-110, 111, 142, 145, 180, “BYK” (registered trademark)-110, 111, W969, W9010 (above, manufactured by Big Chemie Japan Co., Ltd.), Price Surf (registered trademark) A-208B, A-208F, A-208N, A-219B, DB-01, M208F (above, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) , Disparon (registered trademark) PW-36, DA-375 (manufactured by Kusumoto Kasei Co., Ltd.) and the like. You may contain 2 or more types of these. Among these, Phosphanol ML-220, DISPERBYK-110, DISPERBYK-111 and PLYSURF A-208B are preferable from the viewpoint of improving the stability of the white pigment and the organic silver compound.
 樹脂組成物の固形分中に占めるリン酸ポリエステルの含有量は、0.50重量%以上が好ましく、1.0重量%以上がより好ましい。リン酸ポリエステルの含有量を0.50重量%以上とすることにより、白色顔料および有機銀化合物をより安定化する。 The content of the phosphate polyester in the solid content of the resin composition is preferably 0.50% by weight or more, more preferably 1.0% by weight or more. The white pigment and the organic silver compound are stabilized more by setting the content of the phosphoric acid polyester to 0.50% by weight or more.
 一方、樹脂組成物中に樹脂としてポリシロキサンを含有する場合、リン酸ポリエステルの含有量が多すぎると、リン酸ポリエステルの酸性基によってポリシロキサン同士の縮合反応が進行し、経時で粘度が上昇してしまう。そのため、樹脂組成物の固形分中に占めるリン酸ポリエステルの含有量は、15重量%以下が好ましく、10重量%以下がより好ましい。 On the other hand, when polysiloxane is contained as the resin in the resin composition, if the content of phosphate polyester is too high, the condensation reaction between polysiloxanes proceeds due to the acidic groups of the phosphate polyester, and the viscosity increases over time. end up Therefore, the content of the phosphate polyester in the solid content of the resin composition is preferably 15% by weight or less, more preferably 10% by weight or less.
 本発明の樹脂組成物は、さらに、撥液化合物を含有することが好ましい。撥液化合物とは、樹脂組成物に水や有機溶媒をはじく性質(撥液性能)を付与する化合物である。このような性質を有する化合物であれば特に限定されないが、具体的には、フルオロアルキル基を有する化合物が好ましく用いられる。撥液化合物を含有することにより、後述する隔壁(A-1)を形成後に、隔壁の頂部に撥液性能を付与することができる。これにより、例えば、後述する(B)色変換発光材料を含有する画素を形成する際に、それぞれの画素に、組成の異なる色変換発光材料を、容易に塗り分けることができる。 The resin composition of the present invention preferably further contains a liquid-repellent compound. A liquid-repellent compound is a compound that imparts the property of repelling water and organic solvents (liquid-repellent performance) to a resin composition. The compound is not particularly limited as long as it has such properties, but specifically, a compound having a fluoroalkyl group is preferably used. By containing the liquid-repellent compound, liquid-repellent performance can be imparted to the top of the partition walls (A-1) described later after the partition walls (A-1) are formed. As a result, for example, when forming pixels containing the (B) color-converting light-emitting material described later, color-converting light-emitting materials having different compositions can be easily applied to each pixel.
 撥液化合物は、光ラジカル重合性基を有する撥液化合物であることが好ましい。光ラジカル重合性基を有することにより、樹脂と強固な結合を形成することができるため、より容易に隔壁の頂部に撥液性能を付与することができる。 The liquid-repellent compound is preferably a liquid-repellent compound having a photoradical polymerizable group. By having a photoradical polymerizable group, it is possible to form a strong bond with a resin, so that liquid repellency can be more easily imparted to the top of the partition wall.
 光ラジカル重合性基を有する撥液化合物としては、例えば、“メガファック”(登録商標)RS-72-A、RS-75-A、RS-76-E、RS-56、RS-72-K、RS-75、RS-76-E、RS-76-NS、RS-76、RS-90(以上、商品名、DIC(株)製)等が挙げられる。なお、この場合、ネガ型感光性樹脂組成物の光硬化物からなる隔壁(A-1)中においては、光重合性基は光重合されていてもよい。 Liquid-repellent compounds having photoradical polymerizable groups include, for example, “Megafac” (registered trademark) RS-72-A, RS-75-A, RS-76-E, RS-56, RS-72-K , RS-75, RS-76-E, RS-76-NS, RS-76, and RS-90 (all trade names, manufactured by DIC Corporation). In this case, the photopolymerizable group may be photopolymerized in the partition walls (A-1) made of the photocured product of the negative photosensitive resin composition.
 隔壁の撥液性能を向上させ、インクジェット塗布性を向上させる観点から、樹脂組成物における撥液化合物の含有量は、固形分中の0.01重量%以上が好ましく、0.1重量%以上がより好ましい。一方、樹脂や白色顔料との相溶性を向上させる観点から、撥液化合物の含有量は、固形分中の10重量%以下が好ましく、5重量%以下がより好ましい。 From the viewpoint of improving the liquid-repellent performance of the partition wall and improving the inkjet applicability, the content of the liquid-repellent compound in the resin composition is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, based on the solid content. more preferred. On the other hand, from the viewpoint of improving compatibility with resins and white pigments, the content of the liquid-repellent compound is preferably 10% by weight or less, more preferably 5% by weight or less, based on the solid content.
 本発明の樹脂組成物は、さらに、黄色前駆体化合物以外の有機金属化合物を含有してもよい。黄色前駆体化合物以外の有機金属化合物としては、有機白金化合物または有機パラジウム化合物が好ましい。有機白金化合物または有機パラジウム化合物は、露光工程および/または加熱工程において、分解・凝集することにより黒色粒子となるため、パターン加工性を悪化させることなく、膜の遮光性をより向上させることができる。 The resin composition of the present invention may further contain an organometallic compound other than the yellow precursor compound. As the organometallic compound other than the yellow precursor compound, an organoplatinum compound or an organopalladium compound is preferred. The organoplatinum compound or the organopalladium compound is decomposed and aggregated into black particles in the exposure step and/or the heating step, so that the light shielding property of the film can be further improved without deteriorating the pattern workability. .
 有機白金化合物としては、例えば、ビス(アセチルアセトナト)白金、ジクロロビス(トリフェニルホスフィン)白金、ジクロロビス(ベンゾニトリル)白金などが挙げられる。有機パラジウム化合物としては、例えば、ビス(アセチルアセトナト)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロビス(ベンゾニトリル)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、ジベンジリデンアセトンパラジウムなどが挙げられる。これらを2種以上含有してもよい。 Examples of organic platinum compounds include bis(acetylacetonato)platinum, dichlorobis(triphenylphosphine)platinum, and dichlorobis(benzonitrile)platinum. Examples of organic palladium compounds include bis(acetylacetonato)palladium, dichlorobis(triphenylphosphine)palladium, dichlorobis(benzonitrile)palladium, tetrakis(triphenylphosphine)palladium, and dibenzylideneacetonepalladium. You may contain 2 or more types of these.
 本発明の樹脂組成物において、固形分中に占める黄色前駆体化合物以外の有機金属化合物の含有量は、0.2~5重量%が好ましい。0.2重量%以上とすることにより、得られる膜の遮光性をより向上させることができる。0.5重量%以上がより好ましい。一方、黄色前駆体化合物以外の有機金属化合物の含有量を5重量%以下とすることにより、反射率をより向上させることができる。3重量%以下がより好ましい。 In the resin composition of the present invention, the content of the organometallic compound other than the yellow precursor compound in the solid content is preferably 0.2 to 5% by weight. By making it 0.2% by weight or more, the light shielding property of the obtained film can be further improved. 0.5% by weight or more is more preferable. On the other hand, by setting the content of the organometallic compound other than the yellow precursor compound to 5% by weight or less, the reflectance can be further improved. 3% by weight or less is more preferable.
 また、本発明の樹脂組成物は、必要に応じて、重合禁止剤、界面活性剤、密着性改良剤などを含有してもよい。 In addition, the resin composition of the present invention may contain a polymerization inhibitor, a surfactant, an adhesion improver, etc., if necessary.
 本発明の樹脂組成物中に界面活性剤を含有することにより、塗布時のフロー性を向上させることができる。界面活性剤としては、例えば、“メガファック”(登録商標)F142D、F172、F173、F183、F445、F470、F475、F477(以上、商品名、大日本インキ化学工業(株)製)、NBX-15、FTX-218(以上、商品名、(株)ネオス製)などのフッ素系界面活性剤;“BYK”(登録商標)-333、301、331、345、307(以上、商品名、ビックケミージャパン(株)製)などのシリコーン系界面活性剤;ポリアルキレンオキシド系界面活性剤;ポリ(メタ)アクリレート系界面活性剤などが挙げられる。これらを2種以上含有してもよい。 By including a surfactant in the resin composition of the present invention, it is possible to improve flowability during application. Examples of surfactants include "Megafac" (registered trademark) F142D, F172, F173, F183, F445, F470, F475, F477 (trade names, manufactured by Dainippon Ink and Chemicals, Inc.), NBX- 15, fluorine-based surfactants such as FTX-218 (trade name, manufactured by Neos Co., Ltd.); Japan Co., Ltd.), polyalkylene oxide surfactants, poly(meth)acrylate surfactants, and the like. You may contain 2 or more types of these.
 本発明の樹脂組成物中に密着性改良剤を含有することにより、下地基板との密着性が向上し、信頼性の高い隔壁を得ることができる。密着性改良剤としては、例えば、脂環式エポキシ化合物や、シランカップリング剤などが挙げられる。これらの中でも、耐熱性の観点から、脂環式エポキシ化合物が好ましい。 By including an adhesion improving agent in the resin composition of the present invention, the adhesion to the underlying substrate is improved, and highly reliable partition walls can be obtained. Examples of adhesion improvers include alicyclic epoxy compounds and silane coupling agents. Among these, alicyclic epoxy compounds are preferred from the viewpoint of heat resistance.
 脂環式エポキシ化合物としては、例えば、3’,4’-エポキシシクロヘキシメチル-3,4-エポキシシクロヘキサンカルボキシレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、ε-カプロラクトン変性3’,4’-エポキシシクロヘキシルメチル3’,4’-エポキシシクロヘキサンカルボキシレート、1,2-エポキシ-4-ビニルシクロヘキサン、ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン、3,4-エポキシシクロヘキシルメチルメタアクリレート、等が挙げられる。これらを2種以上含有してもよい。 Examples of alicyclic epoxy compounds include 3′,4′-epoxycyclohexymethyl-3,4-epoxycyclohexanecarboxylate, 2,2-bis(hydroxymethyl)-1-butanol and 1,2-epoxy- 4-(2-oxiranyl)cyclohexane adduct, ε-caprolactone-modified 3′,4′-epoxycyclohexylmethyl 3′,4′-epoxycyclohexane carboxylate, 1,2-epoxy-4-vinylcyclohexane, butanetetracarboxylic acid tetra(3,4-epoxycyclohexylmethyl)-modified ε-caprolactone, 3,4-epoxycyclohexylmethyl methacrylate, and the like. You may contain 2 or more types of these.
 本発明の樹脂組成物中における密着性改良剤の含有量は、下地基板との密着性をより向上させる観点から、固形分中の0.1重量%以上が好ましく、1重量%以上がより好ましい。一方、密着性改良剤の含有量は、パターン加工性の観点から、固形分中の20重量%以下が好ましく、10重量%以下がより好ましい。 The content of the adhesion improving agent in the resin composition of the present invention is preferably 0.1% by weight or more, more preferably 1% by weight or more, based on the solid content, from the viewpoint of further improving the adhesion to the underlying substrate. . On the other hand, the content of the adhesion improver is preferably 20% by weight or less, more preferably 10% by weight or less, in the solid content from the viewpoint of pattern processability.
 本発明の樹脂組成物は、さらに、溶剤を含有することが好ましい。溶媒は、樹脂組成物の粘度を塗布に適した範囲に調整し、隔壁の均一性を向上させる機能を有する。溶媒としては、大気圧下の沸点が150℃を超えて250℃以下の溶媒と、150℃以下の溶媒を組み合わせることが好ましい。 The resin composition of the present invention preferably further contains a solvent. The solvent has the function of adjusting the viscosity of the resin composition to a range suitable for application and improving the uniformity of the partition walls. As the solvent, it is preferable to combine a solvent having a boiling point of more than 150° C. and 250° C. or less under atmospheric pressure and a solvent having a boiling point of 150° C. or less.
 溶媒としては、例えば、イソプロパノール、ジアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールエチルメチルエーテルなどのエーテル類;メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族あるいは脂肪族炭化水素、γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなどを挙げることができる。これらを2種以上含有してもよい。これらの中でも、塗布性の観点から、大気圧下の沸点が150℃を超えて250℃以下の溶媒としてジアセトンアルコールまたはジエチレングリコールエチルメチルエーテルと、150℃以下の溶媒としてプロピレングリコールモノメチルエーテルを組み合わせることが好ましい。 Examples of solvents include alcohols such as isopropanol and diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol. Ethers such as monopropyl ether, propylene glycol monobutyl ether, and diethylene glycol ethyl methyl ether; Ketones such as methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, and cyclopentanone; dimethylformamide, dimethylacetamide amides such as ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, lactic acid Acetates such as ethyl and butyl lactate; aromatic or aliphatic hydrocarbons such as toluene, xylene, hexane and cyclohexane; γ-butyrolactone, N-methyl-2-pyrrolidone and dimethylsulfoxide; You may contain 2 or more types of these. Among these, diacetone alcohol or diethylene glycol ethyl methyl ether as a solvent with a boiling point of more than 150 ° C. and 250 ° C. or less under atmospheric pressure, and propylene glycol monomethyl ether as a solvent with a boiling point of 150 ° C. or less are combined from the viewpoint of applicability. is preferred.
 溶媒の含有量は、塗布方法などに応じて任意に設定することができる。例えば、スピンコーティングにより膜形成を行う場合には、溶媒の含有量は、樹脂組成物中、50重量%以上、95重量%以下とすることが一般的である。 The content of the solvent can be arbitrarily set according to the application method. For example, when forming a film by spin coating, the content of the solvent is generally 50% by weight or more and 95% by weight or less in the resin composition.
 本発明の樹脂組成物は、例えば、前述の樹脂、感光剤、黄色前駆体化合物、遮光顔料、および必要に応じてその他成分を混合することにより製造することができる。 The resin composition of the present invention can be produced, for example, by mixing the aforementioned resin, photosensitizer, yellow precursor compound, light-shielding pigment, and, if necessary, other components.
 次に、本発明の遮光膜について説明する。 Next, the light shielding film of the present invention will be explained.
 本発明の遮光膜は、前述の本発明の樹脂組成物を硬化して得られる。本発明の遮光膜は、後述の隔壁(A-1)の他、カバー基材用加飾パターンなどのOGSタイプのタッチパネルにおける遮光パターンとして好適に用いることができる。遮光膜の膜厚は、5μm以上が好ましく、10μm以上がさらに好ましい。 The light shielding film of the present invention is obtained by curing the aforementioned resin composition of the present invention. The light-shielding film of the present invention can be suitably used as a light-shielding pattern in an OGS type touch panel, such as a decorative pattern for a cover base material, in addition to the barrier ribs (A-1) described later. The film thickness of the light shielding film is preferably 5 μm or more, more preferably 10 μm or more.
 次に、本発明の遮光膜の製造方法について、例を挙げて説明する。本発明の遮光膜の製造方法は、下地基板上に本発明の樹脂組成物を塗布し、乾燥して乾燥膜を得る製膜工程、得られた乾燥膜をパターン露光する露光工程、露光後の乾燥膜における現像液に可溶な部分を溶解除去する現像工程および現像後の乾燥膜を加熱することにより硬化させる加熱工程をこの順に有し、前記加熱工程において、現像後の乾燥膜を100℃以上250℃以下の温度で加熱することにより、SCI方式で測定した膜厚10μmあたりのb*値を10以上上昇させることが好ましい。 Next, the method for manufacturing the light-shielding film of the present invention will be described with an example. The method for producing a light-shielding film of the present invention includes a film-forming step of applying the resin composition of the present invention on a base substrate and drying to obtain a dry film, an exposure step of pattern-exposing the obtained dry film, and a It has a developing step of dissolving and removing the portion soluble in the developer in the dry film and a heating step of curing the dried film after development by heating in this order, and in the heating step, the dried film after development is heated to 100 ° C It is preferable to increase the b* value per 10 μm of film thickness measured by the SCI method by 10 or more by heating at a temperature of 250° C. or more.
 本発明の遮光膜の製造方法は、前記加熱工程において、現像後の乾燥膜を100℃以上250℃以下の温度で加熱することにより、SCI方式で測定した膜厚10μmあたりのb*値を10以上上昇させることを特徴とする。加熱工程時の加熱温度は、b*値をより向上する観点から、150℃以上が好ましく、180℃以上がより好ましい。 In the method for producing a light-shielding film of the present invention, in the heating step, the dry film after development is heated at a temperature of 100° C. or more and 250° C. or less, so that the b* value per 10 μm of film thickness measured by the SCI method is 10. It is characterized in that it is raised more than From the viewpoint of further improving the b* value, the heating temperature in the heating step is preferably 150° C. or higher, more preferably 180° C. or higher.
 加熱工程時の加熱温度は、加熱する膜のクラック発生を抑制する観点から、250℃以下が好ましく、240℃以下がより好ましい。加熱時間は15分間~2時間が好ましい。 The heating temperature during the heating step is preferably 250°C or lower, more preferably 240°C or lower, from the viewpoint of suppressing the generation of cracks in the heated film. The heating time is preferably 15 minutes to 2 hours.
 本発明の樹脂組成物から形成される遮光膜は、露光時には露光光(波長領域365nm~436nm)の透過率が高く、かつ、パターン形成後にb*値および波長領域400nm~500nmのOD値が上昇することから、露光工程においては底部まで十分に光硬化させて、後述の好ましいテーパー角度を有する隔壁を得ることができる。加えて、加熱工程前は、青色顔料および紫色顔料によって波長領域500nm~630nm(緑色光~赤色光)の遮光性が高く、加熱工程後には、さらに、波長領域400nm~500nm(青色光)における遮光性が向上することから、可視光全体の高い遮光性と反射性を両立した灰色隔壁を得ることができる。 The light-shielding film formed from the resin composition of the present invention has a high transmittance of exposure light (wavelength range of 365 nm to 436 nm) during exposure, and the b* value and the OD value in the wavelength range of 400 nm to 500 nm are increased after pattern formation. Therefore, in the exposure step, the bottom portion is sufficiently photo-cured, and partition walls having a preferable taper angle described later can be obtained. In addition, before the heating process, the blue pigment and the purple pigment have a high light blocking effect in the wavelength range of 500 nm to 630 nm (green light to red light), and after the heating process, the light blocking effect in the wavelength range of 400 nm to 500 nm (blue light). Since the properties are improved, it is possible to obtain gray partition walls having both high light-shielding properties and high reflectance for the entire visible light.
 前記製膜工程における樹脂組成物の塗布方法としては、例えば、スリットコート法、スピンコート法などが挙げられる。乾燥装置としては、例えば、熱風オーブンやホットプレートなどが挙げられる。乾燥温度は80~120℃が好ましく、乾燥時間は1~60分間が好ましい。本発明の樹脂組成物は、100℃以上の加熱条件で膜の透過率が変化することから、乾燥温度は80~100℃がより好ましい。 Examples of methods for applying the resin composition in the film forming process include slit coating and spin coating. Examples of the drying device include a hot air oven and a hot plate. The drying temperature is preferably 80 to 120°C, and the drying time is preferably 1 to 60 minutes. In the resin composition of the present invention, the drying temperature is more preferably 80 to 100°C because the transmittance of the film changes under heating conditions of 100°C or higher.
 露光工程は、露光により乾燥膜の必要な部分を光硬化させて、または、乾燥膜の不要な部分を光分解させて、乾燥膜の任意の部分を、現像液に可溶とする工程である。露光工程においては、所定の開口部を有するフォトマスクを介して露光してもよいし、フォトマスクを用いずに、レーザー光等を用いて任意のパターンを直接描画してもよい。 The exposure step is a step of photocuring a necessary portion of the dry film by exposure or photodegrading an unnecessary portion of the dry film to make any portion of the dry film soluble in a developer. . In the exposure step, exposure may be performed through a photomask having a predetermined opening, or an arbitrary pattern may be directly drawn using a laser beam or the like without using a photomask.
 露光装置としては、例えば、プロキシミティ露光機が挙げられる。露光工程において照射する活性光線としては、例えば、近赤外線、可視光線、紫外線が挙げられ、紫外線が好ましい。また、その光源としては、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプ、殺菌灯などが挙げられ、高圧水銀灯、超高圧水銀灯が好ましい。 An example of an exposure device is a proximity exposure machine. The actinic rays irradiated in the exposure step include, for example, near-infrared rays, visible rays, and ultraviolet rays, and ultraviolet rays are preferred. Examples of the light source include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, halogen lamps, germicidal lamps, etc., and high-pressure mercury lamps and ultra-high-pressure mercury lamps are preferred.
 露光条件は露光する乾燥膜の厚さにより適宜選択することができる。一般的に、1~100mW/cmの出力の超高圧水銀灯を用いて、1~10,000mJ/cmの露光量で露光することが好ましい。 Exposure conditions can be appropriately selected depending on the thickness of the dry film to be exposed. In general, it is preferable to perform exposure using an ultra-high pressure mercury lamp with an output of 1 to 100 mW/cm 2 and an exposure amount of 1 to 10,000 mJ/cm 2 .
 現像工程は、露光後の乾燥膜における現像液に可溶な部分を現像液で溶解除去して、現像液に不溶な部分のみが残存した、任意のパターン形状にパターン形成された乾燥膜(以下、加熱前パターンと呼ぶ)を得る工程である。パターン形状としては、例えば格子状、ストライプ状、ホール状などの形状が挙げられる。 In the development process, the developer-soluble portion of the dry film after exposure is dissolved and removed with the developer, leaving only the developer-insoluble portion, and the dry film patterned in an arbitrary pattern shape (hereinafter referred to as , which is called a pre-heating pattern). The pattern shape includes, for example, a lattice shape, a stripe shape, a hole shape, and the like.
 現像方法としては、例えば、浸漬法、スプレー法、ブラシ法などが挙げられる。 Examples of developing methods include immersion, spraying, and brushing.
 現像液としては、露光後の乾燥膜における不要な部分を溶解することが可能な溶媒を適宜選択することができ、水を主成分とする水溶液が好ましい。例えば、樹脂組成物がカルボキシル基を有するポリマーを含有する場合、現像液としては、アルカリ水溶液が好ましい。アルカリ水溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、水酸化カルシウム等の無機アルカリ水溶液;テトラメチルアンモニウムヒドロキサイド、トリメチルベンジルアンモニウムヒドロキサイド等の有機アルカリ水溶液などが挙げられる。これらの中でも、解像度を向上させる観点から、水酸化カリウム水溶液または水酸化テトラメチルアンモニウム水溶液が好ましい。アルカリ水溶液の濃度は、現像性を向上させる観点から、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。一方、アルカリ水溶液の濃度は、加熱前パターンの剥離や腐食を抑制する観点から、5重量%以下が好ましく、1重量%以下がより好ましい。また、解像度を向上させる観点から、現像液に界面活性剤を含有してもよい。現像温度は、工程管理を容易にするため、20~50℃が好ましい。 As the developer, a solvent capable of dissolving the unnecessary portion of the dry film after exposure can be appropriately selected, and an aqueous solution containing water as the main component is preferable. For example, when the resin composition contains a polymer having a carboxyl group, the developer is preferably an alkaline aqueous solution. Examples of alkaline aqueous solutions include inorganic alkaline aqueous solutions such as sodium hydroxide, potassium hydroxide, sodium carbonate and calcium hydroxide; organic alkaline aqueous solutions such as tetramethylammonium hydroxide and trimethylbenzylammonium hydroxide. Among these, a potassium hydroxide aqueous solution or a tetramethylammonium hydroxide aqueous solution is preferable from the viewpoint of improving resolution. From the viewpoint of improving developability, the concentration of the alkaline aqueous solution is preferably 0.01% by weight or more, more preferably 0.1% by weight or more. On the other hand, the concentration of the alkaline aqueous solution is preferably 5% by weight or less, more preferably 1% by weight or less, from the viewpoint of suppressing peeling and corrosion of the pattern before heating. Moreover, from the viewpoint of improving the resolution, the developer may contain a surfactant. The developing temperature is preferably 20 to 50° C. in order to facilitate process control.
 加熱工程は、現像工程で形成された加熱前パターンを加熱硬化させる工程である。加熱装置としては、例えば、ホットプレート、オーブン等が挙げられる。加熱装置の雰囲気は特に限定されず、窒素下、空気下などが挙げられる。好ましい加熱温度および加熱時間は先述の通りである。 The heating process is a process of heating and curing the preheated pattern formed in the developing process. Examples of heating devices include hot plates and ovens. The atmosphere of the heating device is not particularly limited, and examples thereof include nitrogen and air. Preferred heating temperature and heating time are as described above.
 次に、本発明の隔壁付き基板について説明する。 Next, the substrate with partition walls of the present invention will be described.
 本発明の隔壁付き基板は、下地基板上に、本発明の樹脂組成物によって(A-1)パターン形成された隔壁を有する隔壁付き基板であって、波長領域430~630nmにおける厚み10μmあたりの反射率が20%~50%の範囲内であって、かつ、波長領域430~630nmの範囲における厚み10μmあたりのOD値が1.5~3.0の範囲内であることが好ましい。 The substrate with partition walls of the present invention is a substrate with partition walls having (A-1) patterned partition walls formed by the resin composition of the present invention on a base substrate, wherein the reflection per 10 μm thickness in the wavelength region of 430 to 630 nm It is preferable that the ratio is in the range of 20% to 50% and the OD value per 10 μm of thickness in the wavelength range of 430 to 630 nm is in the range of 1.5 to 3.0.
 本発明の隔壁付き基板は、下地基板上に(A-1)パターン形成された隔壁(以下、「隔壁(A-1)」と記載する場合がある)を有する。下地基板は、隔壁付き基板における支持体としての機能を有する。 The substrate with partition walls of the present invention has (A-1) patterned partition walls (hereinafter sometimes referred to as "partition walls (A-1)") on an underlying substrate. The underlying substrate functions as a support for the substrate with partition walls.
 本発明の隔壁付き基板は、(A-1)パターン形成された隔壁によって隔てられて配列した(B)色変換発光材料を含有する画素層をさらに有することが好ましい。 The substrate with partitions of the present invention preferably further has (A-1) a pixel layer containing (B) a color-converting luminescent material arranged and separated by patterned partitions.
 隔壁は、後述する色変換発光材料を含有する画素を有する場合、隣接する画素間における光の混色を抑制する機能を有する。 When pixels containing a color-converting luminescent material, which will be described later, are included in the partition, the partition has a function of suppressing color mixture of light between adjacent pixels.
 本発明の隔壁付き基板において、隔壁(A-1)は、波長領域430~630nmにおける厚み10μmあたりの反射率が20%~50%の範囲内であって、かつ、波長領域430~630nmの範囲における厚み10μmあたりのOD値が1.5~3.0の範囲内であることが好ましい。波長領域430~630nmにおける厚み10μmあたりの反射率を20%以上、OD値を3.0以下とすることで、(A-1)隔壁側面における反射を利用して表示装置の輝度を向上させることができる。波長領域430~630nmにおける厚み10μmあたりの反射率を50%以下、OD値を1.5以上とすることで、隔壁(A-1)を透過する光を抑制して隣接画素間における光の混色を抑制することができる。 In the substrate with partition walls of the present invention, the partition walls (A-1) have a reflectance of 20% to 50% per 10 μm thickness in the wavelength range of 430 to 630 nm, and the wavelength range of 430 to 630 nm. It is preferable that the OD value per 10 μm of thickness is in the range of 1.5 to 3.0. By setting the reflectance per 10 μm of thickness in the wavelength region of 430 to 630 nm to 20% or more and the OD value to 3.0 or less, (A-1) the luminance of the display device is improved by utilizing the reflection on the side surface of the partition wall. can be done. By setting the reflectance per 10 μm of thickness in the wavelength region of 430 to 630 nm to 50% or less and the OD value to 1.5 or more, light passing through the partition wall (A-1) is suppressed and color mixture of light occurs between adjacent pixels. can be suppressed.
 また、本発明の隔壁付き基板は、下地基板上に、本発明の樹脂組成物によって隔壁(A-1)パターン形成された隔壁を有し、SCI方式で測定した膜厚10μmあたりのL*値が50~70、a*値が-5.0~5.0、b*値が-5.0~5.0であることが好ましい。L*値、a*値、b*値がこの範囲内であることで、可視光全体(波長領域430~630nm)において、隔壁(A-1)の反射率とOD値の波長依存性が少なくニュートラルな灰色隔壁を与え、ディスプレイの色特性を向上することができる。 Further, the substrate with partition walls of the present invention has partition walls (A-1) pattern formed by the resin composition of the present invention on the base substrate, and the L* value per 10 μm of film thickness measured by the SCI method is is 50 to 70, a* value is -5.0 to 5.0, and b* value is -5.0 to 5.0. When the L* value, a* value, and b* value are within this range, the wavelength dependence of the reflectance and OD value of the partition wall (A-1) is small in the entire visible light range (wavelength range 430 to 630 nm). A neutral gray barrier can be provided to improve the color properties of the display.
 図1に、パターン形成された隔壁を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2を有する。 FIG. 1 shows a cross-sectional view of one embodiment of the substrate with partitions of the present invention having patterned partitions. A base substrate 1 has partition walls 2 patterned thereon.
 また、本発明の隔壁付き基板は、下地基板上に、(A-1)パターン形成された隔壁を有する隔壁付き基板であって、前記パターン形成された隔壁が、樹脂、白色顔料、青色顔料、紫色顔料、酸化銀および/または銀粒子を含有することが好ましい。 Further, the substrate with partition walls of the present invention is a substrate with partition walls having (A-1) pattern-formed partition walls on a base substrate, wherein the pattern-formed partition walls are made of a resin, a white pigment, a blue pigment, It preferably contains violet pigment, silver oxide and/or silver particles.
 樹脂、白色顔料、青色顔料、紫色顔料、酸化銀、銀粒子は、上記で説明したものを用いることができる。 For the resin, white pigment, blue pigment, purple pigment, silver oxide, and silver particles, those described above can be used.
 <下地基板>
 下地基板としては、例えば、ガラス板、樹脂板、樹脂フイルム、TFTやPCBなどの駆動基板などが挙げられる。ガラス板の材質としては、無アルカリガラスが好ましい。樹脂板および樹脂フイルムの材質としては、ポリエステル、(メタ)アクリルポリマ、透明ポリイミド、ポリエーテルスルフォン等が好ましい。ガラス板および樹脂板の厚みは、1mm以下が好ましく、0.8mm以下が好ましい。樹脂フイルムの厚みは、100μm以下が好ましい。
<Underlying substrate>
Examples of the base substrate include a glass plate, a resin plate, a resin film, and a drive substrate such as a TFT or PCB. Non-alkali glass is preferable as the material of the glass plate. Polyester, (meth)acrylic polymer, transparent polyimide, polyethersulfone and the like are preferable as materials for the resin plate and the resin film. The thickness of the glass plate and the resin plate is preferably 1 mm or less, more preferably 0.8 mm or less. The thickness of the resin film is preferably 100 μm or less.
 なお、下地基板としてTFTやPCBなどの駆動基板を用いる場合、下地基板上に、さらに後述する有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源を有することが好ましい。 When a driving substrate such as a TFT or PCB is used as the base substrate, it is preferable to have a light emitting source selected from organic EL cells, mini-LED cells and micro-LED cells, which will be described later, on the base substrate.
 <隔壁(A-1)>
 隔壁(A-1)の厚みとは、隔壁(A-1)の高さおよび/または隔壁(A-1)の幅を指す。隔壁(A-1)の高さとは、隔壁(A-1)の下地基板と垂直な方向(高さ方向)の長さを指す。図1に示す隔壁付き基板の場合、隔壁2の高さは符号Hで表される。また、隔壁(A-1)の幅とは、隔壁(A-1)の下地基板と水平な方向の長さを指す。図1に示す隔壁付き基板の場合、隔壁2の幅は符号Lで表される。なお、本明細書において、「高さ」は「厚み」と呼ぶこともある。
<Partition (A-1)>
The thickness of the partition (A-1) refers to the height of the partition (A-1) and/or the width of the partition (A-1). The height of the partition (A-1) refers to the length of the partition (A-1) in the direction perpendicular to the base substrate (height direction). In the case of the substrate with partition walls shown in FIG. 1, the height of the partition walls 2 is represented by symbol H. Further, the width of the partition (A-1) refers to the length of the partition (A-1) in the direction horizontal to the base substrate. In the case of the substrate with partition walls shown in FIG. 1, the width of the partition walls 2 is represented by symbol L. In addition, in this specification, "height" may be called "thickness."
 本発明においては、隔壁側面における反射率が表示装置の輝度向上に、遮光性が混色抑制に、それぞれ寄与すると考えられる。一方で、厚みあたりの反射率およびOD値は、高さ方向、幅方向によらず同じであると考えられるため、本発明においては、隔壁の厚みあたりの反射率およびOD値に着目する。なお、後述する通り、隔壁(A-1)の厚みは0.5~100μmが好ましく、幅は1~100μmが好ましい。そこで、本発明においては、隔壁(A-1)の厚みの代表値として10μmを選択し、厚み10μmあたりの反射率およびOD値に着目した。 In the present invention, it is considered that the reflectance on the side surface of the partition wall contributes to the improvement of the brightness of the display device, and the light shielding property contributes to the suppression of color mixture. On the other hand, since the reflectance and OD value per thickness are considered to be the same regardless of the height direction and width direction, the present invention focuses on the reflectance and OD value per thickness of the partition walls. As will be described later, the partition wall (A-1) preferably has a thickness of 0.5 to 100 μm and a width of 1 to 100 μm. Therefore, in the present invention, 10 μm is selected as a representative value of the thickness of the partition (A-1), and the reflectance and OD value per 10 μm of thickness are focused on.
 波長領域430~630nmにおける厚み10μmあたりの反射率が20%未満であると、隔壁側面における反射が小さくなり、表示装置の輝度が不十分となる。波長領域430~630nmにおける厚み10μmあたりの反射率は、20%以上が好ましく、25%以上がより好ましく、30%以上がさらに好ましい。波長領域430~630nmにおける厚み10μmあたりの反射率が高いほど、隔壁側面における可視光の反射が大きくなるため、隔壁間に後述の(B)色変換発光材料を含有する画素を含有する場合、色変換効率が向上し、表示装置の輝度を向上できる。 If the reflectance per 10 μm of thickness in the wavelength region of 430 to 630 nm is less than 20%, the reflection on the side walls of the barrier ribs becomes small, resulting in insufficient brightness of the display device. The reflectance per 10 μm thickness in the wavelength region of 430 to 630 nm is preferably 20% or more, more preferably 25% or more, and even more preferably 30% or more. The higher the reflectance per 10 μm thickness in the wavelength region of 430 to 630 nm, the greater the reflection of visible light on the side walls of the partition walls. The conversion efficiency is improved, and the brightness of the display device can be improved.
 波長領域430~630nmにおける厚み10μmあたりのOD値が1.5未満であると、隣接画素に可視光が漏れることで、光の混色が発生しやすくなる。波長領域430~630nmにおける厚み10μmあたりのOD値は、1.5以上が好ましく、1.7以上がより好ましく、2.0以上がさらに好ましい。波長領域430~630nmにおける厚み10μmあたりのOD値が高いほど、隔壁側面における可視光の遮光性が大きくなるため、隔壁間に後述の(B)色変換発光材料を含有する画素を含有する場合、画素内で発光した光を効率的に遮光して混色を防止し、表示装置のコントラストを向上できる。 If the OD value per 10 μm of thickness in the wavelength region of 430 to 630 nm is less than 1.5, visible light leaks into adjacent pixels, and color mixture of light tends to occur. The OD value per 10 μm thickness in the wavelength region of 430 to 630 nm is preferably 1.5 or more, more preferably 1.7 or more, and even more preferably 2.0 or more. The higher the OD value per 10 μm thickness in the wavelength region of 430 to 630 nm, the greater the light-shielding property of the side walls of the barrier ribs against visible light. It is possible to efficiently block the light emitted in the pixel, prevent color mixture, and improve the contrast of the display device.
 また、隔壁(A-1)は、SCI方式で測定した膜厚10μmあたりのL*値が50~70、a*値が-5.0~5.0、b*値が-5.0~5.0であることを特徴とする。SCI方式で測定した膜厚10μmあたりのL*値が50未満であると、隔壁側面における反射が小さくなり、表示装置の輝度が不十分となる。SCI方式で測定した膜厚10μmあたりのa*値が-5.0未満であると隔壁が緑色を呈し、a*値が5.0を超えると隔壁が赤色を呈することで、ディスプレイの色特性を悪化させる。また、SCI方式で測定した膜厚10μmあたりのb*値が-5.0未満であると隔壁が青色を呈し、b*値が5.0を超えると隔壁が黄色を呈することで、ディスプレイの色特性を悪化させる原因となる。すなわち、SCI方式で測定した膜厚10μmあたりのL*値が50~70、a*値が-5.0~5.0、b*値が-5.0~5.0とすることで、可視光全体(波長領域430~630nm)において、隔壁(A-1)の反射率とOD値の波長依存性が少なくニュートラルな灰色隔壁を与え、ディスプレイの色特性を向上することができる。 In addition, the partition wall (A-1) has an L* value of 50 to 70, an a* value of -5.0 to 5.0, and a b* value of -5.0 to -5.0 per 10 μm film thickness measured by the SCI method. 5.0. If the L* value per 10 μm of film thickness measured by the SCI method is less than 50, the reflection on the side surface of the partition wall becomes small, resulting in insufficient luminance of the display device. When the a* value per 10 µm film thickness measured by the SCI method is less than -5.0, the barrier ribs exhibit green color, and when the a* value exceeds 5.0, the barrier ribs exhibit red color characteristics. exacerbate In addition, when the b* value per 10 μm of film thickness measured by the SCI method is less than −5.0, the partition wall exhibits a blue color, and when the b* value exceeds 5.0, the partition wall exhibits a yellow color. It causes deterioration of color characteristics. That is, by setting the L* value to 50 to 70, the a* value to −5.0 to 5.0, and the b* value to −5.0 to 5.0 per 10 μm of film thickness measured by the SCI method, In the entire visible light range (wavelength region 430 to 630 nm), the reflectance and OD value of the barrier rib (A-1) are less dependent on the wavelength, giving a neutral gray barrier rib and improving the color characteristics of the display.
 隔壁(A-1)の波長領域430~630nmにおける厚み10μmあたりの反射率と、膜厚10μmあたりのL*値、a*値、およびb*値は、厚み10μmの隔壁(A-1)について、上面から分光測色計(例えば、コニカミノルタ(株)製CM-2600d)を用いて、SCIモードにより測定することができる。ただし、測定に十分な面積を確保できない場合や、厚み10μmの測定サンプルが採取できない場合において、隔壁(A-1)の組成が既知である場合には、隔壁(A-1)と同組成の厚み10μmのベタ膜を作製し、隔壁(A-1)にかえてベタ膜について同様に反射率を測定することにより、厚み10μmあたりの反射率を求めてもよい。例えば、隔壁(A-1)を形成した材料を用いて、厚みを10μmとし、パターン形成しないこと以外は隔壁(A-1)の形成と同じ加工条件によりベタ膜を作製し、得られたベタ膜について、上面から、同様に反射率を測定してもよい。 The reflectance per 10 μm thickness in the wavelength region of 430 to 630 nm of the partition wall (A-1) and the L* value, a* value, and b* value per 10 μm film thickness are obtained for the partition wall (A-1) having a thickness of 10 μm. , using a spectrophotometer (for example, CM-2600d manufactured by Konica Minolta Co., Ltd.) from above in SCI mode. However, when a sufficient area for measurement cannot be secured, or when a measurement sample with a thickness of 10 μm cannot be collected, and the composition of the partition wall (A-1) is known, the same composition as the partition wall (A-1) A solid film having a thickness of 10 μm may be prepared, and the reflectance per 10 μm thickness may be obtained by similarly measuring the reflectance of the solid film instead of the partition wall (A-1). For example, using the material for forming the partition wall (A-1), a solid film was prepared under the same processing conditions as for the formation of the partition wall (A-1) except that the thickness was 10 μm and no pattern was formed. Reflectance may be similarly measured from the top surface of the film.
 隔壁(A-1)の波長領域430~630nmにおける厚み10μmあたりのOD値は、厚み10μmの隔壁(A-1)について、上面から光学濃度計・分光光度計(例えば、日立ハイテクサイエンス製U-4100)を用いて透過率を測定し、下記式(1)により算出することができる。ただし、測定に十分な面積を確保できない場合や、厚み10μmの測定サンプルが採取できない場合において、隔壁(A-1)の組成が既知である場合には、反射率の測定と同様に、隔壁(A-1)と同組成の厚み10μmのベタ膜を作製し、隔壁(A-1)にかえてベタ膜について同様にOD値を測定することにより、厚み10μmあたりのOD値を求めてもよい。
OD値 = -log10(T/100) ・・・ (1)
T : 透過率。
The OD value per 10 μm thickness in the wavelength region of 430 to 630 nm of the partition wall (A-1) was obtained by using an optical densitometer/spectrophotometer (for example, Hitachi High-Tech Science U- 4100), and the transmittance can be calculated by the following formula (1). However, when a sufficient area for measurement cannot be secured, or when a measurement sample with a thickness of 10 μm cannot be collected, and the composition of the partition (A-1) is known, the partition (A-1) A 10 μm-thick solid film having the same composition as A-1) may be prepared, and the OD value per 10 μm thickness may be obtained by similarly measuring the OD value of the solid film instead of the partition wall (A-1). .
OD value = -log10 (T/100) (1)
T: transmittance.
 なお、反射率、OD値、L*値、a*値、およびb*値を上記範囲にするための手段としては、例えば、隔壁(A-1)を後述する好ましい組成とすることなどが挙げられる。 Examples of means for adjusting the reflectance, the OD value, the L* value, the a* value, and the b* value within the above ranges include making the partition wall (A-1) have a preferable composition described later. be done.
 隔壁(A-1)のテーパー角度は、45°~110°が好ましい。隔壁(A-1)のテーパー角度とは、隔壁断面の側辺と底辺とがなす角度を指す。図1に示す隔壁付き基板の場合、隔壁2のテーパー角度は符号θで表される。テーパー角度を45°以上とすることにより、隔壁(A-1)の上部と底部の幅の差が小さくなり、隔壁(A-1)の幅を後述する好ましい範囲に容易に形成することができる。テーパー角度は、80°以上がより好ましい。一方、テーパー角度を110°以下とすることにより、後述する(B)色変換発光材料を含有する画素を、インクジェット塗布により形成する際に、インクの決壊を抑制し、インクジェット塗布性を向上させることができる。ここで、インクの決壊とは、インクが隔壁を乗り越えて隣の画素部分に混入する現象のことを言う。テーパー角度は、95°以下がより好ましい。隔壁(A-1)のテーパー角度は、隔壁(A-1)の任意の断面を、光学顕微鏡(FE-SEM(例えば、(株)日立製作所製S-4800))を用いて、加速電圧3.0kV、倍率2,500倍で観察し、隔壁(A-1)の断面の側辺と底辺とがなす角度を測定することにより求めることができる。 The taper angle of the partition wall (A-1) is preferably 45° to 110°. The taper angle of the partition wall (A-1) refers to the angle formed by the side and bottom sides of the cross section of the partition wall. In the case of the substrate with partition walls shown in FIG. 1, the taper angle of the partition walls 2 is represented by the symbol θ. By setting the taper angle to 45° or more, the difference in width between the upper portion and the bottom portion of the partition wall (A-1) is reduced, and the width of the partition wall (A-1) can be easily formed within the preferable range described later. . More preferably, the taper angle is 80° or more. On the other hand, by setting the taper angle to 110° or less, when pixels containing the (B) color-converting light-emitting material described later are formed by inkjet coating, it is possible to suppress the breakdown of the ink and improve the inkjet coating properties. can be done. Here, the collapse of ink refers to a phenomenon in which ink crosses over a partition and mixes into an adjacent pixel portion. The taper angle is more preferably 95° or less. The taper angle of the partition wall (A-1) is measured using an optical microscope (FE-SEM (eg, S-4800 manufactured by Hitachi, Ltd.)) at an acceleration voltage of 3. It can be obtained by observing at 0 kV and a magnification of 2,500 times and measuring the angle formed by the side and base of the cross section of the partition wall (A-1).
 なお、隔壁(A-1)のテーパー角度を上記範囲にするための手段としては、例えば、隔壁(A-1)を後述する好ましい組成とすること、本発明の樹脂組成物を用いて形成することなどが挙げられる。 As a means for setting the taper angle of the partition wall (A-1) within the above range, for example, the partition wall (A-1) is formed with a preferable composition described later or using the resin composition of the present invention. etc.
 隔壁(A-1)の厚みは、隔壁付き基板が後述する(B)色変換発光材料を含有する画素を有する場合には、その画素の厚みよりも大きいことが好ましい。具体的には、隔壁(A-1)の厚みは、0.5μm以上が好ましく、5.0μm以上がより好ましく、10μm以上がさらに好ましい。一方、画素底部における発光をより効率良く取り出す観点から、隔壁(A-1)の厚みは、100μm以下が好ましく、50μm以下がより好ましい。また、隔壁(A-1)の幅は、隔壁側面における光反射を利用し輝度をより向上させ、光漏れによる隣接画素における光の混色をより抑制するために十分なものであることが好ましい。具体的には、隔壁の幅は、1μm以上が好ましく、5μm以上がより好ましい。一方、画素の発光領域を多く確保して輝度をより向上させる観点から、隔壁(A-1)の幅は、100μm以下が好ましく、50μm以下がより好ましい。 The thickness of the partition (A-1) is preferably larger than the thickness of the pixel when the substrate with the partition has a pixel containing the (B) color-converting luminescent material described later. Specifically, the thickness of the partition wall (A-1) is preferably 0.5 μm or more, more preferably 5.0 μm or more, and even more preferably 10 μm or more. On the other hand, the thickness of the partition wall (A-1) is preferably 100 μm or less, more preferably 50 μm or less, from the viewpoint of extracting light emitted from the bottom of the pixel more efficiently. In addition, the width of the partition (A-1) is preferably sufficient to further improve the brightness by utilizing light reflection on the side of the partition and to further suppress color mixture of light in adjacent pixels due to light leakage. Specifically, the width of the partition is preferably 1 μm or more, more preferably 5 μm or more. On the other hand, the width of the partition wall (A-1) is preferably 100 μm or less, more preferably 50 μm or less, from the viewpoint of securing a large amount of light emitting region of the pixel and further improving luminance.
 隔壁(A-1)は、画像表示装置の画面サイズに応じた所定画素数分の繰り返しパターンを有している。画像表示装置の画素数としては、例えば、横に4000個、縦に2000個が挙げられる。画素数は、表示される画像の解像度(きめ細かさ)に影響する。そのため、要求される画像の解像度と画像表示装置の画面サイズに応じた数の画素を形成する必要があり、それに併せて、隔壁のパターン形成寸法を決定することが好ましい。 The partition (A-1) has a repeating pattern for a predetermined number of pixels according to the screen size of the image display device. The number of pixels of the image display device is, for example, 4000 horizontally and 2000 vertically. The number of pixels affects the resolution (fineness) of the displayed image. Therefore, it is necessary to form the number of pixels corresponding to the required image resolution and the screen size of the image display device, and it is preferable to determine the partition pattern formation dimensions accordingly.
 隔壁(A-1)は、樹脂と、白色顔料と、青色顔料および紫色顔料と、酸化銀および/または銀粒子とを含有することが好ましい。樹脂は、隔壁のクラック耐性および耐光性を向上させる機能を有する。白色顔料は、隔壁の反射率をより向上させる機能を有する。青色顔料および紫色顔料は、隔壁の波長領域500nm~630nm(緑色光~赤色光)の遮光性をより向上させる機能を有する。酸化銀および/または銀粒子は、隔壁の波長領域380nm~500nm(青色光)の遮光性をより向上させる機能を有する。 The partition wall (A-1) preferably contains a resin, a white pigment, blue and purple pigments, and silver oxide and/or silver particles. The resin has a function of improving crack resistance and light resistance of the partition walls. A white pigment has a function of further improving the reflectance of the partition wall. The blue pigment and violet pigment have the function of further improving the light shielding properties of the partition wall in the wavelength range of 500 nm to 630 nm (green light to red light). The silver oxide and/or silver particles have the function of further improving the light shielding properties of the barrier ribs in the wavelength range of 380 nm to 500 nm (blue light).
 樹脂、白色顔料、青色顔料および紫色顔料は、樹脂組成物を構成する材料として先に説明した通りである。 The resin, white pigment, blue pigment, and purple pigment are as described above as materials constituting the resin composition.
 隔壁(A-1)中の樹脂の含有量は、熱処理における隔壁のクラック耐性を向上させる観点から、10重量%以上が好ましく、20重量%以上がより好ましい。一方、耐光性を向上させる観点から、隔壁(A-1)中の樹脂の含有量は、60重量%以下が好ましく、50重量%以下がより好ましい。  The content of the resin in the partition (A-1) is preferably 10% by weight or more, more preferably 20% by weight or more, from the viewpoint of improving crack resistance of the partition during heat treatment. On the other hand, from the viewpoint of improving light resistance, the resin content in the partition (A-1) is preferably 60% by weight or less, more preferably 50% by weight or less. 
 隔壁(A-1)中の白色顔料の含有量は、反射率をより向上させる観点から、10重量%以上が好ましく、15重量%以上がより好ましい。一方、隔壁の表面平滑性を向上させる観点から、隔壁(A-1)中の白色顔料の含有量は、60重量%以下が好ましく、55重量%以下がより好ましい。 The content of the white pigment in the partition wall (A-1) is preferably 10% by weight or more, more preferably 15% by weight or more, from the viewpoint of further improving the reflectance. On the other hand, from the viewpoint of improving the surface smoothness of the partition walls, the content of the white pigment in the partition walls (A-1) is preferably 60% by weight or less, more preferably 55% by weight or less.
 隔壁(A-1)中の青色顔料および紫色顔料の含有量は、特定の波長の光の遮光性を向上する観点から、0.01重量%以上が好ましく、0.05重量%以上がより好ましく、0.10重量%以上がさらに好ましい。一方、隔壁の反射率を損なわない観点から、3.0重量%以下が好ましく、1.0重量%以下がより好ましく、0.75重量%以下がさらに好ましい。 The content of the blue pigment and the purple pigment in the partition wall (A-1) is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, from the viewpoint of improving the light-shielding properties of light of a specific wavelength. , more preferably 0.10% by weight or more. On the other hand, it is preferably 3.0% by weight or less, more preferably 1.0% by weight or less, and even more preferably 0.75% by weight or less, from the viewpoint of not impairing the reflectance of the partition walls.
 隔壁(A-1)中の青色顔料および紫色顔料の重量比は、20/80~80/20が好ましい。青色顔料および紫色顔料の重量比を、20/80~80/20とすることにより、顔料の分散性と、波長領域500nm~630nm(緑色光~赤色光)の遮光性を両立することができる。青色顔料および紫色顔料の重量比は、30/70~70/30がより好ましく、50/50~65/35がさらに好ましい。 The weight ratio of the blue pigment and the purple pigment in the partition wall (A-1) is preferably 20/80 to 80/20. By setting the weight ratio of the blue pigment and the violet pigment to 20/80 to 80/20, both the dispersibility of the pigment and the light shielding property in the wavelength range of 500 nm to 630 nm (green light to red light) can be achieved. The weight ratio of the blue pigment and the purple pigment is more preferably 30/70 to 70/30, still more preferably 50/50 to 65/35.
 酸化銀および/または銀粒子は、先述した樹脂組成物中の有機銀化合物が露光工程および/または加熱工程において、分解・凝集することにより発生した黄色粒子または、黄色粒子と黒色粒子の混合粒子を指す。隔壁(A-1)中の酸化銀および/または銀粒子の含有量は、反射率およびODを前述の範囲に調整して隣接画素における光の混色をより抑制する観点から、0.1重量%以上が好ましく、0.4重量%以上がより好ましい。一方、反射率およびODを前述の範囲に調整する観点から、隔壁(A-1)中の酸化銀および/または銀粒子の含有量は、10重量%以下が好ましく、3.0重量%以下がより好ましい。 The silver oxide and/or silver particles are yellow particles or mixed particles of yellow particles and black particles generated by decomposition/aggregation of the organic silver compound in the resin composition described above in the exposure step and/or heating step. Point. The content of silver oxide and/or silver particles in the partition wall (A-1) is 0.1% by weight from the viewpoint of further suppressing color mixing of light in adjacent pixels by adjusting the reflectance and OD within the ranges described above. 0.4% by weight or more is more preferable. On the other hand, from the viewpoint of adjusting the reflectance and OD to the ranges described above, the content of silver oxide and/or silver particles in the partition wall (A-1) is preferably 10% by weight or less, and 3.0% by weight or less. more preferred.
 また、隔壁(A-1)中の酸化銀および/または銀粒子の重量が白色顔料の重量100に対して0.2~20であり、かつ、固形分中に占める青色顔料および紫色顔料の合計重量が白色顔料の重量100に対して0.05~10であることが好ましい。この比率とすることで、可視光全体(波長領域430~630nm)の高遮光性と高反射性に優れた灰色の隔壁パターンを得ることができる。隔壁(A-1)中の酸化銀および/または銀粒子の重量が白色顔料の重量100に対して0.5~10であり、かつ、固形分中に占める青色顔料および紫色顔料の合計重量が白色顔料の重量100に対して0.1~5であることがより好ましい。 Further, the weight of silver oxide and/or silver particles in the partition wall (A-1) is 0.2 to 20 with respect to 100 weight of the white pigment, and the sum of the blue pigment and the purple pigment in the solid content The weight is preferably 0.05 to 10 to 100 weight of the white pigment. By setting this ratio, it is possible to obtain a gray partition pattern that is excellent in high light shielding properties and high reflectance for the entire visible light (wavelength range of 430 to 630 nm). The weight of silver oxide and/or silver particles in the partition wall (A-1) is 0.5 to 10 with respect to 100 weight of the white pigment, and the total weight of the blue pigment and the purple pigment in the solid content is It is more preferably 0.1 to 5 with respect to 100 weight of the white pigment.
 隔壁(A-1)は、さらに撥液化合物を含有することが好ましい。撥液化合物を含有することにより、隔壁(A-1)に撥液性能を付与することができ、例えば、後述する(B)色変換発光材料を含有する画素を形成する際に、それぞれの画素に、組成の異なる色変換発光材料を、容易に塗り分けることができる。撥液化合物は、樹脂組成物を構成する材料として先述した通りである。 The partition (A-1) preferably further contains a liquid-repellent compound. By containing the liquid-repellent compound, liquid-repellent performance can be imparted to the partition wall (A-1). In addition, color-converting light-emitting materials having different compositions can be easily applied separately. The liquid-repellent compound is as described above as a material constituting the resin composition.
 隔壁の撥液性能を向上させ、インクジェット塗布性を向上させる観点から、隔壁(A-1)中の撥液化合物の含有量は、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。一方、樹脂や白色顔料との相溶性を向上させる観点から、隔壁(A-1)中の撥液化合物の含有量は、10重量%以下が好ましく、5重量%以下がより好ましい。 From the viewpoint of improving the liquid-repellent performance of the partition walls and improving the inkjet applicability, the content of the liquid-repellent compound in the partition walls (A-1) is preferably 0.01% by weight or more, more preferably 0.1% by weight or more. more preferred. On the other hand, from the viewpoint of improving compatibility with resins and white pigments, the content of the liquid-repellent compound in the partition wall (A-1) is preferably 10% by weight or less, more preferably 5% by weight or less.
 隔壁(A-1)の、プロピレングリコールモノメチルエーテルアセテートに対する表面接触角は、インクジェット塗布性を向上させ、色変換発光材料の塗り分けを容易にする観点から、10°以上が好ましく、20°以上がより好ましく、40°以上がさらに好ましい。一方、隔壁と下地基板との密着性を向上させる観点から、隔壁(A-1)の表面接触角は、70°以下が好ましく、60°以下がより好ましい。ここで、隔壁(A-1)の表面接触角は、隔壁上部に対して、JIS R3257(制定年月日=1999/04/20)に規定される基板ガラス表面のぬれ性試験方法に準拠して測定することができる。なお、隔壁(A-1)の表面接触角を前記範囲にする方法としては、例えば、前述の撥液化合物を用いる方法などが挙げられる。 The surface contact angle of the partition wall (A-1) with respect to propylene glycol monomethyl ether acetate is preferably 10° or more, more preferably 20° or more, from the viewpoint of improving inkjet applicability and facilitating separate coating of the color-converting luminescent material. More preferably, 40° or more is even more preferable. On the other hand, from the viewpoint of improving the adhesion between the partition wall and the underlying substrate, the surface contact angle of the partition wall (A-1) is preferably 70° or less, more preferably 60° or less. Here, the surface contact angle of the partition wall (A-1) conforms to the substrate glass surface wettability test method specified in JIS R3257 (enacted date = 1999/04/20) for the upper part of the partition wall. can be measured by As a method for adjusting the surface contact angle of the partition wall (A-1) to the above range, for example, a method using the liquid-repellent compound described above can be used.
 下地基板上に隔壁(A-1)をパターン形成する方法としては、パターン形状の調整が容易であることから、感光性ペースト法が好ましい。感光性ペースト法により隔壁をパターン形成する方法としては、例えば、下地基板上に、前述の樹脂組成物を塗布し、乾燥して乾燥膜を得る塗布工程、得られた乾燥膜を、所望のパターン形状に応じてパターン露光する露光工程、露光後の乾燥膜における現像液に可溶な部分を溶解除去する現像工程および現像後の隔壁を硬化させる加熱工程を有する方法が好ましい。樹脂組成物は、ネガ型またはポジ型の感光性を持たせることが好ましい。パターン露光は、所定の開口部を有するフォトマスクを介して露光してもよいし、フォトマスクを用いずに、レーザー光等を用いて任意のパターンを直接描画してもよい。なお、隔壁付き基板が後述するカラーフィルターおよび/または遮光隔壁(A-2)を有する場合は、カラーフィルターおよび/または遮光隔壁(A-2)上に、同様にして隔壁(A-1)をパターン形成することができる。各工程については、遮光膜の製造方法として先に説明した通りである。 As a method for patterning the barrier ribs (A-1) on the underlying substrate, the photosensitive paste method is preferable because the pattern shape can be easily adjusted. As a method for patterning barrier ribs by a photosensitive paste method, for example, the above-mentioned resin composition is applied onto a base substrate and dried to obtain a dry film. A method comprising an exposure step of pattern-wise exposing according to the shape, a developing step of dissolving and removing portions soluble in the developer in the dry film after exposure, and a heating step of curing the barrier ribs after development is preferred. The resin composition preferably has negative or positive photosensitivity. Pattern exposure may be performed through a photomask having a predetermined opening, or an arbitrary pattern may be directly drawn using a laser beam or the like without using a photomask. When the substrate with partition walls has color filters and/or light-shielding partition walls (A-2), which will be described later, partition walls (A-1) are similarly formed on the color filters and/or light-shielding partition walls (A-2). Can be patterned. Each step is as described above for the method of manufacturing the light shielding film.
 本発明の隔壁付き基板は、さらに、前記隔壁(A-1)によって隔てられて配列した(B)色変換発光材料を含有する画素(以下、「画素(B)」と記載する場合がある)を有することが好ましい。 The substrate with partition walls of the present invention further includes pixels (hereinafter sometimes referred to as “pixels (B)”) containing (B) color-converting luminescent materials arranged separated by the partition walls (A-1). It is preferred to have
 画素(B)は、入射光の波長領域の少なくとも一部を変換して、入射光とは異なる波長領域の出射光を放出することにより、カラー表示を可能にする機能を有する。 The pixel (B) has a function of enabling color display by converting at least part of the wavelength range of incident light and emitting output light in a wavelength range different from that of the incident light.
 図2に、パターン形成された隔壁(A-1)と画素(B)を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2を有し、隔壁2によって隔てられた領域に画素3が配列されている。 FIG. 2 shows a cross-sectional view of one mode of the substrate with partitions of the present invention having patterned partitions (A-1) and pixels (B). A base substrate 1 has partition walls 2 patterned thereon, and pixels 3 are arranged in regions separated by the partition walls 2 .
 色変換材料は、無機蛍光体および有機蛍光体から選ばれた蛍光体を含有することが好ましい。 The color conversion material preferably contains a phosphor selected from inorganic phosphors and organic phosphors.
 本発明の隔壁付き基板は、例えば、青色光を発光するバックライトとTFT上に形成された液晶と画素(B)を組み合わせて、表示装置として用いることができる。この場合、赤色画素に対応する領域には、青色の励起光により励起されて赤色の蛍光を発する赤色用蛍光体を含有することが好ましい。同様に、緑色画素に対応する領域には、青色の励起光により励起されて緑色の蛍光を発する緑色用蛍光体を含有することが好ましい。青色画素に対応する領域には、蛍光体を含有しないことが好ましい。 The substrate with partition walls of the present invention can be used as a display device by combining, for example, a backlight that emits blue light, liquid crystals formed on TFTs, and pixels (B). In this case, the region corresponding to the red pixel preferably contains a red phosphor that emits red fluorescence when excited by blue excitation light. Similarly, the region corresponding to the green pixel preferably contains a green phosphor that emits green fluorescence when excited by blue excitation light. A region corresponding to a blue pixel preferably does not contain a phosphor.
 無機蛍光体としては、青色の励起光により緑色や赤色などの各色を発光するもの、すなわち、波長400~500nmの励起光により励起され、発光スペクトルが500~700nmの領域にピークを有するものが好ましい。かかる無機蛍光体としては、例えば、YAG系蛍光体、TAG系蛍光体、サイアロン系蛍光体、Mn4+付活フッ化物錯体蛍光体、量子ドットと称される無機半導体等が挙げられる。これらを2種以上用いてもよい。これらの中でも、量子ドットが好ましい。量子ドットは他の蛍光体に比較して平均粒子径が小さいことから、(B)画素の表面を平滑化して表面における光散乱を抑制することができるため、光の取り出し効率をより向上させ、輝度をより向上させることができる。 The inorganic phosphor is preferably one that emits green or red light by blue excitation light, that is, one that is excited by excitation light with a wavelength of 400 to 500 nm and has a peak emission spectrum in the region of 500 to 700 nm. . Examples of such inorganic phosphors include YAG-based phosphors, TAG-based phosphors, sialon-based phosphors, Mn 4+ -activated fluoride complex phosphors, and inorganic semiconductors called quantum dots. You may use 2 or more types of these. Among these, quantum dots are preferred. Since quantum dots have a smaller average particle size than other phosphors, (B) the surface of the pixel can be smoothed to suppress light scattering on the surface, so that the light extraction efficiency is further improved. Brightness can be further improved.
 量子ドットの材料としては、例えば、II-IV族、III-V族、IV-VI族、IV族の半導体などが挙げられる。これらの無機半導体としては、例えば、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、Si、Ge、Alなどが挙げられる。これらを2種以上用いてもよい。 Quantum dot materials include, for example, II-IV group, III-V group, IV-VI group, and IV group semiconductors. Examples of these inorganic semiconductors include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS , PbSe, PbTe , Si3N4 , Ge3N4 , Al2O3 and the like. You may use 2 or more types of these.
 有機蛍光体としては、青色の励起光により緑色や赤色などの各色を発光するものが好ましい。赤色の蛍光を発する蛍光体として、下記構造式(8)で表される基本骨格を有するピロメテン誘導体、緑色の蛍光を発する蛍光体として、下記構造式(9)で表される基本骨格を有するピロメテン誘導体などが挙げられる。その他には、置換基の選択により赤色または緑色の蛍光を発するペリレン系誘導体、ポルフィリン系誘導体、オキサジン系誘導体、ピラジン系誘導体などが挙げられる。これらを2種以上含有してもよい。これらの中でも、量子収率が高いことから、ピロメテン誘導体が好ましい。ピロメテン誘導体は、例えば、特開2011-241160号公報に記載の方法により得ることができる。 The organic phosphor is preferably one that emits green, red, or other colors when excited by blue light. A pyrromethene derivative having a basic skeleton represented by the following structural formula (8) as a phosphor emitting red fluorescence, and a pyrromethene derivative having a basic skeleton represented by the following structural formula (9) as a phosphor emitting green fluorescence derivatives and the like. Other examples include perylene-based derivatives, porphyrin-based derivatives, oxazine-based derivatives, and pyrazine-based derivatives that emit red or green fluorescence depending on the selection of substituents. You may contain 2 or more types of these. Among these, pyrromethene derivatives are preferred because of their high quantum yield. A pyrromethene derivative can be obtained, for example, by the method described in JP-A-2011-241160.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 画素(B)の厚みは、色特性を向上させる観点から、0.5μm以上が好ましく、1μm以上がより好ましい。一方、画素(B)の厚みは、表示装置の薄型化や曲面加工性の観点から、30μm以下が好ましく、20μm以下がより好ましい。 From the viewpoint of improving color characteristics, the thickness of the pixel (B) is preferably 0.5 μm or more, more preferably 1 μm or more. On the other hand, the thickness of the pixel (B) is preferably 30 μm or less, more preferably 20 μm or less, from the viewpoint of thinning of the display device and curved surface workability.
 画素(B)は、隔壁(A-1)によって隔てられて配列していることが好ましい。画素と画素の間に隔壁を設けることにより、発光した光の拡散や混色をより抑制することができる。 The pixels (B) are preferably arranged separated by partition walls (A-1). By providing a partition between pixels, diffusion and color mixture of emitted light can be further suppressed.
 画素(B)の形成方法としては、例えば、色変換発光材料を含有する塗液(以下、色変換発光材料塗液)を、隔壁(A-1)によって隔てられた空間に充填する方法が挙げられる。色変換発光材料塗液は、さらに樹脂や溶媒を含有してもよい。 As a method of forming the pixel (B), for example, a method of filling a space separated by a partition wall (A-1) with a coating liquid containing a color-converting luminescent material (hereinafter referred to as a color-converting luminescent material coating liquid) can be mentioned. be done. The color-converting luminescent material coating liquid may further contain a resin and a solvent.
 色変換発光材料塗液の充填方法としては、フォトリソ法、インクジェット法などが挙げられるが、各画素に種類の異なる色変換発光材料を容易に塗り分ける観点から、インクジェット塗布法が好ましい。 Examples of methods for filling the color-converting luminescent material coating liquid include photolithography and inkjet methods, but the inkjet coating method is preferable from the viewpoint of easily separately coating different types of color-converting luminescent materials on each pixel.
 <遮光隔壁(A-2)>
 本発明の隔壁付き基板は、前記下地基板と(A-1)パターン形成された隔壁との間に、さらに、さらに、(A-2)厚み1.0μmあたりのOD値が0.5以上である、パターン形成された隔壁(以下、「遮光隔壁(A-2)」と記載する場合がある)を有することが好ましい。遮光隔壁(A-2)を有することにより、遮光性を向上させてバックライトの光漏れを抑制し、高コントラストで鮮明な画像を得ることができる。
<Light shielding partition (A-2)>
In the substrate with partition walls of the present invention, (A-1) between the base substrate and the patterned partition walls, and (A-2) an OD value per 1.0 μm of thickness of 0.5 or more. It is preferable to have a pattern-formed partition (hereinafter sometimes referred to as a “light-shielding partition (A-2)”). By having the light-shielding partition (A-2), the light-shielding property is improved, light leakage from the backlight is suppressed, and a high-contrast and clear image can be obtained.
 図3に、遮光隔壁を有する本発明の隔壁付き基板の一態様を示す断面図を示す。下地基板1上に、パターン形成された隔壁2および遮光隔壁4を有し、隔壁2および遮光隔壁4によって隔てられた領域に画素3が配列されている。 FIG. 3 shows a cross-sectional view showing one embodiment of the partition-attached substrate of the present invention having light-shielding partitions. It has partition walls 2 and light-shielding partition walls 4 patterned on a base substrate 1 , and pixels 3 are arranged in regions separated by the partition walls 2 and the light-shielding partition walls 4 .
 遮光隔壁(A-2)は、厚み1.0μmあたりのOD値が0.5以上である。ここで、遮光隔壁(A-2)の厚みは、後述するとおり、0.5~10μmが好ましい。本発明においては、遮光隔壁(A-2)の厚みの代表値として1.0μmを選択し、厚み1.0μmあたりのOD値に着目した。厚み1.0μmあたりのOD値を0.5以上とすることにより、遮光性をより向上させ、より高コントラストで鮮明な画像を得ることができる。一方、厚み1.0μmあたりのOD値は4.0以下が好ましく、パターン加工性を向上させることができる。遮光隔壁(A-2)のOD値は、前述の隔壁(A-1)のOD値と同様に測定することができる。 The light-shielding partition (A-2) has an OD value of 0.5 or more per 1.0 μm of thickness. Here, the thickness of the light shielding partition (A-2) is preferably 0.5 to 10 μm, as will be described later. In the present invention, 1.0 μm was selected as a representative value of the thickness of the light-shielding barrier ribs (A-2), and attention was paid to the OD value per 1.0 μm of thickness. By setting the OD value per 1.0 μm of thickness to 0.5 or more, the light shielding property can be further improved, and a clearer image with higher contrast can be obtained. On the other hand, the OD value per 1.0 μm of thickness is preferably 4.0 or less, which can improve pattern workability. The OD value of the light-shielding partition wall (A-2) can be measured in the same manner as the OD value of the partition wall (A-1) described above.
 遮光隔壁(A-2)の厚みは、遮光性を向上させる観点から、0.5μm以上が好ましい。一方、平坦性を向上させる観点から、遮光隔壁(A-2)の厚みは、10μm以下が好ましい。また、遮光隔壁(A-2)の幅は、前述の隔壁(A-1)と同程度が好ましい。 The thickness of the light-shielding partition (A-2) is preferably 0.5 μm or more from the viewpoint of improving light-shielding properties. On the other hand, from the viewpoint of improving flatness, the thickness of the light shielding partition (A-2) is preferably 10 μm or less. Further, the width of the light-shielding partition (A-2) is preferably approximately the same as that of the above-described partition (A-1).
 遮光隔壁(A-2)は、樹脂および黒色顔料を含有することが好ましい。樹脂は、隔壁のクラック耐性および耐光性を向上させる機能を有する。黒色顔料は、入射した光を吸収し、射出光を低減する機能を有する。 The light shielding partition (A-2) preferably contains a resin and a black pigment. The resin has a function of improving crack resistance and light resistance of the partition walls. The black pigment has a function of absorbing incident light and reducing emitted light.
 樹脂としては、前述の樹脂組成物中における樹脂として例示したものが挙げられる。耐熱性および溶媒耐性に優れることから、(メタ)アクリルポリマ、ポリイミドが好ましい。 Examples of the resin include those exemplified as the resin in the resin composition described above. (Meth)acrylic polymers and polyimides are preferred because of their excellent heat resistance and solvent resistance.
 黒色顔料としては、前述の樹脂組成物中における黒色顔料として例示したものや、酸化パラジウム、酸化白金、酸化金、酸化銀などが挙げられる。高い遮光性を有することから、窒化チタン、窒化ジルコニウム、カーボンブラックが好ましい。 Examples of black pigments include those exemplified as black pigments in the resin composition described above, palladium oxide, platinum oxide, gold oxide, and silver oxide. Titanium nitride, zirconium nitride, and carbon black are preferred because of their high light-shielding properties.
 下地基板上に遮光隔壁(A-2)をパターン形成する方法としては、例えば、特開2015-1654号公報に記載の感光性材料を用いて、前述の隔壁(A-1)と同様に感光性ペースト法によりパターン形成する方法が好ましい。 As a method for patterning the light-shielding partition (A-2) on the underlying substrate, for example, a photosensitive material described in JP-A-2015-1654 is used, and the above-described partition (A-1) is photosensitive. A method of forming a pattern by a transparent paste method is preferred.
 また、本発明の隔壁付き基板は、下地基板と前記(B)色変換発光材料を含有する画素層の間に、厚み1~5μmのカラーフィルター層(以下、「カラーフィルター」と記載する場合がある)をさらに有することが好ましい。カラーフィルターは、特定波長域の可視光を透過させて透過光を所望の色相とする機能を有する。カラーフィルターを有することにより、表示装置の色純度を向上させることができる。カラーフィルターの厚みを1μm以上とすることにより、色純度をより向上させることができる。一方、カラーフィルターの厚みを5μm以下とすることにより、輝度をより向上させることができる。 In the substrate with partition walls of the present invention, a color filter layer having a thickness of 1 to 5 μm (hereinafter sometimes referred to as a “color filter”) is provided between the base substrate and the pixel layer containing the (B) color-converting luminescent material. It is preferable to further have A color filter has a function of transmitting visible light in a specific wavelength range and making the transmitted light have a desired hue. By including the color filter, the color purity of the display device can be improved. Color purity can be further improved by setting the thickness of the color filter to 1 μm or more. On the other hand, by setting the thickness of the color filter to 5 μm or less, the luminance can be further improved.
 図4に、カラーフィルターを有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2およびカラーフィルター5を有し、カラーフィルター5上に画素3を有する。 FIG. 4 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention having a color filter. It has patterned partition walls 2 and color filters 5 on a base substrate 1 , and pixels 3 on the color filters 5 .
 カラーフィルターとしては、例えば、液晶ディスプレイ等のフラットパネルディスプレイに用いられる、フォトレジストに顔料を分散させた顔料分散型材料を用いたカラーフィルターなどが挙げられる。より具体的には、400nm~550nmの波長を選択的に透過する青色カラーフィルター、500nm~600nmの波長を選択的に透過する緑色カラーフィルター、500nm以上の波長を選択的に透過する黄色カラーフィルター、600nm以上の波長を選択的に透過する赤色カラーフィルターなどが挙げられる。 Examples of color filters include color filters that use pigment-dispersed materials in which pigments are dispersed in photoresist, which are used in flat panel displays such as liquid crystal displays. More specifically, a blue color filter that selectively transmits a wavelength of 400 nm to 550 nm, a green color filter that selectively transmits a wavelength of 500 nm to 600 nm, a yellow color filter that selectively transmits a wavelength of 500 nm or more, A red color filter that selectively transmits wavelengths of 600 nm or more may be used.
 また、カラーフィルターは、色変換発光材料を含有する画素(B)から離隔して積層されていてもよいし、一体化して積層されていてもよい。 In addition, the color filter may be laminated separately from the pixel (B) containing the color-converting luminescent material, or may be integrally laminated.
 本発明の隔壁付き基板は、下地基板と前記画素(B)の間に、さらに、遮光隔壁で隔てられた厚み1~5μmのカラーフィルターを有することが好ましい。 The substrate with partition walls of the present invention preferably further has a color filter with a thickness of 1 to 5 μm separated by a light-shielding partition wall between the base substrate and the pixels (B).
 図5に、遮光隔壁で隔てられたカラーフィルターを有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された遮光隔壁4に隔てられたカラーフィルター5を有し、その上に隔壁2および画素3を有する。 FIG. 5 shows a cross-sectional view of one embodiment of the partition-attached substrate of the present invention having color filters separated by light-shielding partitions. Color filters 5 separated by patterned light-shielding barrier ribs 4 are provided on a base substrate 1, and barrier ribs 2 and pixels 3 are provided thereon.
 本発明の隔壁付き基板は、画素(B)の上部または下部に、さらに、(C)波長550nmにおける屈折率が1.20~1.35である低屈折率層(以下、「低屈折率層(C)」と記載する場合がある)を有することが好ましい。低屈折率層(C)を有することにより、光の取り出し効率をより向上させ、表示装置の輝度をより向上させることができる。 The substrate with partition walls of the present invention further includes (C) a low refractive index layer having a refractive index of 1.20 to 1.35 at a wavelength of 550 nm (hereinafter referred to as "low refractive index layer (C)” may be described). By having the low refractive index layer (C), the light extraction efficiency can be further improved, and the luminance of the display device can be further improved.
 表示装置において、バックライトの光の反射を適度に抑えて画素(B)に効率よく光を入射させる観点から、低屈折率層(C)の屈折率は、1.20以上が好ましい。一方、輝度を向上させる観点から、低屈折率層(C)の屈折率は、1.35以下が好ましい。ここで、低屈折率層(C)の屈折率は、プリズムカプラーを用いて、大気圧下、20℃の条件で、硬化膜面に対し垂直方向から波長550nmの光を照射して測定することができる。 In the display device, the refractive index of the low refractive index layer (C) is preferably 1.20 or more from the viewpoint of appropriately suppressing the reflection of light from the backlight and allowing light to enter the pixels (B) efficiently. On the other hand, from the viewpoint of improving brightness, the refractive index of the low refractive index layer (C) is preferably 1.35 or less. Here, the refractive index of the low refractive index layer (C) is measured by irradiating light with a wavelength of 550 nm from a direction perpendicular to the cured film surface under atmospheric pressure and 20° C. using a prism coupler. can be done.
 本発明の隔壁付き基板は、前記低屈折率層(C)上に、さらに、厚み50~1,000nmの無機保護層Iを有することが好ましい。無機保護層Iを有することにより、大気中の水分が低屈折率層(C)に到達しにくくなるため、低屈折率層(C)の屈折率変動を抑制し、輝度劣化を抑制することができる。 The substrate with partition walls of the present invention preferably further has an inorganic protective layer I with a thickness of 50 to 1,000 nm on the low refractive index layer (C). Since the presence of the inorganic protective layer I makes it difficult for moisture in the atmosphere to reach the low refractive index layer (C), it is possible to suppress fluctuations in the refractive index of the low refractive index layer (C) and suppress luminance degradation. can.
 本発明の隔壁付き基板は、画素(B)とカラーフィルターの間に前記低屈折率層(C)を有することが好ましく、さらに、前記低屈折率層(C)上に、さらに、厚み50~1,000nmの無機保護層(I)を有することが好ましい。画素(B)とカラーフィルターの間に前記低屈折率層(C)を有することで、発光した光の光取り出し向上効果が高くなり、ディスプレイの輝度が向上する。 The substrate with partition walls of the present invention preferably has the low refractive index layer (C) between the pixel (B) and the color filter. It is preferred to have an inorganic protective layer (I) of 1,000 nm. By having the low refractive index layer (C) between the pixel (B) and the color filter, the effect of improving the light extraction of emitted light is increased, and the brightness of the display is improved.
 本発明の隔壁付き基板は、前記画素(B)と前記低屈折率層(C)の間に、さらに、厚み50~1,000nmの無機保護層(II)を有することが好ましい。無機保護層(II)を有することにより、画素(B)から、低屈折率層に、画素(B)を形成する原料が移動しにくくなるため、低屈折率層(C)の屈折率変動を抑制し、輝度劣化を抑制することができる。 The substrate with partition walls of the present invention preferably further has an inorganic protective layer (II) with a thickness of 50 to 1,000 nm between the pixels (B) and the low refractive index layer (C). By having the inorganic protective layer (II), it becomes difficult for the raw material forming the pixel (B) to move from the pixel (B) to the low refractive index layer. It is possible to suppress luminance deterioration.
 本発明の隔壁付き基板は、カラーフィルターと前記画素(B)の間に、さらに厚み50~1,000nmの無機保護層(III)および/または黄色有機保護層を有することが好ましい。無機保護層(III)を有することにより、カラーフィルターから、色変換発光材料を含有する画素(B)に、カラーフィルターの形成原料が到達しにくくなるため、色変換発光材料を含有する画素(B)の輝度劣化を抑制することができる。また、黄色有機保護層を有することにより、色変換発光材料を含有する画素(B)によって変換しきれなかった青色漏れ光をカットし、色再現性を向上させることができる。黄色有機保護層は、青色画素に相当する画素には形成しなくてもよい。 The substrate with partition walls of the present invention preferably further has an inorganic protective layer (III) with a thickness of 50 to 1,000 nm and/or a yellow organic protective layer between the color filter and the pixel (B). By having the inorganic protective layer (III), it becomes difficult for the raw materials for forming the color filter to reach the pixel (B) containing the color conversion light emitting material from the color filter. ) can be suppressed. In addition, by having the yellow organic protective layer, it is possible to cut blue leakage light that has not been completely converted by the pixels (B) containing the color-converting light-emitting material, thereby improving color reproducibility. The yellow organic protective layer may not be formed on pixels corresponding to blue pixels.
 本発明の隔壁付き基板は、前記下地基板上に、さらに厚み50~1,000nmの無機保護層(IV)および/または黄色有機保護層を有することが好ましい。無機保護層(IV)および/または黄色有機保護層が屈折率調整層として作用し、画素(B)から出る光をより効率的に取り出し、表示装置の輝度をより向上させることができる。また、黄色有機保護層は、色変換発光材料を含有する画素(B)によって変換しきれなかった青色漏れ光をカットし、色再現性を向上させることができる。無機保護層(IV)および/または黄色有機保護層は、下地基板と隔壁(A)および画素(B)との間に設けられることがより好ましい。 The substrate with partition walls of the present invention preferably further has an inorganic protective layer (IV) with a thickness of 50 to 1,000 nm and/or a yellow organic protective layer on the underlying substrate. The inorganic protective layer (IV) and/or the yellow organic protective layer act as a refractive index adjusting layer, extracting light emitted from the pixels (B) more efficiently, and can further improve the brightness of the display device. In addition, the yellow organic protective layer cuts the blue leakage light that has not been completely converted by the pixels (B) containing the color-converting light-emitting material, and can improve color reproducibility. The inorganic protective layer (IV) and/or the yellow organic protective layer are more preferably provided between the underlying substrate and the partition walls (A) and the pixels (B).
 無機保護層(I)~(IV)を構成する材料としては、例えば、酸化ケイ素、酸化インジウムスズ、酸化ガリウム亜鉛などの金属酸化物;窒化ケイ素などの金属窒化物;フッ化マグネシウムなどのフッ化物等が挙げられる。これらを2種以上含有してもよい。これらの中でも、水蒸気透過性が低く、透過性が高いことから、窒化ケイ素または酸化ケイ素がより好ましい。 Examples of materials constituting the inorganic protective layers (I) to (IV) include metal oxides such as silicon oxide, indium tin oxide and gallium zinc oxide; metal nitrides such as silicon nitride; and fluorides such as magnesium fluoride. etc. You may contain 2 or more types of these. Among these, silicon nitride or silicon oxide is more preferable because of its low water vapor permeability and high permeability.
 無機保護層(I)~(IV)の厚みは、水蒸気等の物質透過を充分に抑制する観点から、50nm以上が好ましい。一方、透過率の低下を抑制する観点から、無機保護層(I)~(IV)の厚みは、800nm以下が好ましい。 The thickness of the inorganic protective layers (I) to (IV) is preferably 50 nm or more from the viewpoint of sufficiently suppressing permeation of substances such as water vapor. On the other hand, from the viewpoint of suppressing a decrease in transmittance, the thickness of the inorganic protective layers (I) to (IV) is preferably 800 nm or less.
 無機保護層(I)~(IV)の厚みは、クロスセクションポリッシャー等の研磨装置を用いて、下地基板に対して垂直な断面を露出させ、走査型電子顕微鏡または透過型電子顕微鏡を用いて断面を拡大観察することにより測定することができる。 The thickness of the inorganic protective layers (I) to (IV) is determined by exposing a cross section perpendicular to the underlying substrate using a polishing apparatus such as a cross section polisher, and examining the cross section using a scanning electron microscope or a transmission electron microscope. can be measured by magnified observation.
 無機保護層(I)~(IV)の形成方法としては、例えば、スパッタ法などが挙げられる。無機保護層は、無色透明または黄色透明であることが好ましい。 Examples of methods for forming the inorganic protective layers (I) to (IV) include sputtering. The inorganic protective layer is preferably colorless and transparent or yellow and transparent.
 黄色有機保護層は、例えば、黄色前駆体化合物および/または黄色顔料を含有する樹脂組成物をパターン加工して得られる。黄色前駆体化合物と黄色顔料は、樹脂組成物を構成する材料として先述した通りである。 The yellow organic protective layer is obtained, for example, by patterning a resin composition containing a yellow precursor compound and/or a yellow pigment. The yellow precursor compound and the yellow pigment are as described above as materials constituting the resin composition.
 黄色有機保護層をパターン形成する方法としては、前述の隔壁(A-1)と同様に感光性ペースト法によりパターン形成する方法が好ましい。カラーフィルター上に黄色有機保護層を形成する場合、黄色有機保護層は、カラーフィルターの各画素を平坦化するオーバーコート層としての役割を持たせてもよい。 As a method of patterning the yellow organic protective layer, a method of patterning by a photosensitive paste method is preferable, as in the case of the partition walls (A-1) described above. When the yellow organic protective layer is formed on the color filter, the yellow organic protective layer may serve as an overcoat layer that planarizes each pixel of the color filter.
 黄色有機保護層の厚みは、青色漏れ光を充分に遮光する観点から、100nm以上が好ましい。一方、光取り出し効率の低下を抑制する観点から、黄色有機保護層の厚みは、3000nm以下が好ましい。 The thickness of the yellow organic protective layer is preferably 100 nm or more from the viewpoint of sufficiently shielding the blue leakage light. On the other hand, the thickness of the yellow organic protective layer is preferably 3000 nm or less from the viewpoint of suppressing a decrease in light extraction efficiency.
 本発明の隔壁付き基板は、下地基板上に形成された隔壁によって分離された各画素に対応したLEDを多数並べた、ミニまたはマイクロLEDを用いた表示装置にも用いることができる。各画素のON/OFFは、ミニまたはマイクロLEDのON/OFFによって可能となり、液晶は必要ない。すなわち、本発明の隔壁付き基板は、各画素を分離する隔壁に加えて、バックライト等におけるミニまたはマイクロLEDを分離する隔壁にも用いることができる。 The substrate with partition walls of the present invention can also be used in a display device using mini or micro LEDs, in which a large number of LEDs corresponding to pixels separated by partition walls formed on a base substrate are arranged. ON/OFF of each pixel is enabled by ON/OFF of a mini or micro LED, no liquid crystal is required. That is, the substrate with partitions of the present invention can be used not only for partitions for separating pixels, but also for partitions for separating mini- or micro-LEDs in a backlight or the like.
 本発明の隔壁付き基板は、前記下地基板上に、さらに有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源を有することが好ましい。有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源を隔壁で隔てることで、各画素間の混色を防止しディスプレイの表示色純度を向上することができる。 The substrate with partition walls of the present invention preferably further has a light emitting source selected from organic EL cells, mini-LED cells and micro-LED cells on the underlying substrate. By separating the light-emitting light sources selected from the organic EL cells, the mini-LED cells and the micro-LED cells by partition walls, it is possible to prevent color mixture between pixels and improve the display color purity of the display.
 図6に、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上にパターン形成された隔壁2の間に、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源6を有する。 FIG. 6 shows a cross-sectional view of one embodiment of the partition-furnished substrate of the present invention having a light-emitting light source selected from organic EL cells, mini-LED cells and micro-LED cells. A light emitting source 6 selected from organic EL cells, mini LED cells and micro LED cells is provided between partition walls 2 patterned on a base substrate 1 .
 本発明の隔壁付き基板は、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源の上に、さらに画素(B)を有することが好ましい。 The substrate with partition walls of the present invention preferably further has pixels (B) on the light emitting light sources selected from organic EL cells, mini-LED cells and micro-LED cells.
 図7に、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源と画素を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上にパターン形成された隔壁2の間に、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源6を有し、さらにその上に画素3を有する。 FIG. 7 shows a cross-sectional view of one embodiment of the partition-furnished substrate of the present invention having light-emitting light sources and pixels selected from organic EL cells, mini-LED cells and micro-LED cells. A light emitting source 6 selected from organic EL cells, mini LED cells and micro LED cells is provided between partition walls 2 patterned on a base substrate 1, and pixels 3 are provided thereon.
 次に、本発明の表示装置について説明する。 Next, the display device of the present invention will be explained.
 本発明の表示装置は、前記隔壁付き基板と、発光光源とを有する。本発明の表示装置は、本発明の隔壁付き基板と、液晶セル、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源とを有することが好ましい。発光光源として、液晶セル、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源が好ましい。発光特性に優れることから、発光光源としては、有機ELセルがより好ましい。ミニLEDセルとは、縦横の長さが100μm~1mm程度であるLEDを多数並べたセルのことを指す。マイクロLEDセルとは、縦横の長さが100μm未満であるLEDを多数並べたセルのことを指す。 The display device of the present invention includes the substrate with partition walls and a light emitting source. The display device of the present invention preferably has the partition-attached substrate of the present invention and a light-emitting light source selected from a liquid crystal cell, an organic EL cell, a mini-LED cell and a micro-LED cell. A light emitting source selected from a liquid crystal cell, an organic EL cell, a mini LED cell and a micro LED cell is preferable as the light emitting source. An organic EL cell is more preferable as the light source because of its excellent light emission characteristics. A mini-LED cell is a cell in which a large number of LEDs each having a length and width of about 100 μm to 1 mm are arranged. A micro LED cell refers to a cell in which a large number of LEDs each having a length and width of less than 100 μm are arranged.
 本発明の表示装置の製造方法について、本発明の隔壁付き基板と有機ELセルを有する表示装置の一例を挙げて説明する。ガラス基板上に、感光性ポリイミド樹脂を塗布し、フォトリソグラフィー法を用いて、開口部を有する絶縁膜を形成する。その上に、アルミニウムをスパッタした後、フォトリソグラフィー法によりアルミニウムのパターニングを行い、絶縁膜の無い開口部にアルミニウムからなる背面電極層を形成する。続いて、その上に、電子輸送層としてトリス(8-キノリノラト)アルミニウム(以下、Alq3と略す)を真空蒸着法により成膜した後、発光層としてAlq3にジシアノメチレンピラン、キナクリドンおよび4,4’-ビス(2,2-ジフェニルビニル)ビフェニルをドーピングした白色発光層を形成する。次に、正孔輸送層としてN,N’-ジフェニル-N,N’-ビス(α-ナフチル)-1,1’-ビフェニル-4,4’-ジアミンを真空蒸着法にて成膜する。最後に、透明電極としてITOをスパッタリングにて成膜し、白色発光層を有する有機ELセルを作製する。前述の隔壁付き基板と、このようにして得られた有機ELセルを対向させて封止剤により貼り合せることにより、表示装置を作製することができる。 The method for manufacturing the display device of the present invention will be described by taking an example of the display device having the substrate with partition walls and the organic EL cell of the present invention. A photosensitive polyimide resin is applied on a glass substrate, and an insulating film having an opening is formed by photolithography. After aluminum is sputtered thereon, the aluminum is patterned by photolithography to form a back electrode layer made of aluminum in the openings where there is no insulating film. Subsequently, tris(8-quinolinolato)aluminum (hereinafter abbreviated as Alq3) was formed thereon as an electron transport layer by vacuum vapor deposition, and then Alq3 as a light-emitting layer was formed with dicyanomethylenepyran, quinacridone and 4,4′. forming a white light-emitting layer doped with bis(2,2-diphenylvinyl)biphenyl; Next, N,N'-diphenyl-N,N'-bis(α-naphthyl)-1,1'-biphenyl-4,4'-diamine is deposited as a hole transport layer by vacuum deposition. Finally, ITO is deposited as a transparent electrode by sputtering to fabricate an organic EL cell having a white light-emitting layer. A display device can be produced by bonding the above-described substrate with partition walls to the organic EL cell thus obtained so as to face each other with a sealant.
 以下に実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの範囲に限定されない。なお、用いた化合物のうち略語を使用しているものについて、名称を以下に示す。
PGMEA:プロピレングリコールモノメチルエーテルアセテート
EDM:ジエチレングリコールエチルメチルエーテル
DAA:ジアセトンアルコール
BHT:ジブチルヒドロキシトルエン。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to these scopes. The names of the compounds using abbreviations among the compounds used are shown below.
PGMEA: propylene glycol monomethyl ether acetate EDM: diethylene glycol ethyl methyl ether DAA: diacetone alcohol BHT: dibutylhydroxytoluene.
 合成例1~3におけるポリシロキサン溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分の重量を秤量して、加熱前の重量に対する割合から固形分濃度を求めた。 The solid content concentrations of the polysiloxane solutions in Synthesis Examples 1 to 3 were obtained by the following method. 1.5 g of the polysiloxane solution was put into an aluminum cup and heated at 250° C. for 30 minutes using a hot plate to evaporate the liquid. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration was obtained from the ratio to the weight before heating.
 合成例1~3におけるポリシロキサン溶液の重量平均分子量は、以下の方法によりポリスチレン換算の重量平均分子量を測定した。
装置: Waters社製 RI検出器付きGPC測定装置(2695)
カラム: PLgel MIXED-Cカラム(ポリマーラボラトリーズ社製,300mm)×2本(直列連結)
測定温度:40℃
流速:1mL/min
溶媒:テトラヒドロフラン(THF) 0.5質量%溶液
標準物質:ポリスチレン
検出モード:RI。
The weight average molecular weights of the polysiloxane solutions in Synthesis Examples 1 to 3 were measured as polystyrene-equivalent weight average molecular weights by the following method.
Apparatus: Waters GPC measuring apparatus with RI detector (2695)
Column: PLgel MIXED-C column (manufactured by Polymer Laboratories, 300 mm) x 2 (connected in series)
Measurement temperature: 40°C
Flow rate: 1 mL/min
Solvent: Tetrahydrofuran (THF) 0.5% by weight solution Standard substance: polystyrene Detection mode: RI.
 合成例1~3におけるポリシロキサン中の各繰り返し単位の含有比率は、以下の方法により求めた。ポリシロキサン溶液を直径10mmの“テフロン”(登録商標)製NMRサンプル管に注入して29Si-NMR測定を行い、オルガノシランに由来するSi全体の積分値に対する、特定のオルガノシランに由来するSiの積分値の割合から各繰り返し単位の含有比率を算出した。29Si-NMR測定条件を以下に示す。
装置:核磁気共鳴装置(JNM-GX270;日本電子(株)製)
測定法:ゲーテッドデカップリング法
測定核周波数:53.6693MHz(29Si核)
スペクトル幅:20000Hz
パルス幅:12μs(45°パルス)
パルス繰り返し時間:30.0秒
溶媒:アセトン-d6
基準物質:テトラメチルシラン
測定温度:23℃
試料回転数:0.0Hz。
The content ratio of each repeating unit in polysiloxane in Synthesis Examples 1 to 3 was obtained by the following method. A polysiloxane solution is injected into a “Teflon” (registered trademark) NMR sample tube with a diameter of 10 mm and 29 Si-NMR measurement is performed, and the Si derived from a specific organosilane is compared with the integrated value of the entire Si derived from the organosilane. The content ratio of each repeating unit was calculated from the ratio of the integrated value of. 29 Si-NMR measurement conditions are shown below.
Apparatus: Nuclear magnetic resonance apparatus (JNM-GX270; manufactured by JEOL Ltd.)
Measurement method: Gated decoupling method Measurement nucleus frequency: 53.6693 MHz ( 29 Si nucleus)
Spectrum width: 20000Hz
Pulse width: 12 μs (45° pulse)
Pulse repetition time: 30.0 seconds Solvent: Acetone-d6
Reference substance: Tetramethylsilane Measurement temperature: 23°C
Sample rotation speed: 0.0 Hz.
 合成例1 ポリシロキサン(PSL-1)溶液
 1000mlの三口フラスコに、3-メタクリロキシプロピルメチルジメトキシシランを71.16g(0.306mol)、スチリルトリメトキシシランを78.52g(0.35mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、メチルトリメトキシシランを113.22g(0.83mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを1.080g、およびPGMEAを234.92g仕込み、40℃で撹拌しながら水92.14gにリン酸3.304g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計209g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-1)溶液を得た。なお、得られたポリシロキサン(PSL-1)の重量平均分子量は12,000であった。また、ポリシロキサン(PSL-1)における、3-メタクリロキシプロピルメチルジメトキシシラン、スチリルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、メチルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ17.5mol%、20mol%、5mol%、47.5mol%および10mol%であった。
Synthesis Example 1 Polysiloxane (PSL-1) solution In a 1000 ml three-necked flask, 71.16 g (0.306 mol) of 3-methacryloxypropylmethyldimethoxysilane, 78.52 g (0.35 mol) of styryltrimethoxysilane, 3 21.56 g (0.088 mol) of -(3,4-epoxycyclohexyl)propyltrimethoxysilane, 113.22 g (0.83 mol) of methyltrimethoxysilane, and 45 g of 3-trimethoxysilylpropylsuccinic anhydride. 91 g (0.175 mol), 1.080 g of BHT, and 234.92 g of PGMEA were charged, and 3.304 g of phosphoric acid (1.0% by weight based on the charged monomers) was added to 92.14 g of water while stirring at 40°C. A dissolved aqueous solution of phosphoric acid was added over a period of 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. A mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 209 g of methanol and water, which are by-products, were distilled during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-1) solution. The weight average molecular weight of the obtained polysiloxane (PSL-1) was 12,000. Also, 3-methacryloxypropylmethyldimethoxysilane, styryltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, methyltrimethoxysilane, 3-trimethoxysilyl in polysiloxane (PSL-1) The molar ratio of each repeating unit derived from propylsuccinic anhydride was 17.5 mol %, 20 mol %, 5 mol %, 47.5 mol % and 10 mol %, respectively.
 合成例2 ポリシロキサン(PSL-2)溶液
 1000mlの三口フラスコに、ジフェニルジメトキシシランを203.13g(0.831mol)、3-メタクリロキシプロピルトリメトキシシランを76.06g(0.306mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、ジメチルジメトキシシランを42.08g(0.350mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを1.475g、およびPGMEAを308.45g仕込み、40℃で撹拌しながら水76.39gにリン酸3.887g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計173.99g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-2)溶液を得た。なお、得られたポリシロキサン(PSL-2)の重量平均分子量は6,000であった。また、ポリシロキサン(PSL-2)における、ジフェニルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、ジメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ47.5mol%、17.5mol%、5mol%、20mol%および10mol%であった。
Synthesis Example 2 Polysiloxane (PSL-2) solution In a 1000 ml three-necked flask, 203.13 g (0.831 mol) of diphenyldimethoxysilane, 76.06 g (0.306 mol) of 3-methacryloxypropyltrimethoxysilane, 3- 21.56 g (0.088 mol) of (3,4-epoxycyclohexyl)propyltrimethoxysilane, 42.08 g (0.350 mol) of dimethyldimethoxysilane, 45.91 g of 3-trimethoxysilylpropylsuccinic anhydride ( 0.175 mol), 1.475 g of BHT, and 308.45 g of PGMEA were charged, and 3.887 g of phosphoric acid (1.0% by weight based on the charged monomer) was dissolved in 76.39 g of water while stirring at 40°C. Aqueous phosphoric acid was added over 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. A mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 173.99 g of methanol and water, which are by-products, were distilled during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-2) solution. The weight average molecular weight of the obtained polysiloxane (PSL-2) was 6,000. Also, diphenyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, dimethyldimethoxysilane, 3-trimethoxysilylpropylsuccinate in polysiloxane (PSL-2) The molar ratio of each repeating unit derived from acid anhydride was 47.5 mol %, 17.5 mol %, 5 mol %, 20 mol % and 10 mol %, respectively.
 合成例3 ポリシロキサン(PSL-3)溶液
 1000mlの三口フラスコに、ジフェニルジメトキシシランを213.82g(0.875mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを43.12g(0.175mol)、テトラエトキシシランを68.86g(0.263mol)、メチルトリメトキシシランを59.59g(0.438mol)、BHTを1.413g、およびPGMEAを298.06g仕込み、40℃で撹拌しながら水83.48gにリン酸3.854g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計282.58g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-3)溶液を得た。なお、得られたポリシロキサン(PSL-3)の重量平均分子量は5,500であった。また、ポリシロキサン(PSL-3)における、ジフェニルジメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、テトラエトキシシラン、メチルトリメトキシシランに由来する各繰り返し単位のモル比は、それぞれ50mol%、10mol%、15mol%、および25mol%であった。
合成例1~3の組成をまとめて表1に示す。
Synthesis Example 3 Polysiloxane (PSL-3) solution In a 1000 ml three-necked flask, 213.82 g (0.875 mol) of diphenyldimethoxysilane and 43.12 g (0.875 mol) of 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane were added. .175 mol), 68.86 g (0.263 mol) of tetraethoxysilane, 59.59 g (0.438 mol) of methyltrimethoxysilane, 1.413 g of BHT, and 298.06 g of PGMEA were charged and stirred at 40°C. An aqueous phosphoric acid solution prepared by dissolving 3.854 g of phosphoric acid (1.0% by weight with respect to the charged monomers) in 83.48 g of water was added over 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. A mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 282.58 g of methanol and water, which are by-products, were distilled during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-3) solution. The weight average molecular weight of the obtained polysiloxane (PSL-3) was 5,500. Further, the molar ratio of each repeating unit derived from diphenyldimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, tetraethoxysilane, and methyltrimethoxysilane in polysiloxane (PSL-3) is 50 mol %, 10 mol %, 15 mol %, and 25 mol %.
The compositions of Synthesis Examples 1 to 3 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 合成例4 緑色有機蛍光体
 3,5-ジブロモベンズアルデヒド(3.0g)、4-t-ブチルフェニルボロン酸(5.3g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.4g)、および炭酸カリウム(2.0g)をフラスコに入れ、窒素置換した。ここに脱気したトルエン(30mL)および脱気した水(10mL)を加え、4時間還流した。反応溶液を室温まで冷却し、分液した後に、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。得られた反応生成物をシリカゲルカラムクロマトグラフィーにより精製し、3,5-ビス(4-t-ブチルフェニル)ベンズアルデヒド(3.5g)の白色固体を得た。次に、3,5-ビス(4-t-ブチルフェニル)ベンズアルデヒド(1.5g)と2,4-ジメチルピロール(0.7g)をフラスコに入れ、脱水ジクロロメタン(200mL)およびトリフルオロ酢酸(1滴)を加えて、窒素雰囲気下、4時間撹拌した。この反応混合物に2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(0.85g)の脱水ジクロロメタン溶液を加え、さらに1時間撹拌した。反応終了後、三弗化ホウ素ジエチルエーテル錯体(7.0mL)およびジイソプロピルエチルアミン(7.0mL)を加えて、4時間撹拌した後、さらに水(100mL)を加えて撹拌し、有機層を分液した。この有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。得られた反応生成物をシリカゲルカラムクロマトグラフィーにより精製し、緑色粉末0.4gを得た(収率17%)。得られた緑色粉末のH-NMR分析結果は次の通りであり、上記で得られた緑色粉末が、下記構造式で表される[G-1]であることが確認された。
Synthesis Example 4 Green organic phosphor 3,5-dibromobenzaldehyde (3.0 g), 4-t-butylphenylboronic acid (5.3 g), tetrakis(triphenylphosphine) palladium (0) (0.4 g), and Potassium carbonate (2.0 g) was placed in the flask and the flask was purged with nitrogen. Degassed toluene (30 mL) and degassed water (10 mL) were added thereto and refluxed for 4 hours. After cooling the reaction solution to room temperature and liquid-separating, the organic layer was wash|cleaned by the saturated salt solution. The organic layer was dried over magnesium sulfate, filtered, and the solvent was distilled off. The resulting reaction product was purified by silica gel column chromatography to give 3,5-bis(4-t-butylphenyl)benzaldehyde (3.5 g) as a white solid. Next, 3,5-bis(4-t-butylphenyl)benzaldehyde (1.5 g) and 2,4-dimethylpyrrole (0.7 g) were placed in a flask, followed by anhydrous dichloromethane (200 mL) and trifluoroacetic acid (1 drop) was added and stirred for 4 hours under a nitrogen atmosphere. A dehydrated dichloromethane solution of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (0.85 g) was added to the reaction mixture, and the mixture was further stirred for 1 hour. After completion of the reaction, boron trifluoride diethyl ether complex (7.0 mL) and diisopropylethylamine (7.0 mL) were added and stirred for 4 hours, then water (100 mL) was added and stirred to separate the organic layer. did. The organic layer was dried over magnesium sulfate, filtered, and the solvent was distilled off. The resulting reaction product was purified by silica gel column chromatography to obtain 0.4 g of green powder (yield 17%). The 1 H-NMR analysis results of the obtained green powder are as follows, and it was confirmed that the green powder obtained above was [G-1] represented by the following structural formula.
 H-NMR(CDCl(d=ppm)):7.95(s,1H)、7.63-7.48(m,10H)、6.00(s,2H)、2.58(s,6H)、1.50(s,6H)、1.37(s,18H)。 1 H-NMR (CDCl 3 (d=ppm)): 7.95 (s, 1H), 7.63-7.48 (m, 10H), 6.00 (s, 2H), 2.58 (s , 6H), 1.50 (s, 6H), 1.37 (s, 18H).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 合成例5 赤色有機蛍光体
 4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール300mg、2-メトキシベンゾイルクロリド201mgおよびトルエン10mlの混合溶液を、窒素気流下、120℃で6時間加熱した。室温に冷却後、溶媒をエバポレートした。得られた残留物をエタノール20mlで洗浄し、真空乾燥することにより、2-(2-メトキシベンゾイル)-3-(4-t-ブチルフェニル)-5-(4-メトキシフェニル)ピロール260mgを得た。次に、2-(2-メトキシベンゾイル)-3-(4-t-ブチルフェニル)-5-(4-メトキシフェニル)ピロール260mg、4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール180mg、メタンスルホン酸無水物206mgおよび脱気したトルエン10mlの混合溶液を、窒素気流下、125℃で7時間加熱した。この反応混合物を室温に冷却後、水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄した後、エバポレートし、真空乾燥することにより、残留物としてピロメテン体を得た。次に、得られたピロメテン体とトルエン10mlの混合溶液に、窒素気流下、ジイソプロピルエチルアミン305mgおよび三フッ化ホウ素ジエチルエーテル錯体670mgを加え、室温で3時間撹拌した。この反応混合物に水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、赤紫色粉末0.27gを得た(収率70%)。得られた赤紫色粉末のH-NMR分析結果は次の通りであり、上記で得られた赤紫色粉末が、下記構造式で表される[R-1]であることが確認された。
Synthesis Example 5 Red organic phosphor A mixed solution of 300 mg of 4-(4-t-butylphenyl)-2-(4-methoxyphenyl)pyrrole, 201 mg of 2-methoxybenzoyl chloride and 10 ml of toluene was heated at 120° C. under a nitrogen stream. Heated for 6 hours. After cooling to room temperature, the solvent was evaporated. The obtained residue was washed with 20 ml of ethanol and vacuum dried to obtain 260 mg of 2-(2-methoxybenzoyl)-3-(4-t-butylphenyl)-5-(4-methoxyphenyl)pyrrole. Ta. Next, 2-(2-methoxybenzoyl)-3-(4-t-butylphenyl)-5-(4-methoxyphenyl)pyrrole 260 mg, 4-(4-t-butylphenyl)-2-(4- A mixed solution of 180 mg of methoxyphenyl)pyrrole, 206 mg of methanesulfonic anhydride and 10 ml of degassed toluene was heated at 125° C. for 7 hours under a nitrogen stream. After cooling the reaction mixture to room temperature, 20 ml of water was added and extracted with 30 ml of dichloromethane. After the organic layer was washed twice with 20 ml of water, it was evaporated and dried in a vacuum to obtain a pyrromethene compound as a residue. Next, 305 mg of diisopropylethylamine and 670 mg of boron trifluoride diethyl ether complex were added to a mixed solution of the obtained pyrromethene derivative and 10 ml of toluene under a nitrogen stream, and the mixture was stirred at room temperature for 3 hours. 20 ml of water was poured into the reaction mixture and extracted with 30 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate, and evaporated. After purification by silica gel column chromatography and vacuum drying, 0.27 g of reddish purple powder was obtained (yield 70%). The results of 1 H-NMR analysis of the obtained reddish purple powder are as follows, and it was confirmed that the reddish purple powder obtained above was [R-1] represented by the following structural formula.
 H-NMR(CDCl(d=ppm)):1.19(s,18H),3.42(s,3H),3.85(s,6H),5.72(d,1H),6.20(t,1H),6.42-6.97(m,16H),7.89(d,4H)。 1 H-NMR (CDCl 3 (d=ppm)): 1.19 (s, 18H), 3.42 (s, 3H), 3.85 (s, 6H), 5.72 (d, 1H), 6.20 (t, 1H), 6.42-6.97 (m, 16H), 7.89 (d, 4H).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 実施例1 隔壁用樹脂組成物(P-1)
 白色顔料として、二酸化チタン顔料(CR-97;石原産業(株)製(以下「CR-97」))を5.00g、遮光顔料として、青色顔料(ピグメントブルー15:6N(以下「PB15:6N」))を0.03g、紫色顔料(ピグメントバイオレット23(以下「PV23」))を0.02g、分散剤として、 リン酸ポリエステル(“DISPERBYK”(登録商標)-111;ビックケミージャパン(株)製(以下「DISPERBYK-111」))を1.00g、溶剤として、PGMEAを4.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-1)を得た。また、黄色前駆体化合物として、有機銀化合物(ネオデカン酸銀)0.20gを、EDM1.80gに溶解して、黄色前駆体化合物溶液(YZ-1)を得た。
Example 1 Partition wall resin composition (P-1)
As a white pigment, 5.00 g of titanium dioxide pigment (CR-97; manufactured by Ishihara Sangyo Co., Ltd. (hereinafter "CR-97")), and as a light-shielding pigment, a blue pigment (Pigment Blue 15:6N (hereinafter "PB15:6N ”))), 0.02 g of purple pigment (Pigment Violet 23 (hereinafter “PV23”)), and phosphate polyester (“DISPERBYK” (registered trademark)-111; BYK Chemie Japan Co., Ltd.) as a dispersant. (hereinafter "DISPERBYK-111")) and 4.00 g of PGMEA as a solvent are mixed and dispersed using a mill-type dispersing machine filled with zirconia beads to obtain a pigment dispersion (MW-1). Obtained. Further, as a yellow precursor compound, 0.20 g of an organic silver compound (silver neodecanoate) was dissolved in 1.80 g of EDM to obtain a yellow precursor compound solution (YZ-1).
 次に、合成例1により得られたポリシロキサン(PSL-1)溶液を9.41g、前記顔料分散液(MW-1)6.03g、前記黄色前駆体化合物溶液(YZ-1)を1.00g、還元剤として、t-ブチルヒドロキノン0.025g、光重合開始剤として、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(О-アセチルオキシム)(“イルガキュア”(登録商標)OXE-02、BASFジャパン(株)製(以下「OXE-02」))0.200g、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(“イルガキュア”819、BASFジャパン(株)製(以下「Omnirad-819」))0.200g、光重合性化合物として、ジペンタエリスリトールヘキサアクリレート(“KAYARAD”(登録商標)DPHA、新日本薬業(株)製(以下「DPHA」))2.00g、撥液化合物として、光重合性フッ素含有化合物(“メガファック”(登録商標)RS-72A、20重量%PGMEA希釈溶液品、DIC(株)製(以下「RS-72A」))0.25g、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(“セロキサイド”(登録商標)2021P、ダイセル(株)製(以下「セロキサイド(登録商標)2021P」))0.020g、およびアクリル系界面活性剤(“BYK”(登録商標)352、ビックケミージャパン(株)製(以下「BYK-352」))のPGMEA10重量%希釈溶液0.10g(濃度500ppmに相当)を、溶媒PGMEA0.76gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-1)を得た。 Next, 9.41 g of the polysiloxane (PSL-1) solution obtained in Synthesis Example 1, 6.03 g of the pigment dispersion (MW-1), and 1.0 g of the yellow precursor compound solution (YZ-1) were added. 00 g, t-butyl hydroquinone 0.025 g as a reducing agent, ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1- as a photoinitiator (O-Acetyloxime) (“Irgacure” (registered trademark) OXE-02, manufactured by BASF Japan Ltd. (hereinafter “OXE-02”)) 0.200 g, bis(2,4,6-trimethylbenzoyl)-phenyl Phosphine oxide (“Irgacure” 819, manufactured by BASF Japan Ltd. (hereinafter “Omnirad-819”)) 0.200 g, dipentaerythritol hexaacrylate (“KAYARAD” (registered trademark) DPHA, new Nihon Yakugyo Co., Ltd. (hereinafter “DPHA”)) 2.00 g, a photopolymerizable fluorine-containing compound (“Megafac” (registered trademark) RS-72A, 20% by weight PGMEA diluted solution product, as a liquid-repellent compound, DIC Corporation (hereinafter “RS-72A”)) 0.25 g, 3′,4′-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate (“Celoxide” (registered trademark) 2021P, Daicel Corporation) (hereinafter “Celoxide (registered trademark) 2021P”)) 0.020 g, and acrylic surfactant (“BYK” (registered trademark) 352, manufactured by BYK Chemie Japan Co., Ltd. (hereinafter “BYK-352”)) 0.10 g of a 10% by weight diluted solution of PGMEA (corresponding to a concentration of 500 ppm) was dissolved in 0.76 g of solvent PGMEA and stirred. The resulting mixture was filtered through a 5.0 μm filter to obtain a partition wall resin composition (P-1).
 実施例2 隔壁用樹脂組成物(P-2)
 白色顔料として、CR-97を5.00g、遮光顔料として、青色顔料PB15:6Nを0.015g、紫色顔料PV23を0.035g、分散剤として、 リン酸ポリエステルDISPERBYK-111を1.00g、溶剤として、PGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-2)を得た。前記顔料分散液(MW-1)の代わりに、顔料分散液(MW-2)を用いた以外は、実施例1と同様にして隔壁用樹脂組成物(P-2)を得た。
Example 2 Partition wall resin composition (P-2)
5.00 g of CR-97 as white pigment, 0.015 g of blue pigment PB15:6N as light-shielding pigment, 0.035 g of purple pigment PV23, 1.00 g of phosphate polyester DISPERBYK-111 as dispersant, solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-2). A partition wall resin composition (P-2) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-2) was used instead of the pigment dispersion (MW-1).
 実施例3 隔壁用樹脂組成物(P-3)
 白色顔料として、CR-97を5.00g、遮光顔料として、青色顔料PB15:6Nを0.035g、紫色顔料PV23を0.015g、分散剤として、 リン酸ポリエステルDISPERBYK-111を1.00g、溶剤として、PGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-3)を得た。前記顔料分散液(MW-1)の代わりに、顔料分散液(MW-3)を用いた以外は、実施例1と同様にして隔壁用樹脂組成物(P-3)を得た。
Example 3 Partition wall resin composition (P-3)
5.00 g of CR-97 as a white pigment, 0.035 g of a blue pigment PB15:6N as a light-shielding pigment, 0.015 g of a purple pigment PV23, 1.00 g of a phosphate polyester DISPERBYK-111 as a dispersant, and a solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-3). A partition wall resin composition (P-3) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-3) was used instead of the pigment dispersion (MW-1).
 実施例4 隔壁用樹脂組成物(P-4)
 白色顔料として、CR-97を5.00g、遮光顔料として、青色顔料PB15:6Nを0.008g、紫色顔料PV23を0.043g、分散剤として、 リン酸ポリエステルDISPERBYK-111を1.00g、溶剤として、PGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-4)を得た。前記顔料分散液(MW-1)の代わりに、顔料分散液(MW-4)を用いた以外は、実施例1と同様にして隔壁用樹脂組成物(P-4)を得た。
Example 4 Resin composition for partition walls (P-4)
5.00 g of CR-97 as a white pigment, 0.008 g of a blue pigment PB15:6N as a light-shielding pigment, 0.043 g of a purple pigment PV23, 1.00 g of a phosphate polyester DISPERBYK-111 as a dispersant, and a solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-4). A partition wall resin composition (P-4) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-4) was used instead of the pigment dispersion (MW-1).
 実施例5 隔壁用樹脂組成物(P-5)
 白色顔料として、CR-97を5.00g、遮光顔料として、青色顔料PB15:6Nを0.043g、紫色顔料PV23を0.008g、分散剤として、 リン酸ポリエステルDISPERBYK-111を1.00g、溶剤として、PGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-5)を得た。前記顔料分散液(MW-1)の代わりに、顔料分散液(MW-5)を用いた以外は、実施例1と同様にして隔壁用樹脂組成物(P-5)を得た。
Example 5 Partition wall resin composition (P-5)
5.00 g of CR-97 as white pigment, 0.043 g of blue pigment PB15:6N as light-shielding pigment, 0.008 g of purple pigment PV23, 1.00 g of phosphate polyester DISPERBYK-111 as dispersant, solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-5). A partition wall resin composition (P-5) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-5) was used instead of the pigment dispersion (MW-1).
 実施例6 隔壁用樹脂組成物(P-6)
 白色顔料として、CR-97を5.00g、遮光顔料として、青色顔料PB15:6Nを0.060g、紫色顔料PV23を0.040g、分散剤として、 リン酸ポリエステルDISPERBYK-111を1.00g、溶剤として、PGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-6)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-6)を6.06g添加し、ポリシロキサン(PSL-1)溶液の添加量を9.34g、PGMEAの添加量を0.81gにした以外は、実施例1と同様にして隔壁用樹脂組成物(P-6)を得た。
Example 6 Partition wall resin composition (P-6)
5.00 g of CR-97 as white pigment, 0.060 g of blue pigment PB15:6N as light-shielding pigment, 0.040 g of purple pigment PV23, 1.00 g of phosphate polyester DISPERBYK-111 as dispersant, solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-6). Instead of the pigment dispersion (MW-1), 6.06 g of the pigment dispersion (MW-6) was added, the amount of the polysiloxane (PSL-1) solution added was 9.34 g, and the amount of PGMEA added was 0.3 g. A partition wall resin composition (P-6) was obtained in the same manner as in Example 1, except that the weight was 81 g.
 実施例7 隔壁用樹脂組成物(P-7)
 白色顔料として、CR-97を5.00g、遮光顔料として、青色顔料PB15:6Nを0.10g、紫色顔料PV23を0.067g、分散剤として、 リン酸ポリエステルDISPERBYK-111を1.00g、溶剤として、PGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-7)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-7)を6.10g添加し、ポリシロキサン(PSL-1)溶液の添加量を9.24g、PGMEAの添加量を0.87gにした以外は、実施例1と同様にして隔壁用樹脂組成物(P-7)を得た。
Example 7 Partition wall resin composition (P-7)
5.00 g of CR-97 as white pigment, 0.10 g of blue pigment PB15:6N as light-shielding pigment, 0.067 g of purple pigment PV23, 1.00 g of phosphate polyester DISPERBYK-111 as dispersant, solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-7). Instead of the pigment dispersion (MW-1), 6.10 g of pigment dispersion (MW-7) was added, the amount of polysiloxane (PSL-1) solution added was 9.24 g, and the amount of PGMEA added was 0.24 g. A partition wall resin composition (P-7) was obtained in the same manner as in Example 1, except that the weight was 87 g.
 実施例8 隔壁用樹脂組成物(P-8)
 白色顔料として、CR-97を5.00g、遮光顔料として、青色顔料PB15:6Nを0.36g、紫色顔料PV23を0.24g、分散剤として、 リン酸ポリエステルDISPERBYK-111を1.00g、溶剤として、PGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-8)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-8)を6.36g添加し、ポリシロキサン(PSL-1)溶液の添加量を8.59g、PGMEAの添加量を1.26gにした以外は、実施例1と同様にして隔壁用樹脂組成物(P-8)を得た。
Example 8 Partition wall resin composition (P-8)
5.00 g of CR-97 as a white pigment, 0.36 g of a blue pigment PB15:6N as a light-shielding pigment, 0.24 g of a purple pigment PV23, 1.00 g of a phosphate polyester DISPERBYK-111 as a dispersant, and a solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-8). Instead of the pigment dispersion (MW-1), 6.36 g of pigment dispersion (MW-8) was added, the amount of polysiloxane (PSL-1) solution added was 8.59 g, and the amount of PGMEA added was 1.5 g. A partition wall resin composition (P-8) was obtained in the same manner as in Example 1, except that the content was 26 g.
 実施例9 隔壁用樹脂組成物(P-9)
 白色顔料として、CR-97を5.00g、遮光顔料として、青色顔料PB15:6Nを0.020g、紫色顔料PV23を0.013g、分散剤として、 リン酸ポリエステルDISPERBYK-111を1.00g、溶剤として、PGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-9)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-9)を6.02g添加し、ポリシロキサン(PSL-1)溶液の添加量を9.44g、PGMEAの添加量を0.75gにした以外は、実施例1と同様にして隔壁用樹脂組成物(P-9)を得た。
Example 9 Partition wall resin composition (P-9)
5.00 g of CR-97 as a white pigment, 0.020 g of a blue pigment PB15:6N as a light-shielding pigment, 0.013 g of a purple pigment PV23, 1.00 g of a phosphate polyester DISPERBYK-111 as a dispersant, and a solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-9). Instead of the pigment dispersion (MW-1), 6.02 g of the pigment dispersion (MW-9) was added, the amount of the polysiloxane (PSL-1) solution added was 9.44 g, and the amount of PGMEA added was 0.44 g. A partition wall resin composition (P-9) was obtained in the same manner as in Example 1, except that the amount was 75 g.
 実施例10 隔壁用樹脂組成物(P-10)
 白色顔料として、CR-97を5.00g、遮光顔料として、青色顔料PB15:6Nを0.010g、紫色顔料PV23を0.0067g、分散剤として、 リン酸ポリエステルDISPERBYK-111を1.00g、溶剤として、PGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-10)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-10)を6.01g添加し、ポリシロキサン(PSL-1)溶液の添加量を9.46g、PGMEAの添加量を0.73gにした以外は、実施例1と同様にして隔壁用樹脂組成物(P-10)を得た。
Example 10 Partition wall resin composition (P-10)
5.00 g of CR-97 as a white pigment, 0.010 g of a blue pigment PB15:6N as a light-shielding pigment, 0.0067 g of a purple pigment PV23, 1.00 g of a phosphate polyester DISPERBYK-111 as a dispersant, and a solvent Then, 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-10). Instead of the pigment dispersion (MW-1), 6.01 g of the pigment dispersion (MW-10) was added, the amount of polysiloxane (PSL-1) solution added was 9.46 g, and the amount of PGMEA added was 0.46 g. A partition wall resin composition (P-10) was obtained in the same manner as in Example 1, except that the amount was 73 g.
 実施例11 隔壁用樹脂組成物(P-11)
 白色顔料として、CR-97を5.00g、遮光顔料として、青色顔料PB15:6Nを0.00050g、紫色顔料PV23を0.00033g、分散剤として、 リン酸ポリエステルDISPERBYK-111を1.00g、溶剤としてPGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-11)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-11)を6.00g添加し、ポリシロキサン(PSL-1)溶液の添加量を9.49g、PGMEAの添加量を0.72gにした以外は、実施例1と同様にして隔壁用樹脂組成物(P-11)を得た。
Example 11 Partition wall resin composition (P-11)
5.00 g of CR-97 as white pigment, 0.00050 g of blue pigment PB15:6N as light-shielding pigment, 0.00033 g of purple pigment PV23, 1.00 g of phosphate polyester DISPERBYK-111 as dispersant, solvent 4.00 g of PGMEA was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-11). Instead of the pigment dispersion (MW-1), 6.00 g of the pigment dispersion (MW-11) was added. A partition wall resin composition (P-11) was obtained in the same manner as in Example 1, except that the content was 72 g.
 実施例12 隔壁用樹脂組成物(P-12)
 黄色前駆体化合物として、黄色前駆体化合物溶液(YZ-1)の代わりに、後述の調製例8で得た有機銀化合物(APAG-01)の10%PGMEA溶液を用いて、PGMEAの添加量を0.063gとし、EDMを0.70g添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-12)を得た。
Example 12 Partition wall resin composition (P-12)
As the yellow precursor compound, instead of the yellow precursor compound solution (YZ-1), a 10% PGMEA solution of the organic silver compound (APAG-01) obtained in Preparation Example 8 described later was used, and the amount of PGMEA added was changed to A resin composition for partition walls (P-12) was obtained in the same manner as in Example 1, except that the content was 0.063 g and 0.70 g of EDM was added.
 実施例13 隔壁用樹脂組成物(P-13)
 黄色前駆体化合物として、有機銅化合物(ネオデカン酸銅)0.20gを、EDM1.80gに溶解して、黄色前駆体化合物溶液(YZ-2)を得た。黄色前駆体化合物として、黄色前駆体化合物溶液(YZ-1)の代わりに、黄色前駆体化合物溶液(YZ-2)を用いた以外は、実施例1と同様にして隔壁用樹脂組成物(P-13)を得た。
Example 13 Partition wall resin composition (P-13)
As a yellow precursor compound, 0.20 g of an organic copper compound (copper neodecanoate) was dissolved in 1.80 g of EDM to obtain a yellow precursor compound solution (YZ-2). Partition wall resin composition (P -13) was obtained.
 実施例14 隔壁用樹脂組成物(P-14)
 黄色前駆体化合物として、フェノール系化合物(1,4-ジヒドロキシアントラヒドロキノン)0.20gを、EDM1.80gに溶解して、黄色前駆体化合物溶液(YZ-3)を得た。ポリシロキサン(PSL-1)溶液を7.13g、MW-1を4.82g、前記黄色前駆体化合物溶液(YZ-3)を2.40g、t-ブチルヒドロキノン0.020g、OXE-02を0.160g、Omnirad-819を0.160g、DPHAを1.60g、RS-72Aを0.20g、セロキサイド2021Pを0.016g、BYK-352のPGMEA10重量%希釈溶液0.10gを、溶媒PGMEA3.40gに溶解させて撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-14)を得た。
Example 14 Partition wall resin composition (P-14)
As a yellow precursor compound, 0.20 g of a phenolic compound (1,4-dihydroxyanthrahydroquinone) was dissolved in 1.80 g of EDM to obtain a yellow precursor compound solution (YZ-3). 7.13 g of polysiloxane (PSL-1) solution, 4.82 g of MW-1, 2.40 g of the yellow precursor compound solution (YZ-3), 0.020 g of t-butylhydroquinone, 0 of OXE-02 0.160 g of Omnirad-819, 1.60 g of DPHA, 0.20 g of RS-72A, 0.016 g of Celoxide 2021P, 0.10 g of a 10% by weight dilution of BYK-352 in PGMEA, and 3.40 g of solvent PGMEA. and stirred. The resulting mixture was filtered through a 5.0 μm filter to obtain a partition wall resin composition (P-14).
 実施例15 隔壁用樹脂組成物(P-15)
 黄色前駆体化合物として、黄色前駆体化合物溶液(YZ-3)の代わりに、黄色前駆体化合物溶液(YZ-1)を1.60g添加し、ポリシロキサン(PSL-1)溶液の添加量を7.33g、PGMEAの添加量を4.00gにした以外は、実施例14と同様にして隔壁用樹脂組成物(P-15)を得た。
Example 15 Partition wall resin composition (P-15)
As a yellow precursor compound, 1.60 g of yellow precursor compound solution (YZ-1) was added instead of yellow precursor compound solution (YZ-3), and the amount of polysiloxane (PSL-1) solution added was 7. A resin composition for partition walls (P-15) was obtained in the same manner as in Example 14, except that the added amount of PGMEA was changed to 0.33 g and 4.00 g.
 実施例16 隔壁用樹脂組成物(P-16)
 黄色前駆体化合物溶液(YZ-1)の添加量を4.80g、ポリシロキサン(PSL-1)溶液の添加量を6.53g、PGMEAの添加量を1.60gにした以外は、実施例15と同様にして隔壁用樹脂組成物(P-16)を得た。
Example 16 Partition wall resin composition (P-16)
Example 15 except that the amount of yellow precursor compound solution (YZ-1) added was 4.80 g, the amount of polysiloxane (PSL-1) solution added was 6.53 g, and the amount of PGMEA added was 1.60 g. A partition wall resin composition (P-16) was obtained in the same manner as above.
 実施例17 隔壁用樹脂組成物(P-17)
 黄色前駆体化合物溶液(YZ-1)の添加量を0.50g、ポリシロキサン(PSL-1)溶液の添加量を9.54g、PGMEAの添加量を1.14gにした以外は、実施例1と同様にして隔壁用樹脂組成物(P-17)を得た。
Example 17 Partition wall resin composition (P-17)
Example 1 except that the amount of yellow precursor compound solution (YZ-1) added was 0.50 g, the amount of polysiloxane (PSL-1) solution added was 9.54 g, and the amount of PGMEA added was 1.14 g. A partition wall resin composition (P-17) was obtained in the same manner as above.
 実施例18 隔壁用樹脂組成物(P-18)
 黄色前駆体化合物溶液(YZ-1)の添加量を0.080g、ポリシロキサン(PSL-1)溶液の添加量を9.64g、PGMEAの添加量を1.45gにした以外は、実施例1と同様にして隔壁用樹脂組成物(P-18)を得た。
Example 18 Partition wall resin composition (P-18)
Example 1 except that the amount of yellow precursor compound solution (YZ-1) added was 0.080 g, the amount of polysiloxane (PSL-1) solution added was 9.64 g, and the amount of PGMEA added was 1.45 g. A partition wall resin composition (P-18) was obtained in the same manner as above.
 実施例19 隔壁用樹脂組成物(P-19)
 還元剤t-ブチルヒドロキノンの代わりに、重合禁止剤としてエチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート](“イルガノックス”(登録商標)1010、BASFジャパン(株)製(以下「IRGANOX(登録商標)1010」))を添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-19)を得た。
Example 19 Partition wall resin composition (P-19)
Ethylenebis(oxyethylene)bis[3-(5-tert-butyl-4-hydroxy-m-tolyl)propionate] (“Irganox” (registered trademark)) is used as a polymerization inhibitor instead of the reducing agent t-butylhydroquinone. 1010, manufactured by BASF Japan Ltd. (hereinafter "IRGANOX (registered trademark) 1010")) was added in the same manner as in Example 1 to obtain a partition wall resin composition (P-19).
 実施例20 隔壁用樹脂組成物(P-20)
 白色顔料として、CR-97を5.00g、遮光顔料として、青色顔料PB15:6Nを0.030g、紫色顔料PV23を0.020g、分散剤として、 アルキロールアミノアミド系分散剤DISPERBYK-109を1.00g、溶剤としてPGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-12)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-12)を添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-20)を得た。
Example 20 Partition wall resin composition (P-20)
5.00 g of CR-97 as a white pigment, 0.030 g of a blue pigment PB15:6N as a light-shielding pigment, 0.020 g of a purple pigment PV23, and 1 portion of an alkylolaminoamide-based dispersant DISPERBYK-109 as a dispersant. .00 g and 4.00 g of PGMEA as a solvent were mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-12). A partition wall resin composition (P-20) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-12) was added instead of the pigment dispersion (MW-1).
 実施例21 隔壁用樹脂組成物(P-21)
 樹脂として、ポリシロキサン(PSL-1)溶液の代わりにポリシロキサン(PSL-2)溶液を添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-21)を得た。
Example 21 Partition wall resin composition (P-21)
A partition wall resin composition (P-21) was obtained in the same manner as in Example 1, except that a polysiloxane (PSL-2) solution was added as the resin instead of the polysiloxane (PSL-1) solution.
 実施例22 隔壁用樹脂組成物(P-22)
 白色顔料として、CR-97を5.00g、分散剤として、DISPERBYK-111を1.00g、溶剤としてPGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-13)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-13)を6.00g添加し、ポリシロキサン(PSL-1)溶液の添加量を9.49g、PGMEAの添加量を0.72gにした以外は、実施例1と同様にして隔壁用樹脂組成物(P-22)を得た。
Example 22 Partition wall resin composition (P-22)
5.00 g of CR-97 as a white pigment, 1.00 g of DISPERBYK-111 as a dispersant, and 4.00 g of PGMEA as a solvent are mixed and dispersed using a mill-type disperser filled with zirconia beads to disperse the pigment. A liquid (MW-13) was obtained. Instead of the pigment dispersion (MW-1), 6.00 g of the pigment dispersion (MW-13) was added, the amount of polysiloxane (PSL-1) solution added was 9.49 g, and the amount of PGMEA added was 0.49 g. A partition wall resin composition (P-22) was obtained in the same manner as in Example 1, except that the weight was 72 g.
 実施例23 隔壁用樹脂組成物(P-23)
 白色顔料として、CR-97を5.00g、遮光顔料として、紫色顔料PV23を0.050g、分散剤として、DISPERBYK-111を1.00g、溶剤としてPGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-14)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-14)を添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-23)を得た。
Example 23 Partition wall resin composition (P-23)
5.00 g of CR-97 as a white pigment, 0.050 g of a purple pigment PV23 as a light-shielding pigment, 1.00 g of DISPERBYK-111 as a dispersant, and 4.00 g of PGMEA as a solvent were mixed and filled with zirconia beads. A pigment dispersion liquid (MW-14) was obtained by dispersing using a mill-type dispersing machine. A partition wall resin composition (P-23) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-14) was added instead of the pigment dispersion (MW-1).
 実施例24 隔壁用樹脂組成物(P-24)
 白色顔料として、CR-97を5.00g、遮光顔料として、青色顔料PB15:6Nを0.050g、分散剤として、DISPERBYK-111を1.00g、溶剤としてPGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-15)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-15)を添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-24)を得た。
Example 24 Partition wall resin composition (P-24)
5.00 g of CR-97 as a white pigment, 0.050 g of a blue pigment PB15:6N as a light-shielding pigment, 1.00 g of DISPERBYK-111 as a dispersant, and 4.00 g of PGMEA as a solvent were mixed to form zirconia beads. A pigment dispersion (MW-15) was obtained by dispersing using a filled mill-type dispersing machine. A resin composition for partition walls (P-24) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-15) was added instead of the pigment dispersion (MW-1).
 実施例25 隔壁用樹脂組成物(P-25)
 白色顔料として、二酸化チタン顔料(PFC105;石原産業(株)製(以下「PFC105」))を5.00g、遮光顔料として、青色顔料PB15:6Nを0.030g、紫色顔料PV23を0.020g、分散剤として、DISPERBYK-111を1.00g、溶剤としてPGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-16)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-16)を添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-25)を得た。
Example 25 Partition wall resin composition (P-25)
5.00 g of titanium dioxide pigment (PFC105; manufactured by Ishihara Sangyo Co., Ltd. (hereinafter "PFC105")) as a white pigment, 0.030 g of a blue pigment PB15:6N as a light-shielding pigment, 0.020 g of a purple pigment PV23, 1.00 g of DISPERBYK-111 as a dispersant and 4.00 g of PGMEA as a solvent were mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-16). A partition wall resin composition (P-25) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-16) was added instead of the pigment dispersion (MW-1).
 実施例26 隔壁用樹脂組成物(P-26)
 白色顔料として、二酸化チタン顔料(R960;石原産業(株)製(以下「R960」))を5.00g、遮光顔料として、青色顔料PB15:6Nを0.030g、紫色顔料PV23を0.020g、分散剤として、DISPERBYK-111を1.00g、溶剤としてPGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-17)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-17)を添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-26)を得た。
Example 26 Partition wall resin composition (P-26)
As a white pigment, 5.00 g of titanium dioxide pigment (R960; manufactured by Ishihara Sangyo Co., Ltd. (hereinafter "R960")), as a light-shielding pigment, 0.030 g of blue pigment PB15:6N, 0.020 g of purple pigment PV23, 1.00 g of DISPERBYK-111 as a dispersant and 4.00 g of PGMEA as a solvent were mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-17). A partition wall resin composition (P-26) was obtained in the same manner as in Example 1, except that the pigment dispersion (MW-17) was added instead of the pigment dispersion (MW-1).
 実施例27 隔壁用樹脂組成物(P-27)
 ポリシロキサン(PSL-3)溶液を10.4g、MW-1を6.03g、黄色前駆体化合物溶液(YZ-1)を1.00g、t-ブチルヒドロキノン0.025g、キノンジアジド化合物としてTHP-17(商品名、東洋合成工業(株)製)を2.00g、RS-72Aを0.25g、セロキサイド2021Pを0.020gBYK-352のPGMEA10重量%希釈溶液0.10gを、溶媒PGMEA0.16gに溶解させて撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-27)を得た。
Example 27 Partition wall resin composition (P-27)
10.4 g of polysiloxane (PSL-3) solution, 6.03 g of MW-1, 1.00 g of yellow precursor compound solution (YZ-1), 0.025 g of t-butylhydroquinone, THP-17 as a quinonediazide compound (trade name, manufactured by Toyo Gosei Co., Ltd.) 2.00 g, RS-72A 0.25 g, Celoxide 2021P 0.020 g BYK-352 PGMEA 10 wt% diluted solution 0.10 g dissolved in solvent PGMEA 0.16 g and stirred. The resulting mixture was filtered through a 5.0 μm filter to obtain a partition wall resin composition (P-27).
 比較例1 隔壁用樹脂組成物(P-28)
 遮光顔料として、青色顔料PB15:6Nを0.030g、紫色顔料PV23を0.020g、分散剤として、DISPERBYK-111を1.00g、溶剤としてPGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-18)を得た。ポリシロキサン(PSL-1)溶液を13.4g、MW-18を2.42g、黄色前駆体化合物溶液(YZ-1)を0.80g、OXE-02を0.16g、Omnirad-819を0.16g、t-ブチルヒドロキノン0.020g、DPHAを1.60g、RS-72Aを0.20g、セロキサイド2021Pを0.016gBYK-352のPGMEA10重量%希釈溶液0.10gを、溶媒PGMEA1.00gに溶解させて撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-28)を得た。
Comparative Example 1 Partition wall resin composition (P-28)
A mill filled with zirconia beads mixed with 0.030 g of blue pigment PB15:6N as light-shielding pigment, 0.020 g of purple pigment PV23, 1.00 g of DISPERBYK-111 as dispersant, and 4.00 g of PGMEA as solvent. A pigment dispersion liquid (MW-18) was obtained by dispersing using a type dispersing machine. 13.4 g of polysiloxane (PSL-1) solution, 2.42 g of MW-18, 0.80 g of yellow precursor compound solution (YZ-1), 0.16 g of OXE-02, and 0.0 g of Omnirad-819. 16 g, 0.020 g of t-butyl hydroquinone, 1.60 g of DPHA, 0.20 g of RS-72A, 0.016 g of celoxide 2021P. and stirred. The resulting mixture was filtered through a 5.0 μm filter to obtain a partition wall resin composition (P-28).
 比較例2 隔壁用樹脂組成物(P-29)
 黄色前駆体化合物溶液(YZ-1)を添加せずに、ポリシロキサン(PSL-1)溶液の添加量を9.66g、PGMEAの添加量を1.51gにした以外は、実施例1と同様にして隔壁用樹脂組成物(P-29)を得た。
Comparative Example 2 Partition wall resin composition (P-29)
Same as Example 1 except that the amount of polysiloxane (PSL-1) solution added was 9.66 g and the amount of PGMEA was 1.51 g without adding the yellow precursor compound solution (YZ-1). to obtain a partition wall resin composition (P-29).
 比較例3 隔壁用樹脂組成物(P-30)
 白色顔料として、CR-97を5.00g、遮光顔料として、黒顔料窒化チタンを0.033g、分散剤として、DISPERBYK-111を1.00g、溶剤としてPGMEAを4.00g混合しジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-19)を得た。前記顔料分散液(MW-1)の代わりに顔料分散液(MW-19)を6.02g添加し、ポリシロキサン(PSL-1)溶液の添加量を9.42g、PGMEAの添加量を0.75gにした以外は、実施例1と同様にして隔壁用樹脂組成物(P-30)を得た。
実施例1~27および比較例1~3の組成をまとめて表2に示す。
Comparative Example 3 Partition wall resin composition (P-30)
5.00 g of CR-97 as a white pigment, 0.033 g of titanium nitride as a black pigment as a light-shielding pigment, 1.00 g of DISPERBYK-111 as a dispersant, and 4.00 g of PGMEA as a solvent are mixed and filled with zirconia beads. A pigment dispersion liquid (MW-19) was obtained by dispersing using a mill-type dispersing machine. Instead of the pigment dispersion (MW-1), 6.02 g of pigment dispersion (MW-19) was added, the amount of polysiloxane (PSL-1) solution added was 9.42 g, and the amount of PGMEA added was 0.42 g. A partition wall resin composition (P-30) was obtained in the same manner as in Example 1, except that the amount was 75 g.
The compositions of Examples 1-27 and Comparative Examples 1-3 are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 調製例1 色変換発光材料組成物(CL-1)
 緑色量子ドット材料(Lumidot 640 CdSe/ZnS、平均粒子径6.3nm:アルドリッチ社製)の0.5重量%トルエン溶液を20重量部、DPHAを45重量部、“イルガキュア”(登録商標)907(BASFジャパン(株)製)を5重量部、アクリル樹脂(SPCR-18(商品名)、昭和電工(株)製)の30重量%PGMEA溶液を166重量部およびトルエンを97重量部混合して撹拌し、均一に溶解した。得られた混合物を0.45μmのシリンジフィルターで濾過し、色変換発光材料組成物(CL-1)を調製した。
Preparation Example 1 Color Conversion Luminescent Material Composition (CL-1)
Green quantum dot material (Lumidot 640 CdSe / ZnS, average particle size 6.3 nm: manufactured by Aldrich) 0.5 wt% toluene solution 20 parts by weight, DPHA 45 parts by weight, "Irgacure" (registered trademark) 907 ( 5 parts by weight of BASF Japan Co., Ltd.), 166 parts by weight of 30% by weight PGMEA solution of acrylic resin (SPCR-18 (trade name), Showa Denko Co., Ltd.) and 97 parts by weight of toluene are mixed and stirred. and dissolved uniformly. The resulting mixture was filtered through a 0.45 μm syringe filter to prepare a color-converting luminescent material composition (CL-1).
 調製例2 色変換発光材料組成物(CL-2)
 緑色量子ドット材料にかえて合成例4により得られた緑色蛍光体G-1を0.4重量部用い、トルエンの添加量を117重量部に変更した以外は、調製例1と同様にして色変換発光材料組成物(CL-2)を調製した。
Preparation Example 2 Color-converting luminescent material composition (CL-2)
Color in the same manner as in Preparation Example 1, except that 0.4 parts by weight of the green phosphor G-1 obtained in Synthesis Example 4 was used instead of the green quantum dot material, and the amount of toluene added was changed to 117 parts by weight. A conversion luminescent material composition (CL-2) was prepared.
 調製例3 色変換発光材料組成物(CL-3)
 緑色量子ドット材料にかえて合成例5により得られた赤色蛍光体R-1を0.4重量部用い、トルエンの添加量を117重量部に変更した以外は、調製例1と同様にして色変換発光材料組成物(CL-3)を調製した。
Preparation Example 3 Color conversion luminescent material composition (CL-3)
Color in the same manner as in Preparation Example 1, except that 0.4 parts by weight of the red phosphor R-1 obtained in Synthesis Example 5 was used instead of the green quantum dot material, and the amount of toluene added was changed to 117 parts by weight. A conversion luminescent material composition (CL-3) was prepared.
 調製例4 カラーフィルター形成材料(CF-1)
 C.I.ピグメントグリーン59を90g、C.I.ピグメントイエロー150を60g、高分子分散剤(“BYK”(登録商標)-6919(商品名)ビックケミー社製(以下「BYK-6919」))を75g、バインダー樹脂(“アデカアークルズ”(登録商標)WR301(商品名)(株)ADEKA製)を100g、およびPGMEAを675g混合してスラリーを作製した。スラリーを入れたビーカーをダイノーミルとチューブでつなぎ、メディアとして直径0.5mmのジルコニアビーズを使用して、周速14m/sで8時間の分散処理を行い、ピグメントグリーン59分散液(GD-1)を作製した。
Preparation Example 4 Color filter forming material (CF-1)
C. I. Pigment Green 59, 90 g, C.I. I. 60 g of Pigment Yellow 150, 75 g of a polymer dispersant (“BYK” (registered trademark)-6919 (trade name) manufactured by BYK-Chemie (hereinafter “BYK-6919”)), a binder resin (“Adeka Arkles” (registered trademark) ) 100 g of WR301 (trade name, manufactured by ADEKA Corporation) and 675 g of PGMEA were mixed to prepare a slurry. A beaker containing the slurry was connected to a Dyno mill and a tube, and zirconia beads with a diameter of 0.5 mm were used as media to perform dispersion treatment at a peripheral speed of 14 m/s for 8 hours to obtain Pigment Green 59 dispersion (GD-1). was made.
 ピグメントグリーン59分散液(GD-1)56.54g、アクリル樹脂(“サイクロマー”(登録商標)P(ACA)Z250(商品名)ダイセル・オルネクス(株)製(以下「P(ACA)Z250」))を3.14g、DPHAを2.64g、光重合開始剤(“オプトマー”(登録商標)NCI-831(商品名)(株)ADEKA製(以下「NCI-831」))0.330g、界面活性剤(BYK”(登録商標)-333(商品名)ビックケミー社製(以下「BYK-333」))を0.04g、重合禁止剤としてBHTを0.01g、および溶媒としてPGMEAを37.30g混合し、カラーフィルター形成材料(CF-1)を作製した。 Pigment Green 59 dispersion (GD-1) 56.54 g, acrylic resin (“Cyclomer” (registered trademark) P (ACA) Z250 (trade name) manufactured by Daicel Allnex Co., Ltd. (hereinafter “P (ACA) Z250” )) 3.14 g, DPHA 2.64 g, a photopolymerization initiator (“OPTOMER” (registered trademark) NCI-831 (trade name) manufactured by ADEKA Corporation (hereinafter “NCI-831”)) 0.330 g, 0.04 g of a surfactant (BYK” (registered trademark)-333 (trade name) manufactured by BYK-Chemie (hereinafter “BYK-333”)), 0.01 g of BHT as a polymerization inhibitor, and 37 g of PGMEA as a solvent. 30 g were mixed to prepare a color filter forming material (CF-1).
 調製例5 遮光隔壁用樹脂組成物
 カーボンブラック(MA100(商品名)三菱化学(株)製)150g、高分子分散剤BYK-6919を75g、P(ACA)Z250を100g、およびPGMEAを675g混合してスラリーを作製した。スラリーを入れたビーカーをダイノーミルとチューブでつなぎ、メディアとして直径0.5mmのジルコニアビーズを使用して、周速14m/sで8時間の分散処理を行い、顔料分散液(MB-1)を作製した。
Preparation Example 5 Resin composition for light-shielding partition wall 150 g of carbon black (MA100 (trade name) manufactured by Mitsubishi Chemical Corporation), 75 g of polymer dispersant BYK-6919, 100 g of P(ACA)Z250, and 675 g of PGMEA were mixed. to prepare a slurry. A beaker containing the slurry was connected to a Dyno mill and a tube, and zirconia beads with a diameter of 0.5 mm were used as media for dispersion treatment at a peripheral speed of 14 m/s for 8 hours to prepare a pigment dispersion liquid (MB-1). did.
 顔料分散液(MB-1)56.54g、P(ACA)Z250を3.14g、DPHAを2.64g、NCI-831を0.330g、BYK-333を0.04g、重合禁止剤としてターシャリブチルカテコール0.01g、およびPGMEA37.30gを混合し、遮光隔壁用樹脂組成物を作製した。 Pigment dispersion (MB-1) 56.54 g, P (ACA) Z250 3.14 g, DPHA 2.64 g, NCI-831 0.330 g, BYK-333 0.04 g, tertiary polymerization inhibitor 0.01 g of butylcatechol and 37.30 g of PGMEA were mixed to prepare a resin composition for light-shielding partition walls.
 調製例6 有機銀化合物(APAG-1)
 (メタ)アクリルポリマ溶液としてSPCR-10P((商品名)、昭和電工(株)製)の30重量%PGMEA溶液5.0gをアセトン5.0gに溶解させ、ジエタノールアミン0.0555g((メタ)アクリルポリマに対して1.5モル当量)を滴下し、室温で1時間撹拌して(メタ)アクリルポリマ溶液のアミン塩を生成した。次に、この溶液に硝酸銀(I)0.0287gを添加し、室温で1時間撹拌したところ沈殿が生じた。5.0μmのフィルターでろ過した後、固形分が10%になるようにPGMEAを添加し、有機銀化合物(APAG-1)を得た。
Preparation Example 6 Organic silver compound (APAG-1)
As a (meth)acrylic polymer solution, 5.0 g of a 30% by weight PGMEA solution of SPCR-10P ((trade name), manufactured by Showa Denko KK) was dissolved in 5.0 g of acetone, and 0.0555 g of diethanolamine ((meth)acrylic 1.5 molar equivalents relative to the polymer) was added dropwise and stirred at room temperature for 1 hour to produce an amine salt of the (meth)acrylic polymer solution. Next, 0.0287 g of silver nitrate (I) was added to this solution, and the mixture was stirred at room temperature for 1 hour to form a precipitate. After filtering through a 5.0 μm filter, PGMEA was added so that the solid content was 10% to obtain an organic silver compound (APAG-1).
 実施例28~54、比較例4~6
 下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm;以下同様)を用いた。その上に、表2~4に示す隔壁用樹脂組成物をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製;以下同様)を用いて、温度80℃で3分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製;以下同様)を用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量300mJ/cm(g、h、i線)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」;以下同様)を用いて、0.045重量%水酸化カリウム水溶液を用いて100秒間シャワー現像し、次いで水を用いて30秒間リンスした。さらに、オーブン(商品名IHPS-222、エスペック(株)製;以下同様)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ10μm、幅20μmの隔壁が、短辺80μm、長辺280μmのピッチ間隔の格子状パターンに形成された隔壁を形成した。
Examples 28-54, Comparative Examples 4-6
A 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness: 0.7 mm; hereinafter the same) was used as the base substrate. Thereon, a resin composition for partition walls shown in Tables 2 to 4 was spin-coated, and a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.; hereinafter the same) was applied at a temperature of 80° C. for 3 minutes. It was dried for a minute to prepare a dry film. The prepared dried film was subjected to an exposure amount of 300 mJ/cm 2 (300 mJ/cm 2 ( g, h, i lines). Thereafter, using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.; the same shall apply hereinafter), shower development is performed for 100 seconds using a 0.045% by weight potassium hydroxide aqueous solution, and then water is removed. and rinsed for 30 seconds. Furthermore, using an oven (trade name: IHPS-222, manufactured by ESPEC Co., Ltd.; hereinafter the same), heating was performed in the air at a temperature of 230° C. for 30 minutes to form barrier ribs having a height of 10 μm and a width of 20 μm on the glass substrate. Barrier ribs were formed in a lattice pattern with a pitch of 80 μm on the short sides and 280 μm on the long sides.
 得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、表3~4に示す色変換発光材料組成物を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図2に示す構成の隔壁付き基板を得た。 The regions separated by the partition walls of the obtained substrate with partition walls were coated with the color-converting luminescent material compositions shown in Tables 3 and 4 using an inkjet method in a nitrogen atmosphere, dried at 100° C. for 30 minutes, and the thickness was reduced. Pixels of 5.0 μm were formed to obtain a substrate with partition walls having the configuration shown in FIG.
 実施例55
 下地基板として10cm角の無アルカリガラス基板を用いた。その上に、隔壁用樹脂組成物(P-27)をスピンコートし、ホットプレートを用いて、温度80℃で3分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナーを用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量300mJ/cm(g、h、i線)で露光した。その後、自動現像装置を用いて、2.38重量%水酸化テトラメチルアンモニウム水溶液で90秒間シャワー現像し、次いで水で30秒間リンスした。その後、先と同様に、フォトマスクを介さずに露光量500mJ/cm(g、h、i線)で露光し、ブリーチを行った。さらに、オーブンを用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ10μm、幅20μmの隔壁が、短辺80μm、長辺280μmのピッチ間隔の格子状パターンに形成された隔壁を形成した。
Example 55
A non-alkali glass substrate of 10 cm square was used as the base substrate. The partition wall resin composition (P-27) was applied thereon by spin coating, and dried at a temperature of 80° C. for 3 minutes using a hot plate to prepare a dry film. The prepared dry film was exposed through a photomask with an exposure amount of 300 mJ/cm 2 (g, h, i lines) using a parallel light mask aligner with an ultra-high pressure mercury lamp as a light source. Thereafter, using an automatic developing device, the film was developed with a 2.38% by weight tetramethylammonium hydroxide aqueous solution for 90 seconds, and then rinsed with water for 30 seconds. Then, similarly to the above, bleaching was performed by exposing with an exposure amount of 500 mJ/cm 2 (g, h, i lines) without passing through a photomask. Furthermore, using an oven, the mixture is heated in the air at a temperature of 230° C. for 30 minutes to form barrier ribs with a height of 10 μm and a width of 20 μm on the glass substrate in a lattice pattern with a pitch of 80 μm on the short side and 280 μm on the long side. formed a partition wall.
 得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図2に示す構成の隔壁付き基板を得た。 The color-converting luminescent material composition (CL-2) was applied to the regions separated by the partition walls of the obtained substrate with partition walls using an inkjet method under a nitrogen atmosphere, dried at 100° C. for 30 minutes, and formed to a thickness of 5. Pixels of 0.0 μm were formed to obtain a substrate with partition walls having the structure shown in FIG.
 実施例56
 下地基板として10cm角の無アルカリガラス基板を用いた。その上に、調製例5により得られた遮光隔壁形成材料をスピンコートし、ホットプレートを用いて、温度90℃で2分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナーを用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量40mJ/cm(g、h、i線)で露光した。その後、自動現像装置を用いて、0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行い、次いで水を用いて30秒間リンスした。さらに、オーブンを用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ2.0μm、幅20μmで、厚み1.0μmあたりのOD値が2.0である隔壁が、短辺40μm、長辺280μmのピッチ間隔の格子状パターンに形成された遮光隔壁付き基板を得た。
Example 56
A non-alkali glass substrate of 10 cm square was used as the base substrate. The light-shielding barrier rib forming material obtained in Preparation Example 5 was applied thereon by spin coating, and dried at a temperature of 90° C. for 2 minutes using a hot plate to prepare a dry film. The prepared dry film was exposed through a photomask at an exposure dose of 40 mJ/cm 2 (g, h, i lines) using a parallel light mask aligner with an ultra-high pressure mercury lamp as a light source. Thereafter, using an automatic developing device, the film was developed with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, and then rinsed with water for 30 seconds. Furthermore, using an oven, the glass substrate was heated at a temperature of 230° C. in the air for 30 minutes, and barrier ribs having a height of 2.0 μm, a width of 20 μm, and an OD value of 2.0 per 1.0 μm of thickness were formed on the glass substrate. , and a substrate with light-shielding barrier ribs formed in a lattice pattern with a pitch of 40 μm on the short sides and 280 μm on the long sides.
 その後、実施例29と同様の方法により、遮光隔壁上に、高さ10μm、幅20μmの隔壁が、短辺40μm、長辺280μmのピッチ間隔の遮光隔壁と同様の格子状パターンに形成された隔壁付き基板を得た。得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図3に示す構成の隔壁付き基板を得た。 Thereafter, by the same method as in Example 29, barrier ribs having a height of 10 μm and a width of 20 μm were formed on the light shielding barrier ribs in a lattice pattern similar to the light shielding barrier ribs having a pitch of 40 μm on the short side and 280 μm on the long side. obtained a substrate with The color-converting luminescent material composition (CL-2) obtained in Preparation Example 2 was applied to the regions separated by the partition walls of the obtained substrate with partition walls using an inkjet method in a nitrogen atmosphere, and the mixture was heated at 100°C. After drying for 30 minutes, pixels with a thickness of 5.0 μm were formed to obtain a substrate with partition walls having the structure shown in FIG.
 実施例57
 実施例29と同様の方法により得られた、画素形成前の隔壁付き基板の隔壁で隔てられた領域に、硬化後の膜厚が2.5μmになるように、調製例4により得られたカラーフィルター形成材料(CF-1)を塗布し、真空乾燥した。隔壁付き基板の開口部の領域に露光されるように設計したフォトマスクを介して、露光量40mJ/cm(g、h、i線)で露光した。0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行った後、230℃で30分間加熱硬化を行い、隔壁で隔てられた領域に、高さ2.5μm、短辺40μm、長辺280μmのカラーフィルター層を形成した。その後、カラーフィルター上に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図4に示す構成の隔壁付き基板を得た。
各実施例および比較例の構成を表3~4に示す。
Example 57
The colorant obtained in Preparation Example 4 was applied to the regions separated by the partition walls of the substrate with partition walls before pixel formation, which was obtained by the same method as in Example 29, so that the film thickness after curing was 2.5 μm. A filter-forming material (CF-1) was applied and vacuum dried. Exposure was performed at an exposure amount of 40 mJ/cm 2 (g, h, i lines) through a photomask designed to expose the regions of the openings of the substrate with partition walls. After developing with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, heat curing was performed at 230° C. for 30 minutes. A color filter layer was formed. Thereafter, the color-converting light-emitting material composition (CL-2) obtained in Preparation Example 2 was applied onto the color filter in a nitrogen atmosphere using an inkjet method and dried at 100° C. for 30 minutes to obtain a thickness of 5.5. Pixels of 0 μm were formed to obtain a substrate with partition walls having the structure shown in FIG.
Tables 3 and 4 show the configurations of each example and comparative example.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 各実施例および比較例における評価方法を以下に示す。 The evaluation method for each example and comparative example is shown below.
 <高さ>
 各実施例および比較例により得られた隔壁付き基板の各層について、サーフコム触針式膜厚測定装置を用いて、各層形成前後の膜厚を測定し、その差分を算出することにより、高さを測定した。
<Height>
For each layer of the substrate with partition walls obtained in each example and comparative example, the film thickness before and after the formation of each layer was measured using a Surfcom stylus film thickness measurement device, and the difference was calculated to determine the height. It was measured.
 <クラック耐性>
 各実施例および比較例において用いた隔壁形成樹脂組成物を、加熱後の膜厚がそれぞれ10μm、15μm、20μmおよび25μmとなるようにスピンコートした。実施例28~54、実施例56~57および比較例4~6において用いた隔壁形成樹脂組成物のその後の工程については、露光時にフォトマスクを介さずに全体を露光したこと以外は、各実施例および比較例と同条件で加工し、ガラス基板上にベタ膜を作製した。実施例55において用いた隔壁形成樹脂組成物のその後の工程については、露光せずに現像した後にブリーチングを行った以外は同条件で加工し、ガラス基板上にベタ膜を作製した。得られたベタ膜を各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、ベタ膜を有するガラス基板を目視観察し、ベタ膜のクラックの有無を評価した。1つでもクラックが確認された場合には、その膜厚におけるクラック耐性はないと判断した。例えば、膜厚15μmではクラックがなく、膜厚20μmではクラックがあった場合には、耐クラック膜厚を「≧15μm」と判定した。また、25μmでもクラックがない場合の耐クラック膜厚を「≧25μm」、10μmでもクラックがある場合の耐クラック膜厚を「<10μm」と、それぞれ判定し、クラック耐性とした。
<Crack resistance>
The barrier rib-forming resin composition used in each example and comparative example was spin-coated so that the film thickness after heating was 10 μm, 15 μm, 20 μm and 25 μm, respectively. In the subsequent steps of the partition-forming resin compositions used in Examples 28-54, Examples 56-57, and Comparative Examples 4-6, each step was performed except that the whole was exposed without a photomask at the time of exposure. A solid film was formed on a glass substrate by processing under the same conditions as in Examples and Comparative Examples. In the subsequent steps of the partition-forming resin composition used in Example 55, processing was carried out under the same conditions except that the resin composition was developed without being exposed to light and then bleached, to prepare a solid film on a glass substrate. Using the resulting solid film as a model of the barrier ribs of the substrates with barrier ribs obtained in Examples and Comparative Examples, the glass substrate having the solid film was visually observed to evaluate the presence or absence of cracks in the solid film. If even one crack was confirmed, it was determined that the film had no crack resistance at that film thickness. For example, when there were no cracks at a film thickness of 15 μm and there were cracks at a film thickness of 20 μm, the crack-resistant film thickness was judged to be “≧15 μm”. In addition, the crack resistant film thickness was determined as "≧25 μm" when there was no crack even at 25 μm, and the crack resistant film thickness was determined as "<10 μm" when there was a crack even at 10 μm, and the crack resistance was determined.
 <解像度>
 各実施例および比較例において用いた隔壁用樹脂組成物を、10cm角の無アルカリガラス基板上に、加熱後の膜厚が10μmとなるようにスピンコートし、ホットプレートを用いて、温度100℃で3分間乾燥し、膜厚10μmの乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナーを用いて、超高圧水銀灯を光源とし、100μm、80μm、60μm、50μm、40μm、30μmおよび20μmの各幅のライン&スペースパターンを有するマスクを介して露光量150mJ/cm(g、h、i線)で、100μmのギャップで露光した。その後、自動現像装置を用いて、0.045重量%水酸化カリウム水溶液を用いて100秒間シャワー現像し、次いで水を用いて30秒間リンスした。
<Resolution>
The partition wall resin composition used in each example and comparative example was spin-coated on a 10 cm square non-alkali glass substrate so that the film thickness after heating was 10 μm, and the temperature was 100° C. using a hot plate. and dried for 3 minutes to form a dry film having a thickness of 10 μm. The prepared dry film was exposed using a parallel light mask aligner with an ultra-high pressure mercury lamp as a light source through a mask having line and space patterns with widths of 100 μm, 80 μm, 60 μm, 50 μm, 40 μm, 30 μm and 20 μm. It was exposed at 150 mJ/cm 2 (g, h, i lines) with a gap of 100 μm. After that, using an automatic developing device, shower development was performed using a 0.045% by weight potassium hydroxide aqueous solution for 100 seconds, followed by rinsing with water for 30 seconds.
 <反射率>
 実施例28~54、実施例56~57および比較例4~6において用いた隔壁形成樹脂組成物を、露光時にフォトマスクを介さずに全体を露光したこと以外は、各実施例および比較例と同条件で加工し、ガラス基板上に高さ10μmのベタ膜を作製した。実施例55において用いた隔壁形成樹脂組成物については、露光せずに現像した後にブリーチングを行った以外は同条件で加工し、ガラス基板上に高さ10μmのベタ膜を作製した。
<Reflectance>
Except that the partition-forming resin composition used in Examples 28 to 54, Examples 56 to 57 and Comparative Examples 4 to 6 was entirely exposed without a photomask at the time of exposure, each Example and Comparative Example A solid film having a height of 10 μm was formed on a glass substrate by processing under the same conditions. The barrier rib-forming resin composition used in Example 55 was processed under the same conditions except that it was developed without being exposed to light and then bleached to form a solid film having a height of 10 μm on a glass substrate.
 得られたベタ膜を有するガラス基板について、分光測色計(商品名CM-2600d、コニカミノルタ(株)製)を用いて、ベタ膜側からSCIモードで波長領域360nm~740nmにおける反射率を測定した。波長領域430nm~630nmの範囲で、最小および最大の反射率の値を、それぞれ「最小反射率」および「最大反射率」とした。 Using a spectrophotometer (trade name: CM-2600d, manufactured by Konica Minolta, Inc.), the reflectance in the wavelength range of 360 nm to 740 nm was measured from the solid film side in the SCI mode on the glass substrate having the obtained solid film. did. The minimum and maximum reflectance values in the wavelength range of 430 nm to 630 nm were defined as "minimum reflectance" and "maximum reflectance", respectively.
 <OD値>
 各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、反射率の評価と同様に、ガラス基板上に高さ10μmのベタ膜を作製した。得られたベタ膜を有するガラス基板について、分光光度計(日立ハイテクサイエンス製U-4100)を用いて、波長領域360nm~740nmにおける透過率を測定し、先述の式(1)により波長領域360nm~740nmにおけるOD値を算出した。波長領域430nm~630nmの範囲で、最小および最大のOD値の値を、それぞれ「最小OD値」および「最大OD値」とした。
<OD value>
As a model of the barrier ribs of the substrate with barrier ribs obtained in each example and comparative example, a solid film having a height of 10 μm was formed on a glass substrate in the same manner as in the evaluation of the reflectance. For the glass substrate having the obtained solid film, using a spectrophotometer (U-4100 manufactured by Hitachi High-Tech Science), the transmittance in the wavelength range of 360 nm to 740 nm is measured, and the wavelength range of 360 nm to 740 nm is measured by the above formula (1). OD values at 740 nm were calculated. The minimum and maximum OD values in the wavelength range of 430 nm to 630 nm are defined as "minimum OD value" and "maximum OD value", respectively.
 また、実施例56について、遮光隔壁(A-2)のモデルとして、同様にガラス基板上にベタ膜を作製した。得られたベタ膜を有するガラス基板について、分光光度計(日立ハイテクサイエンス製U-4100)を用いて波長領域360nm~740nmにおける透過率を測定し、波長550nmにおけるOD値を先述の式(1)により算出した。 Also, for Example 56, a solid film was similarly prepared on a glass substrate as a model of the light-shielding partition wall (A-2). For the glass substrate having the obtained solid film, the transmittance in the wavelength range of 360 nm to 740 nm was measured using a spectrophotometer (Hitachi High-Tech Science U-4100), and the OD value at a wavelength of 550 nm was calculated by the above formula (1). Calculated by
 <色度>
 各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、反射率の評価と同様に、ガラス基板上に高さ10μmのベタ膜を作製した。得られたベタ膜を有するガラス基板について、分光測色計(商品名CM-2600d、コニカミノルタ(株)製)を用いて、ベタ膜側からSCIモードで色度(L*値、a*およびb*値)を測定した。なお、b*値については、加熱工程前のベタ膜と、加熱工程後のb*値をそれぞれ測定し、その差(Δb*)を「加熱工程前後のΔb*」として、表5~6に記載した。
<Chromaticity>
As a model of the barrier ribs of the substrate with barrier ribs obtained in each example and comparative example, a solid film having a height of 10 μm was formed on a glass substrate in the same manner as in the evaluation of the reflectance. The resulting glass substrate having a solid film was measured for chromaticity (L* value, a* and b* value) was measured. As for the b* value, the solid film before the heating process and the b* value after the heating process were measured, and the difference (Δb*) was defined as "Δb* before and after the heating process", and is shown in Tables 5 and 6. Described.
 <低温加熱前後のΔb*>
 各実施例および比較例において用いた隔壁形成用樹脂組成物を用いて、最後の加熱条件を、空気中100℃で60分間に変更した以外は、前述の反射率の評価と同様にして、ガラス基板上に高さ10μmのベタ膜を作製した。得られたベタ膜について、前述の色度の評価と同様に、b*値を算出した。加熱工程前のベタ膜と、加熱工程後のb*値をそれぞれ測定し、その差(Δb*)を算出することで、下記基準により低温加熱時のOD値変化を評価した。
A:Δb*>15
B:10≦Δb*≦15
C:Δb*<10。
<Δb* before and after low temperature heating>
Using the partition-forming resin composition used in each of Examples and Comparative Examples, glass was prepared in the same manner as in the evaluation of reflectance described above, except that the final heating conditions were changed to 100° C. in air for 60 minutes. A solid film with a height of 10 μm was formed on the substrate. For the obtained solid film, the b* value was calculated in the same manner as the chromaticity evaluation described above. By measuring the solid film before the heating process and the b* value after the heating process, and calculating the difference (Δb*), the OD value change during low temperature heating was evaluated according to the following criteria.
A: Δb*>15
B: 10≤Δb*≤15
C: Δb*<10.
 <耐光性>
 各実施例および比較例において用いた隔壁用樹脂組成物を、10cm角の無アルカリガラス基板上にスピンコートし、ホットプレートを用いて、温度90℃で3分間乾燥し、膜厚10μmの乾燥膜を作製した。得られた乾燥膜を有するガラス基板について、分光光度計(日立ハイテクサイエンス製U-4100)を用いて、波長436nmにおける透過率を測定した。作製した乾燥膜を、パラレルライトマスクアライナーを用いて、超高圧水銀灯を光源とし、マスクを介さずに露光量1000mJ/cm(g、h、i線)で露光した。得られた露光後の膜を有するガラス基板について、再度、同様に波長436nmにおける透過率を測定した。露光前後の膜の透過率差(ΔT436nm)を算出することで、下記基準により、耐光性を評価した。
A:ΔT436nm<3%
B:3%≦ΔT436nm≦5%
C:5%<ΔT436nm
<Light resistance>
The partition wall resin composition used in each of Examples and Comparative Examples was spin-coated on a 10 cm square non-alkali glass substrate and dried at a temperature of 90° C. for 3 minutes using a hot plate to form a dry film having a thickness of 10 μm. was made. The transmittance at a wavelength of 436 nm was measured using a spectrophotometer (Hitachi High-Tech Science U-4100) for the obtained glass substrate having the dried film. The prepared dry film was exposed to light of 1000 mJ/cm 2 (g, h, i lines) using a parallel light mask aligner with an ultra-high pressure mercury lamp as a light source without a mask. The transmittance at a wavelength of 436 nm was measured again for the obtained glass substrate having the film after exposure. By calculating the transmittance difference (ΔT 436 nm ) of the film before and after exposure, the light resistance was evaluated according to the following criteria.
A: ΔT 436 nm <3%
B: 3% ≤ ΔT 436 nm ≤ 5%
C: 5%<ΔT 436 nm .
 <低温硬化性>
 各実施例および比較例において用いた隔壁形成用樹脂組成物を用いて、最後の加熱条件を、空気中100℃で60分間に変更した以外は同様にして、隔壁を形成した。得られた隔壁付き基板について、格子状の隔壁で囲われた画素部分に対して、1,6-ヘキサンジオールジアクリレートをインクとして、インクジェット塗布装置(InkjetLabo、クラスターテクノロジー(株)製)を用いて、インクジェット塗布を行った。その後、画素内を1時間後、3時間後に観察し、下記基準により隔壁の低温硬化性を評価した。隣接画素への浸み出しがないほど、隔壁の低温硬化性が優れていることを示す。
A:インクジェット塗布から3時間後にも、隣接画素へのインクの浸み出しが見られない
B:インクジェット塗布から1時間後に、隣接画素へのインクの浸み出しが見られないが、3時間後に浸み出しが見られた
C:インクジェット塗布直後に、隣接画素へのインクの浸み出しが見られた。
<Low temperature curability>
Using the partition-forming resin composition used in each example and comparative example, partition walls were formed in the same manner, except that the final heating conditions were changed to 100° C. in air for 60 minutes. For the obtained substrate with partition walls, the pixel portions surrounded by the grid-like partition walls were coated with 1,6-hexanediol diacrylate as an ink using an inkjet coating device (Inkjet Labo, manufactured by Cluster Technology Co., Ltd.). , inkjet coating was performed. Then, the inside of the pixel was observed after 1 hour and 3 hours, and the low-temperature curability of the partition walls was evaluated according to the following criteria. It shows that the low-temperature curability of the partition wall is so excellent that there is no seepage into adjacent pixels.
A: Even after 3 hours from inkjet application, no ink seepage into adjacent pixels was observed. B: No ink seepage into adjacent pixels was observed after 1 hour from inkjet application, but after 3 hours. Bleeding was observed C: The ink was found to bleed into adjacent pixels immediately after ink jet application.
 <テーパー角度>
 各実施例および比較例において、画素形成前の隔壁付き基板の任意の断面を、光学顕微鏡(FE-SEM(S-4800);(株)日立製作所製)を用いて、加速電圧3.0kVで観測し、テーパー角度を測定した。
<Taper angle>
In each of the examples and comparative examples, an arbitrary cross section of the substrate with partition walls before pixel formation was measured using an optical microscope (FE-SEM (S-4800); manufactured by Hitachi, Ltd.) at an acceleration voltage of 3.0 kV. was observed and the taper angle was measured.
 <保存安定性>
 各実施例および比較例において用いた隔壁形成用樹脂組成物について、調製から25℃で7日保管後、および30日保管後にガラス基板上にスピン塗布して評価し、塗膜の状態から保存安定性を下記基準により評価した。
A:25℃で7日間保管後、および25℃で30日間保管後による評価で、スピン塗布後に凝集物の発生がなかった
B:25℃で7日間保管後による評価で、スピン塗布後に凝集物の発生がなかったが、25℃で30日間保管後による評価では、スピン塗布後に凝集物が発生した
C:25℃で7日間保管後による評価で、スピン塗布後に凝集物が発生した
 <輝度>
 市販のLEDバックライト(ピーク波長465nm)を搭載した面状発光装置を光源として、画素部が光源側になるように各実施例および比較例により得られた隔壁付き基板を設置した。この面状発光装置に30mAの電流を流してLED素子を点灯させ、分光放射輝度計(CS-1000、コニカミノルタ社製)を用いて、CIE1931規格に基づく輝度(単位:cd/m)を測定し、初期輝度とした。ただし、輝度の評価は、比較例7の初期輝度を標準の100とする相対値により行った。
また、室温(23℃)にて、LED素子を、48時間点灯した後、同様に輝度を測定し、輝度の経時変化を評価した。ただし、輝度の評価は、比較例4の初期輝度を標準の100とする相対値により行った。
<Storage stability>
The barrier rib-forming resin composition used in each of Examples and Comparative Examples was spin-coated on a glass substrate after being stored at 25° C. for 7 days and after being stored for 30 days. The properties were evaluated according to the following criteria.
A: After storage at 25 ° C. for 7 days and after storage at 25 ° C. for 30 days, no aggregates occurred after spin coating. B: Evaluation after storage at 25 ° C. for 7 days, aggregates after spin coating. However, in the evaluation after storage at 25 ° C. for 30 days, aggregates occurred after spin coating C: After storage at 25 ° C. for 7 days, aggregates occurred after spin coating <Brightness>
A planar light-emitting device equipped with a commercially available LED backlight (peak wavelength 465 nm) was used as a light source, and the substrates with partition walls obtained in each example and comparative example were placed so that the pixel portion was on the light source side. A current of 30 mA is passed through this planar light emitting device to light the LED element, and the luminance (unit: cd/m 2 ) based on the CIE1931 standard is measured using a spectral radiance meter (CS-1000, manufactured by Konica Minolta). measured and taken as the initial luminance. However, the evaluation of luminance was performed using a relative value with the initial luminance of Comparative Example 7 being 100 as the standard.
In addition, after lighting the LED element for 48 hours at room temperature (23° C.), the luminance was similarly measured to evaluate the change in luminance over time. However, the evaluation of luminance was performed using a relative value with the initial luminance of Comparative Example 4 being 100 as the standard.
 <色特性>
 市販の白色反射板上に、各実施例および比較例により得られた隔壁付き基板を、画素が白色反射板側に配置されるように設置した。分光測色計(CM-2600d、コニカミノルタ社製、測定径φ8mm)を用いて、隔壁付き基板の下地基板側から光を照射し、正反射光込みのスペクトルを測定した。
<Color characteristics>
The substrate with partition walls obtained in each example and comparative example was placed on a commercially available white reflector such that the pixels were arranged on the side of the white reflector. Using a spectrophotometer (CM-2600d, manufactured by Konica Minolta, measuring diameter φ8 mm), the substrate with partition walls was irradiated with light from the underlying substrate side, and the spectrum including regular reflection light was measured.
 自然界の色をほぼ再現できる色規格BT.2020が定める色域は、色度図に示されるスペクトル軌跡上の赤、緑および青を三原色として規定されており、赤、緑および青の波長はそれぞれ630nm、532nmおよび467nmに相当している。得られた反射スペクトルの470nm、530nmおよび630nmの3つの波長の反射率(R)から、画素の発光色について以下の基準により評価した。
A:R530/(R630+R530+R470)≧0.60
B:0.55≦R530/(R630+R530+R470)<0.60
C:R530/(R630+R530+R470)<0.55。
Color standard BT. The color gamut defined by 2020 is defined as the three primary colors red, green and blue on the spectral locus shown in the chromaticity diagram, with the wavelengths of red, green and blue corresponding to 630 nm, 532 nm and 467 nm respectively. From the reflectance (R) at three wavelengths of 470 nm, 530 nm and 630 nm of the obtained reflection spectrum, the emission color of the pixel was evaluated according to the following criteria.
A: R530 /( R630 + R530 + R470 )≧0.60
B: 0.55≦ R530 /( R630 + R530 + R470 )<0.60
C: R530 /( R630 + R530 + R470 ) < 0.55.
 <表示特性>
 各実施例および比較例により得られた隔壁付き基板と有機EL素子を組み合わせて作製した表示装置の表示特性を、以下の基準に基づき評価した。
A:緑表示が非常に色鮮やかであり、鮮明でコントラストに優れた表示装置である。
B:色彩にやや不自然さが見られるものの、問題のない表示装置である。
<Display characteristics>
The display characteristics of the display device produced by combining the substrate with partition walls obtained in each example and comparative example and the organic EL element were evaluated based on the following criteria.
A: The display device has a very vivid green display, and is clear and excellent in contrast.
B: The display device has no problem, although the colors are somewhat unnatural.
 <混色>
 各実施例および比較例により得られた、画素を形成する前の隔壁付き基板において、格子状の隔壁で囲われた画素部分の一部に、インクジェット法を用いて、色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成した。その後、格子状の隔壁で囲われた画素部分のうち、色変換発光材料組成物(CL-2)を塗布した領域の隣の領域に、インクジェット法を用いて、色変換発光材料組成物(CL-3)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成した。
<Mixed color>
In the substrates with partition walls before forming pixels obtained in each of Examples and Comparative Examples, a color-converting luminescent material composition ( CL-2) was applied and dried at 100° C. for 30 minutes to form pixels with a thickness of 5.0 μm. Then, of the pixel portions surrounded by the grid-like partition walls, the color-converting light-emitting material composition (CL -3) was applied and dried at 100° C. for 30 minutes to form pixels with a thickness of 5.0 μm.
 一方、格子状の隔壁で囲われた画素部分と同じ幅をもつ青色有機ELセルを作製し、前述の隔壁付き基板と青色有機ELセルを対向させて封止剤により貼り合せ、図8に示す構成の表示装置を得た。 On the other hand, a blue organic EL cell having the same width as the pixel portion surrounded by the grid-like partition walls was prepared, and the substrate with the partition walls and the blue organic EL cell were opposed to each other and bonded with a sealant, as shown in FIG. A display device of the configuration was obtained.
 図8における青色有機ELセル7のうち、色変換発光材料組成物(CL-2)で形成された画素3(CL-2)の直下に貼り合わせた青色有機ELセルのみを点灯させた状態で、色変換発光材料組成物(CL-3)で形成された画素3(CL-3)部分について、顕微分光光度計LVmicro-V(ラムダビジョン(株)製)を用いて、波長630nmにおける吸光強度A(630nm)を測定した。吸光強度A(630nm)の値が小さいほど、混色を起こしにくいことを示している。下記の判定基準により混色を判定した。
A:A(630nm)<0.01
B:0.01≦A(630nm)≦0.5
C:0.5<A(630nm)。
Of the blue organic EL cells 7 in FIG. 8, only the blue organic EL cells bonded directly below the pixels 3 (CL-2) formed of the color-converting luminescent material composition (CL-2) are lit. , For the pixel 3 (CL-3) portion formed of the color conversion luminescent material composition (CL-3), using a microscopic spectrophotometer LVmicro-V (manufactured by Lambda Vision Co., Ltd.), the absorption intensity at a wavelength of 630 nm A (630 nm) was measured. A smaller value of the absorption intensity A (630 nm) indicates that color mixture is less likely to occur. Color mixture was determined according to the following criteria.
A: A (630 nm) < 0.01
B: 0.01≦A (630 nm)≦0.5
C: 0.5<A (630 nm).
 各実施例および比較例評価結果を表5~6に示す。 Tables 5 and 6 show the evaluation results of each example and comparative example.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 1 下地基板
 2 隔壁
 3 画素
 3(CL-2) 色変換発光材料組成物(CL-2)で形成された画素
 3(CL-3) 色変換発光材料組成物(CL-3)で形成された画素
 4 遮光隔壁
 5 カラーフィルター
 6 有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源
 7 青色有機ELセル
 H 隔壁の厚み
 L 隔壁の幅
 θ テーパー角度
1 base substrate 2 partition wall 3 pixel 3 (CL-2) pixel formed of color conversion luminescent material composition (CL-2) 3 (CL-3) formed of color conversion luminescent material composition (CL-3) Pixel 4 Light shielding partition 5 Color filter 6 Light source selected from organic EL cell, mini LED cell and micro LED cell 7 Blue organic EL cell H Partition thickness L Partition width θ Taper angle

Claims (20)

  1. 樹脂、感光剤、白色顔料、黄色前駆体化合物および遮光顔料を含有する樹脂組成物であって、前記遮光顔料が青色顔料および紫色顔料を含有する樹脂組成物。 A resin composition comprising a resin, a photosensitizer, a white pigment, a yellow precursor compound and a light-shielding pigment, wherein the light-shielding pigment contains a blue pigment and a violet pigment.
  2. 前記白色顔料が、SiOおよびAlからなる群から選ばれる少なくとも一つと、ZrOと、によって処理されている請求項1に記載の樹脂組成物。 The resin composition according to claim 1 , wherein the white pigment is treated with at least one selected from the group consisting of SiO2 and Al2O3 and ZrO2 .
  3. 前記白色顔料が、ZrOとAlとSiOによって処理されている請求項1に記載の樹脂組成物。 The resin composition according to claim 1 , wherein the white pigment is treated with ZrO2 , Al2O3 and SiO2 .
  4. 前記青色顔料と紫色顔料の重量比が20/80~80/20である請求項1に記載の樹脂組成物。 2. The resin composition according to claim 1, wherein the weight ratio of the blue pigment and the purple pigment is 20/80 to 80/20.
  5. 感光剤、白色顔料、黄色前駆体化合物を含有する樹脂組成物であって、前記白色顔料が、SiOおよびAlからなる群から選ばれる少なくとも一つと、ZrOと、によって処理されている樹脂組成物。 A resin composition containing a photosensitizer, a white pigment, and a yellow precursor compound, wherein the white pigment is treated with at least one selected from the group consisting of SiO 2 and Al 2 O 3 and ZrO 2 resin composition.
  6. 前記白色顔料が、ZrOとAlとSiOによって処理されている請求項5に記載の樹脂組成物。 6. The resin composition according to claim 5, wherein the white pigment is treated with ZrO2 , Al2O3 and SiO2 .
  7. さらに、遮光顔料を含有する請求項5に記載の樹脂組成物。 6. The resin composition according to claim 5, further comprising a light-shielding pigment.
  8. 前記黄色前駆体化合物が有機銀化合物である請求項1または5に記載の樹脂組成物。 6. The resin composition according to claim 1, wherein said yellow precursor compound is an organic silver compound.
  9. 還元剤を含有する請求項1または5に記載の樹脂組成物。 6. The resin composition according to claim 1, which contains a reducing agent.
  10. リン酸ポリエステルを含有する請求項1または5に記載の樹脂組成物。 6. The resin composition according to claim 1, which contains a phosphate polyester.
  11. 請求項1または5に記載の樹脂組成物を硬化させてなる遮光膜。 A light-shielding film obtained by curing the resin composition according to claim 1 .
  12. 下地基板上に請求項1または5に記載の樹脂組成物を塗布し、乾燥して乾燥膜を得る製膜工程、得られた乾燥膜をパターン露光する露光工程、露光後の乾燥膜における現像液に可溶な部分を溶解除去する現像工程および現像後の乾燥膜を加熱することにより硬化させる加熱工程をこの順に有する遮光膜の製造方法であって、前記加熱工程において、現像後の乾燥膜を100℃以上250℃以下の温度で加熱することにより、SCI方式で測定した膜厚10μmあたりのb*値を10以上上昇させる、遮光膜の製造方法。 A film-forming step of applying the resin composition according to claim 1 or 5 onto a base substrate and drying to obtain a dry film, an exposure step of pattern-exposing the obtained dry film, and a developer in the dry film after exposure. A method for producing a light-shielding film having, in this order, a developing step of dissolving and removing a portion soluble in , and a heating step of curing the dried film after development by heating, wherein the heating step includes removing the dried film after development. A method for producing a light-shielding film, wherein the b* value per 10 μm of film thickness measured by the SCI method is increased by 10 or more by heating at a temperature of 100° C. or higher and 250° C. or lower.
  13. 下地基板上に、請求項1または5に記載の樹脂組成物によって(A-1)パターン形成された隔壁を有する隔壁付き基板であって、
    波長領域430~630nmにおける厚み10μmあたりの反射率が20%~50%の範囲内であって、かつ、
    波長領域430~630nmの範囲における厚み10μmあたりのOD値が1.5~3.0の範囲内である隔壁付き基板。
    A substrate with partition walls having (A-1) pattern-formed partition walls made of the resin composition according to claim 1 or 5 on a base substrate,
    The reflectance per 10 μm thickness in the wavelength region of 430 to 630 nm is within the range of 20% to 50%, and
    A substrate with partition walls having an OD value within a range of 1.5 to 3.0 per 10 μm of thickness in a wavelength range of 430 to 630 nm.
  14. 下地基板上に、請求項1または5に記載の樹脂組成物によって(A-1)パターン形成された隔壁を有する隔壁付き基板であって、
    SCI方式で測定した膜厚10μmあたりのL*値が50~70、a*値が-5.0~5.0、b*値が-5.0~5.0である隔壁付き基板。
    A substrate with partition walls having (A-1) pattern-formed partition walls made of the resin composition according to claim 1 or 5 on a base substrate,
    A substrate with partition walls having an L* value of 50 to 70, an a* value of −5.0 to 5.0, and a b* value of −5.0 to 5.0 per 10 μm of film thickness measured by the SCI method.
  15. 下地基板上に、(A-1)パターン形成された隔壁を有する隔壁付き基板であって、
    前記パターン形成された隔壁が、樹脂、白色顔料、青色顔料、紫色顔料、酸化銀および/または銀粒子を含有する隔壁付き基板。
    (A-1) A substrate with partition walls having patterned partition walls on an underlying substrate,
    A substrate with barrier ribs, wherein the patterned barrier ribs contain a resin, a white pigment, a blue pigment, a purple pigment, silver oxide and/or silver particles.
  16. 下地基板上に、(A-1)パターン形成された隔壁を有する隔壁付き基板であって、
    前記パターン形成された隔壁が、樹脂、白色顔料、青色顔料、紫色顔料、酸化銀および/または銀粒子を含有する請求項13に記載の隔壁付き基板。
    (A-1) A substrate with partition walls having patterned partition walls on an underlying substrate,
    14. The substrate with barrier ribs according to claim 13, wherein the patterned barrier ribs contain resin, white pigment, blue pigment, purple pigment, silver oxide and/or silver particles.
  17. 下地基板上に、(A-1)パターン形成された隔壁を有する隔壁付き基板であって、
    前記パターン形成された隔壁が、樹脂、白色顔料、青色顔料、紫色顔料、酸化銀および/または銀粒子を含有する請求項14に記載の隔壁付き基板。
    (A-1) A substrate with partition walls having patterned partition walls on an underlying substrate,
    15. The substrate with barrier ribs according to claim 14, wherein the patterned barrier ribs contain resin, white pigment, blue pigment, purple pigment, silver oxide and/or silver particles.
  18. 前記(A-1)パターン形成された隔壁によって隔てられて配列した(B)色変換発光材料を含有する画素層をさらに有する請求項13に記載の隔壁付き基板。 14. The substrate with partition walls according to claim 13, further comprising (A-1) a pixel layer containing the (B) color-converting luminescent material arranged and separated by the pattern-formed partition walls.
  19. 前記下地基板と(B)色変換発光材料を含有する画素層の間に、厚み1~5μmのカラーフィルターをさらに有する請求項18に記載の隔壁付き基板。 19. The substrate with partition walls according to claim 18, further comprising a color filter having a thickness of 1 to 5 μm between the base substrate and (B) the pixel layer containing the color-converting luminescent material.
  20. 請求項13に記載の隔壁付き基板と、液晶セル、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源とを有する表示装置。 14. A display device comprising the substrate with partition walls according to claim 13 and a light emitting source selected from a liquid crystal cell, an organic EL cell, a mini-LED cell and a micro-LED cell.
PCT/JP2023/003935 2022-02-16 2023-02-07 Resin composition, light-blocking film, method for producing light-blocking film, substrate having partitioning wall attached thereto, and display device WO2023157713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-021919 2022-02-16
JP2022021919 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023157713A1 true WO2023157713A1 (en) 2023-08-24

Family

ID=87578608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003935 WO2023157713A1 (en) 2022-02-16 2023-02-07 Resin composition, light-blocking film, method for producing light-blocking film, substrate having partitioning wall attached thereto, and display device

Country Status (2)

Country Link
TW (1) TW202340381A (en)
WO (1) WO2023157713A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508405A (en) * 2004-07-31 2008-03-21 クローノス インターナショナル インコーポレイテッド Post-treatment method of titanium dioxide pigment
JP2017068007A (en) * 2015-09-30 2017-04-06 三洋化成工業株式会社 Photosensitive resin composition
JP2021005083A (en) * 2019-06-25 2021-01-14 東レ株式会社 Yellow color filter and substrate with the same
WO2021014759A1 (en) * 2019-07-22 2021-01-28 三菱ケミカル株式会社 Photosensitive colored resin composition, cured object, bank, and image display device
JP2021081724A (en) * 2019-11-20 2021-05-27 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Photosensitive resin composition, color conversion pixel partition structure produced using the same, and display device comprising the same
WO2021200357A1 (en) * 2020-03-30 2021-10-07 東レ株式会社 Resin composition, light-shielding film, and substrate with partition wall

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508405A (en) * 2004-07-31 2008-03-21 クローノス インターナショナル インコーポレイテッド Post-treatment method of titanium dioxide pigment
JP2017068007A (en) * 2015-09-30 2017-04-06 三洋化成工業株式会社 Photosensitive resin composition
JP2021005083A (en) * 2019-06-25 2021-01-14 東レ株式会社 Yellow color filter and substrate with the same
WO2021014759A1 (en) * 2019-07-22 2021-01-28 三菱ケミカル株式会社 Photosensitive colored resin composition, cured object, bank, and image display device
JP2021081724A (en) * 2019-11-20 2021-05-27 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Photosensitive resin composition, color conversion pixel partition structure produced using the same, and display device comprising the same
WO2021200357A1 (en) * 2020-03-30 2021-10-07 東レ株式会社 Resin composition, light-shielding film, and substrate with partition wall

Also Published As

Publication number Publication date
TW202340381A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
JP7044187B2 (en) Board with bulkhead and display device
WO2019176785A1 (en) Negative photosensitive coloring composition, cured film, and touch panel using same
JP2016072246A (en) Support substrate for display, color filter using the same and method of manufacturing the same, organic el element and method of manufacturing the same, and flexible organic el display
JP2021161401A (en) Resin composition, light blocking film, method for producing light blocking film, and substrate with partition
JPWO2017145720A1 (en) Colored resin composition
JP7115635B2 (en) Resin composition, light-shielding film, and substrate with partition
JP2021005083A (en) Yellow color filter and substrate with the same
WO2023157713A1 (en) Resin composition, light-blocking film, method for producing light-blocking film, substrate having partitioning wall attached thereto, and display device
JP2023119574A (en) Resin composition, light-shielding film, method for manufacturing light-shielding film, substrate with partition wall and display device
JP2021162860A (en) Negative type photosensitive coloring composition, cured film, method for producing cured film, substrate with partition wall, and image display device
JP2022150305A (en) Resin composition, ultraviolet absorption layer, and substrate with ultraviolet absorption layer
WO2023048016A1 (en) Resin composition, light-shielding film, and substrate with partitioning wall
WO2022196261A1 (en) Organic el display device
CN117957494A (en) Resin composition, light-shielding film, and substrate with partition wall
JP2023031448A (en) Substrate with partition wall, wavelength conversion substrate and method of manufacturing wavelength conversion substrate, and display device
JP2023041121A (en) Colored resin composition, colored film and organic EL display device
KR20150008521A (en) composition for forming white patterns of non-display part

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023509676

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756240

Country of ref document: EP

Kind code of ref document: A1