WO2019058679A1 - 距離測定装置及びそれを備えた移動体 - Google Patents

距離測定装置及びそれを備えた移動体 Download PDF

Info

Publication number
WO2019058679A1
WO2019058679A1 PCT/JP2018/023601 JP2018023601W WO2019058679A1 WO 2019058679 A1 WO2019058679 A1 WO 2019058679A1 JP 2018023601 W JP2018023601 W JP 2018023601W WO 2019058679 A1 WO2019058679 A1 WO 2019058679A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
distance
projection
measuring device
distance measuring
Prior art date
Application number
PCT/JP2018/023601
Other languages
English (en)
French (fr)
Inventor
智浩 江川
佐伯 哲夫
仁志 直江
石丸 裕
岡本 修治
和穂 江川
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019058679A1 publication Critical patent/WO2019058679A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present invention relates to a distance measuring device and a movable body provided with the same.
  • Patent Document 1 discloses a distance measurement device mounted on a vehicle (mobile body).
  • This distance measuring device comprises a light transmitting barrel, a light receiving barrel and a controller.
  • the light transmission barrel has an infrared laser diode that emits infrared pulsed light (transmission light), and a red light emitting diode that emits red visible light (guide light).
  • the light receiving barrel has a photodiode for receiving the transmitted light reflected by the object.
  • the controller calculates the distance to the object from the delay time from sending of the pulsed light to receiving of the light.
  • the transmission light emitted from the infrared laser diode is irradiated to the object.
  • the guide light emitted from the red light emitting diode is transmitted toward the object along the optical axis of the transmission light (coincident) by the dichroic mirror.
  • the transmitted light reflected by the object is incident on the light receiving barrel, and the controller calculates the distance to the object.
  • a distance measuring device there is a demand to confirm whether or not the transmission light of infrared light is irradiated only to an object intended by the user.
  • the region irradiated with the transmission light of infrared light becomes larger than the region irradiated with the guide light of visible light outside the distance measuring device. For this reason, it can not be easily confirmed whether the transmitted light is irradiated only to the target object intended by the user, and there is a problem that the usability of the distance measuring device is lowered.
  • An object of the present invention is to provide a distance measuring device capable of improving usability and a movable body provided with the same.
  • An exemplary distance measuring device comprises a first light source emitting first projection light as pulse light, a second light source emitting second projection light as continuous light in a visible region, and the first projection A reflection member having a reflection surface that reflects light and the second projection light toward the measurement object, a light receiving unit that receives the first projection light reflected by the measurement object, and an emission of the first projection light And a distance measurement unit that measures the distance to the measurement object based on light reception by the light reception unit, and the first area on which the light flux of the first projection light is incident and the first area on the reflection surface The second projected light is reflected in the same direction as the first projected light.
  • An exemplary distance measuring device comprises: a first light source for emitting a first projection light of a predetermined wavelength outside the visible range; a second light source for emitting a second projection light of a wavelength in the visible range; A reflection member having a reflection surface that reflects the projection light and the second projection light toward the measurement object, a light receiving unit that receives the first projection light reflected by the measurement object, and the first projection light And a distance measurement unit that measures the distance to the measurement object based on emission and light reception by the light reception unit, and the first area on which the light beam of the first projection light is incident on the reflection surface, and the first area The second projected light is reflected in the same direction as the first projected light.
  • An exemplary mobile according to the present invention comprises the distance measuring device of the above configuration.
  • FIG. 1 is a perspective view of an automatic guided vehicle provided with a distance measuring device according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the automatic guided vehicle provided with the distance measuring device according to the first embodiment of the present invention.
  • FIG. 3 is a plan view of the automatic guided vehicle provided with the distance measuring device according to the first embodiment of the present invention as viewed from above.
  • FIG. 4 is a side sectional view of the distance measuring device according to the first embodiment of the present invention.
  • FIG. 5: is a top view for demonstrating the 1st area
  • FIG. 5 is a top view for demonstrating the 1st area
  • FIG. 6 is a block diagram showing an electrical configuration of the distance measuring device according to the first embodiment of the present invention.
  • FIG. 7 is a block diagram showing the electrical configuration of the automatic guided vehicle according to the first embodiment of the present invention.
  • FIG. 8 is a side sectional view of a distance measuring device according to a third modification of the first embodiment of the present invention.
  • FIG. 9 is a block diagram showing an electrical configuration of a distance measuring device according to a third modification of the first embodiment of the present invention.
  • FIG. 10 is a side cross-sectional view of the distance measuring device according to the second embodiment of the present invention.
  • the distance measuring device is configured as a laser range finder
  • the unmanned conveyance vehicle which is an application which conveys a luggage
  • An unmanned carrier is also generally referred to as an AGV (Automated Guided Vehicle).
  • FIG. 1 is a perspective view of an unmanned transportation vehicle 15 provided with a distance measuring device 7 according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the automatic guided vehicle 15 provided with the distance measuring device 7 according to the first embodiment of the present invention.
  • FIG. 3 is a plan view of the unmanned transfer vehicle 15 provided with the distance measurement device 7 according to the first embodiment of the present invention as viewed from above.
  • the unmanned transfer vehicle 15 travels autonomously by two-wheel drive and transports a load. In particular, the AGV 15 can rotate on the spot.
  • the unmanned transfer vehicle 15 includes a vehicle body 1, a loading platform 2, support portions 3L and 3R, drive motors 4L and 4R, drive wheels 5L and 5R, driven wheels 6F and 6R, and a distance measurement device 7. .
  • the vehicle body 1 is composed of a base 1A and a base 1B.
  • the plate-like base portion 1B is fixed to the upper rear surface of the base 1A.
  • the pedestal portion 1B has a triangular portion Tr projecting forward.
  • the plate-like loading platform 2 is fixed to the upper surface of the platform 1B.
  • a load can be placed on the upper surface of the loading platform 2.
  • the loading platform 2 extends further to the front than the platform 1B. Thus, a gap S is formed between the front of the base 1A and the front of the loading platform 2.
  • the distance measuring device 7 is disposed at a position in front of the apex of the triangular portion Tr of the pedestal 1B in the gap S.
  • the distance measuring device 7 is configured as a laser range finder, and measures a distance to a measurement object while scanning a laser beam.
  • the distance measuring device 7 is used for map information creation and self-position identification to be described later. The detailed configuration of the distance measuring device 7 itself will be described later.
  • the support 3L is fixed on the left side of the base 1A and supports the drive motor 4L.
  • the drive motor 4L is constituted by an AC servomotor as an example.
  • the drive motor 4L incorporates a reduction gear (not shown).
  • the drive wheel 5L is fixed to the rotating shaft of the drive motor 4L.
  • the support 3R is fixed on the right side of the base 1A and supports the drive motor 4R.
  • the drive motor 4R is formed of an AC servomotor as an example.
  • the drive motor 4R incorporates a reduction gear (not shown).
  • the drive wheel 5R is fixed to the rotating shaft of the drive motor 4R.
  • the driven wheel 6F is fixed to the front of the base 1A.
  • the driven wheel 6R is fixed to the rear of the base 1A.
  • the driven wheels 6F, 6R passively rotate according to the rotation of the drive wheels 5L, 5R.
  • the unmanned transfer vehicle 15 can be moved forward and backward by rotationally driving the drive wheels 5L, 5R by the drive motors 4L, 4R. Further, by controlling the rotational speeds of the drive wheels 5L and 5R to be different, the unmanned transfer vehicle 15 can be rotated clockwise or counterclockwise to change its direction.
  • the control unit U, the battery B, and the communication unit T are housed inside the base 1A.
  • the control unit U is connected to the distance measuring device 7, the drive motors 4L and 4R, the communication unit T, and the like.
  • the control unit U communicates various signals with the distance measuring device 7 as described later.
  • the control unit U also performs drive control of the drive motors 4L and 4R.
  • the communication unit T communicates with an external tablet terminal (not shown), and conforms to Bluetooth (registered trademark), for example. Therefore, the unmanned transfer vehicle 15 can be remotely controlled by the tablet terminal.
  • the battery B is configured of, for example, a lithium ion battery, and supplies power to each unit such as the distance measurement device 7, the control unit U, the communication unit T, and the like.
  • FIG. 4 is a side sectional view of the distance measuring device 7.
  • the distance measuring device 7 configured as a laser range finder includes a laser light source 71 (first light source), a laser light source 91 (second light source), a first collimating lens 72, a second collimating lens 92, and a light projecting mirror 73. (Reflecting member), light receiving lens 74, light receiving mirror 75, band pass filter 76 (wavelength filter), light receiving portion 77, first adjusting portion 93, second adjusting portion 94, and rotating case 78 , A housing 80, a substrate 81, and a wire 82.
  • the housing 80 has a substantially cylindrical shape extending in the vertical direction as viewed from the outside, and various configurations including the laser light sources 71 and 91 are accommodated in the housing 80.
  • the laser light source 71 is mounted on the lower surface of the substrate 81 fixed to the lower surface of the upper end portion of the housing 80.
  • the laser light source 71 emits downward laser light L1 (first projection light) of pulsed light in, for example, an infrared region (about 905 nm).
  • the laser light source 91 is mounted on a substrate (not shown) fixed to the back of the front end of the housing 80.
  • the laser light source 91 emits laser light L2 (second projected light) of continuous light in a visible region (about 650 nm), for example, to the rear.
  • the laser beams L1 and L2 emitted from the laser light sources 71 and 91 respectively have rectangular shapes in a plane orthogonal to the optical axis.
  • the laser light source 91 for example, a CW laser (Continuous wave laser) can be used.
  • the laser beam of continuous light refers to a laser beam whose output is substantially constant with respect to time, and the laser beam of pulse light is such that a peak of the output appears repeatedly at a predetermined cycle. Indicates laser light.
  • the first collimator lens 72 is disposed below the laser light source 71.
  • the first collimator lens 72 emits the laser light L1 emitted from the laser light source 71 downward as parallel light.
  • the second collimating lens 92 is disposed behind the laser light source 91.
  • the second collimator lens 92 emits the laser beam L2 emitted from the laser light source 91 to the rear as parallel light.
  • the first adjustment unit 93 is configured of, for example, an actuator, and moves the first collimator lens 72 along the optical axis. Thus, the first adjustment unit 93 adjusts the distance between the laser light source 71 and the first collimator lens 72.
  • the second adjustment unit 94 includes, for example, an actuator, and moves the second collimator lens 92 along the optical axis. Thereby, the second adjustment unit 94 adjusts the distance between the laser light source 91 and the second collimator lens 92.
  • a half mirror 95 is disposed below the first collimator lens 72 and behind the second collimator lens 92.
  • the half mirror 95 transmits the laser light L1 transmitted through the first collimator lens, and reflects the laser light L2 transmitted through the second collimator lens 92 downward.
  • a light projecting mirror 73 is disposed below the half mirror 95.
  • the projection mirror 73 is fixed to the rotating housing 78.
  • the rotating housing 78 is fixed to the shaft 79 A of the motor 79 and is rotationally driven by the motor 79 around the rotation axis J.
  • the light projection mirror 73 is also rotationally driven around the rotation axis J.
  • the light projecting mirror 73 reflects the laser beam L1 transmitted through the half mirror 95 by the reflecting surface 73a, and projects the reflected laser beam L1 to the outside of the housing 80.
  • the light projection mirror 73 reflects the laser light L2 reflected by the half mirror 95 on the reflection surface 73a, and projects the reflected laser light L2 to the outside of the housing 80.
  • the laser beam L 1 and L2 are emitted while changing the emission direction in the range of 360 degrees around the rotation axis J.
  • the laser beams L1 and L2 have a rectangular shape in a plane orthogonal to the optical axis. Therefore, the shapes of the laser beams L1 and L2 emitted to the outside of the automated guided vehicle 15 with the rotation of the rotary housing 78 rotate from one of the vertically long state and the horizontally long state to the other.
  • FIG. 5 is a plan view showing the first region R1 and the second region R2 on which the light beams of the laser beams L1 and L2 are incident on the reflection surface 73a of the light projection mirror 73.
  • the first region R1 and the second region R2 coincide with each other on the reflective surface 73a.
  • “matching” includes not only perfect matching but also substantially matching.
  • the laser beam L2 is reflected in the same direction as the laser beam L1 on the reflective surface 73a.
  • the incident angle of the light beam of the laser beam L1 incident on the same position on the reflecting surface 73a is the same as the incident angle of the light beam of the laser L2.
  • the reflection angle of the light beam of the laser beam L1 reflected at the same position on the reflecting surface 73a and the reflection angle of the light beam of the laser L2 become the same.
  • the laser beams L1 and L2 are projected to the same area outside the housing 80.
  • the housing 80 has a transmitting portion 801 midway in the vertical direction.
  • the transmitting portion 801 is made of a translucent resin or the like.
  • the predetermined scan rotation angle range ⁇ is set to 270 degrees around the rotation axis J as an example. More specifically, the range of 270 degrees includes 180 degrees forward and 45 degrees respectively to the left and right.
  • the laser beams L1 and L2 pass through the transmission portion 801 at least in the range of 270 degrees around the rotation axis J. Note that the laser beams L1 and L2 are blocked by the inner wall of the housing 80, the wiring 82, or the like in a range in which the rear transmission portion 801 is not disposed.
  • the light receiving mirror 75 is fixed to the rotating housing 78 at a position below the light projecting mirror 73.
  • the light receiving lens 74 is fixed to the circumferential side surface of the rotary housing 78.
  • the band pass filter 76 has a dielectric multilayer film, is positioned below the light receiving mirror 75, and is fixed to the rotating housing 78.
  • the light receiving unit 77 is located below the band pass filter 76 and is fixed to the rotating housing 78.
  • the laser beam L1 emitted from the distance measuring device 7 is reflected by the object to be measured and becomes diffused light.
  • a part of the diffused light sequentially passes through the gap S and the transmitting portion 801 as incident light L 3 and enters the light receiving lens 74.
  • the incident light L3 transmitted through the light receiving lens 74 enters the light receiving mirror 75 and is reflected downward by the light receiving mirror 75.
  • the incident light L 3 reflected by the light receiving mirror 75 is transmitted through the band pass filter 76 and received by the light receiving unit 77.
  • the band pass filter 76 transmits only light in the wavelength band of the laser light L1.
  • the band pass filter 76 transmits only light in the infrared region.
  • the light receiving unit 77 converts the received light into an electrical signal by photoelectric conversion.
  • the rotary housing 78 When the rotary housing 78 is rotationally driven by the motor 79, the light receiving lens 74, the light receiving mirror 75, the band pass filter 76, and the light receiving unit 77 are rotationally driven together with the light projecting mirror 73.
  • the laser beams L1 and L2 are emitted in the scanning rotation angle range ⁇ , and the laser beam L1 is reflected by the measurement object located in the measurement range Rs, the reflected laser beam L1 becomes the incident beam L3 and the transmitting portion 801 is It passes through and is incident on the light receiving lens 74.
  • the motor 79 is connected to the substrate 81 by the wiring 82 and is rotationally driven by being energized from the substrate 81.
  • the motor 79 rotates the rotating housing 78 at a predetermined rotational speed.
  • the rotating housing 78 is rotationally driven at about 3000 rpm.
  • the wiring 82 is routed around the rear inner wall of the housing 80 along the vertical direction.
  • FIG. 6 is a block diagram showing the electrical configuration of the distance measuring device 7.
  • the distance measuring device 7 is driven by a laser light emitting unit 701, a laser light emitting unit 707, a laser light receiving unit 702, a distance measuring unit 703, an arithmetic processing unit 704, a data communication interface 705, and It has a portion 706 and a motor 79.
  • a laser emission unit 701, a laser emission unit 707, a distance measurement unit 703, a data communication interface 705, and a drive unit 706 are connected to the arithmetic processing unit 704.
  • the laser light receiving unit 702 is connected to the distance measuring unit 703, and the motor 79 is connected to the driving unit 706.
  • the laser light emitting unit 701 has a laser light source 71 (see FIG. 4), an LD driver (not shown) for driving the laser light source 71, and the like.
  • the LD driver is mounted on the substrate 81 (see FIG. 4).
  • the laser light emitting unit 707 has a laser light source 91 (see FIG. 4), an LD driver (not shown) for driving the laser light source 91, and the like.
  • the LD driver is mounted on a substrate (not shown).
  • the laser light receiving unit 702 includes a light receiving unit 77, a comparator (not shown) that receives an electrical signal output from the light receiving unit 77, and the like.
  • the comparator is mounted on the light receiving unit 77, compares the level of the electric signal with a predetermined threshold level, and outputs a measurement pulse of high level or low level according to the comparison result.
  • the distance measurement unit 703 receives the measurement pulse output from the laser light receiving unit 702.
  • the laser emission unit 701 emits a laser beam L1 using a laser emission pulse output from the arithmetic processing unit 704 as a trigger.
  • the incident light L3 is received by the laser light receiving unit 702.
  • a measurement pulse is generated according to the amount of light received by the laser light receiving unit 702, and the measurement pulse is output to the distance measurement unit 703.
  • the reference pulse output together with the laser emission pulse from the arithmetic processing unit 704 is input to the distance measuring unit 703.
  • the distance measuring unit 703 can acquire the distance to the measurement object OJ by measuring the elapsed time from the rising timing of the reference pulse to the rising timing of the measurement pulse. That is, the distance measurement unit 703 measures the distance by the so-called TOF (Time Of Flight) method.
  • the measurement result of the distance is output from the distance measurement unit 703 as measurement data.
  • the drive unit 706 controls the rotation of the motor 79.
  • the motor 79 is rotationally driven by the drive unit 706 at a predetermined rotational speed.
  • the arithmetic processing unit 704 outputs a laser emission pulse each time the motor 79 rotates by a predetermined unit angle.
  • the predetermined unit angle is one degree.
  • the laser light emitting unit 701 emits light each time the rotating housing 78 and the light projecting mirror 73 rotate by a predetermined unit angle, and the laser light L1 is emitted.
  • Arithmetic processing unit 704 is based on the orthogonal coordinate system based on distance measuring device 7 based on the rotational angle position of motor 79 at the timing when the laser emission pulse is output and the measurement data obtained corresponding to the laser emission pulse. Generate location information for That is, based on the rotation angle position of the light projection mirror 73 and the measured distance, the position of the measurement object OJ is acquired. The acquired position information is output from the arithmetic processing unit 704 as measurement distance data.
  • the distance image of the measurement object OJ can be acquired by scanning with the laser beam L1 in the scanning rotation angle range ⁇ .
  • the amount of light received by the laser light receiving unit 702 is changed by the reflectance of light at the measurement target OJ.
  • the measurement target object OJ is a black object and the light reflectance decreases
  • the light reception amount decreases and the rising of the measurement pulse is delayed.
  • the distance measurement unit 703 measures the distance longer.
  • the light reflectance of the measurement object OJ causes the measured distance to change even if the distance is actually the same.
  • the arithmetic processing unit 704 corrects the measurement data according to the length of the measurement pulse to improve the distance measurement accuracy.
  • the arithmetic processing unit 704 uses the corrected measurement data when generating measurement distance data.
  • the measured distance data output from the arithmetic processing unit 704 is transmitted to the unmanned transfer vehicle 15 shown in FIG. 7 described later via the data communication interface 705.
  • FIG. 7 is a block diagram showing the electrical configuration of the automatic guided vehicle 15.
  • the automatic guided vehicle 15 has a distance measurement device 7, a control unit 8, a drive unit 9, a power button 10, and a communication unit T.
  • the distance measurement device 7, the drive unit 9, the communication unit T, and the power button 10 are connected to the control unit 8.
  • the control unit 8 is provided in the control unit U (see FIG. 1).
  • the drive unit 9 has a motor driver (not shown), drive motors 4L, 4R, and the like.
  • the motor driver is provided in the control unit U.
  • the control unit 8 issues a command to the drive unit 9 to control it.
  • the drive unit 9 drives and controls the rotational speeds and rotational directions of the drive wheels 5L and 5R.
  • the control unit 8 communicates with a tablet terminal (not shown) via the communication unit T.
  • the control unit 8 can receive an operation signal corresponding to the content operated on the tablet terminal via the communication unit T.
  • the power button 10 is an operation button for turning on the unmanned transfer vehicle 15 for activation.
  • the control unit 8 receives the measured distance data output from the distance measuring device 7.
  • the control unit 8 can create map information based on the measured distance data.
  • the map information is information generated to perform self-position identification for specifying the position of the unmanned carrier 15.
  • the map information is generated as position information of a stationary object at a location where the unmanned carrier 15 travels. For example, when the unmanned transfer vehicle 15 travels in a warehouse, the stationary object is a wall of the warehouse, a shelf arranged in the warehouse, or the like.
  • the map information is generated, for example, when a manual operation of the automatic guided vehicle 15 is performed by a tablet terminal.
  • an operation signal corresponding to the operation of, for example, a joystick of the tablet terminal is transmitted to the control unit 8 through the communication unit T, and the control unit 8 instructs the drive unit 9 according to the operation signal.
  • the traveling control of the carrier 15 is performed.
  • the control unit 8 specifies the position of the measurement object at the location where the unmanned transfer vehicle 15 travels as map information. .
  • the position of the unmanned transfer vehicle 15 is identified based on the drive information of the drive unit 9.
  • the map information generated as described above is stored by the storage unit 85 of the control unit 8.
  • the control unit 8 compares the measured distance data input from the distance measuring device 7 with the map information stored in advance in the storage unit 85 to identify the position of the unmanned transfer vehicle 15 itself. Do. By performing the self position identification, the control unit 8 can perform autonomous traveling control of the unmanned transfer vehicle 15 along a predetermined route.
  • the control unit 8 instructs the drive unit 9 according to the manual operation on the tablet terminal, for example, to control the traveling of the unmanned transfer vehicle 15.
  • the control unit 8 instructs the driving unit 9 to move the unmanned transfer vehicle 15 rectilinearly at a predetermined speed and a predetermined direction (forward or reverse).
  • the control unit 8 causes the driving unit 9 to rotate the unmanned transfer vehicle 15 at a predetermined rotation speed, a predetermined rotation angle, and a predetermined rotation direction (clockwise or counterclockwise).
  • the control unit 8 autonomously instructs the drive unit 9 to make the unmanned carrier 15 Are moved straight or rotated as described above.
  • the arithmetic processing unit 704 starts outputting the measured distance data to the unmanned transfer vehicle 15 via the data communication interface 705.
  • the control unit 8 creates map information based on the measured distance data acquired from the distance measuring device 7. Further, at the time of self-position identification, the control unit 8 specifies the position of the unmanned transfer vehicle 15 based on comparison of the measured distance data acquired from the distance measuring device 7 with the existing map information.
  • the laser light source 91 (see FIG. 4) is turned on by the predetermined operation of the tablet terminal at the time of shipment of the unmanned transfer vehicle 15 or at the time of malfunction. Thereby, the laser beam L2 is irradiated toward the outside of the automatic guided vehicle 15 via the gap S (see FIG. 1).
  • the first region R1 on which the light beam of the laser light L1 is incident matches the second region R2 on which the light beam of the laser light L2 is incident. . That is, the incident angle of the light beam of the laser beam L1 incident on the same position on the reflecting surface 73a and the incident angle of the light beam of the laser L2 become the same. Then, the laser beam L2 is reflected in the same direction as the laser beam L1 on the reflecting surface 73a. For this reason, the area irradiated with the laser beam L1 and the area irradiated with the laser beam L2 coincide with each other outside the unmanned transfer vehicle 15.
  • the user can visually confirm the place where the laser beam L1 (distance measurement beam) used for distance measurement is irradiated with the laser beam L2 of visible light. Therefore, the user can easily check whether the laser beam L1 is irradiated only to the target object intended by the user, and can determine whether the distance measurement device 7 can measure the distance.
  • the laser light source 71 may be turned on or off.
  • the laser light L1 distance measurement light
  • the laser light L2 guide light
  • the distance measuring device 7 does not measure the distance to the side wall surface to be originally measured but measures the distance to the floor surface. That is, the distance measuring device 7 does not perform accurate distance measurement.
  • the shipper can adjust the position of the optical member such as the light projection mirror 73 and the like so that the floor surface is not included in the irradiation area of the laser light L1.
  • the unmanned transfer vehicle 15 is set to travel on the side closer to the side wall surface in the warehouse, only the area away from the side wall surface is moved And so on.
  • the user can easily cause the cause of the failure of the unmanned transfer vehicle 15. It can be grasped. Then, the user can adjust the position of the optical member such as the light projection mirror 73 when the unmanned transfer vehicle 15 fails, and the floor area can be prevented from being included in the irradiation area of the laser beam L1.
  • the shapes (rectangular shapes) in the plane orthogonal to the optical axis of the laser beams L1 and L2 emitted to the outside of the automatic guided vehicle 15 with the rotation of the rotary housing 78 are in the vertically long state and the horizontally long state. Rotate from one to the other. For this reason, when the said shape of the laser beam L1 is a longitudinally long state, the laser beam L1 may be irradiated also to the floor surface. At this time, by the guide light irradiation operation, the user can easily confirm the presence or absence of the irradiation of the laser light L1 to the floor surface.
  • the distance measuring device 7 is provided near the ground as in the case where the distance measuring device 7 is provided at the lower end of the base 1A in the unmanned conveyance vehicle 15, for example, The presence or absence of irradiation can be easily confirmed.
  • the laser light source 91 After confirmation of the irradiation area of the laser light L2 by the user, the laser light source 91 is turned off by a predetermined operation of the tablet terminal. Thus, the guide light irradiation operation of the distance measuring device 7 is completed.
  • the wavelength of the laser beam L1 may be a wavelength in the visible region. That is, the laser beam L1 may be pulsed light in the visible region. At this time, the wavelength of the laser beam L1 is not particularly limited as long as it is in the visible region, and the wavelength of the laser beam L1 is about 650 nm, for example. In the present modification, the laser beam L1 is also a light in the visible region as with the laser beam L2, but is a pulsed beam, so it is difficult to visually observe the location irradiated with the laser beam L1. Therefore, the user can easily visually check the irradiation area with the laser light L2 of continuous light.
  • the laser beam L1 may be pulsed light in the infrared region, and the laser beam L2 may be pulsed light in the visible region. That is, both of the laser beams L1 and L2 may be pulsed light.
  • the band pass filter 76 is disposed on the incident side of the light receiving unit 77. Thereby, when the distance measurement device 7 simultaneously emits the laser beams L1 and L2, generation of noise due to the laser beam L2 reflected by the measurement object or the like being incident on the light receiving section 77 can be prevented.
  • the case where the distance measurement device 7 emits the laser beams L1 and L2 simultaneously is, for example, the case where the distance measurement device 7 performs the guide light irradiation operation while performing the distance measurement.
  • FIG. 8 is a side cross-sectional view of a distance measuring device 7 according to a third modified example of the present embodiment.
  • the laser light source 91 (second light source) of the distance measuring device 7 may emit continuous light outside the visible region (for example, infrared light of about 905 nm) instead of continuous light in the visible region.
  • the wavelength of the laser light L2 emitted by the laser light source 91 may be the same as or different from the wavelength of the laser light L1 of the pulse light emitted by the laser light source 71.
  • the distance measurement device 7 has an imaging element 96 below the transmission part 801.
  • the imaging element 96 captures an image of the laser light L2 outside the visible region projected on the region outside the automated guided vehicle 15.
  • An image captured by the imaging element 96 is displayed on a display unit (not shown) of the tablet terminal or the like via the communication unit T, for example.
  • the imaging device 96 may be disposed on the front of the base 1A.
  • the display unit may be disposed on the base 1A.
  • the laser light L2 may be pulsed light outside the visible region (eg, ultraviolet region) different from the wavelength of the laser light L1. That is, the laser beams L1 and L2 outside the visible region having different wavelengths may be pulsed light.
  • the distance measuring device 7 has an imaging element 96 similar to that of the third modification.
  • the laser beam L2 may be continuous light.
  • the band pass filter 76 may be omitted.
  • the amplitude per unit time when the continuous light is converted into an electric signal by the light receiving unit 77 is pulse light by the light receiving unit 77. Is smaller than the amplitude per unit time at the time of conversion into an electrical signal. For this reason, the distance measuring device 7 cuts the DC component corresponding to, for example, continuous light, thereby reducing noise due to the incidence of the continuous-wave laser light L2 to the light-receiving unit 77 even if the band pass filter 76 is omitted. Can.
  • the band pass filter 76 is omitted if only the pulse signal of the incident light L3 is used for distance measurement.
  • the laser light source 71 for emitting the laser light L1 (first projection light) which is pulse light and the continuous light in the visible region
  • a light projection mirror 73 reflection member having a laser light source 91 (second light source) for emitting a certain laser light L2 (second projection light) and a reflection surface 73a for reflecting the laser lights L1 and L2 toward the object to be measured
  • a light receiving unit 77 for receiving the laser beam L1 reflected by the measurement object OJ, and a distance measuring unit 703 for measuring the distance to the measurement object OJ based on the emission of the laser beam L1 and the light reception by the light receiving unit 77;
  • a distance measuring unit 703 for measuring the distance to the measurement object OJ based on the emission of the laser beam L1 and the light reception by the light receiving unit 77;
  • the first region R1 where the light flux of the laser light L1 is incident matches the second region R2 where the light flux of the laser light L2 is incident, and the laser light L2 is reflected in the same direction as the laser light L1.
  • the user can visually confirm the place where the laser beam L1 (distance measurement beam) used for distance measurement is irradiated with the laser beam L2 of visible light. Therefore, the user can easily check whether the laser beam L1 is irradiated only to the target object intended by the user, and can determine whether the distance measurement device 7 can measure the distance. Therefore, the usability of the distance measuring device 7 can be improved.
  • the laser beam L1 distance measurement beam
  • the distance measurement device 7 may include an imaging element 96 for imaging the laser light L2 projected onto the measurement object OJ, and the laser light source 91 may emit continuous light outside the visible region instead of continuous light in the visible region . Thereby, under various illumination environments, it is possible to easily confirm the location irradiated with the laser beam L1 used for distance measurement using the laser beam L2.
  • the distance measurement device 7 includes a laser light source 71 (first light source) that emits a laser light L1 having a predetermined wavelength outside the visible range, and a laser light source 91 (second light source) that emits a laser light L2 that has a wavelength in the visible range.
  • a light projection mirror 73 reflection member having a reflection surface 73a that reflects the laser beams L1 and L2 toward the measurement object, a light receiving unit 77 that receives the laser light L1 reflected by the measurement object OJ, and the laser light L1
  • a distance measurement unit 703 configured to measure the distance to the measurement object OJ based on the light emission from the light reception unit 77 and the light reception by the light reception unit 77.
  • the first region R1 where the light flux of the laser light L1 is incident matches the second region R2 where the light flux of the laser light L2 is incident, and the laser light L2 is reflected in the same direction as the laser light L1.
  • the location irradiated with the laser beam L1 (ranging light) used for distance measurement can be easily confirmed by the laser beam L2 (guide light) of visible light. Thereby, the usability of the distance measuring device 7 can be improved.
  • the distance measurement device 7 includes an imaging element 96 for imaging the laser light L2 projected onto the measurement object OJ, and the laser light source 91 is changed to light in the visible region and different from the wavelength of the laser light L1 outside the visible region Light outside the visible region of the wavelength may be emitted. Thereby, under various illumination environments, it is possible to confirm the location irradiated with the laser beam L1 (distance measurement light) used for distance measurement by using the laser beam L2 (guide light).
  • the laser beams L1 and L2 different in wavelength from each other are pulse beams, and the distance measuring device 7 has a band pass filter 76 for transmitting only light in the wavelength band of the laser beam L1 on the incident side of the light receiving unit 77.
  • the band pass filter 76 wavelength filter
  • the distance measuring device 7 includes a first collimating lens 72 for converting the laser light L1 incident from the laser light source 71 into parallel light, and a second collimating lens 92 for converting the laser light L2 incident from the laser light source 91 into parallel light. .
  • the emitted light of the laser light sources 71 and 91 can be collimated by the first collimator lens 72 and the second collimator lens 92.
  • the distance between the laser light source 71 and the reflection surface 73a of the light projection mirror 73 and the distance between the laser light source 91 and the reflection surface 73a of the light emission mirror 73 are different from each other.
  • the first region R1 and the second region R2 can be easily matched.
  • the distance measuring device 7 includes a first adjustment unit 93 that adjusts the distance between the laser light source 71 and the first collimator lens 72, and a second adjustment unit 94 that adjusts the distance between the laser light source 91 and the second collimator lens 92; Equipped with As a result, the first region R1 and the second region R2 can be more easily matched.
  • the accuracy of the distance between the laser light source 71 and the first collimating lens 72 and the distance between the laser light source 91 and the second collimating lens 92 is improved to improve the laser light sources 71 and 91 and the first collimating lens 72. If the second collimating lens 92 can be assembled, the first adjusting unit 93 and the second adjusting unit 94 may be omitted.
  • the unmanned transfer vehicle 15 (moving body) includes a distance measuring device 7. Thereby, the unmanned transfer vehicle 15 provided with the distance measuring device 7 capable of improving the usability can be easily realized.
  • FIG. 10 is a side sectional view of the distance measuring device 7 according to the second embodiment.
  • the same parts as those in the first embodiment shown in the above-mentioned FIGS. 1 to 9 are given the same reference numerals.
  • the second collimator lens 92 and the second adjusting unit 94 are omitted from the first embodiment.
  • the other parts are the same as in the first embodiment.
  • the second collimator lens 92 and the second adjustment unit 94 between the laser light source 91 and the half mirror 95 are omitted, and the first collimator lens 72 (collimator lens) It is disposed between the light projection mirror 73 and the like.
  • the distance between the laser light source 71 and the half mirror 95 and the distance between the laser light source 91 and the half mirror 95 are substantially the same.
  • the laser light L1 emitted from the laser light source 71 and transmitted through the half mirror 95 and the laser light L2 emitted from the laser light source 91 and reflected by the half mirror 95 are transmitted through the first collimator lens 72 and become parallel light
  • the light is incident on the reflecting surface 73 a of the light projecting mirror 73 later.
  • the subsequent operations of the distance measuring device 7 and the automatic guided vehicle 15 are the same as in the first embodiment.
  • the first adjustment unit 93 may be omitted.
  • the distance measurement device 7 collimates the laser beams L1 and L2 respectively incident from the laser light source 71 (first light source) and the laser light source 91 (second light source).
  • One first collimating lens 72 (collimating lens) is provided.
  • the outgoing light of the laser light source 91 can be made into parallel light by the 1st collimating lens 72 which makes outgoing light of the laser light source 71 into parallel light.
  • the number of parts can be reduced as compared with the distance measuring device 7 of the first embodiment having the first collimating lens 72 and the second collimating lens 92.
  • the unmanned transfer vehicle 15 has been described as an example of the moving body, the present invention is not limited thereto, and the moving body may be applied to devices other than transport applications such as a cleaning robot and a monitoring robot .
  • the moving body may be configured by a passenger car.
  • the distance measuring device 7 may be mounted on the lower front of the passenger car, and the distance measuring device 7 may measure the distance to an obstacle or the like in front of the passenger car.
  • the present invention can be used, for example, for a distance measuring device and a mobile unit equipped with the same.
  • laser light emitting unit 80 ... housing, 801 ... transmitting unit, 8 ... Substrate ... 82 ... Wiring ... 8 ... Control part, 85 ... Storage part, 9 ... Drive part, 91 ... Laser light source (second light source), 92 ... Second Collimator lens 93: first adjustment unit 94: second adjustment unit 95: half mirror 96: imaging device 10: power button 15: automated guided vehicle U: control unit, B: battery, T: communication unit, S: clearance, Rs: measurement range, ⁇ : scanning rotation angle range, J: rotation axis, L1 ... Laser light (first projection light), L2 ... Laser light (second projection light), L3 ... Incident light, OJ ... Measurement object

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

距離測定装置は、パルス光である第1投射光を出射する第1光源と、可視領域の連続光である第2投射光を出射する第2光源と、前記第1投射光及び前記第2投射光を計測対象物に向けて反射する反射面を有する反射部材と、前記計測対象物で反射した前記第1投射光を受光する受光部と、前記第1投射光の出射と前記受光部による受光とに基づいて前記計測対象物までの距離を計測する距離計測部と、を備える。前記反射面上において、前記第1投射光の光束が入射する第1領域と前記第2投射光の光束が入射する第2領域とは一致し、前記第2投射光は前記第1投射光と同じ方向に反射する。

Description

距離測定装置及びそれを備えた移動体
本発明は、距離測定装置及びそれを備えた移動体に関する。
例えば、特許文献1には、車両(移動体)に搭載される距離測定装置が開示されている。この距離測定装置は送光鏡筒、受光鏡筒及びコントローラを備える。送光鏡筒は、赤外パルス光(送出光)を発する赤外レーザダイオードと、赤色可視光(ガイド光)を発する赤色発光ダイオードと、を有する。受光鏡筒は、対象物で反射した送出光を受光するフォトダイオードを有する。コントローラは、パルス光の送光から受光までの遅延時間から対象物までの距離を演算する。 
上記構成の距離測定装置において、赤外レーザダイオードから発せられた送出光は対象物に照射される。この時、ダイクロイックミラーにより、赤色発光ダイオードから発せられたガイド光は、送出光の光軸に沿って(一致して)対象物に向けて送光される。対象物で反射した送出光は受光鏡筒に入射し、コントローラによって対象物までの距離が演算される。
特開平6-281740号公報
距離測定装置において、赤外光の送出光が使用者の意図する対象物のみに照射されているか否かを確認したい要望がある。しかし、上記従来の距離測定装置によると、距離測定装置の外部において、赤外光の送出光が照射されている領域は可視光のガイド光が照射されている領域よりも大きくなる。このため、送出光が使用者の意図する対象物のみに照射されているか否かを容易に確認することができず、距離測定装置の使用性が低下する問題があった。 
本発明は、使用性を向上できる距離測定装置及びこれを備えた移動体を提供することを目的とする。
本発明の例示的な距離測定装置は、パルス光である第1投射光を出射する第1光源と、可視領域の連続光である第2投射光を出射する第2光源と、前記第1投射光及び前記第2投射光を計測対象物に向けて反射する反射面を有する反射部材と、前記計測対象物で反射した前記第1投射光を受光する受光部と、前記第1投射光の出射と前記受光部による受光とに基づいて前記計測対象物までの距離を計測する距離計測部と、を備え、前記反射面上において、前記第1投射光の光束が入射する第1領域と前記第2投射光の光束が入射する第2領域とは一致し、前記第2投射光は前記第1投射光と同じ方向に反射する。 
本発明の例示的な距離測定装置は、可視領域外の所定波長の第1投射光を出射する第1光源と、 可視領域の波長の第2投射光を出射する第2光源と、前記第1投射光及び前記第2投射光を計測対象物に向けて反射する反射面を有する反射部材と、前記計測対象物で反射した前記第1投射光を受光する受光部と、前記第1投射光の出射と前記受光部による受光とに基づいて前記計測対象物までの距離を計測する距離計測部と、を備え、前記反射面上において、前記第1投射光の光束が入射する第1領域と前記第2投射光の光束が入射する第2領域とは一致し、前記第2投射光は前記第1投射光と同じ方向に反射する。 
本発明の例示的な移動体は、上記構成の距離測定装置を備える。
本発明の例示的な距離測定装置及び移動体によれば、使用性を向上させることができる。
図1は、本発明の第1実施形態に係る距離測定装置を備える無人搬送車の斜視図である。 図2は、本発明の第1実施形態に係る距離測定装置を備える無人搬送車の側面図である。 図3は、本発明の第1実施形態に係る距離測定装置を備える無人搬送車の上方から視た平面図である。 図4は、本発明の第1実施形態に係る距離測定装置の側面断面図である。 図5は、本発明の第1実施形態に係る距離測定装置の投光ミラーの反射面上の第1領域及び第2領域を説明するための平面図である。 図6は、本発明の第1実施形態に係る距離測定装置の電気的構成を示すブロック図である。 図7は、本発明の第1実施形態に係る無人搬送車の電気的構成を示すブロック図である。 図8は、本発明の第1実施形態の第3変形例に係る距離測定装置の側面断面図である。 図9は、本発明の第1実施形態の第3変形例に係る距離測定装置の電気的構成を示すブロック図である。 図10は、本発明の第2実施形態に係る距離測定装置の側面断面図である。
以下に本発明の例示的な実施形態について図面を参照して説明する。ここでは、距離測定装置をレーザレンジファインダーとして構成した例について述べる。また、距離測定装置を搭載する移動体としては、荷物を運搬する用途である無人搬送車を例に挙げて説明する。無人搬送車は、一般的にAGV(Automated  Guided  Vehicle)とも呼称される。 
<1.第1実施形態><1-1.無人搬送車の全体構成> 図1は、本発明の第1実施形態に係る距離測定装置7を備える無人搬送車15の斜視図である。図2は、本発明の第1実施形態に係る距離測定装置7を備える無人搬送車15の側面図である。図3は、本発明の第1実施形態に係る距離測定装置7を備える無人搬送車15の上方から視た平面図である。無人搬送車15は、二輪駆動により自律的に走行し、荷物を運搬する。特に、無人搬送車15は、その場において回転することが可能である。 
無人搬送車15は、車体1と、荷台2と、支持部3L、3Rと、駆動モータ4L、4Rと、駆動輪5L、5Rと、従動輪6F、6Rと、距離測定装置7と、を備える。 
車体1は、基部1Aと、台部1Bと、から構成される。板状の台部1Bは、基部1Aの後部上面に固定される。台部1Bは、前方に突出する三角形部Trを有する。板状の荷台2は、台部1Bの上面に固定される。荷台2の上面には、荷物を載置することが可能である。荷台2は、台部1Bよりも更に前方まで延びる。これにより、基部1Aの前部と荷台2の前部との間には隙間Sが構成される。 
距離測定装置7は、隙間Sにおいて台部1Bの三角形部Trの頂点の前方位置に配置される。距離測定装置7は、レーザレンジファインダーとして構成され、レーザ光を走査しつつ計測対象物までの距離を計測する装置である。距離測定装置7は、後述するマップ情報作成、及び自己位置同定に用いられる。距離測定装置7自体の詳細な構成については後述する。 
支持部3Lは、基部1Aの左方側に固定され、駆動モータ4Lを支持する。駆動モータ4Lは、一例としてACサーボモータにより構成される。駆動モータ4Lは、減速機(不図示)を内蔵する。駆動輪5Lは、駆動モータ4Lの回転するシャフトに固定される。 
支持部3Rは、基部1Aの右方側に固定され、駆動モータ4Rを支持する。駆動モータ4Rは、一例としてACサーボモータにより構成される。駆動モータ4Rは、減速機(不図示)を内蔵する。駆動輪5Rは、駆動モータ4Rの回転するシャフトに固定される。 
従動輪6Fは、基部1Aの前部に固定される。従動輪6Rは、基部1Aの後部に固定される。従動輪6F、6Rは、駆動輪5L、5Rの回転に応じて受動的に回転する。 
駆動モータ4L、4Rにより駆動輪5L、5Rを回転駆動することで、無人搬送車15を前進及び後進させることができる。また、駆動輪5L、5Rの回転速度に差を設けるように制御することで、無人搬送車15を右回りまたは左回りに回転させ、方向転換させることができる。 
基部1Aの内部には制御ユニットU、バッテリーB、及び通信部Tが収容される。制御ユニットUは、距離測定装置7、駆動モータ4L、4R、及び通信部T等に接続される。 
制御ユニットUは、後述するように距離測定装置7との間で種々の信号の通信を行う。制御ユニットUは、駆動モータ4L、4Rの駆動制御も行う。通信部Tは、外部のタブレット端末(不図示)との間で通信を行い、例えばBluetooth(登録商標)に準拠する。このため、タブレット端末により無人搬送車15を遠隔操作することができる。バッテリーBは、例えばリチウムイオン電池により構成され、距離測定装置7、制御ユニットU、通信部T等の各部に電力を供給する。 
<1-2.距離測定装置の構成> 図4は、距離測定装置7の側面断面図である。レーザレンジファインダーとして構成される距離測定装置7は、レーザ光源71(第1光源)と、レーザ光源91(第2光源)と、第1コリメートレンズ72と、第2コリメートレンズ92、投光ミラー73(反射部材)と、受光レンズ74と、受光ミラー75と、バンドパスフィルタ76(波長フィルタ)と、受光部77と、第1調整部93と、第2調整部94と、回転筐体78と、モータ79と、筐体80と、基板81と、配線82と、を有する。 
筐体80は、外観視で上下方向に延びる略円柱状であり、筐体80の内部にはレーザ光源71、91を初めとする各種構成が収容される。レーザ光源71は、筐体80の上端部の下面に固定される基板81の下面に実装される。レーザ光源71は、例えば赤外領域(約905nm)のパルス光のレーザ光L1(第1投射光)を下方に出射する。レーザ光源91は、筐体80の前端部の背面に固定される基板(不図示)に実装される。レーザ光源91は、例えば可視領域(約650nm)の連続光のレーザ光L2(第2投射光)を後方に出射する。本実施形態では、レーザ光源71、91からそれぞれ出射されるレーザ光L1、L2は、光軸に直交する面内における形状が矩形形状の光になる。 
レーザ光源91としては例えばCWレーザ(Continuous wave laser)を用いることができる。ここで、連続光のレーザ光とは、その出力が時間に対して略一定であるようなレーザ光を示し、パルス光のレーザ光とは、その出力のピークが所定周期で繰返し出現するようなレーザ光を示す。 
第1コリメートレンズ72は、レーザ光源71の下方に配置される。第1コリメートレンズ72は、レーザ光源71から出射されるレーザ光L1を平行光として下方に出射する。第2コリメートレンズ92は、レーザ光源91の後方に配置される。第2コリメートレンズ92は、レーザ光源91から出射されるレーザ光L2を平行光として後方に出射する。 
第1調整部93は例えばアクチュエータ等により構成され、第1コリメートレンズ72を光軸に沿って移動させる。これにより、第1調整部93はレーザ光源71と第1コリメートレンズ72との距離を調整する。 
第2調整部94は例えばアクチュエータ等により構成され、第2コリメートレンズ92を光軸に沿って移動させる。これにより、第2調整部94はレーザ光源91と第2コリメートレンズ92との距離を調整する。 
第1コリメートレンズ72の下方で第2コリメートレンズ92の後方にはハーフミラー95が配置される。ハーフミラー95は第1コリメートレンズを透過したレーザ光L1を透過させ、第2コリメートレンズ92を透過したレーザ光L2を下方に向けて反射する。 
ハーフミラー95の下方には、投光ミラー73が配置される。投光ミラー73は、回転筐体78に固定される。回転筐体78は、モータ79のシャフト79Aに固定され、モータ79によって回転軸J周りに回転駆動される。回転筐体78の回転ととともに、投光ミラー73も回転軸J周りに回転駆動される。投光ミラー73は、ハーフミラー95を透過したレーザ光L1を反射面73aで反射し、反射されたレーザ光L1を筐体80の外部に投射する。また、投光ミラー73は、ハーフミラー95で反射されたレーザ光L2を反射面73aで反射し、反射されたレーザ光L2を筐体80の外部に投射する。投光ミラー73は上記のように回転駆動されるので、レーザ光L
1、L2は回転軸J周りの360度の範囲で出射方向を変えながら出射される。この時、レーザ光L1、L2は、光軸に直交する面内における形状が矩形形状である。このため、回転筐体78の回転に伴って無人搬送車15の外部に出射されたレーザ光L1、L2の上記形状は、縦長の状態及び横長の状態の一方から他方に回転する。 
図5は、投光ミラー73の反射面73a上におけるレーザ光L1、L2の光束がそれぞれ入射する第1領域R1及び第2領域R2を示す平面図である。反射面73a上において、第1領域R1と第2領域R2とは一致する。なお、「一致」とは完全に一致する場合のみならず略一致する場合も含む。そして、反射面73aにおいて、レーザ光L2はレーザ光L1と同じ方向に反射する。この時、反射面73a上の同じ位置に入射するレーザ光L1の光線の入射角とレーザL2の光線の入射角とは同じになる。すなわち、反射面73a上の同じ位置で反射するレーザ光L1の光線の反射角とレーザL2の光線の反射角とは同じになる。これにより、レーザ光L1、L2は筐体80の外部で同じ領域に投射される。 
筐体80は上下方向の途中において、透過部801を有する。透過部801は、透光性の樹脂等から構成される。 
投光ミラー73の反射面73aで反射されたレーザ光L1、L2は、透過部801を透過して、隙間S(図2参照)を通り、無人搬送車15より外側へ出射される。本実施形態では、所定の走査回転角度範囲θは、図3に示すように、一例として回転軸J周りの270度に設定される。270度の範囲は、より具体的には、前方180度と後方左右それぞれ45度ずつを含む。レーザ光L1、L2は、少なくとも回転軸J周り270度の範囲で透過部801を透過する。なお、後方の透過部801が配置されない範囲では、レーザ光L1、L2は筐体80の内壁または配線82等により遮られる。 
受光ミラー75は、投光ミラー73より下方の位置で回転筐体78に固定される。受光レンズ74は、回転筐体78の周方向側面に固定される。バンドパスフィルタ76は誘電多層膜を有し、受光ミラー75より下方に位置して回転筐体78に固定される。受光部77は、バンドパスフィルタ76より下方に位置し、回転筐体78に固定される。 
距離測定装置7から出射されたレーザ光L1は、計測対象物で反射して拡散光となる。拡散光の一部は、入射光L3として隙間S及び透過部801を順に透過して受光レンズ74に入射する。受光レンズ74を透過した入射光L3は、受光ミラー75へ入射し、受光ミラー75により下方へ反射される。受光ミラー75により反射された入射光L3は、バンドパスフィルタ76を透過して受光部77により受光される。この時、バンドパスフィルタ76はレーザ光L1の波長帯の光のみを透過させる。本実施形態では、バンドパスフィルタ76は赤外領域の光のみを透過させる。受光部77は、受光した光を光電変換により電気信号に変換する。 
モータ79により回転筐体78が回転駆動されると、受光レンズ74、受光ミラー75、バンドパスフィルタ76、及び受光部77は、投光ミラー73とともに回転駆動される。 
図3に示すように、走査回転角度範囲θ(=270度)で回転軸J周りに所定半径にて回転して形成される範囲が測定範囲Rsとして規定される。走査回転角度範囲θでレーザ光L1、L2が出射され、測定範囲Rs内に位置する計測対象物でレーザ光L1が反射されると、反射されたレーザ光L1が入射光L3として透過部801を透過して受光レンズ74に入射する。 
モータ79は、配線82によって基板81に接続され、基板81から通電されることで回転駆動される。モータ79は、回転筐体78を所定回転速度で回転させる。例えば、回転筐体78は、3000rpm程度で回転駆動される。配線82は、筐体80の後方内壁に上下方向に沿って引き回される。 
<1-3.距離測定装置の電気的構成> 次に、距離測定装置7の電気的構成について説明する。図6は、距離測定装置7の電気的構成を示すブロック図である。 
図6に示すように、距離測定装置7は、レーザ発光部701と、レーザ発光部707と、レーザ受光部702と、距離計測部703と、演算処理部704と、データ通信インタフェース705と、駆動部706と、モータ79と、を有する。演算処理部704には、レーザ発光部701、レーザ発光部707、距離計測部703、データ通信インタフェース705、及び駆動部706が接続される。距離計測部703にはレーザ受光部702が接続され、駆動部706にはモータ79が接続される。 
レーザ発光部701は、レーザ光源71(図4参照)と、レーザ光源71を駆動するLDドライバ(不図示)などを有する。LDドライバは、基板81(図4参照)に実装される。レーザ発光部707は、レーザ光源91(図4参照)と、レーザ光源91を駆動するLDドライバ(不図示)などを有する。LDドライバは、基板(不図示)に実装される。 
レーザ受光部702は、受光部77と、受光部77から出力される電気信号を受信するコンパレータ(不図示)などを有する。コンパレータは、受光部77に実装され、上記電気信号のレベルを所定閾値レベルと比較し、比較結果に応じてHighレベルまたはLowレベルの計測パルスを出力する。 
距離計測部703は、レーザ受光部702から出力される計測パルスを入力される。レーザ発光部701は、演算処理部704から出力されるレーザ発光パルスをトリガとしてレーザ光L1を発光する。出射されたレーザ光L1が計測対象物OJにより反射されると、入射光L3がレーザ受光部702により受光される。レーザ受光部702の受光量に応じて計測パルスが生成され、計測パルスが距離計測部703に出力される。 
ここで、距離計測部703には、演算処理部704によりレーザ発光パルスとともに出力される基準パルスが入力される。距離計測部703は、基準パルスの立ち上りタイミングから計測パルスの立ち上りタイミングまでの経過時間を計測することで、計測対象物OJまでの距離を取得することができる。すなわち、距離計測部703は、所謂TOF(Time Of Flight)方式によって距離を計測する。距離の計測結果は計測データとして距離計測部703から出力される。 
駆動部706は、モータ79を回転駆動制御する。モータ79は、駆動部706によって所定の回転速度で回転駆動される。演算処理部704は、モータ79が所定単位角度回転するたびにレーザ発光パルスを出力する。例えば、上記所定単位角度は1度とする。これにより、回転筐体78及び投光ミラー73が所定単位角度回転するたびにレーザ発光部701が発光し、レーザ光L1が出射される。 
演算処理部704は、レーザ発光パルスを出力したタイミングでのモータ79の回転角度位置と、レーザ発光パルスに対応して得られる計測データに基づいて、距離測定装置7を基準とする直交座標系上の位置情報を生成する。すなわち、投光ミラー73の回転角度位置と計測された距離に基づき、計測対象物OJの位置が取得される。上記取得される位置情報は、測定距離データとして演算処理部704より出力される。このようにして、走査回転角度範囲θでのレーザ光L1による走査により、計測対象物OJの距離画像を取得することができる。 
なお、計測対象物OJでの光の反射率によって、レーザ受光部702における受光量が変化する。例えば計測対象物OJが黒い物体で光の反射率が低下する場合、受光量が低下し、計測パルスの立ち上がりが遅くなる。すると、距離計測部703により距離が長めに計測される。このように、計測対象物OJでの光の反射率によって、実際には同じ距離であっても、計測された距離が変化することが生じる。ここで、受光量が低下すると、計測パルスの長さは短くなる。そこで、演算処理部704は、計測パルスの長さに応じて計測データを補正することで、距離の計測精度を向上させる。演算処理部704は、測定距離データの生成時に、上記補正した計測データを用いる。 
演算処理部704から出力された測定距離データは、データ通信インタフェース705を介して後述する図7に示す無人搬送車15側に伝送される。 
<1-4.無人搬送車の電気的構成> 先述のように距離測定装置7側の電気的構成を説明したが、ここでは、図7を用いて無人搬送車15側の電気的構成について説明する。図7は、無人搬送車15の電気的構成を示すブロック図である。 
図7に示すように、無人搬送車15は、距離測定装置7と、制御部8と、駆動部9と、電源ボタン10と、通信部Tと、を有する。制御部8には、距離測定装置7、駆動部9、通信部T、及び電源ボタン10が接続される。 
制御部8は、制御ユニットU(図1参照)に設けられる。駆動部9は、モータドライバ(不図示)と、駆動モータ4L、4Rなどを有する。モータドライバは、制御ユニットUに設けられる。制御部8は、駆動部9に対して指令を行い制御する。駆動部9は、駆動輪5L、5Rの回転速度及び回転方向を駆動制御する。 
制御部8は、通信部Tを介してタブレット端末(不図示)と通信を行う。例えば、タブレット端末において操作された内容に応じた操作信号を通信部Tを介して制御部8が受信することができる。 
電源ボタン10は、無人搬送車15に電源を投入して起動させるための操作ボタンである。 
制御部8は、距離測定装置7から出力される測定距離データを入力される。制御部8は、測定距離データに基づいてマップ情報を作成することが可能である。マップ情報とは、無人搬送車15の自己の位置を特定する自己位置同定を行うために生成される情報であり、無人搬送車15が走行する場所における静止物の位置情報として生成される。例えば、無人搬送車15が走行する場所が倉庫である場合は、静止物は倉庫の壁、倉庫内に配列された棚などである。 
マップ情報は、例えばタブレット端末により無人搬送車15の手動操作が行われる際に生成される。この場合、タブレット端末の例えばジョイスティックの操作に応じた操作信号が通信部Tを介して制御部8に送信されることで、制御部8は操作信号に応じて駆動部9に指令を行い、無人搬送車15を走行制御する。この時、制御部8は、距離測定装置7から入力される測定距離データと、無人搬送車15の位置に基づき、無人搬送車15が走行する場所における計測対象物の位置をマップ情報として特定する。無人搬送車15の位置は、駆動部9の駆動情報に基づき特定される。 
上記のように生成されたマップ情報は、制御部8の記憶部85により記憶される。制御部8は、距離測定装置7から入力される測定距離データと、記憶部85に予め記憶されたマップ情報とを比較することにより、無人搬送車15の自己の位置を特定する自己位置同定を行う。自己位置同定を行うことで、制御部8は、予め定められた経路に沿った無人搬送車15の自律的な走行制御を行うことができる。 
<1-5.無人搬送車及び距離測定装置の動作> 次に、無人搬送車15及び距離測定装置7の動作について説明する。電源ボタン10の操作がされると、制御部8は、バッテリーBからの電力を図6に示す距離測定装置7を除く各部に供給するよう制御し、無人搬送車15を起動させる。これにより、無人搬送車15の走行が開始される。それとともに、制御部8は、バッテリーBからの電力を距離測定装置7に供給するよう制御し、距離測定装置7を起動させる。 
マップ情報の作成時には、先述したように例えばタブレット端末における手動操作に応じて制御部8が駆動部9に指令を行うことで、無人搬送車15の走行制御が行われる。直進移動をさせる手動操作がされるときは、制御部8は、無人搬送車15を所定速度及び所定方向(前進または後進)で直進移動させるよう駆動部9に指令を
行う。また、回転動作をさせる手動操作がされるときは、制御部8は、無人搬送車15を所定回転速度、所定回転角度、及び所定回転方向(右回りまたは左回り)で回転させるよう駆動部9に指令を行う。 
また、作成後のマップ情報に基づき自己位置同定しつつ自律的に無人搬送車15が走行する際には、制御部8は、自律的に駆動部9に指令を行うことで、無人搬送車15を上記と同様に直進移動または回転動作させる。 
距離測定装置7においては、演算処理部704がデータ通信インタフェース705を介して測定距離データを無人搬送車15へ出力することを開始する。マップ情報作成時には、制御部8は、距離測定装置7から取得した測定距離データに基づいてマップ情報を作成する。また、自己位置同定時には、制御部8は、距離測定装置7から取得した測定距離データと既存のマップ情報との比較に基づき、無人搬送車15の位置を特定する。 
<1-5-1.ガイド光照射動作> 次に、距離測定装置7のレーザ光L2を照射するガイド光照射動作について説明する。無人搬送車15の出荷時または不具合時にタブレット端末の所定操作によりレーザ光源91(図4参照)が点灯される。これにより、レーザ光L2が隙間S(図1参照)を介して無人搬送車15の外部に向けて照射される。 
この時、図5に示すように、投光ミラー73の反射面73a上において、レーザ光L1の光束が入射する第1領域R1とレーザ光L2の光束が入射する第2領域R2とは一致する。すなわち、反射面73a上の同じ位置に入射するレーザ光L1の光線の入射角とレーザL2の光線の入射角とは同じになる。そして、反射面73a上において、レーザ光L2はレーザ光L1と同じ方向に反射する。このため、無人搬送車15の外部において、レーザ光L1により照射される領域と、レーザ光L2により照射される領域とは一致する。これにより、使用者は距離計測に用いるレーザ光L1(測距光)が照射されている場所を可視光のレーザ光L2により目視で確認することができる。したがって、使用者は、レーザ光L1が使用者の意図する対象物のみに照射されているか否かを容易に確認することができ、距離測定装置7の距離計測の可否を判断することができる。この時、レーザ光源71を点灯してもよく消灯してもよい。 
例えば、無人搬送車15の出荷時にガイド光照射動作を行った時に、レーザ光L2(ガイド光)が例えば倉庫の側壁面ではなく床面に照射されている場合にはレーザ光L1(測距光)も床面に照射されていることになる。この場合、距離測定装置7は本来計測すべき側壁面までの距離を計測しておらず、床面までの距離を計測していることなる。すなわち、距離測定装置7は、正確な距離計測を実施していないことになる。そして、無人搬送車15の出荷時に出荷者は投光ミラー73等の光学部材の位置調整等を行い、レーザ光L1の照射領域に床面が含まれないようにすることができる。 
また、無人搬送車15の不具合とは、例えば無人搬送車15が倉庫内の側壁面に近い側を走行するように設定されているにもかかわらず、側壁面から離れている領域のみを移動する場合などである。この場合に、距離測定装置7のガイド光照射動作を行った結果、可視光のレーザ光L2が倉庫の床面に照射されていれば、使用者は無人搬送車15の不具合の原因を容易に把握することができる。そして、使用者は無人搬送車15の不具合時に投光ミラー73等の光学部材の位置調整等を行い、レーザ光L1の照射領域に床面が含まれないようにすることができる。 
また、回転筐体78の回転に伴って無人搬送車15の外部に出射されたレーザ光L1、L2の光軸に直交する面内における形状(矩形形状)は、縦長の状態及び横長の状態の一方から他方に回転する。このため、レーザ光L1の上記形状が縦長の状態のときにレーザ光L1が床面にも照射されている可能性がある。この時、ガイド光照射動作により、使用者はレーザ光L1の床面への照射の有無を容易に確認することができる。また、無人搬送車15において、例えば距離測定装置7を基部1Aの下端部に設けた場合のように距離測定装置7を地面近くに設けた場合でも、ガイド光照射動作によりレーザ光L1の地面への照射の有無を容易に確認することができる。 
使用者によるレーザ光L2の照射領域の確認後に、タブレット端末の所定操作によりレーザ光源91が消灯される。これにより、距離測定装置7のガイド光照射動作が終了する。 
<1-6.本実施形態の第1変形例> なお、レーザ光L1の波長は可視領域の波長であってもよい。すなわち、レーザ光L1は可視領域のパルス光であってもよい。この時、可視領域であればレーザ光L1の波長に特に限定は無く、レーザ光L1の波長は例えば約650nmである。本変形例では、レーザ光L1もレーザ光L2と同様に可視領域の光であるがパルス光であるため、レーザ光L1が照射されている場所を目視しにくい。このため、使用者は連続光のレーザ光L2により照射領域を容易に目視して確認することができる。 
<1-7.本実施形態の第2変形例> また、レーザ光L1は赤外領域のパルス光であるとともに、レーザ光L2は可視領域のパルス光であってもよい。すなわち、レーザ光L1、L2はともにパルス光であってもよい。この時、バンドパスフィルタ76を受光部77の入射側に配置している。これにより、距離測定装置7がレーザ光L1、L2を同時に出射する場合に、計測対象物等で反射したレーザ光L2が受光部77に入射することによるノイズの発生を防止することができる。なお、距離測定装置7がレーザ光L1、L2を同時に出射する場合とは、例えば距離測定装置7が距離計測を行いながらガイド光照射動作を行う場合等である。 
<1-8.第1実施形態の第3変形例> 図8は本実施形態の第3変形例の距離測定装置7の側面断面図である。距離測定装置7のレーザ光源91(第2光源)は可視領域の連続光に替えて可視領域外(例えば約905nmの赤外光)の連続光を出射してもよい。この時、レーザ光源91が出射するレーザ光L2の波長はレーザ光源71が出射するパルス光のレーザ光L1の波長と同じでも異なってもよい。 
本変形例では、距離測定装置7は透過部801の下部に撮像素子96を有する。撮像素子96は、無人搬送車15の外部の領域に投影された可視領域外のレーザ光L2を撮像する。撮像素子96により撮像された画像は例えば通信部Tを介してタブレット端末の表示部(不図示)等に表示される。これにより、ガイド光照射動作時に使用者はレーザ光L2が照射されている場所を撮像素子96を介して容易に確認することができる。なお、撮像素子96を基部1Aの前面に配置してもよい。表示部を基部1Aに配置してもよい。 
<1-9.本実施形態の第4変形例> レーザ光L2は、レーザ光L1の波長とは異なる可視領域外(例えば紫外領域)のパルス光でもよい。すなわち、互いに波長の異なる可視領域外のレーザ光L1、L2はパルス光であってもよい。この場合、距離測定装置7は第3変形例と同様の撮像素子96を有する。なお、本変形例において、レーザ光L2は連続光であってもよい。 
なお、本実施形態において、バンドパスフィルタ76を省いてもよい。例えば、レーザ光L1がパルス光であるとともにレーザ光L2が連続光である場合には、受光部77により連続光を電気信号に変換した際の単位時間当たりの振幅は、受光部77によりパルス光を電気信号に変換した際の単位時間当たりの振幅よりも小さい。このため、距離測定装置7が例えば連続光に相当する直流成分をカットすることにより、バンドパスフィルタ76を省いても、連続光のレーザ光L2の受光部77への入射によるノイズを低減することができる。また、互いに波長の異なるレーザ光L1、L2がパルス光の場合には、入射光L3のパルス信号のみを距離計測に用いればバンドパスフィルタ76を省いても大きな支障はない。 
<1-10.本実施形態の作用効果> 本実施形態の距離測定装置7によると、パルス光であるレーザ光L1(第1投射光)を出射するレーザ光源71(第1光源)と、可視領域の連続光であるレーザ光L2(第2投射光)を出射するレーザ光源91(第2光源)と、レーザ光L1、L2を計測対象物に向けて反射する反射面73aを有する投光ミラー73(反射部材)と、計測対象物OJで反射したレーザ光L1を受光する受光部77と、レーザ光L1の出射と受光部77による受光とに基づいて計測対象物OJまでの距離を計測する距離計測部703と、を備える。そして、反射面73a上において、レーザ光L1の光束が入射する第1領域R1とレーザ光L2の光束が入射する第2領域R2とは一致し、レーザ光L2はレーザ光L1と同じ方向に反射する。 
これにより、使用者は距離計測に用いるレーザ光L1(測距光)が照射されている場所を可視光のレーザ光L2により目視で確認することができる。したがって、使用者は、レーザ光L1が使用者の意図する対象物のみに照射されているか否かを容易に確認することができ、距離測定装置7の距離計測の可否を判断することができる。したがって、距離測定装置7の使用性を向上させることができる。 
距離測定装置7は、計測対象物OJに投影されたレーザ光L2を撮像する撮像素子96を備え、レーザ光源91は可視領域の連続光に替えて可視領域外の連続光を出射してもよい。これにより、様々な照明環境下において、距離計測に用いるレーザ光L1が照射されている場所をレーザ光L2を用いて容易に確認することができる。 
距離測定装置7は、可視領域外の所定波長のレーザ光L1を出射するレーザ光源71(第1光源)と、可視領域の波長のレーザ光L2を出射するレーザ光源91(第2光源)と、レーザ光L1、L2を計測対象物に向けて反射する反射面73aを有する投光ミラー73(反射部材)と、計測対象物OJで反射したレーザ光L1を受光する受光部77と、レーザ光L1の出射と受光部77による受光とに基づいて計測対象物OJまでの距離を計測する距離計測部703と、を備える。そして、反射面73a上において、レーザ光L1の光束が入射する第1領域R1とレーザ光L2の光束が入射する第2領域R2とは一致し、レーザ光L2はレーザ光L1と同じ方向に反射する。 
これにより、距離計測に用いるレーザ光L1(測距光)が照射されている場所を可視光のレーザ光L2(ガイド光)により容易に確認することができる。これにより、距離測定装置7の使用性を向上させることができる。 
距離測定装置7は、計測対象物OJに投影されたレーザ光L2を撮像する撮像素子96を備え、レーザ光源91は可視領域の光に替えて、可視領域外のレーザ光L1の波長とは異なる波長の可視領域外の光を出射してもよい。これにより、様々な照明環境下において、距離計測に用いるレーザ光L1(測距光)が照射されている場所をレーザ光L2(ガイド光)を用いて確認することができる。 
互いに波長の異なるレーザ光L1、L2はパルス光であり、距離測定装置7はレーザ光L1の波長帯の光のみを透過させるバンドパスフィルタ76を受光部77の入射側に有する。レーザ光L2をパルス光にすると連続光にする場合よりも電力消費の増大を抑制することができる。また、バンドパスフィルタ76(波長フィルタ)により受光部77にはレーザ光L1が入射し、レーザ光L2は入射しない。これにより、パルス光であるレーザ光L2が受光部77に入射することによるノイズの発生を防止し、距離測定装置7はレーザ光L1、L2を同時に出射しながら距離を正確に計測することができる。 
距離測定装置7は、レーザ光源71から入射したレーザ光L1を平行光にする第1コリメートレンズ72と、レーザ光源91から入射したレーザ光L2を平行光にする第2コリメートレンズ92と、を備える。これにより、第1コリメートレンズ72及び第2コリメートレンズ92によりレーザ
光源71、91の出射光を平行光にすることができる。また、レーザ光源71、91の規格が互いに異なり、レーザ光源71と投光ミラー73の反射面73aとの距離及びレーザ光源91と投光ミラー73の反射面73aとの距離が互いに異なっていても第1領域R1と第2領域R2とを容易に一致させることができる。 
距離測定装置7は、レーザ光源71と第1コリメートレンズ72との距離を調整する第1調整部93と、レーザ光源91と第2コリメートレンズ92との距離を調整する第2調整部94と、を備える。これにより、第1領域R1と第2領域R2とをより容易に一致させることができる。なお、本実施形態において、レーザ光源71と第1コリメートレンズ72との距離、及びレーザ光源91と第2コリメートレンズ92との距離の精度を向上させてレーザ光源71、91、第1コリメートレンズ72、第2コリメートレンズ92を組み立てることができれば、第1調整部93及び第2調整部94を省いてもよい。 
無人搬送車15(移動体)は距離測定装置7を備える。これにより、使用性を向上できる距離測定装置7を備えた無人搬送車15を容易に実現することができる。 
<2.第2実施形態> 次に、本発明の第2実施形態について説明する。図10は第2実施形態の距離測定装置7の側面断面図である。説明の便宜上、前述の図1~図9に示す第1実施形態と同様の部分には同一の符号を付す。第2実施形態では第1実施形態に対して第2コリメートレンズ92及び第2調整部94を省く。その他の部分は第1実施形態と同様である。 
本実施形態の距離測定装置7では、レーザ光源91とハーフミラー95との間の第2コリメートレンズ92及び第2調整部94が省かれ、第1コリメートレンズ72(コリメートレンズ)はハーフミラー95と投光ミラー73との間に配置される。レーザ光源71とハーフミラー95との間の距離と、レーザ光源91とハーフミラー95との間の距離は略同じになっている。 
レーザ光源71から出射されてハーフミラー95を透過したレーザ光L1及びレーザ光源91から出射されてハーフミラー95で反射されたレーザ光L2は、第1コリメートレンズ72を透過して平行光になった後に投光ミラー73の反射面73aに入射する。その後の距離測定装置7及び無人搬送車15の動作は第1実施形態と同様である。 
なお、本実施形態において、第1調整部93を省いてもよい。 
<2-1.本実施形態の作用効果> 本実施形態によると、距離測定装置7は、レーザ光源71(第1光源)及びレーザ光源91(第2光源)からそれぞれ入射したレーザ光L1、L2を平行光にする一の第1コリメートレンズ72(コリメートレンズ)を備える。これにより、レーザ光源71の出射光を平行光にする第1コリメートレンズ72によりレーザ光源91の出射光も平行光にすることができる。また、第1コリメートレンズ72及び第2コリメートレンズ92を有する第1実施形態の距離測定装置7よりも部品点数を少なくすることができる。 
<3.その他> 以上、本発明の実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は種々の変更が可能である。 
例えば、上記実施形態では、移動体として無人搬送車15を例に挙げて説明したが、これに限定されず、移動体は掃除ロボット、監視ロボットなど、運搬用途以外の装置に適用してもよい。移動体は乗用自動車により構成されてもよい。この場合、乗用自動車の前面下部に距離測定装置7を搭載し、距離測定装置7は乗用自動車の前方の障害物等までの距離を計測してもよい。
本発明は、例えば距離測定装置及びこれを備えた移動体に利用することができる。
1・・・車体、1A・・・基部、1B・・・台部、2・・・荷台、3L、3R・・・支持部、4L、4R・・・駆動モータ、5L、5R・・・駆動輪、6F、6R・・・従動輪、7・・・距離測定装置、71・・・レーザ光源(第1光源)、72・・・コリメートレンズ、73・・・投光ミラー(反射部材)、73a・・・反射面、74・・・受光レンズ、75・・・受光ミラー、76・・・バンドパスフィルタ(波長フィルタ)、77・・・受光部、78・・・回転筐体、79・・・モータ、701・・・レーザ発光部、702・・・レーザ受光部、703・・・距離計測部、704・・・演算処理部、705・・・データ通信インタフェース、706・・・駆動部、707・・・レーザ発光部、80・・・筐体、801・・・透過部、81・・・基板、82・・・配線、8・・・制御部、85・・・記憶部、9・・・駆動部、91・・・レーザ光源(第2光源)、92・・・第2コリメートレンズ、93・・・第1調整部、94・・・第2調整部、95・・・ハーフミラー、96・・・撮像素子、10・・・電源ボタン、15・・・無人搬送車、U・・・制御ユニット、B・・・バッテリー、T・・・通信部、S・・・隙間、Rs・・・測定範囲、θ・・・走査回転角度範囲、J・・・回転軸、L1・・・レーザ光(第1投射光)、L2・・・レーザ光(第2投射光)、L3・・・入射光、OJ・・・計測対象物

Claims (9)

  1. パルス光である第1投射光を出射する第1光源と、可視領域の連続光である第2投射光を出射する第2光源と、前記第1投射光及び前記第2投射光を計測対象物に向けて反射する反射面を有する反射部材と、前記計測対象物で反射した前記第1投射光を受光する受光部と、前記第1投射光の出射と前記受光部による受光とに基づいて前記計測対象物までの距離を計測する距離計測部と、を備え、前記反射面上において、前記第1投射光の光束が入射する第1領域と前記第2投射光の光束が入射する第2領域とは一致し、前記第2投射光は前記第1投射光と同じ方向に反射する、距離測定装置。
  2. 前記計測対象物に投影された前記第2投射光を撮像する撮像素子を備え、前記第2光源は可視領域の連続光に替えて可視領域外の連続光を出射する、請求項1に記載の距離測定装置。
  3. 可視領域外の所定波長の第1投射光を出射する第1光源と、可視領域の波長の第2投射光を出射する第2光源と、前記第1投射光及び前記第2投射光を計測対象物に向けて反射する反射面を有する反射部材と、前記計測対象物で反射した前記第1投射光を受光する受光部と、前記第1投射光の出射と前記受光部による受光とに基づいて前記計測対象物までの距離を計測する距離計測部と、を備え、前記反射面上において、前記第1投射光の光束が入射する第1領域と前記第2投射光の光束が入射する第2領域とは一致し、前記第2投射光は前記第1投射光と同じ方向に反射する、距離測定装置。
  4. 前記計測対象物に投影された前記第2投射光を撮像する撮像素子を備え、前記第2光源は可視領域の光に替えて前記所定波長とは異なる波長の可視領域外の光を出射する、請求項3に記載の距離測定装置。
  5. 前記第1投射光及び前記第2投射光はパルス光であり、前記第1投射光の波長帯の光のみを透過させる波長フィルタを前記受光部の入射側に有する、請求項3または請求項4に記載の距離測定装置。
  6. 前記第1光源から入射した前記第1投射光を平行光にする第1コリメートレンズと、前記第2光源から入射した前記第2投射光を平行光にする第2コリメートレンズと、を備える、請求項1~請求項5のいずれかに記載の距離測定装置。
  7. 前記第1光源と前記第1コリメートレンズとの距離を調整する第1調整部と、前記第2光源と前記第2コリメートレンズとの距離を調整する第2調整部と、をさらに備える、請求項6に記載の距離測定装置。
  8. 前記第1光源及び前記第2光源からそれぞれ入射した前記第1投射光及び前記第2投射光を平行光にする一のコリメートレンズを備えた、請求項1~請求項5のいずれかに記載の距離測定装置。
  9. 請求項1~請求項8のいずれかに記載の距離測定装置を備えた移動体。
PCT/JP2018/023601 2017-09-20 2018-06-21 距離測定装置及びそれを備えた移動体 WO2019058679A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-179945 2017-09-20
JP2017179945 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019058679A1 true WO2019058679A1 (ja) 2019-03-28

Family

ID=65809627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023601 WO2019058679A1 (ja) 2017-09-20 2018-06-21 距離測定装置及びそれを備えた移動体

Country Status (1)

Country Link
WO (1) WO2019058679A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023523384A (ja) * 2020-03-20 2023-06-05 ホリバ ヨーロッパ ゲーエムベーハー Lidar装置の試験システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291263A (en) * 1992-03-18 1994-03-01 Korea Advanced Institute Of Science And Technology Laser range finder using a nonlinear crystal
JP2000088566A (ja) * 1998-09-02 2000-03-31 Leica Geosystems Ag 光学的測距装置
JP2001117019A (ja) * 1999-08-31 2001-04-27 Leica Geosystems Ag タキメータ望遠鏡
JP2004340856A (ja) * 2003-05-19 2004-12-02 Soatec Inc レーザ測定装置
US20140071425A1 (en) * 2012-09-13 2014-03-13 Kama-Tech (Hk) Limited System and method for superimposing a virtual aiming mechanism with a projected system beam in a compact laser-based rangefinding instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291263A (en) * 1992-03-18 1994-03-01 Korea Advanced Institute Of Science And Technology Laser range finder using a nonlinear crystal
JP2000088566A (ja) * 1998-09-02 2000-03-31 Leica Geosystems Ag 光学的測距装置
JP2001117019A (ja) * 1999-08-31 2001-04-27 Leica Geosystems Ag タキメータ望遠鏡
JP2004340856A (ja) * 2003-05-19 2004-12-02 Soatec Inc レーザ測定装置
US20140071425A1 (en) * 2012-09-13 2014-03-13 Kama-Tech (Hk) Limited System and method for superimposing a virtual aiming mechanism with a projected system beam in a compact laser-based rangefinding instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023523384A (ja) * 2020-03-20 2023-06-05 ホリバ ヨーロッパ ゲーエムベーハー Lidar装置の試験システム
JP7375220B2 (ja) 2020-03-20 2023-11-07 ホリバ ヨーロッパ ゲーエムベーハー Lidar装置の試験システム

Similar Documents

Publication Publication Date Title
CN108351413B (zh) 紧凑芯片级lidar解决方案
CN100395514C (zh) 具有发光功率调节功能的目标探测装置
US20160170412A1 (en) Autonomous mobile device and method for controlling same
JP5653715B2 (ja) レーザ測量機
WO2019064750A1 (ja) 距離測定装置、および移動体
US9739874B2 (en) Apparatus for detecting distances in two directions
KR102059258B1 (ko) 라이다 스캐닝 장치
JP2009014698A (ja) ビーム照射装置およびレーザレーダ
KR102438071B1 (ko) 전후방 측정이 가능한 라이다 스캐닝 장치
JP2018005183A (ja) 光走査装置、物体検知装置および距離検知装置
KR101737535B1 (ko) 개선된 레이저 거리 측정 장치
JP6594282B2 (ja) レーザレーダ装置
KR102578131B1 (ko) 라이다 광학 시스템
JPWO2020071465A1 (ja) 距離測定装置
WO2018173595A1 (ja) 移動装置
WO2019058679A1 (ja) 距離測定装置及びそれを備えた移動体
KR102527887B1 (ko) 라이다 센서용 광학계
WO2022110210A1 (zh) 一种激光雷达及移动平台
WO2018173594A1 (ja) 距離測定装置、および搬送車
WO2020195333A1 (ja) 距離計測回路、測距装置および移動体
EP4206735A1 (en) Laser radar and ranging method
WO2019181691A1 (ja) 距離測定装置および移動体
WO2019058678A1 (ja) 距離測定装置及びそれを備えた移動体
WO2019064742A1 (ja) 距離測定装置、および移動体
WO2019064741A1 (ja) 距離測定装置、および移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP