WO2020008863A1 - 光測距装置 - Google Patents

光測距装置 Download PDF

Info

Publication number
WO2020008863A1
WO2020008863A1 PCT/JP2019/024084 JP2019024084W WO2020008863A1 WO 2020008863 A1 WO2020008863 A1 WO 2020008863A1 JP 2019024084 W JP2019024084 W JP 2019024084W WO 2020008863 A1 WO2020008863 A1 WO 2020008863A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical distance
light emitting
unit
distance measuring
Prior art date
Application number
PCT/JP2019/024084
Other languages
English (en)
French (fr)
Inventor
山田 仁
善明 帆足
水野 文明
尾崎 憲幸
晶文 植野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980045304.0A priority Critical patent/CN112368596A/zh
Publication of WO2020008863A1 publication Critical patent/WO2020008863A1/ja
Priority to US17/138,699 priority patent/US20210149026A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/124Details of the optical system between the light source and the polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces

Definitions

  • the present disclosure relates to an optical distance measuring device.
  • Patent Document 1 a light-emitting element including a plurality of light-emitting units and having a gap between adjacent light-emitting units.
  • the present invention can be realized as the following modes.
  • an optical distance measuring device In this optical distance measuring device, a plurality of light emitting units for irradiating light, a light emitting element arranged with a gap between the adjacent light emitting units, a light transmitting unit for transmitting the light, the light emitting element, and A driving unit that changes the positional relationship with the transmitting unit, and a light receiving unit that receives the reflected light, comprising: the driving unit, by changing the positional relationship between the light emitting element and the transmitting unit, The light irradiation path is changed along the direction of the array.
  • optical distance measuring device of this embodiment it is possible to suppress the occurrence of a region that is not irradiated with light due to the gap between the light emitting units.
  • FIG. 1 is a schematic diagram showing an optical distance measuring apparatus according to the first embodiment.
  • FIG. 2 is a schematic diagram of a light emitting element
  • FIG. 3 is a diagram illustrating a relationship between driving of an emission lens by a driving unit and irradiation light
  • FIG. 4 is a diagram for explaining a mode of rotating the output lens.
  • FIG. 5 is a schematic diagram showing an optical distance measuring apparatus according to the second embodiment.
  • FIG. 6 is a diagram illustrating a relationship between driving of the transmission unit by the driving unit and irradiation light.
  • an optical distance measuring apparatus 10 includes a light source unit 30, a light receiving unit 12, a light receiving IC 14, a hyperboloid mirror 20, a polygon mirror 22, a housing The body 26 and the control unit 50 are provided.
  • the optical distance measuring device 10 measures the distance to the measurement target based on the time of flight (TOF) until the light emitted from the light source unit 30 is reflected by the measurement target and returns to the light receiving unit 12. It is a device to do.
  • the optical distance measuring device 10 is mounted on, for example, a vehicle.
  • the light source unit 30 is a part including the light emitting element 18.
  • the light emitting element 18 has a plurality of light emitting units 16 that emit light, which are arranged with a gap between adjacent light emitting units 16. With this gap, a current path between a certain light emitting unit 16 and an adjacent light emitting unit 16 can be separated.
  • Light is irradiated in the direction of the arrow shown in FIG. 2, and the irradiated light is also referred to as irradiation light Lt.
  • the light emitting element 18 of the present embodiment is a laser diode element, and emits, as the irradiation light Lt, a pulse laser light that repeats blinking at a predetermined pulse width and a predetermined cycle.
  • a light source other than a laser diode element such as a solid-state laser may be used.
  • the irradiation light Lt becomes a parallel light flux by transmitting through the exit lens 32.
  • the emission lens 32 that converts the irradiation light Lt into substantially parallel light functions as a transmission unit through which the irradiation light Lt passes.
  • the irradiation light Lt is substantially parallel light indicates that the irradiation light Lt is light within ⁇ 5 ° of the parallel light.
  • the drive unit 34 of the present embodiment is a member that changes the positional relationship between the light emitting element 18 and the emission lens 32.
  • a piezo element is used as the driving unit 34, but the present invention is not limited to this.
  • a motor such as a solenoid, a stepping motor, or an ultrasonic motor may be used.
  • the polygon mirror 22 is a polygon mirror having a plurality of mirror surfaces, and is rotated by a motor 24.
  • the polygon mirror 22 of the present embodiment has six mirror surfaces.
  • the polygon mirror 22 irradiates the outside of the optical distance measuring device 10 by reflecting the irradiation light Lt on each mirror surface. Part of the reflected light of the irradiation light Lt reflected from the measurement target reaches the polygon mirror 22.
  • the polygon mirror 22 reflects the arriving reflected light Lr on each mirror surface and guides the reflected light Lr to the hyperboloid mirror 20.
  • the hyperboloid mirror 20 condenses the reflected light Lr guided by the polygon mirror 22, guides the reflected light Lr to the light receiving unit 12 of the light receiving IC 14, and the light receiving unit 12 receives the reflected light Lr.
  • the light receiving section 12 has a plurality of light receiving elements capable of outputting a pulse signal in accordance with the incidence of the reflected light Lr from the measurement target.
  • a SPAD Single ⁇ Photon ⁇ Avalanche ⁇ Diode
  • the light receiving element for example, a PN photodiode, a PIN photodiode, or an avalanche photodiode operating in a linear region may be used.
  • Each mirror surface of the polygon mirror 22 is inclined at a different angle with respect to the rotation axis AX. Since the polygon mirror 22 is rotated at a predetermined rotation speed about the rotation axis AX, the elevation angle of the irradiation light Lt and the depression angle of the reflection light Lr change with the rotation of the polygon mirror 22. As a result, the irradiation light Lt from the light source unit 30 can be used not only for scanning in the horizontal direction but also for scanning at different depression angles.
  • the polygon mirror 22 is used. However, the present invention is not limited to this. For example, a one-sided mirror may be used. In this case, by changing the angle of the rotation axis AX for each rotation, the elevation angle of the irradiation light Lt and the depression angle of the reflection light Lr can be changed like the polygon mirror 22.
  • the housing 26 has a support structure for supporting each of the above-described components, and includes a control board 27.
  • a control unit 50 is provided on the control board 27.
  • the control unit 50 is configured as a computer including a CPU and a memory, and controls components of the optical distance measuring device 10 including the light emitting element 18, the driving unit 34, and the light receiving unit 12.
  • the control unit 50 controls the driving unit 34 the optical distance measuring device 10 changes the positional relationship between the light emitting element 18 and the emission lens 32 by the driving unit 34, thereby changing the irradiation path of the irradiation light to the light emitting unit. Change along the direction of the 16 arrays.
  • FIG. 3 (i) a non-driving state in which the driving unit 34 does not drive the emission lens 32, (ii) a driving state in which the driving unit 34 drives the emission lens 32, and (iii) 7 shows a state in which the irradiation light Lt is overlapped during driving and non-driving.
  • the irradiation path of the irradiation light Lt is changed along the direction of the arrangement.
  • the driving unit 34 determines the positional relationship between the light emitting element 18 and the emission lens 32 so as to fill an unirradiated area caused by the gap between the adjacent 16 turns of the light emitting unit at a sufficiently long distance where the light emitting unit 16 of the optical distance measuring device 10 irradiates.
  • the irradiation path of the irradiation light Lt is changed along the direction of the arrangement by changing the amount necessary and sufficient.
  • the gap between the adjacent light emitting portions 16 of the laser diode element is at most about several tens ⁇ m to about 100 ⁇ m, and a simple and small change in the positional relationship required to fill the unirradiated area due to this is required. It is sufficient to provide only the drive mechanism of
  • the optical distance measuring apparatus 10 of the present embodiment it is possible to suppress the occurrence of a region where light is not irradiated due to the gap between the light emitting units 16 by using a simple and small driving mechanism.
  • the light receiving area of the reflected light Lr in the light receiving unit 12 changes between when the driving unit 34 is driven and when it is not driven. That is, there is a region that receives the reflected light Lr only in one of the driving state and the non-driving state.
  • control unit 50 may adjust the sensitivity of the light receiving unit 12 so that the signal intensity of this region becomes the same as the signal intensity of the region receiving light both during driving and during non-driving. By doing so, it is possible to reduce the difference in signal intensity for each light receiving area.
  • the present invention is not limited to this.
  • the drive lens 34 may rotate the emission lens 32.
  • FIG. 4 shows a mode in which the emission lens 32 is rotationally moved about an axis BX different from the central axis CX of the emission lens 32. 4, similarly to FIG. 3, (i) a state in which the emission lens 32 is not driven by the driving unit 34 and a non-driving state, and (ii) a driving state in which the emission lens 32 is driven by the driving unit 34. And (iii) a state in which the irradiation light Lt at the time of driving and at the time of non-driving are superimposed.
  • the optical distance measuring device 10 of the present embodiment even when the driving lens 34 rotates the emission lens 32, according to the optical distance measuring device 10 of the present embodiment, light caused by the gap between the light emitting units 16 is not irradiated. The generation of the area can be suppressed. 3 and 4, the light emitted from the light emitting element 18 is drawn as a line without a width. However, in practice, as shown in FIG. 2, the light emitting units 16 have a certain width along the direction of arrangement, and this width is wider than the gap provided between the adjacent light emitting units 16.
  • an optical distance measuring device 10B according to a second embodiment includes a transmission unit 90 separately from the exit lens 32 as compared with the optical distance measuring device 10 according to the first embodiment.
  • the driving unit 34B is different in that it drives the transmission unit 90 instead of the emission lens 32, but is otherwise the same.
  • FIG. 6 shows a driving time when the transmission unit 90 is driven by the driving unit 34B and a non-driving time when no driving is performed.
  • the irradiation light Lt ⁇ b> 1 passes through the transmission unit 90 without being refracted when not driven.
  • the irradiation light Lt2 is refracted when transmitting through the transmission unit 90.
  • the control unit 50 controls the driving unit 34B to irradiate light to a region that is not irradiated with light when the driving by the driving unit 34 is not performed.
  • the variation width W of the light irradiation path due to the driving of the transmission unit 90 is larger than 0 ⁇ m and 100 ⁇ m or less.
  • the emission lens 32 is provided between the light emitting element 18 and the transmission unit 90.
  • the irradiation light Lt is converted into a parallel light flux by the emission lens 32 and then passes through the transmission unit 90. Therefore, according to the second embodiment, the irradiation light Lt is divided into the first embodiment and the second embodiment.
  • the design of the optical system is easy and the reliability is high.
  • the position of the transmission unit 90 is not limited to this.
  • the transmission unit 90 may be provided between the light emitting element 18 and the emission lens 32.
  • the transmission section 90 having a rectangular (parallel flat plate) cross section has been exemplified.
  • the present invention is not limited to this.
  • the transmission section 90 having a wedge-shaped (triangular) cross section may be used.
  • the present invention is not limited to the above-described embodiment, and can be implemented with various configurations without departing from the spirit of the invention.
  • the technical features in the present embodiment corresponding to the technical features in the respective embodiments described in the summary of the invention may be used to solve some or all of the above-described problems, or to achieve the above-described effects. In order to achieve some or all of them, replacement and combination can be appropriately performed. If the technical features are not described as essential in this specification, they can be deleted as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

光測距装置10、10Bは、光を照射する複数の発光部16が、隣接する前記発光部の間に間隙を設けて配列された発光素子18と、前記光が透過する透過部32、90と、前記発光素子と前記透過部との位置関係を変更する駆動部34、34Bと、反射した前記光を受光する受光部12と、を備え、前記駆動部によって、前記発光素子と前記透過部との位置関係を変更することによって、前記光の照射経路を前記配列の方向に沿って変更する。

Description

光測距装置 関連出願の相互参照
 本出願は、2018年7月5日に出願された日本出願番号2018-127977号に基づくもので、ここにその記載内容を援用する。
 本開示は、光測距装置に関する。
 従来より、複数の発光部を備える発光素子であって、隣接する発光部間に間隙を備える発光素子が知られている(例えば、特許文献1)。
特開平7-43643号公報
 特許文献1に記載の発光素子を光測距装置に用いる場合、発光部間の間隙に起因して光測距装置の発光部が照射する十分遠方において光が照射されない領域が生じ、この領域において距離を測定できないという課題があった。このため、発光部間の間隙に起因して光が照射されない領域の発生を抑制する方法が望まれていた。
 本発明は、以下の形態として実現することが可能である。
 本発明の一形態によれば、光測距装置が提供される。この光測距装置は、光を照射する複数の発光部が、隣接する前記発光部の間に間隙を設けて配列された発光素子と、前記光が透過する透過部と、前記発光素子と前記透過部との位置関係を変更する駆動部と、反射した前記光を受光する受光部と、を備え、前記駆動部によって、前記発光素子と前記透過部との位置関係を変更することにより、前記光の照射経路を前記配列の方向に沿って変更する。
 この形態の光測距装置によれば、発光部間の間隙に起因した光が照射されない領域の発生を抑制できる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の光測距装置を示す模式図であり、 図2は、発光素子の模式図であり、 図3は、駆動部による出射レンズの駆動と、照射光との関係を示す図であり、 図4は、出射レンズを回転移動させる態様を説明する図であり、 図5は、第2実施形態の光測距装置を示す模式図であり、 図6は、駆動部による透過部の駆動と、照射光との関係を示す図である。
A.第1実施形態
 図1に示すように、第1実施形態に係る光測距装置10は、光源部30と、受光部12と、受光IC14と、双曲面ミラー20と、ポリゴンミラー22と、筐体26と、制御部50と、を備える。光測距装置10は、光源部30から照射した光が測定対象物で反射し、受光部12に戻るまでの飛行時間(TOF:Time of Flight)に基づいて、測定対象物までの距離を測定する装置である。光測距装置10は、例えば、車両に搭載される。
 光源部30は、発光素子18を備える部分である。図2に示すように、発光素子18には、光を照射する複数の発光部16が、隣接する発光部16の間に間隙を設けて配列されている。この間隙により、ある発光部16と隣接する発光部16との電流経路を分離することができる。図2に示す矢印方向に光が照射され、照射された光を照射光Ltとも呼ぶ。本実施形態の発光素子18は、レーザーダイオード素子であり、照射光Ltとして、所定のパルス幅及び周期で点滅を繰り返すパルスレーザ光を照射する。なお、発光素子18として、例えば、固体レーザなどのレーザーダイオード素子以外の光源を用いてもよい。
 照射光Ltは、出射レンズ32を透過することにより、平行な光束となる。ここで、本実施形態では、照射光Ltを略平行光にする出射レンズ32は、照射光Ltが透過する透過部として機能する。ここで、「照射光Ltを略平行光とする」とは、照射光Ltを平行光±5°以内の光とすることを示す。
 本実施形態の駆動部34は、発光素子18と出射レンズ32との位置関係を変更する部材である。本実施形態では、駆動部34として、ピエゾ素子を用いるが、これに限られない。駆動部34として、例えば、ソレノイドや、ステッピングモータ、超音波モータなどのモータを用いてもよい。
 ポリゴンミラー22は、複数のミラー面を有する多角形ミラーであり、モータ24により回転される。本実施形態のポリゴンミラー22は、6個のミラー面を有する。ポリゴンミラー22は、照射光Ltを各ミラー面で反射することにより光測距装置10外に向けて照射する。照射光Ltが測定対象物から反射した反射光の一部は、ポリゴンミラー22まで到達する。ポリゴンミラー22は、到達した反射光Lrを各ミラー面によって反射させ、双曲面ミラー20へ導く。
 双曲面ミラー20は、ポリゴンミラー22によって導かれた反射光Lrを集光し、受光IC14の受光部12に導き、受光部12が反射光Lrを受光する。
 受光部12は、測定対象物からの反射光Lrの入射に応じてパルス信号を出力可能な受光素子を複数有する。本実施形態では、受光素子として、SPAD(Single Photon Avalanche Diode)を用いるが、これに限られない。受光素子として、例えば、PNフォトダイオード、PINフォトダイオード、リニア領域で動作するアバランシェフォトダイオードを用いてもよい。
 ポリゴンミラー22の各ミラー面は、回転軸AXに対してそれぞれ異なる角度に傾けられている。ポリゴンミラー22は、回転軸AXを中心として所定の回転速度で回転されるため、ポリゴンミラー22の回転に伴って、照射光Ltの仰角と反射光Lrの俯角が変化する。この結果、光源部30からの照射光Ltは、水平方向の走査のみならず、異なる俯角での走査についても可能となる。なお、本実施形態では、ポリゴンミラー22を用いるが、これに限られず、例えば、一面のミラーを用いてもよい。この場合、1回転ごとに回転軸AXの角度を変えることにより、ポリゴンミラー22のように照射光Ltの仰角と反射光Lrの俯角を変化させることができる。
 筐体26は、上記の各構成を支持する支持構造を有するとともに、制御基板27を備える。制御基板27には、制御部50が設けられている。制御部50は、CPUやメモリを備えるコンピュータとして構成されており、発光素子18と駆動部34と受光部12とを含む光測距装置10の構成部材を制御する。制御部50が駆動部34を制御することにより、光測距装置10は、駆動部34によって、発光素子18と出射レンズ32との位置関係を変更することにより、照射光の照射経路を発光部16の配列の方向に沿って変更する。このようにすることにより、目的を達成するのに必要十分な簡略な構造によって、発光部16間の間隙に起因した光が照射されない領域の発生を抑制できる。以下、そのメカニズムについて説明する。
 図3において、(i)駆動部34により出射レンズ32の駆動を行わない非駆動時の様子と、(ii)駆動部34により出射レンズ32の駆動を行った駆動時の様子と、(iii)駆動時と非駆動時における照射光Ltを重ね合せた様子と、を示す。図3から分かるように、駆動部34により発光素子18と出射レンズ32との位置関係を変更することにより、照射光Ltの照射経路が配列の方向に沿って変更される。つまり、駆動部34により発光素子18と出射レンズ32との位置関係を光測距装置10の発光部16が照射する十分遠方において隣接する発光部16巻の間隙に起因する未照射領域を埋めるのに必要十分な量だけ変更することにより、照射光Ltの照射経路が配列の方向に沿って変更される。例えば、レーザーダイオード素子の隣接する発光部16間の間隙は、高々数十μmから100μmほどであり、これに起因する未照射領域を埋めるのに必要十分な位置関係の変更には、簡略かつ小型の駆動機構を設けるだけで足りる。
 このため、本実施形態の光測距装置10によれば、発光部16間の間隙に起因する光が照射されない領域の発生を簡略かつ小型の駆動機構により抑制できる。また、本実施形態によれば、駆動部34以外に新たな部品を追加することなく、発光部16間の間隙に起因する光が照射されない領域の発生を抑制できる。なお、駆動部34の駆動時と非駆動時において、受光部12における反射光Lrの受光領域が変わる。つまり、駆動時と非駆動時とのどちらか一方の場合のみ反射光Lrを受光する領域が存在する。このため、この領域の信号強度を、駆動時と非駆動時との両方において受光する領域の信号強度と同じとなるように、制御部50が受光部12の感度を調整してもよい。このようにすることにより、受光領域ごとの信号強度の差を低減できる。
 なお、第1実施形態では、駆動部34により出射レンズ32を発光素子18に対して平行移動させていたが、これに限られない。例えば、駆動部34により出射レンズ32を回転移動させてもよい。図4では、出射レンズ32の中心軸CXとは異なる軸BXを中心として出射レンズ32を回転移動させる態様を示す。図4においても、図3と同様に、(i)駆動部34により出射レンズ32の駆動を行わない非駆動時の様子と、(ii)駆動部34により出射レンズ32の駆動を行った駆動時の様子と、(iii)駆動時と非駆動時における照射光Ltを重ね合せた様子と、を示す。図4からも分かるように、駆動部34により出射レンズ32を回転移動させた場合においても、本実施形態の光測距装置10によれば、発光部16間の間隙に起因する光が照射されない領域の発生を抑制できる。なお、図3及ぶ図4では、発光素子18から照射される光は幅のない線として描かれている。しかし、実際には、図2に示すように、発光部16は、配列の方向に沿って一定の幅を持っており、この幅は、隣接する発光部16間に設けられた間隙より広い。
B.第2実施形態
 図5に示すように、第2実施形態の光測距装置10Bは、第1実施形態の光測距装置10と比較して、透過部90を出射レンズ32とは別に備え、駆動部34Bは出射レンズ32の代わりに透過部90を駆動する点で異なるが、それ以外は同じである。
 図6において、駆動部34Bにより透過部90の駆動を行った駆動時と、駆動を行わない非駆動時とを示す。図6では、非駆動時において、照射光Lt1は屈折せずに透過部90を透過する。一方、駆動時において、照射光Lt2は透過部90を透過する際に屈折する。この結果、図6から分かるように、制御部50は、駆動部34Bを制御することにより、駆動部34による駆動を行わない場合に光が照射されない領域に光を照射することができる。ここで、透過部90の駆動による光の照射経路の変動幅Wは、0μmより大きく100μm以下であることが好ましい。このようにすることにより、小さな駆動力で透過部90を駆動させることができるとともに、透過部90を駆動するためのスペースが小さく抑えることができる。
 本実施形態では、発光素子18と透過部90との間に出射レンズ32が設けられている。このようにすることにより、照射光Ltは、出射レンズ32により平行な光束となった後に、透過部90を透過するため、第2実施形態によれば、第1実施形態及び第2実施形態に比べて、光学系の設計が容易であり、かつ、信頼性が高い。なお、透過部90の位置はこれに限られず、例えば、発光素子18と出射レンズ32との間に透過部90が設けられていてもよい。
C.他の実施形態
 上述の実施形態では、投光における光軸と受光における光軸とが一致する同軸型の光学系を採用している。しかし、これに限られず、投光における光軸と受光における光軸とが異なる異軸型の光学系を用いてもよい。
 上述の実施形態では、断面形状が矩形(平行平板)である透過部90を例示したがこれに限らず、例えば、断面形状が楔形(三角形)である透過部90を用いてもよい。
 本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する本実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。

Claims (5)

  1.  光測距装置(10, 10B)であって、
     光を照射する複数の発光部(16)が、隣接する前記発光部の間に間隙を設けて配列された発光素子(18)と、
     前記光が透過する透過部(32,90)と、
     前記発光素子と前記透過部との位置関係を変更する駆動部(34,34B)と、
     反射した前記光を受光する受光部(12)と、を備え、
     前記駆動部によって、前記発光素子と前記透過部との位置関係を変更することにより、前記光の照射経路を前記配列の方向に沿って変更する、光測距装置。
  2.  請求項1に記載の光測距装置(10)であって、
     前記透過部は、前記光を略平行光にする出射レンズであり、
     前記駆動部は、前記透過部を駆動する、光測距装置。
  3.  請求項1に記載の光測距装置(10B)であって、さらに、
     前記光を略平行光にする出射レンズを備え、
     前記駆動部は、前記透過部を駆動する、光測距装置。
  4.  請求項3に記載の光測距装置であって、
     前記透過部と前記発光素子との間に出射レンズが設けられている、光測距装置。
  5.  請求項3または請求項4に記載の光測距装置であって、
     前記透過部の駆動による前記照射経路の変動幅(W)は、0μmより大きく100μm以下である、光測距装置。
PCT/JP2019/024084 2018-07-05 2019-06-18 光測距装置 WO2020008863A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980045304.0A CN112368596A (zh) 2018-07-05 2019-06-18 光测距装置
US17/138,699 US20210149026A1 (en) 2018-07-05 2020-12-30 Optical distance measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018127977A JP7077822B2 (ja) 2018-07-05 2018-07-05 光測距装置
JP2018-127977 2018-07-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/138,699 Continuation US20210149026A1 (en) 2018-07-05 2020-12-30 Optical distance measuring device

Publications (1)

Publication Number Publication Date
WO2020008863A1 true WO2020008863A1 (ja) 2020-01-09

Family

ID=69060312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024084 WO2020008863A1 (ja) 2018-07-05 2019-06-18 光測距装置

Country Status (4)

Country Link
US (1) US20210149026A1 (ja)
JP (1) JP7077822B2 (ja)
CN (1) CN112368596A (ja)
WO (1) WO2020008863A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113359109A (zh) * 2021-06-16 2021-09-07 宜科(天津)电子有限公司 一种曲面反光镜以及同轴光学收发系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781111A (en) * 1972-03-16 1973-12-25 Nasa Short range laser obstacle detector
JP2007214564A (ja) * 2006-02-06 2007-08-23 Avago Technologies General Ip (Singapore) Private Ltd 面発光レーザ(vcsel)アレイ・レーザスキャナ
JP2009204691A (ja) * 2008-02-26 2009-09-10 Toyota Central R&D Labs Inc 光走査装置、レーザレーダ装置、及び光走査方法
JP2013104771A (ja) * 2011-11-14 2013-05-30 Ricoh Co Ltd 光走査装置及びレーザレーダ装置
JP2015078941A (ja) * 2013-10-18 2015-04-23 増田 麻言 レーザ光を用いた距離測定装置
JP2015137951A (ja) * 2014-01-23 2015-07-30 株式会社リコー 物体検出装置及びセンシング装置
US20150260830A1 (en) * 2013-07-12 2015-09-17 Princeton Optronics Inc. 2-D Planar VCSEL Source for 3-D Imaging
JP2017161500A (ja) * 2015-12-29 2017-09-14 ザ・ボーイング・カンパニーThe Boeing Company 可変分解能光レーダーシステム
JP2017195569A (ja) * 2016-04-22 2017-10-26 コニカミノルタ株式会社 監視システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144750A (ja) * 1997-05-30 1999-02-16 Aisin Seiki Co Ltd 光レ−ダ
JPH11326498A (ja) * 1998-05-11 1999-11-26 Mitsubishi Electric Corp 車両用光レーダ装置
JP2000147122A (ja) * 1998-11-09 2000-05-26 Nikon Corp 光波測距装置
JP2004125739A (ja) * 2002-10-07 2004-04-22 Omron Corp 物体検知装置および方法
JP2007101342A (ja) * 2005-10-04 2007-04-19 Omron Corp 距離測定装置
JP2007155467A (ja) * 2005-12-05 2007-06-21 Nidec Sankyo Corp 光ビーム走査装置
US7859610B2 (en) * 2005-12-27 2010-12-28 Panasonic Corporation Planar lighting and LCD device with a laser light source emitting a linearly-polarized laser beam, optical member to parallelize the beam and a plate-shaped light guide for emitting part of the beam
JP4609734B2 (ja) * 2007-09-05 2011-01-12 カシオ計算機株式会社 距離測定装置及びこの距離測定装置を備えたプロジェクタ
JP5009135B2 (ja) * 2007-09-28 2012-08-22 オリンパス株式会社 光学測定装置
KR101651440B1 (ko) * 2008-05-16 2016-08-26 코닌클리케 필립스 엔.브이. 셀프-믹싱 레이저 센서를 포함하는 방어 시스템 및 그러한 방어 시스템을 구동하는 방법
JP2012128322A (ja) * 2010-12-17 2012-07-05 Shicoh Engineering Co Ltd 光照射付きズームレンズ駆動装置、カメラ及びカメラ付きモバイル端末装置
JP5738005B2 (ja) * 2011-03-01 2015-06-17 株式会社トプコン 光波距離測定装置
JP5399526B2 (ja) * 2011-06-29 2014-01-29 シャープ株式会社 光学式測距装置および電子機器
US9268012B2 (en) * 2013-07-12 2016-02-23 Princeton Optronics Inc. 2-D planar VCSEL source for 3-D imaging
US9443310B2 (en) * 2013-10-09 2016-09-13 Microsoft Technology Licensing, Llc Illumination modules that emit structured light
SG11201913642VA (en) * 2017-07-05 2020-01-30 Ouster Inc Light ranging device with electronically scanned emitter array and synchronized sensor array
US11294035B2 (en) * 2017-07-11 2022-04-05 Nuro, Inc. LiDAR system with cylindrical lenses
US11194022B2 (en) * 2017-09-29 2021-12-07 Veoneer Us, Inc. Detection system with reflection member and offset detection array

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781111A (en) * 1972-03-16 1973-12-25 Nasa Short range laser obstacle detector
JP2007214564A (ja) * 2006-02-06 2007-08-23 Avago Technologies General Ip (Singapore) Private Ltd 面発光レーザ(vcsel)アレイ・レーザスキャナ
JP2009204691A (ja) * 2008-02-26 2009-09-10 Toyota Central R&D Labs Inc 光走査装置、レーザレーダ装置、及び光走査方法
JP2013104771A (ja) * 2011-11-14 2013-05-30 Ricoh Co Ltd 光走査装置及びレーザレーダ装置
US20150260830A1 (en) * 2013-07-12 2015-09-17 Princeton Optronics Inc. 2-D Planar VCSEL Source for 3-D Imaging
JP2015078941A (ja) * 2013-10-18 2015-04-23 増田 麻言 レーザ光を用いた距離測定装置
JP2015137951A (ja) * 2014-01-23 2015-07-30 株式会社リコー 物体検出装置及びセンシング装置
JP2017161500A (ja) * 2015-12-29 2017-09-14 ザ・ボーイング・カンパニーThe Boeing Company 可変分解能光レーダーシステム
JP2017195569A (ja) * 2016-04-22 2017-10-26 コニカミノルタ株式会社 監視システム

Also Published As

Publication number Publication date
CN112368596A (zh) 2021-02-12
JP7077822B2 (ja) 2022-05-31
US20210149026A1 (en) 2021-05-20
JP2020008363A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
US10305247B2 (en) Radiation source with a small-angle scanning array
US9304228B2 (en) Object detection apparatus with detection based on reflected light or scattered light via an imaging unit
KR101923724B1 (ko) 송수광 일체형 광학계 모듈 및 이를 구비하는 스캐닝 라이다
US20070131842A1 (en) External laser power monitor using pickoff mirror in a ROS
US20080310002A1 (en) Scanning Type Image Display Apparatus
US10935637B2 (en) Lidar system including a transceiver array
JP2016188808A (ja) レンジセンサとその部品
JP2012093245A (ja) レーザ測量機
JP6679472B2 (ja) 物体検出装置
JP2018005183A (ja) 光走査装置、物体検知装置および距離検知装置
CN114026449A (zh) 光学测距装置
US20240128707A1 (en) Apparatus for projecting linear laser beams
WO2020116078A1 (ja) レーザレーダ
WO2020008863A1 (ja) 光測距装置
CN113721220A (zh) 一种单自由度旋转实现二维光学扫描的方法
CN209746129U (zh) 一种分布式激光雷达系统
US11909169B2 (en) Apparatus for projecting linear laser beams
US20210382177A1 (en) System for monitoring surroundings of vehicle
US11796678B2 (en) Optical device and LiDAR system including the same
WO2022201406A1 (ja) 光学装置及び光学装置の制御方法
WO2019058679A1 (ja) 距離測定装置及びそれを備えた移動体
WO2020170700A1 (ja) 車両周辺監視システム
US20220107397A1 (en) Lidar system
JPH05126954A (ja) レ−ザ照射装置
JP7155526B2 (ja) ライダー装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830107

Country of ref document: EP

Kind code of ref document: A1