WO2023054046A1 - Method for manufacturing cured-film-coated substrate, cured-film-coated substrate, and element comprising cured-film-coated substrate - Google Patents

Method for manufacturing cured-film-coated substrate, cured-film-coated substrate, and element comprising cured-film-coated substrate Download PDF

Info

Publication number
WO2023054046A1
WO2023054046A1 PCT/JP2022/034903 JP2022034903W WO2023054046A1 WO 2023054046 A1 WO2023054046 A1 WO 2023054046A1 JP 2022034903 W JP2022034903 W JP 2022034903W WO 2023054046 A1 WO2023054046 A1 WO 2023054046A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
wavelength
cured film
cured
substrate
Prior art date
Application number
PCT/JP2022/034903
Other languages
French (fr)
Japanese (ja)
Inventor
小林秀行
谷野貴広
諏訪充史
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280057284.0A priority Critical patent/CN117859097A/en
Publication of WO2023054046A1 publication Critical patent/WO2023054046A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Definitions

  • the present invention relates to a method for manufacturing a cured film-coated substrate, a cured film-coated substrate using the same, and an element having a cured film-coated substrate.
  • micro-LED display using micro-sized LEDs is attracting attention.
  • This display uses micro LEDs driven by an active matrix method or the like as a light source to display in full color, and is excellent in contrast and color reproducibility.
  • a patterned cured film partition wall
  • a photolithography method using a pattern mask is well known (Patent Document 1).
  • these barrier ribs are required to have a light-shielding property to prevent color mixing between adjacent micro-LEDs and a reflective property to efficiently extract light from the micro-LEDs.
  • Patent Document 1 when the material described in Patent Document 1 is used, it is difficult to selectively remove unnecessary portions of the coating film surface.
  • the methods described in Patent Documents 2 and 3 require a pattern mask, it is difficult to form a patterned cured film efficiently and inexpensively.
  • an object of the present invention is to realize a patterned cured film by an inexpensive method that does not require a pattern mask.
  • the present invention has the following configurations. [1] A step of providing a coating film of a photosensitive resin composition on a substrate having an uneven structure on its surface, a step of drying the coating film to form a dry film, a step of exposing the dry film, and after the exposure.
  • a method for producing a cured film-coated substrate having, in this order, a step of partially developing the dry film surface in the film thickness direction, and a step of heating the developed coating film to form a cured film, wherein the dry film is About the total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light in the exposure process and the total value (B) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light that has passed through the dry film , the attenuation ratio (B)/(A) per 1 ⁇ m of dry film thickness satisfies the following relational expression (I).
  • the radiant light in the step of exposing the dry film includes at least light having a wavelength of 365 ⁇ 5 nm or 385 ⁇ 10 nm with maximum illuminance.
  • a method for producing a substrate with a cured film includes at least light having a wavelength of 365 ⁇ 5 nm or 385 ⁇ 10 nm with maximum illuminance.
  • the cured film has an absorbance of 1.0 to 4.0 per 10 ⁇ m thickness at a wavelength of 365 nm, an absorbance of 0.5 to 2.0 per 10 ⁇ m thickness at a wavelength of 405 nm, and a thickness of 10 ⁇ m at a wavelength of 436 nm.
  • the substrate with a cured film according to [10] which has an absorbance of 0.5 to 2.0 per 10 ⁇ m film thickness at a wavelength of 450 nm.
  • An image display device having the cured film-coated substrate according to any one of [14][10]-[13].
  • An LED and a cured film having a light-shielding property are provided on a substrate, and the cured film having a light-shielding property is in contact with and integrated with the side surface of the LED, and the cured film has a thickness of 10 ⁇ m at a wavelength of 365 nm.
  • a patterned cured film that separates the convex structures can be inexpensively formed on a concave-convex substrate having convex structures such as micro LEDs on the surface. It becomes possible to manufacture by the method. That is, by applying a material with excellent flatness and partially developing the surface of the coating film, it is possible to form partitions separating the micro LEDs.
  • FIG. 4 is a cross-sectional view of a state in which the surface of a dry film of a photosensitive resin composition formed on a substrate having an uneven structure is partially developed in the film thickness direction.
  • FIG. 2 is a cross-sectional view showing a state in which a cured film of a photosensitive resin composition is formed on a substrate having an uneven structure;
  • the method for producing a cured film-coated substrate of the present invention includes the steps of providing a coating film of a photosensitive resin composition on a substrate having an uneven structure on its surface, drying the coating film to form a dry film, and and a step of partially developing the dry film surface after the exposure in the film thickness direction, and a step of heating the developed coating film to form a cured film, in this order.
  • the total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiation light in the step of exposing the dry film, and the spectrum in the wavelength range of 300 nm to 450 nm of the radiation light that has passed through the dry film The attenuation ratio (B)/(A) per 1 ⁇ m of dry film thickness for the total value (B) of irradiance satisfies the following relational expression (I). 0.001 ⁇ (B)/(A) ⁇ 0.2 (I)
  • a substrate having an uneven structure on its surface functions as a support for a substrate with a cured film. can be formed.
  • the coating film by drying the coating film, it is possible to obtain a dry film with improved flatness and film thickness uniformity.
  • the total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light, and the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light that has passed through the dry film After that, in the step of exposing the dry film, the total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light, and the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light that has passed through the dry film.
  • the concave-convex structure here means, for example, a concave-convex structure as shown in FIGS. 1 and 2 .
  • FIG. 1 is a top view of a substrate having an uneven structure on its surface
  • FIG. 2 is a cross-sectional view taken along line AA' of FIG.
  • the pattern portion 1 is a convex portion, and the opening portion of the pattern, that is, the portion where the underlying substrate 2 is exposed, is a concave portion.
  • a substrate having an uneven structure on its surface there is a substrate in which convex structures such as micro LEDs, wiring, and insulating films are formed on a base substrate such as a silicon substrate, a glass plate, a resin plate, or a resin film. mentioned.
  • Non-alkali glass is preferable as the material of the glass plate.
  • Polyester, (meth)acrylic polymer, transparent polyimide, polyethersulfone and the like are preferable as materials for the resin plate and the resin film.
  • the film thickness of the glass plate and the resin plate is preferably 1 mm or less, more preferably 0.8 mm or less.
  • the film thickness of the resin film is preferably 100 ⁇ m or less.
  • Step of providing a coating film of a photosensitive resin composition examples include methods such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, and slit coating. The one using is mentioned. Among them, spin coating and slit coating are preferable from the viewpoint of improving film flatness.
  • FIG. 3 shows a schematic diagram of a state in which a coating film of a photosensitive resin composition is formed on a substrate having an uneven structure on its surface.
  • Step of drying the coating film to form a dry film examples include a method using a heating device such as a hot plate, a vacuum hot plate, or an oven.
  • the drying temperature is preferably 50 to 110° C.
  • the drying time is preferably 30 seconds to 30 minutes.
  • FIG. 4 shows a schematic diagram of a state in which a dry film of a photosensitive resin composition is formed on a substrate having an uneven structure.
  • Step of exposing dry film In the step of exposing the dry film, the total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light and the sum of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light that has passed through the dry film.
  • the exposure is performed so that the attenuation ratio (B)/(A) per 1 ⁇ m of the dry film thickness satisfies the relational expression (I).
  • the attenuation ratio (B)/(A) per 1 ⁇ m of the dry film thickness is preferably 0.001 or more, and 0.005 or more. more preferred.
  • the attenuation ratio (B)/(A) per 1 ⁇ m of the dry film thickness is preferably 0.2 or less, and 0 0.15 or less is more preferred.
  • the spectral irradiance of radiated light in the present invention is measured using a spectral irradiance meter.
  • the total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light in the step of exposing the dry film is calculated by summing the spectral irradiance of each wavelength measured by the spectral irradiance meter. can be done.
  • the radiant light that has passed through the dry film is measured in the same manner as above, and the spectrum of each wavelength is The irradiance can be summed and calculated.
  • the film thickness in the present invention refers to the thickness of the film in the vertical direction (height direction) with respect to the substrate.
  • the thickness of the dry film is preferably 1 to 20 ⁇ m.
  • a stepper for example, a mirror projection mask aligner (MPA), a parallel light mask aligner (PLA), an LED irradiation device, etc.
  • the exposure light source include a high-pressure mercury lamp, a laser, an ultraviolet LED, and a violet LED. It is good to use what is released.
  • a wavelength selection filter or the like that cuts off a specific wavelength or more between the exposure light source and the exposure object to control the wavelength of the radiated light, and substantially does not include light with a wavelength of 400 nm or more. more preferred.
  • substantially not included here means that the total value of the spectral irradiance of synchrotron radiation of 400 nm or more is so small that it can be ignored compared to the total value of the spectral irradiance of synchrotron radiation of 400 nm or less, and is treated as non-existent. Means if you can.
  • a better condition is that the sum of spectral irradiances at wavelengths of 400 nm to 450 nm of radiated light is 2.5% or less of the sum of spectral irradiances at wavelengths of 300 nm to 400 nm.
  • the total value of spectral irradiance at wavelengths of 400 nm to 450 nm of radiated light is 1.0% or less of the total value of spectral irradiances at wavelengths of 300 nm to 400 nm.
  • FIG. 5 shows a cross-sectional view of a state in which the surface of a dry film of a photosensitive resin composition formed on a substrate having an uneven structure is partially developed in the film thickness direction.
  • Step of post-exposure before heating the developed coating film the total value (C) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of radiant light, and the radiant light that has passed through the developed coating film
  • the total value (D) of the spectral irradiance in the wavelength range of 300 nm to 450 nm post-exposure so that the attenuation ratio (D) / (C) per 1 ⁇ m of the coated film after the development satisfies the relational expression (II) is preferred.
  • the total value (C) of the spectral irradiance in the region of the wavelength of 300 nm to 450 nm of the radiation light to be post-exposed, and the developed coating film For the total value (D) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiated light, the attenuation ratio (D)/(C) per 1 ⁇ m of the coating film thickness after the development is given by the relational expression (II) It is preferable to perform post-exposure so as to satisfy From the viewpoint of decomposing the photosensitive agent in the coating film after development with a small amount of exposure and improving mass productivity, the attenuation ratio (D)/(C) per 1 ⁇ m of the coating film thickness after development is 0.05.
  • the attenuation ratio (D) / (C) per 1 ⁇ m of the coating film thickness is preferably 0.99 or less from the viewpoint of blocking the light of the LED. It is more preferably 0.70 or less.
  • the spectral irradiance in the present invention is measured using a spectral irradiance meter.
  • the total value (C) of the spectral irradiance in the wavelength region of radiant light of 300 nm to 450 nm can be calculated by summing the spectral irradiance of each wavelength. can.
  • the radiant light that passed through the dry film was calculated for each wavelength in the same manner as described above. Spectral irradiance can be measured and calculated.
  • the film thickness in the present invention refers to the length in the vertical direction (height direction) with respect to the substrate.
  • the thickness of the coating film after the development is preferably 1 to 20 ⁇ m.
  • a stepper for example, a mirror projection mask aligner (MPA), a parallel light mask aligner (PLA), an LED irradiation device, etc.
  • the exposure light source include high-pressure mercury lamps, lasers, violet LEDs, and blue LEDs. It is preferable to use one that emits light of a wavelength that satisfies the requirements. It is also preferable to install a wavelength selection filter or the like that cuts off wavelengths other than a specific wavelength between the exposure light source and the exposure object to control the wavelength of the radiated light.
  • Step of heating the developed coating film to form a cured film examples include methods such as a hot plate and an oven.
  • the heat curing temperature is preferably 60 to 230° C., and the heat curing time is preferably about 15 minutes to 2 hours.
  • the cross-linking reaction of the resin proceeds and the reliability of the cured film is improved.
  • it is preferable because the smoothness of the cured film is improved by allowing the coating film to flow when heated.
  • FIG. 6 shows a cross-sectional view of a state in which a cured film of a photosensitive resin composition is formed on a substrate having an uneven structure.
  • the photosensitive resin composition of the present invention preferably contains (E) a resin, (F) a pigment and (G) a naphthoquinonediazide compound.
  • the resin has the function of improving the crack resistance and light resistance of the coating film.
  • the pigment (F) has a function of improving the light-shielding property of the coating film, and by including the naphthoquinone diazide compound (G), exhibits positive photosensitivity in which the exposed area is removed with a developer.
  • resin (E) examples include polysiloxane, polyimide, polyimide precursor, polybenzoxazole, polybenzoxazole precursor, and (meth)acrylic polymer. You may contain 2 or more types of these. Among these, polysiloxane is preferable because it is excellent in light resistance and film flatness.
  • the polysiloxane in the present invention is a hydrolysis/dehydration condensate of organosilane, and in the present invention, preferably contains 20 to 60 mol % of repeating units represented by the following general formula (1).
  • the polysiloxane can be easily compatible with other components, so that the coating film It is possible to improve the flatness of
  • the content ratio of organosilane units having repeating units represented by general formula (1) can be determined by 29 Si-NMR measurement. That is, it can be obtained by calculating the ratio of the integrated value of Si derived from the organosilane unit having the repeating unit represented by the general formula (1) to the integrated value of all Si derived from the organosilane.
  • Each repeating unit represented by the above general formula (1) is derived from an axoxysilane compound represented by the following general formula (2). That is, the polysiloxane containing the repeating unit represented by the general formula (1) hydrolyzes a plurality of alkoxysilane compounds including the alkoxysilane compound represented by the alkoxysilane compound represented by the following general formula (2). and can be obtained by polycondensation. Other alkoxysilane compounds may also be used.
  • each R 1 represents the same group as R 1 in general formula (1).
  • R 2 which may be the same or different, represents a monovalent organic group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
  • organosilane compounds represented by general formula (2) include phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, naphthyltrimethoxysilane, naphthyltriethoxysilane, naphthyltripropoxysilane, and the like. be done. You may use 2 or more types of these.
  • organosilane compounds other than the general formula (2) include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.
  • the weight average molecular weight (Mw) of polysiloxane is preferably 1,000 or more, more preferably 2,000 or more.
  • Mw of polysiloxane is preferably 50,000 or less, more preferably 20,000 or less.
  • the Mw of polysiloxane in the present invention refers to a polystyrene conversion value measured by gel permeation chromatography (GPC).
  • the content of polysiloxane can be arbitrarily set depending on the desired film thickness and application, but the solid content of the photosensitive resin composition is preferably 10 to 80% by weight. .
  • Polysiloxane can be obtained by hydrolyzing the aforementioned organosilane compound and then subjecting the hydrolyzate to a dehydration condensation reaction in the presence or absence of a solvent.
  • Various conditions for hydrolysis can be set according to physical properties suitable for the intended use, taking into consideration the reaction scale, the size and shape of the reaction vessel, and the like.
  • Various conditions include, for example, acid concentration, reaction temperature, and reaction time.
  • Acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acids and their anhydrides, and ion exchange resins can be used for the hydrolysis reaction.
  • acidic aqueous solutions containing formic acid, acetic acid and/or phosphoric acid are preferred.
  • the amount of the acid catalyst added is 0.05 parts by weight with respect to 100 parts by weight of all the alkoxysilane compounds used in the hydrolysis reaction, from the viewpoint of making the hydrolysis proceed more rapidly. part or more is preferable, and 0.1 part by weight or more is more preferable.
  • the amount of the acid catalyst to be added is preferably 20 parts by weight or less, more preferably 10 parts by weight or less with respect to 100 parts by weight of all the alkoxysilane compounds.
  • the total amount of alkoxysilane compound means the amount including all of the alkoxysilane compound, its hydrolyzate and its condensate, and the same shall apply hereinafter.
  • the hydrolysis reaction can be carried out in a solvent.
  • the solvent can be appropriately selected in consideration of the stability, wettability, volatility, etc. of the photosensitive resin composition.
  • solvents include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy -Alcohols such as 1-butanol and diacetone alcohol;
  • Glycols such as ethylene glycol and propylene glycol; Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether Ethers such as , propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl
  • diacetone alcohol propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono- t-Butyl ether, ⁇ -butyrolactone and the like are preferably used.
  • the amount of the solvent to be added is preferably 50 parts by weight or more, more preferably 80 parts by weight or more, based on 100 parts by weight of all the alkoxysilane compounds, from the viewpoint of suppressing gel formation. .
  • the amount of the solvent to be added is preferably 500 parts by weight or less, more preferably 200 parts by weight or less with respect to 100 parts by weight of all the alkoxysilane compounds, from the viewpoint of accelerating the hydrolysis.
  • ion-exchanged water is preferable as the water used for the hydrolysis reaction. Although the amount of water can be set arbitrarily, it is preferably 1.0 to 4.0 mol with respect to 1 mol of all alkoxysilane compounds.
  • a method for the dehydration condensation reaction for example, there is a method of heating the silanol compound solution obtained by the hydrolysis reaction of the organosilane compound as it is.
  • the heating temperature is preferably 50° C. or higher and the boiling point of the solvent or lower, and the heating time is preferably 1 to 100 hours.
  • reheating or addition of a base catalyst may be performed in order to increase the degree of polymerization of polysiloxane.
  • an appropriate amount of the alcohol produced may be distilled off under heating and/or under reduced pressure, and then a suitable solvent may be added.
  • the polysiloxane solution after hydrolysis and dehydration condensation does not contain the catalyst, and the catalyst can be removed as necessary.
  • washing with water, treatment with an ion-exchange resin, and the like are preferable from the viewpoint of ease of operation and removability.
  • Washing with water is a method of diluting a polysiloxane solution with a suitable hydrophobic solvent, washing with water several times, and concentrating the obtained organic layer with an evaporator or the like.
  • Ion exchange resin treatment is a method of contacting a polysiloxane solution with a suitable ion exchange resin.
  • (F) Pigment Examples of (F) pigment include (F-1) white pigment and (F-2) black pigment, and at least one of them is preferably contained. By containing (F-1) a white pigment and (F-2) a black pigment, the light shielding property of the cured film can be improved. In addition, (F-1) containing a white pigment is more preferable because the reflectivity of the cured film can be improved.
  • Examples of (F-1) white pigments include compounds selected from titanium dioxide, zirconium oxide, aluminum oxide, talc, mica, white carbon, magnesium oxide, zinc oxide, barium carbonate, and composite compounds thereof. be done. You may contain 2 or more types of these. Among these, it is preferable to contain titanium dioxide because of its high reflectivity and easy industrial use. The crystal structure of titanium dioxide is classified into an anatase type, rutile type, and brookite type. Among these, rutile-type titanium oxide is preferable because of its low photocatalytic activity.
  • the white pigment may be surface-treated. Surface treatment with Al, Si and/or Zr is preferable, and can improve the dispersibility of the white pigment (F-1) in the photosensitive resin composition and further improve the light resistance of the cured film.
  • the median diameter of the white pigment is preferably 0.2 to 5.0 ⁇ m, more preferably 0.2 to 0.6 ⁇ m, from the viewpoint of improving reflectivity.
  • the median diameter refers to the average particle diameter of the pigment (F) calculated from the particle size distribution measured by laser diffraction.
  • Titanium dioxide used as a white pigment includes, for example, R960; DuPont Co., Ltd. (SiO 2 /Al 2 O 3 surface treatment, median diameter 0.21 ⁇ m), CR-97; Ishihara Sangyo ( JR-405 (Al 2 O 3 /ZrO 2 surface treatment, median diameter 0.25 ⁇ m) manufactured by Tayka Corporation; JR-600A manufactured by Tayka Corporation (Al 2 O 3 surface treatment, median diameter 0.21 ⁇ m); Co., Ltd. (Al 2 O 3 surface treatment, median diameter 0.25 ⁇ m), JR - 603 ; Examples thereof include 3YI-R manufactured by Toray Industries, Inc. (Al 2 O 3 surface treatment, median system 0.50 ⁇ m).
  • the content of (F-1) white pigment in the photosensitive resin composition of the present invention is preferably 10% by weight or more, more preferably 20% by weight or more, based on the solid content, from the viewpoint of further improving the reflectance.
  • the content of (F-1) white pigment is preferably 80% by weight or less, more preferably 60% by weight or less, based on the solid content, from the viewpoint of improving the flatness of the coating film.
  • Black pigments include, for example, black organic pigments, mixed color organic pigments, and black inorganic pigments.
  • black organic pigments include carbon black, perylene black, aniline black, and benzofuranone pigments. These may be coated with a resin.
  • Mixed organic pigments include, for example, pseudo-black pigments obtained by mixing two or more pigments such as red, blue, green, purple, yellow, magenta and/or cyan. Among these, a mixed pigment of a red pigment and a blue pigment is preferable from the viewpoint of achieving both a moderately high OD value and pattern workability.
  • the weight ratio of the red pigment and the blue pigment is preferably 20/80 to 80/20, more preferably 30/70 to 70/30.
  • red pigments include Pigment Red (hereinafter abbreviated as PR) 9, PR48, PR97, PR122, PR123, PR144, PR149, PR166, PR168, PR177, PR179, PR180, PR192, PR209, PR215, PR216, PR217, and PR220. , PR223, PR224, PR226, PR227, PR228, PR240, PR254, and the like. You may contain 2 or more types of these.
  • blue pigments include Pigment Blue (hereinafter abbreviated as PB) 15, PB15:3, PB15:4, PB15:6, PB22, PB60 and PB64. You may contain 2 or more types of these.
  • Black inorganic pigments include, for example, graphite; fine particles of metals such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, silver, gold, platinum, and palladium; metal oxides; metal composite oxides; Metal sulfides; metal nitrides; metal oxynitrides; metal carbides and the like. You may contain 2 or more types of these.
  • metals such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, silver, gold, platinum, and palladium
  • metal oxides such as titanium oxide, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, silver, gold, platinum, and palladium
  • metal oxides such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, silver, gold, platinum, and palladium
  • metal oxides such as titanium oxide, copper, iron, manganese, cobalt,
  • the content of the black pigment is preferably 0.2% by weight or more, more preferably 0.5% by weight or more, from the viewpoint of adjusting the reflectance and OD to suppress color mixture of light in adjacent pixels.
  • the content of the black pigment is preferably 5% by weight or less, more preferably 3% by weight or less.
  • the (G) naphthoquinonediazide compound includes, for example, a compound in which a sulfonic acid of naphthoquinonediazide is bonded to a compound having a phenolic hydroxyl group via an ester.
  • the (G) naphthoquinonediazide compound to be used is not particularly limited, but a compound in which the sulfonic acid of naphthoquinonediazide is ester-bonded to a compound having a phenolic hydroxyl group is preferable.
  • compounds having a phenolic hydroxyl group used here include Bis-Z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP-Z, BisOCHP-Z, BisOCR-CP, and BisP-MZ.
  • BisP-EZ Bis26X-CP, BisP-PZ, BisP-IPZ, BisCR-IPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP-4HBPA (tetrakis P-DO-BPA), TrisP -HAP, TrisP-PA, BisOFP-Z, BisRS-2P, BisPG-26X, BisRS-3P, BisOC-OCHP, BisPC-OCHP, Bis25X-OCHP, Bis26X-OCHP, BisOCHP-OC, Bis236T-OCHP, methylene tris- FR-CR, BisRS-26X, BisRS-OCHP (trade names, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-OC, BIP-PC, BIR-PC, BIR-PTBP, BIR-PCHP, BIP-BIOC- F, 4PC, BIR-BIPC-F, TEP-BIP-A (trade names, manufactured by Asahi Organic
  • preferred compounds having a phenolic hydroxyl group include, for example, Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP- IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, methylenetris-FR-CR, BisRS-26X, BIP-PC, BIR-PC, BIR-PTBP, BIR-BIPC-F etc.
  • particularly preferred compounds having a phenolic hydroxyl group include, for example, Bis-Z, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisRS-2P, BisRS-3P, BIR-PC, BIR-PTBP, BIR -BIPC-F, 4,4'-sulfonyldiphenol, BPFL.
  • a preferred example is a compound having a phenolic hydroxyl group into which 4-naphthoquinonediazide sulfonic acid is introduced via an ester bond, but compounds other than this can also be used.
  • the naphthoquinonediazide compound preferably has a molecular weight of 300 to 1,500, more preferably 350 to 1,200.
  • a molecular weight of 300 to 1,500 By setting the molecular weight to 300 or more, an effect of inhibiting dissolution of unexposed areas can be obtained. Also, by setting the molecular weight to 1500 or less, a good relief pattern without scum or the like can be obtained.
  • These (G) naphthoquinonediazide compounds may be used alone or in combination of two or more.
  • the content of these (G) naphthoquinonediazide compounds is preferably 1 to 30 parts by weight relative to the (E) resin. By making it 1 part by weight or more, processing can be performed with practical sensitivity. Moreover, by making it 30 weight part or less, the photosensitive resin composition excellent in light resistance is obtained. Further, when (G) a naphthoquinonediazide compound is added, unreacted photosensitive agent remains in unexposed areas, which may cause coloration of the film after heat curing. In order to obtain a cured film with little coloration, it is preferable to heat the developed coating film after irradiating it with ultraviolet rays.
  • the photosensitive resin composition of the present invention may further contain a cross-linking agent, an adhesion improver, a solvent, a surfactant, a dissolution inhibitor, a stabilizer, an antifoaming agent and the like, if necessary.
  • a cross-linking agent in the photosensitive resin composition of the present invention, the cross-linking of polysiloxane is promoted during heat curing, and the degree of cross-linking of the cured film is increased.
  • Curing agents include, for example, nitrogen-containing organic substances, silicone resin curing agents, isocyanate compounds and their polymers, methylolated melamine derivatives, methylolated urea derivatives, various metal alcoholates, various metal chelate compounds, thermal acid generators, photoacid generation material, and the like. You may contain 2 or more types of these. Among these, methylolated melamine derivatives and methylolated urea derivatives are preferably used from the viewpoint of the stability of the curing agent.
  • adhesion improver By including an adhesion improver in the photosensitive resin composition of the present invention, the adhesion to the substrate is improved, and a highly reliable cured film can be obtained.
  • adhesion improvers include alicyclic epoxy compounds and silane coupling agents.
  • the silane coupling agent is preferable because it has high heat resistance and can further suppress color change after heating.
  • Silane coupling agents include (3,4-epoxycyclohexyl)methyltrimethoxysilane, (3,4-epoxycyclohexyl)methyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltripropoxysilane, 2- (3,4-epoxycyclohexyl)ethyltributoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 2-(3,4- epoxycyclohexyl)ethyltriphenoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltriethoxysilane, 4-(3,4-epoxycyclohexyl)butyltri me
  • the content of the adhesion improver in the photosensitive resin composition of the present invention is preferably 0.1% by weight or more, more preferably 1% by weight or more, based on the solid content, from the viewpoint of further improving the adhesion to the substrate. .
  • the content of the adhesion improver is preferably 20% by weight or less, more preferably 10% by weight or less, based on the solid content, from the viewpoint of further suppressing color change due to heating.
  • a solvent in the photosensitive resin composition of the present invention it is possible to easily adjust the viscosity suitable for coating and improve the uniformity of the coating film. It is preferable to combine a solvent having a boiling point of more than 150° C. and 250° C. or less under atmospheric pressure with a solvent having a boiling point of 150° C. or less. By containing a solvent having a boiling point of more than 150° C. and not more than 250° C., the solvent is volatilized appropriately during coating, and the coating film dries, thereby suppressing uneven coating and improving the uniformity of the film thickness. can be done. Furthermore, by containing a solvent having a boiling point of 150° C.
  • a solvent having a boiling point of 150° C. or lower under atmospheric pressure should be contained in an amount of 50% by weight or more of the total solvent. is preferred.
  • Solvents having a boiling point of 150° C. or less under atmospheric pressure include, for example, ethanol, isopropyl alcohol, 1-propyl alcohol, 1-butanol, 2-butanol, isopentyl alcohol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol mono Ethyl ether, methoxymethyl acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, 1-methoxypropyl-2-acetate, acetol, acetylacetone, methyl isobutyl ketone, methyl ethyl ketone, methyl propyl ketone, methyl lactate, toluene, cyclopentanone, cyclohexane, n-heptane, benzene, methyl a
  • Solvents having a boiling point of more than 150° C. and 250° C. or less under atmospheric pressure include, for example, ethylene glycol diethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-tert-butyl ether, propylene glycol mono-n-butyl ether, and propylene.
  • Glycol mono-t-butyl ether 2-ethoxyethyl acetate, 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol, 3-methoxy-3-methylbutyl acetate, 3-methoxybutyl acetate, 3-ethoxypropionic acid
  • Ethyl propylene glycol monomethyl ether propionate, dipropylene glycol methyl ether, diisobutyl ketone, diacetone alcohol, ethyl lactate, butyl lactate, dimethylformamide, dimethylacetamide, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, carbonic acid
  • the content of the solvent can be arbitrarily set according to the application method. For example, when forming a film by spin coating, it is generally 50% by weight or more and 95% by weight or less in the photosensitive resin composition.
  • surfactants include, for example, "Megafac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475, F477 (trade names, manufactured by Dainippon Ink & Chemicals, Inc.), NBX- 15, fluorine-based surfactants such as FTX-218 (trade name, manufactured by Neos Co., Ltd.); )), polyalkylene oxide surfactants, poly(meth)acrylate surfactants, and the like. You may contain 2 or more types of these.
  • the solid content concentration of the photosensitive resin composition of the present invention can be arbitrarily set according to the coating method and the like. For example, when forming a film by spin coating as described later, it is common to set the solid content concentration to 5% by weight or more and 50% by weight or less.
  • the photosensitive resin composition of the present invention can be obtained by mixing the aforementioned components (E) to (G) and, if necessary, other components. More specifically, for example, (E) a resin, (G) a naphthoquinone diazide compound and, if necessary, other additives are added to an arbitrary solvent and stirred to dissolve, then (F) a pigment is added, A method of further stirring for 20 minutes to 3 hours and filtering the resulting solution may be used.
  • the dry film of the present invention is obtained by drying the coating film of the aforementioned photosensitive resin composition of the present invention.
  • the film thickness of the dry film of the present invention is preferably 1 to 20 ⁇ m. It is preferable to set the film thickness of the dry film to 1 ⁇ m or more because the film flatness of the uneven structure can be improved. Further, by setting the film thickness of the dry film to 20 ⁇ m or less, the film uniformity of the dry film can be improved, which is preferable.
  • the cured film of the present invention comprises a cured product of the aforementioned photosensitive resin composition of the present invention.
  • the thickness of the cured film is preferably 1 to 20 ⁇ m.
  • the absorbance per 10 ⁇ m of film thickness at a wavelength of 365 nm of the cured film is 1.0 to 4.0
  • the absorbance per 10 ⁇ m of film thickness at a wavelength of 405 nm is 0.5 to 2.0
  • the absorbance per 10 ⁇ m of film thickness at a wavelength of 436 nm. is preferably 0.5 to 2.0
  • the absorbance per 10 ⁇ m film thickness at a wavelength of 450 nm is preferably 0.5 to 2.0.
  • the method for producing a cured film-coated substrate of the present invention can be applied, which is preferable.
  • the cured film of the present invention is used as a partition wall for micro LEDs, it is necessary to sufficiently shield the colors of light emitted from adjacent micro LEDs to avoid color mixture. By setting the absorbance within the above range, it is possible to obtain good light shielding properties, which is preferable.
  • the cured film of the present invention is used as a partition wall of a micro LED, by setting the reflectance to 20% or more, the light emitted from the micro LED can be reflected by the cured film, improving the light extraction efficiency. 50% or more is more preferable, and 60% or more is even more preferable.
  • a reflectance of 80% or less is preferable, and more preferably 70% or less, because it is possible to efficiently utilize the light irradiated when post-exposure is applied to the developed coating film.
  • the arithmetic mean surface roughness of the cured film is preferably 0.005 ⁇ m to 0.1 ⁇ m.
  • the arithmetic mean surface roughness of the cured film is preferably 0.005 ⁇ m to 0.1 ⁇ m.
  • the arithmetic mean surface roughness of the cured film is set to 0.1 m or less, it is possible to uniformly and easily form an upper layer film on the cured film of the present invention in a post-process, so it is preferable, 0.02 ⁇ m or less is preferable, 0.015 ⁇ m or less is more preferable, and 0.010 ⁇ m or less is most preferable.
  • the image display device of the present invention comprises a substrate in which wiring electrodes for driving are formed on a substrate, micro LED cells are arranged, a cured film is brought into contact with the side surfaces of the micro LEDs without gaps, and the substrate is integrated; can be created by combining the IC drivers, etc.
  • no gap means that the distance between the micro LED and the cured film is preferably 0.5 ⁇ m or less, more preferably 0.1 ⁇ m or less.
  • the solid content concentrations of the polysiloxane solutions and acrylic resin solutions in Synthesis Examples 1 and 2 were determined by the following method. 1.5 g of polysiloxane solution or acrylic resin solution was put into an aluminum cup and heated at 250° C. for 30 minutes using a hot plate to evaporate the liquid component. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration of the polysiloxane solution or acrylic resin solution was obtained from the ratio to the weight before heating.
  • the content ratio of each organosilane unit in polysiloxane in Synthesis Example 1 was obtained by the following method. A polysiloxane solution is injected into a “Teflon” (registered trademark) NMR sample tube with a diameter of 10 mm and 29 Si-NMR measurement is performed. The content ratio of each organosilane unit was calculated from the ratio of the integrated value of Si. 29 Si-NMR measurement conditions are shown below.
  • Apparatus Nuclear magnetic resonance apparatus (JNM-GX270; manufactured by JEOL Ltd.) Measurement method: Gated decoupling method Measurement nucleus frequency: 53.6693 MHz ( 29 Si nuclei) Spectrum width: 20000Hz Pulse width: 12 ⁇ s (45° pulse) Pulse repetition time: 30.0 seconds Solvent: Acetone-d6 Reference substance: Tetramethylsilane Measurement temperature: 23°C Sample rotation speed: 0.0 Hz.
  • the three-necked flask was immersed in an oil bath at 70° C. and stirred for 90 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the internal temperature (solution temperature) of the three-necked flask reached 100° C., and the mixture was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. In addition, 0.05 liter/minute of nitrogen was flowed during the temperature rise and heating and stirring. A total of 123.00 g of methanol and water, which are by-products, were distilled during the reaction.
  • PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (E-1) solution.
  • the weight average molecular weight of the obtained polysiloxane (E-1) was 4,100 (converted to polystyrene).
  • repeating units derived from phenyltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, and methyltrimethoxysilane in polysiloxane (E-1) The molar ratios were 50 mol %, 10 mol % and 40 mol %, respectively.
  • Photosensitive resin composition (P-1) As a white pigment, 50.00 g of titanium dioxide (R-960; DuPont Co., Ltd. (SiO 2 /Al 2 O 3 surface treatment, median diameter 0.21 ⁇ m)), (E-1) poly As siloxane, 50.00 g of the polysiloxane (E-1) solution obtained in Synthesis Example 1 was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-1). .
  • Ethyltrimethoxysilane (KBM-303 (trade name), manufactured by Shin-Etsu Chemical Co., Ltd.) 0.800 g; , DIC Corporation) was dissolved in a mixed solvent of 3.000 g of DAA and 26.175 g of PGMEA and stirred. Then, filtration was performed with a 5.0 ⁇ m filter to obtain a photosensitive resin composition (P-1).
  • Photosensitive resin composition (P-2) A photosensitive resin composition (P-2) was obtained in the same manner as in Preparation Example 1 except that the acrylic resin (e-1) solution was used instead of the polysiloxane (E-1) solution.
  • Photosensitive resin composition (P-3) (F-2) As a black pigment, titanium nitride (manufactured by Wako Pure Chemical Industries, Ltd.; particle size: 50 nm, titanium content: 74.3% by weight, nitrogen content: 20.3% by weight, oxygen content: 2.94% by weight) is mixed with 50.00 g of polysiloxane (E-1) solution as (E) resin, and dispersed using a mill-type dispersing machine filled with zirconia beads to disperse the pigment. A liquid (MW-2) was obtained.
  • the amount of polysiloxane (E-1) solution added was changed to 34.645 g, the mixed solvent PGMEA was changed to 26.343 g, and in addition to the pigment dispersion (MW-1), the pigment dispersion (MW-2 ) was carried out in the same manner as in Preparation Example 1 except that 0.112 g was added to obtain a photosensitive resin composition (P-3).
  • Photosensitive resin composition (P-4) The addition amount of the polysiloxane (E-1) solution was changed to 62.925 g, the mixed solvent PGMEA was changed to 14.175 g, and the addition amount of the pigment dispersion (MW-1) was changed to 16.000 g. was carried out in the same manner as in Preparation Example 1 to obtain a photosensitive resin composition (P-4).
  • Photosensitive resin composition (P-5) The added amount of the polysiloxane (E-1) solution was changed to 35.925 g, the mixed solvent PGMEA was changed to 25.575 g, and the added amount of TP5-280M as the (G) naphthoquinone dido compound was changed to 1.600 g.
  • a photosensitive resin composition (P-5) was obtained in the same manner as in Preparation Example 1 except for the changes.
  • Photosensitive resin composition (P-6) The added amount of the polysiloxane (E-1) solution was changed to 33.925 g, the mixed solvent PGMEA was changed to 26.775 g, and the added amount of TP5-280M as the (G) naphthoquinone dide compound was changed to 2.400 g.
  • a photosensitive resin composition (P-6) was obtained in the same manner as in Preparation Example 1 except for the changes.
  • Photosensitive resin composition (P-7) (F-1) Preparation example except that zirconia oxide (3YI-R; manufactured by Toray Industries, Inc. (Al 2 O 3 surface treatment, median system 0.50 ⁇ m)) was used instead of R-960 as the white pigment. 1 to obtain a photosensitive resin composition (P-7).
  • zirconia oxide 3YI-R; manufactured by Toray Industries, Inc. (Al 2 O 3 surface treatment, median system 0.50 ⁇ m)
  • Photosensitive resin composition (P-8) The amount of polysiloxane (E-1) solution added was changed to 39.925 g, the mixed solvent PGMEA was changed to 23.175 g, and TP5-280M was not added as (G) naphthoquinone dide compound.
  • a photosensitive resin composition (P-8) was obtained in the same manner as in Example 1.
  • Photosensitive resin composition (P-9) Same as Preparation Example 1 except that the amount of polysiloxane (E-1) solution added was changed to 90.925 g, the mixed solvent PGMEA was changed to 2.175 g, and the pigment dispersion (MW-1) was not added. to obtain a photosensitive resin composition (P-9).
  • compositions of Preparation Examples 1 to 9 are summarized in Table 1.
  • the positive photosensitive precursor resin composition is spin-coated on a 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., film thickness 0.7 mm) (trade name 1H-360S, manufactured by Mikasa Co., Ltd.). ) and dried at a temperature of 100° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.) to prepare a dry film.
  • SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.
  • a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) was used, and an ultra-high pressure mercury lamp was used as a light source.
  • the portion was exposed with an exposure amount of 200 mJ/cm 2 (i-ray conversion value) without a photomask.
  • an automatic developing device (“AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.)
  • shower development was performed with a 2.38 wt% tetramethylammonium hydroxide aqueous solution for 120 seconds, and then rinsed with water for 30 seconds.
  • it was cured at 230° C. for 30 minutes using an oven (DN43HI manufactured by Yamato Scientific Co., Ltd.) to obtain a glass substrate having an uneven structure on one half of the substrate.
  • the obtained glass substrate having the concave-convex structure has, on one half of the substrate, convex structures each having a length and a width of 20 ⁇ m and a film thickness of 5 ⁇ m, and the distance between the adjacent convex structures is 80 ⁇ m. are patterned as follows.
  • the appearance of the obtained substrate with the dry film was visually inspected, and the flatness of the photosensitive resin composition with respect to the substrate with the concave-convex structure was evaluated according to the following criteria. A: It seems that the uneven structure is flattened and the dry film is uniformly formed without unevenness in thickness.
  • spectral irradiance measurement of radiant light in the process of exposing a dry film The spectral irradiance of the light emitted from the exposure machine in the step of exposing the dry film used in each of the examples and comparative examples was measured at 1 nm using a spectral irradiance meter (trade name USR45DA, manufactured by Ushio Inc.). was measured with a wavelength resolution of . Subsequently, by adding up the spectral irradiance for each wavelength in the wavelength range of 300 nm to 450 nm, the total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light in the step of exposing the dry film is obtained. Calculated.
  • the photosensitive resin composition used in each example and comparative example was spin-coated on a glass substrate (trade name 1H-360S, manufactured by Mikasa Co., Ltd.), and a hot plate (trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.) was applied. (manufactured by Co., Ltd.), and dried by heating at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 1 ⁇ m.
  • the photosensitive resin composition used in each example and comparative example was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW- 636, manufactured by Dainippon Screen Mfg. Co., Ltd.), and dried at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 10 ⁇ m.
  • the substrate with the dry film was exposed without a photomask using a predetermined exposure machine and exposure amount set for each example and comparative example.
  • the coating film after development was enlarged using a visual inspection of the appearance and a microscope adjusted to a magnification of 20 times, and the photosensitive resin composition for the substrate having an uneven structure according to the following criteria.
  • Flatness after development was evaluated.
  • C There is a portion where the developed film remains on the top of the convex structure, and many portions where the film thickness of the convex structure and the film thickness of the coating film after development are different are observed.
  • the photosensitive resin composition used in each example and comparative example was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW- 636, manufactured by Dainippon Screen Mfg. Co., Ltd.), and dried at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 10 ⁇ m.
  • the value of the central part of the dry film in the pattern-free region on the half surface of the glass substrate was measured using a surfcom stylus type film thickness measuring device.
  • the film thickness of the coating film after development was measured using a Surfcom stylus film thickness measuring device, and the amount of change in film thickness before and after development was calculated.
  • the above-mentioned film thickness change amount was calculated at five points on the top, bottom, left, and right including the central portion of the pattern-free region on the half surface of the glass substrate, and the maximum and minimum film thickness change amounts were obtained.
  • the variation in film thickness variation in the developing process was evaluated from the difference between the maximum value and the minimum value. This difference is preferably 1.0 ⁇ m or less.
  • spectral irradiance measurement of radiant light in the step of post-exposure of the coating film after development The spectral irradiance of the radiant light in the step of post-exposure of the developed coating film used in each example and comparative example was measured at 1 nm using a spectral irradiance meter (trade name USR45DA, manufactured by Ushio Inc.). was measured with a wavelength resolution of . Subsequently, by adding the spectral irradiance for each wavelength in the wavelength range of 300 nm to 450 nm, the total value of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiated light in the process of post-exposing the coating film after development. (C) was calculated.
  • the photosensitive resin composition used in each example and comparative example was spin-coated on a glass substrate (trade name 1H-360S, manufactured by Mikasa Co., Ltd.), and a hot plate (trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.) was applied. (manufactured by Co., Ltd.) was heated at a temperature of 100 ° C. for 2 minutes and dried, except that the film thickness was changed, processing was performed under the same conditions as in each example and comparative example, and the film thickness of the coating film after development. was processed to be 1 ⁇ m.
  • the radiant light from the exposure machine in the step of post-exposure of the developed coating film used in each example and comparative example was irradiated from the side of the developed coating film having a thickness of 1 ⁇ m, and the developed coating film
  • the value of the spectral irradiance after passing through was measured on the glass substrate side with an irradiance meter (trade name USR45DA, manufactured by Ushio Inc.) with a wavelength resolution of 1 nm.
  • the photosensitive resin composition used in each example and comparative example was processed in the same manner as the processing conditions in each example and comparative example except that the film thickness was changed, and cured to 10 ⁇ m on a flat glass substrate.
  • a membrane was prepared.
  • the obtained cured film was used as a model of the cured film of the cured film-attached substrate formed on the substrate having the concave-convex structure formed in each example and comparative example. (manufactured by Konica Minolta, Inc.) was used to measure the reflectance at a wavelength of 550 nm in the SCI mode from the cured film side. In addition, evaluation was not carried out for those judged to be difficult to form a cured film because the amount of the coating film developed during development was too large.
  • ⁇ Absorbance (OD value)> The photosensitive resin composition used in each example and comparative example was processed in the same manner as the processing conditions in each example and comparative example except that the film thickness was changed, and cured to 10 ⁇ m on a flat glass substrate. A membrane was prepared. The obtained cured film was used as a model of the cured film of the substrate with the cured film formed on the substrate having the concave-convex structure formed in each example and comparative example, and an optical densitometer (U -4100) was used to measure the intensity of incident light and transmitted light, and the absorbance (OD value) was calculated from the following formula (III). In addition, evaluation was not carried out for those judged to be difficult to form a cured film due to a large amount of coating film developed during development.
  • U -4100 optical densitometer
  • ⁇ Arithmetic mean surface roughness> The photosensitive resin composition used in each example and comparative example was processed in the same manner as in the processing conditions in each example and comparative example, except that the thickness of the resulting cured film was changed, and a flat glass substrate A substrate with a solid cured film of 10 ⁇ m was prepared thereon. The obtained cured film was used as a model of the cured film of the substrate with the cured film formed on the substrate having the uneven structure, which was formed in each example and comparative example. , the arithmetic mean surface roughness was obtained. In addition, evaluation was not carried out for those judged to be difficult to form a cured film of 10 ⁇ m because the amount of dry film developed during development was too large.
  • the pigment dispersion used as a raw material was placed in a quartz cell, and a submicron particle size distribution measuring device (N4-PLUS; manufactured by Beckman Coulter, Inc.) was measured. was used to measure the particle size distribution of the pigment by a laser diffraction method, and the median diameter was calculated.
  • N4-PLUS submicron particle size distribution measuring device
  • Example 1 The photosensitive resin composition of Preparation Example 1 was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.) was applied. (manufactured by Co., Ltd.) was used to form a coating film. After that, it was dried at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 10 ⁇ m.
  • a hot plate trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.
  • a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) is used as an exposure machine in the step of exposing a substrate with a dry film, and an ultra-high pressure mercury lamp is used as a light source.
  • An optical filter (trade name: HB-365, manufactured by Asahi Spectrosco Co., Ltd.) that passes light near the i-line (365 nm) was arranged so that light near the i-line was selectively emitted.
  • the sum of spectral irradiances at wavelengths of 400 nm to 450 nm was 0.05 mW/cm 2
  • the sum of spectral irradiances at wavelengths of 300 nm to 400 nm was 32.2 mW/cm 2
  • Exposure was performed with radiant light in which the sum of spectral irradiances at wavelengths of 400 nm to 450 nm was 0.16% of the sum of spectral irradiances at wavelengths of 300 nm to 400 nm, and which substantially did not contain light with wavelengths of 400 nm or longer.
  • the dry film-coated substrate was exposed with an exposure amount of 80 mJ (converted from the spectral irradiance at a wavelength of 365 nm) using the aforementioned exposure machine without using a photomask. After that, the substrate with the dried film after exposure was subjected to shower development for 60 seconds with a 2.38 wt % tetramethylammonium hydroxide aqueous solution using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.). and then rinsed with water for 30 seconds.
  • AD-2000 automatic developing device
  • a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) is used, an ultra-high pressure mercury lamp is used as the light source, and light of 400 nm or more passes between the exposure light source and the exposure object.
  • An optical filter (trade name: LU0400, manufactured by Asahi Kogyo Co., Ltd.) was placed to selectively irradiate light of 400 nm or more. After development, the coated substrate was post-exposed at 100 mJ (converted from irradiance at a wavelength of 405 nm) without a photomask.
  • Example 2 Processing was carried out in the same manner as in Example 1 except that P-2 was used as the photosensitive resin composition and the exposure amount before development was changed to 80 mJ.
  • Example 3 Processing was carried out in the same manner as in Example 1 except that P-3 was used as the photosensitive resin composition and the exposure amount before development was changed to 100 mJ.
  • Example 4 Processing was carried out in the same manner as in Example 1 except that P-4 was used as the photosensitive resin composition and the exposure amount before development was changed to 40 mJ.
  • Example 5 Processing was carried out in the same manner as in Example 1 except that P-5 was used as the photosensitive resin composition and the exposure amount before development was changed to 60 mJ.
  • Example 6 Processing was carried out in the same manner as in Example 1 except that P-6 was used as the photosensitive resin composition and the exposure amount before development was changed to 100 mJ.
  • Example 7 The photosensitive resin composition of Preparation Example 1 was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.) was applied. (manufactured by Co., Ltd.) was used to form a coating film. After that, it was dried at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 10 ⁇ m.
  • a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) is used as an exposure machine in the step of exposing a substrate with a dry film, and an ultra-high pressure mercury lamp is used as a light source. , no wavelength-selective optical filter was placed.
  • the dry film-coated substrate was exposed with an exposure dose of 30 mJ (converted from the spectral irradiance at a wavelength of 365 nm) using the above-described exposure device without using a photomask.
  • the sum of spectral irradiances at wavelengths of 400 nm to 450 nm was 43.8 mW/cm 2
  • the sum of spectral irradiances at wavelengths of 300 nm to 400 nm was 46.8 mW/cm 2 .
  • the same method as in Example 1 was used for the subsequent processing of developing the substrate with the dried film after exposure.
  • Example 8 The photosensitive resin composition of Preparation Example 1 was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.) was applied. (manufactured by Co., Ltd.) was used to form a coating film. After that, it was dried at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 10 ⁇ m.
  • a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) is used as an exposure machine in the step of exposing a substrate with a dry film, and an ultra-high pressure mercury lamp is used as a light source.
  • an optical filter (trade name: LU0400, manufactured by Asahi Spectrosco Co., Ltd.) that passes light of 400 nm or longer was arranged so that light of 400 nm or longer was selectively irradiated.
  • the dry film-coated substrate was exposed with an exposure amount of 25 mJ (converted from the spectral irradiance at a wavelength of 405 nm) using the aforementioned exposure machine without using a photomask.
  • the sum of spectral irradiances at wavelengths of 400 nm to 450 nm was 40.2 mW/cm 2
  • the sum of spectral irradiances at wavelengths of 300 nm to 400 nm was 0.65 mW/cm 2 .
  • the same method as in Example 1 was used for the subsequent processing of developing the substrate with the dried film after exposure.
  • Example 9 The photosensitive resin composition of Preparation Example 1 was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.) was applied. (manufactured by Co., Ltd.) was used to form a coating film. After that, it was dried at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 10 ⁇ m.
  • a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) is used as an exposure machine in the step of exposing a substrate with a dry film, and an ultra-high pressure mercury lamp is used as a light source.
  • an optical filter (trade name SH0400, manufactured by Asahi Spectrosco Co., Ltd.) that passes light of 400 nm or less was placed so that light of 400 nm or less was selectively irradiated.
  • the dry film-coated substrate was exposed with an exposure amount of 70 mJ (converted from the spectral irradiance at a wavelength of 365 nm) using the above-mentioned exposure machine without using a photomask.
  • Example 2 The same method as in Example 1 was used for the subsequent processing of developing the substrate with the dried film after exposure. At this time, the sum of spectral irradiances at wavelengths of 400 nm to 450 nm was 0.97 mW/cm 2 , and the sum of spectral irradiances at wavelengths of 300 nm to 400 nm was 44.9 mW/cm 2 . Exposure was performed with radiant light in which the sum of spectral irradiances at wavelengths of 400 nm to 450 nm was 2.2% of the sum of spectral irradiances at wavelengths of 300 nm to 400 nm, and which substantially did not contain light with a wavelength of 400 nm or longer. The same method as in Example 1 was used for the subsequent processing of developing the substrate with the dried film after exposure.
  • Example 3 Processing was carried out in the same manner as in Example 1 except that P-9 was used as the photosensitive resin composition and the exposure amount before development was changed to 10 mJ.
  • Tables 2 and 3 show the configuration and evaluation results of each example and comparative example.
  • Pattern part 2 Base substrate 3: Coated film of photosensitive resin composition 4: Dry film of photosensitive resin composition 5: Coated film of photosensitive resin composition after development 6: Cured film of photosensitive resin composition H: Film thickness

Abstract

An inexpensive method is realized which does not require a pattern mask to form a patterned cured film. A method for manufacturing a cured-film-coated substrate, the method comprising, in the following order, a step of providing a coating film of a photosensitive resin composition on a substrate having a structure of recesses and protrusions on the surface, a step of drying the coating film to form a dry film, a step of exposing the dry film, a step of partially developing the dry film surface in the film thickness direction after the exposure, and a step of heating the coating film after the development to form a cured film, the method for manufacturing a cured-film-coated substrate characterized in that the attenuation ratio (B)/(A) per 1 μm of dry film thickness, which is the ratio of the total value of spectral irradiance (B) in a wavelength range of 300−450 nm of radiation light that has passed through the dry film to the total value of spectral irradiance (A) in a wavelength range of 300−450 nm of radiation light in the step of exposing the dry film, satisfies the following relational expression (I). (I) 0.001 ≤ (B)/(A) ≤ 0.2

Description

硬化膜付き基板の製造方法、硬化膜付き基板および硬化膜付き基板を具備する素子Cured film-coated substrate manufacturing method, cured film-coated substrate, and device provided with cured film-coated substrate
 本発明は、硬化膜付き基板の製造方法、それを用いた硬化膜付き基板および硬化膜付き基板を具備する素子に関する。 The present invention relates to a method for manufacturing a cured film-coated substrate, a cured film-coated substrate using the same, and an element having a cured film-coated substrate.
 近年、スマートフォンやタブレットなどの情報端末機器の発展や、テレビをはじめとするフラットパネルディスプレイの高精細化に伴い、ディスプレイの高性能化の要求は更に高まっている。中でも、高性能のディスプレイとして、マイクロサイズのLEDを使用した、マイクロLEDディスプレイが注目されている。このディスプレイは、光源としてアクティブマトリクス方式等で駆動されるマイクロLEDを用いて、フルカラー表示させる方式のディスプレイであり、コントラストや色再現性に優れる。 In recent years, with the development of information terminal devices such as smartphones and tablets, and the high definition of flat panel displays such as televisions, the demand for higher performance displays has increased further. Among them, as a high-performance display, a micro-LED display using micro-sized LEDs is attracting attention. This display uses micro LEDs driven by an active matrix method or the like as a light source to display in full color, and is excellent in contrast and color reproducibility.
 このマイクロLEDディスプレイには、光源であるマイクロLEDと対応するサイズで、光源を隔てるパターン化された硬化膜(隔壁)を配置する必要がある。パターン化された硬化膜を形成する方法としては、パターンマスクを用いたフォトリソグラフィ法がよく知られている(特許文献1)。加えてこれらの隔壁には、隣接するマイクロLED同士の混色を防ぐ遮光性に加え、マイクロLEDからの光を効率よく取り出す反射特性などが求められる。 In this micro LED display, it is necessary to arrange a patterned cured film (partition wall) that separates the light source with a size corresponding to the micro LED that is the light source. As a method for forming a patterned cured film, a photolithography method using a pattern mask is well known (Patent Document 1). In addition, these barrier ribs are required to have a light-shielding property to prevent color mixing between adjacent micro-LEDs and a reflective property to efficiently extract light from the micro-LEDs.
 さらに、これらのパターン化された硬化膜をより安価に効率よく形成する方法として、マイクロLEDのような凹凸構造を有する基板に対して、平坦性に優れる材料を塗布し、塗膜表面の一部分を除去するなどの手法(特許文献2、3)が検討されている。 Furthermore, as a method of forming these patterned cured films more inexpensively and efficiently, a material with excellent flatness is applied to a substrate having an uneven structure such as a micro LED, and a part of the coating film surface is covered. Techniques such as removal (Patent Documents 2 and 3) are being considered.
国際公開第2020-8969号公報International Publication No. 2020-8969 特開2006-66474号公報JP 2006-66474 A 特開2002-14477号公報JP-A-2002-14477
 しかしながら、上記特許文献1に記載された材料を用いた場合、塗膜表面の不要な部分を選択的に除去することが困難である。また、上記特許文献2および3に記載された手法においては、パターンマスクを必要とするため、安価かつ効率よくパターン化された硬化膜を形成することが困難である。 However, when the material described in Patent Document 1 is used, it is difficult to selectively remove unnecessary portions of the coating film surface. In addition, since the methods described in Patent Documents 2 and 3 require a pattern mask, it is difficult to form a patterned cured film efficiently and inexpensively.
 そこで本発明は、表面に凹凸構造を有する基板に対して、凸構造体を平坦化する塗膜を形成した後、塗膜表面の不要な塗膜を除去し、凸構造体の表面を露出させることで、パターン化された硬化膜を形成するにあたり、それらを、パターンマスクを必要としない安価な手法で実現することを課題とする。 Therefore, in the present invention, after forming a coating film for flattening the convex structures on a substrate having an uneven structure on the surface, unnecessary coating film on the surface of the coating film is removed to expose the surface of the convex structures. Accordingly, an object of the present invention is to realize a patterned cured film by an inexpensive method that does not require a pattern mask.
 上記課題を解決するために、本発明は以下の構成を有する。
[1]表面に凹凸構造を有する基板に対して感光性樹脂組成物の塗布膜を設ける工程、該塗布膜を乾燥させて乾燥膜とする工程、該乾燥膜を露光する工程、および該露光後の乾燥膜表面を膜厚方向に部分的に現像させる工程、および現像後の塗膜を加熱して硬化膜にする工程、をこの順に有する硬化膜付き基板の製造方法であって、乾燥膜を露光する工程における放射光の波長300nm~450nmの領域における分光放射照度の合算値(A)と、乾燥膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(B)について、乾燥膜厚1μmあたりの減衰比率(B)/(A)が、以下関係式(I)を満たすことを特徴とする。
0.001≦(B)/(A)≦0.2・・・・・(I)
 
 [2]前記乾燥膜を露光する工程における放射光が波長400nm以上の光を実質的に含まないことを特徴とする[1]に記載の硬化膜付き基板の製造方法。
In order to solve the above problems, the present invention has the following configurations.
[1] A step of providing a coating film of a photosensitive resin composition on a substrate having an uneven structure on its surface, a step of drying the coating film to form a dry film, a step of exposing the dry film, and after the exposure. A method for producing a cured film-coated substrate having, in this order, a step of partially developing the dry film surface in the film thickness direction, and a step of heating the developed coating film to form a cured film, wherein the dry film is About the total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light in the exposure process and the total value (B) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light that has passed through the dry film , the attenuation ratio (B)/(A) per 1 μm of dry film thickness satisfies the following relational expression (I).
0.001≦(B)/(A)≦0.2 (I)

[2] The method for producing a cured film-coated substrate according to [1], wherein the emitted light in the step of exposing the dry film does not substantially contain light having a wavelength of 400 nm or more.
 [3]前記乾燥膜を露光する工程における放射光について、照度が最大となる波長が365±5nmもしくは385±10nmである光を少なくとも含むことを特徴とする[1]または[2]に記載の硬化膜付き基板の製造方法。 [3] The radiant light in the step of exposing the dry film includes at least light having a wavelength of 365±5 nm or 385±10 nm with maximum illuminance. A method for producing a substrate with a cured film.
 [4]前記現像後の塗膜を加熱する前に後露光する工程を有する[1]~[3]のいずれかに記載の硬化膜付き基板の製造方法。 [4] The method for producing a cured film-coated substrate according to any one of [1] to [3], comprising a step of post-exposure before heating the developed coating film.
 [5]前記現像後の塗膜を後露光する工程において、現像後の塗膜に後露光する放射光の波長300nm~450nmの領域における分光放射照度の合算値(C)と、該現像後の塗膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(D)について、乾燥膜厚1μmあたりの減衰比率(D)/(C)が、以下関係式(II)を満たすことを特徴とする、[4]に記載の硬化膜付き基板の製造方法。 [5] In the step of post-exposing the developed coating film, the total value (C) of the spectral irradiance in the wavelength region of 300 nm to 450 nm of the radiation light post-exposed to the developed coating film, and the post-development For the total value (D) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light that has passed through the coating film, the attenuation ratio (D) / (C) per 1 μm of the dry film thickness is given by the following relational expression (II). The method for producing a cured film-coated substrate according to [4], wherein
 0.05≦(D)/(C)≦0.99・・・・・(II)
 [6]前記感光性樹脂組成物が(E)樹脂と(F)顔料と(G)ナフトキノンジアジド化合物を含有する[1]~[5]のいずれかに記載の硬化膜付き基板の製造方法。
0.05≦(D)/(C)≦0.99 (II)
[6] The method for producing a cured film-coated substrate according to any one of [1] to [5], wherein the photosensitive resin composition contains (E) a resin, (F) a pigment, and (G) a naphthoquinonediazide compound.
 [7]前記樹脂(E)がポリシロキサンである[6]に記載の硬化膜付き基板の製造方法。 [7] The method for producing a substrate with a cured film according to [6], wherein the resin (E) is polysiloxane.
 [8]前記(F)顔料がメジアン径0.1~0.6μmの(F-1)白色顔料である[6]または[7]に記載の硬化膜付き基板の製造方法。 [8] The method for producing a cured film-coated substrate according to [6] or [7], wherein the (F) pigment is (F-1) a white pigment having a median diameter of 0.1 to 0.6 μm.
 [9]表面に凹凸構造を有する基板において、基板上の凸構造体としてLEDを有する、[1]~[8]のいずれかに記載の硬化膜付き基板の製造方法。 [9] The method for producing a cured film-coated substrate according to any one of [1] to [8], wherein the substrate having an uneven structure on its surface has an LED as the convex structure on the substrate.
 [10][1]~[9]のいずれかに記載の方法により製造された硬化膜付き基板。 [10] A substrate with a cured film produced by the method according to any one of [1] to [9].
 [11]前記硬化膜について、波長365nmにおける膜厚10μmあたりの吸光度が1.0~4.0、波長405nmにおける膜厚10μmあたりの吸光度が0.5~2.0、波長436nmにおける膜厚10μmあたりの吸光度が0.5~2.0、波長450nmにおける膜厚10μmあたりの吸光度が0.5~2.0である[10]記載の硬化膜付き基板。 [11] The cured film has an absorbance of 1.0 to 4.0 per 10 μm thickness at a wavelength of 365 nm, an absorbance of 0.5 to 2.0 per 10 μm thickness at a wavelength of 405 nm, and a thickness of 10 μm at a wavelength of 436 nm. The substrate with a cured film according to [10], which has an absorbance of 0.5 to 2.0 per 10 μm film thickness at a wavelength of 450 nm.
 [12]前記硬化膜について、波長550nmにおける膜厚10μmあたりの反射率が、20~80%である[10]または[11]に記載の硬化膜付き基板。 [12] The cured film-coated substrate according to [10] or [11], wherein the cured film has a reflectance of 20 to 80% per 10 µm film thickness at a wavelength of 550 nm.
 [13]前記硬化膜について、硬化膜の算術平均表面粗さが0.005μm~0.1μmである[10]~[12]のいずれかに記載の硬化膜付き基板。 [13] The cured film-coated substrate according to any one of [10] to [12], wherein the cured film has an arithmetic mean surface roughness of 0.005 μm to 0.1 μm.
 [14][10]~[13]のいずれかに記載の硬化膜付き基板を有する画像表示装置。 An image display device having the cured film-coated substrate according to any one of [14][10]-[13].
 [15]基板上にLEDと遮光性を有する硬化膜を有し、該LEDの側面に遮光性を有する硬化膜が隙間なく接触し一体化し、前記硬化膜の、波長365nmにおける膜厚10μmあたりの吸光度が1.0~4.0、波長405nmにおける膜厚10μmあたりの吸光度が0.5~2.0、波長436nmにおける膜厚10μmあたりの吸光度が0.5~2.0、波長450nmにおける膜厚10μmあたりの吸光度が0.5~2.0、波長550nmにおける膜厚10μmあたりの反射率が20~80%であることを特徴とする硬化膜付き基板。 [15] An LED and a cured film having a light-shielding property are provided on a substrate, and the cured film having a light-shielding property is in contact with and integrated with the side surface of the LED, and the cured film has a thickness of 10 μm at a wavelength of 365 nm. A film with an absorbance of 1.0 to 4.0, an absorbance of 0.5 to 2.0 per 10 μm film thickness at a wavelength of 405 nm, an absorbance of 0.5 to 2.0 per 10 μm film thickness at a wavelength of 436 nm, and a film at a wavelength of 450 nm. A substrate with a cured film having an absorbance of 0.5 to 2.0 per 10 μm thickness and a reflectance of 20 to 80% per 10 μm thickness at a wavelength of 550 nm.
 課題を解決するための手段に記載した硬化膜付き基板の製造方法により、表面にマイクロLEDのような凸構造を有する凹凸基板に対して、凸構造体を隔てるパターン化された硬化膜を安価な手法で製造することが可能となる。
すなわち、平坦性に優れる材料を塗布し、塗膜表面を部分的に現像させることで、マイクロLEDを隔てる隔壁とすることが可能となる。
According to the method for manufacturing a cured film-coated substrate described in the means for solving the problems, a patterned cured film that separates the convex structures can be inexpensively formed on a concave-convex substrate having convex structures such as micro LEDs on the surface. It becomes possible to manufacture by the method.
That is, by applying a material with excellent flatness and partially developing the surface of the coating film, it is possible to form partitions separating the micro LEDs.
下地基板にパターンが形成された凹凸構造を有する基板の上面図A top view of a substrate having an uneven structure in which a pattern is formed on a base substrate 下地基板にパターンが形成された凹凸構造を有する基板の断面図Cross-sectional view of a substrate having an uneven structure in which a pattern is formed on a base substrate 凹凸構造を有する基板に感光性樹脂組成物の塗布膜を形成した状態の断面図Sectional view of a state in which a coating film of a photosensitive resin composition is formed on a substrate having an uneven structure. 凹凸構造を有する基板に感光性樹脂組成物の乾燥膜を形成した状態の断面図Sectional view of a state in which a dry film of a photosensitive resin composition is formed on a substrate having an uneven structure. 凹凸構造を有する基板に形成された感光性樹脂組成物の乾燥膜の表面を膜厚方向に部分的に現像させた状態の断面図FIG. 4 is a cross-sectional view of a state in which the surface of a dry film of a photosensitive resin composition formed on a substrate having an uneven structure is partially developed in the film thickness direction. 凹凸構造を有する基板に感光性樹脂組成物の硬化膜を形成した状態の断面図FIG. 2 is a cross-sectional view showing a state in which a cured film of a photosensitive resin composition is formed on a substrate having an uneven structure;
 以下、本発明に係る硬化膜付き基板の製造方法の好適な実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。 Preferred embodiments of the method for producing a cured film-coated substrate according to the present invention will be specifically described below, but the present invention is not limited to the following embodiments, and various can be implemented by changing to
 本発明の硬化膜付き基板の製造方法は、表面に凹凸構造を有する基板に対して感光性樹脂組成物の塗布膜を設ける工程、該塗布膜を乾燥させて乾燥膜とする工程、該乾燥膜を露光する工程、および該露光後の乾燥膜表面を膜厚方向に部分的に現像させる工程、および現像後の塗膜を加熱して硬化膜にする工程、をこの順に有する硬化膜付き基板の製造方法であって、乾燥膜を露光する工程における放射光の波長300nm~450nmの領域における分光放射照度の合算値(A)と、乾燥膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(B)について、乾燥膜厚1μmあたりの減衰比率(B)/(A)が、以下関係式(I)を満たすことを特徴とする。
0.001≦(B)/(A)≦0.2・・・・・(I)
 表面に凹凸構造を有する基板は、硬化膜付き基板における支持体としての機能を有し、その基板に対して感光性樹脂組成物の塗布膜を設けることで、凹凸構造を平坦化した塗布膜を形成することが可能となる。続いて、該塗布膜を乾燥させることで、平坦性と膜厚均一性をより高めた乾燥膜を得ることができる。その後、乾燥膜を露光する工程において、放射光の波長300nm~450nmの領域における分光放射照度の合算値(A)と、乾燥膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(B)について、乾燥膜厚1μmあたりの減衰比率(B)/(A)が前記関係式(I)を満たす様に露光することで、乾燥膜表面において大部分の光が吸収され、その部分の感光剤を選択的に反応させることが可能となる。
The method for producing a cured film-coated substrate of the present invention includes the steps of providing a coating film of a photosensitive resin composition on a substrate having an uneven structure on its surface, drying the coating film to form a dry film, and and a step of partially developing the dry film surface after the exposure in the film thickness direction, and a step of heating the developed coating film to form a cured film, in this order. In the manufacturing method, the total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiation light in the step of exposing the dry film, and the spectrum in the wavelength range of 300 nm to 450 nm of the radiation light that has passed through the dry film The attenuation ratio (B)/(A) per 1 μm of dry film thickness for the total value (B) of irradiance satisfies the following relational expression (I).
0.001≦(B)/(A)≦0.2 (I)
A substrate having an uneven structure on its surface functions as a support for a substrate with a cured film. can be formed. Subsequently, by drying the coating film, it is possible to obtain a dry film with improved flatness and film thickness uniformity. After that, in the step of exposing the dry film, the total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light, and the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light that has passed through the dry film. Regarding the total value (B), most of the light is absorbed on the surface of the dry film by exposing so that the attenuation ratio (B)/(A) per 1 μm of the dry film thickness satisfies the relational expression (I), It becomes possible to selectively react the photosensitive agent in that portion.
 さらに、該露光後の乾燥膜を現像することで、感光剤が反応している乾燥膜表面を膜厚方向に部分的に現像させることが可能となる。また、最後に該現像後の塗膜を加熱して硬化膜にすることで、耐光性などの膜信頼性をさらに向上させることが可能となる。 Furthermore, by developing the dry film after the exposure, it becomes possible to partially develop the dry film surface on which the photosensitive agent is reacting in the film thickness direction. Finally, by heating the developed coating film to form a cured film, it is possible to further improve film reliability such as light resistance.
 <表面に凹凸構造を有する基板>
 ここでいう凹凸構造とは、例えば、図1および図2に示すような凹凸構造をいう。図1は表面に凹凸構造を有する基板を上面から見た図であり、図2は、図1のA-A’線における断面図である。パターン部1が凸部であり、パターンの開口部、すなわち下地基板2が露出している部分が凹部となる。
<Substrate having uneven structure on its surface>
The concave-convex structure here means, for example, a concave-convex structure as shown in FIGS. 1 and 2 . FIG. 1 is a top view of a substrate having an uneven structure on its surface, and FIG. 2 is a cross-sectional view taken along line AA' of FIG. The pattern portion 1 is a convex portion, and the opening portion of the pattern, that is, the portion where the underlying substrate 2 is exposed, is a concave portion.
 また、表面に凹凸構造を有する基板としては、例えば、シリコン基板、ガラス板、樹脂板、樹脂フイルムなどの下地基板上に、マイクロLED、配線、絶縁膜などの凸構造体が形成された基板が挙げられる。ガラス板の材質としては、無アルカリガラスが好ましい。樹脂板および樹脂フイルムの材質としては、ポリエステル、(メタ)アクリルポリマ、透明ポリイミド、ポリエーテルスルフォン等が好ましい。ガラス板および樹脂板の膜厚は、1mm以下が好ましく、0.8mm以下が好ましい。樹脂フイルムの膜厚は、100μm以下が好ましい。 Further, as a substrate having an uneven structure on its surface, for example, there is a substrate in which convex structures such as micro LEDs, wiring, and insulating films are formed on a base substrate such as a silicon substrate, a glass plate, a resin plate, or a resin film. mentioned. Non-alkali glass is preferable as the material of the glass plate. Polyester, (meth)acrylic polymer, transparent polyimide, polyethersulfone and the like are preferable as materials for the resin plate and the resin film. The film thickness of the glass plate and the resin plate is preferably 1 mm or less, more preferably 0.8 mm or less. The film thickness of the resin film is preferably 100 μm or less.
 <感光性樹脂組成物の塗布膜を設ける工程>
 表面に凹凸構造を有する基板に感光性樹脂組成物の塗布膜を形成する工程としては、例えば、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどの方法を用いたものが挙げられる。それらの中でも、膜平坦性を向上させる観点から、スピンコーティングやスリットコーティングが好ましい。図3に表面に凹凸構造を有する基板に感光性樹脂組成物の塗布膜を形成した状態の模式図を示す。
<Step of providing a coating film of a photosensitive resin composition>
Examples of the step of forming a coating film of a photosensitive resin composition on a substrate having an uneven structure on its surface include methods such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, and slit coating. The one using is mentioned. Among them, spin coating and slit coating are preferable from the viewpoint of improving film flatness. FIG. 3 shows a schematic diagram of a state in which a coating film of a photosensitive resin composition is formed on a substrate having an uneven structure on its surface.
 <塗布膜を乾燥させて乾燥膜を形成する工程>
 塗布膜を乾燥させて乾燥膜を形成する工程としては、例えば、ホットプレート、真空ホットプレート、オーブンなどの加熱装置を用いた手法が挙げられる。乾燥温度は50~110℃が好ましく、乾燥時間は30秒間~30分間が好ましい。図4に凹凸構造を有する基板に感光性樹脂組成物の乾燥膜を形成した状態の模式図を示す。
<Step of drying the coating film to form a dry film>
Examples of the step of drying the coating film to form a dry film include a method using a heating device such as a hot plate, a vacuum hot plate, or an oven. The drying temperature is preferably 50 to 110° C., and the drying time is preferably 30 seconds to 30 minutes. FIG. 4 shows a schematic diagram of a state in which a dry film of a photosensitive resin composition is formed on a substrate having an uneven structure.
 <乾燥膜を露光する工程>
 乾燥膜を露光する工程においては、放射光の波長300nm~450nmの領域における分光放射照度の合算値(A)と、乾燥膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(B)について、乾燥膜厚1μmあたりの減衰比率(B)/(A)が前記関係式(I)を満たす様に露光する。少ない露光量で乾燥膜表面の感光剤を分解し、量産性を向上させる観点から、乾燥膜厚1μmあたりの減衰比率(B)/(A)は0.001以上が好ましく、0.005以上がより好ましい。一方、乾燥膜の表面において大部分の光を吸収させ感光材を選択的に分解させる観点から、乾燥膜厚1μmあたりの減衰比率(B)/(A)は、0.2以下が好ましく、0.15以下がさらに好ましい。
<Step of exposing dry film>
In the step of exposing the dry film, the total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light and the sum of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light that has passed through the dry film. As for the value (B), the exposure is performed so that the attenuation ratio (B)/(A) per 1 μm of the dry film thickness satisfies the relational expression (I). From the viewpoint of decomposing the photosensitive agent on the dry film surface with a small amount of exposure and improving mass productivity, the attenuation ratio (B)/(A) per 1 μm of the dry film thickness is preferably 0.001 or more, and 0.005 or more. more preferred. On the other hand, from the viewpoint of selectively decomposing the photosensitive material by absorbing most of the light on the surface of the dry film, the attenuation ratio (B)/(A) per 1 μm of the dry film thickness is preferably 0.2 or less, and 0 0.15 or less is more preferred.
 本発明における放射光の分光放射照度は、分光放射照度計を用いて測定する。乾燥膜に露光する工程における放射光の波長300nm~450nmの領域における分光放射照度の合算値(A)については、分光放射照度計により測定した各波長の分光放射照度を合算することで算出することができる。また、乾燥膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(B)については、乾燥膜を通過した放射光を上記と同様の方法で測定し、各波長の分光放射照度を合算し、算出することができる。 The spectral irradiance of radiated light in the present invention is measured using a spectral irradiance meter. The total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light in the step of exposing the dry film is calculated by summing the spectral irradiance of each wavelength measured by the spectral irradiance meter. can be done. In addition, for the total value (B) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light that has passed through the dry film, the radiant light that has passed through the dry film is measured in the same manner as above, and the spectrum of each wavelength is The irradiance can be summed and calculated.
 本発明における膜厚とは、基板に対して垂直方向(高さ方向)の膜の厚みを指す。図4に示す乾燥膜付き基板の模式図の場合、乾燥膜の膜厚は符号Hで表される。なお、後述するとおり乾燥膜の膜厚は1~20μmが好ましい。 The film thickness in the present invention refers to the thickness of the film in the vertical direction (height direction) with respect to the substrate. In the case of the schematic diagram of the substrate with the dry film shown in FIG. As will be described later, the thickness of the dry film is preferably 1 to 20 μm.
 露光機として、例えば、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)、LED照射装置などを使用する手法が挙げられる。露光光源としては、高圧水銀灯、レーザー、紫外線LED、紫色LEDなどが挙げられるが、乾燥膜の状態における膜厚1μmあたりの分光放射強度の減衰比率が前記関係式(I)を満たす波長の光を放出しているものを利用すると良い。また、露光光源と露光対象物の間に、特定波長以をカットする波長選択フィルター等を設置し、放射光の波長を制御することが好ましく、波長400nm以上の光を実質的に含まないことがより好ましい。ここでいう実質的に含まないとは、400nm以下の放射光の分光放射照度の合算値に比べて、400nm以上の放射光の分光放射照度の合算値が無視できるほど小さく、存在しないものとして扱うことができる場合を意味する。より良い条件としては、放射光の波長400nm~450nmにおける分光放射照度の合算値が、波長300nm~400nmにおける分光放射照度の合算値の、2.5%以下であることが挙げられる。さらに、好ましい条件としては、放射光の波長400nm~450nmにおける分光放射照度の合算値が、波長300nm~400nmにおける分光放射照度の合算値の、1.0%以下で有ることが挙げられる。 As an exposure machine, for example, a stepper, a mirror projection mask aligner (MPA), a parallel light mask aligner (PLA), an LED irradiation device, etc. can be used. Examples of the exposure light source include a high-pressure mercury lamp, a laser, an ultraviolet LED, and a violet LED. It is good to use what is released. In addition, it is preferable to install a wavelength selection filter or the like that cuts off a specific wavelength or more between the exposure light source and the exposure object to control the wavelength of the radiated light, and substantially does not include light with a wavelength of 400 nm or more. more preferred. The term “substantially not included” here means that the total value of the spectral irradiance of synchrotron radiation of 400 nm or more is so small that it can be ignored compared to the total value of the spectral irradiance of synchrotron radiation of 400 nm or less, and is treated as non-existent. Means if you can. A better condition is that the sum of spectral irradiances at wavelengths of 400 nm to 450 nm of radiated light is 2.5% or less of the sum of spectral irradiances at wavelengths of 300 nm to 400 nm. Furthermore, as a preferable condition, the total value of spectral irradiance at wavelengths of 400 nm to 450 nm of radiated light is 1.0% or less of the total value of spectral irradiances at wavelengths of 300 nm to 400 nm.
 <該露光後の乾燥膜表面を膜厚方向に部分的に現像させる工程>
 該露光後の乾燥膜を現像し乾燥膜の表面を膜厚方向に部分的に現像させる工程としては、例えば、シャワー、ディッピング、パドルなどの現像手法が挙げられる。現像液に浸漬する時間は5秒間~5分間が好ましい。現像液としては、例えば、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミン等のアミン類、テトラメチルアンモニウムヒドロキサイド、コリン等の4級アンモニウム塩を含む水溶液等のアルカリ現像液が挙げられる。現像後、水でリンスすることが好ましい。図5に凹凸構造を有する基板に形成された感光性樹脂組成物の乾燥膜の表面を膜厚方向に部分的に現像させた状態の断面図を示す。
<Step of partially developing the dry film surface after the exposure in the film thickness direction>
Examples of the step of developing the dry film after the exposure and partially developing the surface of the dry film in the film thickness direction include developing techniques such as showering, dipping, and puddle. The immersion time in the developer is preferably 5 seconds to 5 minutes. Examples of the developer include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates; amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine; Alkaline developers such as aqueous solutions containing quaternary ammonium salts such as ammonium hydroxide and choline are included. Rinsing with water is preferred after development. FIG. 5 shows a cross-sectional view of a state in which the surface of a dry film of a photosensitive resin composition formed on a substrate having an uneven structure is partially developed in the film thickness direction.
 <該現像後の塗膜を加熱する前に後露光する工程>
 該現像後の塗膜を加熱する前に後露光する工程においては、放射光の波長300nm~450nmの領域における分光放射照度の合算値(C)と、該現像後の塗膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(D)について、該現像後の塗膜1μmあたりの減衰比率(D)/(C)が関係式(II)を満たす様に後露光することが好ましい。
<Step of post-exposure before heating the developed coating film>
In the step of post-exposure before heating the developed coating film, the total value (C) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of radiant light, and the radiant light that has passed through the developed coating film For the total value (D) of the spectral irradiance in the wavelength range of 300 nm to 450 nm, post-exposure so that the attenuation ratio (D) / (C) per 1 μm of the coated film after the development satisfies the relational expression (II) is preferred.
 0.05≦(D)/(C)≦0.99・・・・・(II)
 該現像後の塗膜を加熱する前に後露光する工程においては、後露光する放射光の波長300nm~450nmの領域における分光放射照度の合算値(C)と、該現像後の塗膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(D)について、該現像後の塗膜の膜厚1μmあたりの減衰比率(D)/(C)が前記関係式(II)を満たす様に後露光することが好ましい。少ない露光量で該現像後の塗膜の感光剤を分解し、量産性を向上させる観点から、該現像後の塗膜の膜厚1μmあたりの減衰比率(D)/(C)は0.05以上が好ましく、0.10以上がより好ましく、0.15以上がさらに好ましい。一方、塗膜をLEDの隔壁として機能させる場合、LEDの光を遮光する観点から、塗膜の膜厚1μmあたりの減衰比率(D)/(C)は0.99以下であることが好ましく、0.70以下であることがさらに好ましい。
0.05≦(D)/(C)≦0.99 (II)
In the step of post-exposure before heating the developed coating film, the total value (C) of the spectral irradiance in the region of the wavelength of 300 nm to 450 nm of the radiation light to be post-exposed, and the developed coating film For the total value (D) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiated light, the attenuation ratio (D)/(C) per 1 μm of the coating film thickness after the development is given by the relational expression (II) It is preferable to perform post-exposure so as to satisfy From the viewpoint of decomposing the photosensitive agent in the coating film after development with a small amount of exposure and improving mass productivity, the attenuation ratio (D)/(C) per 1 μm of the coating film thickness after development is 0.05. 0.10 or more is more preferable, and 0.15 or more is even more preferable. On the other hand, when the coating film functions as a partition wall of the LED, the attenuation ratio (D) / (C) per 1 μm of the coating film thickness is preferably 0.99 or less from the viewpoint of blocking the light of the LED. It is more preferably 0.70 or less.
 本発明における分光放射照度は、分光放射照度計を用いて測定する。該現像後の塗膜を後露光する工程において、放射光の波長300nm~450nmの領域における分光放射照度の合算値(C)については、各波長の分光放射照度を合算することで算出することができる。また、該現像後の塗膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(D)については、乾燥膜を通過した放射光について上記と同様の方法で各波長の分光放射照度を測定し算出することができる。 The spectral irradiance in the present invention is measured using a spectral irradiance meter. In the step of post-exposure of the developed coating film, the total value (C) of the spectral irradiance in the wavelength region of radiant light of 300 nm to 450 nm can be calculated by summing the spectral irradiance of each wavelength. can. In addition, for the total value (D) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light that passed through the developed coating film, the radiant light that passed through the dry film was calculated for each wavelength in the same manner as described above. Spectral irradiance can be measured and calculated.
 本発明における膜厚とは、基板に対して垂直方向(高さ方向)の長さを指す。図5に示す該現像後の塗膜の断面図の場合、該現像後の塗膜の膜厚は符号Hで表される。なお、後述するとおり該現像後の塗膜の膜厚は1~20μmが好ましい。 The film thickness in the present invention refers to the length in the vertical direction (height direction) with respect to the substrate. In the case of the cross-sectional view of the coating film after the development shown in FIG. As will be described later, the thickness of the coating film after the development is preferably 1 to 20 μm.
 露光機として、例えば、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)、LED照射装置などを使用する手法が挙げられる。露光光源としては、高圧水銀灯、レーザー、紫色LED、青色LEDなどが挙げられるが、該現像後の塗膜の状態における膜厚1μmあたりの分光放射照度の減衰比率が、前記関係式(II)を満たす波長の光を放出するものを利用することが好ましい。また、露光光源と露光対象物の間に、特定波長以外をカットする波長選択フィルター等を設置し、放射光の波長を制御することも好ましい。 As an exposure machine, for example, a stepper, a mirror projection mask aligner (MPA), a parallel light mask aligner (PLA), an LED irradiation device, etc. can be used. Examples of the exposure light source include high-pressure mercury lamps, lasers, violet LEDs, and blue LEDs. It is preferable to use one that emits light of a wavelength that satisfies the requirements. It is also preferable to install a wavelength selection filter or the like that cuts off wavelengths other than a specific wavelength between the exposure light source and the exposure object to control the wavelength of the radiated light.
 <該現像後の塗膜を加熱して硬化膜にする工程>
 該現像後の塗膜を加熱して硬化膜にする工程としては、例えば、ホットプレート、オーブンなどの手法が挙げられる。熱硬化温度は60~230℃が好ましく、熱硬化時間は15分間~2時間程度が好ましい。後露光後の塗膜を加熱して硬化膜とすることで、樹脂の架橋反応が進行し、硬化膜の信頼性が向上する。また、加熱時に塗膜が流動することで、硬化膜としての平滑性が向上するため好ましい。図6に凹凸構造を有する基板に感光性樹脂組成物の硬化膜を形成した状態の断面図を示す。
<Step of heating the developed coating film to form a cured film>
Examples of the step of heating the developed coating film to form a cured film include methods such as a hot plate and an oven. The heat curing temperature is preferably 60 to 230° C., and the heat curing time is preferably about 15 minutes to 2 hours. By heating the coating film after the post-exposure to form a cured film, the cross-linking reaction of the resin proceeds and the reliability of the cured film is improved. In addition, it is preferable because the smoothness of the cured film is improved by allowing the coating film to flow when heated. FIG. 6 shows a cross-sectional view of a state in which a cured film of a photosensitive resin composition is formed on a substrate having an uneven structure.
 <感光性樹脂組成物>
 本発明の感光性樹脂組成物は、(E)樹脂と(F)顔料と(G)ナフトキノンジアジド化合物を含有することが好ましい。(E)樹脂は、塗膜のクラック耐性および耐光性を向上させる機能を有する。(F)顔料は、塗膜の遮光性を向上させる機能を有し、(G)ナフトキノンジアジド化合物を含むことにより、露光部が現像液で除去されるポジ型の感光性を示す。
<Photosensitive resin composition>
The photosensitive resin composition of the present invention preferably contains (E) a resin, (F) a pigment and (G) a naphthoquinonediazide compound. (E) The resin has the function of improving the crack resistance and light resistance of the coating film. The pigment (F) has a function of improving the light-shielding property of the coating film, and by including the naphthoquinone diazide compound (G), exhibits positive photosensitivity in which the exposed area is removed with a developer.
 (E)樹脂
 (E)樹脂としては、例えば、ポリシロキサン、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、(メタ)アクリルポリマなどが挙げられる。これらを2種以上含有してもよい。これらの中でも、耐光性、膜平坦性に優れることから、ポリシロキサンが好ましい。
(E) Resin Examples of resin (E) include polysiloxane, polyimide, polyimide precursor, polybenzoxazole, polybenzoxazole precursor, and (meth)acrylic polymer. You may contain 2 or more types of these. Among these, polysiloxane is preferable because it is excellent in light resistance and film flatness.
 本発明におけるポリシロキサンは、オルガノシランの加水分解・脱水縮合物であり、本発明においては、下記一般式(1)で表される繰り返し単位を合計20~60モル%含有することが好ましい。ポリシロキサン中に、一般式(1)で表される繰り返し単位を、合計20~60モル%含有することにより、ポリシロキサンが、その他の成分と、容易に相溶することができるため、塗膜の平坦性を向上させることが可能である。 The polysiloxane in the present invention is a hydrolysis/dehydration condensate of organosilane, and in the present invention, preferably contains 20 to 60 mol % of repeating units represented by the following general formula (1). By containing a total of 20 to 60 mol% of the repeating unit represented by the general formula (1) in the polysiloxane, the polysiloxane can be easily compatible with other components, so that the coating film It is possible to improve the flatness of
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(Rは、炭素数6~18のアリール基または水素の全部または一部が置換された炭素数6~18のアリール基を示す。)
 一般式(1)で表される繰り返し単位を有するオルガノシラン単位の含有比率は、29Si-NMR測定により求めることができる。すなわち、オルガノシランに由来するSi全体の積分値に対する、一般式(1)で表される繰り返し単位を有するオルガノシラン単位に由来するSiの積分値の割合を算出することにより求めることができる。
(R 1 represents an aryl group having 6 to 18 carbon atoms or an aryl group having 6 to 18 carbon atoms in which all or part of hydrogen is substituted.)
The content ratio of organosilane units having repeating units represented by general formula (1) can be determined by 29 Si-NMR measurement. That is, it can be obtained by calculating the ratio of the integrated value of Si derived from the organosilane unit having the repeating unit represented by the general formula (1) to the integrated value of all Si derived from the organosilane.
 上記一般式(1)で表される各繰り返し単位は、それぞれ下記一般式(2)で表されるアコキシシラン化合物に由来する。すなわち、前記一般式(1)で表される繰り返し単位を含むポリシロキサンは、下記一般式(2)で表されるアルコキシシラン化合物で表されるアルコキシシラン化合物を含む複数のアルコキシシラン化合物を加水分解および重縮合することによって得ることができる。さらに他のアルコキシシラン化合物を用いてもよい。 Each repeating unit represented by the above general formula (1) is derived from an axoxysilane compound represented by the following general formula (2). That is, the polysiloxane containing the repeating unit represented by the general formula (1) hydrolyzes a plurality of alkoxysilane compounds including the alkoxysilane compound represented by the alkoxysilane compound represented by the following general formula (2). and can be obtained by polycondensation. Other alkoxysilane compounds may also be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(2)中、Rは、それぞれ一般式(1)におけるRと同じ基を表す。Rは、同じでも異なってもよく、炭素数1~20の1価の有機基を表し、炭素数1~6のアルキル基が好ましい。 In general formula (2) above, each R 1 represents the same group as R 1 in general formula (1). R 2 , which may be the same or different, represents a monovalent organic group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
 一般式(2)で表されるオルガノシラン化合物としては、例えば、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、ナフチルトリメトキシシラン、ナフチルトリエトキシシラン、ナフチルトリプロポキシシラン、などが挙げられる。これらを2種以上用いてもよい。 Examples of organosilane compounds represented by general formula (2) include phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, naphthyltrimethoxysilane, naphthyltriethoxysilane, naphthyltripropoxysilane, and the like. be done. You may use 2 or more types of these.
 一般式(2)以外のオルガノシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-(N,N-グリシジル)アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、β-シアノエチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、オクタデシルメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-トリフェノキシシリルプロピルコハク酸無水物、3-トリメトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリメトキシシシリルプロピルフタル酸無水物などが挙げられる。これらを2種以上用いてもよい。 Examples of organosilane compounds other than the general formula (2) include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane. , hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, 3 -chloropropyltrimethoxysilane, 3-(N,N-glycidyl)aminopropyltrimethoxysilane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, β-cyanoethyltriethoxysilane, (3,4 -epoxycyclohexyl)methyltrimethoxysilane, (3,4-epoxycyclohexyl)methyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltripropoxysilane, 2-(3,4-epoxycyclohexyl)ethyltributoxysilane Silane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriphenoxysilane, 3-( 3,4-epoxycyclohexyl)propyltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltriethoxysilane, 4-(3,4-epoxycyclohexyl)butyltrimethoxysilane, 4-(3,4-epoxy cyclohexyl)butyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, γ-glycidoxypropylmethyldimethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane, N-(2-aminoethyl )-3-aminopropylmethyldimethoxysilane, glycidoxymethyldimethoxysilane, glycidoxymethylmethyldiethoxysilane, α-glycidoxyethylmethyldimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropylmethyldimethoxysilane, ethoxysilane, cyclohexylmethyldimethoxysilane, octadecylmethyldimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilylpropylsuccinic anhydride, 3-triphenoxysilylpropylsuccinic anhydride, 3-tri methoxysilylpropylcyclohexyldicarboxylic anhydride, 3-trimethoxysilylpropylphthalic anhydride, and the like. You may use 2 or more types of these.
 ポリシロキサンの重量平均分子量(Mw)は、塗布特性の観点から、1,000以上が好ましく、2,000以上がより好ましい。一方、現像性の観点から、ポリシロキサンのMwは、50,000以下が好ましく、20,000以下がより好ましい。ここで、本発明におけるポリシロキサンのMwとは、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算値を言う。 From the viewpoint of coating properties, the weight average molecular weight (Mw) of polysiloxane is preferably 1,000 or more, more preferably 2,000 or more. On the other hand, from the viewpoint of developability, Mw of polysiloxane is preferably 50,000 or less, more preferably 20,000 or less. Here, the Mw of polysiloxane in the present invention refers to a polystyrene conversion value measured by gel permeation chromatography (GPC).
 本発明の感光性樹脂組成物において、ポリシロキサンの含有量は、所望の膜厚や用途により任意に設定することができるが、感光性樹脂組成物の固形分中、10~80重量%が好ましい。 In the photosensitive resin composition of the present invention, the content of polysiloxane can be arbitrarily set depending on the desired film thickness and application, but the solid content of the photosensitive resin composition is preferably 10 to 80% by weight. .
 ポリシロキサンは、前述のオルガノシラン化合物を加水分解した後、該加水分解物を溶媒の存在下または無溶媒で脱水縮合反応させることによって得ることができる。
加水分解における各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して、目的とする用途に適した物性に合わせて設定することができる。各種条件としては、例えば、酸濃度、反応温度、反応時間などが挙げられる。加水分解反応には、塩酸、酢酸、蟻酸、硝酸、蓚酸、塩酸、硫酸、リン酸、ポリリン酸、多価カルボン酸やその無水物、イオン交換樹脂などの酸触媒を用いることができる。これらの中でも、蟻酸、酢酸および/またはリン酸を含む酸性水溶液が好ましい。
Polysiloxane can be obtained by hydrolyzing the aforementioned organosilane compound and then subjecting the hydrolyzate to a dehydration condensation reaction in the presence or absence of a solvent.
Various conditions for hydrolysis can be set according to physical properties suitable for the intended use, taking into consideration the reaction scale, the size and shape of the reaction vessel, and the like. Various conditions include, for example, acid concentration, reaction temperature, and reaction time. Acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acids and their anhydrides, and ion exchange resins can be used for the hydrolysis reaction. Among these, acidic aqueous solutions containing formic acid, acetic acid and/or phosphoric acid are preferred.
 加水分解反応に酸触媒を用いる場合、酸触媒の添加量は、加水分解をより速やかに進行させる観点から、加水分解反応に使用される全アルコキシシラン化合物100重量部に対して、0.05重量部以上が好ましく、0.1重量部以上がより好ましい。一方、加水分解反応の進行を適度に調整する観点から、酸触媒の添加量は、全アルコキシシラン化合物100重量部に対して、20重量部以下が好ましく、10重量部以下がより好ましい。ここで、全アルコキシシラン化合物量とは、アルコキシシラン化合物、その加水分解物およびその縮合物の全てを含む量のことを言い、以下同じとする。 When an acid catalyst is used for the hydrolysis reaction, the amount of the acid catalyst added is 0.05 parts by weight with respect to 100 parts by weight of all the alkoxysilane compounds used in the hydrolysis reaction, from the viewpoint of making the hydrolysis proceed more rapidly. part or more is preferable, and 0.1 part by weight or more is more preferable. On the other hand, from the viewpoint of appropriately adjusting the progress of the hydrolysis reaction, the amount of the acid catalyst to be added is preferably 20 parts by weight or less, more preferably 10 parts by weight or less with respect to 100 parts by weight of all the alkoxysilane compounds. Here, the total amount of alkoxysilane compound means the amount including all of the alkoxysilane compound, its hydrolyzate and its condensate, and the same shall apply hereinafter.
 加水分解反応は、溶媒中で行うことができる。感光性樹脂組成物の安定性、濡れ性、揮発性などを考慮して、溶媒を適宜選択することができる。溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブタノール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチルエーテルなどのエーテル類;メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族または脂肪族炭化水素;γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなどが挙げられる。これらを2種以上用いてもよい。 The hydrolysis reaction can be carried out in a solvent. The solvent can be appropriately selected in consideration of the stability, wettability, volatility, etc. of the photosensitive resin composition. Examples of solvents include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy -Alcohols such as 1-butanol and diacetone alcohol; Glycols such as ethylene glycol and propylene glycol; Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether Ethers such as , propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethyl ether; methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone , diisobutyl ketone, cyclopentanone, 2-heptanone and other ketones; dimethylformamide, dimethylacetamide and other amides; ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate , 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate and other acetates; toluene, xylene, hexane, cyclohexane and other aromatic or aliphatic hydrocarbons; γ-butyrolactone , N-methyl-2-pyrrolidone, dimethylsulfoxide and the like. You may use 2 or more types of these.
 これらの中でも、硬化膜の耐光性等の観点から、ジアセトンアルコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、γ-ブチロラクトン等が好ましく用いられる。 Among them, diacetone alcohol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono- t-Butyl ether, γ-butyrolactone and the like are preferably used.
 加水分解反応によって溶媒が生成する場合には、無溶媒で加水分解を行うことも可能である。加水分解反応終了後に、さらに溶媒を添加することにより、感光性樹脂組成物として適切な濃度に調整することも好ましい。また、加水分解後に加熱および/または減圧下により生成アルコール等の全量あるいは一部を留出、除去し、その後好適な溶媒を添加することも可能である。 When a solvent is generated by the hydrolysis reaction, it is possible to perform the hydrolysis without a solvent. After the hydrolysis reaction is completed, it is also preferable to adjust the concentration to be suitable for the photosensitive resin composition by further adding a solvent. It is also possible to distill off and remove all or part of the alcohol produced by heating and/or under reduced pressure after hydrolysis, and then add a suitable solvent.
 加水分解反応に溶媒を使用する場合、溶媒の添加量は、ゲルの生成を抑制する観点から、全アルコキシシラン化合物100重量部に対して、50重量部以上が好ましく、80重量部以上がより好ましい。一方、溶媒の添加量は、加水分解をより速やかに進行させる観点から、全アルコキシシラン化合物100重量部に対して、500重量部以下が好ましく、200重量部以下がより好ましい。
また、加水分解反応に用いる水としては、イオン交換水が好ましい。水の量は任意に設定することができるが、全アルコキシシラン化合物1モルに対して、1.0~4.0モルが好ましい。
When a solvent is used for the hydrolysis reaction, the amount of the solvent to be added is preferably 50 parts by weight or more, more preferably 80 parts by weight or more, based on 100 parts by weight of all the alkoxysilane compounds, from the viewpoint of suppressing gel formation. . On the other hand, the amount of the solvent to be added is preferably 500 parts by weight or less, more preferably 200 parts by weight or less with respect to 100 parts by weight of all the alkoxysilane compounds, from the viewpoint of accelerating the hydrolysis.
Moreover, ion-exchanged water is preferable as the water used for the hydrolysis reaction. Although the amount of water can be set arbitrarily, it is preferably 1.0 to 4.0 mol with respect to 1 mol of all alkoxysilane compounds.
 脱水縮合反応の方法としては、例えば、オルガノシラン化合物の加水分解反応により得られたシラノール化合物溶液をそのまま加熱する方法などが挙げられる。加熱温度は、50℃以上、溶媒の沸点以下が好ましく、加熱時間は、1~100時間が好ましい。また、ポリシロキサンの重合度を高めるために、再加熱または塩基触媒の添加を行ってもよい。また、目的に応じて、加水分解後に、生成アルコールなどの適量を加熱および/または減圧下にて留出、除去し、その後好適な溶媒を添加してもよい。 As a method for the dehydration condensation reaction, for example, there is a method of heating the silanol compound solution obtained by the hydrolysis reaction of the organosilane compound as it is. The heating temperature is preferably 50° C. or higher and the boiling point of the solvent or lower, and the heating time is preferably 1 to 100 hours. Further, reheating or addition of a base catalyst may be performed in order to increase the degree of polymerization of polysiloxane. Also, depending on the purpose, after hydrolysis, an appropriate amount of the alcohol produced may be distilled off under heating and/or under reduced pressure, and then a suitable solvent may be added.
 感光性樹脂組成物の保存安定性の観点から、加水分解、脱水縮合後のポリシロキサン溶液には前記触媒が含まれないことが好ましく、必要に応じて触媒の除去を行うことができる。触媒除去方法としては、操作の簡便さと除去性の観点から、水洗浄、イオン交換樹脂による処理などが好ましい。水洗浄とは、ポリシロキサン溶液を適当な疎水性溶媒で希釈した後、水で数回洗浄して得られた有機層をエバポレーター等で濃縮する方法である。イオン交換樹脂による処理とは、ポリシロキサン溶液を適当なイオン交換樹脂に接触させる方法である。 From the viewpoint of storage stability of the photosensitive resin composition, it is preferable that the polysiloxane solution after hydrolysis and dehydration condensation does not contain the catalyst, and the catalyst can be removed as necessary. As the method for removing the catalyst, washing with water, treatment with an ion-exchange resin, and the like are preferable from the viewpoint of ease of operation and removability. Washing with water is a method of diluting a polysiloxane solution with a suitable hydrophobic solvent, washing with water several times, and concentrating the obtained organic layer with an evaporator or the like. Ion exchange resin treatment is a method of contacting a polysiloxane solution with a suitable ion exchange resin.
 (F)顔料
 (F)顔料としては、例えば、(F-1)白色顔料、(F-2)黒色顔料が挙げられ、それらを少なくとも1種類以上含有することが好ましい。(F-1)白色顔料、(F-2)黒色顔料を含有することにより、硬化膜の遮光性を向上させることができる。また、(F-1)白色顔料を含有することにより、硬化膜の反射性を向上させることができるため、より好ましい。
(F) Pigment Examples of (F) pigment include (F-1) white pigment and (F-2) black pigment, and at least one of them is preferably contained. By containing (F-1) a white pigment and (F-2) a black pigment, the light shielding property of the cured film can be improved. In addition, (F-1) containing a white pigment is more preferable because the reflectivity of the cured film can be improved.
 (F-1)白色顔料としては例えば、二酸化チタン、酸化ジルコニウム、酸化アルミニウム、滑石、雲母(マイカ)、ホワイトカーボン、酸化マグネシウム、酸化亜鉛、炭酸バリウムおよびこれらの複合化合物から選ばれた化合物が挙げられる。これらを2種以上含有してもよい。これらの中でも、反射性が高く工業的利用が容易な二酸化チタンを含有することが好ましい。二酸化チタンの結晶構造は、アナターゼ型、ルチル型、ブルッカイト型に分類される。これらの中でも、光触媒活性が低いことから、ルチル型酸化チタンが好ましい。 Examples of (F-1) white pigments include compounds selected from titanium dioxide, zirconium oxide, aluminum oxide, talc, mica, white carbon, magnesium oxide, zinc oxide, barium carbonate, and composite compounds thereof. be done. You may contain 2 or more types of these. Among these, it is preferable to contain titanium dioxide because of its high reflectivity and easy industrial use. The crystal structure of titanium dioxide is classified into an anatase type, rutile type, and brookite type. Among these, rutile-type titanium oxide is preferable because of its low photocatalytic activity.
 (F-1)白色顔料には、表面処理が施されていてもよい。Al、Siおよび/またはZrによる表面処理が好ましく、感光性樹脂組成物中における(F-1)白色顔料の分散性を向上させ、硬化膜の耐光性をより向上させることができる。
(F-1)白色顔料のメジアン径は、反射性より向上させる観点から、0.2~5.0μmが好ましく、0.2~0.6μmがさらに好ましい。ここで、メジアン径とは、レーザー回折法により測定された粒度分布から算出される(F)顔料の平均粒子径のことを言う。
(F-1) The white pigment may be surface-treated. Surface treatment with Al, Si and/or Zr is preferable, and can improve the dispersibility of the white pigment (F-1) in the photosensitive resin composition and further improve the light resistance of the cured film.
(F-1) The median diameter of the white pigment is preferably 0.2 to 5.0 μm, more preferably 0.2 to 0.6 μm, from the viewpoint of improving reflectivity. Here, the median diameter refers to the average particle diameter of the pigment (F) calculated from the particle size distribution measured by laser diffraction.
 (F-1)白色顔料として用いられる、二酸化チタンとしては、例えば、R960;デュポン(株)製(SiO/Al表面処理、メジアン径0.21μm)、CR-97;石原産業(株)製(Al/ZrO表面処理、メジアン径0.25μm)、JR-405;テイカ(株)製(Al表面処理、メジアン径0.21μm)、JR-600A;テイカ(株)(Al表面処理、メジアン径0.25μm)、JR-603;テイカ(株)(Al/ZrO表面処理、メジアン径0.28μm)等が挙げられ、酸化ジルコニアとしては、3YI-R;東レ(株)製(Al表面処理、メジアン系0.50μm)が挙げられる。 (F-1) Titanium dioxide used as a white pigment includes, for example, R960; DuPont Co., Ltd. (SiO 2 /Al 2 O 3 surface treatment, median diameter 0.21 μm), CR-97; Ishihara Sangyo ( JR-405 (Al 2 O 3 /ZrO 2 surface treatment, median diameter 0.25 μm) manufactured by Tayka Corporation; JR-600A manufactured by Tayka Corporation (Al 2 O 3 surface treatment, median diameter 0.21 μm); Co., Ltd. (Al 2 O 3 surface treatment, median diameter 0.25 μm), JR - 603 ; Examples thereof include 3YI-R manufactured by Toray Industries, Inc. (Al 2 O 3 surface treatment, median system 0.50 μm).
 本発明の感光性樹脂組成物における(F-1)白色顔料の含有量は、反射率をより向上させる観点から、固形分中、10重量%以上が好ましく、20重量%以上がより好ましい。一方、(F-1)白色顔料の含有量は、塗膜の平坦性を向上させる観点から、固形分中、80重量%以下が好ましく、60重量%以下がさらに好ましい。 The content of (F-1) white pigment in the photosensitive resin composition of the present invention is preferably 10% by weight or more, more preferably 20% by weight or more, based on the solid content, from the viewpoint of further improving the reflectance. On the other hand, the content of (F-1) white pigment is preferably 80% by weight or less, more preferably 60% by weight or less, based on the solid content, from the viewpoint of improving the flatness of the coating film.
 (F-2)黒色顔料としては、例えば、黒色有機顔料、混色有機顔料、黒色無機顔料等が挙げられる。黒色有機顔料としては、例えば、カーボンブラック、ペリレンブラック、アニリンブラック、ベンゾフラノン系顔料などが挙げられる。これらは、樹脂で被覆されていてもよい。混色有機顔料としては、例えば、赤、青、緑、紫、黄色、マゼンダおよび/またはシアン等の2種以上の顔料を混合して疑似黒色化したものが挙げられる。これらの中でも、適度に高いOD値とパターン加工性を両立する観点から、赤色顔料と青色顔料との混合顔料が好ましい。赤色顔料と青色顔料の重量比は、20/80~80/20が好ましく、30/70~70/30がより好ましい。代表的な顔料の具体例をカラーインデックス(CI)ナンバーで示すと、次のようなものが挙げられる。赤色顔料としては、例えば、ピグメントレッド(以下PRと略す)9、PR48、PR97、PR122、PR123、PR144、PR149、PR166、PR168、PR177、PR179、PR180、PR192、PR209、PR215、PR216、PR217、PR220、PR223、PR224、PR226、PR227、PR228、PR240、PR254などが挙げられる。これらを2種以上含有してもよい。青色顔料としては、例えば、ピグメントブルー(以下PBと略す)15、PB15:3、PB15:4、PB15:6、PB22、PB60、PB64などが挙げられる。これらを2種以上含有してもよい。黒色無機顔料としては、例えば、グラファイト;チタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム、銀、金、白金、パラジウム等の金属の微粒子;金属酸化物;金属複合酸化物;金属硫化物;金属窒化物;金属酸窒化物;金属炭化物などが挙げられる。これらを2種以上含有してもよい。以上の黒色顔料の中でも、高い遮光性を有することから、窒化チタン、窒化ジルコニウム、カーボンブラック、酸化パラジウム、酸化白金、酸化金、酸化銀、赤色顔料と青色顔料との重量比20/80~80/20の混合顔料が好ましい。黒色顔料の含有量は、反射率およびOD調整して隣接画素における光の混色を抑制する観点から、0.2重量%以上が好ましく、0.5重量%以上がより好ましい。一方、反射率およびOD調整する観点から、黒色顔料の含有量は、5重量%以下が好ましく、3重量%以下がより好ましい。 (F-2) Black pigments include, for example, black organic pigments, mixed color organic pigments, and black inorganic pigments. Examples of black organic pigments include carbon black, perylene black, aniline black, and benzofuranone pigments. These may be coated with a resin. Mixed organic pigments include, for example, pseudo-black pigments obtained by mixing two or more pigments such as red, blue, green, purple, yellow, magenta and/or cyan. Among these, a mixed pigment of a red pigment and a blue pigment is preferable from the viewpoint of achieving both a moderately high OD value and pattern workability. The weight ratio of the red pigment and the blue pigment is preferably 20/80 to 80/20, more preferably 30/70 to 70/30. Specific examples of representative pigments are shown below by color index (CI) number. Examples of red pigments include Pigment Red (hereinafter abbreviated as PR) 9, PR48, PR97, PR122, PR123, PR144, PR149, PR166, PR168, PR177, PR179, PR180, PR192, PR209, PR215, PR216, PR217, and PR220. , PR223, PR224, PR226, PR227, PR228, PR240, PR254, and the like. You may contain 2 or more types of these. Examples of blue pigments include Pigment Blue (hereinafter abbreviated as PB) 15, PB15:3, PB15:4, PB15:6, PB22, PB60 and PB64. You may contain 2 or more types of these. Black inorganic pigments include, for example, graphite; fine particles of metals such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, silver, gold, platinum, and palladium; metal oxides; metal composite oxides; Metal sulfides; metal nitrides; metal oxynitrides; metal carbides and the like. You may contain 2 or more types of these. Among the above black pigments, titanium nitride, zirconium nitride, carbon black, palladium oxide, platinum oxide, gold oxide, silver oxide, and a weight ratio of red pigment to blue pigment of 20/80 to 80 are used because of their high light-shielding properties. /20 mixed pigments are preferred. The content of the black pigment is preferably 0.2% by weight or more, more preferably 0.5% by weight or more, from the viewpoint of adjusting the reflectance and OD to suppress color mixture of light in adjacent pixels. On the other hand, from the viewpoint of adjusting the reflectance and OD, the content of the black pigment is preferably 5% by weight or less, more preferably 3% by weight or less.
 (G)ナフトキノンジアジド化合物
 (G)ナフトキノンジアジド化合物としては、例えば、フェノール性水酸基を有する化合物にナフトキノンジアジドのスルホン酸がエステルで結合した化合物が挙げられる。
(G) Naphthoquinonediazide compound The (G) naphthoquinonediazide compound includes, for example, a compound in which a sulfonic acid of naphthoquinonediazide is bonded to a compound having a phenolic hydroxyl group via an ester.
 用いる(G)ナフトキノンジアジド化合物は特に制限されないが、フェノール性水酸基を有する化合物にナフトキノンジアジドのスルホン酸がエステルで結合した化合物が好ましい。ここで用いられるフェノール性水酸基を有する化合物としては、例えば、Bis-Z、BisOC-Z、BisOPP-Z、BisP-CP、Bis26X-Z、BisOTBP-Z、BisOCHP-Z、BisOCR-CP、BisP-MZ、BisP-EZ、Bis26X-CP、BisP-PZ、BisP-IPZ、BisCR-IPZ、BisOCP-IPZ、BisOIPP-CP、Bis26X-IPZ、BisOTBP-CP、TekP-4HBPA(テトラキスP-DO-BPA)、TrisP-HAP、TrisP-PA、BisOFP-Z、BisRS-2P、BisPG-26X、BisRS-3P、BisOC-OCHP、BisPC-OCHP、Bis25X-OCHP、Bis26X-OCHP、BisOCHP-OC、Bis236T-OCHP、メチレントリス-FR-CR、BisRS-26X、BisRS-OCHP(以上、商品名、本州化学工業(株)製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A(以上、商品名、旭有機材工業(株)製)、4,4’-スルホニルジフェノール(和光純薬(株)社製)、BPFL(商品名、JFEケミカル(株)製)が挙げられる。 The (G) naphthoquinonediazide compound to be used is not particularly limited, but a compound in which the sulfonic acid of naphthoquinonediazide is ester-bonded to a compound having a phenolic hydroxyl group is preferable. Examples of compounds having a phenolic hydroxyl group used here include Bis-Z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP-Z, BisOCHP-Z, BisOCR-CP, and BisP-MZ. , BisP-EZ, Bis26X-CP, BisP-PZ, BisP-IPZ, BisCR-IPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP-4HBPA (tetrakis P-DO-BPA), TrisP -HAP, TrisP-PA, BisOFP-Z, BisRS-2P, BisPG-26X, BisRS-3P, BisOC-OCHP, BisPC-OCHP, Bis25X-OCHP, Bis26X-OCHP, BisOCHP-OC, Bis236T-OCHP, methylene tris- FR-CR, BisRS-26X, BisRS-OCHP (trade names, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-OC, BIP-PC, BIR-PC, BIR-PTBP, BIR-PCHP, BIP-BIOC- F, 4PC, BIR-BIPC-F, TEP-BIP-A (trade names, manufactured by Asahi Organic Chemicals Industry Co., Ltd.), 4,4'-sulfonyldiphenol (manufactured by Wako Pure Chemical Industries, Ltd.), BPFL (trade name, manufactured by JFE Chemical Co., Ltd.) can be mentioned.
 これらのうち、好ましいフェノール性水酸基を有する化合物としては、たとえば、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X、BIP-PC、BIR-PC、BIR-PTBP、BIR-BIPC-F等が挙げられる。これらのうち、特に好ましいフェノール性水酸基を有する化合物としては、たとえば、Bis-Z、TekP-4HBPA、TrisP-HAP、TrisP-PA、BisRS-2P、BisRS-3P、BIR-PC、BIR-PTBP、BIR-BIPC-F、4,4’-スルホニルジフェノール、BPFLである。これらフェノール性水酸基を有する化合物に4-ナフトキノンジアジドスルホン酸をエステル結合で導入したものが好ましいものとして例示することができるが、これ以外の化合物を使用することもできる。 Among these, preferred compounds having a phenolic hydroxyl group include, for example, Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP- IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, methylenetris-FR-CR, BisRS-26X, BIP-PC, BIR-PC, BIR-PTBP, BIR-BIPC-F etc. Among these, particularly preferred compounds having a phenolic hydroxyl group include, for example, Bis-Z, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisRS-2P, BisRS-3P, BIR-PC, BIR-PTBP, BIR -BIPC-F, 4,4'-sulfonyldiphenol, BPFL. A preferred example is a compound having a phenolic hydroxyl group into which 4-naphthoquinonediazide sulfonic acid is introduced via an ester bond, but compounds other than this can also be used.
 (G)ナフトキノンジアジド化合物の分子量は、好ましくは300~1500、さらに好ましくは350~1200である。分子量を300以上とすることで、未露光部の溶解抑止効果が得られる。また、分子量を1500以下とすることでスカム等のない良好なレリーフパターンが得られる。 (G) The naphthoquinonediazide compound preferably has a molecular weight of 300 to 1,500, more preferably 350 to 1,200. By setting the molecular weight to 300 or more, an effect of inhibiting dissolution of unexposed areas can be obtained. Also, by setting the molecular weight to 1500 or less, a good relief pattern without scum or the like can be obtained.
 これらの(G)ナフトキノンジアジド化合物は単独で使用しても、2種以上を組み合わせて使用してもよい。これらの(G)ナフトキノンジアジド化合物の含有量は、(E)樹脂に対して1~30重量部であることが好ましい。1重量部以上とすることで、実用的な感度で加工を行うことができる。また、30重量部以下とすることで、耐光性に優れた感光性樹脂組成物が得られる。
また、(G)ナフトキノンジアジド化合物を添加した場合、未露光部に未反応の感光剤が残留し、加熱硬化後に膜の着色が生じることがある。着色の少ない硬化膜を得るためには、現像後の塗膜に紫外線を照射した後に、加熱することが好ましい。
These (G) naphthoquinonediazide compounds may be used alone or in combination of two or more. The content of these (G) naphthoquinonediazide compounds is preferably 1 to 30 parts by weight relative to the (E) resin. By making it 1 part by weight or more, processing can be performed with practical sensitivity. Moreover, by making it 30 weight part or less, the photosensitive resin composition excellent in light resistance is obtained.
Further, when (G) a naphthoquinonediazide compound is added, unreacted photosensitive agent remains in unexposed areas, which may cause coloration of the film after heat curing. In order to obtain a cured film with little coloration, it is preferable to heat the developed coating film after irradiating it with ultraviolet rays.
 本発明の感光性樹脂組成物は、必要に応じて、架橋剤、密着性改良剤、溶媒、界面活性剤、溶解抑止剤、安定剤、消泡剤などをさらに含有してもよい。
本発明の感光性樹脂組成物に架橋剤を含有することにより、熱硬化時にポリシロキサンの架橋が促進され、硬化膜の架橋度が高くなる。硬化剤としては、例えば、窒素含有有機物、シリコーン樹脂硬化剤、イソシアネート化合物およびその重合体、メチロール化メラミン誘導体、メチロール化尿素誘導体、各種金属アルコールレート、各種金属キレート化合物、熱酸発生材、光酸発生材、などが挙げられる。これらを2種以上含有してもよい。これらの中でも、硬化剤の安定性などの観点から、メチロール化メラミン誘導体、メチロール化尿素誘導体が好ましく用いられる。
The photosensitive resin composition of the present invention may further contain a cross-linking agent, an adhesion improver, a solvent, a surfactant, a dissolution inhibitor, a stabilizer, an antifoaming agent and the like, if necessary.
By including a cross-linking agent in the photosensitive resin composition of the present invention, the cross-linking of polysiloxane is promoted during heat curing, and the degree of cross-linking of the cured film is increased. Curing agents include, for example, nitrogen-containing organic substances, silicone resin curing agents, isocyanate compounds and their polymers, methylolated melamine derivatives, methylolated urea derivatives, various metal alcoholates, various metal chelate compounds, thermal acid generators, photoacid generation material, and the like. You may contain 2 or more types of these. Among these, methylolated melamine derivatives and methylolated urea derivatives are preferably used from the viewpoint of the stability of the curing agent.
 本発明の感光性樹脂組成物に密着性改良剤を含有することにより、基板との密着性が向上し、信頼性の高い硬化膜を得ることができる。密着性改良剤としては、例えば、脂環式エポキシ化合物や、シランカップリング剤などが挙げられる。これらの中でも、シランカップリング剤は、耐熱性が高いことから、加熱後の色変化をより抑制することができ、好ましい。 By including an adhesion improver in the photosensitive resin composition of the present invention, the adhesion to the substrate is improved, and a highly reliable cured film can be obtained. Examples of adhesion improvers include alicyclic epoxy compounds and silane coupling agents. Among these, the silane coupling agent is preferable because it has high heat resistance and can further suppress color change after heating.
 シランカップリング剤としては、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン等が挙げられる。これらを2種以上含有してもよい。 Silane coupling agents include (3,4-epoxycyclohexyl)methyltrimethoxysilane, (3,4-epoxycyclohexyl)methyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltripropoxysilane, 2- (3,4-epoxycyclohexyl)ethyltributoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 2-(3,4- epoxycyclohexyl)ethyltriphenoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltriethoxysilane, 4-(3,4-epoxycyclohexyl)butyltri methoxysilane, 4-(3,4-epoxycyclohexyl)butyltriethoxysilane and the like. You may contain 2 or more types of these.
 本発明の感光性樹脂組成物における密着性改良剤の含有量は、基板との密着性をより向上させる観点から、固形分中、0.1重量%以上が好ましく、1重量%以上がより好ましい。一方、密着性改良剤の含有量は、加熱による色変化をより抑制する観点から、固形分中、20重量%以下が好ましく、10重量%以下がより好ましい。 The content of the adhesion improver in the photosensitive resin composition of the present invention is preferably 0.1% by weight or more, more preferably 1% by weight or more, based on the solid content, from the viewpoint of further improving the adhesion to the substrate. . On the other hand, the content of the adhesion improver is preferably 20% by weight or less, more preferably 10% by weight or less, based on the solid content, from the viewpoint of further suppressing color change due to heating.
 本発明の感光性樹脂組成物に溶媒を含有することにより、塗布に適した粘度に容易に調整し、塗布膜の均一性を向上させることができる。大気圧下の沸点が150℃を超えて250℃以下の溶媒と、150℃以下の溶媒を組み合わせることが好ましい。沸点が150℃を超えて250℃以下の溶媒を含有することにより、塗布時に適度に溶媒が揮発して塗膜の乾燥が進行するため、塗布ムラを抑制し、膜厚均一性を向上させることができる。さらに、大気圧下の沸点が150℃以下の溶媒を含有することにより、後述する本発明の硬化膜中への溶媒の残存を抑制することができる。硬化膜中への溶媒の残存を抑制し、耐薬品性および密着性を長期間より向上させる観点から、大気圧下の沸点が150℃以下の溶媒を、溶媒全体の50重量%以上含有することが好ましい。 By including a solvent in the photosensitive resin composition of the present invention, it is possible to easily adjust the viscosity suitable for coating and improve the uniformity of the coating film. It is preferable to combine a solvent having a boiling point of more than 150° C. and 250° C. or less under atmospheric pressure with a solvent having a boiling point of 150° C. or less. By containing a solvent having a boiling point of more than 150° C. and not more than 250° C., the solvent is volatilized appropriately during coating, and the coating film dries, thereby suppressing uneven coating and improving the uniformity of the film thickness. can be done. Furthermore, by containing a solvent having a boiling point of 150° C. or less under atmospheric pressure, it is possible to suppress the solvent from remaining in the cured film of the present invention, which will be described later. From the viewpoint of suppressing the solvent remaining in the cured film and improving chemical resistance and adhesion over a long period of time, a solvent having a boiling point of 150° C. or lower under atmospheric pressure should be contained in an amount of 50% by weight or more of the total solvent. is preferred.
 大気圧下の沸点が150℃以下の溶媒としては、例えば、エタノール、イソプロピルアルコール、1-プロピルアルコール、1-ブタノール、2-ブタノール、イソペンチルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、酢酸メトキシメチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノプロピルエーテル、エチレングリコールモノメチルエーテルアセテート、1-メトキシプロピル-2-アセテート、アセトール、アセチルアセトン、メチルイソブチルケトン、メチルエチルケトン、メチルプロピルケトン、乳酸メチル、トルエン、シクロペンタノン、シクロヘキサン、ノルマルヘプタン、ベンゼン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、3-ヒドロキシ-3-メチル-2-ブタノン、4-ヒドロキシ-3-メチル-2-ブタノン、5-ヒドロキシ-2-ペンタノンが挙げられる。これらを2種以上用いてもよい。 Solvents having a boiling point of 150° C. or less under atmospheric pressure include, for example, ethanol, isopropyl alcohol, 1-propyl alcohol, 1-butanol, 2-butanol, isopentyl alcohol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol mono Ethyl ether, methoxymethyl acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monopropyl ether, ethylene glycol monomethyl ether acetate, 1-methoxypropyl-2-acetate, acetol, acetylacetone, methyl isobutyl ketone, methyl ethyl ketone, methyl propyl ketone, methyl lactate, toluene, cyclopentanone, cyclohexane, n-heptane, benzene, methyl acetate, ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, isopentyl acetate, pentyl acetate, 3-hydroxy- 3-methyl-2-butanone, 4-hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone. You may use 2 or more types of these.
 大気圧下の沸点が150℃を超えて250℃以下の溶媒としては、例えば、エチレングリコールジエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノ-tert-ブチルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、酢酸2-エトキシエチル、3-メトキシ-1-ブタノール、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブチルアセテート、3-メトキシブチルアセテート、3-エトキシプロピオン酸エチル、プロピレングリコールモノメチルエーテルプロピオネート、ジプロピレングリコールメチルエーテル、ジイソブチルケトン、ジアセトンアルコール、乳酸エチル、乳酸ブチル、ジメチルホルムアミド、ジメチルアセトアミド、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、炭酸プロピレン、N-メチルピロリドン、シクロヘキサノン、シクロヘプタノン、ジエチレングリコールモノブチルエーテル、エチレングリコールジブチルエーテルが挙げられる。これらを2種以上用いてもよい。 Solvents having a boiling point of more than 150° C. and 250° C. or less under atmospheric pressure include, for example, ethylene glycol diethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-tert-butyl ether, propylene glycol mono-n-butyl ether, and propylene. Glycol mono-t-butyl ether, 2-ethoxyethyl acetate, 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol, 3-methoxy-3-methylbutyl acetate, 3-methoxybutyl acetate, 3-ethoxypropionic acid Ethyl, propylene glycol monomethyl ether propionate, dipropylene glycol methyl ether, diisobutyl ketone, diacetone alcohol, ethyl lactate, butyl lactate, dimethylformamide, dimethylacetamide, γ-butyrolactone, γ-valerolactone, δ-valerolactone, carbonic acid Propylene, N-methylpyrrolidone, cyclohexanone, cycloheptanone, diethylene glycol monobutyl ether, ethylene glycol dibutyl ether. You may use 2 or more types of these.
 溶媒の含有量は、塗布方法などに応じて任意に設定することができる。例えば、スピンコーティングにより膜形成を行う場合には、感光性樹脂組成物中、50重量%以上、95重量%以下とすることが一般的である。 The content of the solvent can be arbitrarily set according to the application method. For example, when forming a film by spin coating, it is generally 50% by weight or more and 95% by weight or less in the photosensitive resin composition.
 本発明の感光性樹脂組成物に界面活性剤を含有することにより、塗布時のフロー性を向上させることができる。界面活性剤としては、例えば、“メガファック”(登録商標)F142D、F172、F173、F183、F445、F470、F475、F477(以上、商品名、大日本インキ化学工業(株)製)、NBX-15、FTX-218(以上、商品名、(株)ネオス製)などのフッ素系界面活性剤;“Disperbyk”(登録商標)333、301、331、345、207(以上、商品名、ビックケミー(株)製)などのシリコーン系界面活性剤;ポリアルキレンオキシド系界面活性剤;ポリ(メタ)アクリレート系界面活性剤などが挙げられる。これらを2種以上含有してもよい。 By including a surfactant in the photosensitive resin composition of the present invention, it is possible to improve flowability during application. Surfactants include, for example, "Megafac" (registered trademark) F142D, F172, F173, F183, F445, F470, F475, F477 (trade names, manufactured by Dainippon Ink & Chemicals, Inc.), NBX- 15, fluorine-based surfactants such as FTX-218 (trade name, manufactured by Neos Co., Ltd.); )), polyalkylene oxide surfactants, poly(meth)acrylate surfactants, and the like. You may contain 2 or more types of these.
 本発明の感光性樹脂組成物の固形分濃度は、塗布方法などに応じて任意に設定することができる。例えば、後述のようにスピンコーティングにより膜形成を行う場合には、固形分濃度を、5重量%以上、50重量%以下とすることが一般的である。 The solid content concentration of the photosensitive resin composition of the present invention can be arbitrarily set according to the coating method and the like. For example, when forming a film by spin coating as described later, it is common to set the solid content concentration to 5% by weight or more and 50% by weight or less.
 次に、本発明の感光性樹脂組成物の製造方法について説明する。前述の(E)~(G)成分および必要に応じてその他成分を混合することにより、本発明の感光性樹脂組成物を得ることができる。より具体的には、例えば、(E)樹脂、(G)ナフトキノンジアジド化合物および必要に応じてその他の添加剤を任意の溶媒に加え、撹拌して溶解させた後、(F)顔料を加え、さらに20分間~3時間撹拌し、得られた溶液を濾過する方法などが挙げられる。 Next, the method for producing the photosensitive resin composition of the present invention will be explained. The photosensitive resin composition of the present invention can be obtained by mixing the aforementioned components (E) to (G) and, if necessary, other components. More specifically, for example, (E) a resin, (G) a naphthoquinone diazide compound and, if necessary, other additives are added to an arbitrary solvent and stirred to dissolve, then (F) a pigment is added, A method of further stirring for 20 minutes to 3 hours and filtering the resulting solution may be used.
 次に、本発明の乾燥膜について説明する。本発明の乾燥膜は、前述の本発明の感光性樹脂組成物の塗膜を乾燥させたものからなる。また、本発明の乾燥膜の膜厚は、1~20μmであることが好ましい。乾燥膜の膜厚を1μm以上にすることで、凹凸構造の膜平坦性を向上できるため好ましい。また、乾燥膜の膜厚を20μm以下にすることで、乾燥膜の膜均一性を向上させることができるため好ましい。 Next, the dry film of the present invention will be explained. The dry film of the present invention is obtained by drying the coating film of the aforementioned photosensitive resin composition of the present invention. Moreover, the film thickness of the dry film of the present invention is preferably 1 to 20 μm. It is preferable to set the film thickness of the dry film to 1 μm or more because the film flatness of the uneven structure can be improved. Further, by setting the film thickness of the dry film to 20 μm or less, the film uniformity of the dry film can be improved, which is preferable.
 続いて、本発明の硬化膜について説明する。本発明の硬化膜は、前述の本発明の感光性樹脂組成物の硬化物からなる。硬化膜の膜厚は、1~20μmが好ましい。また、硬化膜の波長365nmにおける膜厚10μmあたりの吸光度が1.0~4.0、波長405nmにおける膜厚10μmあたりの吸光度が0.5~2.0、波長436nmにおける膜厚10μmあたりの吸光度が0.5~2.0、波長450nmにおける膜厚10μmあたりの吸光度が0.5~2.0であることが好ましい。硬化膜の吸光度を、上記の範囲のすることで本発明の硬化膜付き基板の製造方法を適用できるため、好ましい。また、本発明の硬化膜を、マイクロLEDの隔壁として使用する場合、隣接するマイクロLEDの発光色を十分に遮光し、色の混色を避ける必要がある。吸光度を上記の範囲にすることで、良好な遮光性を得ることができるため好ましい。
本発明の硬化膜を、マイクロLEDの隔壁として使用する場合、反射率を20%以上にすることで、マイクロLEDから発光した光を硬化膜で反射させることが可能となり、光取り出し効率を向上させることが可能となるため、好ましく、50%以上がより好ましく、60%以上がさらに好ましい。一方で、反射率を80%以下にすることで、現像後の塗膜に後露光をする際に照射される光を効率よく利用することができるため、好ましく、70%以下がより好ましい。
Next, the cured film of the present invention will be described. The cured film of the present invention comprises a cured product of the aforementioned photosensitive resin composition of the present invention. The thickness of the cured film is preferably 1 to 20 μm. In addition, the absorbance per 10 μm of film thickness at a wavelength of 365 nm of the cured film is 1.0 to 4.0, the absorbance per 10 μm of film thickness at a wavelength of 405 nm is 0.5 to 2.0, and the absorbance per 10 μm of film thickness at a wavelength of 436 nm. is preferably 0.5 to 2.0, and the absorbance per 10 μm film thickness at a wavelength of 450 nm is preferably 0.5 to 2.0. By setting the absorbance of the cured film within the above range, the method for producing a cured film-coated substrate of the present invention can be applied, which is preferable. In addition, when the cured film of the present invention is used as a partition wall for micro LEDs, it is necessary to sufficiently shield the colors of light emitted from adjacent micro LEDs to avoid color mixture. By setting the absorbance within the above range, it is possible to obtain good light shielding properties, which is preferable.
When the cured film of the present invention is used as a partition wall of a micro LED, by setting the reflectance to 20% or more, the light emitted from the micro LED can be reflected by the cured film, improving the light extraction efficiency. 50% or more is more preferable, and 60% or more is even more preferable. On the other hand, a reflectance of 80% or less is preferable, and more preferably 70% or less, because it is possible to efficiently utilize the light irradiated when post-exposure is applied to the developed coating film.
 さらに、硬化膜の算術平均表面粗さは、0.005μm~0.1μmであることが好ましい。硬化膜の算術平均表面粗さを0.005μm以上にすることで、後工程において形成する上層膜と本発明の硬化膜の密着性を向上させることが可能となるため、好ましい。また、硬化膜の算術平均表面粗さを0.1m以下にすることで、後工程における、上層膜を本発明の硬化膜の上に均一かつ容易に形成することが可能となるため、好ましく、0.02μm以下が好ましく、0.015μm以下がさらに好ましい、0.010μm以下が最も好ましい。 Furthermore, the arithmetic mean surface roughness of the cured film is preferably 0.005 μm to 0.1 μm. By setting the arithmetic mean surface roughness of the cured film to 0.005 μm or more, it is possible to improve the adhesion between the upper layer film formed in the post-process and the cured film of the present invention, which is preferable. In addition, by setting the arithmetic mean surface roughness of the cured film to 0.1 m or less, it is possible to uniformly and easily form an upper layer film on the cured film of the present invention in a post-process, so it is preferable, 0.02 μm or less is preferable, 0.015 μm or less is more preferable, and 0.010 μm or less is most preferable.
 次に、本発明の画像表示装置について説明する。本発明の画像表示装置は、基板上に、駆動用の配線電極を形成した後、マイクロLEDセルを配置し、マイクロLEDの側面に硬化膜を隙間なく接触させ一体化させた基板と、駆動用のICドライバ等を組み合わせて、作成することができる。マイクロLEDと硬化膜を隙間なく接触させ一体化することで、マイクロLED側面が大気に触れないため、マイクロLEDの特性について経時安定性を向上させることができるため好ましい。ここで言う、隙間なくとは、マイクロLEDと硬化膜の距離が好ましくは0.5μm以下、より好ましくは0.1μm以下であることを意味する。 Next, the image display device of the present invention will be explained. The image display device of the present invention comprises a substrate in which wiring electrodes for driving are formed on a substrate, micro LED cells are arranged, a cured film is brought into contact with the side surfaces of the micro LEDs without gaps, and the substrate is integrated; can be created by combining the IC drivers, etc. By integrating the micro LED and the cured film by contacting them without gaps, the sides of the micro LED do not come into contact with the air. The term "no gap" as used herein means that the distance between the micro LED and the cured film is preferably 0.5 μm or less, more preferably 0.1 μm or less.
 以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されない。合成例および実施例に用いた化合物のうち、略語を使用しているものについて、その内容を以下に示す。
PGMEA:プロピレングリコールモノメチルエーテルアセテート
DAA:ダイアセトンアルコール。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Among the compounds used in Synthesis Examples and Examples, abbreviations are used, and the details thereof are shown below.
PGMEA: propylene glycol monomethyl ether acetate DAA: diacetone alcohol.
 合成例1~2におけるポリシロキサン溶液およびアクリル樹脂溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン溶液またはアクリル樹脂溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分の重量を秤量して、加熱前の重量に対する割合からポリシロキサン溶液またはアクリル樹脂溶液の固形分濃度を求めた。 The solid content concentrations of the polysiloxane solutions and acrylic resin solutions in Synthesis Examples 1 and 2 were determined by the following method. 1.5 g of polysiloxane solution or acrylic resin solution was put into an aluminum cup and heated at 250° C. for 30 minutes using a hot plate to evaporate the liquid component. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration of the polysiloxane solution or acrylic resin solution was obtained from the ratio to the weight before heating.
 合成例1~2におけるポリシロキサンのおよびアクリル樹脂溶液重量平均分子量は、以下の方法により求めた。GPC分析装置(HLC-8220;東ソー(株)製)を用い、流動層としてテトラヒドロフランを用いて、「JIS K7252-3(制定年月日=2008/03/20)」に基づきGPC分析を行い、ポリスチレン換算の重量平均分子量を測定した。 The polysiloxane and acrylic resin solution weight average molecular weights in Synthesis Examples 1 and 2 were determined by the following method. Using a GPC analyzer (HLC-8220; manufactured by Tosoh Corporation) and using tetrahydrofuran as a fluidized bed, GPC analysis was performed based on "JIS K7252-3 (enacted date = 2008/03/20)", A polystyrene equivalent weight average molecular weight was measured.
 合成例1におけるポリシロキサン中の各オルガノシラン単位の含有比率は、以下の方法により求めた。ポリシロキサン溶液を直径10mmの“テフロン”(登録商標)製NMRサンプル管に注入して29Si-NMR測定を行い、オルガノシランに由来するSi全体の積分値に対する、特定のオルガノシラン単位に由来するSiの積分値の割合から、各オルガノシラン単位の含有比率を算出した。29Si-NMR測定条件を以下に示す。
装置:核磁気共鳴装置(JNM-GX270;日本電子(株)製)
測定法:ゲーテッドデカップリング法
測定核周波数:53.6693MHz(29Si核)
スペクトル幅:20000Hz
パルス幅:12μs(45°パルス)
パルス繰り返し時間:30.0秒
溶媒:アセトン-d6
基準物質:テトラメチルシラン
測定温度:23℃
試料回転数:0.0Hz。
The content ratio of each organosilane unit in polysiloxane in Synthesis Example 1 was obtained by the following method. A polysiloxane solution is injected into a “Teflon” (registered trademark) NMR sample tube with a diameter of 10 mm and 29 Si-NMR measurement is performed. The content ratio of each organosilane unit was calculated from the ratio of the integrated value of Si. 29 Si-NMR measurement conditions are shown below.
Apparatus: Nuclear magnetic resonance apparatus (JNM-GX270; manufactured by JEOL Ltd.)
Measurement method: Gated decoupling method Measurement nucleus frequency: 53.6693 MHz ( 29 Si nuclei)
Spectrum width: 20000Hz
Pulse width: 12 μs (45° pulse)
Pulse repetition time: 30.0 seconds Solvent: Acetone-d6
Reference substance: Tetramethylsilane Measurement temperature: 23°C
Sample rotation speed: 0.0 Hz.
 合成例1 ポリシロキサン(E-1)溶液
 500mlの三口フラスコに、フェニルトリメトキシシランを99.15g(0.500mol)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン24.64g(0.100mol)、メチルトリメトキシシラン54.48g(0.400mol)、PGMEAを103.44g仕込み、室温で撹拌しながら、水54.00gにリン酸0.768g(仕込みモノマーに対して0.50重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、三口フラスコを70℃のオイルバスに浸けて90分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に三口フラスコの内温(溶液温度)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素を0.05リットル/分流した。反応中に、副生成物であるメタノールおよび水が合計123.00g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(E-1)溶液を得た。なお、得られたポリシロキサン(E-1)の重量平均分子量は4,100(ポリスチレン換算)であった。また、29Si-NMRの測定結果より、ポリシロキサン(E-1)における、フェニルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、メチルトリメトキシシランに由来する繰り返し単位のモル比は、それぞれ50mol%、10mol%、40mol%であった。
Synthesis Example 1 Polysiloxane (E-1) solution In a 500 ml three-necked flask, 99.15 g (0.500 mol) of phenyltrimethoxysilane and 24.64 g (0.500 mol) of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane were added. 0.100 mol), 54.48 g (0.400 mol) of methyltrimethoxysilane, and 103.44 g of PGMEA were charged, and while stirring at room temperature, 0.768 g of phosphoric acid was added to 54.00 g of water (0.50 wt. %) was added over 30 minutes. After that, the three-necked flask was immersed in an oil bath at 70° C. and stirred for 90 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the internal temperature (solution temperature) of the three-necked flask reached 100° C., and the mixture was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. In addition, 0.05 liter/minute of nitrogen was flowed during the temperature rise and heating and stirring. A total of 123.00 g of methanol and water, which are by-products, were distilled during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (E-1) solution. The weight average molecular weight of the obtained polysiloxane (E-1) was 4,100 (converted to polystyrene). In addition, from the 29 Si-NMR measurement results, repeating units derived from phenyltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, and methyltrimethoxysilane in polysiloxane (E-1) The molar ratios were 50 mol %, 10 mol % and 40 mol %, respectively.
 合成例2 アクリル樹脂(e-1)溶液
 500mlの三口フラスコに、2,2’-アゾビス(イソブチロニトリル)を3g、PGMEAを50g仕込んだ。その後、メタクリル酸を30g、ベンジルメタクリレートを35g、トリシクロ[5.2.1.02,6]デカン-8-イルメタクリレートを35g仕込み、室温でしばらく撹拌し、フラスコ内を窒素置換した後、70℃で5時間加熱撹拌し、アクリル樹脂溶液を得た。得られたアクリル樹脂溶液に固形分濃度が40重量%になるようにPGMEAを追加し、アクリル樹脂(e)溶液を得た。アクリル樹脂(e)の重量平均分子量は10,000(ポリスチレン換算)であった。
Synthesis Example 2 Acrylic Resin (e-1) Solution A 500 ml three-necked flask was charged with 3 g of 2,2′-azobis(isobutyronitrile) and 50 g of PGMEA. After that, 30 g of methacrylic acid, 35 g of benzyl methacrylate, and 35 g of tricyclo[5.2.1.0 2,6 ]decan-8-yl methacrylate were charged, stirred at room temperature for a while, and after replacing the inside of the flask with nitrogen, The mixture was heated and stirred at °C for 5 hours to obtain an acrylic resin solution. PGMEA was added to the obtained acrylic resin solution so that the solid content concentration was 40% by weight to obtain an acrylic resin (e) solution. The acrylic resin (e) had a weight average molecular weight of 10,000 (converted to polystyrene).
 調製例1 感光性樹脂組成物(P-1)
 (F-1)白色顔料として、二酸化チタン(R-960;デュポン(株)製(SiO/Al表面処理、メジアン径0.21μm))50.00gに、(E-1)ポリシロキサンとして、合成例1により得たポリシロキサン(E-1)溶液50.00gを混合したジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-1)を得た。
Preparation Example 1 Photosensitive resin composition (P-1)
(F-1) As a white pigment, 50.00 g of titanium dioxide (R-960; DuPont Co., Ltd. (SiO 2 /Al 2 O 3 surface treatment, median diameter 0.21 μm)), (E-1) poly As siloxane, 50.00 g of the polysiloxane (E-1) solution obtained in Synthesis Example 1 was mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-1). .
 次に、顔料分散液(MW-1)32.00g、ポリシロキサン(E-1)溶液34.925g、(G)ナフトキノンジド化合物として、TP5-280M(東洋合成(株)製)2.000g、硬化剤としてメラミン樹脂化合物(“ニカラック”(登録商標)MX-270(商品名)、三和化成(株)製)0.800g、蜜着改良剤として、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(KBM-303(商品名)、信越化学(株)製)0.800g、界面活性剤として、フッ素系界面活性剤(“メガファック”(登録商標)F-477(商品名)、DIC(株)製)の10重量%PGMEA希釈溶液、0.300g(濃度300ppmに相当)を、DAA3.000gとPGMEA26.175gの混合溶媒に溶解させ、撹拌した。次いで、5.0μmのフィルターでろ過を行い、感光性樹脂組成物(P-1)を得た。 Next, 32.00 g of a pigment dispersion (MW-1), 34.925 g of a polysiloxane (E-1) solution, (G) 2.000 g of TP5-280M (manufactured by Toyo Gosei Co., Ltd.) as a naphthoquinone dido compound, 0.800 g of a melamine resin compound (“Nikalac” (registered trademark) MX-270 (trade name), manufactured by Sanwa Kasei Co., Ltd.) as a curing agent, and 2-(3,4-epoxycyclohexyl) as an adhesion improver. Ethyltrimethoxysilane (KBM-303 (trade name), manufactured by Shin-Etsu Chemical Co., Ltd.) 0.800 g; , DIC Corporation) was dissolved in a mixed solvent of 3.000 g of DAA and 26.175 g of PGMEA and stirred. Then, filtration was performed with a 5.0 μm filter to obtain a photosensitive resin composition (P-1).
 調製例2 感光性樹脂組成物(P-2)
 ポリシロキサン(E-1)溶液の代わりに、前記アクリル樹脂(e-1)溶液を使用した以外は調整例1と同様に行い、感光性樹脂組成物(P-2)を得た。
Preparation Example 2 Photosensitive resin composition (P-2)
A photosensitive resin composition (P-2) was obtained in the same manner as in Preparation Example 1 except that the acrylic resin (e-1) solution was used instead of the polysiloxane (E-1) solution.
 調製例3 感光性樹脂組成物(P-3)
 (F-2)黒色顔料として、窒化チタン(和光純薬工業(株)製;粒径:50nm、チタン含有量:74.3重量%、窒素含有量:20.3重量%、酸素含有量:2.94重量%)50.00gに、(E)樹脂として、ポリシロキサン(E-1)溶液50.00gを混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液(MW-2)を得た。ポリシロキサン(E-1)溶液の添加量を34.645gに変更し、混合溶媒のPGMEAを26.343gに変更し、顔料分散液(MW-1)に加えて、顔料分散液(MW-2)0.112gを添加した以外は、調製例1と同様に行い、感光性樹脂組成物(P-3)を得た。
Preparation Example 3 Photosensitive resin composition (P-3)
(F-2) As a black pigment, titanium nitride (manufactured by Wako Pure Chemical Industries, Ltd.; particle size: 50 nm, titanium content: 74.3% by weight, nitrogen content: 20.3% by weight, oxygen content: 2.94% by weight) is mixed with 50.00 g of polysiloxane (E-1) solution as (E) resin, and dispersed using a mill-type dispersing machine filled with zirconia beads to disperse the pigment. A liquid (MW-2) was obtained. The amount of polysiloxane (E-1) solution added was changed to 34.645 g, the mixed solvent PGMEA was changed to 26.343 g, and in addition to the pigment dispersion (MW-1), the pigment dispersion (MW-2 ) was carried out in the same manner as in Preparation Example 1 except that 0.112 g was added to obtain a photosensitive resin composition (P-3).
 調製例4 感光性樹脂組成物(P-4)
 ポリシロキサン(E-1)溶液の添加量を62.925gに変更し、混合溶媒のPGMEAを14.175gに変更し、顔料分散液(MW-1)の添加量を16.000gに変更した以外は、調製例1と同様に行い、感光性樹脂組成物(P-4)を得た。
Preparation Example 4 Photosensitive resin composition (P-4)
The addition amount of the polysiloxane (E-1) solution was changed to 62.925 g, the mixed solvent PGMEA was changed to 14.175 g, and the addition amount of the pigment dispersion (MW-1) was changed to 16.000 g. was carried out in the same manner as in Preparation Example 1 to obtain a photosensitive resin composition (P-4).
 調製例5 感光性樹脂組成物(P-5)
 ポリシロキサン(E-1)溶液の添加量を35.925gに変更し、混合溶媒のPGMEAを25.575gに変更し、(G)ナフトキノンジド化合物として、TP5-280Mの添加量を1.600gに変更した以外は、調製例1と同様に行い、感光性樹脂組成物(P-5)を得た。
Preparation Example 5 Photosensitive resin composition (P-5)
The added amount of the polysiloxane (E-1) solution was changed to 35.925 g, the mixed solvent PGMEA was changed to 25.575 g, and the added amount of TP5-280M as the (G) naphthoquinone dido compound was changed to 1.600 g. A photosensitive resin composition (P-5) was obtained in the same manner as in Preparation Example 1 except for the changes.
 調製例6 感光性樹脂組成物(P-6)
 ポリシロキサン(E-1)溶液の添加量を33.925gに変更し、混合溶媒のPGMEAを26.775gに変更し、(G)ナフトキノンジド化合物として、TP5-280Mの添加量を2.400gに変更した以外は、調製例1と同様に行い、感光性樹脂組成物(P-6)を得た。
Preparation Example 6 Photosensitive resin composition (P-6)
The added amount of the polysiloxane (E-1) solution was changed to 33.925 g, the mixed solvent PGMEA was changed to 26.775 g, and the added amount of TP5-280M as the (G) naphthoquinone dide compound was changed to 2.400 g. A photosensitive resin composition (P-6) was obtained in the same manner as in Preparation Example 1 except for the changes.
 調製例7 感光性樹脂組成物(P-7)
(F-1)白色顔料として、R-960の代わりに酸化ジルコニア(3YI-R;東レ(株)製(Al表面処理、メジアン系0.50μm))を用いた以外は、調製例1と同様に行い、感光性樹脂組成物(P-7)を得た。
Preparation Example 7 Photosensitive resin composition (P-7)
(F-1) Preparation example except that zirconia oxide (3YI-R; manufactured by Toray Industries, Inc. (Al 2 O 3 surface treatment, median system 0.50 μm)) was used instead of R-960 as the white pigment. 1 to obtain a photosensitive resin composition (P-7).
 調製例8 感光性樹脂組成物(P-8)
 ポリシロキサン(E-1)溶液の添加量を39.925gに変更し、混合溶媒のPGMEAを23.175gに変更し、(G)ナフトキノンジド化合物として、TP5-280Mを添加しないた以外は、調製例1と同様に行い、感光性樹脂組成物(P-8)を得た。
Preparation Example 8 Photosensitive resin composition (P-8)
The amount of polysiloxane (E-1) solution added was changed to 39.925 g, the mixed solvent PGMEA was changed to 23.175 g, and TP5-280M was not added as (G) naphthoquinone dide compound. A photosensitive resin composition (P-8) was obtained in the same manner as in Example 1.
 調製例9 感光性樹脂組成物(P-9)
 ポリシロキサン(E-1)溶液の添加量を90.925gに変更し、混合溶媒のPGMEAを2.175gに変更し、顔料分散液(MW-1)を添加しない以外は、調製例1と同様に行い、感光性樹脂組成物(P-9)を得た。
Preparation Example 9 Photosensitive resin composition (P-9)
Same as Preparation Example 1 except that the amount of polysiloxane (E-1) solution added was changed to 90.925 g, the mixed solvent PGMEA was changed to 2.175 g, and the pigment dispersion (MW-1) was not added. to obtain a photosensitive resin composition (P-9).
 調製例1~9の組成をまとめて表1に示す。 The compositions of Preparation Examples 1 to 9 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <凹凸構造を有するガラス基板の作成>
 乾燥窒素気流下、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子(株)製、BAHF)15.9g(0.043モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(SiDA)0.62g(0.0025モル)をN-メチルピロリドン(NMP)200gに溶解した。ここに3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物(マナック(株)製、ODPA)15.5g(0.05モル)をN-メチルピロリドン(NMP)50gとともに加えて、40℃で2時間撹拌した。その後、4-エチニルアニリン(東京化成(株)製)1.17g(0.01モル)を加え、40℃で2時間撹拌した。さらに、ジメチルホルアミドジメチルアセタール(三菱レイヨン(株)製、DFA)3.57g(0.03モル)をN-メチルピロリドン(NMP)5gで希釈した溶液を10分かけて滴下し、滴下後、40℃で2時間撹拌を続けた。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリアミド酸エステルを得た。
<Creation of a glass substrate having an uneven structure>
Under a stream of dry nitrogen, 15.9 g (0.043 mol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (manufactured by Central Glass Co., Ltd., BAHF), 1,3-bis(3 -aminopropyl)tetramethyldisiloxane (SiDA) 0.62 g (0.0025 mol) was dissolved in 200 g N-methylpyrrolidone (NMP). 15.5 g (0.05 mol) of 3,3′,4,4′-diphenylethertetracarboxylic dianhydride (manac manufactured by Manac Co., Ltd., ODPA) was added together with 50 g of N-methylpyrrolidone (NMP), Stir at 40° C. for 2 hours. After that, 1.17 g (0.01 mol) of 4-ethynylaniline (manufactured by Tokyo Kasei Co., Ltd.) was added and stirred at 40° C. for 2 hours. Furthermore, a solution obtained by diluting 3.57 g (0.03 mol) of dimethylformamide dimethyl acetal (DFA, manufactured by Mitsubishi Rayon Co., Ltd.) with 5 g of N-methylpyrrolidone (NMP) was added dropwise over 10 minutes. Stirring was continued at 40° C. for 2 hours. After stirring was completed, the solution was poured into 2 L of water, and polymer solid precipitates were collected by filtration. Furthermore, it was washed with 2 L of water three times, and the collected polymer solid was dried in a vacuum dryer at 50° C. for 72 hours to obtain a polyamic acid ester.
 ポリアミド酸エステルを10.00g(100重量部)、ナフトキノンジアジド化合物として、TP5-280M(東洋合成(株)製)を3.00g(30重量部)、ジフェニルジメトキシシラン(信越化学工業(株)製、KBM-202SS)0.01g(0.1重量部)、フェノール性水酸基を有する化合物として1,1,1-トリス(4-ヒドロキシフェニル)エタン(本州化学工業(株)製、TrisP-HAP)0.50g(0.5重量部)、溶剤としてγ―ブチロラクトン(GBL)を組成物の固形分濃度が20重量%となる量(52.04g)を黄色灯下で混合、攪拌して均一溶液とした後、0.20μmのフィルターで濾過してポジ型感光性ポリアミド前駆体樹脂組成物を調製した。 10.00 g (100 parts by weight) of polyamic acid ester, 3.00 g (30 parts by weight) of TP5-280M (manufactured by Toyo Gosei Co., Ltd.) as a naphthoquinone diazide compound, diphenyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) , KBM-202SS) 0.01 g (0.1 parts by weight), 1,1,1-tris(4-hydroxyphenyl)ethane as a compound having a phenolic hydroxyl group (TrisP-HAP, manufactured by Honshu Chemical Industry Co., Ltd.) 0.50 g (0.5 parts by weight) and γ-butyrolactone (GBL) as a solvent in an amount (52.04 g) that makes the solid concentration of the composition 20% by weight were mixed under a yellow light and stirred to form a uniform solution. After that, it was filtered through a 0.20 μm filter to prepare a positive photosensitive polyamide precursor resin composition.
 前記ポジ型感光性前駆体樹脂組成物を10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、膜厚0.7mm)上に、スピンコート(商品名1H-360S、ミカサ(株)製)し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で2分間乾燥し乾燥膜を作製した。作製した乾燥膜について、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、ガラス基板の半面部分については、フォトマスクを介し、残りの半面部分については、フォトマスクを介さずに、露光量200mJ/cm(i線換算値)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、2.38wt%水酸化テトラメチルアンモニウム水溶液で120秒間シャワー現像し、次いで水で30秒間リンスした。その後、オーブン(ヤマト科学製DN43HI)を用いて230℃で30分間キュアして、基板の半面部分に凹凸構造を有するガラス基板を得た。得られた凹凸構造を有するガラス基板は、基板の半面に、縦と横の長さがそれぞれ20μmで、膜厚5μmの凸構造体を有し、隣接する凸構造体との間隔が80μmとなるようにパターン形成されている。 The positive photosensitive precursor resin composition is spin-coated on a 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., film thickness 0.7 mm) (trade name 1H-360S, manufactured by Mikasa Co., Ltd.). ) and dried at a temperature of 100° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.) to prepare a dry film. For the prepared dried film, a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) was used, and an ultra-high pressure mercury lamp was used as a light source. The portion was exposed with an exposure amount of 200 mJ/cm 2 (i-ray conversion value) without a photomask. After that, using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 2.38 wt% tetramethylammonium hydroxide aqueous solution for 120 seconds, and then rinsed with water for 30 seconds. . After that, it was cured at 230° C. for 30 minutes using an oven (DN43HI manufactured by Yamato Scientific Co., Ltd.) to obtain a glass substrate having an uneven structure on one half of the substrate. The obtained glass substrate having the concave-convex structure has, on one half of the substrate, convex structures each having a length and a width of 20 μm and a film thickness of 5 μm, and the distance between the adjacent convex structures is 80 μm. are patterned as follows.
 各実施例および比較例における評価方法を以下に示す。
<凹凸構造を有するガラス基板に対する感光性樹脂組成物の膜平坦性能評価>
 各実施例および比較例において用いた感光性樹脂組成物を、前述の凹凸構造を有するガラス基板上にスピンコート(商品名1H-360S、ミカサ(株)製)し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で2分間加熱し乾燥させた。得られた乾燥膜付きの基板について、外観を目視検査し、下記基準により、凹凸構造付き基板に対する感光性樹脂組成物の平坦性を評価した。
A:凹凸構造体が平坦化され乾燥膜が膜厚ムラなく均一に形成されているように見える。   
Evaluation methods in each example and comparative example are shown below.
<Evaluation of Film Flatness Performance of Photosensitive Resin Composition for Glass Substrate Having Concavo-convex Structure>
The photosensitive resin composition used in each example and comparative example was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW- 636, manufactured by Dainippon Screen Mfg. Co., Ltd.), and dried by heating at a temperature of 100° C. for 2 minutes. The appearance of the obtained substrate with the dry film was visually inspected, and the flatness of the photosensitive resin composition with respect to the substrate with the concave-convex structure was evaluated according to the following criteria.
A: It seems that the uneven structure is flattened and the dry film is uniformly formed without unevenness in thickness.
 
B:凹凸構造体が平坦化されているが乾燥膜に膜厚ムラがあるように見える。
C:凹凸構造体が平坦化されておらず凸構造体の一部が平坦化されずに残っており乾燥膜にムラがあるように見える。

B: The concave-convex structure is flattened, but the dry film appears to have thickness unevenness.
C: The uneven structure was not flattened, and part of the convex structure remained without being flattened, and the dry film appeared uneven.
 <乾燥膜を露光する工程における放射光の分光放射線照度測定>
 各実施例および比較例において用いた、乾燥膜を露光する工程における露光機からの放射光について、分光放射照度の値を分光放射照度計(商品名USR45DA、ウシオ電機(株)製)により、1nmの波長分解能で計測した。続けて、波長300nm~450nmの領域における、波長毎の分光放射照度を足し合わせることで、乾燥膜を露光する工程における放射光の波長300nm~450nmの領域における分光放射照度の合算値(A)を算出した。
<Spectral irradiance measurement of radiant light in the process of exposing a dry film>
The spectral irradiance of the light emitted from the exposure machine in the step of exposing the dry film used in each of the examples and comparative examples was measured at 1 nm using a spectral irradiance meter (trade name USR45DA, manufactured by Ushio Inc.). was measured with a wavelength resolution of . Subsequently, by adding up the spectral irradiance for each wavelength in the wavelength range of 300 nm to 450 nm, the total value (A) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light in the step of exposing the dry film is obtained. Calculated.
 <乾燥膜を通過した放射光の分光放射照度測定>
 各実施例および比較例において用いた感光性樹脂組成物を、ガラス基板上にスピンコート(商品名1H-360S、ミカサ(株)製)し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で2分間加熱し乾燥させ、膜厚が1μmとなるように乾燥膜を形成した。各実施例および比較例において用いた、乾燥膜を露光する工程における露光機からの放射光を、前記膜厚1μmの乾燥膜面側から照射し、乾燥膜を通過した後の分光放射照度の値をガラス基板側で放射照度計(商品名USR45DA、ウシオ電機(株)製)により、1nmの波長分解能で計測した。続けて、波長300nm~450nmの領域における、波長毎の分光放射照度を足し合わせることで、膜厚1μmの場合の、乾燥膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(B)を算出した。
<Spectral irradiance measurement of radiant light passing through dry film>
The photosensitive resin composition used in each example and comparative example was spin-coated on a glass substrate (trade name 1H-360S, manufactured by Mikasa Co., Ltd.), and a hot plate (trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.) was applied. (manufactured by Co., Ltd.), and dried by heating at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 1 μm. Value of spectral irradiance after passing through the dry film after irradiating the radiant light from the exposure machine in the step of exposing the dry film from the dry film surface side with a film thickness of 1 μm used in each example and comparative example was measured on the glass substrate side with a wavelength resolution of 1 nm using an irradiance meter (trade name USR45DA, manufactured by Ushio Inc.). Subsequently, by summing the spectral irradiance for each wavelength in the wavelength range of 300 nm to 450 nm, the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiant light that has passed through the dry film when the film thickness is 1 μm is summed. Value (B) was calculated.
 <凹凸構造を有するガラス基板に対する感光性樹脂組成物の現像後の平坦性>
 各実施例および比較例において用いた感光性樹脂組成物を、前述の凹凸構造を有するガラス基板上にスピンコート(商品名1H-360S、ミカサ(株)製)し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で2分間乾燥し乾燥させ、膜厚10μmの乾燥膜を形成した。乾燥膜付きの基板について、フォトマスクを介さずに、各実施例および比較例で設定された、所定の露光機および露光量で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、2.38wt%水酸化テトラメチルアンモニウム水溶液で60秒間シャワー現像し、次いで水で30秒間リンスし、乾燥膜上層の膜厚5μmに相当する部分を現像除去した。現像後の基板について、感光性樹脂組成物による塗膜の膜厚が5μmとなり、凸構造体の膜厚と同じになっていた。得られた現像後の基板について、外観の目視検査と倍率20倍に調整した顕微鏡を用いて、現像後の塗膜を拡大観察し、下記基準により凹凸構造を有する基板に対する感光性樹脂組成物の現像後の平坦性を評価した。
A:凸構造体の膜厚と現像後の塗膜の膜厚が同程度に形成されているように見える。 
B:凸構造体の膜厚と現像後の塗膜の膜厚が同程度に形成されているように見えるが現像後の塗膜の膜厚にムラがある様子が観察される。
C:凸構造体の頂部に現像膜が残っている部分があり凸構造体の膜厚と現像後の塗膜の膜厚が異なる部分が多く観察される。
<Flatness after development of the photosensitive resin composition on a glass substrate having an uneven structure>
The photosensitive resin composition used in each example and comparative example was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW- 636, manufactured by Dainippon Screen Mfg. Co., Ltd.), and dried at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 10 μm. The substrate with the dry film was exposed without a photomask using a predetermined exposure machine and exposure amount set for each example and comparative example. Thereafter, using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 2.38 wt% tetramethylammonium hydroxide aqueous solution for 60 seconds, followed by rinsing with water for 30 seconds. , a portion corresponding to a film thickness of 5 μm on the dry film upper layer was removed by development. With respect to the substrate after development, the film thickness of the coating film of the photosensitive resin composition was 5 μm, which was the same as the film thickness of the convex structures. For the obtained substrate after development, the coating film after development was enlarged using a visual inspection of the appearance and a microscope adjusted to a magnification of 20 times, and the photosensitive resin composition for the substrate having an uneven structure according to the following criteria. Flatness after development was evaluated.
A: It appears that the film thickness of the convex structure and the film thickness of the coating film after development are approximately the same.
B: The film thickness of the convex structure and the film thickness of the coating film after development appear to be approximately the same, but the film thickness of the coating film after development is observed to be uneven.
C: There is a portion where the developed film remains on the top of the convex structure, and many portions where the film thickness of the convex structure and the film thickness of the coating film after development are different are observed.
 <該露光後の乾燥膜を現像する工程における塗膜の膜厚変化量の算出>
 前述の凹凸構造を有するガラス基板上に、各実施例および比較例において用いた感光性樹脂組成物をスピンコート(商品名1H-360S、ミカサ(株)製)し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で2分間乾燥し膜厚10μmの乾燥膜を形成した。膜厚については、ガラス基板半面のパターンが無い領域の乾燥膜について、その中央部分の値を、サーフコム触針式膜厚測定装置を用いて測定した。その後、各実施例および比較例と同様の条件で露光、現像を実施した。現像後の塗膜についてサーフコム触針式膜厚測定装置を用いて膜厚を測定し、現像前後の膜厚変化量を算出した。また、上述の膜厚変化量の算出を、ガラス基板半面のパターンが無い領域の中央部を含む、上下左右の5点で実施し、膜厚変化量の最大値と最小を求めた。さらに、最大値と最小値の差分から現像工程における膜厚変化量のバラツキを評価した。この差分については、1.0μm以下であることが好ましい。
<Calculation of film thickness change amount of the coating film in the step of developing the dry film after the exposure>
The photosensitive resin composition used in each example and comparative example was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW- 636, manufactured by Dainippon Screen Mfg. Co., Ltd.), and dried at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 10 μm. Regarding the film thickness, the value of the central part of the dry film in the pattern-free region on the half surface of the glass substrate was measured using a surfcom stylus type film thickness measuring device. After that, exposure and development were performed under the same conditions as in each example and comparative example. The film thickness of the coating film after development was measured using a Surfcom stylus film thickness measuring device, and the amount of change in film thickness before and after development was calculated. In addition, the above-mentioned film thickness change amount was calculated at five points on the top, bottom, left, and right including the central portion of the pattern-free region on the half surface of the glass substrate, and the maximum and minimum film thickness change amounts were obtained. Furthermore, the variation in film thickness variation in the developing process was evaluated from the difference between the maximum value and the minimum value. This difference is preferably 1.0 μm or less.
 <現像後の塗膜を後露光する工程における放射光の分光放射照度測定>
 各実施例および比較例において用いた、現像後の塗膜を後露光する工程における放射光について、分光放射照度の値を分光放射照度計(商品名USR45DA、ウシオ電機(株)製)により、1nmの波長分解能で計測した。続けて、波長300nm~450nmの領域における、波長毎の分光放射照度を足し合わせることで、現像後の塗膜を後露光する工程における放射光の波長300nm~450nmの領域における分光放射照度の合算値(C)を算出した。
<Spectral irradiance measurement of radiant light in the step of post-exposure of the coating film after development>
The spectral irradiance of the radiant light in the step of post-exposure of the developed coating film used in each example and comparative example was measured at 1 nm using a spectral irradiance meter (trade name USR45DA, manufactured by Ushio Inc.). was measured with a wavelength resolution of . Subsequently, by adding the spectral irradiance for each wavelength in the wavelength range of 300 nm to 450 nm, the total value of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the radiated light in the process of post-exposing the coating film after development. (C) was calculated.
 <現像後の塗膜を通過した放射光の分光放射照度測定>
 各実施例および比較例において用いた感光性樹脂組成物を、ガラス基板上にスピンコート(商品名1H-360S、ミカサ(株)製)し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で2分間加熱し乾燥させ、膜厚を変更した以外は、各実施例および比較例と同じ条件で加工を行い、現像後の塗膜の膜厚が1μmになるように加工した。各実施例および比較例において用いた、現像後の塗膜を後露光する工程における露光機からの放射光を、前記膜厚1μmの現像後の塗膜面側から照射し、現像後の塗膜を通過した後の分光放射照度の値を、ガラス基板側で放射照度計(商品名USR45DA、ウシオ電機(株)製)により、1nmの波長分解能で計測した。続けて、波長300nm~450nmの領域における、波長毎の分光放射照度を足し合わせることで、膜厚1μmの場合の、現像後の塗膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(D)を算出した。
<Spectral irradiance measurement of radiant light passing through the coating film after development>
The photosensitive resin composition used in each example and comparative example was spin-coated on a glass substrate (trade name 1H-360S, manufactured by Mikasa Co., Ltd.), and a hot plate (trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.) was applied. (manufactured by Co., Ltd.) was heated at a temperature of 100 ° C. for 2 minutes and dried, except that the film thickness was changed, processing was performed under the same conditions as in each example and comparative example, and the film thickness of the coating film after development. was processed to be 1 μm. The radiant light from the exposure machine in the step of post-exposure of the developed coating film used in each example and comparative example was irradiated from the side of the developed coating film having a thickness of 1 μm, and the developed coating film The value of the spectral irradiance after passing through was measured on the glass substrate side with an irradiance meter (trade name USR45DA, manufactured by Ushio Inc.) with a wavelength resolution of 1 nm. Subsequently, by summing the spectral irradiance for each wavelength in the wavelength region of 300 nm to 450 nm, the spectral irradiance in the wavelength region of 300 nm to 450 nm of the emitted light that has passed through the coating film after development when the film thickness is 1 μm. A total value (D) of illuminance was calculated.
 <反射率>
 各実施例および比較例において用いた感光性樹脂組成物を、各実施例および比較例で加工した条件のうち、膜厚を変更した以外は同様に加工し、平面のガラス基板上に10μmの硬化膜を作製した。得られた硬化膜を、各実施例および比較例において形成された、凹凸構造を有する基板上に形成された硬化膜付き基板の硬化膜のモデルとし、分光測色計(商品名CM-2600d、コニカミノルタ(株)製)を用いて、硬化膜側からSCIモードで波長550nmにおける反射率を測定した。なお、現像時における塗膜の現像量が大きすぎて、硬化膜を形成するのが困難と判断したものについては、評価を実施していない。
<Reflectance>
The photosensitive resin composition used in each example and comparative example was processed in the same manner as the processing conditions in each example and comparative example except that the film thickness was changed, and cured to 10 μm on a flat glass substrate. A membrane was prepared. The obtained cured film was used as a model of the cured film of the cured film-attached substrate formed on the substrate having the concave-convex structure formed in each example and comparative example. (manufactured by Konica Minolta, Inc.) was used to measure the reflectance at a wavelength of 550 nm in the SCI mode from the cured film side. In addition, evaluation was not carried out for those judged to be difficult to form a cured film because the amount of the coating film developed during development was too large.
 <吸光度(OD値)>
 各実施例および比較例において用いた感光性樹脂組成物を、各実施例および比較例で加工した条件のうち、膜厚を変更した以外は同様に加工し、平面のガラス基板上に10μmの硬化膜を作製した。得られた硬化膜を、各実施例および比較例において形成された、凹凸構造を有する基板上に形成された硬化膜付き基板の硬化膜のモデルとし、上面から光学濃度計(日立ハイテクサイエンス製U-4100)を用いて入射光および透過光の強度を測定し、以下の式(III)より吸光度(OD値)を算出した。なお、現像時における塗膜の現像量が大きく、硬化膜を形成するのが困難と判断したものについては、評価を実施していない。
<Absorbance (OD value)>
The photosensitive resin composition used in each example and comparative example was processed in the same manner as the processing conditions in each example and comparative example except that the film thickness was changed, and cured to 10 μm on a flat glass substrate. A membrane was prepared. The obtained cured film was used as a model of the cured film of the substrate with the cured film formed on the substrate having the concave-convex structure formed in each example and comparative example, and an optical densitometer (U -4100) was used to measure the intensity of incident light and transmitted light, and the absorbance (OD value) was calculated from the following formula (III). In addition, evaluation was not carried out for those judged to be difficult to form a cured film due to a large amount of coating film developed during development.
 OD値 = log10(I0/I) ・・・ 式(III)
 I0 : 入射光強度
 I : 透過光強度。
OD value = log10(I0/I) ... formula (III)
I0: Incident light intensity I: Transmitted light intensity.
 <算術平均表面粗さ>
 各実施例および比較例において用いた感光性樹脂組成物を、各実施例および比較例で加工した条件のうち、得られる硬化膜の膜厚を変更した以外は同様に加工し、平面のガラス基板上に10μmのベタ硬化膜付き基板を作製した。得られた硬化膜を、各実施例および比較例において形成された、凹凸構造を有する基板上に形成された硬化膜付き基板の硬化膜のモデルとし、サーフコム触針式膜厚測定装置を用いて、算術平均表面粗さを求めた。なお、現像時における乾燥膜の現像量が大きすぎて、10μmの硬化膜を形成するのが困難と判断したものについては、評価を実施していない。
<Arithmetic mean surface roughness>
The photosensitive resin composition used in each example and comparative example was processed in the same manner as in the processing conditions in each example and comparative example, except that the thickness of the resulting cured film was changed, and a flat glass substrate A substrate with a solid cured film of 10 μm was prepared thereon. The obtained cured film was used as a model of the cured film of the substrate with the cured film formed on the substrate having the uneven structure, which was formed in each example and comparative example. , the arithmetic mean surface roughness was obtained. In addition, evaluation was not carried out for those judged to be difficult to form a cured film of 10 μm because the amount of dry film developed during development was too large.
 <顔料のメジアン径>
 各実施例および比較例において用いた感光性樹脂組成物について、原料として使用した顔料分散液を石英セルに入れ、サブミクロン粒度分布測定装置(N4-PLUS;べックマン・コールター(株)製)を用いて、レーザー回折法により顔料の粒度分布を測定し、メジアン径を算出した。
<Median diameter of pigment>
For the photosensitive resin composition used in each example and comparative example, the pigment dispersion used as a raw material was placed in a quartz cell, and a submicron particle size distribution measuring device (N4-PLUS; manufactured by Beckman Coulter, Inc.) was measured. was used to measure the particle size distribution of the pigment by a laser diffraction method, and the median diameter was calculated.
 (実施例1)
 前述の凹凸構造を有するガラス基板に、調製例1の感光性樹脂組成物をスピンコート(商品名1H-360S、ミカサ(株)製)し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、塗布膜を形成した。その後、温度100℃で2分間乾燥し、膜厚10μmの乾燥膜を形成した。乾燥膜付き基板を露光する工程の露光機として、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、露光光源と露光対象物の間に、i線付近(365nm)の光を通過する光学フィルター(商品名HB-365、朝日分光(株)製)を配置し、i線付近の光が選択的に放射されるようにした。この時、波長400nm~450nmにおける分光放射照度の合算値は0.05mW/cm2で、波長300nm~400nmにおける分光放射照度の合算値は32.2mW/cm2であった。波長400nm~450nmにおける分光放射照度の合算値が、波長300nm~400nmにおける分光放射照度の合算値の0.16%で、波長400nm以上の光を実質的に含まない放射光で露光を行った。
乾燥膜付き基板に、前述の露光機を用いて、フォトマスクを介さずに、露光量80mJ(波長365nmの分光放射照度から換算)で露光した。その後、露光後の乾燥膜付き基板を自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、2.38wt%水酸化テトラメチルアンモニウム水溶液で60秒間シャワー現像し、次いで水で30秒間リンスした。現像後の基板について、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、露光光源と露光対象物の間に、400nm以上の光を通過する光学フィルター(商品名LU0400、朝日分光(株)製)を配置し、400nm以上の光が選択的に照射されるようにした。現像後の塗膜付き基板にフォトマスクを介さず、100mJ(波長405nmの放射照度から換算)で後露光した。その後、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度170℃で30分間加熱し、凹凸構造を有するガラス基板に、膜厚5μmの硬化膜を有する硬化膜付き基板を作成した。すなわち、上記の条件における露光および現像によって、膜厚10μmの乾燥膜が約5μm分だけ部分的に現像され、その後、硬化することで、膜厚5μmの硬化膜となった。なお、以下の実施例、比較例においても、同様に約5μm分の現像に必要な露光量を予め算定した上で、現像前の露光量を決定している。
(Example 1)
The photosensitive resin composition of Preparation Example 1 was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.) was applied. (manufactured by Co., Ltd.) was used to form a coating film. After that, it was dried at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 10 μm. A parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) is used as an exposure machine in the step of exposing a substrate with a dry film, and an ultra-high pressure mercury lamp is used as a light source. An optical filter (trade name: HB-365, manufactured by Asahi Spectrosco Co., Ltd.) that passes light near the i-line (365 nm) was arranged so that light near the i-line was selectively emitted. At this time, the sum of spectral irradiances at wavelengths of 400 nm to 450 nm was 0.05 mW/cm 2 , and the sum of spectral irradiances at wavelengths of 300 nm to 400 nm was 32.2 mW/cm 2 . Exposure was performed with radiant light in which the sum of spectral irradiances at wavelengths of 400 nm to 450 nm was 0.16% of the sum of spectral irradiances at wavelengths of 300 nm to 400 nm, and which substantially did not contain light with wavelengths of 400 nm or longer.
The dry film-coated substrate was exposed with an exposure amount of 80 mJ (converted from the spectral irradiance at a wavelength of 365 nm) using the aforementioned exposure machine without using a photomask. After that, the substrate with the dried film after exposure was subjected to shower development for 60 seconds with a 2.38 wt % tetramethylammonium hydroxide aqueous solution using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.). and then rinsed with water for 30 seconds. For the substrate after development, a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) is used, an ultra-high pressure mercury lamp is used as the light source, and light of 400 nm or more passes between the exposure light source and the exposure object. An optical filter (trade name: LU0400, manufactured by Asahi Kogyo Co., Ltd.) was placed to selectively irradiate light of 400 nm or more. After development, the coated substrate was post-exposed at 100 mJ (converted from irradiance at a wavelength of 405 nm) without a photomask. Then, using an oven (trade name: IHPS-222, manufactured by ESPEC Co., Ltd.), it is heated in air at a temperature of 170 ° C. for 30 minutes, and a cured film having a thickness of 5 μm is formed on a glass substrate having an uneven structure. I created a board with That is, by exposure and development under the above conditions, a dry film with a thickness of 10 μm was partially developed by about 5 μm, and then cured to obtain a cured film with a thickness of 5 μm. In the following examples and comparative examples, similarly, the exposure amount required for development of about 5 μm is calculated in advance, and then the exposure amount before development is determined.
 (実施例2)
感光樹脂組成物としてP―2を用いて、現像前の露光量を80mJにした以外は実施例1と同様に加工を実施した。
(Example 2)
Processing was carried out in the same manner as in Example 1 except that P-2 was used as the photosensitive resin composition and the exposure amount before development was changed to 80 mJ.
 (実施例3)
感光樹脂組成物としてP―3を用いて、現像前の露光量を100mJにした以外は実施例1と同様に加工を実施した。
(Example 3)
Processing was carried out in the same manner as in Example 1 except that P-3 was used as the photosensitive resin composition and the exposure amount before development was changed to 100 mJ.
 (実施例4)
感光樹脂組成物としてP―4を用いて、現像前の露光量を40mJにした以外は実施例1と同様に加工を実施した。
(Example 4)
Processing was carried out in the same manner as in Example 1 except that P-4 was used as the photosensitive resin composition and the exposure amount before development was changed to 40 mJ.
 (実施例5)
感光樹脂組成物としてP―5を用いて、現像前の露光量を60mJにした以外は実施例1と同様に加工を実施した。
(Example 5)
Processing was carried out in the same manner as in Example 1 except that P-5 was used as the photosensitive resin composition and the exposure amount before development was changed to 60 mJ.
 (実施例6)
感光樹脂組成物としてP―6を用いて、現像前の露光量を100mJにした以外は実施例1と同様に加工を実施した。
(Example 6)
Processing was carried out in the same manner as in Example 1 except that P-6 was used as the photosensitive resin composition and the exposure amount before development was changed to 100 mJ.
 (実施例7)
 前述の凹凸構造を有するガラス基板に、調製例1の感光性樹脂組成物をスピンコート(商品名1H-360S、ミカサ(株)製)し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、塗布膜を形成した。その後、温度100℃で2分間乾燥し、膜厚10μmの乾燥膜を形成した。乾燥膜付き基板を露光する工程の露光機として、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、露光光源と露光対象物の間に、波長を選択する光学フィルターは配置しなかった。乾燥膜付き基板に、前述の露光機を用いて、フォトマスクを介さずに、露光量30mJ(波長365nmの分光放射照度から換算)で露光した。この時、波長400nm~450nmにおける分光放射照度の合算値は43.8mW/cm2で、波長300nm~400nmにおける分光放射照度の合算値は46.8mW/cm2であった。露光後の乾燥膜付き基板を現像する以後の加工については、実施例1と同様の方法で実施した。
(Example 7)
The photosensitive resin composition of Preparation Example 1 was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.) was applied. (manufactured by Co., Ltd.) was used to form a coating film. After that, it was dried at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 10 μm. A parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) is used as an exposure machine in the step of exposing a substrate with a dry film, and an ultra-high pressure mercury lamp is used as a light source. , no wavelength-selective optical filter was placed. The dry film-coated substrate was exposed with an exposure dose of 30 mJ (converted from the spectral irradiance at a wavelength of 365 nm) using the above-described exposure device without using a photomask. At this time, the sum of spectral irradiances at wavelengths of 400 nm to 450 nm was 43.8 mW/cm 2 , and the sum of spectral irradiances at wavelengths of 300 nm to 400 nm was 46.8 mW/cm 2 . The same method as in Example 1 was used for the subsequent processing of developing the substrate with the dried film after exposure.
 (実施例8) 
 前述の凹凸構造を有するガラス基板に、調製例1の感光性樹脂組成物をスピンコート(商品名1H-360S、ミカサ(株)製)し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、塗布膜を形成した。その後、温度100℃で2分間乾燥し、膜厚10μmの乾燥膜を形成した。乾燥膜付き基板を露光する工程の露光機として、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、露光光源と露光対象物の間に、400nm以上の光を通過する光学フィルター(商品名LU0400、朝日分光(株)製)を配置し、400nm以上の光が選択的に照射されるようにした。乾燥膜付き基板に、前述の露光機を用いて、フォトマスクを介さずに、露光量25mJ(波長405nmの分光放射照度から換算)で露光した。この時、波長400nm~450nmにおける分光放射照度の合算値は40.2mW/cm2で、波長300nm~400nmにおける分光放射照度の合算値は0.65mW/cm2であった。露光後の乾燥膜付き基板を現像する以後の加工については、実施例1と同様の方法で実施した。
(Example 8)
The photosensitive resin composition of Preparation Example 1 was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.) was applied. (manufactured by Co., Ltd.) was used to form a coating film. After that, it was dried at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 10 μm. A parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) is used as an exposure machine in the step of exposing a substrate with a dry film, and an ultra-high pressure mercury lamp is used as a light source. , an optical filter (trade name: LU0400, manufactured by Asahi Spectrosco Co., Ltd.) that passes light of 400 nm or longer was arranged so that light of 400 nm or longer was selectively irradiated. The dry film-coated substrate was exposed with an exposure amount of 25 mJ (converted from the spectral irradiance at a wavelength of 405 nm) using the aforementioned exposure machine without using a photomask. At this time, the sum of spectral irradiances at wavelengths of 400 nm to 450 nm was 40.2 mW/cm 2 , and the sum of spectral irradiances at wavelengths of 300 nm to 400 nm was 0.65 mW/cm 2 . The same method as in Example 1 was used for the subsequent processing of developing the substrate with the dried film after exposure.
 (実施例9) 
 前述の凹凸構造を有するガラス基板に、調製例1の感光性樹脂組成物をスピンコート(商品名1H-360S、ミカサ(株)製)し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、塗布膜を形成した。その後、温度100℃で2分間乾燥し、膜厚10μmの乾燥膜を形成した。乾燥膜付き基板を露光する工程の露光機として、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、露光光源と露光対象物の間に、400nm以下の光を通過する光学フィルター(商品名SH0400、朝日分光(株)製)を配置し、400nm以下の光が選択的に照射されるようにした。乾燥膜付き基板に、前述の露光機を用いて、フォトマスクを介さずに、露光量70mJ(波長365nmの分光放射照度から換算)で露光した。露光後の乾燥膜付き基板を現像する以後の加工については、実施例1と同様の方法で実施した。この時、波長400nm~450nmにおける分光放射照度の合算値は0.97mW/cm2で、波長300nm~400nmにおける分光放射照度の合算値は44.9mW/cm2であった。波長400nm~450nmにおける分光放射照度の合算値が、波長300nm~400nmにおける分光放射照度の合算値の2.2%で、波長400nm以上の光を実質的に含まない放射光で露光を行った。露光後の乾燥膜付き基板を現像する以後の加工については、実施例1と同様の方法で実施した。
(Example 9)
The photosensitive resin composition of Preparation Example 1 was spin-coated (trade name 1H-360S, manufactured by Mikasa Co., Ltd.) on the glass substrate having the uneven structure described above, and a hot plate (trade name SCW-636, Dainippon Screen Mfg. Co., Ltd.) was applied. (manufactured by Co., Ltd.) was used to form a coating film. After that, it was dried at a temperature of 100° C. for 2 minutes to form a dry film having a thickness of 10 μm. A parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) is used as an exposure machine in the step of exposing a substrate with a dry film, and an ultra-high pressure mercury lamp is used as a light source. , an optical filter (trade name SH0400, manufactured by Asahi Spectrosco Co., Ltd.) that passes light of 400 nm or less was placed so that light of 400 nm or less was selectively irradiated. The dry film-coated substrate was exposed with an exposure amount of 70 mJ (converted from the spectral irradiance at a wavelength of 365 nm) using the above-mentioned exposure machine without using a photomask. The same method as in Example 1 was used for the subsequent processing of developing the substrate with the dried film after exposure. At this time, the sum of spectral irradiances at wavelengths of 400 nm to 450 nm was 0.97 mW/cm 2 , and the sum of spectral irradiances at wavelengths of 300 nm to 400 nm was 44.9 mW/cm 2 . Exposure was performed with radiant light in which the sum of spectral irradiances at wavelengths of 400 nm to 450 nm was 2.2% of the sum of spectral irradiances at wavelengths of 300 nm to 400 nm, and which substantially did not contain light with a wavelength of 400 nm or longer. The same method as in Example 1 was used for the subsequent processing of developing the substrate with the dried film after exposure.
 (比較例1)
感光樹脂組成物としてP―7を用いて、現像前の露光量15mJにした以外は実施例1と同様に加工を実施した。
(Comparative example 1)
Processing was carried out in the same manner as in Example 1 except that P-7 was used as the photosensitive resin composition and the amount of exposure before development was changed to 15 mJ.
 (比較例2)
感光樹脂組成物としてP―8を用いて、現像前の露光を実施しなかった以外は実施例1と同様に加工を実施した。
(Comparative example 2)
Processing was performed in the same manner as in Example 1 except that P-8 was used as the photosensitive resin composition and no exposure was performed before development.
 (比較例3)
感光樹脂組成物としてP―9を用いて、現像前の露光量を10mJにした以外は実施例1と同様に加工を実施した。 各実施例および比較例の構成と評価結果を表2、3に示す。
(Comparative Example 3)
Processing was carried out in the same manner as in Example 1 except that P-9 was used as the photosensitive resin composition and the exposure amount before development was changed to 10 mJ. Tables 2 and 3 show the configuration and evaluation results of each example and comparative example.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
1:パターン部
2:下地基板
3:感光樹脂組成物の塗布膜
4:感光樹脂組成物の乾燥膜
5:感光樹脂組成物の現像後の塗膜
6:感光樹脂組成物の硬化膜
H:膜厚
1: Pattern part 2: Base substrate 3: Coated film of photosensitive resin composition 4: Dry film of photosensitive resin composition 5: Coated film of photosensitive resin composition after development 6: Cured film of photosensitive resin composition H: Film thickness

Claims (15)

  1.  表面に凹凸構造を有する基板に対して感光性樹脂組成物の塗布膜を設ける工程、該塗布膜を乾燥させて乾燥膜とする工程、該乾燥膜を露光する工程、および該露光後の乾燥膜表面を膜厚方向に部分的に現像させる工程、および現像後の塗膜を加熱して硬化膜にする工程、をこの順に有する硬化膜付き基板の製造方法であって、乾燥膜を露光する工程における放射光の波長300nm~450nmの領域における分光放射照度の合算値(A)と、乾燥膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(B)について、乾燥膜の膜厚1μmあたりの分光放射照度の減衰比率(B)/(A)が、以下関係式(I)を満たすことを特徴とする硬化膜付き基板の製造方法。
     0.001≦(B)/(A)≦0.2・・・・・(I)
    A step of providing a coating film of a photosensitive resin composition on a substrate having an uneven structure on its surface, a step of drying the coating film to form a dry film, a step of exposing the dry film, and a dry film after the exposure. A method for producing a cured film-coated substrate comprising, in order, a step of partially developing a surface in the film thickness direction, and a step of heating the developed coating film to form a cured film, wherein the step of exposing the dry film. For the total spectral irradiance (A) in the wavelength range of 300 nm to 450 nm of the synchrotron radiation in the dry film A method for producing a substrate with a cured film, wherein the attenuation ratio (B)/(A) of spectral irradiance per 1 μm of film thickness satisfies the following relational expression (I).
    0.001≦(B)/(A)≦0.2 (I)
  2.  前記乾燥膜を露光する工程における放射光が波長400nm以上の光を実質的に含まないことを特徴とする請求項1に記載の硬化膜付き基板の製造方法。 The method for producing a cured film-coated substrate according to claim 1, wherein the emitted light in the step of exposing the dry film does not substantially contain light with a wavelength of 400 nm or more.
  3.  前記乾燥膜を露光する工程における放射光について、照度が最大となる波長が365±5nmもしくは385±10nmである光を少なくとも含むことを特徴とする請求項1または2に記載の硬化膜付き基板の製造方法。 3. The substrate with a cured film according to claim 1 or 2, wherein the radiation light in the step of exposing the dry film contains at least light having a wavelength of 365 ± 5 nm or 385 ± 10 nm at which the illuminance is maximum. Production method.
  4.  前記現像後の塗膜を加熱する前に後露光する工程を有する請求項1または2に記載の硬化膜付き基板の製造方法。 The method for producing a cured film-coated substrate according to claim 1 or 2, further comprising a step of post-exposure before heating the developed coating film.
  5.  前記現像後の塗膜を後露光する工程において、現像後の塗膜に後露光する放射光の波長300nm~450nmの領域における分光放射照度の合算値(C)と、該現像後の塗膜を通過した放射光の波長300nm~450nmの領域における分光放射照度の合算値(D)について、乾燥膜厚1μmあたりの減衰比率(D)/(C)が、以下関係式(II)を満たすことを特徴とする、請求項4に記載の硬化膜付き基板の製造方法。
     0.05≦(D)/(C)≦0.99・・・・・(II)
    In the step of post-exposing the developed coating film, the total value (C) of the spectral irradiance in the region of the wavelength of 300 nm to 450 nm of the radiation light post-exposed to the developed coating film, and the developed coating film Regarding the total value (D) of the spectral irradiance in the wavelength range of 300 nm to 450 nm of the transmitted radiant light, the attenuation ratio (D)/(C) per 1 μm of the dry film thickness satisfies the following relational expression (II). 5. The method for producing a cured film-coated substrate according to claim 4.
    0.05≦(D)/(C)≦0.99 (II)
  6.  前記感光性樹脂組成物が(E)樹脂と(F)顔料と(G)ナフトキノンジアジド化合物を含有する請求項1または2に記載の硬化膜付き基板の製造方法。 The method for producing a cured film-coated substrate according to claim 1 or 2, wherein the photosensitive resin composition contains (E) a resin, (F) a pigment, and (G) a naphthoquinonediazide compound.
  7.  前記樹脂(E)がポリシロキサンである請求項6に記載の硬化膜付き基板の製造方法。 The method for producing a cured film-coated substrate according to claim 6, wherein the resin (E) is polysiloxane.
  8.  前記(F)顔料がメジアン径0.1~0.6μmの(F-1)白色顔料である請求項6または7に記載の硬化膜付き基板の製造方法。 The method for producing a cured film-coated substrate according to claim 6 or 7, wherein the (F) pigment is (F-1) a white pigment having a median diameter of 0.1 to 0.6 µm.
  9.  表面に凹凸構造を有する基板において、基板上の凸構造体としてLEDを有する、請求項1または2に記載の硬化膜付き基板の製造方法。 The method for producing a cured film-coated substrate according to claim 1 or 2, wherein the substrate having an uneven structure on its surface has an LED as a convex structure on the substrate.
  10.  請求項1または2のいずれかに記載の方法により製造された硬化膜付き基板。 A substrate with a cured film manufactured by the method according to claim 1 or 2.
  11.  前記硬化膜について、波長365nmにおける膜厚10μmあたりの吸光度が1.0~4.0、波長405nmにおける膜厚10μmあたりの吸光度が0.5~2.0、波長436nmにおける膜厚10μmあたりの吸光度が0.5~2.0、波長450nmにおける膜厚10μmあたりの吸光度が0.5~2.0である請求項10記載の硬化膜付き基板。 The cured film has an absorbance of 1.0 to 4.0 per 10 μm of film thickness at a wavelength of 365 nm, an absorbance of 0.5 to 2.0 per 10 μm of film thickness at a wavelength of 405 nm, and an absorbance of 10 μm of film thickness at a wavelength of 436 nm. is 0.5 to 2.0, and the absorbance per 10 μm film thickness at a wavelength of 450 nm is 0.5 to 2.0.
  12.  前記硬化膜について、波長550nmにおける膜厚10μmあたりの反射率が、20~80%である請求項10記載の硬化膜付き基板。 The cured film-coated substrate according to claim 10, wherein the cured film has a reflectance of 20 to 80% per 10 µm film thickness at a wavelength of 550 nm.
  13.  前記硬化膜について、硬化膜の算術平均表面粗さが0.005μm~0.1μmである請求項10記載の硬化膜付き基板。 The cured film-coated substrate according to claim 10, wherein the cured film has an arithmetic mean surface roughness of 0.005 µm to 0.1 µm.
  14.  請求項10記載の硬化膜付き基板を有する画像表示装置。 An image display device comprising the substrate with a cured film according to claim 10.
  15.  基板上にLEDと遮光性を有する硬化膜を有し、該LEDの側面に遮光性を有する硬化膜が隙間なく接触し一体化し、前記硬化膜の、波長365nmにおける膜厚10μmあたりの吸光度が1.0~4.0、波長405nmにおける膜厚10μmあたりの吸光度が0.5~2.0、波長436nmにおける膜厚10μmあたりの吸光度が0.5~2.0、波長450nmにおける膜厚10μmあたりの吸光度が0.5~2.0、波長550nmにおける膜厚10μmあたりの反射率が20~80%であることを特徴とする硬化膜付き基板。 An LED and a cured film having a light-shielding property are provided on a substrate, and the cured film having a light-shielding property contacts and integrates without gaps on the side surface of the LED, and the absorbance of the cured film per 10 μm of the film thickness at a wavelength of 365 nm is 1. 0 to 4.0, the absorbance per 10 μm film thickness at a wavelength of 405 nm is 0.5 to 2.0, the absorbance per 10 μm film thickness at a wavelength of 436 nm is 0.5 to 2.0, and the absorbance per 10 μm film thickness at a wavelength of 450 nm. and a reflectance of 20 to 80% per 10 μm film thickness at a wavelength of 550 nm.
PCT/JP2022/034903 2021-09-29 2022-09-20 Method for manufacturing cured-film-coated substrate, cured-film-coated substrate, and element comprising cured-film-coated substrate WO2023054046A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280057284.0A CN117859097A (en) 2021-09-29 2022-09-20 Method for manufacturing substrate with cured film, and element provided with substrate with cured film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021158866 2021-09-29
JP2021-158866 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054046A1 true WO2023054046A1 (en) 2023-04-06

Family

ID=85782506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034903 WO2023054046A1 (en) 2021-09-29 2022-09-20 Method for manufacturing cured-film-coated substrate, cured-film-coated substrate, and element comprising cured-film-coated substrate

Country Status (3)

Country Link
CN (1) CN117859097A (en)
TW (1) TW202323396A (en)
WO (1) WO2023054046A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014477A (en) * 2000-06-28 2002-01-18 Nec Corp Method for flattening surface of substrate
WO2020008969A1 (en) * 2018-07-05 2020-01-09 東レ株式会社 Resin composition, light-blocking film, method for producing light-blocking film, and substrate having partitioning wall attached thereto
JP2020205417A (en) * 2019-06-12 2020-12-24 東レ株式会社 Micro led display unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014477A (en) * 2000-06-28 2002-01-18 Nec Corp Method for flattening surface of substrate
WO2020008969A1 (en) * 2018-07-05 2020-01-09 東レ株式会社 Resin composition, light-blocking film, method for producing light-blocking film, and substrate having partitioning wall attached thereto
JP2020205417A (en) * 2019-06-12 2020-12-24 東レ株式会社 Micro led display unit

Also Published As

Publication number Publication date
CN117859097A (en) 2024-04-09
TW202323396A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
KR101688470B1 (en) Positive photosensitive composition
US8338510B2 (en) Photosensitive siloxane composition, cured film formed therefrom and device having the cured film
JP6065665B2 (en) Radiation sensitive resin composition, cured film, light emitting display element, and method for forming light emitting layer
WO2011040248A1 (en) Positive photosensitive resin composition, cured film obtained using same, and optical device
JP7047652B2 (en) Radiation-sensitive resin compositions and their uses
CN104714369A (en) Positive photosensitive compositions
JP4935269B2 (en) Positive photosensitive resin composition
US6723484B1 (en) Positive-working photosensitive resin precursor composition
TWI521308B (en) Photosensitive polysiloxane composition and uses thereof
WO2023054046A1 (en) Method for manufacturing cured-film-coated substrate, cured-film-coated substrate, and element comprising cured-film-coated substrate
JP7063391B2 (en) Photosensitive resin composition, cured film and display device
WO2016148176A1 (en) Positive photosensitive resin composition, cured film, tft substrate, interlayer insulating film, display device, and methods for producing same
JP2005139433A (en) Light resistant resin composition and organic electroluminescent device using the same
KR20110013211A (en) Resin composition for insulating film or surface-protective film for electronic components, method for producing pattern-cured film and electronic components
JP2009175651A (en) Positive photosensitive resin composition, cured layer, protecting layer, insulating layer and semiconductor device and display therewith
JP2005266189A (en) Photosensitive resin composition, and semiconductor device and display element using the same
TWI492976B (en) Photosensitive resin composition for insulating film of display device, insulating film using the same, and display device using the same
JP2006126354A (en) Photosensitive resin composition and method for producing pattern forming resin layer, and semiconductor device and display element containing photosensitive resin composition
JP2020201389A (en) Radiation-sensitive composition, polymer and patterning method
TWI827824B (en) Positive photosensitive resin composition, cured film manufacturing method, cured film, optical element and electronic material
JP4245077B1 (en) Photosensitive resin composition, cured film, protective film, insulating film, and semiconductor device using the same.
WO2023171487A1 (en) Photosensitive resin composition, cured article, display device, and method for producing display device
WO2023054226A1 (en) Photosensitive resin composition, microlens
JP2021152704A (en) Substrate with waveguide, manufacturing method thereof, and display apparatus
TW201523138A (en) Liquid crystal display element and radioactive ray-sensitive resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022561436

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875917

Country of ref document: EP

Kind code of ref document: A1