JP5009135B2 - 光学測定装置 - Google Patents

光学測定装置 Download PDF

Info

Publication number
JP5009135B2
JP5009135B2 JP2007307055A JP2007307055A JP5009135B2 JP 5009135 B2 JP5009135 B2 JP 5009135B2 JP 2007307055 A JP2007307055 A JP 2007307055A JP 2007307055 A JP2007307055 A JP 2007307055A JP 5009135 B2 JP5009135 B2 JP 5009135B2
Authority
JP
Japan
Prior art keywords
light source
optical
optical system
light
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007307055A
Other languages
English (en)
Other versions
JP2009098110A (ja
Inventor
新一 土坂
良政 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007307055A priority Critical patent/JP5009135B2/ja
Priority to US12/229,128 priority patent/US7570362B2/en
Publication of JP2009098110A publication Critical patent/JP2009098110A/ja
Application granted granted Critical
Publication of JP5009135B2 publication Critical patent/JP5009135B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、全反射を利用した屈折率測定等の光学測定装置に関するものである。
従来、全反射を利用した顕微鏡が知られている(例えば、特許文献1参照。)。この顕微鏡は、平行光束を全反射蛍光観察用の対物レンズに入射させ、その焦点位置に収斂させるもので、観察対象の微細な範囲における屈折率測定等を行うことができる。
特開2005−337940号公報 特開平10-48130号広報 特開2006−17648号広報
しかしながら、特許文献1に記載の顕微鏡では、観察対象の測定範囲は点であり、観察対象の広範囲にわたる観察を行うことが困難であった。例えば、観察対象の屈折率が分布している場合に、簡単に光学系を切り換え、試料の微小部のみならず、その屈折率分布や平均的な屈折率等を測定することは困難であるという問題がある。
また、対物レンズと試料の間をオイルで充填しなければならないことや使用後のオイルの拭取りの手間がかかった。
本発明は上述した事情に鑑みてなされたものであって、全反射を利用した光学測定において、種々の屈折率測定を切り替えて行うことができる光学測定装置を提供することを目的としている。
上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、光源と、測定光学系と、光検出器とを備え、全反射を利用した光学測定装置であって、前記測定光学系が、前側焦点位置に該測定光学系の光軸に直交する平面を持つ光学部材が構成された無限遠補正の正レンズであり、該測定光学系の光軸を挟んだ一側を試料に測定光を照射する投光光学系、他側を試料からの反射光を捕らえる測光光学系として使用し、前記光源が、前記投光光学系側の入射瞳位置もしくは該入射瞳位置と共役な位置に配置され、該入射瞳面上もしくは該入射瞳位置と共役な面上を前記光軸に直交する直線に沿って光軸からの距離を検出しながら移動し、前記光検出器が、前記測光光学系側の射出瞳位置もしくは該射出瞳位置と共役な位置に配置され、前記光源を種々の位置または形態に変更する光源変更手段を備える光学測定装置を提供する。
上記発明においては、前記光源が、平行光束を集光レンズにより収斂した点光源であり、前記光源変更手段により、投光光学系光軸に挿脱されることとしてもよい。
また、上記発明においては、前記光源が、シングルモードファイバで導光された点光源であり、前記光源変更手段により、投光光学系光軸に挿脱されることとしてもよい。
また、上記発明においては、前記光源が、前記光源変更手段を構成するシリンドリカルレンズにより収斂された前記光軸に直交するライン光源に変更されることとしてもよい。
また、上記発明においては、前記光源が、前記光源変更手段を構成する開口部材により前記光軸に平行な平行光束とされた面光源に変更されることとしてもよい。
また、上記発明においては、前記光源変更手段が、前記入射瞳位置もしくは該入射瞳位置と共役な位置に配置された開口部材を備えることとしてもよい。
また、上記発明においては、前記光源変更手段が、前記平行光束中に挿脱可能に配置され、前記入射瞳位置に点像を作る正レンズを備えることとしてもよい。
また、前記光源の入射射出側に配置された白色光源と分光器を備え、前記光源がマルチモードファイバで導光されることとしてもよい。
また、上記発明においては、前記光学部材が、前記平面側に配置される平行平面板を含む2つの光学部材片と、該2つの光学部材片の間に介在させられる薄膜状の液体とを備え、該平行平面板が他の光学部材片の表面に沿う方向に移動可能に配置されていることとしてもよい。
また、上記発明においては、前記光源変更手段が、前記開口部材を前記光軸に直交する方向に移動させることとしてもよい。
また、上記発明においては、前記平行平面板が前記光軸に直交する方向に移動可能であり、前記平行平面板の移動量を測定する移動量測定器を有することとしてもよい。
また、上記発明においては、前記平行平面板を移動させる1軸または2軸の移動ステージを備え、前記移動量測定器がマイクロメータであることとしてもよい。
本発明によれば、全反射を利用した光学測定において、種々の測定法を切り替えて行うことができるという効果を奏する。
以下、本発明の第1の実施形態に係る光学測定装置について、図1および図2を参照して詳細に説明する。
本実施形態に係る光学測定装置は、屈折率測定器1であって、図1に示されるように、光学系2と光源3と光検出器4を備えている。
図1は本実施形態に係る屈折率測定器1の概略構成を示す図、図2は瞳面の様子を示す図である。
光学系2は2つの光学素子2a,2bを備えている。一方の光学素子2aは、一方の面が平面で、光学系2の前側焦点位置Fに配置されており、他方の面が曲面の平凸形状を有するレンズである。そして、平面が試料Sを載置する載置面として使用される。
試料Sが生物の切片である場合には、試料Sは平面に直接載せられるが、試料Sがガラスなどの場合には、イマージョンオイルを介して載せられる。イマージョンオイルの屈折率は試料Sと光学素子2aの屈折率の中間の屈折率を持つことが望ましいが、試料Sの全反射が生じるより小さな入射角でイマージョンオイルと光学素子2aとの間で全反射が起こらなければよい。イマージョンオイルは顕微鏡で使用されるものやヨウ化メチレン系の液体で作られる。
他方の光学素子2bは両面が曲面で、両凸形状のレンズである。また、光学素子2a,2bは分離した状態(非接合レンズ)になっている。
ただし、光学系2は説明をわかりやすくするための構成で、光学素子の数は2個以上あっても良いし、分離した形状でなくても良い。光学素子2aの前側面が光軸と直交した前側焦点を含む平面であること、つまり前側焦平面と一致していることが必須の条件である。
本実施形態においては、光学素子2aと試料Sとの相対距離は変化することがない。また、光学素子2bも移動しない。よって、光学系2と試料Sとの相対距離は変化しない。また、光学素子2a,2bで構成される入射瞳位置と試料Sとの相対距離も変化しない。
よって、測定手順は試料を載置台に載せ、測定光を入射させるだけで、ピント合わせが必要なく、測定誤差を少なくでき、かつ、手順が簡単なものとなる。
光源3は、光学系2の光軸Xを挟んで一方の側に配置されている。この光源3は、図1に符号Fで示される位置、すなわち光学系2の後側焦平面Fに形成され光軸からの距離を検出しながら移動できるようになっている。なお、光学系2の後側焦平面Fは、光学系2の入射瞳位置でもある。
光源3の移動範囲は、入射側瞳を満足しなければならないように思われるが、実用的には屈折率の算出式から、試料Sへの入射角が40°〜75°の相当する大きさでよい。ここで、瞳上に点光源3を作った場合は、この範囲はその位置を検出しながら点光源3を移動させねばならない。平行光束やシリンドリカルレンズを用いて面光源および線光源を作った場合は、この範囲を満足する径や長さがを持たせば、移動はさせなくてよい。ただし、レーザ光源から射出されるビームには光量分布があるので、一般には、ビームエキスパンダレンズで光束を広げて、中心付近の光量分布の平坦な部分のみを入射光として用いるのが望ましく、この範囲を満足しないので移動したほうがよい。
本実施形態では、図1に示されるように、後述するミラー10と切替機構(スライダ)14を含む光源変更手段15を移動機構16によって一体に動かし、かつ、集光レンズ11やシリンドリカルレンズ12や開口13を切替機構14に固定し、各光学素子をレーザ光源7の光軸に挿脱するようにして、レーザ光源7からのレーザ光の光量分布の同範囲を利用し、光量分布の影響を取り除くようにしている。図中符号17は、移動機構16の移動量を測定する測長器である。
光源3としては、コヒーレント光源やインコヒーレント光源がある。コヒーレント光源には、レーザ光源が考えられる。また、インコヒーレント光源は、ブロードな分光特性を有する光源(白色光源)が考えられる。インコヒーレント光源としては、ハロゲンランプ、キセノンランプ、LEDがある。尚、ミラー10と光学系2の間に、偏光素子を配置してもよい。
また、光検出器4は、光学系2の光軸Xを挟んで他方の側に配置されている。この光検出器4の位置は、光学系2の後側焦平面位置Fである。光検出器4としては、フォトマルチプライヤ、フォトディテクタ、ラインセンサ、イメージセンサ、ポジションセンサ等がある。
光検出器4は、測定光学系の瞳を満足する大きさがあればよいが、実用上は、試料への入射角が40°〜75°の相当する大きさでよい。しかし、大きな光検出器4は高価で精度も悪くなることから、受光面の小さな精度が良い光検出器4を選び、光源3の移動とは、逆方向に同期して動くものが望ましい。
また、屈折率測定器1は、演算部5を備えていてもよい。演算部5は光検出器4と接続されている。演算部5は、光検出器4の出力信号に基づいて、試料Sの屈折率を算出するようになっている。
例えば、図1では、測定光学系の焦点距離と光軸上の点aと光源3の点bとの間の距離から試料への入射角θが計算でき、入射角θが全反射角に達したとき、点cに全反射光が集光する。よって、光源bを点aから瞳周辺に向けて移動させ、光検出器4が全反射光を検出した光源bの位置を測定すれば、屈折率を測定できる。
屈折率測定器1は、さらに、光学系2の後側焦平面Fに光源3を形成する光源側光学系6を備えている。光源側光学系6は、レーザ光源7、集光レンズ8、コリメートレンズ9およびミラー10を備えている。
光源側光学系6は、さらに、集光レンズ11、シリンドリカルレンズ12および開口部材13を有している。また、屈折率測定器1は、集光レンズ11、シリンドリカルレンズ12または開口部材13のいずれか1つをコリメートレンズ9とミラー10との間の光路中に位置させる切替機構14を有している。これら集光レンズ11,シリンドリカルレンズ12、開口部材13および切替機構14は光源変更手段15を構成している。
シリンドリカルレンズ12が光路中に配置された場合には、図2(a)に示すように、瞳面Fにはライン状の光束が形成される。また、試料S上に照射される照明光は瞳上にできたライン光源と直交するライン光束で試料に入射され、全反射角以上の入射角分のライン光束が光検出器4上にできる。よって、光検出器4としてラインセンサを配置して、何番目の画素に光量の立ち上がりがあるか測定すればよい。また、シリンドリカルレンズを90°回転し瞳面上のライン光束の方向は、前記ライン光束とは直交したものでもよい。
なお、集光レンズ11が光路中に配置された場合には、図2(b)に示すように、瞳面Fにはスポット光が形成される。このとき、b点が全反射角以上に相当する場合は、点cは明点となり、以下の場合は暗点となる。また、試料S上に照射される照明光は平行光束(円形)になる。また、開口部材13が光路中に配置された場合には、図2(c)に示すように、瞳面Fには開口光源像ができる。また、試料S上に照射される照明光はスポット状になる。この場合は、光検出器4としてはイメージセンサが置かれる。全反射が生じると開口像が光軸aに近いほうが暗く、周辺側が明るくなり、境界線の位置から屈折率を測定する。基本的に光検出器4はイメージセンサであれば全てに対応できる。
このように、本実施形態に係る屈折率測定器1によれば、光源変更手段15の作動により、光学系2の瞳面に形成される光源3の形状を変化させ、試料S上に照射される照明光の形状を変化させることができる。したがって、試料Sの微小なエリアの屈折率測定は開口部材13を挿入しての収束光測定を行い、試料Sの面の平均屈折率測定は集光レンズ11を挿入しての平行光測定を行い、試料Sの1断面の屈折率測定にはシリンドリカルレンズ12を挿入して、線収束光による測定を行うことができるという利点がある。
次に本発明の第2の実施形態に係る光学測定装置について、図3〜図5を参照して以下に説明する。
なお、本実施形態の説明において、上述した第1の実施形態に係る光学測定装置と構成を共通とする箇所には同一符号を付して説明を省略する。
本実施形態に係る光学測定装置も屈折率測定器20である。
本実施形態に係る屈折率測定器20は、図3に示されるように、光源3の位置を第1の位置Fと第2の位置Pとの間で移動させる移動機構(光源変更手段)21を備えている。ここで、第1の位置Fは、光学系2の後側焦点位置Fあるいはその共役位置である。また、第2の位置Pは、試料Sを載置する平面と共役な位置である。
移動機構21は、例えば、光源3の位置を光軸方向に移動させる直線移動機構(光源変更手段)22と、光源3が第1の位置Fに配置されるときには退避させられ、光源3が第2の位置Pに配置されるときには光路中に挿入される集光レンズ23とを備えている。
このように構成することで、光源3を第1の位置Fに移動させると、試料Sを平行光束で照明することができる。一方、光源3を第2の位置Pに移動させ、集光レンズ23を挿入することにより、試料Sをスポット光で照明することができる。
なお、光源3の位置を第2の位置Pに固定しておき、レンズ23の位置を光軸方向に移動させることにしてもよい。これにより、光学系2の後側焦点位置Fに光源3の像を形成することができる。この場合には、光源3は物理的に移動していない。しかしながら、レンズ23によって投影された光源3の位置が、無限遠の位置から光学系2の後側焦点位置Fの位置に移動した見ることができる。よって、実質的に光源3の位置が第1の位置Fから第2の位置Pに移動したということができる。また、レンズ23の位置を固定しておき、別のレンズを挿入してもよい。
このように、本実施の形態の屈折率測定器20によれば、試料S上に照射される照明光の形状を変化させることができる。
なお、前記光軸に直交する直線に沿って光軸からの距離を検出しながら移動する装置は省略してある。
また、光源3の位置に、図8のようなシングルモードファイバ45の端部45bを配置しても、同様の作用が得られるのは言うまでもない。
さらに、図4(a)および図5(a)に示されるように、光源3の位置を光軸方向に適当な距離移動させてもよい。後側焦平面F付近に空間ができるので図6のようなターレットが配置し易くなる。図4(a)、(b)は、光学系2の後側焦点位置Fの位置で、光束が平行な状態を示している。また、図5(a)、(b)は、光学系2の後側焦点位置Fの位置からずれた位置において、光束が集光している状態を示している。図5の場合には、試料Sで反射された光は、光学系2の後側焦点位置Fで集光せずに発散光となる。この場合、特許文献2に示されるような使い方ができる。
なお、前記光軸に直交する直線に沿って光軸からの距離を検出しながら移動する装置は省略してある。
次に、本発明の第3の実施形態に係る光学測定装置について、図6および図7を参照して以下に説明する。
本実施形態の説明においても、上述した第1の実施形態に係る光学測定装置と構成を共通とする箇所には同一符号を付して説明を省略する。
本実施形態に係る光学測定装置も屈折率測定器30である。
本実施形態に係る屈折率測定器30は、図6および図7に示されるように、光学系2の後側焦点位置Fあるいはその共役位置に配置された絞り(光源変更手段)31を備えている。
図6は、本実施形態に係る屈折率測定器30の絞り31の概略構成を示す図、図7は絞り31を光軸方向から見た図である。
絞り31には、図7に示されるように、円形開口部32,33や矩形開口部34が備えられている。本実施形態では、絞り31には大きさの異なる第1の円形開口部32と第2の円形開口部33とが備えられている。第1の円形開口部32の方が第2の円形開口部33よりも小さい口径を有している。
絞り31は、円板状のターレット(光源変更手段)35上に設けられている。また、ターレット35の中心には、棒状の軸部材36が設けられている。軸部材36の一端にはターレット35が設けられ、他端には回転機構(不図示)が設けられている。この回転機構の作動により、軸部材36が回転軸Yの周りに回転するようになっている。また、該ターレットが図1に示す光源変更手段15に取り付けられ、移動機構16によって、光軸に直交する方向に移動するようにしてもよい。
また、ターレット35を挟んで光学系2とは反対側に、光源側光学系37が配置されている。ここで、回転軸Yは光学系の光軸Xと平行になっている。また、回転軸Yは、光源側光学系37の光軸X’から所定の距離rだけ離れている。一方、開口部32〜34の中心も、ターレット35の中心から距離rだけ離れている。
すなわち、第1の円形開口部32、第2の円形開口部33および矩形開口部34の各々は、ターレット35の中心とした半径rの円周上に位置している。よって、ターレット35を回転させることで、第1の円形開口部32、第2の円形開口部33または矩形開口部34のうちの1つが、光源側光学系37の光路(光軸X’)上に位置するようになっている。
光源側光学系37の光路には、所定の径の光束が入射する。この光束の径は、基本的には絞り31の開口部32〜34の大きさよりも大きくなっている。よって、絞り31を通過することで、開口部32〜34のいずれかの形状と同じ形状に整形された光束が光学系2に入射することになる。
このように、本実施形態に係る屈折率測定器30によれば、試料Sに照射される照明光の照射角を変更することができる。そのため、標本上にできるスポット径や測定角度範囲を変えることができる。また、矩形スリットを用いて、不要な角度の照明光を排除できる。
次に、本発明の第4の実施形態に係る光学測定装置について、図8を参照して以下に説明する。
本実施形態の説明においても、上述した第1の実施形態に係る光学測定装置と構成を共通とする箇所には同一符号を付して説明を省略する。
本実施形態に係る光学測定装置も屈折率測定器40である。
本実施形態に係る屈折率測定器40は、図8に示されるように、光学系2の後側焦点位置Fを挟んで、光学系2とは反対側にテレセントリック光学系41および光源側光学系42を備えている。
テレセントリック光学系41は、光軸方向に間隔をあけて配置された2つのレンズ43,44を備えている。
レンズ43は、その前側焦点位置が光学系2の後側焦点位置Fと一致するように配置されている。また、レンズ44は、その前側焦点位置がレンズ43の後側焦点位置と一致するように配置されている。
光源側光学系42は、レーザ光源7、集光レンズ8,11、コリメートレンズ9およびシングルモードファイバ45を備えている。シングルモードファイバ45の一端45aはコリメートレンズ9の焦点位置に配置されている。
また、シングルモードファイバ45の他端45bは、レンズ44の後側焦点位置F′に一致するように配置され、移動機構46によって、後側焦点位置F′を維持したまま、光軸Xに直交する方向に移動することができるようになっている。
また、光検出器4も、レンズ44の後側焦点位置F′に配置されている。また、光検出器4は図示しない移動機構によりファイバ端45bと相反する方向に移動できるようにするのがよい。
また、このテレセントリック光学系41では、レンズ43の焦点距離をf1とし、レンズ44の焦点距離をf2として、f1<f2の関係が成立している。ここで、前述のように、光学系2の後側焦点位置Fは、光学系2の瞳位置である。したがって、テレセントリック光学系においてf1<f2の関係が成立しているので、レンズ44の後側焦点位置F′には、光学系2の瞳の像が拡大像として形成されることになる。
テレセントリック光学系41の利点は、瞳面およびその共役面への入射光と測定光が前記瞳面に直交しており、光源3や光検出器4の移動が直線で可能なことと、光検出器4に対して測定光が直角で受光効率がよいことなどである。
このように、本実施形態に係る屈折率測定器40によれば、像拡大テレセントリック光学系41を備えているので、移動機構46によってシングルモードファイバ45の他端45bを移動させる際に、試料に入射する入射光の光軸Xに対する角度θをより細かく検出することができる。その結果、より高精度に屈折率を測定することができる。
なお、破線で示すように、偏光素子47を光路中に配置してもよい。このようにすると、レーザ光の振動方向(偏光方向)がレンズ43,44によって乱れた場合、その乱れによる影響を取り除くことができる。
また、本実施形態では、光源3側と光検出器4側とで共通のテレセントリック光学系41を用いているが、これに代えて、例えば、破線で示すように、光源3側と光検出器4側の各々の光路中に、それぞれ別の光学系48,49を配置してもよい。例えば、光学系48はミラー48a、集光レンズ48bおよびイメージセンサ48cを備えている。また、光学系49は、例えば、シングルモードファイバ49a、コリメートレンズ49b、集光レンズ49c、ミラー49dを備えている。また、別の光学系48,49は、テレセントリック光学系でなくてもよい。また、光源3側における別の光学系48と、光検出器4側における別の光学系49とで、光学系の倍率が異なっていてもよい。よって、装置の機械的な構成を自在に変えることができる。
次に、本発明の第5の実施形態に係る光学測定装置について、図9および図10を参照して以下に説明する。
本実施形態の説明においても、上述した第1の実施形態に係る光学測定装置を構成を共通とする箇所には同一符号を付して説明を省略する。
本実施形態に係る光学測定装置も屈折率測定器50である。
本実施形態に係る屈折率測定器50は、図9に示されるように、光検出器4が第1の位置Fと第2の位置Pとの間で移動可能になっている。ここで、第1の位置Fは、光学系2の後側焦点位置Fあるいはその共役位置である。また、第2の位置Pは、試料Sを載置する平面と測定光学系2とレンズ52を介して共役な位置である。
光検出器4の位置を移動させるために、屈折率測定器50は移動機構51を有している。また、光検出器4が第1の位置Fに配されるときには光路から退避させられ、第2の位置Pに配されたときに光路中に挿入されるレンズ52を備えている。
このように構成された本実施形態に係る屈折率測定器50によれば、光検出器4を第1の位置Fに移動させた状態で、試料Sの屈折率の測定を行うことができる。一方、光検出器4を第2の位置Pに移動させた状態で、試料Sの観察を行うことができる。
このとき、本光学系では試料の像は半回転するものの、試料の形状と相似である。つまり、円形の試料であれば、円形の像を観察することができる。この構成での光検出器としては、当然ながらイメージセンサが用いられる。よって、特許文献3に示すような像の補正手段を講じなくてもよい。
試料Sの観察を行う場合には、図9および図10に示されるように、試料Sにおける周辺の点dは、光検出器4上における周辺の点d′に結像する。同様に、試料Sにおける中心点eは、光検出器4上における中心点e′に、試料Sにおける別の周辺の点gは、光検出器4上における別の周辺の点g′に結像する。このようにして、試料Sの像が光検出器4上に形成される。
このように、本実施形態に係る屈折率測定器50によれば、試料Sの屈折率測定と試料Sの観察、つまり試料Sの屈折率分布像の取得とを選択的に行うことができるという利点がある。
次に、本発明の第6の実施形態に係る光学測定装置について、図11および図12を参照して以下に説明する。
本実施形態の説明においても、上述した第1の実施形態に係る光学測定装置と構成を共通とする箇所には同一符号を付して説明を省略する。
本実施形態に係る光学測定装置も屈折率測定器60である。
本実施形態に係る屈折率測定器60は、光学系61の構成において第1の実施形態と相違するとともに、該光学系61の後側焦点位置Fにシングルモードファイバ45の他端45bを配置した第4の実施形態における光源側光学系42を備えている。
光学系61は、2つのレンズ62,63により構成されている。レンズ62は、一方の面が平面で、光学系61の焦点位置にあり、他方の面が曲面の平凸形状を有している。レンズ63は両面が曲面のメニスカス形状を有している。また、レンズ62,63は接合レンズとなっている。
本構成も1つの測定光学系2の例である。
本実施形態においては、図8で単一のシングルモードファイバ45の他端45bを移動機構46によって光軸に直交する方向に移動させることとしたが、これに代えて、図11および図12に示されるように、複数のシングルモードファイバ45,45′の他端45b,45b′をそれぞれ光学系61の後側焦点位置Fに配置している。
すなわち、光源側光学系42は、2つのレーザ光源7,7′、集光レンズ8,8′,11,11′、コリメートレンズ9,9′およびシングルモードファイバ45,45′を備えている。なお、ここでは2組のレーザ光源等を有することとしたが、3組以上備えていてもよい。
また、レーザ光源7,7′から射出されるレーザ光の波長は、それぞれ異なっていることが望ましい。シングルモードファイバ45,45′はそれぞれ導光波長に適したファイバが選択される。
ここで、光学系61の後側焦点位置F、すなわち、瞳面の様子を図12に示す。
図12において、左半分の半円の領域は入射光が通過する空間(入射空間あるいは入射瞳)で、右半分の半円の領域は反射光が通過する空間(検出空間あるいは検出瞳)である。また、符号aは光学系61の光軸Xの位置である。また、符号b1,b2は入射光のスポット位置である。また、符号c1,c2は検出光のスポット位置である。
このように、この光学系2の後側焦点位置Fに、光ファイバ45,45′の他端45b,45b′が位置しているので、光学系61の後側焦点位置Fに、2つの光源3,3′が配置されている状態と同じである。そして、移動機構46によって他端45b,45b′を光軸Xに直交する方向に移動させることにより、試料Sの屈折率を測定することができる。
この場合に、図12に示されるように、スポット光の位置は、光軸に直交する方向に間隔をあけて配置されている。したがって、試料に入射される平行光束と光学系61の光軸Xとのなす角θは、レーザ光源7,7′毎に相違する。すなわち、試料Sに対して平行光束を、異なる2つの角度で斜め方向から照射することができる。その結果、レーザ光源7,7′から出射されるレーザ光の波長を異ならせれば、光源3のON/OFFを行いながら異なる波長で全反射による屈折率測定が一度に行うことができる。また、屈折率だけでなく分散も同時に測定できるという利点がある。
また、上記各実施形態においては、試料Sを載置する光学素子として、平凸形状のレンズ2aを採用したが、これに代えて、図13に示されるように、測定光学系2の試料載置台となる光学部材2aを平面板と平凸レンズに分割し、平凸形状のレンズの平面上に、光学部材2aとほぼ屈折率の等しいイマージョンオイル72の薄膜層を介して平行平面板73を載置し、該平行平面板73上に試料Sを載置することとしてもよい。
このようにすることで、平行平面板73を自由に取り替えられるので、色々な光学特性(屈折率等)の平行平面板73を使用することができる。また、平行平面板73が損傷しても交換できるので、メンテナンスが容易である。また、平面板上に金などの薄膜を形成して表面プラズモン共鳴角測定装置として使用するときに便利である。すなわち、金以外の薄膜を形成した平面板を互換的に使用することができる。
また、イマージョンオイルの潤滑性がよいことから、レンズ2a上に配置した平行平面板73をレンズ2aの平面に沿って移動させることとしてもよい。
平行平面板73を移動させる移動機構80として、例えば、図14に示される構造のものを採用することができる。
移動機構80は、2軸ステージ81、マイクロメータ82,83、支柱84、回転ネジ85、コイルバネ86、ロック部材87およびOリング88を有している。
2軸ステージ81は、X軸ステージ81XとY軸ステージ81Yとを備えている。X軸ステージ81Xの一端には、マイクロメータ82のヘッド部分82aが接続されている。
マイクロメータ82を駆動すると、ヘッド部分82aがX軸ステージ81Xに向かって軸方向に沿って進退させられる。これにより、X軸ステージ81Xを移動させることができる。同様に、Y軸ステージ81Yの一端には、マイクロメータ83のヘッド部分が接続されている。
X軸ステージ81Xの他端には、支柱84が取り付けられている。また、支柱84の他端には、保持部89が設けられている。保持部89は回転ネジ85を回転可能に保持している。回転ネジ85の一端にはつまみ85aが設けられ、他端にはロック部材87が接続されている。
ロック部材87は円筒状の先端部を有しており、該先端部にはOリング88が配置されている。このOリング88が平行平面板73と接触するようになっている。また、ロック部材87と保持部89の間にはコイルバネ86が挟まれており、Oリング88がコイルバネ86の付勢力によって平行平面板73の表面に押し付けられるようになっている。
このように構成された移動機構80の動作について説明する。
マイクロメータ82,83を駆動すると、X軸ステージ81XおよびY軸ステージ81Yが移動する。その駆動力は、支柱84を介して、ロック部材87に伝達される。上述のように、ロック部材87の先端部にはOリング88が設けられ、このOリング88はコイルバネ86の付勢力によって平行平面板73と押し付けられている。したがって、ロック部材87に伝達された駆動力は、Oリング88との間の摩擦力により平行平面板73に伝達される。
ここで、平行平面板73とレンズ2a表面との間には、イマージョンオイル72からなる薄膜層が介在している。そのため、平行平面板73は、レンズ2aに対して、相対的に移動させられる。平行平面板73には試料Sが載置されているので、試料Sも移動する。一方、レンズ2aの位置は固定されているので、照明光の照射位置は変化しない。その結果、照明光の照射位置に対して試料Sの位置を変え、試料Sの異なる位置に照明光を照射することができる。
なお、回転ネジ85のつまみ85aを回転させることで、平行平面板73に対するOリング88の光軸X方向の位置を変えることができる。すなわち、平行平面板73に対するOリング88の接触圧力を調整することができる。
また、上記各実施形態に係る屈折率測定器1,20,30,40,50,60,70は、図15に示される培養器90において、生体試料Sの屈折率を測定するのに応用することができる。
すなわち、平行平面板73に代えて、レンズ2aの平面上にイマージョンオイル72からなる薄膜層を介して底面が厚さが規定された平板状のシャーレ91を載置し、培地92を貯留したシャーレ91の底面に生体試料Sを接着させることとすればよい。シャーレ91の周囲には、レンズ枠93および密閉箱94によって密閉された培養空間95を形成し、該培養空間95内に、例えば、温度37℃、湿度100%、CO濃度5%に調整された空気96をチューブ97を介して流通させる。これにより、生体試料Sを健全な状態で培養しつつ、屈折率等の光学的特性を測定することができる。
次に、本発明の第7の実施形態に係る光学測定装置について、図16を参照して以下に説明する。
本実施形態の説明においても、上述した第1の実施形態に係る光学測定装置と構成を共通とする箇所には同一符号を付して説明を省略する。
本実施形態に係る光学測定装置も屈折率測定器100である。
本実施形態に係る屈折率測定器100は、光源側光学系101において第1の実施形態に係る屈折率測定器1と相違している。
光源側光学系101は、ハロゲンランプ102、集光レンズ103、ピンホール104、コリメートレンズ105、分光器106、入射レンズ107、マルチモードファイバ108、移動機構109および偏光素子110を備えている。
ハロゲンランプ102は、ブロードな分光特性を有する白色光源の1つである。なお、偏光素子110は必ずしも必要ではない。
ハロゲンランプ102は、白色光源である。ハロゲンランプ102からの光は集光レンズ103で集光されピンホール104を通過した後、コリメートレンズ105でアフォーカルな光束とされ分光器106に入射される。分光器106内で、該アフォーカルな光束はグレーティングなどで分光され、指定の波長の光がアフォーカルな光束で入射レンズに向けて射出され、マルチモードファイバ108の端面に集光する。
マルチモードファイバ108で導光された光は光学系2の後側焦点位置Fに配置された端部108bにマルチモードファイバ108のコア径の光源3を形成する。これにより、試料Sに対して略平行光束を斜めから照射することができる。
なお、屈折率測定を行うためには、移動機構109の作動により、光学系2の後側焦点位置Fで、光源3を光軸Xに直交する方向に移動させればよい。
また、本実施形態に係る屈折率測定器100は分光器106を備えているので、波長ごとの屈折率や分散を簡単に測定できるという利点がある。
本発明の第1の実施形態に係る光学測定装置を示す全体構成図である。 図1の光学測定装置における光学系の瞳面の様子を示す図であり、(a)シリンドリカルレンズを光路中に挿入した場合、(b)集光レンズを光路中に挿入した場合、(c)開口を光路中に挿入した場合をそれぞれ示している。 本発明の第2の実施形態に係る光学測定装置を示す全体構成図である。 図3の光学測定装置の変形例の(a)全体構成図、(b)光学系の瞳面の様子をそれぞれ示す図である。 図4の状態から光源側光学系を移動させた状態における(a)全体構成図、(b)光学系の瞳面の様子をそれぞれ示す図である。 本発明の第3の実施形態に係る光学測定装置を示す図である。 図6の光学測定装置におけるターレットを光軸方向から見た部分的な図である。 本発明の第4の実施形態に係る光学測定装置を示す全体構成図である。 本発明の第5の実施形態に係る光学測定装置を示す全体構成図である。 図9の光学測定装置の光検出器に形成される像の位置を示す図である。 本発明の第6の実施形態に係る光学測定装置を示す全体構成図である。 図11の光学測定装置の光学系の瞳面の様子を示す図である。 図1の光学測定装置における光学系の他の変形例を示す図である。 図13の光学測定装置における平行平面板の移動機構の一例を示す図である。 図1から図14の光学測定装置を培養器に適用した例を説明する図である。 本発明の第7の実施形態に係る光学測定装置を示す全体構成図である。
符号の説明
前側焦点位置
後側焦点位置(入射瞳位置、射出瞳位置)
S 試料
X 光軸
1,20,30,40,50,60,100 屈折率測定器(光学測定装置)
2 光学系(測定光学系)
2a 光学部材(光学部材片)
3,3′ 光源
4 光検出器
11 集光レンズ(正レンズ)
12 シリンドリカルレンズ
15 光源変更手段
16,46,71,109 移動機構(光源変更手段)
22 直線移動機構(光源変更手段)
23 集光レンズ(コリメータレンズ)
31 絞り(開口絞り:光源変更手段)
35 ターレット(光源変更手段)
45,108 シングルモードファイバ
72 イマージョンオイル(液体)
73 平行平面板(光学部材片)
81 2軸ステージ(移動ステージ)
81X X軸ステージ(移動ステージ)
81Y Y軸ステージ(移動ステージ)
82,83 マイクロメータ(移動量測定器)
106 分光器

Claims (12)

  1. 光源と、測定光学系と、光検出器とを備え、全反射を利用した光学測定装置であって、
    前記測定光学系が、前側焦点位置に該測定光学系の光軸に直交する平面を持つ光学部材が構成された無限遠補正の正レンズであり、
    該測定光学系の光軸を挟んだ一側を試料に測定光を照射する投光光学系、他側を試料からの反射光を捕らえる測光光学系として使用し、
    前記光源が、前記投光光学系側の入射瞳位置もしくは該入射瞳位置と共役な位置に配置され、該入射瞳面上もしくは該入射瞳位置と共役な面上を前記光軸に直交する直線に沿って光軸からの距離を検出しながら移動し、
    前記光検出器が、前記測光光学系側の射出瞳位置もしくは該射出瞳位置と共役な位置に配置され
    前記光源を種々の位置または形態に変更する光源変更手段を備える光学測定装置。
  2. 前記光源が、平行光束を集光レンズにより収斂した点光源である請求項1に記載の光学測定装置。
  3. 前記光源が、シングルモードファイバで導光された点光源である請求項1に記載の光学測定装置。
  4. 前記光源が、前記光源変更手段を構成するシリンドリカルレンズにより収斂された前記光軸に直交するライン光源または該ライン光源と直交するライン光源に変更される請求項1に記載の光学測定装置。
  5. 前記光源が、前記光源変更手段を構成する開口部材により前記光軸に平行な平行光束とされた面光源に変更される請求項1に記載の光学測定装置。
  6. 前記光源変更手段が、前記入射瞳位置もしくは該入射瞳位置と共役な位置に配置された開口部材を備える請求項5に記載の光学測定装置。
  7. 前記光源変更手段が、前記平行光束中に挿脱可能に配置され、前記入射瞳位置に点像を作る正レンズを備える請求項5に記載の光学測定装置。
  8. 前記光源の入射側に配置された白色光源と分光器を備え、前記光源がマルチモードファイバで導光される請求項1に記載の光学測定装置。
  9. 前記光学部材が、前記平面側に配置される平行平面板を含む2つの光学部材片と、該2つの光学部材片の間に介在させられる薄膜状の液体とを備え、該平行平面板が他の光学部材片の表面に沿う方向に移動可能に配置されている請求項1に記載の光学測定装置。
  10. 前記光源変更手段が、前記開口部材を前記光軸に直交する方向に移動させる請求項6に記載の光学測定装置。
  11. 前記平行平面板が前記光軸に直交する方向に移動可能であり、
    前記平行平面板の移動量を測定する移動量測定器を有する請求項9に記載の光学測定装置。
  12. 前記平行平面板を移動させる1軸または2軸の移動ステージを備え、
    前記移動量測定器がマイクロメータである請求項11に記載の光学測定装置。
JP2007307055A 2007-09-28 2007-11-28 光学測定装置 Expired - Fee Related JP5009135B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007307055A JP5009135B2 (ja) 2007-09-28 2007-11-28 光学測定装置
US12/229,128 US7570362B2 (en) 2007-09-28 2008-08-19 Optical measurement apparatus utilizing total reflection

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007255041 2007-09-28
JP2007255041 2007-09-28
JP2007307055A JP5009135B2 (ja) 2007-09-28 2007-11-28 光学測定装置

Publications (2)

Publication Number Publication Date
JP2009098110A JP2009098110A (ja) 2009-05-07
JP5009135B2 true JP5009135B2 (ja) 2012-08-22

Family

ID=40701243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307055A Expired - Fee Related JP5009135B2 (ja) 2007-09-28 2007-11-28 光学測定装置

Country Status (1)

Country Link
JP (1) JP5009135B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673211B2 (ja) * 2011-02-28 2015-02-18 コニカミノルタ株式会社 光学式検体検出装置
JP7077822B2 (ja) * 2018-07-05 2022-05-31 株式会社デンソー 光測距装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239233A (ja) * 1997-02-26 1998-09-11 Fuji Photo Film Co Ltd 表面プラズモンセンサー
JP4505279B2 (ja) * 2004-08-02 2010-07-21 富士フイルム株式会社 試料分析用測定装置および測定方法
JP2006309088A (ja) * 2005-05-02 2006-11-09 Research Organization Of Information & Systems 顕微鏡合焦位置高精度計測法

Also Published As

Publication number Publication date
JP2009098110A (ja) 2009-05-07

Similar Documents

Publication Publication Date Title
US7570362B2 (en) Optical measurement apparatus utilizing total reflection
CN102768015B (zh) 荧光响应随动针孔显微共焦测量装置
US8174761B2 (en) Total internal reflection interferometer with laterally structured illumination
JP6362498B2 (ja) 微視的標本を検査するための光学顕微鏡および顕微鏡方法
JP5168168B2 (ja) 屈折率測定装置
TW201211497A (en) Displacement detecting device
JP2021043181A (ja) レンズ屈折率測定装置およびその測定方法
US20160054552A1 (en) Confocal laser scanning microscope
JP5726490B2 (ja) 光強度測定ユニット、及びそれを備えた顕微鏡
JP2004085796A (ja) 顕微鏡用照明装置及び顕微鏡
JP5009135B2 (ja) 光学測定装置
US9372330B2 (en) Inverted microscope system
JP5122930B2 (ja) エバネッセント波発生装置及びそれを用いた観察装置
JP2007093339A (ja) 検査装置
JP2012212018A (ja) 焦点維持装置及び顕微鏡装置
JP2011021948A (ja) 粒子径測定装置
JP6249681B2 (ja) 顕微鏡システムおよび測定方法
JP3605010B2 (ja) 表面性状測定器
JP5400499B2 (ja) 焦点検出装置
JP2009145104A (ja) エバネッセント波発生装置及びそれを用いた観察装置
JP2006118944A (ja) レンズの評価装置
JP4830837B2 (ja) レンズ測定装置
JP2012141452A (ja) 自動合焦機構および顕微鏡装置
JP4135133B2 (ja) 光軸補正装置及び光学機器システム
JP5394718B2 (ja) 顕微観察装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R151 Written notification of patent or utility model registration

Ref document number: 5009135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees