WO2020008886A1 - 分布光ファイバ振動計測装置および分布光ファイバ振動計測方法 - Google Patents

分布光ファイバ振動計測装置および分布光ファイバ振動計測方法 Download PDF

Info

Publication number
WO2020008886A1
WO2020008886A1 PCT/JP2019/024393 JP2019024393W WO2020008886A1 WO 2020008886 A1 WO2020008886 A1 WO 2020008886A1 JP 2019024393 W JP2019024393 W JP 2019024393W WO 2020008886 A1 WO2020008886 A1 WO 2020008886A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
light
test
under test
Prior art date
Application number
PCT/JP2019/024393
Other languages
English (en)
French (fr)
Inventor
邦弘 戸毛
飯田 大輔
槙悟 大野
脇坂 佳史
真鍋 哲也
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/256,532 priority Critical patent/US11280668B2/en
Publication of WO2020008886A1 publication Critical patent/WO2020008886A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3598Switching means directly located between an optoelectronic element and waveguides, including direct displacement of either the element or the waveguide, e.g. optical pulse generation

Definitions

  • the present invention relates to a distributed optical fiber vibration measuring device that measures an acoustic wave or vibration applied to each position of an optical fiber using the optical fiber as a sensor.
  • the OTDR optical time-domain reflectometer transmits a test light pulse to an optical fiber under test, receives and analyzes Rayleigh backscattered light (hereinafter simply referred to as backscattered light) from the optical fiber under test, and performs analysis.
  • vibration sound waves or vibrations
  • a very slight change in the optical path length that is, distortion occurs in the optical fiber.
  • the vibration frequency is measured from the vibration position and the period of the change.
  • the backscattered light intensity changes randomly with respect to vibration, it does not show a linear response to the vibration intensity applied to the optical fiber.
  • the method of directly extracting the phase component of the backscattered light using the heterodyne detection method or the like since the time change of the phase difference between two points on the optical fiber under test has a nearly linear relationship with the vibration amplitude, There is a feature that the vibration amplitude and vibration frequency applied to the optical fiber can be obtained more precisely.
  • Non-Patent Document 1 discloses a heterodyne detection method in which output light from a light source that emits coherent light is split into test light and local light by an optical directional coupler, and a frequency shift is applied to one of them, and these are balanced detected.
  • a distributed optical fiber vibration measurement method used has been proposed.
  • a beat signal generated by interference between local light and backscattered light is detected as an electric signal.
  • the AC component i AC (t) of the beat signal is the output time t of the coherent light from the light source, the optical angular frequency (hereinafter, the angular frequency is abbreviated as frequency) ⁇ , the frequency shift ⁇ A , the pulse width of the test light pulse W is given by the following (Equation 1) in a one-dimensional scattering model in which a plurality of scatterers are arranged one-dimensionally on an optical fiber.
  • E L, E S is the electric field amplitude of each local light and test light
  • N is the number of scatterers present in the length direction of the test optical fiber
  • i (1 ⁇ i ⁇ N ) is the number of scatterers
  • a i is the reflectance of the scatterer i
  • ⁇ i is the round-trip propagation delay time from the input end of the optical fiber under test to the scatterer i
  • ⁇ (t) is the initial phase of the test light
  • ⁇ FUT ( ⁇ ) is the This is a phase change caused by vibration applied to the test optical fiber, and is a measurement target.
  • the argument ⁇ of the ⁇ FUT indicates the position in the length direction of the optical fiber under test by the propagation time in the optical fiber under test.
  • the AC component is mixed with a sine wave electric signal having the same frequency as the beat frequency, digitized, and then processed into a baseband signal by signal processing.
  • a phase component of the AC component is calculated by creating a sine component and taking an arc tangent of the AC component using a means such as a Hilbert transform or a 90-degree hybrid.
  • the second term ⁇ A ⁇ i is an initial phase term related to an optical frequency or an optical fiber, and unless the optical frequency of the coherent light changes, the second term ⁇ A ⁇ i Is a constant.
  • the third term ⁇ (t ⁇ i ) ⁇ (t) means the phase noise of the light source.
  • the coherence length of the light source is calculated in order to calculate the phase difference between two points on the optical fiber whose delay time ⁇ i is very short.
  • the delay time difference ⁇ at the two points is very small, the difference can be almost ignored in the end.
  • Non-Patent Document 2 instead of using local light, another test light pulse whose frequency is shifted is provided at a later stage after the test light pulse with a time difference provided therebetween, and interference between the backscattered lights of the plurality of test light pulses is caused.
  • the AC component i AC (t) of the beat signal generated in the optical detection receiver is represented by the following (Equation 2).
  • ⁇ i- ( ⁇ + ⁇ A ) ⁇ j is an initial phase term related to the optical frequency or the optical fiber, and unless the optical frequency of the coherent light changes, It is a constant constant over time.
  • ⁇ (t ⁇ i ) ⁇ (t ⁇ j ) means the phase noise of the light source, and the time difference provided between the plurality of test light pulses and the pulse width W are the delay time differences
  • the sum of ⁇ FUT ( ⁇ ) and the optical frequency, which is a constant, and the initial phase term inherent to the optical fiber can be obtained from the AC component of the beat signal subjected to heterodyne detection.
  • the measurement result obtained by repeating this measurement is obtained as a form in which the time-varying ⁇ FUT ( ⁇ ) and the initial phase constant are offset. Therefore, information of only the time-varying ⁇ FUT ( ⁇ ) is extracted, and the analysis of the vibration amplitude and the vibration frequency applied to the optical fiber under test becomes possible.
  • the above-described AC component of the beat signal is treated as a signal.
  • the original signal strength is the length of the optical fiber under test. Since the magnitude is repeated by fading in the direction, the signal strength may be close to or lower than the noise level of the photodetector in the part where the signal strength is small, and calculated in such a part where the signal-to-noise ratio is low.
  • the vibration ⁇ FUT ( ⁇ ) applied to the optical fiber under test has a large phase noise. For example, the noise of the photodetector is detected as if the part is vibrating even if it does not actually vibrate. There is a problem. Noise generated by such fading and causing erroneous detection of vibration is called fading noise.
  • the magnitude of the beat signal strength due to fading is uniquely determined by the optical frequency and the state unique to the optical fiber, so that fading noise is inevitable.
  • the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to receive and analyze backscattered light from an optical fiber under test to analyze sound waves or vibrations applied to each position of the optical fiber. It is an object of the present invention to provide a distributed optical fiber vibration measuring device capable of reducing the effect of fading noise, which is a problem in a distributed optical fiber vibration measuring device for measuring the vibration, and performing highly accurate and highly sensitive vibration measurement.
  • the distributed optical fiber vibration measurement apparatus is configured to inject a first test light pulse into each of a plurality of integrated optical fibers under test
  • a distributed optical fiber vibration measuring apparatus for measuring a vibration applied to each position of the optical fiber under test by heterodyne detection of first backscattered light generated at each point of the plurality of optical fibers under test, Phase constant from two AC components obtained by interfering the first backscattered light generated at each point of the test optical fiber with another light having an optical frequency different from the optical frequency of the first test optical pulse
  • a phase constant difference calculating means for obtaining a difference, and an amplitude of each of two AC components obtained by causing the first backscattered light generated at each point of the plurality of optical fibers under test to interfere with the another light.
  • phase distribution data generating means for selecting phase data of the AC component having a larger amplitude for each point and generating phase distribution data arranged with time, and from the phase constant difference and the phase distribution data.
  • a vibration measuring means for measuring a vibration in the optical fiber under test by specifying an optical path length difference between any two points of the optical fiber under test.
  • the distributed optical fiber vibration measurement device includes a device for testing a first test light pulse and a second test light pulse having an optical frequency different from the optical frequency of the first test light pulse.
  • the vibration applied to each position of the optical fiber under test is detected by heterodyne detection of the first backscattered light and the second backscattered light incident on the optical fiber and generated at each point of the optical fiber under test.
  • the first backscattered light and the second backscattered light are different in optical frequency from the optical frequencies of the first test light pulse and the second test light pulse, respectively.
  • Phase constant difference calculating means for obtaining a phase constant difference from two AC components obtained by causing the first backscattered light and the second backscattered light to interfere with another light.
  • Dried Phase distribution data generation for comparing the amplitudes of the two AC components obtained as a result and selecting phase data of the AC component having the larger amplitude for each point and generating phase distribution data arranged with time.
  • Means, and vibration measuring means for measuring vibration in the optical fiber under test by specifying an optical path length difference between any two points of the optical fiber under test from the phase constant difference and the phase distribution data. It is characterized by.
  • the distributed optical fiber vibration measurement method is configured such that a first test light pulse is incident on each of a plurality of integrated optical fibers under test, and each point of the plurality of optical fibers under test is In the distributed optical fiber vibration measuring method for measuring the vibration applied to each position of the optical fiber under test by heterodyne detection of the first backscattered light generated in the step, the first backscattered light is generated at each point of the plurality of optical fibers under test.
  • the distributed optical fiber vibration measurement method includes a method of testing a first test light pulse and a second test light pulse having an optical frequency different from the optical frequency of the first test light pulse.
  • the vibration applied to each position of the optical fiber under test is detected by heterodyne detection of the first backscattered light and the second backscattered light incident on the optical fiber and generated at each point of the optical fiber under test.
  • the first backscattered light and the second backscattered light may have optical frequencies different from the optical frequencies of the first test light pulse and the second test light pulse, respectively.
  • FIG. 1 is a block diagram illustrating a distributed optical fiber vibration measuring device according to a first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a test light pulse transmission sequence according to the first embodiment of the present invention.
  • 1 is a block diagram illustrating a distributed optical fiber vibration measuring device according to a first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a test light pulse transmission sequence according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a calculation processing flow in the calculation processing device according to the first embodiment of the present invention. It is a block diagram showing a distributed optical fiber vibration measuring device of a second embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a test light pulse transmission sequence according to a second embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a distributed optical fiber vibration measuring device according to a third embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a test light pulse transmission sequence according to a third embodiment of the present invention.
  • FIG. 13 is a block diagram showing a distributed optical fiber vibration measuring device according to a fourth embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a test light pulse transmission sequence according to a fourth embodiment of the present invention.
  • the distributed optical fiber vibration measuring apparatus described in the embodiment is configured to input a first test light pulse obtained by frequency-shifting light from a light source to each of a plurality of integrated optical fibers under test,
  • Phase constant difference calculating means for obtaining a phase constant difference from two AC components obtained by causing the first backscattered light generated at each point of the plurality of optical fibers under test to interfere with the another light; The amplitude of each of two AC components obtained by causing the first backscattered light generated at each point of the plurality of optical fibers under test to interfere with the another light is compared, and the amplitude is large at each point.
  • Phase distribution data generating means for selecting phase data of an AC component and generating phase distribution data arranged over time; and, between the phase constant difference and the phase distribution data, between any two points of the optical fiber under test.
  • Vibration measuring means for measuring the vibration in the optical fiber under test by specifying the optical path length difference.
  • the distributed optical fiber vibration measurement device described in the embodiment includes a first test light pulse whose frequency is shifted by a first frequency and a second test light pulse whose frequency is shifted by a second frequency.
  • the first backscattered light and the second backscattered light generated at each point of the optical fiber under test interfere with another light, and the test is performed by heterodyne detection.
  • two AC components obtained by causing the first backscattered light and the second backscattered light to interfere with the different light respectively.
  • a phase constant difference calculating means for determining a phase constant difference from the first and second back scattered lights, and the amplitude of each of two arbitrary AC components obtained by causing each of the first and second back scattered lights to interfere with the other light.
  • Compare Phase distribution data generating means for selecting phase data of an AC component having a larger amplitude for each point and generating phase distribution data arranged with time; and obtaining the phase distribution data from the phase constant difference and the phase distribution data.
  • Vibration measuring means for measuring the vibration in the optical fiber under test by specifying the optical path length difference between any two points of the test optical fiber.
  • this distributed optical fiber vibration measuring apparatus by selecting and adopting a signal having a high signal strength from two types of signals, the vibration using a signal having a high signal-to-noise ratio is achieved. Since detection is possible, the effect of fading noise is reduced. Heterodyne detection of the interference between the local light and the backscattered light using the backscattered light of the local light and the frequency-shifted test light pulse, or the backscattered light using multiple test light pulses frequency-shifted from each other. In the system for heterodyne detection of the interference, it is possible to measure the distributed optical fiber vibration with high accuracy and high sensitivity while reducing the fading noise. Further, according to the distributed optical fiber vibration measuring device, it is also involved in fading noise, and can contribute to reduction of noise due to optical frequency drift which becomes a noise factor when measuring low frequency vibration.
  • FIG. 3 is a block diagram showing a distributed optical fiber vibration measuring apparatus according to the first embodiment.
  • the distributed optical fiber vibration measuring device of the present embodiment light from a single light source is branched and used as test light and local light, and backscattering obtained by simultaneously inputting test light to two different optical fibers under test. The light is combined with the local light to perform heterodyne detection, and the AC components of the two electric signals are obtained from the light detection unit.
  • Output light from the light source 1 that emits coherent light is split by the splitting element 2 into two systems.
  • One of the branched lights is used as local light, and the other is incident on the optical frequency control means 3 as test light.
  • This optical frequency control means 3 gives a frequency shift ⁇ A between the test light and the local light.
  • the test light from the optical frequency control means 3 is made into a single pulse by the optical pulsing means 5, and is incident on the two optical fibers under test 10 via the optical amplifier 6 and the branching element 8.
  • the optical pulsing means 5 is driven by a driving signal from the pulse signal generating means 7.
  • the backscattered light generated in the optical fiber under test 10 is multiplexed with the local light supplied from the branching element 11 via the optical circulator 9, and then converted into electric signals by the balanced light receiving units 12 and 13. .
  • the balanced light receiving units 12 and 13 can combine the backscattered light with the local light and perform heterodyne detection to obtain an AC component of the two electric signals.
  • Outputs from the balanced optical receiving units 12 and 13 are partially branched and mixed by a mixer 18, after which high-frequency components are removed via a filter 17, converted to digital signals by a digitizing unit 14, and subjected to arithmetic processing.
  • the signal is processed by the means 15.
  • the output signals of the balanced optical receiving units 12 and 13 are input to the digitizing unit 14 similarly to the input to the mixer 18, are converted into digital signals by the digitizing unit 14, and are output by the arithmetic processing unit 15. The signal is processed.
  • the result of the signal processing by the arithmetic processing means 15 is displayed on the display means 16 as appropriate.
  • the two optical fibers under test need to be integrated so that they receive the same vibration.
  • integrated refers to a state in which the two optical fibers under test are physically constrained so that the vibrations are the same. Specifically, for example, it may be bundled with the same coating resin like an optical fiber tape or tightly cabled, or use an optical fiber having a plurality of waveguide structures such as a multi-core optical fiber. You may.
  • the optical frequency control means 3 may be an external modulator having a function of changing an optical frequency according to an electric signal from the driving means 4 serving as a driving source, and an acousto-optic switch or LiNbO3 may be used. It is well known that the used phase modulator, amplitude modulator, and SSB-SC (carrier suppressed optical single sideband) modulator have the function.
  • the optical pulsing means 5 only needs to have a function of pulsing the test light, and it is well known that a high-speed variable attenuator, semiconductor optical amplifier, acousto-optic switch, and the like have the function.
  • the optical pulsing means 5 can also have the function of the optical frequency control means 3 using an acousto-optic switch, or can also have the function of the optical amplifier 6 using a semiconductor optical amplifier.
  • FIG. 4 illustrates a test light pulse transmission sequence according to the present embodiment.
  • the optical frequency of the light from the light source 1 is ⁇
  • a test light pulse having an optical frequency of ⁇ + ⁇ A frequency-shifted by the optical frequency control means 3 is repeatedly pulsed by the optical pulsing means 5 with a pulse width W, After being amplified by the optical amplifier 6 and branched by the branching element 8, it is transmitted to two optical fibers under test 10.
  • the repetition time of the test light pulse is set to be equal to or longer than the maximum length of the round trip propagation delay time of the optical fiber under test 10.
  • the AC components I 1 (t) and I 2 (t) of the beat electric signal output from the two balanced light receiving units 12 and 13 are the output time t and the optical frequency ⁇ of the coherent light from the light source.
  • the frequency shift ⁇ A and the pulse width W of the test light pulse are given by the following (Equation 3) and (Equation 4), respectively.
  • E L, E S is the electric field amplitude of each local light and test light
  • N is the number of scatterers present in the length direction of the test optical fiber
  • i (1 ⁇ i ⁇ N ) is the number of scatterers
  • a i, b i is the reflectance of each scatterer i
  • tau i is the round-trip propagation delay time from the incident end of the test optical fiber to scatterer i
  • theta FUT ( ⁇ ) is a phase change caused by vibration applied to the optical fiber under test, and is an object to be measured.
  • R 1 (t) and R 2 (t) are the backscattering coefficient distributions of the optical fibers under test
  • ⁇ L (t) is the initial position of light at the time of output of the test light pulse and at the time of interference with the local light.
  • the phase difference, or phase noise of the laser is the same between the two optical fibers under test.
  • ⁇ FUT ( ⁇ ) is also the same between the two optical fibers under test according to the preconditions.
  • theta 1 and theta 2 is the phase constant by fading respectively, interference conditions due to fading between each of the test optical fiber, that is since the scattering body forming the optical fiber is different, the different constants from each other.
  • the AC components of (Equation 3) and (Equation 4) are converted into digital signals by the digitizing means 14 and input to the arithmetic processing means 15.
  • the frequency of the AC component is ⁇ A
  • the two balanced light receiving units 12 and 13 and the digitizing unit 14 need a band of 2 ⁇ A or more according to Nyquist's theorem.
  • each of the branched electric signals is combined by the mixer 18.
  • the combined AC signal which is the combined AC signal, is given by the product of the AC components, and is as shown in (Equation 5) below.
  • ⁇ 1,2 ⁇ 1 ⁇ 2 .
  • the spectrum of the combined AC signal has a signal component centered on a double frequency of the frequency shift ⁇ A given by the optical frequency control means 3 and
  • H ⁇ I (t) ⁇ means Hilbert transform of the signal I (t), and is a quadrature signal obtained by shifting I (t) by 90 degrees.
  • the phase constant difference ⁇ 1,2 can be known from the DC component.
  • the amplitude and phase are all obtained from the electrical signals represented by (Equation 3) to (Equation 5) by Hilbert transform of digital signal processing.
  • a 90-degree optical hybrid may be used, or a form in which an analog 90-degree hybrid extracts an analog signal circuit after the balanced optical receiving units 12 and 13 may be used.
  • the synthesized AC signal represented by (Equation 5) may be synthesized by digital signal processing instead of mixing in an analog signal circuit.
  • the mixer 18 and the filter 17 in FIG. 3 can be omitted.
  • the DC component of the combined AC signal is used.
  • a signal component centered on a frequency double the frequency shift ⁇ A is extracted by a high-pass filter, and ⁇ A can be monitored from the signal component.
  • the band of the digitizing means 14 needs to be 4 ⁇ A or more in order to correctly obtain the combined AC signal of (Equation 5).
  • FIG. 5 shows an arithmetic processing flow in the arithmetic processing means of the distributed optical fiber vibration measuring device according to the first embodiment.
  • the amplitudes of the two AC components are further compared, the larger AC component is selected, and the phase data is arrayed with time (S303).
  • S303 which is selected at each point of the optical fiber under test by fading is random, but the selection creates phase data from a signal having a higher signal-to-noise ratio.
  • the phase change amount D n (t) at the same point of the optical fiber under test is calculated (S305). Specifically, the difference from the phase obtained when the previous test light pulse is incident is calculated. At this time, the original data of the phase obtained at the (n-1) th injection and the original data of the phase are calculated. In the case where the AC component is different from the AC component of the phase obtained at the n-th incidence, there is a phase constant difference calculated in S304 between these phases. Therefore, this phase constant difference is further calculated from the amount of phase change. Perform offset processing. Note that FIG.
  • phase change amount D n (t) thus obtained is further added to arbitrary two points adjacent to the optical fiber under test, that is, two phase change amounts D n (t) having a small round-trip propagation delay time difference ⁇ t in S306. The difference between them is finally output as a phase difference change ⁇ D n (t) in an arbitrary section.
  • the phase difference change ⁇ D n (t) obtained by repeatedly injecting the test light pulse becomes the time change of the optical path length difference between any two adjacent points of the optical fiber under test, that is, the time change of the strain amount, which is the vibration.
  • the order in which the processing of S305 is performed after the processing of S305 is described as the arithmetic processing step, but the processing of S305 may be performed after the processing of S306.
  • the processing of S305 may be performed after the processing of S306.
  • a phase difference at any two points is calculated in S306, and a time change of the phase difference is calculated in S305. This can be easily understood from the fact that the values of the phase and the phase constant difference are simply subtracted in the steps of S305 and S306.
  • FIG. 6 is a block diagram showing a distributed optical fiber vibration measuring device according to the second embodiment.
  • the distributed optical fiber vibration measuring apparatus according to the present embodiment performs heterodyne detection of interference between backscattered lights obtained by irradiating two pulses having different optical frequencies and having a time difference as test lights into an optical fiber to be tested by optical detection means. By performing this for two different optical fibers under test, AC components of two electric signals are obtained, and the local light used in the first embodiment is not required. That is, the means for acquiring the AC components of the two electric signals is different from that of the first embodiment, and only the differences in the configuration and signal processing accompanying this change will be described below.
  • the optical frequency control means 3 modulates the optical frequency in two stages at predetermined time intervals. Optical frequency difference at this time is [Delta] [omega A.
  • For the test light two pulses having the first optical frequency ⁇ and the second optical frequency ⁇ + ⁇ A are formed by the optical pulsing means 5, and two pulses under test are passed through the optical amplifier 6 and the branch element 8. The light enters the optical fiber 10.
  • the backscattered light generated in the optical fiber under test 10 is pre-amplified by an optical amplifier 21 and an optical amplifier 22 via an optical circulator 9 and then used to remove spontaneous emission light from the optical amplifiers 21 and 22.
  • the light is converted into an electric signal by optical detection means 25 and 26 via the optical filters 23 and 24.
  • the optical detectors 25 and 26 can combine two backscattered lights having different optical frequencies to perform heterodyne detection, and acquire AC components of the two electric signals from the optical detectors 25 and 26.
  • Some of the two outputs of the optical detection means 25 and 26 are branched and input to a mixer 28, where they are multiplexed by a mixer 28, and after removing high-frequency components through a filter 27, digitalized by a digitizing means 14.
  • the signal is converted into a signal, and the signal is processed by the arithmetic processing unit 15.
  • the two output signals of the optical detection means 25 and 26 are branched and input to the mixer 28 and input to the digitizing means 14 in the same manner. Signal processing.
  • FIG. 7 shows a test light pulse transmission sequence according to the present embodiment.
  • an optical frequency omega of the light from the light source 1 the two test optical pulse having an optical frequency of the frequency-shifted omega + [Delta] [omega A by the optical frequency controlling means 3, are repeatedly transmitted with a predetermined time difference t d.
  • the pulse width of the two test light pulses is the same in W.
  • the repetition time of the test light pulse is set to be equal to or longer than the maximum length round trip propagation delay time of the optical fiber under test 10.
  • the AC components I 1 (t) and I 2 (t) of the beat electric signal output from the optical detection means 25 and 26 are the output time t of the coherent light from the light source 1, the optical frequency ⁇ , and the frequency shift ⁇ .
  • a , and the pulse width W of the test light pulse is given by the following (Equation 8) and (Equation 9), respectively.
  • E S is the electric field amplitude of the test light
  • N is the number of scatterers present in the length direction of the test optical fiber
  • i (1 ⁇ i ⁇ N ) is the number of scatterers
  • a i, b i is The reflectance of each scatterer i
  • ⁇ i is the round-trip propagation delay time from the input end of the optical fiber under test to the scatterer i
  • ⁇ (t) is the initial phase of the test light
  • ⁇ FUT ( ⁇ ) is the optical fiber under test. Is a phase change caused by vibration applied to the object, and is a measurement target.
  • R 1 (t) and R 2 (t) are the backscattering coefficient distributions of each optical fiber under test, and ⁇ FUT ( ⁇ ) is the same between the two optical fibers under test according to the preconditions. is there.
  • ⁇ FUT ( ⁇ ) is the same between the two optical fibers under test according to the preconditions. is there.
  • ⁇ (t ⁇ i ) ⁇ (t) meaning the phase noise of the laser.
  • ⁇ j ) is so small that it can be ignored.
  • theta 1 and theta 2 is the phase constant by fading respectively, interference conditions due to fading between each of the test optical fiber, that is since the scattering body forming the optical fiber is different, the different constants from each other.
  • each of the branched electric signals is synthesized by the mixer 28, and the high frequency component is removed by the filter 27.
  • the combined AC signal combined in the mixer 28 is given by the product of the AC components, and is as follows.
  • the operation processing flow in the operation processing means of the present embodiment is the same as that of the first embodiment except that the operation step of S306 is not necessary as shown in FIG. This is because, in the present embodiment, since a time difference is provided between two test light pulses having different frequencies incident on each optical fiber under test, the phase change in an arbitrary section of the optical fiber under test corresponding to the time difference is This is because each AC component calculated by (Equation 8) and (Equation 9) is already treated as a signal ⁇ FUT ( ⁇ ).
  • the present embodiment measures, as an AC component, interference between a plurality of backscattered lights obtained by providing test light pulses having different frequencies with a time difference therebetween instead of the local light. Also in the embodiment, the vibration measurement can be performed with high accuracy.
  • FIG. 8 is a block diagram showing a distributed optical fiber vibration measuring apparatus according to the third embodiment.
  • the distributed optical fiber vibration measuring apparatus according to the present embodiment splits light from a light source and uses it as test light and local light.
  • the test light (frequency multiplexed) is frequency-shifted by a plurality of different values with respect to the local light frequency.
  • Test light is generated at predetermined time intervals, and the backscattered light obtained by making these test lights incident on one optical fiber under test is combined with the local light to perform heterodyne detection. After digitizing the generated electric signal, frequency separation is performed using digital signal processing to obtain two AC components.
  • test light frequency-multiplexed instead of using two optical fibers under test and two balanced optical receiving means (or two optical detecting means).
  • two optical receiving means or two optical detecting means.
  • Output light from the light source 1 that emits coherent light is split by the splitting element 2 into two systems.
  • One of the branched lights is used as local light, and the other is incident on the optical frequency control means 3 as test light.
  • the optical frequency control means 3 modulates the optical frequency in two stages (frequency shifts by different values) at predetermined time intervals.
  • the optical pulsing means 5 forms two test light pulses, a first test light pulse having an optical frequency ⁇ + ⁇ 1 and a second test light pulse having an optical frequency ⁇ + ⁇ 2 , The light enters the optical fiber under test 10.
  • the backscattered light generated in the optical fiber under test 10 is converted into an electric signal by the balanced light receiving unit 12 through the optical circulator 9, converted into a digital signal by the digitizing unit 14, and converted into a signal by the arithmetic processing unit 15. It is processed.
  • the balanced light receiving means 12 combines the backscattered light obtained by making the test light (the first test light pulse and the second test light pulse) incident on one optical fiber under test with the local light. Heterodyne detection is performed and converted into an electric signal.
  • FIG. 9 shows a test light pulse transmission sequence according to the present embodiment. From the light source 1 and the optical frequency omega + omega 1 that is frequency shifted by the optical frequency controlling unit 3, two test light pulses with omega + omega 2 of the optical frequency, it is repeatedly transmitted with a predetermined time difference t d.
  • the pulse widths of the two test light pulses are the same as W.
  • the repetition time of the test light pulse is set to be equal to or longer than the maximum length round trip propagation delay time of the optical fiber under test 10.
  • the arithmetic processing unit 15 employs a digital filter to convert the beat electric signal into a beat frequency of ⁇ 1 and ⁇ 2. Separate into two signals.
  • the AC components I 1 (t) and I 2 (t) of the two signals separated at this time are the output time t of coherent light from the light source 1 and the optical frequency ⁇ , and the frequency shift is ⁇ 1 and ⁇ 2 ,
  • the pulse width W of the test light pulse is given by the following (Equation 11) and (Equation 12).
  • E L, E S is the electric field amplitude of each local light and test light
  • N is the number of scatterers present in the length direction of the test optical fiber
  • i (1 ⁇ i ⁇ N ) is the number of scatterers
  • a i is the reflectance of the scatterer i
  • ⁇ i is the round-trip propagation delay time from the input end of the optical fiber under test to the scatterer i
  • ⁇ (t) is the initial phase of the test light
  • ⁇ FUT ( ⁇ ) is the This is a phase change caused by vibration applied to the test optical fiber, and is a measurement target.
  • R 1 (t) and R 2 (t) are the backscattering coefficient distributions of the optical fiber under test at ⁇ 1 and ⁇ 2 , respectively.
  • ⁇ L (t) is the initial phase difference of the light at the time of the output of the test light pulse and at the time of the interference with the local light, and means the phase noise of the laser, and is the same as in the first and second embodiments
  • two AC components according to the present embodiment the interference of the local light and the backscattered light by the first test light pulse, the second test light pulses incident provided by the time difference in time t d Means the result of interference between the backscattered light and the local light, and is a signal containing the effects of vibrations temporally different by t d , that is, signals containing ⁇ FUT ( ⁇ ) and ⁇ FUT ( ⁇ t d ), respectively.
  • theta 1 and theta 2 is the phase constant by fading respectively, since the first test light pulses and an optical frequency of the second test light pulse is different, a different constant to each other.
  • the measurable vibration frequency is T
  • t d ⁇ 1 / T holds, that is, if the time difference td is very small with respect to the vibration cycle, ⁇ FUT ( ⁇ ) ⁇ ⁇ FUT ( ⁇ ⁇ t d ).
  • the synthesized AC signal represented by (Equation 13) has a frequency component of the sum ⁇ 1 + ⁇ 2 of the optical frequency shift given to the first test light pulse and the second test light pulse, and a frequency component of the difference ⁇ 1 ⁇ 2 . It can be seen that it is composed of The frequency components of the difference ⁇ 1 ⁇ 2 are extracted using a low-pass filter. As in the first and second embodiments, the phase term is extracted using the quadrature component shifted by 90 degrees, and the optical frequency shift ⁇ 1 given to the first test light pulse and the second test light pulse. Since ⁇ 2 and ⁇ 2 are known, the phase constant difference ⁇ 1 and ⁇ 2 can be known by subtracting the values, and the subsequent processing can be handled in the same manner as in the first embodiment.
  • the first test light pulse and the first test light pulse are set under the condition that
  • the frequency division multiplexed test light is generated, and the backscattered light obtained by simultaneously inputting test lights of different frequencies into one optical fiber under test is referred to as local light.
  • frequency separation is performed from one light detection unit (balanced light reception unit 12) using digital signal processing, and two AC signals are obtained, the vibration measurement is also performed accurately. Can be implemented.
  • the very small conditions compared to the time difference t d is the oscillation period, it may be greater than 2 frequency multiplexing, in this case, increasing as well the number of combinations of synthetic AC signal As a prerequisite, it is possible to implement even three or more frequency multiplexes.
  • the present embodiment can be implemented without using two or more optical fibers under test and light detecting means, the configuration can be simplified as compared with the first embodiment and the second embodiment. It is possible to provide an economical device.
  • FIG. 10 is a block diagram showing a distributed optical fiber vibration measuring apparatus according to the fourth embodiment.
  • the distributed optical fiber vibration measuring apparatus according to the present embodiment uses test light frequency-encoded at predetermined time intervals, and uses an optical detection unit to detect interference between backscattered lights obtained by making the test light incident on the optical fiber under test. After receiving and digitizing, the frequency is separated into two arbitrary AC components by digital signal processing.
  • the difference from the third embodiment is that a signal corresponding to the first test light pulse and the second test light pulse of the third embodiment is frequency-multiplexed and used as a test light pulse. It is. That is, the means for acquiring the AC components of the two electric signals is different from that of the third embodiment.
  • the differences in the configuration and signal processing accompanying this change will be described.
  • the output light from the light source 1 that emits coherent light enters the optical frequency control means 3 as test light.
  • the optical frequency control means 3 modulates the optical frequency in four steps at predetermined time intervals.
  • one test light pulse including the frequency components modulated in four stages by the light pulsing means 5 (third test light pulse, fourth test light pulse, fifth test light pulse, and One test light pulse in which the sixth test light pulse is formed continuously) is formed, and enters the optical fiber under test 10 via the optical amplifier 6.
  • the backscattered light generated in the optical fiber under test 10 is pre-amplified by the optical amplifier 30 via the optical circulator 9 and then transmitted through the optical filter 31 for removing spontaneous emission light from the optical amplifier 30.
  • the signal is converted into an electric signal by the detection unit 32, converted into a digital signal by the digitizing unit 14, and processed by the arithmetic processing unit 15.
  • FIG. 11 shows a test light pulse transmission sequence according to the present embodiment.
  • the light from the light source 1 is modulated in four stages of ⁇ A , ⁇ B , ⁇ A + ⁇ 1 , ⁇ B + ⁇ 2 at a predetermined time interval W.
  • the repetition time of the test light pulse is set to be equal to or longer than the maximum length round trip propagation delay time of the optical fiber under test 10.
  • the optical detecting means 32 (which is the difference frequency component between the omega B and ⁇ B + ⁇ 2) ⁇ 1 and (the difference is the frequency component of the omega A and ⁇ A + ⁇ 1) ⁇ Two beat frequency components are detected.
  • the arithmetic processing means 15 employs a digital filter to convert the beat electric signal to have beat frequencies of ⁇ 1 and ⁇ 2. Separation is performed on two signals.
  • the AC components I 1 (t) and I 2 (t) of the two signals obtained at this time are represented by the following (Equation 14) and (Equation 14) with respect to the output time t of the coherent light from the light source. 15).
  • E S is the electric field amplitude of the test light
  • N is the number of scatterers present in the length direction of the test optical fiber
  • i (1 ⁇ i ⁇ N ) is the number of scatterers
  • a i is the scatterer i
  • ⁇ i is the reciprocal propagation delay time from the input end of the optical fiber under test to the scatterer i
  • ⁇ (t) is the initial phase of the test light
  • ⁇ FUT ( ⁇ ) is the vibration applied to the optical fiber under test.
  • the resulting phase change which is the object of measurement.
  • R 1 (t) and R 2 (t) are the backscattering coefficient distributions of the optical fiber under test at ⁇ A and ⁇ B , respectively.
  • ⁇ (t ⁇ i ) ⁇ meaning the phase noise of the laser.
  • (T ⁇ j ) and ⁇ (t ⁇ W ⁇ i ) ⁇ (t ⁇ W ⁇ j ) are very small and can be ignored.
  • the theta 1 and theta 2 is the phase constant by fading respectively, since the optical frequencies of the two sets of test light pulse is different, a different constant to each other.
  • the measurable vibration frequency is T
  • W ⁇ 1 / T holds, that is, if the time difference W is very small with respect to the vibration period, ⁇ FUT ( ⁇ ) ⁇ ⁇ FUT ( ⁇ W).
  • the composite AC signal represented by (Equation 16) may be composed of a frequency component of the sum ⁇ 1 + ⁇ 2 of the optical frequency shifts given to the two sets of test light pulses and a frequency component of the difference ⁇ 1 ⁇ 2.
  • the frequency components of the difference ⁇ 1 ⁇ 2 are extracted using a low-pass filter.
  • the phase term is extracted using the orthogonal component shifted by 90 degrees, and the optical frequency shifts ⁇ 1 and ⁇ 2 are known. 1 and 2 can be known, and thereafter, can be handled in the same manner as in the second embodiment.
  • the acquisition unit is different, but the optical frequency of the test optical pulse, the optical fiber under test, or both are different under different conditions.
  • the phase constant difference derived from fading is selected by comparing the amplitudes of the two AC components, and this is changed in the time direction, that is, the time of the phase of the AC component selected at each repetition of the incidence of the test light pulse.
  • Vibration measurement can be performed.
  • the phase is calculated from the AC component or the combined AC component. Is a direct factor in increasing the phase error in the process of calculating the phase change with respect to time, and as described in the first embodiment, the high frequency component of the combined AC component is removed.
  • the optical frequency drift can be similarly corrected in other embodiments.
  • the arithmetic processing means 15 can be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Further, components of different embodiments may be appropriately combined.

Abstract

分布光ファイバ振動計測装置において、フェーディング雑音の影響を低減するために、一体化された複数の被試験光ファイバのそれぞれに対して、第1の試験光パルスを入射し、前記複数の被試験光ファイバの各地点で発生した前記第1の後方散乱光を前記第1の試験光パルスの光周波数とは異なる光周波数の別の光と干渉させて得られた2つの交流成分から位相定数差を求める位相定数差算出手段と、前記複数の被試験光ファイバの各地点で発生した前記第1の後方散乱光を前記別の光と干渉させて得られた2つの交流成分それぞれの振幅を比較して、各地点において振幅が大きい方の交流成分の位相データを選択して経時的に配列した位相分布データを作成する位相分布データ作成手段と、前記位相定数差と前記位相分布データから、前記被試験光ファイバの任意の2地点間の光路長差を特定することにより被試験光ファイバにおける振動を計測する振動計測手段と、を設けた。

Description

分布光ファイバ振動計測装置および分布光ファイバ振動計測方法
 本発明は、光ファイバをセンサとして用い、光ファイバの各位置に加わる音波あるいは振動を計測する分布光ファイバ振動計測装置に関する。
 OTDR(Optical time-domain reflectometer)は、被試験光ファイバに試験光パルスを送出し、被試験光ファイバからのレイリー後方散乱光(以後、単に後方散乱光と称する)を受信、解析することで被試験光ファイバの各地点における光の後方散乱光強度分布(以後、OTDR波形と称する)を測定する方法、装置である。
 コヒーレント光を発する光源を用いたOTDRでは、試験光パルスが被試験光ファイバを伝搬する際、試験光パルスの時間内にランダムかつ多数存在する光ファイバ上の各散乱点からの個々の散乱光同士が互いに干渉した結果が信号として取り出されるため、被試験光ファイバの各地点における散乱光強度分布は被試験光ファイバの長さ方向に対してランダムに上下する(以下、フェーディングとする)ようなジグザグな波形となる。この波形は、コヒーレント光の光周波数や光ファイバの状態が変化しない限り、何度測定を行っても同じジグザグ波形が得られる。
 一方で、光ファイバの一部に対して、気体や液体、固体等を通じて音波や振動(以後、まとめて振動とする)が到達すると、光ファイバに極僅かな光路長の変化、すなわちひずみが生じ、該当部分の散乱光強度だけがランダムに変化することで、振動位置や変化の周期から振動周波数が測定される。
 後方散乱光強度は振動に対してランダムに変化するため、光ファイバに加わる振動強度に対して、線形な応答を示すものではない。これに対し、ヘテロダイン検波方式等を用いて後方散乱光の位相成分を直接取り出す方法では、被試験光ファイバ上の2地点間の位相差の時間変化が振動振幅と線形に近い関係を有するため、より精密に光ファイバに加わった振動振幅や振動周波数を求めることができるという特徴がある。
 例えば、非特許文献1では、コヒーレント光を発する光源からの出力光を光方向性結合器によって試験光と局発光に分岐させ、一方に周波数シフトを付与し、これらをバランス検波するヘテロダイン検波方式を用いた分布光ファイバ振動計測方法が提案されている。このヘテロダイン検波方式を用いた測定方法により、局発光と後方散乱光の干渉によって生じるビート信号が電気信号として検出される。このビート信号の交流成分iAC(t)は、光源からのコヒーレント光の出力時間tおよび光角周波数(以下、角周波数を周波数と略記する)ω、周波数シフトΔω、試験光パルスのパルス幅Wに対して、光ファイバ上に複数個の散乱体が一次元に並んでいる一次元散乱モデルにおいて以下の(式1)で与えられる。
Figure JPOXMLDOC01-appb-M000001
 ここで、E、Eはそれぞれ局発光および試験光の電界振幅、Nは被試験光ファイバの長さ方向に存在する散乱体の数、i(1≦i≦N)は散乱体の番号、aは散乱体iの反射率、τは被試験光ファイバの入射端から散乱体iまでの往復伝搬遅延時間、θ(t)は試験光の初期位相、θFUT(τ)は被試験光ファイバに加わる振動によって生じる位相変化であり、測定対象である。また、θFUTの引数τは、被試験光ファイバの長さ方向の位置を被試験光ファイバ内の伝搬時間で表したものである。
 交流成分はビート周波数と同じ周波数を有する正弦波電気信号とミキシングして数値化処理後に信号処理にてベースバンド信号に処理される。交流成分をヒルベルト変換または90度ハイブリッドなどの手段を用いてsin成分を作成して逆正接をとることで交流成分の位相成分が算出される。上記(式1)において、cos項の位相成分に着目すると、第2項Δωτは光周波数や光ファイバ固有に関係する初期位相項であり、コヒーレント光の光周波数が変化しない限り、時間に対して一定の定数である。第3項θ(t-τ)-θ(t)は光源の位相雑音を意味するが、遅延時間τiが非常に近い光ファイバ上の2地点の位相差を算出するため、光源のコヒーレンス長に対して2地点の遅延時間差τが非常に小さい場合、最終的にはほぼ無視できる。
 また、非特許文献2では、局発光を用いる代わりに試験光パルスの後段に周波数シフトされた別の試験光パルスを時間差を設けて入射し、これら複数の試験光パルスの後方散乱光同士の干渉をヘテロダイン検波する手法が提案されている。この手法では、光検波受信器で生じるビート信号の交流成分iAC(t)は、下記(式2)のように表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、同様にcosの中の位相成分に着目すると、ωτ-(ω+Δω)τが光周波数や光ファイバ固有に関係する初期位相項であり、コヒーレント光の光周波数が変化しない限り、時間に対して一定の定数となる。θ(t-τ)-θ(t-τ)は、光源の位相雑音を意味し、複数の試験光パルスに設けた時間差やパルス幅Wが光源のコヒーレンス長に対して遅延時間差|τ-τ|が非常に小さく、実際にはほぼ無視できる。
 以上のように、前述のいずれの手法においても、ヘテロダイン検波されるビート信号の交流成分からθFUT(τ)と定数である光周波数や光ファイバ固有に関係する初期位相項の和が得られ、これを繰り返し測定行うことで得られる測定結果は、時間的に変化するθFUT(τ)と初期位相定数がオフセットされた形として得られる。したがって時間的に変化するθFUT(τ)のみの情報が抽出され、被試験光ファイバに加わった振動振幅や振動周波数等の解析が可能となる。
G. Tu et al, "The development of an Φ-OTDR system for quantitative vibration measurement", Photonics Technology letters, Vol.27, No.10, pp.1349-1352 (2015) A. E. Alekseev et al, "A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal", Laser Physics, Vol.25, No.6 (2015) K. Shimizu et al, "Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components", Journal of Lightwave Technology, Vol.10, No.7, pp.982-987 (1992)
 しかしながら、非特許文献1および2のいずれの手段においても、前述のビート信号の交流成分が信号として扱われるが、図1に示すように、その元となる信号強度が被試験光ファイバの長さ方向に対してフェーディングにより大小を繰り返すために、信号強度が小さい部分については、光検出器の雑音レベルに近い、あるいはそれを下回る場合があり、このような信号対雑音比が低い部分において算出される被試験光ファイバに加わる振動θFUT(τ)は、位相ノイズが大きく、例えば光検出器の雑音によって実際当該部分が振動していなくてもあたかも振動しているかのように検知されてしまうという問題がある。このようなフェーディングによって生じ、振動の誤検知の原因となる雑音は、フェーディング雑音と呼ばれている。
 フェーディングによるビート信号強度の大小は、光周波数や光ファイバ固有の状態によって一意的に決まるため、フェーディング雑音の発生は不可避である。フェーディングによる問題を解決するために、例えば非特許文献3に記載されているように、繰り返し入射する試験光パルスの光周波数を毎回変化させる手段もあるが、複数回のビート信号を平均化して用いることとなり、結果として振動の時間的サンプリング周波数を低下させてしまうという問題がある。
 本発明は、上記従来の問題に鑑みなされたものであって、本発明の課題は、被試験光ファイバからの後方散乱光を受信、解析することにより、光ファイバの各位置に加わる音波あるいは振動を計測する分布光ファイバ振動計測装置において問題となるフェーディング雑音の影響を低減することができ、高精度かつ高感度な振動計測ができる分布光ファイバ振動計測装置を提供することにある。
 上記の課題を解決するために、一実施形態に記載の分布光ファイバ振動計測装置は、一体化された複数の被試験光ファイバのそれぞれに対して、第1の試験光パルスを入射し、前記複数の被試験光ファイバの各地点で発生した第1の後方散乱光をヘテロダイン検波することにより前記被試験光ファイバの各位置に加わる振動を計測する分布光ファイバ振動計測装置において、前記複数の被試験光ファイバの各地点で発生した前記第1の後方散乱光を前記第1の試験光パルスの光周波数とは異なる光周波数の別の光と干渉させて得られた2つの交流成分から位相定数差を求める位相定数差算出手段と、前記複数の被試験光ファイバの各地点で発生した前記第1の後方散乱光を前記別の光と干渉させて得られた2つの交流成分それぞれの振幅を比較して、各地点毎に振幅が大きい方の交流成分の位相データを選択して経時的に配列した位相分布データを作成する位相分布データ作成手段と、前記位相定数差と前記位相分布データから、前記被試験光ファイバの任意の2地点間の光路長差を特定することにより被試験光ファイバにおける振動を計測する振動計測手段とを備えることを特徴とする。
 他の一実施形態に記載の分布光ファイバ振動計測装置は、第1の試験光パルスと、前記第1の試験光パルスの光周波数とは異なる光周波数の第2の試験光パルスとを被試験光ファイバに対して入射し、前記被試験光ファイバの各地点で発生した第1の後方散乱光および第2の後方散乱光をヘテロダイン検波することにより前記被試験光ファイバの各位置に加わる振動を計測する分布光ファイバ振動計測装置において、前記第1の後方散乱光および前記第2の後方散乱光をそれぞれ前記第1の試験光パルスおよび前記第2の試験光パルスの光周波数とは異なる光周波数の別の光と干渉させて得られた2つの交流成分から位相定数差を求める位相定数差算出手段と、前記第1の後方散乱光および前記第2の後方散乱光をそれぞれ前記別の光と干渉させて得られた2つの交流成分それぞれの振幅を比較して、各地点毎に振幅が大きい方の交流成分の位相データを選択して経時的に配列した位相分布データを作成する位相分布データ作成手段と、前記位相定数差と前記位相分布データから、前記被試験光ファイバの任意の2地点間の光路長差を特定することにより被試験光ファイバにおける振動を計測する振動計測手段とを備えることを特徴とする。
 一実施形態に記載の分布光ファイバ振動計測方法は、一体化された複数の被試験光ファイバのそれぞれに対して、第1の試験光パルスを入射し、前記複数の被試験光ファイバの各地点で発生した第1の後方散乱光をヘテロダイン検波することにより前記被試験光ファイバの各位置に加わる振動を計測する分布光ファイバ振動計測方法において、前記複数の被試験光ファイバの各地点で発生した前記第1の後方散乱光を前記第1の試験光パルスの光周波数とは異なる光周波数の別の光と干渉させて得られた2つの交流成分から位相定数差を求める位相定数差算出ステップと、前記複数の被試験光ファイバの各地点で発生した前記第1の後方散乱光を前記別の光と干渉させて得られた2つの交流成分それぞれの振幅を比較して、各地点毎に振幅が大きい方の交流成分の位相データを選択して経時的に配列した位相分布データを作成する位相分布データ作成ステップと、前記位相定数差と前記位相分布データから、前記被試験光ファイバの任意の2地点間の光路長差を特定することにより被試験光ファイバにおける振動を計測する振動計測ステップとを備えることを特徴とする。
 他の一実施形態に記載の分布光ファイバ振動計測方法は、第1の試験光パルスと、前記第1の試験光パルスの光周波数とは異なる光周波数の第2の試験光パルスとを被試験光ファイバに対して入射し、前記被試験光ファイバの各地点で発生した第1の後方散乱光および第2の後方散乱光をヘテロダイン検波することにより前記被試験光ファイバの各位置に加わる振動を計測する分布光ファイバ振動計測方法において、前記第1の後方散乱光および前記第2の後方散乱光をそれぞれ前記第1の試験光パルスおよび前記第2の試験光パルスの光周波数とは異なる光周波数の別の光と干渉させて得られた2つの交流成分から位相定数差を求める位相定数差算出ステップと、前記第1の後方散乱光および前記第2の後方散乱光をそれぞれ前記別の光と干渉させて得られた2つの交流成分それぞれの振幅を比較して、各地点毎に振幅が大きい方の交流成分の位相データを選択して経時的に配列した位相分布データを作成する位相分布データ作成ステップと、前記位相定数差と前記位相分布データから、前記被試験光ファイバの任意の2地点間の光路長差を特定することにより被試験光ファイバにおける振動を計測する振動計測ステップとを備えることを特徴とする。
本発明の第1の実施形態の分布光ファイバ振動計測装置を示すブロック構成図である。 本発明の第1の実施形態に係る試験光パルス送出シーケンスを示す図である。 本発明の第1の実施形態の分布光ファイバ振動計測装置を示すブロック構成図である。 本発明の第1の実施形態に係る試験光パルス送出シーケンスを示す図である。 本発明の第1の実施形態に係る演算処理装置における演算処理フローを示す図である。 本発明の第2の実施形態の分布光ファイバ振動計測装置を示すブロック構成図である。 本発明の第2の実施形態に係る試験光パルス送出シーケンスを示す図である。 本発明の第3の実施形態の分布光ファイバ振動計測装置を示すブロック構成図である。 本発明の第3の実施形態に係る試験光パルス送出シーケンスを示す図である。 本発明の第4の実施形態の分布光ファイバ振動計測装置を示すブロック構成図である。 本発明の第4の実施形態に係る試験光パルス送出シーケンスを示す図である。
 以下、本発明の実施の形態について、詳細に説明する。
 実施形態で説明する分布光ファイバ振動計測装置は一体化された複数の被試験光ファイバのそれぞれに対して、光源からの光を周波数シフトさせた第1の試験光パルスを入射し、前記複数の被試験光ファイバの各地点で発生した第1の後方散乱光を、別の光と干渉させてヘテロダイン検波により前記被試験光ファイバの各位置に加わる振動を計測する分布光ファイバ振動計測装置において、前記複数の被試験光ファイバの各地点で発生した前記第1の後方散乱光を前記別の光と干渉させて得られた2つの交流成分から位相定数差を求める位相定数差算出手段と、前記複数の被試験光ファイバの各地点で発生した前記第1の後方散乱光を前記別の光と干渉させて得られた2つの交流成分それぞれの振幅を比較して、各地点毎に振幅が大きい方の交流成分の位相データを選択して経時的に配列した位相分布データを作成する位相分布データ作成手段と、前記位相定数差と前記位相分布データから、前記被試験光ファイバの任意の2地点間の光路長差を特定することにより被試験光ファイバにおける振動を計測する振動計測手段とを備える。
 また、実施形態で説明する分布光ファイバ振動計測装置は、光源からの光を、第1の周波数シフトさせた第1の試験光パルスと、第2の周波数シフトさせた第2の試験光パルスとを被試験光ファイバに対して入射し、前記被試験光ファイバの各地点で発生した第1の後方散乱光および第2の後方散乱光を、別の光と干渉させてヘテロダイン検波により前記被試験光ファイバの各位置に加わる振動を計測する分布光ファイバ振動計測装置において、前記第1の後方散乱光および第2の後方散乱光をそれぞれ前記別の光と干渉させて得られた2つの交流成分から位相定数差を求める位相定数差算出手段と、前記第1の後方散乱光および第2の後方散乱光をそれぞれ前記別の光と干渉させて得られた任意の2つの交流成分それぞれの振幅を比較して、各地点毎に振幅が大きい方の交流成分の位相データを選択して経時的に配列した位相分布データを作成する位相分布データ作成手段と、前記位相定数差と前記位相分布データから、前記被試験光ファイバの任意の2地点間の光路長差を特定することにより被試験光ファイバにおける振動を計測する振動計測手段とを備えることを特徴とする。
 この分布光ファイバ振動計測装置によれば、図2に示すように、2種類の信号のうちの信号強度の高いものを選択して採用することにより、信号対雑音比の高い信号を用いて振動検出ができるため、フェーディング雑音の影響が少なくなる。局発光と周波数シフトさせた試験光パルスの後方散乱光を利用し、局発光と後方散乱光の干渉をヘテロダイン検波する方式、あるいは、互いに周波数シフトした複数の試験光パルスを用いて後方散乱光同士の干渉をヘテロダイン検波する方式において、フェーディング雑音を低減した高精度かつ高感度な分布光ファイバ振動測定が可能となる。さらにこの分布光ファイバ振動計測装置によれば、フェーディング雑音にも関与し、低周波の振動を測定する際に雑音要因となる光周波数ドリフトによる雑音の低減にも寄与することができる。
(第1の実施形態)
 図3は第1の実施形態の分布光ファイバ振動計測装置を示すブロック構成図である。本実施形態の分布光ファイバ振動計測装置では、単一光源からの光を分岐して試験光と局発光として用い、2本の異なる被試験光ファイバに同時に試験光を入射して得られる後方散乱光を局発光と合波してヘテロダイン検波を行い、光検出手段から2つの電気信号の交流成分を取得する。
 コヒーレント光を発する光源1からの出力光は分岐素子2で2系統に分岐される。分岐された光の一方は局発光として用いられ、他方は試験光として光周波数制御手段3に入射される。この光周波数制御手段3は、試験光と局発光の間に周波数シフトΔωを付与する。
 光周波数制御手段3からの試験光は光パルス化手段5で単一パルス化され、光増幅器6、分岐素子8を介して2本の被試験光ファイバ10に入射される。光パルス化手段5はパルス信号発生手段7からの駆動信号により駆動される。被試験光ファイバ10で発生した後方散乱光は光サーキュレータ9を介して、分岐素子11から供給される局発光と合波された後に、バランス型光受信手段12、13で電気信号に変換される。バランス型光受信手段12、13は、後方散乱光を局発光と合波してヘテロダイン検波を行い、2つの電気信号の交流成分を取得することができる。
 バランス型光受信手段12、13からの出力は、一部が分岐されてミキサ18でミキシングした後にフィルタ17を介して高周波成分を除去した後に、数値化手段14でデジタル信号に変換され、演算処理手段15にて信号処理される。また、バランス型光受信手段12、13の出力信号は、ミキサ18への入力と同様に数値化手段14に入力されており、数値化手段14でデジタル信号に変換され、演算処理手段15にて信号処理される。
 演算処理手段15で信号処理された結果は、表示手段16において適宜表示される。
 ここで、2本の被試験光ファイバは、受ける振動が同じになるように一体化されている必要がある。一体化とは、2本の被試験光ファイバの受ける振動が同じとなるように物理的に拘束された状態である。具体的には、例えば光ファイバテープのように同じ被覆樹脂でバンドル化されているもしくはタイトにケーブル化されていてもよく、あるいはマルチコア光ファイバのように複数の導波構造を有する光ファイバを用いてもよい。
 ここで、光周波数制御手段3は、具体的には駆動源となる駆動手段4からの電気信号に応じて光周波数を変化させる機能をもつ外部変調器であればよく、音響光学スイッチやLiNbO3を用いた位相変調器や振幅変調器、SSB-SC(搬送波抑圧光単側波帯)変調器がその機能を持つことは良く知られている。
 光パルス化手段5は、試験光をパルス化する機能があればよく、高速な可変減衰器、半導体光増幅器、音響光学スイッチなどがその機能を持つことは良く知られている。なお、光パルス化手段5は、音響光学スイッチを用いて、光周波数制御手段3の機能を兼ねることや、半導体光増幅器を用いて、光増幅器6の機能を兼ねることも可能である。
 図4は、本実施例に係る試験光パルスの送出シーケンスを示したものである。光源1からの光の光周波数はωであり、光周波数制御手段3によって周波数シフトされたω+Δωの光周波数を有する試験光パルスが、光パルス化手段5によりパルス幅Wで繰り返しパルス化され、光増幅器6で増幅され、分岐素子8で分岐された後、2本の被試験光ファイバ10へと送出されている。
 試験光パルスの繰り返し時間は、被試験光ファイバ10の最大長さの往復伝搬遅延時間と同じかそれよりも長く設定されている。
 ここで、2つのバランス型光受信手段12、13から出力されるビート電気信号の交流成分I(t)とI(t)は、光源からのコヒーレント光の出力時間tおよび光周波数ω、周波数シフトΔω、試験光パルスのパルス幅Wに対して、それぞれ以下の(式3)、(式4)で与えられる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここで、E、Eはそれぞれ局発光および試験光の電界振幅、Nは被試験光ファイバの長さ方向に存在する散乱体の数、i(1≦i≦N)は散乱体の番号、a、bは各散乱体iの反射率、τは被試験光ファイバの入射端から散乱体iまでの往復伝搬遅延時間、θ(t)は試験光の初期位相、θFUT(τ)は被試験光ファイバに加わる振動によって生じる位相変化であり、測定対象である。R(t)、R(t)は各々の被試験光ファイバの後方散乱係数分布であり、Δθ(t)は試験光パルスの出力時と局発光との干渉時における光の初期位相差、すなわちレーザの位相雑音を意味し、2本の被試験光ファイバの間で同じである。θFUT(τ)は前提条件により、同様に2本の被試験光ファイバの間で同じである。θおよびθはそれぞれフェーディングによる位相定数であり、各被試験光ファイバの間でフェーディングによる干渉条件、つまり光ファイバを形成する散乱体が異なるため、互いに異なる定数となる。
 (式3)および(式4)の交流成分は、数値化手段14によりデジタル信号に変換され、演算処理手段15に入力される。なお、本実施形態では、交流成分の周波数はΔωであり、2つのバランス型光受信手段12、13や数値化手段14は、ナイキストの定理より、2Δω以上の帯域が必要となる。
 2つのバランス型光受信手段12、13の後段の数値化手段14による処理の前において、分岐された各々の電気信号は、ミキサ18で合成される。この合成された交流信号である合成交流信号は、交流成分の積で与えられ、下記(式5)のようになる。
Figure JPOXMLDOC01-appb-M000005
 ここで、φ1,2=θ-θである。合成交流信号のスペクトルは、(式5)を見てもわかるように、光周波数制御手段3で付与した周波数シフトΔωの倍周波数を中心とする信号成分と直流付近に|θ-θ|の位相定数差に応じて振幅変調された信号成分から構成されていることがわかる。この直流成分は、ローパスフィルタ(フィルタ17)を用いて容易にΔωの倍周波数を中心とする信号成分と分離可能である。
 次に、i(i=1,2)を交流成分の番号と置くと、(式3)および(式4)に示す2つの交流成分からその各々に対する振幅A(t)および位相P(t)は以下の(式6)、(式7)で与えられる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ここで、H{I(t)}は信号I(t)のヒルベルト変換を意味し、I(t)を90度位相シフトさせた直交信号である。同様に、合成交流信号の直流成分をヒルベルト変換することで、直流成分から位相定数差φ1,2を知ることが出来る。
 なお、上記の説明では、(式3)~(式5)で表される電気信号から全てデジタル信号処理のヒルベルト変換によって振幅および位相を取得しているが、例えばバランス型光受信手段12、13の代わりに光90度ハイブリッドを用いてもよく、または、バランス型光受信手段12、13の後段において電気90度ハイブリッドによってアナログ信号回路により抽出される形態でもよい。
 また、(式5)で示された合成交流信号は、アナログ信号回路のミキシングの代わりにデジタル信号処理にて合成されてもよい。この場合、図3におけるミキサ18とフィルタ17は省略することができる。
 さらに、上記の説明では、合成交流信号の直流成分を用いたが、周波数シフトΔωの倍周波数を中心とする信号成分をハイパスフィルタによって取り出し、この信号成分からΔωのモニタリングが可能である。このことは、モニタリングしたΔωを用いて、(式7)の処理に適用することで、固定の周波数シフトΔωを前提とする代わりに、光周波数制御手段3において周波数ドリフトが存在し、Δωがゆるやかに変化する場合にその補償にも用いることができる。この場合には、(式5)の合成交流信号を正しく取得するために数値化手段14の帯域は4Δω以上が必要となることに注意が必要である。
 図5は、第1の実施形態に係る分布光ファイバ振動計測装置の演算処理手段における演算処理フローを示したものである。
 数値化手段14における電気信号のサンプリング(S301)後に、(式3)~(式7)の処理によって、各交流成分毎に振幅と位相分布データが作成される(S302)とともに、合成交流成分から位相定数差φの分布データが作成される(S304)。
 S302の処理の後、さらに、2つの交流成分の振幅を比較し、大きい方の交流成分を選択し、その位相データを経時的に配列化する(S303)。S303では、フェーディングにより、被試験光ファイバの各地点においてどちらが選択されるかはランダムであるが、選択により、より信号対雑音比が高い信号から位相データが作成される。
 S303、S304の処理後、被試験光ファイバの同じ地点、すなわち同じ往復伝搬遅延時間における位相の変化量D(t)を算出する(S305)。具体的には、1回前の試験光パルスを入射した際に、得られた位相との差分を計算するが、この際、(n-1)回目の入射で得られた位相の元データとなる交流成分とn回目の入射で得られた位相の交流成分が異なる場合には、それらの位相間にはS304で算出した位相定数差があるため、この位相定数差をさらに位相の変化量から相殺する処理を行う。なお、図5には、位相定数差φとしてφ1,2=θ-θを用いた場合の数式を示しているが、位相定数差φとしてφ2,1=θ-θを用いた場合には、φを加減算する際の符号を逆にすればよい。こうして得られた位相変化量D(t)は、さらにS306において、被試験光ファイバの隣接する任意の2地点、すなわち微小な往復伝搬遅延時間差Δtを有する2つの位相変化量D(t)同士の差分が、任意区間における位相差変化ΔD(t)として最終的に出力される。試験光パルスを繰り返し入射することで得られる位相差変化ΔD(t)が被試験光ファイバの隣接する任意の2地点間の光路長差の時間変化、すなわちひずみ量の時間変化となり、これが振動に対応する。
 なお、本実施形態では、前記演算処理ステップとしてS305の処理の後S306の処理を実行する順序で説明をしたが、S306の処理の後にS305の処理を実行してもよい。具体的には、S303において信号対雑音比が高い位相データを配列化した後に、S306において任意の2地点の位相差を算出し、S305においてその位相差の時間変化を算出する方法である。これはS305およびS306のステップでは、位相および位相定数差の値を単純に減算計算しているに過ぎないことから容易に理解できる。
 以上のように、2つの異なる交流成分を2本の被試験光ファイバから取得することで、位相を算出する元信号となる交流成分が1回前の位相を算出する信号と異なる場合に発生する位相定数差を合成交流成分から求めて補償することにより、より信号対雑音比が高いデータを選択できるようになり、高精度な振動計測が可能となる。なお、本実施例では、2本の被試験光ファイバの場合について説明したが、複数の電気信号を取得する受信構成があれば、合成交流信号の組み合わせ数も同様に増やすことを前提として、2本以上の被試験光ファイバでも実施が可能である。
(第2の実施形態)
 図6は第2の実施形態の分布光ファイバ振動計測装置を示すブロック構成図である。本実施形態の分布光ファイバ振動計測装置は、試験光として、光周波数が異なり時間差を有する2つのパルスを被試験光ファイバに入射して得られる後方散乱光同士の干渉を光検波手段でヘテロダイン検波し、これを2本の異なる被試験光ファイバに対して行うことで2つの電気信号の交流成分を取得するものであり、第1の実施形態で用いた局発光は必要としないものである。すなわち、2つの電気信号の交流成分の取得手段が第1の実施形態と異なるものであって、以降はこの変更に伴う構成および信号処理の異なる点のみについて述べる。
 コヒーレント光を発する光源1からの出力光は試験光として光周波数制御手段3に入射される。この光周波数制御手段3は、所定の時間間隔で光周波数を2段階に変調する。この時の光周波数差はΔωである。試験光に対して、光パルス化手段5で第1の光周波数ωおよび第2の光周波数ω+Δωを有する2つのパルスを形成し、光増幅器6および分岐素子8を介して2本の被試験光ファイバ10に入射する。
 前記被試験光ファイバ10で発生した後方散乱光は光サーキュレータ9を介して、光増幅器21および光増幅器22で前置増幅された後に、前記光増幅器21、22の自然放出光を除去するための光フィルタ23および24を介して、光検波手段25、26で電気信号に変換される。光検波手段25、26は、互いに光周波数が異なる2つの後方散乱光を合波してヘテロダイン検波を行い、光検波手段25、26から2つの電気信号の交流成分を取得することができる。
 光検波手段25、26の2つの出力の一部は分岐されてミキサ28に入力され、ミキサ28で合波された後、フィルタ27を介して高周波成分を除去した後に、数値化手段14でデジタル信号に変換され、演算処理手段15にて信号処理される。また、光検波手段25、26の2つの出力信号は、分岐されミキサ28へ入力すると同様に数値化手段14に入力されており、数値化手段14でデジタル信号に変換され、演算処理手段15にて信号処理される。
 図7は、本実施形態に係る試験光パルスの送出シーケンスを示したものである。光源1からの光の光周波数ωと、光周波数制御手段3によって周波数シフトされたω+Δωの光周波数を有する2つの試験光パルスが、所定の時間差tを有して繰り返し送出されている。2つの試験光パルスのパルス幅はWで同じである。試験光パルスの繰り返し時間は、被試験光ファイバ10の最大長さの往復伝搬遅延時間と同じかそれよりも長く設定されている。
 ここで、光検波手段25、26から出力されるビート電気信号の交流成分I(t)とI(t)は、光源1からのコヒーレント光の出力時間tおよび光周波数ω、周波数シフトΔω、試験光パルスのパルス幅Wに対して、それぞれ以下の(式8)、(式9)で与えられる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 ここで、Eは試験光の電界振幅、Nは被試験光ファイバの長さ方向に存在する散乱体の数、i(1≦i≦N)は散乱体の番号、a、bは各散乱体iの反射率、τは被試験光ファイバの入射端から散乱体iまでの往復伝搬遅延時間、θ(t)は試験光の初期位相、θFUT(τ)は被試験光ファイバに加わる振動によって生じる位相変化であり、測定対象である。R(t)、R(t)は各々の被試験光ファイバの後方散乱係数分布であり、θFUT(τ)は前提条件により、同様に2本の被試験光ファイバの間で同じである。ここで、各々の被試験光ファイバに入射される2つの試験光パルスの時間差が、光源のコヒーレンス長よりも十分短い時、レーザの位相雑音を意味するθ(t-τ)-θ(t-τ)は非常に小さいため、無視できる。θおよびθはそれぞれフェーディングによる位相定数であり、各被試験光ファイバの間でフェーディングによる干渉条件、つまり光ファイバを形成する散乱体が異なるため、互いに異なる定数となる。
 (式8)および(式9)を見て分かるように、各交流成分の式の形は、その位相項に着目すれば、レーザの位相雑音を意味する項がこの段階でほぼ無視可能であることを除いて、第1の実施形態の場合とほぼ同様と見ることができる。
 光検波手段25、26の後段において、分岐された各々の電気信号は、ミキサ28において合成された後、フィルタ27にて高周波成分を除去される。ミキサ28において合成された合成交流信号は、交流成分の積で与えられ、以下のようになる。
Figure JPOXMLDOC01-appb-M000010
 合成交流信号も同様に、その位相項に着目すれば、レーザの位相雑音を意味する項がこの段階でほぼ無視可能であることを除いて、第1の実施形態の場合と同様に扱うことができる。したがって、本実施形態の演算処理手段における演算処理フローは、図5を参照するに、S306の演算ステップが不要である以外は、第1の実施形態と同様である。これは、本実施形態では、各々の被試験光ファイバに入射される2つの周波数の異なる試験光パルスに時間差を設けているため、この時間差に該当する被試験光ファイバの任意区間の位相変化は、既に(式8)および(式9)で算出される各交流成分で信号θFUT(τ)として扱われているためである。
 以上のように、第1の実施形態と異なり、局発光の代わりに周波数の異なる試験光パルスを時間差を設けて入射して得られた複数の後方散乱光同士の干渉を交流成分として測定する本実施形態においても、精度よく振動計測が実施可能となる。
(第3の実施形態)
 図8は第3の実施形態の分布光ファイバ振動計測装置を示すブロック構成図である。本実施形態の分布光ファイバ振動計測装置は、光源からの光を分岐して試験光と局発光として用い、この局発光の周波数に対して複数の異なる値だけ周波数シフトした試験光(周波数多重化された試験光)を所定の時間間隔で生成し、1本の被試験光ファイバにこれらの試験光を入射して得られる後方散乱光を局発光と合波してヘテロダイン検波を行い、得られた電気信号を数値化処理した後に、デジタル信号処理を用いて周波数分離を行い、2つの交流成分を取得するものである。第1の実施形態および第2の実施形態と異なる点は、2本の被試験光ファイバや2つのバランス型光受信手段(または2つの光検波手段)を用いる代わりに周波数多重化された試験光をデジタル信号処理で分離する点にあって、以降はこの変更に伴う構成および信号処理の異なる点のみについて述べる。
 コヒーレント光を発する光源1からの出力光は分岐素子2で2系統に分岐される。分岐された光の一方は局発光として用いられ、他方は試験光として光周波数制御手段3に入射される。この光周波数制御手段3は、所定の時間間隔で光周波数を2段階に変調(異なる値だけ周波数シフト)する。試験光に対して、光パルス化手段5で光周波数ω+ωを有する第1の試験光パルスおよび光周波数ω+ωを有する第2の試験光パルスの2つを形成し、光増幅器6を介して被試験光ファイバ10に入射する。
 被試験光ファイバ10で発生した後方散乱光は光サーキュレータ9を介して、バランス型光受信手段12で電気信号に変換され、数値化手段14でデジタル信号に変換され、演算処理手段15にて信号処理される。バランス型光受信手段12は、1本の被試験光ファイバに試験光(第1の試験光パルスおよび第2の試験光パルス)を入射して得られる後方散乱光を局発光と合波してヘテロダイン検波を行い、電気信号に変換する。
 図9は、本実施形態に係る試験光パルスの送出シーケンスを示したものである。光源1から光周波数制御手段3によって周波数シフトされた光周波数ω+ωと、ω+ωの光周波数を有する2つの試験光パルスが、所定の時間差tを有して繰り返し送出されている。2つの試験光パルス(第3の試験光パルス、第4の試験光パルス)のパルス幅はWで同じである。試験光パルスの繰り返し時間は、被試験光ファイバ10の最大長さの往復伝搬遅延時間と同じかそれよりも長く設定されている。
 ここで、バランス型光受信手段12から出力され、数値化手段14で数値化処理された後、演算処理手段15において、ビート電気信号をデジタルフィルタを採用して、ω1とω2のビート周波数を有する2つの信号に分離する。この時分離されて得られる2つの信号の交流成分I(t)とI(t)は、光源1からのコヒーレント光の出力時間tおよび光周波数ω、周波数シフトがωおよびω、試験光パルスのパルス幅Wに対して、それぞれ以下の(式11)、(式12)で与えられる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 ここで、E、Eはそれぞれ局発光および試験光の電界振幅、Nは被試験光ファイバの長さ方向に存在する散乱体の数、i(1≦i≦N)は散乱体の番号、aは散乱体iの反射率、τは被試験光ファイバの入射端から散乱体iまでの往復伝搬遅延時間、θ(t)は試験光の初期位相、θFUT(τ)は被試験光ファイバに加わる振動によって生じる位相変化であり、測定対象である。R(t)、R(t)は各々ω、ωにおける被試験光ファイバの後方散乱係数分布である。Δθ(t)は試験光パルスの出力時と局発光との干渉時における光の初期位相差であり、レーザの位相雑音を意味し、第1実施形態および第2の実施形態と同様、最終的には無視できる。
 ここで、本実施形態に係る2つの交流成分は、第1の試験光パルスによる後方散乱光と局発光の干渉と、時間的にtだけ時間差を設けて入射された第2の試験光パルスによる後方散乱光と局発光の干渉の結果を意味しており、tだけ時間的に異なる振動の影響、すなわちそれぞれθFUT(τ)とθFUT(τ-t)を含む信号となる。θおよびθはそれぞれフェーディングによる位相定数であり、第1の試験光パルスと第2の試験光パルスの光周波数が異なることから、互いに異なる定数となる。
 今、測定可能な振動周波数をTとすると、t<<1/Tが成立する場合、すなわち振動周期に対して時間差tdが非常に小さい場合には、θFUT(τ)≒θFUT(τ-t)として扱うことができる。具体例として、測定可能な最大振動周波数を人間の可聴音域の上限である20kHz、t=200nsとすれば、振動周期50μsに対して、250分の1の時間差に対応することから、位相変化量に換算して最大でも約0.03radであり、これは無視できるほど小さいことが分かる。
 (式11)および(式12)に示す交流成分は、演算処理手段15においてデジタル信号処理により合成される。この合成交流信号は、交流成分I(t)が入射時間差tだけ時間シフトしていることを考慮しこれを補正し、さらにθFUT(τ)≒θFUT(τ-t)を用いて、以下のようになる。
Figure JPOXMLDOC01-appb-M000013
 (式13)で示す合成交流信号は、第1の試験光パルスおよび第2の試験光パルスに与えた光周波数シフトの和ω+ωの周波数成分と、差ω-ωの周波数成分から構成されていることが分かる。これらをローパスフィルタを用いて差ω-ωの周波数成分を抽出する。第1の実施形態および第2の実施形態と同様に、90度シフトした直交成分を用いて位相項を取り出し、第1の試験光パルスおよび第2の試験光パルスに与えた光周波数シフトωおよびωは既知であるため、これを減算することで位相定数差φ1,2を知ることが出来、以降は第1の実施形態の場合と同様に扱うことができる。
 ここで、受信帯域の設計として、試験光パルスの信号帯域が2/Wであることを考慮すると、|ω-ω|≧1/Wとなるような条件で第1の試験光パルスおよび第2の試験光パルスの光周波数を設計する必要がある。また、バランス型光受信手段12および数値化手段14の帯域は、ナイキストの定理より、2(ω+ω)以上とする必要がある。
 以上のように、第1の実施形態と異なり、周波数多重された試験光を生成し、1本の被試験光ファイバに同時に異なる周波数の試験光を入射して得られる後方散乱光を局発光と合波してヘテロダイン検波を行い、1つの光検出手段(バランス型光受信手段12)からデジタル信号処理を用いて周波数分離を行い2つの交流信号を取得する本実施形態においても、精度よく振動計測が実施可能となる。
 なお、本実施形態においても、時間差tが振動周期に比べて非常に小さい条件であれば、多重する周波数は2より多くてもよく、この場合、合成交流信号の組み合わせ数も同様に増やすことを前提にすれば、3以上の周波数多重でも実施が可能である。
 本実施形態によれば、2以上の被試験光ファイバや光検出手段を用いることが無く実施可能であるため、第1の実施形態や第2の実施形態と比較して構成を単純化することができ、経済的な装置を提供することが可能である。
(第4の実施形態)
 図10は第4の実施形態の分布光ファイバ振動計測装置を示すブロック構成図である。本実施形態の分布光ファイバ振動計測装置は、所定の時間間隔で周波数符号化した試験光を用い、被試験光ファイバに試験光を入射して得られる後方散乱光同士の干渉を光検波手段で受信し、数値化処理した後にデジタル信号処理により任意の2つの交流成分に周波数分離するものである。第3の実施形態との違いは、第3の実施形態の第1の試験光パルスおよび第2の試験光パルスに相当する信号がそれぞれ周波数多重され符号化された試験光パルスを用いている点である。すなわち、2つの電気信号の交流成分の取得手段が第3の実施形態と異なるものであって、以降はこの変更に伴う構成および信号処理の異なる点のみについて述べる。
 コヒーレント光を発する光源1からの出力光は試験光として光周波数制御手段3に入射される。この光周波数制御手段3は、所定の時間間隔で光周波数を4段階に変調する。試験光に対して、光パルス化手段5で4段階に変調された周波数成分を含む1つの試験光パルス(第3の試験光パルス、第4の試験光パルス、第5の試験光パルス、および第6の試験光パルスが連続して形成される1つの試験光パルス)を形成し、光増幅器6を介して被試験光ファイバ10に入射する。被試験光ファイバ10で発生した後方散乱光は光サーキュレータ9を介して、光増幅器30で前置増幅された後に、光増幅器30の自然放出光を除去するための光フィルタ31を介して、光検波手段32で電気信号に変換され、数値化手段14でデジタル信号に変換され、演算処理手段15にて信号処理される。
 図11は、本実施形態に係る試験光パルスの送出シーケンスを示したものである。光源1からの光は、所定の時間間隔Wでω、ω、ω+ω、ω+ωの4段階に変調されている。試験光パルスの繰り返し時間は、被試験光ファイバ10の最大長さの往復伝搬遅延時間と同じかそれよりも長く設定されている。
 ここで、受信帯域の設計として、試験光パルスの各周波数成分の信号帯域が2/Wであることを考慮すると、|ω-ω|≧1/Wとなるような条件である必要がある。また、光検波手段32および数値化手段14の帯域は、ナイキストの定理より、2(ω+ω)以上とする必要がある。さらに、ωとωとの差は、光検波手段32および数値化手段14の受信帯域よりも大きい必要がある。このように設計することで、光検波手段32において、(ωとω+ωとの差周波成分である)ωと(ωとω+ωとの差周波成分である)ωのビート周波数成分が検出される。
 ここで、光検波手段32から出力され、数値化手段14で数値化処理された後、演算処理手段15において、ビート電気信号をデジタルフィルタを採用して、ωとωのビート周波数を有する2つの信号に分離を行う。この時分離された得られる2つの信号の交流成分I(t)とI(t)は、光源からの前記コヒーレント光の出力時間tに対して、それぞれ以下の(式14)、(式15)で与えられる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 ここで、Eは試験光の電界振幅、Nは被試験光ファイバの長さ方向に存在する散乱体の数、i(1≦i≦N)は散乱体の番号、aは散乱体iの反射率、τは被試験光ファイバの入射端から散乱体iまでの往復伝搬遅延時間、θ(t)は試験光の初期位相、θFUT(τ)は被試験光ファイバに加わる振動によって生じる位相変化であり、測定対象である。R(t)、R(t)は各々ω、ωにおける被試験光ファイバの後方散乱係数分布である。ここで、被試験光ファイバに入射されるωとωの周波数成分の時間差Wが、光源のコヒーレンス長よりも十分短い時、レーザの位相雑音を意味するθ(t-τ)-θ(t-τ)およびθ(t-W-τ)-θ(t-W-τ)は非常に小さいため、無視できる。θおよびθはそれぞれフェーディングによる位相定数であり、2組の試験光パルスの光周波数が異なることから、互いに異なる定数となる。
 今、測定可能な振動周波数をTとすると、W<<1/Tが成立する場合、すなわち振動周期に対して時間差Wが非常に小さい場合には、θFUT(τ)≒θFUT(τ-W)として扱うことができる。具体例として、測定可能な最大振動周波数を人間の可聴音域の上限である20kHz、W=200nsとすれば、振動周期50μsに対して、250分の1の時間差に対応することから、位相変化量に換算して最大でも約0.03radであり、これは無視できるほど小さいことが分かる。
 (式14)および(式15)に示す交流成分は、演算処理手段15においてデジタル信号処理により合成される。この合成交流信号は、交流成分i(t)が入射時間差Wだけ時間シフトしていることを考慮しこれを補正し、さらにθFUT(τ)≒θFUT(τ-W)を用いて、下記(式16)のようになる。
Figure JPOXMLDOC01-appb-M000016
 (式16)で示す合成交流信号は、2組の試験光パルスに与えた光周波数シフトの和ω+ωの周波数成分と、差ω-ωの周波数成分から構成されていることが分かる。これらをローパスフィルタを用いて差ω-ωの周波数成分を抽出する。第1および第2の実施形態と同様に、90度シフトした直交成分を用いて位相項を取り出し、光周波数シフトωおよびωは既知であるため、これを減算することで位相定数差φ1,2を知ることが出来、以降は第2の実施形態の場合と同様に扱うことができる。
 第1の実施形態から第4の実施形態で説明した分布光ファイバ振動計測装置によれば、取得手段は異なるものの、試験光パルスの光周波数、または被試験光ファイバ、あるいはその双方が異なる条件において、2つの交流成分を取得することで、その合成交流成分からフェーディングに由来する位相定数差を知ることができる。このことは、2つの交流成分の振幅を比較することにより信号対雑音比の高い交流成分を選択し、これを時間方向、すなわち試験光パルスの入射繰り返し毎に選択された交流成分の位相の時間変化を算出する際に、選択された交流成分そのものが変化したとしても、位相定数差の違いを補正することができ、2つの交流成分を用いてよりフェーディング雑音の影響を受けにくい高精度な振動計測が実施可能となる。
 また、後方散乱光の干渉から位相を算出する実施形態に記載の分布光ファイバ振動計測装置によれば、光源や光周波数制御手段における光周波数ドリフトが存在する場合、交流成分あるいは合成交流成分から位相を算出する過程、および時間に対する位相変化を算出する過程において、位相誤差を大きくする直接的な要因となるが、第1の実施形態の中で述べたように、合成交流成分の高周波成分を除去すること無くビート周波数をモニタリングする手段を講じることで、他の実施形態においても同様に、前記光周波数ドリフトを補正することも可能である。
 なお、第1の実施形態から第4の実施形態において、演算処理手段15は、コンピュータとプログラムとによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 また、上記実施形態例に開示されている複数の構成要素の適宜な組合せにより種種の発明を形成できる。例えば、実施形態例に示される全構成要素からいくつかの構成要素を削除しても良い。更に、異なる実施形態例に亘る構成要素を適宜組み合わせてもよい。
 1 光源
 2 分岐素子
 3 光周波数制御手段
 4 駆動手段
 5 光パルス化手段
 6 光増幅器
 7 パルス信号発生手段
 8 分岐素子
 9 光サーキュレータ
 10 被試験光ファイバ
 11 分岐素子
 12、13 バランス型光受信手段
 14 数値化手段
 15 演算処理手段
 16 表示手段
 17、27 フィルタ
 18、28 ミキサ
 23、24 光フィルタ
 25、26 光検波手段
 21、22、30 光増幅器
 31 光フィルタ
 32 光検波手段

Claims (6)

  1.  一体化された複数の被試験光ファイバのそれぞれに対して、第1の試験光パルスを入射し、前記複数の被試験光ファイバの各地点で発生した第1の後方散乱光をヘテロダイン検波することにより前記被試験光ファイバの各位置に加わる振動を計測する分布光ファイバ振動計測装置において、
     前記複数の被試験光ファイバの各地点で発生した前記第1の後方散乱光を前記第1の試験光パルスの光周波数とは異なる光周波数の別の光と干渉させて得られた2つの交流成分から位相定数差を求める位相定数差算出手段と、
     前記複数の被試験光ファイバの各地点で発生した前記第1の後方散乱光を前記別の光と干渉させて得られた2つの交流成分それぞれの振幅を比較して、各地点毎に振幅が大きい方の交流成分の位相データを選択して経時的に配列した位相分布データを作成する位相分布データ作成手段と、
     前記位相定数差と前記位相分布データから、前記被試験光ファイバの任意の2地点間の光路長差を特定することにより被試験光ファイバにおける振動を計測する振動計測手段とを備えることを特徴とする分布光ファイバ振動計測装置。
  2.  前記別の光は、第2の後方散乱光であって、前記複数の被試験光ファイバに対して、前記第1の試験光パルスの光周波数とは異なる光周波数の第2の試験光パルスを、前記第1の試験光パルスとは所定間隔をもって入射させて発生した後方散乱光であることを特徴とする請求項1に記載の分布光ファイバ振動計測装置。
  3.  第1の試験光パルスと、前記第1の試験光パルスの光周波数とは異なる光周波数の第2の試験光パルスとを被試験光ファイバに対して入射し、前記被試験光ファイバの各地点で発生した第1の後方散乱光および第2の後方散乱光をヘテロダイン検波することにより前記被試験光ファイバの各位置に加わる振動を計測する分布光ファイバ振動計測装置において、
     前記第1の後方散乱光および前記第2の後方散乱光をそれぞれ前記第1の試験光パルスおよび前記第2の試験光パルスの光周波数とは異なる光周波数の別の光と干渉させて得られた2つの交流成分から位相定数差を求める位相定数差算出手段と、
     前記第1の後方散乱光および前記第2の後方散乱光をそれぞれ前記別の光と干渉させて得られた2つの交流成分それぞれの振幅を比較して、各地点毎に振幅が大きい方の交流成分の位相データを選択して経時的に配列した位相分布データを作成する位相分布データ作成手段と、
     前記位相定数差と前記位相分布データから、前記被試験光ファイバの任意の2地点間の光路長差を特定することにより被試験光ファイバにおける振動を計測する振動計測手段とを備えることを特徴とする分布光ファイバ振動計測装置。
  4.  前記別の光は、第3の後方散乱光および第4の後方散乱光であって、前記第1の試験光パルスおよび前記第2の試験光パルスの光周波数とは異なる光周波数の第3の試験光パルスおよび第4の試験光パルスを前記被試験光ファイバに前記第1の試験光パルスおよび前記第2の試験光パルスとは所定間隔をもって入射させて発生した後方散乱光であることを特徴とする請求項3に記載の分布光ファイバ振動計測装置。
  5.  一体化された複数の被試験光ファイバのそれぞれに対して、第1の試験光パルスを入射し、前記複数の被試験光ファイバの各地点で発生した第1の後方散乱光をヘテロダイン検波することにより前記被試験光ファイバの各位置に加わる振動を計測する分布光ファイバ振動計測方法において、
     前記複数の被試験光ファイバの各地点で発生した前記第1の後方散乱光を前記第1の試験光パルスの光周波数とは異なる光周波数の別の光と干渉させて得られた2つの交流成分から位相定数差を求める位相定数差算出ステップと、
     前記複数の被試験光ファイバの各地点で発生した前記第1の後方散乱光を前記別の光と干渉させて得られた2つの交流成分それぞれの振幅を比較して、各地点毎に振幅が大きい方の交流成分の位相データを選択して経時的に配列した位相分布データを作成する位相分布データ作成ステップと、
     前記位相定数差と前記位相分布データから、前記被試験光ファイバの任意の2地点間の光路長差を特定することにより被試験光ファイバにおける振動を計測する振動計測ステップとを備えることを特徴とする分布光ファイバ振動計測方法。
  6.  第1の試験光パルスと、前記第1の試験光パルスの光周波数とは異なる光周波数の第2の試験光パルスとを被試験光ファイバに対して入射し、前記被試験光ファイバの各地点で発生した第1の後方散乱光および第2の後方散乱光をヘテロダイン検波することにより前記被試験光ファイバの各位置に加わる振動を計測する分布光ファイバ振動計測方法において、
     前記第1の後方散乱光および前記第2の後方散乱光をそれぞれ前記第1の試験光パルスおよび前記第2の試験光パルスの光周波数とは異なる光周波数の別の光と干渉させて得られた2つの交流成分から位相定数差を求める位相定数差算出ステップと、
     前記第1の後方散乱光および前記第2の後方散乱光をそれぞれ前記別の光と干渉させて得られた2つの交流成分それぞれの振幅を比較して、各地点毎に振幅が大きい方の交流成分の位相データを選択して経時的に配列した位相分布データを作成する位相分布データ作成ステップと、
     前記位相定数差と前記位相分布データから、前記被試験光ファイバの任意の2地点間の光路長差を特定することにより被試験光ファイバにおける振動を計測する振動計測ステップとを備えることを特徴とする分布光ファイバ振動計測方法。
PCT/JP2019/024393 2018-07-02 2019-06-19 分布光ファイバ振動計測装置および分布光ファイバ振動計測方法 WO2020008886A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/256,532 US11280668B2 (en) 2018-07-02 2019-06-19 Distributed optical fiber vibration measurement device and distributed optical fiber vibration measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018126186A JP6814180B2 (ja) 2018-07-02 2018-07-02 分布光ファイバ振動計測装置および分布光ファイバ振動計測方法
JP2018-126186 2018-07-02

Publications (1)

Publication Number Publication Date
WO2020008886A1 true WO2020008886A1 (ja) 2020-01-09

Family

ID=69060228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024393 WO2020008886A1 (ja) 2018-07-02 2019-06-19 分布光ファイバ振動計測装置および分布光ファイバ振動計測方法

Country Status (3)

Country Link
US (1) US11280668B2 (ja)
JP (1) JP6814180B2 (ja)
WO (1) WO2020008886A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397849A (zh) * 2020-04-20 2020-07-10 深圳市特发信息股份有限公司 一种通过分析多种环境振动信号的光纤破坏监测系统
WO2023053263A1 (ja) * 2021-09-29 2023-04-06 日本電信電話株式会社 光パルス試験方法及び光パルス試験装置
WO2023170821A1 (ja) * 2022-03-09 2023-09-14 日本電信電話株式会社 複数の光ファイバの損失を一括で測定する装置及び方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435160B2 (ja) 2020-03-30 2024-02-21 沖電気工業株式会社 光ファイバ振動検知装置及び振動検知方法
US20210356317A1 (en) 2020-05-18 2021-11-18 Nec Laboratories America, Inc Complex and phase domain vibration strength estimation for coherent distributed acoustic sensing
CN115956192A (zh) * 2020-09-11 2023-04-11 日本电信电话株式会社 振动检测装置和振动检测方法
US20220146304A1 (en) 2020-11-10 2022-05-12 Nec Laboratories America, Inc Reduced complexity polarization combining method for coherent das

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298077A (ja) * 1999-04-14 2000-10-24 Ando Electric Co Ltd 光ファイバ特性測定装置
JP2017044504A (ja) * 2015-08-24 2017-03-02 沖電気工業株式会社 光ファイバ歪み測定装置及び光ファイバ歪み測定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489749B (en) * 2011-04-08 2016-01-20 Optasense Holdings Ltd Fibre optic distributed sensing
GB2503498B (en) * 2012-06-29 2017-06-14 Optasense Holdings Ltd Fibre optic sensing
US9841301B2 (en) * 2015-12-01 2017-12-12 Rhode Island Board Of Education, State Of Rhode Island And Providence Plantations Digitally controlled chirped pulse laser for sub-terahertz range fiber structure interrogation
JP7010147B2 (ja) * 2018-06-04 2022-01-26 日本電信電話株式会社 振動分布測定システム、振動波形解析方法、振動波形解析装置、および解析プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298077A (ja) * 1999-04-14 2000-10-24 Ando Electric Co Ltd 光ファイバ特性測定装置
JP2017044504A (ja) * 2015-08-24 2017-03-02 沖電気工業株式会社 光ファイバ歪み測定装置及び光ファイバ歪み測定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397849A (zh) * 2020-04-20 2020-07-10 深圳市特发信息股份有限公司 一种通过分析多种环境振动信号的光纤破坏监测系统
CN111397849B (zh) * 2020-04-20 2021-08-06 深圳市特发信息股份有限公司 一种通过分析多种环境振动信号的光纤破坏监测系统
WO2023053263A1 (ja) * 2021-09-29 2023-04-06 日本電信電話株式会社 光パルス試験方法及び光パルス試験装置
WO2023170821A1 (ja) * 2022-03-09 2023-09-14 日本電信電話株式会社 複数の光ファイバの損失を一括で測定する装置及び方法

Also Published As

Publication number Publication date
US11280668B2 (en) 2022-03-22
US20210278272A1 (en) 2021-09-09
JP6814180B2 (ja) 2021-01-13
JP2020003464A (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
WO2020008886A1 (ja) 分布光ファイバ振動計測装置および分布光ファイバ振動計測方法
JP6552983B2 (ja) ブリルアン散乱測定方法およびブリルアン散乱測定装置
JP6277147B2 (ja) 光ファイバ振動測定方法及びシステム
JP6494459B2 (ja) 振動分布測定方法及び振動分布測定装置
EP2128588B1 (en) Optical refractometry measuring method and device
JP6893137B2 (ja) 光ファイバ振動検知センサおよびその方法
JP6777483B2 (ja) 光ファイバ試験装置及び光ファイバ試験方法
US8800375B2 (en) Sweep-free stimulated Brillouin scattering-based fiber optical sensing
JP5448903B2 (ja) 光パルス試験装置
JP7435160B2 (ja) 光ファイバ振動検知装置及び振動検知方法
JP2020169904A (ja) 位相測定方法及び信号処理装置
JP6868246B2 (ja) ブリルアン周波数シフトを測定する装置及び方法
JP7010147B2 (ja) 振動分布測定システム、振動波形解析方法、振動波形解析装置、および解析プログラム
JP4769668B2 (ja) 光リフレクトメトリ測定方法および装置
JP6796043B2 (ja) 光反射測定装置及びその方法
JP7272327B2 (ja) 光ファイバ特性測定装置、光ファイバ特性測定プログラム、及び光ファイバ特性測定方法
JP5827140B2 (ja) レーザ光特性測定方法及び測定装置
JP5613627B2 (ja) レーザ光コヒーレンス関数測定方法及び測定装置
JP7040386B2 (ja) 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
JP5371933B2 (ja) レーザ光測定方法及びその測定装置
WO2023131624A1 (en) Optical measurement system
JP5470320B2 (ja) レーザ光コヒーレンス長測定方法及び測定装置
JP2009080049A (ja) 光ファイバ測定方法、光ファイバ測定システムおよび光ファイバ測定装置
JP5927079B2 (ja) レーザ光特性測定方法及び測定装置
US20210018372A1 (en) Optical Spectral Line Width Calculation Method, Device, and Program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19829846

Country of ref document: EP

Kind code of ref document: A1