WO2023053263A1 - 光パルス試験方法及び光パルス試験装置 - Google Patents
光パルス試験方法及び光パルス試験装置 Download PDFInfo
- Publication number
- WO2023053263A1 WO2023053263A1 PCT/JP2021/035836 JP2021035836W WO2023053263A1 WO 2023053263 A1 WO2023053263 A1 WO 2023053263A1 JP 2021035836 W JP2021035836 W JP 2021035836W WO 2023053263 A1 WO2023053263 A1 WO 2023053263A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- light
- frequency
- pulse pair
- phase
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 278
- 238000012360 testing method Methods 0.000 title claims description 23
- 239000000835 fiber Substances 0.000 claims abstract description 45
- 238000000253 optical time-domain reflectometry Methods 0.000 claims abstract description 5
- 238000005562 fading Methods 0.000 claims description 48
- 238000012935 Averaging Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 25
- 230000001629 suppression Effects 0.000 claims description 18
- 238000010998 test method Methods 0.000 claims description 12
- 239000000523 sample Substances 0.000 abstract description 26
- 238000005259 measurement Methods 0.000 abstract description 7
- 239000013307 optical fiber Substances 0.000 description 20
- 238000005070 sampling Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/071—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
Definitions
- the present invention relates to an optical pulse test method and an optical pulse test apparatus by phase OTDR using different optical frequencies.
- phase OTDR when applying an optical frequency multiplexing technique that improves the sampling rate by inputting different optical frequency components at different times, if the method described in Patent Document 1 is used, it is possible to use the compensation optical frequency It is possible to suppress the inherent distortion term and directly observe the vibration waveform.
- phase values obtained using probe pulses of different optical frequencies have slightly different responses even when monitoring the same strain change in the sensing fiber being measured.
- phase OTDR Optical Time Domain Reflectometer
- the proportionality constant of the phase change with respect to the strain change is constant regardless of the frequency as long as the center frequency difference is within a range of several GHz. approximation is used.
- the amount of increase ⁇ in phase change when light passes due to the amount of expansion by ⁇ l is given by the following equation.
- n is the effective refractive index of the fiber
- ⁇ p is Poisson's ratio
- p 11 and p 12 are the strain-optic tensor components.
- the difference in response using probe light of different optical frequencies has two aspects: the occurrence of nonlinearity corresponding to distortion and the change in the constant of proportionality.
- the former refers to the fact that the response to strain is not ideally linear but includes nonlinear terms, and the shape of the nonlinear terms and the like differ between optical frequencies.
- the proportionality constant of the phase change with respect to distortion ("A" in equation (3), which will be described later) cannot completely ignore the difference between optical frequencies like the proportionality constant K shown in equation (2). It refers to the constant difference between optical frequencies.
- Non-Patent Document 4 and the like point out that the latter of these two viewpoints is the main term.
- the vibration waveform f(t) at time t can be directly monitored at a high sampling rate.
- N be the frequency multiplexing number for improving the sampling rate
- TN be the sampling interval after the sampling rate is improved.
- the fiber state is measured at time (k+ Nn ) TN (n is an arbitrary integer) at frequency fk.
- the phase value yk at each optical frequency can be expressed by equation (3) by omitting z representing the distance from the fiber input end.
- the phase change y after the sampling rate is improved is given by equation (4).
- phase value y k and the phase change y are obtained by setting an appropriate gauge length D, and then measuring the phase change of the light at the point z + D / 2 between two points across the point z separated by the gauge length, that is, from the point z It represents the phase change in a local section centered on the point z that occurred from the section z + D / 2 to z - D / 2 calculated as the phase difference obtained by subtracting the phase change at -D / 2, and the phase It is assumed that connection processing has also been performed appropriately.
- the signal of the main optical frequency excluding the compensating optical frequency included in the same pulse pair is averaged, and the phase after fading suppression in that pulse pair is calculated.
- the vibration waveform is calculated by further correcting the calculated phase using the signal of the compensating light frequency.
- the phase after averaging the signal of the main optical frequency excluding the compensating optical frequency for the signal obtained from the k-th pulse pair can be written as ⁇ k.
- Equations (3) and (4) hold as they are. Equations (5) and (6) also hold true if Ak is reinterpreted as a value obtained by averaging the responses to the oscillations of each optical frequency contained in the k-th type of pulse pair.
- Ak is a value obtained by averaging the response of a finite number of optical frequencies included in the k-th pulse pair, so Ak corresponding to different types, i.e., different k pulse pairs are different from each other. , the problem of not being able to accurately measure f(t), which was concluded using equation (6) above, remains.
- the present invention can reduce the distortion of the observed waveform due to the difference in the proportional constant in the response between the different optical frequencies of the probe light to vibration in the phase OTDR using different optical frequencies. It is an object of the present invention to provide an optical pulse testing method and an optical pulse testing apparatus capable of extending the dynamic range of the magnitude of vibration that can be accurately observed.
- the present disclosure provides a phase OTDR in which probe light with a plurality of different optical frequencies and probe light with a compensating optical frequency different from each optical frequency are incident at the same time, and each optical frequency and the phase values obtained from the probe light at the compensating light frequency. Correct the phase value obtained from the probe light of the optical frequency.
- the optical pulse test method includes: An optical pulse test method for measuring vibration with a phase OTDR, comprising: injecting optical pulse pairs composed of optical pulses of different optical frequencies into the sensing fiber at regular intervals; injecting the specific light pulse pair into the sensing fiber including a compensating light pulse having a predetermined compensating light frequency different from the light frequency; Acquiring scattered light signals for each of the optical frequency and the compensating light frequency from the specific light pulse pair incident including the compensating light pulse; From the scattered light signal, calculating a phase value of the light pulse pair with fading noise suppressed by averaging signals of different light frequencies included in the light frequency for each point in the longitudinal direction on the sensing fiber.
- Equation (C1) is the type of optical pulse pair (optical frequency if fading is not suppressed)
- ⁇ k is the phase value of the k-th type of optical pulse pair
- n is an arbitrary integer
- T N is the constant interval
- N is the constant interval.
- the multiplex number of pulse pairs, ⁇ k is the phase value after fading suppression obtained by averaging the different main optical frequencies included in the k-th optical pulse pair (if fading is not suppressed, the optical frequency fk), and A ave,c represents the average value of the slopes A k,c with respect to k.
- averaging processing for fading noise suppression is not performed in the procedure described above.
- the optical pulse test method includes: obtaining a scattered light signal from a regular light pulse pair other than the specific light pulse pair; From the scattered light signal obtained based on the normal light pulse pair, fading noise is obtained by averaging the optical frequency signal included in the normal light pulse pair for each point on the sensing fiber in the longitudinal direction. detecting phase values of the suppressed light pulse pairs; Correcting the detected phase value of the normal light pulse pair according to equation (C1) using the slope A k,c and the vertical axis intercept B k,c of the approximate straight line may further be performed. .
- the optical pulse test device includes: An optical pulse test device for measuring vibration with a phase OTDR, Optical pulse pairs composed of optical pulses with different optical frequencies are incident on a sensing fiber at regular intervals, and compensation optical pulses with predetermined compensation optical frequencies different from the optical frequencies are applied to the specific optical pulse pairs.
- a light source incident on the sensing fiber including a photodetector for acquiring scattered light signals for each of the optical frequency and the compensating light frequency from the specific light pulse pair incident including the compensating light pulse; From the scattered light signal, calculating a phase value of the light pulse pair with fading noise suppressed by averaging signals of different light frequencies included in the light frequency for each point in the longitudinal direction on the sensing fiber.
- Equation (C2) A signal for correcting the phase value of the light pulse pair according to Equation (C2) using the slope A k,c and the vertical axis intercept B k,c of the approximate straight line calculated for each light pulse pair and a processing unit.
- k is the type of optical pulse pair (optical frequency if fading is not suppressed)
- ⁇ k is the phase value of the k-th type of optical pulse pair
- n is an arbitrary integer
- T N is the constant interval
- N is the constant interval.
- the multiplex number of pulse pairs, ⁇ k is the phase value after fading suppression obtained by averaging the different main optical frequencies included in the k-th optical pulse pair (if fading is not suppressed, the optical frequency fk), and A ave,c represents the average value of the slopes A k,c with respect to k.
- averaging processing for fading noise suppression is not performed in the procedure described above.
- the optical pulse test device is obtaining a scattered light signal from a regular light pulse pair other than the specific light pulse pair; From the scattered light signal obtained based on the normal light pulse pair, fading noise is obtained by averaging the optical frequency signal included in the normal light pulse pair for each point on the sensing fiber in the longitudinal direction. detecting phase values of the suppressed light pulse pairs; Correcting the detected phase value of the normal light pulse pair according to equation (C2) using the slope A k,c and the vertical axis intercept B k,c of the approximate straight line may be further performed. .
- the present disclosure can regard different types of probe light pulse pairs containing a plurality of different optical frequencies and probe light of compensating optical frequencies not included in any of the different types of pulse pairs as being at the same time.
- An approximation line that approximates the relationship between the phase value obtained from the probe light of each light pulse pair and the phase value obtained from the probe light of the compensating light frequency is obtained, and the slope of each approximation line obtained. and the intercept, correct the phase value obtained from the probe light for each light pulse pair.
- the present disclosure in a phase OTDR using different optical frequencies, it is possible to reduce the distortion of the observed waveform due to the difference in the proportional constant in the response of the probe light to the vibration between the different optical frequencies, and the vibration can be accurately observed. It is possible to provide an optical pulse testing method and an optical pulse testing apparatus that can expand the dynamic range of the magnitude of .
- FIG. 1 shows an example of a schematic configuration of an optical pulse test apparatus according to the present invention
- An example of an optical frequency and an optical pulse train used in the present invention is shown.
- An example of the procedure of the optical pulse test method according to the present invention is shown.
- the observed phase change is caused by the difference in the constant of proportionality between the optical frequencies in particular.
- the characteristic of the specific procedure of the present invention is that the phase obtained from the scattered light signals obtained when each optical pulse pair composed of the compensating optical frequency and a plurality of different principal optical frequencies is incident at the same timing.
- FIG. 1 is a diagram for explaining an optical pulse test apparatus for performing vibration detection with DAS-P (Distributed Acoustic Sensing-Phase) of this embodiment.
- the optical pulse test device includes: An optical pulse test device for measuring vibration with a phase OTDR, Light pulse pairs composed of light pulses with different light frequencies (main light frequencies) are incident on the sensing fiber at regular intervals, and predetermined compensation light different from the light frequencies is applied to the specific light pulse pairs.
- a light source including a frequency-compensating light pulse incident on the sensing fiber; a photodetector for acquiring scattered light signals for each of the optical frequency and the compensating light frequency from the specific light pulse pair incident including the compensating light pulse; From the scattered light signal, calculating a phase value of the light pulse pair with fading noise suppressed by averaging signals of different light frequencies included in the light frequency for each point in the longitudinal direction on the sensing fiber. , From the scattered light signal, for each point in the longitudinal direction on the sensing fiber, signals of different optical frequencies included in the compensation light frequency are averaged to calculate a phase value of the compensation light frequency with fading noise suppressed.
- phase value of the optical pulse pair and the phase value of the compensating optical frequency detected at each point in the longitudinal direction on the sensing fiber are plotted with the phase value of the compensating optical frequency as the abscissa. plotting the phase values on a two-dimensional plane as the vertical axis; calculating a straight line approximation to the plotted data for each light pulse pair; correcting the phase value of the light pulse pair according to equation (1-7) using the slope A k,c and the vertical axis intercept B k,c of the approximate straight line calculated for each light pulse pair; a signal processing unit that performs Prepare.
- the vibration measuring instrument 31 includes a CW light source 1, a coupler 2, an optical modulator 3, a 90-degree optical hybrid 7, and balance detectors (13, 14).
- the CW light source 1, coupler 2, and optical modulator 3 correspond to the aforementioned light source.
- the 90-degree optical hybrid 7 and the balance detectors (13, 14) correspond to the light receivers described above.
- the receiver uses a 90-degree optical hybrid 7 to perform coherent detection.
- the signal processing device 17 corresponds to the aforementioned signal processing section. However, it is not always necessary to use a 90-degree optical hybrid for the receiver, and other devices and signal processing may be used as long as they can measure the in-phase component and the quadrature component of the scattered light.
- the signal processing device 17 of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
- the vibration measuring device 31 measures the scattered light from the optical fiber 6 to be measured as follows.
- a CW light source 1 emits continuous light of a single wavelength with an optical frequency of f 0 and is split by a coupler 2 into reference light and probe light.
- the probe light is shaped into frequency-multiplexed optical pulses 4 by an optical modulator 3 .
- a configuration example of the optical pulse 4 is shown in FIG. Note that the sensing fiber to be measured is hereinafter referred to as the optical fiber 6 to be measured.
- N ⁇ M main optical frequency components from f 1 to f NM are used for the main pulse, and N+1 groups arranged in order are prepared.
- the combination of groups is the group combination 201 .
- the entire arrangement of the collective combination 201 is divided into M pieces (M is an arbitrary natural number) from the left, and N (N+1) pulse pairs are generated to obtain pulse pair combinations 202 .
- N represents the multiplex number of pulse pairs in pulse pair combination 202 . That is, in the pulse pair combination 202, since N ⁇ M pieces of f1 to fNM are separated for each M, N kinds of pulse pairs are generated, and N kinds of pulse pairs are generated for N+1 pieces, which is the number of groups. only repeated.
- N will be used as a symbol for distinguishing these N types of optical pulse pairs.
- an actually incident light pulse pair train is configured as 204.
- FIG. As a result, a pulse pattern is generated in which N(N+1) pulse pairs are arranged in a constant temporal cycle.
- M or M+1 optical pulses forming the pulse pair train are applied to the state of the optical fiber due to vibration in the same manner as the optical pulses forming the pulse pair train described in Patent Document 1. They are arranged at intervals of time at which changes can be ignored.
- frequency multiplexing for suppressing fading noise was not performed for compensating optical frequencies.
- Frequency multiplexing may be performed.
- the number of frequency components constituting each pulse pair is M for the pulse pairs to which the compensating optical frequency is not added, and M for the pulse pairs to which the compensating optical frequency is added for fading suppression. It takes the value obtained by adding the number of optical frequencies obtained.
- the time interval between minute pulses at which the state change of the optical fiber can be ignored depends on the vibration frequency f ⁇ and the magnitude of the vibration, but it is usually sufficient to set it to about 1 ⁇ s or less. Accordingly, it can be considered that optical pulses of arbitrary optical frequencies included in the same pulse pair train including the compensating optical frequency are incident on each other at the same time.
- optical frequency f4 is added to pulse pair 9 with optical frequency f3 .
- the limit on the minimum value of how much TN can be reduced by the length of the optical fiber 6 under test is 1/N times that in the case of using a single optical frequency pulse. only mitigated.
- optical pulses of a plurality of optical frequencies unlike the case of a single optical frequency, optical pulses of optical frequencies different from the incident optical pulse are generated during the round-trip time of the incident optical pulse. This is because the incident light can be continuously measured.
- fading noise can be reduced according to Patent Document 1 using M pulses present in each pulse pair.
- the type of the optical modulator 3 is not specifically specified as long as it can generate the optical pulse 4, and there may be multiple types.
- an SSB (Single Side Band) modulator or a frequency-variable AO (Acousto-Optics) modulator may be used, and in order to increase the extinction ratio in pulsing, an SOA (Semiconductor Optical Amplifier) or the like may be used. Modulation may be performed.
- the pulse of each optical frequency component shown in 204 has a rectangular wave shape, it is also possible to use a waveform other than a rectangular wave.
- the optical pulse 4 is incident on the optical fiber 6 to be measured via the circulator 5.
- Light scattered at each point in the longitudinal direction of the optical fiber 6 to be measured returns to the circulator 5 as backscattered light and enters one input portion of the 90-degree optical hybrid 7 .
- the reference light split by the coupler 2 enters the other input portion of the 90-degree optical hybrid 7 .
- the internal configuration of the 90-degree optical hybrid 7 can be anything as long as it has the function of a 90-degree optical hybrid.
- a configuration example of the 90-degree optical hybrid 7 is shown in FIG.
- the backscattered light is incident on the coupler 8 with a branching ratio of 50:50, and the scattered light split into two is incident on the input portions of the coupler 12 with a branching ratio of 50:50 and the coupler 11 with a branching ratio of 50:50.
- the reference light is incident on the coupler 9 with a branching ratio of 50:50, one of the two-branched reference light is incident on the input part of the coupler 11, and the other is phase-shifted by ⁇ /2 by the phase shifter 10. and is incident on the input of the coupler 12 .
- the two outputs of coupler 11 are detected by balance detector 13 and output is electrical signal 15 which is the analog in-phase component I analog .
- the two outputs of coupler 12 are detected by balance detector 14 and output is electrical signal 16 which is the analog quadrature component Q analog .
- the electric signal 15 and the electric signal 16 are sent to a signal processing device 17 having an AD (Analog to Digital) conversion element 17a and an AD conversion element 17b capable of sampling the frequency band of the signal without aliasing.
- NM+1 can be used.
- the band center of the signal obtained by the probe light of optical frequency f 0 +f i is downshifted to f i , so I digital and Q digital are the bandpass
- I digital and Q digital are the bandpass
- the passband can be set to 2/W, where W is the pulse width of each optical frequency component.
- the in-phase component and the quadrature component in the state of an analog electric signal may be separated into respective frequency components by an analog electric filter, and then AD-converted by the AD conversion elements 17a and 17b.
- the signal processing unit 17d calculates the phase. First, a complex vector r i on the xy plane with the in-phase component on the x-axis (real number axis) and the quadrature component on the y-axis (imaginary number axis) is created as shown in equation (1-1).
- k ⁇ T N +n ⁇ N ⁇ T N (where n is an arbitrary integer) be the time when the head of the k-th type of pulse pair is incident.
- the formula ( By averaging the vectors calculated in 1-1), the phase at the position of the distance z from the incident end is calculated.
- the state of the optical fiber 6 to be measured at the position of the distance z from the incident end in the longitudinal direction on the optical fiber 6 to be measured is time k ⁇ T N +n ⁇ N ⁇ T N +z/ It is measured by ⁇ (n is any integer).
- ⁇ is the speed of light in the optical fiber 6 to be measured. Furthermore, considering the time for the scattered scattered light to propagate and return to the incident end, the measurement time at the vibration measuring device 31 is k ⁇ T N +n ⁇ N ⁇ T N +2z/ ⁇ (n is an arbitrary integer). becomes. Therefore, the phase calculated at the point of distance z is represented explicitly by the measurement time of the vibration measuring device 31, and is given by equation (1-2).
- the phase change due to the vibration applied to the section from the distance z 1 to the distance z 2 on the optical fiber 6 to be measured is the difference between the equations (1-3a) and (1-3b), that is, the equation (1- 3c).
- the instant time when the state of the optical fiber 6 to be measured does not include the time required for the scattered light to return to the incident end as described above, so at the point at the distance z1 , the time mT N + z1 / ⁇ , at the point of distance z 2 , the time is mT N +z 2 / ⁇ , and there is a time difference of (z 1 ⁇ z 2 )/ ⁇ .
- the difference in distance between z 1 and z 2 is about the same as the spatial resolution, and is usually set to several meters to several tens of meters. ns, which is very short compared to the scale of time change of normal vibration to be measured, so the difference in time when the state of the optical fiber 6 to be measured is measured can be ignored. Therefore, it is possible to correctly measure the vibration applied to the corresponding section.
- Patent Document 1 proposes a method of correcting the angular difference using a compensating optical frequency. In order to completely correct the angular difference between different optical frequencies, it is necessary to correct the angular difference of the leading optical frequencies of any two pulse pairs.
- the leading optical frequency of pulse pair j is f j pf
- the leading optical frequency of pulse pair i is f i pf .
- ⁇ (z, f j pf , f i pf ) can be expanded using f NM+1 as follows.
- i, j are arbitrary positive integers. However, i ⁇ j.
- the first pulse pair includes optical frequencies f1 and f4
- the fifth pulse pair includes optical frequencies f2 and f4
- the ninth pulse pair includes optical frequencies f2 and f4 .
- the pulse pair includes optical frequency f3 and optical frequency f4 .
- Equation (2-3) of Patent Document 1 Equation (2-3) of Patent Document 1 as described in Patent Document 1.
- the final phase is calculated from ⁇ (z, mT N +2z/ ⁇ ) by the method described in Patent Document 1 .
- the phase value corrected for the distortion term is calculated.
- the vibration waveform generated in the range of the gauge length D at the point z is calculated.
- appropriate phase unwrapping processing or the like is performed.
- the phase value yk and the phase value y of the kth pulse pair described in the background are obtained.
- the difference in proportionality constant between optical frequencies is the cause of observation.
- the optical pulse test method includes: An optical pulse test method for measuring vibration with a phase OTDR, comprising: Injecting optical pulse pairs composed of optical pulses of different optical frequencies into the sensing fiber at regular intervals (step S001); entering the specific light pulse pair including a compensating light pulse having a predetermined compensating light frequency different from the light frequency into the sensing fiber (step S002); Acquiring a scattered light signal for each of the optical frequency and the compensating light frequency from the specific light pulse pair incident including the compensating light pulse (step S003); From the scattered light signal, calculating a phase value of the light pulse pair with fading noise suppressed by averaging signals of different light frequencies included in the light frequency for each point in the longitudinal direction on the sensing fiber.
- step S004 and S101 calculating a phase value of the compensating optical frequency with fading noise suppressed by averaging signals of different optical frequencies contained in the compensating optical frequency (steps S004 and S101);
- the phase value of the optical pulse pair and the phase value of the compensating optical frequency detected at each point in the longitudinal direction on the sensing fiber are plotted with the phase value of the compensating optical frequency as the abscissa.
- step S102 Plotting the phase value on a two-dimensional plane with the vertical axis (step S102); calculating an approximate straight line for the plotted data for each light pulse pair (step S103); Correcting the phase value of the light pulse pair according to equation (1-7) using the slope A k,c and the vertical axis intercept B k,c of the approximate straight line calculated for each light pulse pair (step S104), is performed.
- steps S001 and S002 are realized by the light source generating a light pulse pair train and injecting it into the optical fiber under test as described in FIG. Also, S003 is performed by the light receiver as described above.
- the signal processing unit 17d processes the k-th type pulse pair and the optical pulse pair including the optical pulse of the compensating optical frequency for each distance z from the incident end on the optical fiber 6 in the longitudinal direction.
- the phase values for each eye pulse pair and compensating light frequency are detected as previously described.
- the phase value of the compensating light frequency is detected in step S101.
- Step S101 the phase change is calculated by detecting the phase value of the compensating light frequency.
- the interval is (N+1) TN even at the compensating light frequency, since it is repeatedly incident on the measurement optical fiber, using the signal of the compensating light frequency, the gauge length D at the point z , and let the phase thus calculated be y c (z, (1+(N+1)n)T N ).
- the variable n be any integer.
- the compensating light frequency can also be written as follows for the actual vibration waveform f(t) using the proportionality constant Ac in the same manner as in Equation (5). Note that the constant component B c of the compensating light frequency in equation (1-5) is generally different from B in equation (5).
- Step S102 At the time (k+(k-1)N+N(N+1)n)T N at which the pulse pair including the k-th pulse pair whose compensating optical frequency and leading optical frequency are f(k ⁇ 1)M+1 is incident,
- the compensating light frequency and an arbitrary main frequency included in the k-th type of pulse pair are incident at the same time.
- Equation (1-6) the proportionality constant term is A k,c and the constant term is B k,c . That is, the horizontal axis is the measured value of y c ((k+(k ⁇ 1)N+N(N+1)n)T N ), and the measured value of y k ((k+(k ⁇ 1)N+N(N+1)n)T N ) is plotted on the vertical axis (step S102-1), and an approximate straight line is created for the plotted data.
- a k,c is obtained from the slope of the approximate straight line, and B from the vertical axis intercept. Values of k and c are obtained (step S102-2).
- a general technique such as the least squares method can be used as a method for creating the approximate straight line.
- Step S102 may be performed for all N types of pulse pairs, or may be performed for some types of pulse pairs.
- Step S104 For optical pulse pairs of each type k, the phase value is measured at time (k+Nn) TN , including times when the light pulses are not incident at the same time as the compensating light frequency. These phase values are corrected as follows using A k,c , B k,c , and A ave,c obtained up to step 3. Let a be the phase value after correction. The phase after correction suppresses differences in response to dynamic strain (vibration) using probe light of different optical frequencies.
- obtaining a scattered light signal from a regular light pulse pair other than the specific light pulse pair From the scattered light signal obtained based on the normal light pulse pair, fading noise is obtained by averaging the optical frequency signal included in the normal light pulse pair for each point on the sensing fiber in the longitudinal direction.
- detecting phase values of the suppressed light pulse pairs The phase value of the detected normal light pulse pair may be corrected according to equation (1-7) using the slope A k,c and the vertical axis intercept B k,c of the approximate straight line.
- Eq. (1-7) is actually expanded.
- the average value of A k is defined as A ave .
- a ave is different from A ave,c because A ave ,c is A ave divided by A c .
- the problem of having different proportionality coefficients A k for each pair of pulses is overcome.
- the slope of the approximation line and the intercept of the ordinate of the approximation straight line from step 3 onwards are calculated on the assumption that they exactly match A k /A c and B ⁇ (A k /A c ) ⁇ B c . Since there is noise in , errors from A k /A c and B ⁇ (A k /A c ) ⁇ B c also occur in the slope of the approximation straight line and the vertical axis intercept. If the error increases, the phase obtained in procedure 4 may have a higher noise level than the phase in equation (5).
- optical pulse test method and optical pulse test apparatus can be applied to the information and communication industry.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
位相OTDRにより振動を計測する光パルス試験方法であって、
異なる光周波数の光パルスで構成される光パルス対を一定間隔でセンシングファイバに入射すること、
特定の前記光パルス対に、前記光周波数と異なり、かつ予め定められた補償光周波数の補償光パルスを含めて前記センシングファイバに入射すること、
前記補償光パルスを含んで入射した前記特定の光パルス対から前記光周波数及び前記補償光周波数のそれぞれについて散乱光信号を取得すること、
前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記光周波数に含まれる異なる光周波数の信号を平均化してフェーディング雑音を抑圧した前記光パルス対の位相値を計算すること、
前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記補償光周波数に含まれる異なる光周波数の信号を平均化してフェーディング雑音を抑圧した前記補償光周波数の位相値を計算すること、
前記センシングファイバ上の長手方向の地点毎に検出した前記光パルス対の前記位相値及び前記補償光周波数の前記位相値を、前記補償光周波数の前記位相値を横軸とし、前記光パルス対の位相値を縦軸として2次元平面上にプロットすること、
前記光パルス対毎に、プロットしたデータに対して近似直線を計算すること、
前記光パルス対毎に計算した前記近似直線の傾きAk,c及び縦軸切片Bk,cを使用して、式(C1)に従って前記光パルス対の位相値を補正すること、を行う。
前記特定の光パルス対以外の通常の光パルス対から散乱光信号を取得すること、
前記通常の光パルス対に基づき取得した前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記通常の光パルス対に含まれる前記光周波数の信号を平均化してフェーディング雑音を抑圧した前記光パルス対の位相値を検出すること、
検出した前記通常の光パルス対の位相値を、前記近似直線の傾きAk,c及び縦軸切片Bk,cを使用して、式(C1)に従って補正すること、をさらに行ってもよい。
位相OTDRにより振動を計測する光パルス試験装置であって、
異なる光周波数の光パルスで構成される光パルス対を一定間隔でセンシングファイバに入射するとともに、特定の前記光パルス対に、前記光周波数と異なり、かつ予め定められた補償光周波数の補償光パルスを含めて前記センシングファイバに入射する光源と、
前記補償光パルスを含んで入射した前記特定の光パルス対から前記光周波数及び前記補償光周波数のそれぞれについて散乱光信号を取得する受光器と、
前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記光周波数に含まれる異なる光周波数の信号を平均化してフェーディング雑音を抑圧した前記光パルス対の位相値を計算すること、
前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記補償光周波数に含まれる異なる光周波数の信号を平均化してフェーディング雑音を抑圧した前記補償光周波数の位相値を計算すること、
前記センシングファイバ上の長手方向の地点毎に検出した前記光パルス対の前記位相値及び前記補償光周波数の前記位相値を、前記補償光周波数の前記位相値を横軸とし、前記光パルス対の位相値を縦軸として2次元平面上にプロットすること、
前記光パルス対毎に、プロットしたデータに対して近似直線を計算すること、
前記光パルス対毎に計算した前記近似直線の傾きAk,c及び縦軸切片Bk,cを使用して、式(C2)に従って前記光パルス対の位相値を補正すること、を行う信号処理部と、を備える。
前記特定の光パルス対以外の通常の光パルス対から散乱光信号を取得すること、
前記通常の光パルス対に基づき取得した前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記通常の光パルス対に含まれる前記光周波数の信号を平均化してフェーディング雑音を抑圧した前記光パルス対の位相値を検出すること、
検出した前記通常の光パルス対の位相値を、前記近似直線の傾きAk,c及び縦軸切片Bk,cを使用して、式(C2)に従って補正すること、をさらに行ってもよい。
本発明は、異なる光周波数のプローブ光を使用した動的歪み(振動)に対する応答の違いのうち、特に光周波数間で比例定数に違いが生じることを原因とする、観測した位相変化が実際の振動波形に対して形状などが異なってしまう課題を、測定したデータに基づく信号処理により低減する方法を提供する。本発明を利用することで、特許文献1に記載の補償光周波数を利用した方法を使用した際に、正確に観測できる振動の大きさのダイナミックレンジを拡張することなどが可能となる。本発明の具体的な手順の特徴は、補償光周波数および異なる複数の主光周波数から構成される各光パルス対を同時刻とみなせるタイミングに入射した際に得られる散乱光信号から得られた位相値を用いて、センシングファイバ上の各地点について横軸を補償光周波数の位相値にとり縦軸を各光パルス対の位相値にとった2次元平面上のプロットを作成し、プロットしたデータに対して近似直線を計算し、計算した近似直線の傾きと縦軸切片の値を使用して各光パルス対の位相値を補正することで、振動が生じている箇所において、補正前よりもより正確に振動波形を計測するところにある。
図1は、本実施形態のDAS-P(Distributed Acoustic Sensing-Phase)で振動検出を行う光パルス試験装置を説明する図である。
本実施形態に係る光パルス試験装置は、
位相OTDRにより振動を計測する光パルス試験装置であって、
異なる光周波数(主光周波数)の光パルスで構成される光パルス対を一定間隔でセンシングファイバに入射するとともに、特定の前記光パルス対に、前記光周波数と異なり、かつ予め定められた補償光周波数の補償光パルスを含めて前記センシングファイバに入射する光源と、
前記補償光パルスを含んで入射した前記特定の光パルス対から前記光周波数及び前記補償光周波数のそれぞれについて散乱光信号を取得する受光器と、
前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記光周波数に含まれる異なる光周波数の信号を平均化してフェーディング雑音を抑圧した前記光パルス対の位相値を計算すること、
前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記補償光周波数に含まれる異なる光周波数の信号を平均化してフェーディング雑音を抑圧した前記補償光周波数の位相値を計算すること、
前記センシングファイバ上の長手方向の地点毎に検出した前記光パルス対の前記位相値及び前記補償光周波数の前記位相値を、前記補償光周波数の前記位相値を横軸とし、前記光パルス対の位相値を縦軸として2次元平面上にプロットすること、
前記光パルス対毎に、プロットしたデータに対して近似直線を計算すること、
前記光パルス対毎に計算した前記近似直線の傾きAk,c及び縦軸切片Bk,cを使用して、式(1-7)に従って前記光パルス対の位相値を補正すること、を行う信号処理部と、
を備える。
位相OTDRにより振動を計測する光パルス試験方法であって、
異なる光周波数の光パルスで構成される光パルス対を一定間隔でセンシングファイバに入射すること(ステップS001)、
特定の前記光パルス対に、前記光周波数と異なり、かつ予め定められた補償光周波数の補償光パルスを含めて前記センシングファイバに入射すること(ステップS002)、
前記補償光パルスを含んで入射した前記特定の光パルス対から前記光周波数及び前記補償光周波数のそれぞれについて散乱光信号を取得すること(ステップS003)、
前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記光周波数に含まれる異なる光周波数の信号を平均化してフェーディング雑音を抑圧した前記光パルス対の位相値を計算すること、前記補償光周波数に含まれる異なる光周波数の信号を平均化してフェーディング雑音を抑圧した前記補償光周波数の位相値を計算すること(ステップS004及びS101)、
前記センシングファイバ上の長手方向の地点毎に検出した前記光パルス対の前記位相値及び前記補償光周波数の前記位相値を、前記補償光周波数の前記位相値を横軸とし、前記光パルス対の位相値を縦軸として2次元平面上にプロットすること(ステップS102)、
前記光パルス対毎に、プロットしたデータに対して近似直線を計算すること(ステップS103)、
前記光パルス対毎に計算した前記近似直線の傾きAk,c及び縦軸切片Bk,cを使用して、式(1-7)に従って前記光パルス対の位相値を補正すること(ステップS104)、を行う。
まず、補償光周波数の位相値を検出することにより位相変化を計算する。ここで、前述のプローブ光では、補償光周波数でも間隔(N+1)TNではあるが、測定光ファイバに繰り返し入射しているため、補償光周波数の信号を使用して、地点zのゲージ長Dの範囲に生じた振動波形を計算することができる点に着目し、そうして計算した位相をyc(z,(1+(N+1)n)TN)とする。変数nは任意の整数とする。ただし、位相接続処理などは適切に実施しているものとする。地点zを省略して、単にyc((1+(N+1)n)TN)とも以降表記する。補償光周波数についても、式(5)と同様にして、比例定数Acを用いて、実際の振動波形f(t)に対して、以下のように書ける。
補償光周波数及び先頭の光周波数がf(k-1)M+1であるk種類目のパルス対を含むパルス対が入射された時刻(k+(k-1)N+N(N+1)n)TNでは、補償光周波数とk種類目のパルス対に含まれる任意の主周波数とは同時とみなせる時刻に入射している。今具体例としているM=1の場合にはk種類目のパルス対に含まれる主光周波数はfkのただ一つである。入射時刻を同時刻とみなせるということは、主光周波数と補償光周波数とで、同じ振動波形f(t)を測定しているとすることができ、式(5)及び式(1-5)からycとykとを以下のように関連づけることができる。
各種類kの光パルス対、例えばM=1の場合には各主光周波数fk、で得られた近似直線の傾きAk,cのkに関する平均値を計算してAave,cとする。ステップS102で一部の種類の光パルス対のみを用いた場合は、一部の種類の光パルス対に関する平均値を計算してAave,cとしてもよい。
各種類kの光パルス対では、補償光周波数と同時刻に入射していない時刻も含めると、時刻(k+Nn)TNで位相値を計測している。それら位相値を手順3までに得られたAk,c、Bk,c、Aave,cを使用して、次のように補正する。補正後の位相値をaとする。
前記特定の光パルス対以外の通常の光パルス対から散乱光信号を取得すること、
前記通常の光パルス対に基づき取得した前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記通常の光パルス対に含まれる前記光周波数の信号を平均化してフェーディング雑音を抑圧した前記光パルス対の位相値を検出すること、
検出した前記通常の光パルス対の位相値を、前記近似直線の傾きAk,c及び縦軸切片Bk,cを使用して、式(1-7)に従って補正してもよい。
2:カプラ
3:光変調器
4:光パルス
5:サーキュレータ
6:被測定光ファイバ
7:90度光ハイブリッド
8:カプラ
9:カプラ
10:位相シフタ
11:カプラ
12:カプラ
13:バランス検出器
14:バランス検出器
15:電気信号
16:電気信号
17:信号処理装置
31:振動測定器
Claims (4)
- 位相OTDRにより振動を計測する光パルス試験方法であって、
異なる光周波数の光パルスで構成される光パルス対を一定間隔でセンシングファイバに入射すること、
特定の前記光パルス対に、前記光周波数と異なり、かつ予め定められた補償光周波数の補償光パルスを含めて前記センシングファイバに入射すること、
前記補償光パルスを含んで入射した前記特定の光パルス対から前記光周波数及び前記補償光周波数のそれぞれについて散乱光信号を取得すること、
前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記光周波数に含まれる異なる光周波数の信号を平均化してフェーディング雑音を抑圧した前記光パルス対の位相値を計算すること、
前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記補償光周波数に含まれる異なる光周波数の信号を平均化してフェーディング雑音を抑圧した前記補償光周波数の位相値を計算すること、
前記センシングファイバ上の長手方向の地点毎に検出した前記光パルス対の前記位相値及び前記補償光周波数の前記位相値を、前記補償光周波数の前記位相値を横軸とし、前記光パルス対の位相値を縦軸として2次元平面上にプロットすること、
前記光パルス対毎に、プロットしたデータに対して近似直線を計算すること、
前記光パルス対毎に計算した前記近似直線の傾きAk,c及び縦軸切片Bk,cを使用して、式(C1)に従って前記光パルス対の位相値を補正すること、
を行う光パルス試験方法。
- 前記特定の光パルス対以外の通常の光パルス対から散乱光信号を取得すること、
前記通常の光パルス対に基づき取得した前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記通常の光パルス対に含まれる前記光周波数の信号を平均化してフェーディング雑音を抑圧した前記光パルス対の位相値を検出すること、
検出した前記通常の光パルス対の位相値を、前記近似直線の傾きAk,c及び縦軸切片Bk,cを使用して、式(C1)に従って補正すること、
をさらに行うことを特徴とする請求項1に記載の光パルス試験方法。 - 位相OTDRにより振動を計測する光パルス試験装置であって、
異なる光周波数の光パルスで構成される光パルス対を一定間隔でセンシングファイバに入射するとともに、特定の前記光パルス対に、前記光周波数と異なり、かつ予め定められた補償光周波数の補償光パルスを含めて前記センシングファイバに入射する光源と、
前記補償光パルスを含んで入射した前記特定の光パルス対から前記光周波数及び前記補償光周波数のそれぞれについて散乱光信号を取得する受光器と、
前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記光周波数に含まれる異なる光周波数の信号を平均化してフェーディング雑音を抑圧した前記光パルス対の位相値を計算すること、
前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記補償光周波数に含まれる異なる光周波数の信号を平均化してフェーディング雑音を抑圧した前記補償光周波数の位相値を計算すること、
前記センシングファイバ上の長手方向の地点毎に検出した前記光パルス対の前記位相値及び前記補償光周波数の前記位相値を、前記補償光周波数の前記位相値を横軸とし、前記光パルス対の位相値を縦軸として2次元平面上にプロットすること、
前記光パルス対毎に、プロットしたデータに対して近似直線を計算すること、
前記光パルス対毎に計算した前記近似直線の傾きAk,c及び縦軸切片Bk,cを使用して、式(C2)に従って前記光パルス対の位相値を補正すること、を行う信号処理部と、
を備える光パルス試験装置。
- 前記特定の光パルス対以外の通常の光パルス対から散乱光信号を取得すること、
前記通常の光パルス対に基づき取得した前記散乱光信号から、前記センシングファイバ上の長手方向の各地点について、前記通常の光パルス対に含まれる前記光周波数の信号を平均化してフェーディング雑音を抑圧した前記光パルス対の位相値を検出すること、
検出した前記通常の光パルス対の位相値を、前記近似直線の傾きAk,c及び縦軸切片Bk,cを使用して、式(C2)に従って補正すること、
をさらに行うことを特徴とする請求項3に記載の光パルス試験装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/035836 WO2023053263A1 (ja) | 2021-09-29 | 2021-09-29 | 光パルス試験方法及び光パルス試験装置 |
EP21959310.0A EP4412108A1 (en) | 2021-09-29 | 2021-09-29 | Optical pulse testing method and optical pulse testing device |
CN202180102096.0A CN117917026A (zh) | 2021-09-29 | 2021-09-29 | 光脉冲试验方法以及光脉冲试验装置 |
JP2023550841A JPWO2023053263A1 (ja) | 2021-09-29 | 2021-09-29 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/035836 WO2023053263A1 (ja) | 2021-09-29 | 2021-09-29 | 光パルス試験方法及び光パルス試験装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023053263A1 true WO2023053263A1 (ja) | 2023-04-06 |
Family
ID=85781574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/035836 WO2023053263A1 (ja) | 2021-09-29 | 2021-09-29 | 光パルス試験方法及び光パルス試験装置 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4412108A1 (ja) |
JP (1) | JPWO2023053263A1 (ja) |
CN (1) | CN117917026A (ja) |
WO (1) | WO2023053263A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017069724A1 (en) * | 2015-10-19 | 2017-04-27 | Halliburton Energy Service, Inc. | Distributed acoustic sensing systems and methods employing multiple pulse widths |
WO2020008886A1 (ja) * | 2018-07-02 | 2020-01-09 | 日本電信電話株式会社 | 分布光ファイバ振動計測装置および分布光ファイバ振動計測方法 |
WO2020070229A1 (en) * | 2018-10-03 | 2020-04-09 | Nkt Photonics Gmbh | Distributed sensing apparatus |
WO2020194856A1 (ja) * | 2019-03-27 | 2020-10-01 | 沖電気工業株式会社 | 光コヒーレントセンサ及び光コヒーレントセンシング方法 |
-
2021
- 2021-09-29 JP JP2023550841A patent/JPWO2023053263A1/ja active Pending
- 2021-09-29 WO PCT/JP2021/035836 patent/WO2023053263A1/ja active Application Filing
- 2021-09-29 CN CN202180102096.0A patent/CN117917026A/zh active Pending
- 2021-09-29 EP EP21959310.0A patent/EP4412108A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017069724A1 (en) * | 2015-10-19 | 2017-04-27 | Halliburton Energy Service, Inc. | Distributed acoustic sensing systems and methods employing multiple pulse widths |
WO2020008886A1 (ja) * | 2018-07-02 | 2020-01-09 | 日本電信電話株式会社 | 分布光ファイバ振動計測装置および分布光ファイバ振動計測方法 |
WO2020070229A1 (en) * | 2018-10-03 | 2020-04-09 | Nkt Photonics Gmbh | Distributed sensing apparatus |
WO2020194856A1 (ja) * | 2019-03-27 | 2020-10-01 | 沖電気工業株式会社 | 光コヒーレントセンサ及び光コヒーレントセンシング方法 |
Non-Patent Citations (5)
Title |
---|
A. E. ALEKSEEV ET AL., LASER PHYSICS, vol. 29, 2019, pages 055106 |
A. MASOUDIT. P. NEWSON: "Analysis of Distributed Optical Fibre Acoustic Sensors through Numerical Modeling", OPT. EXPRESS, vol. 25, no. 25, 11 December 2017 (2017-12-11), pages 32021 - 32040, XP055679457, DOI: 10.1364/OE.25.032021 |
C. D. BUTTERG. B. HOCKER: "Fiber Optics Strain Gauge", APPL. OPT., vol. 17, 1978, pages 2867 - 2869 |
M. CHENA. MASOUDIG. BRAMBILLA: "Performance Analysis of Distributed Optical Fiber Acoustic Sensors based on #x03C6; -OTDR", OPT. EXPRESS, vol. 27, no. 7, 1 April 2019 (2019-04-01), pages 9684 - 9695 |
WU YUE; WANG ZINAN; XIONG JI; JIANG JIALIN; LIN SHENGTAO; CHEN YONGXIANG: "Interference Fading Elimination With Single Rectangular Pulse in $\Phi$-OTDR", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE, USA, vol. 37, no. 13, 1 July 2019 (2019-07-01), USA, pages 3381 - 3387, XP011729336, ISSN: 0733-8724, DOI: 10.1109/JLT.2019.2916682 * |
Also Published As
Publication number | Publication date |
---|---|
EP4412108A1 (en) | 2024-08-07 |
JPWO2023053263A1 (ja) | 2023-04-06 |
CN117917026A (zh) | 2024-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6342019B2 (ja) | 分布型光ファイバ音波検出装置 | |
JP6893137B2 (ja) | 光ファイバ振動検知センサおよびその方法 | |
JP2017026503A (ja) | 振動分布測定方法及び振動分布測定装置 | |
JP7435160B2 (ja) | 光ファイバ振動検知装置及び振動検知方法 | |
JP7010147B2 (ja) | 振動分布測定システム、振動波形解析方法、振動波形解析装置、および解析プログラム | |
JP2018048917A (ja) | 光ファイバ試験装置及び光ファイバ試験方法 | |
JP2020003464A (ja) | 分布光ファイバ振動計測装置および分布光ファイバ振動計測方法 | |
JP6751379B2 (ja) | 光時間領域反射測定方法および光時間領域反射測定装置 | |
JP7298706B2 (ja) | 光パルス試験方法及び光パルス試験装置 | |
US11522606B2 (en) | Phase measurement method, signal processing device, and program | |
Liehr | Fibre optic sensing techniques based on incoherent optical frequency domain reflectometry | |
CN114543973A (zh) | 一种分布式超高频振动信号测量方法及光纤传感器 | |
JPWO2020084825A1 (ja) | 光パルス試験装置及び光パルス試験方法 | |
US6900895B2 (en) | Phase noise compensation in an interferometric system | |
WO2023053263A1 (ja) | 光パルス試験方法及び光パルス試験装置 | |
WO2022259437A1 (ja) | 振動測定器及び振動測定方法 | |
JP6751378B2 (ja) | 光時間領域反射測定方法および光時間領域反射測定装置 | |
WO2022259436A1 (ja) | 信号処理装置、振動検出システム及び信号処理方法 | |
JP7367879B2 (ja) | 光周波数領域反射計測装置及び方法 | |
JP7405270B2 (ja) | 振動検出装置及び振動検出方法 | |
WO2024166295A1 (ja) | 設備位置解析装置及び設備位置解析方法 | |
JP7069993B2 (ja) | 光スペクトル線幅演算方法、装置およびプログラム | |
JP5927079B2 (ja) | レーザ光特性測定方法及び測定装置 | |
JP2022096792A (ja) | 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法 | |
CN114199514A (zh) | 基于光频域反射分布式传感的假峰消除方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21959310 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023550841 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180102096.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18693014 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021959310 Country of ref document: EP Effective date: 20240429 |