WO2020195333A1 - 距離計測回路、測距装置および移動体 - Google Patents
距離計測回路、測距装置および移動体 Download PDFInfo
- Publication number
- WO2020195333A1 WO2020195333A1 PCT/JP2020/006095 JP2020006095W WO2020195333A1 WO 2020195333 A1 WO2020195333 A1 WO 2020195333A1 JP 2020006095 W JP2020006095 W JP 2020006095W WO 2020195333 A1 WO2020195333 A1 WO 2020195333A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- light
- comparator
- elapsed time
- received
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/487—Extracting wanted echo signals, e.g. pulse detection
Definitions
- the present disclosure relates to a distance measuring circuit, a distance measuring device, and a moving body.
- TOF Time Of Flight
- the measurement light emitted from the light source is reflected by the object (more specifically, the reflection point of the object), and the flight time required for the reflected light to reach the light detector after the measurement light is emitted (more specifically, the reflection point of the object).
- the distance to the object is measured by measuring the TOF).
- a received signal which is an analog signal having a magnitude corresponding to the intensity of the reflected light is output.
- the peak value reached by the magnitude (amplitude) of the received signal differs depending on the distance to the object, the reflectance of the object, and / or the light scattering characteristics. Further, the rate of change of the received signal per unit time at the time of rising and falling, that is, the slope is different.
- a measurement error may occur due to the difference in the magnitude of the received signal according to the intensity of the reflected light.
- the error is sometimes referred to as a time walk (or walk error).
- a technique for appropriately measuring flight time by correcting the measurement error is desired.
- Japanese Unexamined Patent Publication No. 2017-53833 discloses a technique for correcting flight time using a correction amount determined based on the number of detected photons. For example, the number of photons is determined by measuring each time the magnitude of the received signal exceeds a plurality of threshold levels and referring to a look-up table that associates the difference between each measurement time with the number of photons. .. Further, the correction amount is determined by referring to a look-up table in which the number of photons and the correction amount are associated with each other.
- Japanese Patent Application Laid-Open No. 5-223928 describes that the time when the magnitude of the received light signal exceeds a plurality of threshold levels is measured, and for example, the rise time of the received light signal is determined by linear approximation using each measurement time. It is disclosed.
- JP-A-2017-53833 Japanese Unexamined Patent Publication No. 5-223928 Japanese Unexamined Patent Publication No. 2017-161321
- a time digital converter (hereinafter referred to as "TDC") that measures the elapsed time from the reference pulse to the rise and fall of the received signal is generally used.
- a light receiving signal which is an analog signal, is AD-converted into a digital signal by using a converter to which a predetermined threshold value is given.
- the TDC measures the elapsed time for the rise and fall of the received signal based on the input digital signal.
- the received signal includes very short fluctuations in the signal waveform in the time axis direction, so-called jitter, and very short fluctuations in signal strength (hereinafter referred to as "amplitude fluctuations").
- amplitude fluctuations very short fluctuations in signal strength
- the amplitude fluctuation becomes remarkable especially at the point of the signal waveform in which the slope of the rising and falling of the received signal is relatively gentle.
- the amplitude fluctuation of the received light signal affects the AD conversion process of the comparator, and jitter may occur in the comparator output signal after the AD conversion process.
- an error may occur in the measurement of the elapsed time by the TDC due to the jitter.
- Amplitude fluctuations of the received signal may cause a non-negligible error in TOF distance measurement.
- Japanese Unexamined Patent Publication No. 2017-161321 provides a circuit device including a waveform processing circuit for generating an undershoot in a received light signal and a signal processing circuit for binarizing a received signal with an undershoot using a plurality of threshold values. It is disclosed. According to the circuit device, it is said that erroneous detection caused by circuit noise or shot noise can be reduced.
- the waveform processing circuit disclosed in Japanese Patent Application Laid-Open No. 2017-161321 requires a complicated circuit such as a current-voltage converter, a signal amplifier, and a clamp circuit, the circuit scale and cost of the circuit device are increased. It ends up.
- An embodiment of the present disclosure includes a distance measuring circuit capable of reducing a measurement error that may occur due to an amplitude fluctuation of a received signal by a relatively simple circuit configuration, a distance measuring device including the distance measuring circuit, and a distance measuring device including the distance measuring circuit.
- a moving body including the distance measuring device is provided.
- the distance measuring circuit of the present disclosure is mounted on a distance measuring device including a light source that emits measurement light and a light detector that outputs a light receiving signal having a magnitude corresponding to the intensity of incident light. It is a distance measurement circuit that receives a light receiving signal of a size corresponding to the intensity of the reflected light reflected at the reflection point output from the light detector, and sets the size of the light receiving signal and the first threshold value. By comparison, the first comparator that outputs the first comparator output signal when the magnitude of the received light signal exceeds the first threshold, and the received signal output from the optical detector are received and the received light is received.
- a second comparator that compares the magnitude of the signal with a second threshold value larger than the first threshold value and outputs a second comparator output signal when the magnitude of the received light signal exceeds the second threshold value, and the above.
- the reference pulse that defines the timing at which the light source emits the measurement light and the first comparator output signal are received, and the first elapsed time from the reference pulse to the rise of the received signal is determined based on the first comparator output signal.
- the first time digital converter to be measured, the reference pulse and the second comparator output signal are received, and the second elapsed time from the reference pulse to the fall of the received signal is based on the second comparator output signal.
- the second time digital converter to be measured and the first elapsed time are acquired as first time information used for calculating the distance to the reflection point, and the second elapsed time is transferred to the reflection point. It is provided with a processor which is acquired as the second time information used for calculating the distance of the above and determines the distance to the reflection point according to the TOF method based on the first time information and the second time information.
- the distance measuring circuit of the present disclosure is mounted on a distance measuring device including a light source that emits measurement light and a light detector that outputs a light receiving signal having a magnitude corresponding to the intensity of incident light.
- a distance measurement circuit that receives a light-receiving signal of a size corresponding to the intensity of the reflected light reflected at the reflection point output from the light detector, and sets the size of the light-receiving signal and the first threshold value.
- the first comparator that outputs the first comparator output signal when the magnitude of the received light signal exceeds the first threshold, and the received signal output from the optical detector are received and described.
- a second comparator that compares the magnitude of the received light signal with a second threshold value different from the first threshold value and outputs a second comparator output signal when the magnitude of the received light signal exceeds the second threshold value.
- the first time digital converter that measures the second elapsed time until the fall of the signal is measured based on the first comparator output signal, the reference pulse and the second comparator output signal are received, and the light is received from the reference pulse.
- a second time digital converter that measures the third elapsed time until the signal falls based on the second comparator output signal, and a first that uses the first elapsed time to calculate the distance to the reflection point. Obtained as time information, and based on the time differentiation of the received signal, one of the second elapsed time and the third elapsed time is selected as the second time information, and the first time information and the said It includes a processor that determines the distance to the reflection point according to the TOF method based on the second time information.
- the measurement error that may occur due to the amplitude fluctuation of the received light signal is determined.
- a distance measuring circuit capable of reducing the distance a distance measuring device including the distance measuring circuit, and a moving body including the distance measuring device.
- FIG. 1 is a schematic view showing a cross section of an apparatus that simulates the schematic configuration of an exemplary ranging device 7 according to the present embodiment.
- FIG. 2 is a block diagram showing an electrical block configuration of an exemplary ranging device 7 according to this embodiment.
- FIG. 3 is a diagram for explaining an outline of an exemplary method according to the present embodiment, in which the distance to the reflection point is determined according to the TOF method.
- FIG. 4 is a block diagram showing a first hardware configuration example of the exemplary distance measurement circuit 100 according to the present embodiment.
- FIG. 5 is a diagram for explaining a state of change in the received light signal Ps output from the photodetector 77.
- FIG. 6 is a diagram illustrating the waveforms of the comparator output signals cmp1 and cmp2 output by the comparators 111A and 111B according to the first hardware configuration example, respectively.
- FIG. 7 is a graph showing an exemplary correction function used to correct the distance to the reflection point according to the present embodiment.
- FIG. 8 is a block diagram showing a second hardware configuration example of the exemplary distance measurement circuit 100 according to the present embodiment.
- FIG. 9 is a graph illustrating the waveforms of the inverted signal to which the bias BL1 is applied, the non-inverting signal to which the bias BL2 is applied, the non-inverting signal to which the bias BL3 is applied, and the waveforms of the comparator output signals cmp1 and cmp2 according to the second hardware configuration example.
- FIG. 10 is a block diagram showing a third hardware configuration example of the exemplary distance measurement circuit 100 according to the present embodiment.
- FIG. 11 is a diagram illustrating the waveforms of the comparator output signals cmp1 and cmp2 output by the comparators 111A and 111B according to the third hardware configuration example.
- FIG. 12 is a graph illustrating a waveform of the time derivative of the light receiving signal Ps output by the differentiating circuit 113.
- FIG. 13 is a block diagram showing a fourth hardware configuration example of the exemplary distance measurement circuit 100 according to the present embodiment.
- FIG. 14 is a block diagram showing a fifth hardware configuration example of the exemplary distance measurement circuit 100 according to the present embodiment.
- FIG. 15 is a diagram illustrating the state of waveforms of the comparator output signals cmp1, cmp2, and cmp3 output by the comparators 111A, 111B, and 111C according to the fifth hardware configuration example.
- FIG. 16 is a diagram showing an outline of an exemplary control system for controlling the traveling of each AGV according to the present embodiment.
- FIG. 17 is a perspective view showing an example of an environment in which an AGV exists.
- FIG. 18 is a perspective view showing the AGV and the tow truck before being connected.
- FIG. 19 is a perspective view showing the connected AGV and the tow truck.
- FIG. 20 is an external view of an exemplary AGV according to this embodiment.
- FIG. 21A is a diagram showing a first hardware configuration example of an exemplary AGV according to the present embodiment.
- FIG. 21B is a diagram showing a second hardware configuration example of an exemplary AGV according to this embodiment.
- FIG. 22 is a diagram showing a hardware configuration example of an exemplary operation management device
- the distance measuring circuit of the present disclosure is suitably mounted on a distance measuring device including a light source that emits measurement light and a photodetector that outputs a light receiving signal having a magnitude corresponding to the intensity of incident light.
- a range finder is a laser range finder (hereinafter referred to as "LRF").
- a typical example of a light source is a laser light source that emits pulsed laser light.
- a laser light source that emits laser light having a wavelength belonging to the ultraviolet region, the visible light region, or the infrared region can be widely used.
- the photodetector is a light receiving element such as an avalanche photodiode (APD).
- FIG. 1 is a schematic view showing a cross section of a device that simulates the schematic configuration of the distance measuring device 7.
- FIG. 2 is a block diagram showing an electrical block configuration of the distance measuring device 7.
- the ranging device 7 is an LRF.
- the distance measuring device 7 may be referred to as "LRF7".
- the distance measuring device 7 includes a light source 71, a collimating lens 72, a light projecting mirror 73, a condensing lens 74, a light receiving mirror 75, a wavelength filter 76, a photodetector 77, a rotating housing 78, and a motor.
- a 79, a housing 80, a substrate 81, and a wiring 82 are provided.
- the distance measuring device 7 is a device that scans the surrounding environment and periodically outputs scan data.
- the housing 80 is a substantially columnar housing that extends parallel to the direction in which the shaft 79A of the motor 79 extends (that is, the rotation axis J of the motor 79) in terms of appearance.
- the housing 80 houses the light source 71 and other members inside.
- the light source 71 is arranged on the substrate 81 attached to the upper surface of the housing 80.
- the light source 71 is driven according to a control signal from a drive circuit (not shown) such as a laser driver mounted on the substrate 81.
- the light source 71 is a laser light source, and emits laser light having a wavelength belonging to, for example, an infrared region in a direction substantially parallel to the rotation axis J of the motor 79.
- a drive circuit not shown
- the light source 71 is a laser light source, and emits laser light having a wavelength belonging to, for example, an infrared region in a direction substantially parallel to the rotation axis J of the motor 79.
- LEDs high output infrared light emitting diodes
- the light source 71 will be described as a laser light source.
- the collimating lens 72 and the projection mirror 73 are arranged on the optical path of the light L1 emitted from the light source 71.
- the collimating lens 72 is an optical member that collimates the laser beam emitted from the light source 71 into a parallel light beam.
- the collimated light beam is directed at the floodlight mirror 73.
- the housing 80 has, for example, a translucent portion 801 formed of a translucent resin on its side surface.
- a wiring 82 that electrically connects the substrate 81 and the motor 79 is provided on the side surface of the housing 80 where the translucent portion 801 is not provided.
- the floodlight mirror 73 is supported by a substantially tubular rotating housing 78 attached to the shaft 79A of the motor 79. Therefore, when the rotating housing 78 rotates around the rotating shaft J in response to the torque output from the motor 79, the floodlight mirror 73 also rotates around the rotating shaft J along with the rotation.
- the projection mirror 73 is arranged at an angle that reflects the collimated light beam and emits it to the outside.
- the collimated light beam is reflected by the projection mirror 73, passes through the light transmitting portion 801 and is emitted to the outside as emitted light L1.
- the emitted light L1 is emitted to the outside while changing the angle according to the rotation angle of the rotating housing 78 within the range of 360 ° around the rotation axis J.
- the condensing lens 74, the light receiving mirror 75, and the wavelength filter 76 are arranged on the optical path of the incident light L2 to the photodetector 77.
- the condensing lens 74 is arranged on the side surface of the rotating housing 78, and condenses the reflected light from the reflection point of the object OJ.
- the light receiving mirror 75 is supported by the rotating housing 78, like the light projecting mirror 73. Therefore, when the rotating housing 78 rotates around the rotating shaft J, the light receiving mirror 75 also rotates around the rotating shaft J along with the rotation.
- the light receiving mirror 75 is arranged at an angle that reflects the light collected by the condensing lens 74 and directs it toward the photodetector 77.
- the wavelength filter 76 is located between the light receiving mirror 75 and the photodetector 77, and is fixed to the rotating housing 78.
- the wavelength filter 76 is, for example, a filter that transmits light having a wavelength belonging to the infrared region.
- the photodetector 77 is attached to the lower surface of the rotating housing 78.
- the photodetector 77 has a light receiving element (optical sensor) that converts light energy into an electric signal by photoelectric conversion, and an amplifier circuit that amplifies an output signal from the light receiving element.
- the light receiving element is sensitive to light having a wavelength belonging to the infrared region.
- an APD or an ordinary photodiode (PD) can be used as the light receiving element.
- An example of an amplifier circuit is a transformer impedance amplifier.
- the photodetector 77 outputs a light receiving signal having a magnitude corresponding to the intensity of the incident light.
- the emitted light L1 emitted from the distance measuring device 7 is diffusely reflected by the reflecting surface of the object to become diffused light. A part of the diffused light enters the housing 80 through the light transmitting portion 801.
- the incident light L2 is condensed by the condensing lens 74 and incident on the photodetector 77.
- the motor 79 is driven by the electric power supplied from the board 81 via the wiring 82.
- the light projecting mirror 73, the condensing lens 74, the light receiving mirror 75, the wavelength filter 76, and the photodetector 77 provided in the rotating housing 78 are integrated together with the rotating housing 78.
- Rotate For example, the rotating housing 78 can rotate at a rotation speed of about 3000 rpm.
- the motor drive device 710 has a gate driver (also referred to as a "pre-driver") and an inverter (not shown). For example, the motor drive device 710 controls the on / off of the current flowing through the motor 79 according to the PWM (Pulse Width Modulation) signal transmitted from the processor 200 mounted on the distance measurement circuit 100, and is applied to the motor thereby. Adjust the voltage.
- PWM Pulse Width Modulation
- the reflective surface of the object OJ contains innumerable reflective points.
- the ranging device 7 can scan the surrounding space two-dimensionally or three-dimensionally.
- the distance measuring device 7 sequentially emits a pulsed laser beam into a space within a range of 135 degrees to the left and right (270 degrees in total) with reference to the front of the device on which the distance measuring device 7 is mounted, and the reflected light of each laser beam. L2 can be detected sequentially.
- the distance measurement circuit 100 determines the distance to the reflection point according to the TOF method based on the received light signal output from the photodetector 77.
- the distance measurement circuit 100 receives the reflected light of the measurement light, calculates the distance to each reflection point, and outputs the measurement result data indicating the position of each reflection point.
- the position of each reflection point reflects the arrival direction of the reflected light (or the emission direction of the measurement light) and the distance.
- the measurement result data (scan data) is sometimes called "environmental measurement data" or "sensor data”.
- three-dimensional scan data is called point cloud data (point cloud).
- the measurement result data may be referred to as “sensor data”.
- the communication I / F 720 is an interface for performing data communication between the distance measuring device 7 and an external device or device.
- the ranging device 7 transmits the scan data DT to the automatic guided vehicle 15, which will be described later, via the communication I / F 720.
- the form and protocol are not limited.
- communication conforming to USB, IEEE1394 (registered trademark), Ethernet (registered trademark), or the like can be performed.
- communication conforming to the Bluetooth (registered trademark) standard and / or the Wi-Fi (registered trademark) standard can be performed. Both standards include wireless communication standards using frequencies in the 2.4 GHz band.
- the laser light emitting device 701 has a laser light source 71 and a laser driver (not shown).
- the laser light emitting device 701 emits a pulsed laser light in response to the laser light emitting pulse LP output from the processor 200 of the distance measuring circuit 100.
- FIG. 3 is a diagram for explaining an outline of a method of determining the distance to the reflection point according to the TOF method.
- FIG. 3 illustrates a change in the light receiving signal Ps having a magnitude corresponding to the intensity of the reflected light output from the photodetector 77.
- the horizontal axis of the graph shows time, and the vertical axis shows the intensity (magnitude) of the received signal Ps.
- the received light signal Ps output from the photodetector 77 is blunted by being subjected to amplification processing or filter processing by an amplifier circuit, and as a result, becomes a signal having a rise time ⁇ t (for example, 100 ps or more) having a certain time width.
- the distance measurement circuit 100 of the present disclosure determines a correction amount corresponding to the rise time ⁇ t of the received light signal Ps.
- the distance measuring circuit 100 corrects the distance to the reflection point by using the correction amount.
- the distance measurement circuit 100 measures the elapsed time T1 from the reference pulse SP (time t0) that defines the timing at which the light source 71 emits the measurement light to the rise of the received signal Ps.
- the rise of the received light signal Ps is defined by the timing when the magnitude of the received light signal Ps exceeds a given threshold value Th1.
- the rising timing of the light receiving signal Ps is defined by the timing at which the magnitude of the light receiving signal Ps intersects the threshold Th1.
- the distance measurement circuit 100 measures the elapsed time T2 from the reference pulse SP to the fall of the received signal Ps.
- the fall of the received light signal Ps is defined by the timing when the magnitude of the received light signal Ps falls below a given threshold Th2. In other words, the timing of the fall of the received light signal Ps is defined by the timing when the magnitude of the received light signal Ps intersects the threshold Th2.
- the distance measurement circuit 100 calculates the pulse width W of the received signal Ps based on the difference between the elapsed times T2 and T1. The higher the peak value of the magnitude of the received light signal Ps, the steeper the rise and fall of the received light signal Ps, and therefore the calculated pulse width W becomes larger. From this correlation, it is possible to associate the pulse width W with the rise time ⁇ t of the received signal Ps, that is, the pulse width W and the correction amount ⁇ t can be associated in advance. For example, the distance measurement circuit 100 can determine the correction amount ⁇ t associated with the pulse width W of the calculated received signal Ps by referring to the lookup table in which the pulse width W and the correction amount ⁇ t are associated with each other. it can.
- the distance measurement circuit 100 calculates the corrected measurement time by subtracting the correction amount ⁇ t from the elapsed time T1. Distance measuring circuit 100 multiplies the speed of light (3.0 ⁇ 10 8 m / s ) in the measurement time after correction, to determine the exact distance to the reflection point by dividing the multiplied value by two. As a result, scan data is acquired.
- the distance measuring circuit 100 of the present disclosure may be provided with various circuit configurations depending on the application. Hereinafter, configuration examples of some typical distance measurement circuits 100 will be described.
- the first and second hardware configuration examples of the distance measurement circuit 100 will be described in detail with reference to FIGS. 4 to 8.
- FIG. 4 is a block diagram showing a first hardware configuration example of the distance measurement circuit 100.
- the distance measurement circuit 100 includes a distance measurement unit 110 and an arithmetic processing unit 120.
- the distance measuring unit 110 includes comparators 111A and 111B, TDC 112A and 112B.
- the distance measurement circuit 100 is, for example, a printed circuit board (PCB) on which these electronic components are mounted.
- PCB printed circuit board
- the photodetector 77 has a light receiving element 702A and an amplifier circuit 702B.
- the light receiving element 702A is an APD
- the amplifier circuit 702B is a transformer impedance amplifier.
- the amplifier circuit 702B converts the weak current signal output from the light receiving element 702A into a voltage signal at the input level required by the circuit in the subsequent stage.
- the photodetector 77 typically outputs analog light receiving signals Ps having a size corresponding to the intensity of the incident light.
- a first threshold voltage Vth1 is given to the first comparator 111A as a reference voltage.
- the first comparator 111A and the first threshold voltage Vth1 will be referred to as “comparator 111A” and “threshold Vth1”, respectively.
- the comparator 111A receives the light receiving signal Ps having a magnitude corresponding to the intensity of the reflected light reflected at the reflection point, which is output from the photodetector 77.
- the comparator 111A compares the magnitude of the received light signal Ps with the threshold value Vth1, and outputs the comparator output signal cmp1 when the magnitude of the received light signal Ps exceeds the threshold value Vth1. In this way, the comparator 111A converts the analog received signal into the comparator output signal cmp1 which is a digital signal based on the threshold value Vth1.
- a second threshold voltage Vth2 is given to the second comparator 111B as a reference voltage.
- the second comparator 111B and the second threshold voltage Vth2 will be referred to as “comparator 111B” and “threshold Vth2”, respectively.
- a value larger than the threshold value Vth1 is given as the threshold value Vth2.
- the threshold value Vth2 is set to 1.5 times or more and 2.0 times or less the threshold value Vth1.
- the comparator 111B receives the light receiving signal Ps output from the photodetector 77.
- the comparator 111B compares the magnitude of the received light signal Ps with the threshold value Vth2, and outputs the comparator output signal cmp2 when the magnitude of the received light signal Ps exceeds the threshold value Vth2. In this way, the comparator 111B converts the analog received signal into the comparator output signal cmp2 which is a digital signal based on the threshold value Vth2.
- FIG. 5 is a diagram for explaining a state of change in the received light signal Ps output from the photodetector 77.
- Photodetector 77 typically exhibits a theoretical low-level to high-level rise change and a theoretical high-level to low-level fall change, as shown in FIG. Outputs a light receiving signal indicating. However, depending on the processing of the post-stage circuit of the photodetector 77, the change opposite to the typical example (that is, the change from the theoretical high level to the low level is shown, and the theoretical low level to the high level is shown. A light receiving signal indicating (change in) can be output from the photodetector 77.
- the rising and falling edges of the received light signal Ps are defined by the change in the magnitude (that is, the absolute value) of the received light signal Ps.
- “rising of received signal Ps” is a term that means not only the theoretical change from low level to high level shown in FIG. 5, but also the theoretical change from high level to low level.
- “falling of the received signal Ps” is broadly interpreted as a term meaning not only the theoretical change from high level to low level shown in FIG. 5, but also the theoretical change from low level to high level. Will be done.
- the received light signal Ps output from the photodetector 77 is input to the non-inverting input terminals (+) of the comparators 111A and 111B.
- a threshold value Vth1 is input as a reference voltage to the inverting input terminal (-) of the comparator 111A
- a threshold value Vth2 is input as a reference voltage to the inverting input terminal (-) of the comparator 111B.
- FIG. 6 is a diagram illustrating the state of the waveforms of the comparator output signals cmp1 and cmp2 output by the comparators 111A and 111B, respectively.
- the comparator 111A compares the magnitude of the received signal Ps with the threshold value Vth1. When the magnitude of the received signal Ps is less than the threshold value Vth1, the signal level output from the comparator 111A is low level. When the magnitude of the received light signal Ps exceeds the threshold value Vth1, the comparator 111A outputs a high-level comparator output signal cmp1. In other words, the comparator 111A outputs a high-level comparator output signal cmp1 while the magnitude of the received signal Ps exceeds the threshold value Vth1. When the magnitude of the received signal Ps is less than the threshold value Vth1, the signal level output from the comparator 111A returns to the low level.
- the comparator 111B compares the magnitude of the received signal Ps with the threshold value Vth2. When the magnitude of the received signal Ps is less than the threshold value Vth2, the signal level output from the comparator 111B is low level. When the magnitude of the received signal Ps exceeds the threshold value Vth2, the comparator 111B outputs a high-level comparator output signal cmp2. In other words, the comparator 111B outputs a high-level comparator output signal cmp2 while the magnitude of the received signal Ps exceeds the threshold value Vth2. When the magnitude of the received signal Ps is less than the threshold value Vth2, the signal level output from the comparator 111B returns to the low level.
- the received light signal Ps output from the optical detector 77 is input to the inverting input terminals (-) of the comparators 111A and 111B, and the non-inverting input terminals (+) of the comparator 111A.
- the threshold Vth1 is input as the reference voltage
- the threshold Vth2 is input as the reference voltage to the non-inverting input terminal (+) of the comparator 111B.
- the polarity of the output signal from each comparator is inverted, the low-level comparator output signal cmp1 is output from the comparator 111A, and the low-level comparator output signal cmp2 is output from the comparator 111B. ..
- the processor 200 (more specifically, the arithmetic processing unit 120) outputs the reference pulse SP to the TDC 112A and 112B in synchronization with the timing of outputting the laser emission pulse LP to the laser emission device 701.
- the reference pulse SP is pulse light that defines the timing at which the light source 71 emits the measurement light.
- the repetition frequency (or period) of the laser emission pulse LP or the reference pulse SP is about 100 kHz.
- the first time digital converter 112A receives the reference pulse SP and the comparator output signal cmp1, and converts the first elapsed time T1 (see FIG. 6) from the reference pulse SP to the rise of the received signal Ps into the comparator output signal cmp1. Measure based on. Specifically, the first time digital converter 112A measures the first elapsed time T1 from the rise of the reference pulse SP (time t0: see FIG. 3) to the rise of the comparator output signal cmp1 (time t1). ..
- the first time digital converter 112A is simply referred to as "TDC112A".
- the second time digital converter 112B receives the reference pulse SP and the comparator output signal cmp2, and sets the second elapsed time T2 (see FIG. 6) from the reference pulse SP to the fall of the received signal Ps as the comparator output signal cmp2. Measure based on. Specifically, the second time digital converter 112B measures the second elapsed time T2 from the rise of the reference pulse SP (time t0: see FIG. 3) to the fall of the comparator output signal cmp2 (time t2). To do. Hereinafter, the second time digital converter 112B will be simply referred to as "TDC112B".
- the arithmetic processing unit 120 is a functional block that defines software processing for determining the distance to the reflection point based on each output signal from the TDC 112A and 112B, and is, for example, a central processing unit (CPU) or a digital signal processing processor. Can be mounted on an integrated circuit (IC) chip such as.
- IC integrated circuit
- processor is broadly interpreted to include an IC chip such as a field programmable gate array (FPGA) that incorporates a processor.
- the processing of the arithmetic processing unit 120 can be implemented in the FPGA.
- the distance measurement circuit 100 includes a memory 140 (see FIG. 4) that stores a computer program that controls the operation of the processor 200.
- the memory 140 does not have to be a single recording medium, but may be a set of a plurality of recording media.
- the memory 140 may include, for example, a writable memory (eg, PROM), a rewritable memory (eg, a flash memory), a read-only memory, or a storage device such as a hard disk drive. At least a portion of the memory 140 may be a removable recording medium.
- FIG. 7 is a graph illustrating a correction function used to correct the distance to the reflection point.
- the memory 140 stores in advance a correction function that defines the correspondence between the pulse width W of the received light signal Ps and the correction amount ⁇ t used to correct the distance to the reflection point.
- the correction function differs depending on the combination of the threshold value Vth1 and the threshold value Vth2 given to the comparator. That is, there are as many correction functions as illustrated in FIG. 7 as there are combinations of threshold value Vth1 and threshold value Vth2.
- the arithmetic processing unit 120 acquires the first elapsed time T1 as the first time information used for calculating the distance to the reflection point, and uses the second elapsed time T2 for calculating the distance to the reflection point. Get as time information.
- the arithmetic processing unit 120 determines the distance to the reflection point according to the TOF method based on the first time information and the second time information.
- the arithmetic processing unit 120 calculates the pulse width W of the received light signal Ps defined by the difference between the first elapsed time T1 and the second elapsed time T2.
- the arithmetic processing unit 120 reads the correction function from the memory 140.
- the arithmetic processing unit 120 determines a correction amount ⁇ t corresponding to the calculated pulse width W of the received light signal Ps with reference to the correction function, and corrects the distance to the reflection point based on the determined correction amount ⁇ t.
- the arithmetic processing unit 120 performs processing for correcting the distance to the reflection point for each repetition period of the reference pulse SP. The method for obtaining the accurate distance to the reflection point is as described with reference to FIG.
- a typical signal waveform of the light receiving signal Ps output from the light receiving element 702A shows a characteristic that the rising slope of the light receiving signal Ps is steeper than the falling slope. Further, at the rising and falling edges of the light receiving signal Ps, the steeper the slope of the light receiving signal Ps, the smaller the amplitude fluctuation at that point.
- the first elapsed time T1 and the second elapsed time T2 can be measured at the measurement point of the light receiving signal Ps in which the amplitude fluctuation is relatively small, it is possible to realize distance measurement with suppressed measurement error. It becomes.
- the measurement timing of the rise of the light receiving signal Ps corresponds to the timing P1 at which the light receiving signal Ps intersects the threshold value Vth1, and the measurement timing of the falling edge of the light receiving signal Ps corresponds to the timing P3 at which the light receiving signal Ps intersects the threshold value Vth2. ..
- the threshold value Vth2 is set to a value larger than the threshold value Vth1.
- the absolute value of the time derivative of the received light signal Ps at the timing P1 (that is, the magnitude of the slope of the signal waveform) is the received light signal at the timing P4. It becomes larger than the absolute value of the time derivative of Ps.
- the timing P4 is the timing at which the received signal Ps intersects the threshold value Vth2. As a result, the amplitude fluctuation of the received light signal Ps at the timing P1 becomes relatively smaller than the amplitude fluctuation of the received light signal Ps at the timing P4.
- the timing P1 as the measurement timing of the rising edge of the received light signal Ps, it is possible to suppress the jitter that may occur in the comparator output signal due to the amplitude fluctuation of the received light signal Ps. As a result, it is possible to reduce the measurement error when measuring the first elapsed time T1 from the reference pulse SP to the rise of the received signal Ps.
- the absolute value of the time derivative of the received light signal Ps at the timing P3 is larger than the absolute value of the time derivative of the received light signal Ps at the timing P2.
- the timing P2 is the timing at which the received signal Ps intersects the threshold value Vth1.
- the amplitude fluctuation of the received light signal Ps at the timing P3 is relatively smaller than the amplitude fluctuation of the received light signal Ps at the timing P2. Therefore, by selecting the timing P3 as the measurement timing of the fall of the received light signal Ps, it is possible to suppress the jitter that may occur in the comparator output signal due to the amplitude fluctuation of the received light signal Ps.
- FIG. 8 is a block diagram showing a second hardware configuration example of the distance measurement circuit 100.
- the distance measurement circuit 100 shown in FIG. 8 is different from the above-mentioned distance measurement circuit 100 in that the level shift circuit 150 is provided.
- the distance measurement circuit 100 further includes a level shift circuit 150.
- the amplifier circuit 702B amplifies the light receiving signal Ps having a size corresponding to the intensity of the incident light L2 output from the light receiving element 702A, and outputs the forward rotation signal and the inversion signal of the amplified light receiving signal Ps as a differential signal. It is a circuit.
- the level shift circuit 150 includes level shift circuits 151, 152 and 153.
- the level shift circuit 151 applies the first level bias BL1 to one of the forward rotation signal and the inverting signal output from the amplifier circuit 702B, and outputs an output signal to which the first level bias BL1 is applied.
- the level shift circuit 152 applies a second level bias BL2 different from the first level to the other of the forward rotation signal and the inverting signal, and outputs an output signal to which the second level bias BL2 is applied.
- the level shift circuit 153 applies a third level bias BL3 different from the first level and the second level to the other of the forward rotation signal and the inverting signal, and outputs an output signal to which the third level bias BL3 is applied. .. In this way, the level shift circuit 150 outputs three output signals having different DC biases.
- Each of the level shift circuits 151, 152 and 153 includes a bias circuit having an AC coupling capacitor C and two voltage dividing resistors R1 and R2.
- the bias circuits of the level shift circuits 151, 152 and 153 give different bias levels to the respective output signals.
- the level shift circuit 151 gives a bias BL1 to the inverting signal output from the inverting output terminal (-) of the amplifier circuit 702B, and transfers the inverting signal to which the bias BL1 is applied to the inverting input terminals (-) of the comparators 111A and 111B, respectively. ) Is output.
- the level shift circuit 152 applies bias BL2 to the non-inverting signal output from the non-inverting output terminal (+) of the amplifier circuit 702B, and sends the non-inverting signal to which the bias BL 2 is applied to the non-inverting input terminal (+) of the comparator 111A. Output.
- the level shift circuit 153 applies bias BL3 to the non-inverting signal output from the non-inverting output terminal (+) of the amplifier circuit 702B, and sends the non-inverting signal to which the bias BL 3 is applied to the non-inverting input terminal (+) of the comparator 111B. Output.
- FIG. 9 is a graph illustrating waveforms of an inverted signal to which bias BL1 is applied, a non-inverting signal to which bias BL2 is applied, a non-inverting signal to which bias BL3 is applied, and comparator output signals cmp1 and cmp2.
- the polarity of the output signal of the comparator is inverted by inputting an input signal opposite to the above to the inverting input terminal and the non-inverting input terminal of the comparator.
- the threshold value Vth1 is given to the comparator 111A by the difference between the first level and the second level bias (BL1-BL2).
- the threshold Vth2 is given to the comparator 111B by the difference between the first level and the third level biases (BL1-BL3).
- the advantage that common mode noise can be appropriately removed can be obtained.
- LRF signal processing handles minute signals, it is required to reduce noise as much as possible.
- By reducing the influence of the common mode it is possible to measure the distance even with a minute signal, and it is possible to accurately measure the distance to an object existing in the distance.
- the third to fifth hardware configuration examples of the distance measurement circuit 100 will be described with reference to FIGS. 10 to 15.
- the third to fifth hardware configuration examples are different from the first and second hardware configuration examples in that the differentiating circuit 113 is provided.
- the description of the common points will be omitted, and the differences will be mainly described.
- FIG. 10 is a block diagram showing a third hardware configuration example of the distance measurement circuit 100.
- FIG. 11 is a diagram illustrating the state of waveforms of the comparator output signals cmp1 and cmp2 output by the comparators 111A and 111B.
- the distance measurement circuit 100 further includes a differentiating circuit 113.
- FIG. 12 is a graph illustrating a waveform of the time derivative of the light receiving signal Ps output by the differentiating circuit 113.
- a threshold value Vth1 is given to the comparator 111A, and a threshold value Vth2 different from the threshold value Vth1 is given to the comparator 111B.
- the threshold value does not matter.
- the differentiating circuit 113 is composed of a combination of an operational amplifier, a resistor, a capacitor, and the like.
- the differentiating circuit 113 acquires the time derivative of the received light signal Ps at the timing when the comparator output signal cmp1 changes and the timing when the comparator output signal cmp2 changes.
- the timing at which the comparator output signal changes refers to both the rising and falling timings.
- the TDC112A has a first elapsed time from the reference pulse SP to the rise of the received signal Ps (hereinafter, referred to as “elapsed time T11”) and a second elapsed time from the reference pulse to the fall of the received signal (hereinafter, referred to as “elapsed time T11”). “Elapsed time T12”) is measured based on the comparator output signal cmp1. Specifically, the TDC112A has an elapsed time T11 from the rise of the reference pulse SP (time t0: see FIG. 3) to the rise of the comparator output signal cmp1 (time t1), and the comparator output signal cmp1 from the rise of the reference pulse SP. The elapsed time T12 until the fall (time t4) of is measured.
- the TDC112B measures the third elapsed time from the reference pulse SP to the fall of the received signal Ps (hereinafter, referred to as "elapsed time T22") based on the comparator output signal cmp2. Specifically, the TDC112B measures the elapsed time T22 from the rise of the reference pulse SP (time t0: see FIG. 3) to the fall of the comparator output signal cmp2 (time t3).
- the TDC112A measures the elapsed time T12
- the TDC112B adds the elapsed time T22 to the fourth elapsed time from the rise of the reference pulse SP to the rise of the comparator output signal cmp2 (time t2) (hereinafter, "elapsed time T21"). ".) May be further measured.
- the rising slope of the light receiving signal is steeper than the falling slope. Therefore, it is considered that the difference in the measurement timing of the rising edge of the received light signal Ps does not significantly affect the measurement error as compared with the measurement timing of the falling edge of the received light signal Ps.
- the measurement timing of the rise of the received signal Ps does not matter. That is, the measurement timing of the rise of the received light signal Ps may be any of the timings P1 and P4.
- the differentiating circuit 113 acquires the time differential value of the received light signal Ps at the rising / falling timing (time t1 and t4) of the comparator output signal cmp1 and the falling timing (time t3) of the comparator output signal cmp2. In other words, the differentiating circuit 113 acquires the time derivative value of the received signal Ps at the timings P1, P3 and P4.
- the arithmetic processing unit 120 receives the elapsed times T11, T12 and T22 from the TDC 112A and the TDC 112B, and receives the time derivative of the received signal Ps from the differentiating circuit 113.
- the arithmetic processing unit 120 acquires the elapsed time T11 as the first time information used for calculating the distance to the reflection point, and is among the elapsed time T12 and the elapsed time T22 based on the time derivative of the received light signal Ps. Select one as the second time information.
- the arithmetic processing unit 120 compares the third time differential value of the light receiving signal Ps acquired by the differentiating circuit 113 at the timing P2 with the fourth time differential value of the light receiving signal Ps acquired by the differentiating circuit 113 at the timing P3. When the absolute value of the third time derivative value is larger than that of the fourth time derivative value, the arithmetic processing unit 120 selects the elapsed time T12 as the second time information, and the absolute value of the fourth time derivative value is the second. When it is larger than that of the 3-hour differential value, the arithmetic processing unit 120 selects the elapsed time T22 as the second time information.
- the arithmetic processing unit 120 determines the distance to the reflection point according to the TOF method based on the first time information and the second time information. For example, when the absolute value of the fourth time derivative value is larger than that of the third time derivative value, the arithmetic processing unit 120 sets the distance to the reflection point by the TOF method based on the elapsed time T11 and the elapsed time T22. Determine according to. The method for obtaining the accurate distance to the reflection point is as described with reference to FIG.
- the absolute values of the time differential values at the two measurement points P2 and P3 are compared. Which of the output signals of the comparator output signals cmp1 and cmp2 is used to measure the fall timing of the received light signal Ps is selected according to the comparison result. As a result, it is possible to suppress the jitter that may occur in the comparator output signal due to the amplitude fluctuation of the received signal Ps. As a result, it is possible to further reduce the measurement error when measuring the elapsed time from the reference pulse SP to the fall of the received signal Ps.
- one of the two measurement points P1 and P4 may be selected based on the time derivative of the light receiving signal Ps, as in the case of the falling measurement point.
- the TDC 112B further measures the elapsed time T21 from the reference pulse SP to the rise of the received signal Ps based on the comparator output signal cmp2.
- the TDC112B further measures the elapsed time T21 from the rise of the reference pulse SP (time t0: see FIG. 3) to the rise of the comparator output signal cmp2 (time t2).
- the arithmetic processing unit 120 selects one of the elapsed time T11 and the elapsed time T21 as the first time information based on the time derivative of the received signal Ps.
- the arithmetic processing unit 120 selects one of the elapsed time T12 and the elapsed time T22 as the second time information based on the time derivative of the received signal Ps. The details will be described below.
- the arithmetic processing unit 120 determines the first differential value of the light receiving signal Ps acquired by the differentiating circuit 113 at the timing P1 in which the magnitude of the light receiving signal Ps exceeds the threshold value Vth1 and the timing P4 in which the magnitude of the light receiving signal Ps exceeds the threshold value Vth2. Compare with the second differential value of the received signal Ps acquired by the differentiating circuit 113. When the absolute value of the first differential value is larger than the absolute value of the second differential value, the arithmetic processing unit 120 selects the elapsed time T11 as the first time information. When the absolute value of the second differential value is larger than the absolute value of the first differential value, the arithmetic processing unit 120 selects the elapsed time T21 as the first time information.
- the arithmetic processing unit 120 sets the third differential value of the light receiving signal Ps acquired by the differentiating circuit 113 at the timing P2 when the magnitude of the light receiving signal Ps is lower than the threshold value Vth1 and the timing P3 where the magnitude of the light receiving signal Ps is lower than the threshold value Vth2. It is compared with the fourth differential value of the received signal Ps acquired by the differentiating circuit 113. When the absolute value of the third differential value is larger than the absolute value of the fourth differential value, the arithmetic processing unit 120 selects the elapsed time T12 as the second time information. When the absolute value of the fourth differential value is larger than the absolute value of the third differential value, the arithmetic processing unit 120 selects the elapsed time T22 as the second time information.
- the arithmetic processing unit 120 calculates the pulse width W of the received light signal Ps defined by the difference between the elapsed time selected as the second time information and the elapsed time selected as the first time information, and corrects it stored in the memory 140.
- the function is used to determine the correction amount ⁇ t corresponding to the calculated pulse width W of the received signal Ps.
- the arithmetic processing unit 120 corrects the distance to the reflection point based on the correction amount ⁇ t.
- the comparator output signal is caused by the amplitude fluctuation of the light receiving signal Ps. It is possible to more appropriately suppress the jitter that may occur in.
- FIG. 13 is a block diagram showing a fourth hardware configuration example of the distance measurement circuit 100. Similar to the first hardware configuration example of the distance measurement circuit 100, the fourth hardware configuration example shown in FIG. 13 may include a level shift circuit 150.
- FIG. 14 is a block diagram showing a fifth hardware configuration example of the distance measurement circuit 100.
- FIG. 15 is a diagram illustrating the waveforms of the comparator output signals cmp1, cmp2, and cmp3 output by the comparators 111A, 111B, and 111C.
- the distance measurement circuit 100 may further include at least one set having a comparator and a TDC.
- FIG. 14 illustrates the configuration of the distance measurement circuit 100 including three comparators and three TDCs. The number of comparators and TDCs used is not limited to three and may be four or more.
- One set has a comparator 111C and a TDC 112C.
- a third threshold value Vth3 (hereinafter, referred to as “threshold value Vth3”) different from the threshold values Vth1 and Vth2 is given to the comparator 111C as a reference voltage.
- the comparator 111C compares the magnitude of the received light signal Ps with the threshold value Vth3, and when the magnitude of the received light signal Ps exceeds the threshold value Vth3, it is referred to as a third comparator output signal cmp3 (hereinafter, referred to as “comparator output signal cmp3”. ) Is output.
- threshold values Vth3 are given to the comparator 111C of each set as a reference voltage.
- the threshold values Vth1, Vth2 and Vth3 show different values from each other.
- the TDC112C receives the reference pulse SP and the comparator output signal cmp3, and receives a fifth elapsed time from the reference pulse SP to the rise of the received signal Ps (hereinafter, referred to as “elapsed time T31”) and received light from the reference pulse SP.
- the sixth elapsed time until the signal falls (hereinafter, referred to as "elapsed time T32") is measured based on the comparator output signal cmp3.
- the TDC112C has an elapsed time T31 from the rise of the reference pulse SP (time t0: see FIG. 3) to the rise of the comparator output signal cmp3 (time t3), and the comparator output signal cmp3 from the rise of the reference pulse SP.
- the elapsed time T32 until the fall (time t4) of is measured.
- the differentiating circuit 113 further acquires the time derivative of the received light signal Ps at the timing when the comparator output signal cmp3 changes.
- the timing P1 in which the TDC 112A measures the rise of the received light signal Ps based on the comparator output signal cmp1 the timing P4 in which the TDC 112B measures the rise of the received signal Ps based on the comparator output signal cmp2, and the TDC 112C are the comparators. From the timing P5 that measures the rise of the received signal Ps based on the output signal cmp3, the differentiating circuit 113 determines the first measurement timing for acquiring the absolute value of the maximum differential value.
- the arithmetic processing unit 120 selects one of the elapsed time T11, the elapsed time T21, and the elapsed time T31 as the first time information, which is measured at the determined first measurement timing.
- the elapsed time T11 is the elapsed time from the rise of the reference pulse SP to the rise of the comparator output signal cmp1 (time t1).
- the elapsed time T21 is the elapsed time from the rise of the reference pulse SP to the rise of the comparator output signal cmp2 (time t2).
- the arithmetic processing unit 120 determines the timing P4 as the first measurement timing, and the elapsed time is selected from the elapsed time T11, the elapsed time T21, and the elapsed time T31. Select T21.
- the arithmetic processing unit 120 has a timing P2 in which the TDC 112A measures the fall of the light receiving signal Ps based on the comparator output signal cmp1, a timing P3 in which the TDC 112B measures the fall of the light receiving signal Ps based on the comparator output signal cmp2, and a TDC 112C. Determines the second measurement timing at which the differentiating circuit 113 acquires the absolute value of the maximum differential value from the timing P6 for measuring the fall of the received light signal Ps based on the comparator output signal cmp3.
- the arithmetic processing unit 120 selects one measured at the determined second measurement timing from the elapsed time T12, the elapsed time T22, and the elapsed time T32 as the second time information.
- the elapsed time T12 is the elapsed time from the rise of the reference pulse SP to the fall of the comparator output signal cmp1 (time t6).
- the elapsed time T22 is the elapsed time from the rise of the reference pulse SP to the fall of the comparator output signal cmp2 (time t5).
- the arithmetic processing unit 120 determines the timing P6 as the second measurement timing, and the elapsed time is selected from the elapsed time T12, the elapsed time T22, and the elapsed time T32. Select T32.
- the correction function stored in the memory 140 is different for each combination of the threshold values Vth1, Vth2 and Vth3. That is, there can be as many correction functions as there are combinations.
- the arithmetic processing unit 120 calculates the pulse width W of the received light signal Ps defined by the difference between the elapsed time selected as the second time information and the elapsed time selected as the first time information.
- the arithmetic processing unit 120 determines the correction amount ⁇ t corresponding to the pulse width W of the calculated received signal Ps by using the correction function stored in the memory 140. The method for obtaining the accurate distance to the reflection point is as described with reference to FIG.
- the measurement points at the rising and falling points can be determined more finely based on the time derivative of the light receiving signal Ps output by the differentiating circuit 113, so that the light receiving signal Ps becomes a comparator output signal due to the amplitude fluctuation of the light receiving signal Ps. It is possible to suppress the possible jitter more appropriately.
- AAV automatic guided vehicle
- Automated guided vehicle means an automated guided vehicle that manually or automatically loads luggage into the body, automatically travels to a designated location, and manually or automatically unloads.
- Automated guided vehicles include automatic guided vehicles and unmanned forklifts. In the present specification, an automatic guided vehicle is given as an example of a moving body.
- unmanned means that no person is required to steer the vehicle, and it does not exclude that an automatic guided vehicle carries "a person (for example, a person who loads and unloads luggage)".
- An "unmanned towing vehicle” is an untracked vehicle that automatically travels to a designated location by towing a trolley that manually or automatically loads and unloads luggage.
- An "unmanned forklift” is a trackless vehicle equipped with a mast that raises and lowers a fork for luggage transfer, automatically transfers the luggage to the fork, etc., and automatically travels to the designated place to perform automatic cargo handling work.
- a “trackless vehicle” is a vehicle equipped with wheels and an electric motor or engine that rotates the wheels.
- a “moving body” is a device that moves by carrying a person or luggage, and is provided with a driving device such as a wheel, a two-legged or multi-legged walking device, and a propeller that generate a driving force (traction) for movement.
- a driving device such as a wheel, a two-legged or multi-legged walking device, and a propeller that generate a driving force (traction) for movement.
- the term “moving body” in the present disclosure includes not only automatic guided vehicles in a narrow sense, but also mobile robots, service robots, and drones.
- Autonomous driving includes driving based on the command of the operation management system of the computer to which the automatic guided vehicle is connected by communication, and autonomous driving by the control device provided in the automatic guided vehicle.
- Autonomous traveling includes not only traveling of an automated guided vehicle toward a destination along a predetermined route, but also traveling of following a tracking target.
- the automatic guided vehicle may temporarily run manually based on the instructions of the operator.
- Automatic driving generally includes both “guided” driving and “guideless” driving, but in the present disclosure it means “guideless” driving.
- the "guide type” is a method in which derivatives are installed continuously or intermittently and an automated guided vehicle is guided using the derivatives.
- the "guideless type” is a method of guiding without installing a derivative.
- the automatic guided vehicle according to the embodiment of the present disclosure includes a self-position estimation device and can travel in a guideless manner.
- the “position estimation device” is a device that estimates the self-position on the map based on the sensor data acquired by an external sensor such as a laser range finder.
- the "outside world sensor” is a sensor that senses the external state of a moving body.
- External world sensors include, for example, a laser range finder (also referred to as a range sensor), a camera (or an image sensor), a LIDAR (Light Detection and Ringing), a millimeter wave radar, an ultrasonic sensor, and a magnetic sensor.
- a distance measuring device for example, LRF including the distance measuring circuit of the present disclosure can be suitably mounted on, for example, an AGV.
- FIG. 16 shows an example of a basic configuration of an exemplary mobile body management system 1000 according to the present embodiment.
- the mobile body management system 1000 includes at least one AGV 15 and an operation management device 50 that manages the operation of the AGV 15.
- FIG. 16 also shows a terminal device 20 operated by the user 1.
- the AGV15 is an automatic guided vehicle capable of "guideless” traveling that does not require derivatives such as magnetic tape for traveling.
- the AGV 15 can perform self-position estimation and transmit the estimation result to the terminal device 20 and the operation management device 50.
- the AGV 15 can automatically travel in the environment S in which the AGV 15 exists in accordance with a command from the operation management device 50.
- the operation management device 50 is a computer system that tracks the position of each AGV15 and manages the running of each AGV15.
- the operation management device 50 may be a desktop PC, a notebook PC, and / or a server computer.
- the operation management device 50 communicates with each AGV 15 via the plurality of access points 2. For example, the operation management device 50 transmits the coordinate data of the position where each AGV15 should go next to each AGV15.
- Each AGV 15 periodically transmits data indicating its position and orientation to the operation management device 50, for example, every 250 milliseconds. When the AGV 15 reaches the instructed position, the operation management device 50 further transmits the coordinate data of the position to be headed to next.
- the AGV 15 can also travel in the environment S in response to the operation of the user 1 input to the terminal device 20.
- An example of the terminal device 20 is a tablet computer.
- FIG. 17 shows an example of the environment S in which three AGVs 15a, 15b and 15c exist. It is assumed that both AGVs are traveling in the depth direction in the figure. The AGVs 15a and 15b are transporting the load placed on the top plate. The AGV15c is traveling following the AGV15b in front of the AGV15c. For convenience of explanation, reference numerals 15a, 15b and 15c have been added in FIG. 17, but will be described below as “AGV15”.
- the AGV15 can also transport the luggage by using a towing trolley connected to itself.
- FIG. 18 shows the AGV 15 and the tow truck 5 before being connected. Casters are provided on each foot of the tow truck 5.
- the AGV 15 is mechanically connected to the towing carriage 5.
- FIG. 19 shows the connected AGV 15 and the tow truck 5.
- the towing carriage 5 is towed by the AGV15.
- the AGV 15 can carry the load placed on the towing trolley 5.
- connection method between the AGV 15 and the towing carriage 5 is arbitrary. An example will be described here.
- a plate 6 is fixed to the top plate of the AGV 15.
- the tow truck 5 is provided with a guide G having a slit.
- the AGV 15 approaches the towing carriage 5 and inserts the plate 6 into the slit of the guide G.
- the AGV 15 penetrates the plate 6 and the guide G with an electromagnetic lock type pin (not shown) to lock the electromagnetic lock.
- an electromagnetic lock type pin not shown
- Each AGV 15 and the terminal device 20 can be connected to each other on a one-to-one basis, for example, and can perform communication conforming to the Bluetooth (registered trademark) standard.
- Each AGV 15 and the terminal device 20 can also perform Wi-Fi (registered trademark) compliant communication using one or a plurality of access points 2.
- the plurality of access points 2 are connected to each other via, for example, a switching hub 3.
- FIG. 16 shows two access points 2a and 2b.
- the AGV15 is wirelessly connected to the access point 2a.
- the terminal device 20 is wirelessly connected to the access point 2b.
- the data transmitted by the AGV 15 is received by the access point 2a, then transferred to the access point 2b via the switching hub 3, and transmitted from the access point 2b to the terminal device 20. Further, the data transmitted by the terminal device 20 is received by the access point 2b, then transferred to the access point 2a via the switching hub 3, and transmitted from the access point 2a to the AGV 15. As a result, bidirectional communication between the AGV 15 and the terminal device 20 is realized.
- the plurality of access points 2 are also connected to the operation management device 50 via the switching hub 3. As a result, bidirectional communication is also realized between the operation management device 50 and each AGV 15.
- a map in the environment S is created so that the AGV15 can run while estimating its own position.
- the AGV15 is equipped with a position estimation device and an LRF, and can create a map by using the output of the LRF.
- the AGV15 transitions to the data acquisition mode by the user's operation.
- the AGV 15 starts acquiring sensor data using the LRF.
- the position estimation device stores the sensor data in the storage device.
- the sensor data stored in the storage device is transmitted to the external device.
- the external device is, for example, a computer having a signal processing processor and having a mapping computer program installed.
- the signal processor of the external device superimposes the sensor data obtained for each scan.
- a map of the environment S can be created by repeating the process of superimposing the signal processing processor.
- the map is processed using, for example, a device for processing the map (not shown).
- the device creates data indicating the location of a particular area selected from the map.
- the external device transmits the processed map data to the AGV15.
- the AGV15 stores the processed map data in an internal storage device.
- the external device may be the operation management device 50 or another device.
- AGV15 may create and process the map instead of the external device.
- a circuit such as the microcontroller unit (microcomputer) of the AGV15 may perform the processing performed by the signal processing processor of the external device described above.
- the movement in the environment S for acquiring the sensor data can be realized by the AGV 15 traveling according to the operation of the user.
- the AGV 15 wirelessly receives a travel command from the user via the terminal device 20 instructing the user to move in each of the front, rear, left, and right directions.
- the AGV15 travels back and forth and left and right in the environment S according to a travel command to create a map.
- the map may be created by traveling in the environment S from front to back and left and right according to a control signal from the control device.
- Sensor data may be acquired by a person pushing around a measuring trolley equipped with an LRF.
- the number of AGVs may be one.
- the user 1 can use the terminal device 20 to select one AGV15 from the plurality of registered AGVs and have the user 1 create a map of the environment S.
- each AGV15 can automatically travel while estimating its own position using the map.
- FIG. 20 is an external view of an exemplary AGV 15 according to the embodiment of the present disclosure.
- the AGV 15 has two drive wheels 11a and 11b, four casters 11c, 11d, 11e and 11f, a frame 12, a transfer table 13, a travel control device 14, and an LRF 7.
- the two drive wheels 11a and 11b are provided on the right and left sides of the AGV 15, respectively.
- the four casters 11c, 11d, 11e and 11f are arranged at the four corners of the AGV15.
- the AGV 15 also has a plurality of motors connected to the two drive wheels 11a and 11b, but the plurality of motors are not shown in FIG. Further, FIG.
- FIG. 20 shows one drive wheel 11a and two casters 11c and 11e located on the right side of the AGV 15, and a caster 11f located on the left rear portion, but the left drive wheel 11b and the left front portion are shown.
- Caster 11d is not specified because it is hidden behind the frame 12.
- the four casters 11c, 11d, 11e and 11f can freely rotate.
- the drive wheels 11a and the drive wheels 11b will also be referred to as wheels 11a and wheels 11b, respectively.
- the travel control device 14 is a device that controls the operation of the AGV 15, and mainly includes integrated circuits including a microcomputer (described later), electronic components, and a substrate on which they are mounted.
- the travel control device 14 performs data transmission / reception and preprocessing calculation with the terminal device 20 described above.
- the LRF7 measures the distance to the reflection point by, for example, emitting an infrared laser beam 15a and detecting the reflected light of the laser beam 15a.
- the LRF7 of the AGV15 radiates a pulsed laser beam 15a in a space within a range of 135 degrees to the left and right (270 degrees in total) with respect to the front surface of the AGV15, for example, while changing the direction every 0.25 degrees. Then, the reflected light of each laser beam 15a is detected.
- the scan of the surrounding space performed by the LRF 7 is substantially parallel to the floor surface and is planar (two-dimensional). However, the LRF7 may perform a height scan.
- the AGV15 can create a map of the environment S based on the position and orientation (orientation) of the AGV15 and the scan result of the LRF7.
- the map may reflect the placement of walls, pillars and other structures around the AGV, and objects placed on the floor.
- the map data is stored in a storage device provided in the AGV 15.
- the position and posture of AGV15 that is, the pose (x, y, ⁇ ) may be simply referred to as “position” below.
- the travel control device 14 compares the measurement result of the LRF 7 with the map data held by the vehicle and estimates its current position.
- the map data may be map data created by another AGV15.
- FIG. 21A shows a first hardware configuration example of AGV15.
- FIG. 21A also shows a specific configuration of the travel control device 14.
- the AGV 15 includes a travel control device 14, an LRF 7, two motors 16a and 16b, a drive device 17, and wheels 11a and 11b.
- the travel control device 14 includes a microcomputer 14a, a memory 14b, a storage device 14c, a communication circuit 14d, and a position estimation device 14e.
- the microcomputer 14a, the memory 14b, the storage device 14c, the communication circuit 14d, and the position estimation device 14e are connected by a communication bus 14f, and data can be exchanged with each other.
- the LRF7 is also connected to the communication bus 14f via a communication interface (not shown), and transmits the measurement data as the measurement result to the microcomputer 14a, the position estimation device 14e and / or the memory 14b.
- the microcomputer 14a is a processor or a control circuit (computer) that performs calculations for controlling the entire AGV 15 including the travel control device 14.
- the microcomputer 14a is a semiconductor integrated circuit.
- the microcomputer 14a transmits a PWM signal, which is a control signal, to the drive device 17 to control the drive device 17 and adjust the voltage applied to the motor. As a result, each of the motors 16a and 16b rotates at a desired rotation speed.
- One or more control circuits that control the drive of the left and right motors 16a and 16b may be provided independently of the microcomputer 14a.
- the drive device 17 may include two microcomputers that control the drive of the motors 16a and 16b, respectively.
- the memory 14b is a volatile storage device that stores a computer program executed by the microcomputer 14a.
- the memory 14b can also be used as a work memory when the microcomputer 14a and the position estimation device 14e perform calculations.
- the storage device 14c is a non-volatile semiconductor memory device.
- the storage device 14c may be a magnetic recording medium typified by a hard disk or an optical recording medium typified by an optical disk.
- the storage device 14c may include a head device for writing and / or reading data to any recording medium and a control device for the head device.
- the storage device 14c stores the map M of the traveling environment S and the data (traveling route data) R of one or a plurality of traveling routes.
- the map M is created by the AGV 15 operating in the map creation mode and stored in the storage device 14c.
- the travel route data R is transmitted from the outside after the map M is created.
- the map M and the travel route data R are stored in the same storage device 14c, but may be stored in different storage devices.
- the AGV 15 receives the travel route data R indicating the travel route from the tablet computer.
- the traveling route data R at this time includes marker data indicating the positions of a plurality of markers.
- the "marker” indicates a passing position (via point) of the traveling AGV 15.
- the travel route data R includes at least the position information of the start marker indicating the travel start position and the end marker indicating the travel end position.
- the travel route data R may further include the position information of the markers of one or more intermediate waypoints. When the traveling route includes one or more intermediate waypoints, the route from the start marker to the end marker via the traveling waypoints in order is defined as the traveling route.
- the data of each marker may include, in addition to the coordinate data of the marker, data of the direction (angle) and the traveling speed of the AGV 15 until the movement to the next marker.
- the data of each marker is the acceleration time required for acceleration until the traveling speed is reached, and / or , Data of the deceleration time required for deceleration from the traveling speed to the stop at the position of the next marker may be included.
- the operation management device 50 may control the movement of the AGV 15 instead of the terminal device 20. In that case, the operation management device 50 may instruct the AGV 15 to move to the next marker each time the AGV 15 reaches the marker. For example, the AGV 15 receives from the operation management device 50 the coordinate data of the target position to be headed next, or the data of the distance to the target position and the angle to be traveled as the travel route data R indicating the travel route.
- the AGV15 can travel along the stored travel route while estimating its own position using the created map and the sensor data output by the LRF7 acquired during travel.
- the communication circuit 14d is, for example, a wireless communication circuit that performs wireless communication conforming to the Bluetooth (registered trademark) and / or Wi-Fi (registered trademark) standards. Both standards include wireless communication standards using frequencies in the 2.4 GHz band. For example, in the mode in which the AGV 15 is run to create a map, the communication circuit 14d performs wireless communication conforming to the Bluetooth (registered trademark) standard and communicates with the terminal device 20 on a one-to-one basis.
- the position estimation device 14e performs a map creation process and a self-position estimation process during traveling.
- the position estimation device 14e can create a map of the environment S based on the position and orientation of the AGV 15 and the scan result of the LRF.
- the position estimation device 14e receives the sensor data from the LRF 7, and also reads the map M and the position data of the specific area stored in the storage device 14c.
- the self-position x, y, ⁇
- the position estimation device 14e generates "reliability" data indicating the degree to which the local map data matches the map M.
- the self-position (x, y, ⁇ ) and reliability data can be transmitted from the AGV 15 to the terminal device 20 or the operation management device 50.
- the terminal device 20 or the operation management device 50 can receive the self-position (x, y, ⁇ ) and reliability data and display them on the built-in or connected display device.
- the microcomputer 14a and the position estimation device 14e are separate components, but this is an example. It may be one chip circuit or a semiconductor integrated circuit capable of independently performing each operation of the microcomputer 14a and the position estimation device 14e.
- FIG. 21A shows a chip circuit 14g including the microcomputer 14a and the position estimation device 14e.
- the microcomputer 14a and the position estimation device 14e are provided separately and independently will be described.
- the two motors 16a and 16b are attached to the two wheels 11a and 11b, respectively, and rotate each wheel. That is, the two wheels 11a and 11b are driving wheels, respectively.
- the motor 16a and the motor 16b are described as being motors for driving the right wheel and the left wheel of the AGV 15, respectively.
- the drive device 17 has motor drive circuits 17a and 17b for adjusting the voltage applied to each of the two motors 16a and 16b.
- Each of the motor drive circuits 17a and 17b includes a so-called inverter circuit.
- the motor drive circuits 17a and 17b turn on or off the current flowing through each motor by the PWM signal transmitted from the microcomputer 14a or the microcomputer in the motor drive circuit 17a, thereby adjusting the voltage applied to the motor.
- FIG. 21B shows a second hardware configuration example of AGV15.
- the second hardware configuration example differs from the first hardware configuration example (FIG. 24A) in that it has a laser positioning system 14h and that the microcomputer 14a is connected to each component on a one-to-one basis. To do.
- the laser positioning system 14h has a position estimation device 14e and an LRF7.
- the position estimator 14e and LRF7 are connected, for example, by an Ethernet® cable. Each operation of the position estimation device 14e and the LRF7 is as described above.
- the laser positioning system 14h outputs information indicating the pose (x, y, ⁇ ) of the AGV 15 to the microcomputer 14a.
- the microcomputer 14a has various general-purpose I / O interfaces or general-purpose input / output ports (not shown).
- the microcomputer 14a is directly connected to other components in the travel control device 14, such as the communication circuit 14d and the laser positioning system 14h, via the general-purpose input / output port.
- FIG. 21B the configuration is the same as that of FIG. 21A except for the configuration described above. Therefore, the description of the common configuration will be omitted.
- the AGV 15 in the embodiment of the present disclosure may include a safety sensor such as an obstacle detection sensor and a bumper switch (not shown).
- a safety sensor such as an obstacle detection sensor and a bumper switch (not shown).
- FIG. 22 shows a hardware configuration example of the operation management device 50.
- the operation management device 50 includes a CPU 51, a memory 52, a position database (position DB) 53, a communication circuit 54, a map database (map DB) 55, and an image processing circuit 56.
- the CPU 51, memory 52, position DB 53, communication circuit 54, map DB 55, and image processing circuit 56 are connected by a communication bus 57, and data can be exchanged with each other.
- the CPU 51 is a signal processing circuit (computer) that controls the operation of the operation management device 50.
- the CPU 51 is a semiconductor integrated circuit.
- the memory 52 is a storage device that stores a computer program executed by the CPU 51.
- the memory 52 can also be used as a work memory when the CPU 51 performs an operation.
- the position DB 53 stores position data indicating each position that can be the destination of each AGV15.
- the location data can be represented, for example, by the coordinates virtually set in the factory by the administrator.
- the location data is determined by the administrator.
- the communication circuit 54 performs wired communication conforming to, for example, an Ethernet (registered trademark) standard.
- the communication circuit 54 is connected to the access point 2 (FIG. 16) by wire, and can communicate with the AGV 15 via the access point 2.
- the communication circuit 54 receives data to be transmitted to the AGV 15 from the CPU 51 via the communication bus 57. Further, the communication circuit 54 transmits the data (notification) received from the AGV 15 to the CPU 51 and / or the memory 52 via the communication bus 57.
- the map DB 55 stores the data of the map inside the factory where the AGV 15 runs and the position data of the specific area.
- the data format does not matter as long as the map has a one-to-one correspondence with the position of each AGV15.
- the map stored in the map DB 55 may be a map created by CAD.
- the operation management device 50 can determine the route of the AGV 15 so that the AGV 15 bypasses the specific area, for example.
- the position DB 53 and the map DB 55 may be built on a non-volatile semiconductor memory, a magnetic recording medium represented by a hard disk, or an optical recording medium represented by an optical disk.
- the image processing circuit 56 is a circuit that generates video data displayed on the monitor 58.
- the image processing circuit 56 operates exclusively when the administrator operates the operation management device 50. In this embodiment, further detailed description will be omitted.
- the monitor 58 may be integrated with the operation management device 50. Further, the CPU 51 may perform the processing of the image processing circuit 56.
- the above-mentioned comprehensive aspect may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium. Alternatively, it may be realized by any combination of systems, devices, methods, integrated circuits, computer programs, and recording media.
- the technique of the present disclosure can be widely used in a moving body that performs a process of identifying its own position, a traveling management device that controls the moving body, and a management system that includes the moving body and the traveling management device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
距離計測回路(100)は、光検出器(77)から出力される受光信号の大きさと第1閾値とを比較して第1コンパレータ出力信号を出力する第1コンパレータ(111A)と、受光信号の大きさと第1閾値よりも大きい第2閾値とを比較して第2コンパレータ出力信号を出力する第2コンパレータ(111B)と、基準パルスから受光信号の立ち上がりまでの第1経過時間を第1コンパレータ出力信号に基づいて計測する第1のTDC(112A)と、基準パルスから受光信号の立ち下がりまでの第2経過時間を第2コンパレータ出力信号に基づいて計測する第2のTDC(112B)と、第1および第2経過時間に基づいて反射点までの距離をTOF方式に従って決定するプロセッサ(200)と、を備える。
Description
本開示は、距離計測回路、測距装置および移動体に関している。
物体までの距離を測定する技術の一つとして、TOF(Time Of Flight)測距技術が知られている。この技術は、光源から出射された測定光が物体(より詳細には物体の反射点)で反射され、測定光が出射されてからその反射光が光検出器に到達するまでに要する飛行時間(TOF)を計測することによって、物体までの距離を測定する。典型的には、反射光の強度に応じた大きさの、アナログ信号である受光信号が出力される。物体までの距離、物体が有する反射率および/または光散乱特性等に応じて、受光信号の大きさ(振幅)が到達するピーク値が異なる。さらに、立ち上がり・立ち下がり時における単位時間当たりの受光信号の変化率、つまり傾きが相違する。
光検出器から出力される受光信号に基づいてTOF測距を行う場合において、反射光の強度に応じた受光信号の大きさの違いから計測誤差が生じ得る。その誤差は、タイムウォーク(またはウォークエラー)と呼ばれることがある。その計測誤差を補正することにより、飛行時間を適切に計測する技術が望まれている。
特開2017-53833号公報は、検出される光子数に基づいて決定される補正量を用いて飛行時間を補正する技術を開示している。例えば、光子数は、受光信号の大きさが複数の閾値レベルを上回る時間をそれぞれ計測して、各計測時間の間の差分と光子数とを関連付けしたルックアップテーブルを参照することにより決定される。さらに、その補正量は、光子数と補正量とを対応付けしたルックアップテーブルを参照して決定される。
特開平5-223928号公報は、受光信号の大きさが複数の閾値レベルを上回る時間をそれぞれ計測し、例えば、それぞれの計測時間を利用して受光信号の立ち上がり時間を直線近似によって決定することを開示している。
TOF測距のシステムでは、基準パルスから受光信号の立ち上がり・立ち下がりまでの経過時間を計測する時間デジタル変換器(以降、「TDC」と表記する。)が一般に用いられる。所定の閾値が与えられたコンバータを用いて、アナログ信号である受光信号は、デジタル信号にAD変換される。TDCは、入力したデジタル信号に基づいて、受光信号の立ち上がり・立ち下がりについての経過時間をそれぞれ計測する。
受光信号は、信号波形の時間軸方向に発生する時間的に非常に短い変動、いわゆるジッタ、および信号強度の非常に短い変動(以下、「振幅変動」と記載する。)を含んでいる。発明者の検討によれば、特に、受光信号の立ち上がり・立ち下がりの傾きが比較的に緩やかな信号波形のポイントでは、振幅変動が顕著となる。受光信号と閾値とが、そのようなポイントで交差すると、受光信号の振幅変動がコンパレータのAD変換処理に影響を及ぼし、AD変換処理後のコンパレータ出力信号にジッタが発生し得る。その結果、そのジッタに起因してTDCによる経過時間の計測に誤差が生じ得る。受光信号の振幅変動は、TOF測距において無視できない程度の誤差を生じさせる可能性がある。
特開2017-161321号公報は、受光信号にアンダーシュートを発生させる波形処理回路と、アンダーシュートを伴った受光信号を複数の閾値を用いて二値化する信号処理回路と、を備える回路装置を開示している。その回路装置によれば、回路ノイズまたはショットノイズに起因して発生する誤検出を低減できるとされている。しかしながら、特開2017-161321号公報が開示する波形処理回路は、電流電圧変換器、信号増幅器およびクランプ回路などの複雑な回路を必要とするために、回路装置の回路規模およびコストが増大してしまう。
本開示の実施形態は、比較的に簡易な回路構成によって、受光信号の振幅変動に起因して生じ得る計測誤差を低減することが可能な距離計測回路、当該距離計測回路を備える測距装置および当該測距装置を備える移動体を提供する。
本開示の距離計測回路は、例示的な実施形態において、測定光を出射する光源、および入射光の強度に応じた大きさの受光信号を出力する光検出器を備える測距装置に搭載される距離計測回路であって、前記光検出器から出力される、反射点で反射された反射光の強度に応じた大きさの受光信号を受信して、前記受光信号の大きさと第1閾値とを比較し、前記受光信号の大きさが前記第1閾値を超えたときに第1コンパレータ出力信号を出力する第1コンパレータと、前記光検出器から出力される前記受光信号を受信して、前記受光信号の大きさと、前記第1閾値よりも大きい第2閾値とを比較し、前記受光信号の大きさが前記第2閾値を超えたときに第2コンパレータ出力信号を出力する第2コンパレータと、前記光源が前記測定光を出射するタイミングを規定する基準パルスおよび前記第1コンパレータ出力信号を受信し、前記基準パルスから前記受光信号の立ち上がりまでの第1経過時間を前記第1コンパレータ出力信号に基づいて計測する第1の時間デジタル変換器と、前記基準パルスおよび前記第2コンパレータ出力信号を受信し、前記基準パルスから前記受光信号の立ち下がりまでの第2経過時間を前記第2コンパレータ出力信号に基づいて計測する第2の時間デジタル変換器と、前記第1経過時間を、前記反射点までの距離の算出に用いる第1時間情報として取得し、かつ、前記第2経過時間を、前記反射点までの距離の算出に用いる第2時間情報として取得し、前記第1時間情報および前記第2時間情報に基づいて、前記反射点までの距離をTOF方式に従って決定する、プロセッサと、を備える。
本開示の距離計測回路は、例示的な他の実施形態において、測定光を出射する光源および入射光の強度に応じた大きさの受光信号を出力する光検出器を備える測距装置に搭載される距離計測回路であって、前記光検出器から出力される、反射点で反射された反射光の強度に応じた大きさの受光信号を受信して、前記受光信号の大きさと第1閾値とを比較し、前記受光信号の大きさが前記第1閾値を超えたときに第1コンパレータ出力信号を出力する第1コンパレータと、前記光検出器から出力される前記受光信号を受信して、前記受光信号の大きさと、前記第1閾値とは異なる第2閾値とを比較し、前記受光信号の大きさが前記第2閾値を超えたときに第2コンパレータ出力信号を出力する第2コンパレータと、前記光源が前記測定光を出射するタイミングを規定する基準パルスおよび前記第1コンパレータ出力信号を受信し、前記基準パルスから前記受光信号の立ち上がりまでの第1経過時間、および前記基準パルスから前記受光信号の立ち下がりまでの第2経過時間を前記第1コンパレータ出力信号に基づいて計測する第1の時間デジタル変換器と、前記基準パルスおよび前記第2コンパレータ出力信号を受信し、前記基準パルスから前記受光信号の立ち下がりまでの第3経過時間を前記第2コンパレータ出力信号に基づいて計測する第2の時間デジタル変換器と、前記第1経過時間を、前記反射点までの距離の算出に用いる第1時間情報として取得し、かつ、前記受光信号の時間微分に基づいて、前記第2経過時間および前記第3経過時間のうちの1つを第2時間情報として選択し、前記第1時間情報および前記第2時間情報に基づいて、前記反射点までの距離をTOF方式に従って決定する、プロセッサと、を備える。
本開示の例示的な実施形態は、受光信号の立ち上がり・立ち下がりのタイミングの計測ポイントを受光信号の傾きを考慮して決定することにより、受光信号の振幅変動に起因して生じ得る計測誤差を低減することが可能な距離計測回路、当該距離計測回路を備える測距装置および当該測距装置を備える移動体を提供する。
以下、添付の図面を参照しながら、本開示の距離計測回路、当該距離計測回路を備える測距装置および当該測距装置を備える移動体の実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
〔1.測距装置7の構成および動作〕
本開示の距離計測回路は、測定光を出射する光源、および入射光の強度に応じた大きさの受光信号を出力する光検出器を備える測距装置に好適に搭載される。測距装置の典型例は、レーザレンジファインダ(以降、「LRF」と表記する。)である。光源の典型例は、パルスレーザ光を出射するレーザ光源である。紫外領域、可視光領域または赤外領域に属する波長を有するレーザ光を出射するレーザ光源を広く用いることができる。光検出器は、アバランシェフォトダイオード(APD)などの受光素子である。
本開示の距離計測回路は、測定光を出射する光源、および入射光の強度に応じた大きさの受光信号を出力する光検出器を備える測距装置に好適に搭載される。測距装置の典型例は、レーザレンジファインダ(以降、「LRF」と表記する。)である。光源の典型例は、パルスレーザ光を出射するレーザ光源である。紫外領域、可視光領域または赤外領域に属する波長を有するレーザ光を出射するレーザ光源を広く用いることができる。光検出器は、アバランシェフォトダイオード(APD)などの受光素子である。
本開示の距離計測回路の詳細を説明する前に、図1および図2を参照して、当該距離計測回路を搭載した測距装置の構成例を説明する。
図1は、測距装置7の概略的な構成を模擬する装置の断面を示す模式図である。図2は、測距装置7の電気的なブロック構成を示すブロック図である。
本実施形態にかかる測距装置7はLRFである。以降、測距装置7を「LRF7」と記載する場合がある。測距装置7は、光源71と、コリメートレンズ72と、投光ミラー73と、集光レンズ74と、受光ミラー75と、波長フィルタ76と、光検出器77と、回転筐体78と、モータ79と、筐体80と、基板81と、配線82と、を備える。測距装置7は、周囲の環境をスキャンしてスキャンデータを周期的に出力する装置である。
筐体80は、外観視において、モータ79のシャフト79Aが延びる方向(つまりモータ79の回転軸J)に平行に延びる略円柱状の筐体である。筐体80は、光源71その他の部材を内部に収容する。
光源71は、筐体80の上面に取り付けられた基板81の上に配置されている。光源71は、例えば基板81に実装されたレーザドライバなどの駆動回路(不図示)からの制御信号に従って駆動する。光源71は、レーザ光源であり、例えば赤外領域に属する波長を有するレーザ光をモータ79の回転軸Jに略平行な方向に出射する。または、近年、高出力の赤外発光ダイオード(LED)が開発されており、そのような赤外LEDを光源71に用いることができる。本明細書では、光源71は、レーザ光源として説明する。
コリメートレンズ72および投光ミラー73が、光源71からの出射光L1の光路上に配置されている。コリメートレンズ72は、光源71から出射されたレーザ光を平行な光ビームにコリメートする光学部材である。コリメートされた光ビームは、投光ミラー73に向けられる。
筐体80は、例えば透光性の樹脂から形成された透光部801をその側面に有している。筐体80の側面において透光部801が設けられていない部分に、基板81とモータ79とを電気的に接続する配線82が設けられている。
投光ミラー73は、モータ79のシャフト79Aに取り付けられた略筒状の回転筐体78によって支持されている。そのため、モータ79から出力されるトルクを受けて回転軸J周りに回転筐体78が回転すると、その回転とともに、投光ミラー73も回転軸J周りに回転する。投光ミラー73は、コリメートされた光ビームを反射して外部に出射する角度で配置される。コリメートされた光ビームは、投光ミラー73で反射し、透光部801を通って出射光L1として外部に出射される。出射光L1は、回転軸J周りの360°の範囲内において、回転筐体78の回転角度に従って角度を変えながら外部に出射される。
集光レンズ74、受光ミラー75および波長フィルタ76が、光検出器77への入射光L2の光路上に配置されている。
集光レンズ74は、回転筐体78の側面に配置されており、物体OJの反射点からの反射光を集光する。受光ミラー75は、投光ミラー73と同様に、回転筐体78によって支持されている。そのため、回転軸J周りに回転筐体78が回転すると、その回転とともに、受光ミラー75も回転軸J周りに回転する。受光ミラー75は、集光レンズ74によって集光された光を反射して光検出器77に向ける角度で配置される。
波長フィルタ76は、受光ミラー75と光検出器77との間に位置し、回転筐体78に固定されている。波長フィルタ76は、例えば、赤外領域に属する波長の光を透過させるフィルタである。光検出器77は、回転筐体78の下面に取り付けられている。
光検出器77は、光電変換によって光エネルギーを電気信号に変換する受光素子(光センサ)および受光素子からの出力信号を増幅する増幅回路を有する。受光素子は、赤外領域に属する波長の光に感度を有する。受光素子として、APDまたは通常のフォトダイオード(PD)を用いることが可能である。増幅回路の例は、トランス・インピーダンス・アンプである。光検出器77は、入射光の強度に応じた大きさの受光信号を出力する。
測距装置7から出射された出射光L1は、物体の反射面で拡散反射して拡散光となる。拡散光の一部は、透光部801を通って筐体80内に入射する。入射光L2は、集光レンズ74によって集光されて光検出器77に入射する。
モータ79は、基板81から配線82を介して供給される電力によって駆動される。モータ79から出力されるトルクを受けて、回転筐体78に設けられた、投光ミラー73、集光レンズ74、受光ミラー75、波長フィルタ76および光検出器77は、回転筐体78と共に一体的に回転する。例えば回転筐体78は、3000rpm程度の回転速度で回転することができる。
モータ駆動装置710は、ゲートドライバ(または「プリドライバ」とも称される)およびインバータ(不図示)を有する。例えば、モータ駆動装置710は、距離計測回路100に実装されたプロセッサ200から送信されたPWM(Pulse Width Modulation)信号に従ってモータ79に流れる電流のオン・オフを制御し、それによりモータに印加される電圧を調整する。
物体OJの反射面は無数の反射点を含んでいる。測距装置7は、周囲の空間を二次元的または三次元的にスキャンすることが可能である。測距装置7は、例えば、測距装置7を搭載する装置の正面を基準として左右135度(合計270度)の範囲の空間にパルス状のレーザビームを順次出射し、各レーザビームの反射光L2を順次検出することができる。
距離計測回路100は、光検出器77から出力される受光信号に基づいて、反射点までの距離をTOF方式に従って決定する。距離計測回路100は、測定光の反射光を受けて各反射点までの距離を計算し、各反射点の位置が示された測定結果のデータを出力する。各反射点の位置には、反射光の到来方向(または測定光の出射方向)および距離が反映されている。測定結果のデータ(スキャンデータ)は、「環境計測データ」または「センサデータ」と呼ばれることがある。特に、三次元のスキャンデータは、点群データ(ポイントクラウド)と呼ばれている。以降、測定結果のデータを「センサデータ」と表記する場合がある。
通信I/F720は、測距装置7と外部機器または装置との間でデータ通信を行うためのインタフェースである。例えば、測距装置7は、スキャンデータDTを通信I/F720を介して後述する無人搬送車15に送信する。スキャンデータが転送可能であればその形態、プロトコルは限定されない。例えば、有線通信の場合には、USB、IEEE1394(登録商標)、またはイーサネット(登録商標)などに準拠した通信を行うことができる。無線通信の場合には、Bluetooth(登録商標)規格および/またはWi-Fi(登録商標)規格に準拠した通信を行うことができる。いずれの規格も、2.4GHz帯の周波数を利用した無線通信規格を含む。
レーザ発光装置701は、レーザ光源71およびレーザドライバ(不図示)を有する。レーザ発光装置701は、距離計測回路100のプロセッサ200から出力されるレーザ発光パルスLPに応答してパルス状のレーザ光を出射する。
先ず、図3を参照しながら、本実施形態において、反射点までの距離をTOF方式に従って決定する手法の概要を説明する。
図3は、反射点までの距離をTOF方式に従って決定する手法の概要を説明するための図である。図3に、光検出器77から出力される、反射光の強度に応じた大きさの受光信号Psの変化の様子を例示する。グラフの横軸は時間を示し、縦軸は受光信号Psの強度(大きさ)を示している。光検出器77から出力される受光信号Psは、増幅回路による増幅処理やフィルタ処理などを受けて鈍り、その結果、ある程度の時間幅の立ち上がり時間Δt(例えば100ps以上)を有した信号となる。
本開示の距離計測回路100は、受光信号Psの立ち上がり時間Δtに相当する補正量を決定する。距離計測回路100は、その補正量を用いて反射点までの距離を補正する。
距離計測回路100は、光源71が測定光を出射するタイミングを規定する基準パルスSP(時刻t0)から受光信号Psの立ち上がりまでの経過時間T1を計測する。受光信号Psの立ち上がりは、受光信号Psの大きさが所与の閾値Th1を上回るタイミングによって規定される。換言すると、受光信号Psの立ち上がりのタイミングは、受光信号Psの大きさが閾値Th1に交差するタイミングによって規定される。
距離計測回路100は、基準パルスSPから受光信号Psの立ち下がりまでの経過時間T2を計測する。受光信号Psの立ち下がりは、受光信号Psの大きさが所与の閾値Th2を下回るタイミングによって規定される。換言すると、受光信号Psの立ち下がりのタイミングは、受光信号Psの大きさが閾値Th2に交差するタイミングによって規定される。
距離計測回路100は、経過時間T2およびT1の差分に基づいて受光信号Psのパルス幅Wを算出する。受光信号Psの大きさのピーク値が高いほど、受光信号Psの立ち上がり・立ち下がりがより急峻になるために、算出されるパルス幅Wは大きくなる。この相関関係から、パルス幅Wと受光信号Psの立ち上がり時間Δtとを関連付けすることが可能となる、つまり、パルス幅Wと補正量Δtとを予め関連付けすることが可能となる。例えば、距離計測回路100は、パルス幅Wと補正量Δtとを関連付けしたルックアップテーブルを参照することにより、算出した受光信号Psのパルス幅Wからそれに関連付けされた補正量Δtを決定することができる。
距離計測回路100は、経過時間T1から補正量Δtを差し引くことにより補正後の計測時間を算出する。距離計測回路100は、補正後の計測時間に光速(3.0×108m/s)を乗算し、その乗算値を2で除算することにより反射点までの正確な距離を決定する。これにより、スキャンデータが取得される。
〔2.距離計測回路100の構成および動作〕
本開示の距離計測回路100は、用途に応じて様々な回路構成を備え得る。以下、幾つかの代表的な距離計測回路100の構成例を説明する。
本開示の距離計測回路100は、用途に応じて様々な回路構成を備え得る。以下、幾つかの代表的な距離計測回路100の構成例を説明する。
図4~図8を参照しながら、距離計測回路100の第1および第2のハードウェア構成例を詳しく説明する。
図4は、距離計測回路100の第1のハードウェア構成例を示すブロック図である。
距離計測回路100は、距離計測部110および演算処理部120を備える。距離計測部110は、コンパレータ111A、111B、TDC112Aおよび112Bを有する。距離計測回路100は、例えば、これらの電子部品を実装したプリント基板(PCB)である。
光検出器77は、受光素子702Aおよび増幅回路702Bを有する。例えば、受光素子702Aは、APDであり、増幅回路702Bは、トランス・インピーダンス・アンプである。増幅回路702Bは、受光素子702Aから出力される微弱な電流信号を、後段の回路が必要とする入力レベルの電圧信号に変換する。光検出器77は、典型的に、入射光の強度に応じた大きさのアナログ受光信号Psを出力する。
第1コンパレータ111Aに、基準電圧として第1閾値電圧Vth1が与えられている。以降、第1コンパレータ111Aおよび第1閾値電圧Vth1を、「コンパレータ111A」および「閾値Vth1」とそれぞれ表記する。コンパレータ111Aは、光検出器77から出力される、反射点で反射された反射光の強度に応じた大きさの受光信号Psを受信する。コンパレータ111Aは、受光信号Psの大きさと閾値Vth1とを比較し、受光信号Psの大きさが閾値Vth1を超えたときにコンパレータ出力信号cmp1を出力する。このように、コンパレータ111Aは、閾値Vth1に基づいてアナログ受光信号をデジタル信号であるコンパレータ出力信号cmp1に変換する。
第2コンパレータ111Bに、基準電圧として第2閾値電圧Vth2が与えられている。以降、第2コンパレータ111Bおよび第2閾値電圧Vth2を、「コンパレータ111B」および「閾値Vth2」とそれぞれ表記する。閾値Vth2として閾値Vth1よりも大きい値が与えられている。例えば、閾値Vth2は、閾値Vth1の1.5倍以上2.0倍以下に設定される。コンパレータ111Bは、光検出器77から出力される受光信号Psを受信する。コンパレータ111Bは、受光信号Psの大きさと閾値Vth2とを比較し、受光信号Psの大きさが閾値Vth2を超えたときにコンパレータ出力信号cmp2を出力する。このように、コンパレータ111Bは、閾値Vth2に基づいてアナログ受光信号をデジタル信号であるコンパレータ出力信号cmp2に変換する。
図5は、光検出器77から出力される受光信号Psの変化の様子を説明するための図である。
光検出器77は、図5に示すように、典型的には、理論上のローレベルからハイレベルへの立ち上がりの変化を示し、かつ、理論上のハイレベルからローレベルへの立ち下がりの変化を示す受光信号を出力する。ただし、光検出器77が有する後段回路の処理次第では、典型例とは逆の変化(つまり、理論上のハイレベルからローレベルへの変化を示し、かつ、理論上のローレベルからハイレベルへの変化)を示す受光信号が光検出器77から出力され得る。
本明細書では、受光信号Psの立ち上がり・立ち下がりを、受光信号Psの大きさ(つまり絶対値)の変化によって定義する。この定義に従えば、「受光信号Psの立ち上がり」は、図5に示す理論上のローレベルからハイレベルへの変化のみならず、理論上のハイレベルからローレベルへの変化も意味する用語として広義に解釈される。また、「受光信号Psの立ち下がり」は、図5に示す理論上のハイレベルからローレベルへの変化のみならず、理論上のローレベルからハイレベルへの変化も意味する用語として広義に解釈される。
図4に示されるように、光検出器77から出力される受光信号Psは、コンパレータ111Aおよび111Bの各非反転入力端子(+)に入力される。コンパレータ111Aの反転入力端子(-)には、基準電圧として閾値Vth1が入力され、コンパレータ111Bの反転入力端子(-)には、基準電圧として閾値Vth2が入力されている。
図6は、コンパレータ111Aおよび111Bが出力するコンパレータ出力信号cmp1およびcmp2の波形の様子をそれぞれ例示する図である。
コンパレータ111Aは、受光信号Psの大きさと閾値Vth1とを比較する。受光信号Psの大きさが閾値Vth1未満であるとき、コンパレータ111Aから出力される信号レベルはローレベルである。受光信号Psの大きさが閾値Vth1を超えたとき、コンパレータ111Aは、ハイレベルのコンパレータ出力信号cmp1を出力する。言い換えると、受光信号Psの大きさが閾値Vth1を上回っている間、コンパレータ111Aは、ハイレベルのコンパレータ出力信号cmp1を出力する。受光信号Psの大きさが閾値Vth1を下回ると、コンパレータ111Aから出力される信号レベルはローレベルに戻る。
コンパレータ111Bは、受光信号Psの大きさと閾値Vth2とを比較する。受光信号Psの大きさが閾値Vth2未満であるとき、コンパレータ111Bから出力される信号レベルはローレベルである。受光信号Psの大きさが閾値Vth2を超えたとき、コンパレータ111Bは、ハイレベルのコンパレータ出力信号cmp2を出力する。言い換えると、受光信号Psの大きさが閾値Vth2を上回っている間、コンパレータ111Bは、ハイレベルのコンパレータ出力信号cmp2を出力する。受光信号Psの大きさが閾値Vth2を下回ると、コンパレータ111Bから出力される信号レベルはローレベルに戻る。
図4に示される信号入力とは異なり、光検出器77から出力される受光信号Psを、コンパレータ111Aおよび111Bの各反転入力端子(-)に入力し、コンパレータ111Aの非反転入力端子(+)に、基準電圧として閾値Vth1を入力し、コンパレータ111Bの非反転入力端子(+)に、基準電圧として閾値Vth2を入力した場合を考える。その場合、各コンパレータからの出力信号の極性が反転し、コンパレータ111Aからはローレベルのコンパレータ出力信号cmp1が出力され、コンパレータ111Bからはローレベルのコンパレータ出力信号cmp2が出力される点に留意されたい。
プロセッサ200(より詳細には演算処理部120)は、レーザ発光装置701にレーザ発光パルスLPを出力するタイミングに同期して、TDC112Aおよび112Bに基準パルスSPを出力する。基準パルスSPは、光源71が測定光を出射するタイミングを規定するパルス光である。例えば、レーザ発光パルスLPまたは基準パルスSPの繰り返し周波数(または周期)は、100kHz程度である。
第1の時間デジタル変換器112Aは、基準パルスSPおよびコンパレータ出力信号cmp1を受信し、基準パルスSPから受光信号Psの立ち上がりまでの第1経過時間T1(図6を参照)をコンパレータ出力信号cmp1に基づいて計測する。具体的には、第1の時間デジタル変換器112Aは、基準パルスSPの立ち上がり(時刻t0:図3を参照)からコンパレータ出力信号cmp1の立ち上がり(時刻t1)までの第1経過時間T1を計測する。以下、第1の時間デジタル変換器112Aを単純に「TDC112A」と記載する。
第2の時間デジタル変換器112Bは、基準パルスSPおよびコンパレータ出力信号cmp2を受信し、基準パルスSPから受光信号Psの立ち下がりまでの第2経過時間T2(図6を参照)をコンパレータ出力信号cmp2に基づいて計測する。具体的には、第2の時間デジタル変換器112Bは、基準パルスSPの立ち上がり(時刻t0:図3を参照)からコンパレータ出力信号cmp2の立ち下がり(時刻t2)までの第2経過時間T2を計測する。以下、第2の時間デジタル変換器112Bを単純に「TDC112B」と記載する。
演算処理部120は、TDC112Aおよび112Bからの各出力信号に基づいて反射点までの距離を決定するためのソフトウェア処理を規定した機能ブロックであり、例えば中央演算処理装置(CPU)またはデジタル信号処理プロセッサなどの集積回路(IC)チップに実装され得る。本明細書において、「プロセッサ」は、プロセッサを組み込んだフィールド・プログラマブル・ゲート・アレイ(FPGA)などのICチップを含む用語として広く解釈される。例えば、演算処理部120の処理をFPGAに実装することが可能である。
距離計測回路100は、プロセッサ200の動作を制御するコンピュータプログラムを格納したメモリ140(図4を参照)を備える。メモリ140は、単一の記録媒体である必要はなく、複数の記録媒体の集合であり得る。メモリ140は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)、読み出し専用のメモリ、またはハードディスクドライブなどのストレージ装置を含み得る。メモリ140の少なくとも一部は、取り外し可能な記録媒体であってもよい。
図7は、反射点までの距離を補正するために用いる補正関数を例示するグラフである。
メモリ140は、受光信号Psのパルス幅Wと、反射点までの距離を補正するために用いる補正量Δtとの対応を規定した補正関数を予め格納している。その補正関数は、コンパレータに与えられる閾値Vth1および閾値Vth2の組み合わせ毎に異なる。すなわち、図7に例示される補正関数は、閾値Vth1および閾値Vth2の組み合わせの数だけ存在する。
演算処理部120は、第1経過時間T1を、反射点までの距離の算出に用いる第1時間情報として取得し、かつ、第2経過時間T2を、反射点までの距離の算出に用いる第2時間情報として取得する。演算処理部120は、第1時間情報および第2時間情報に基づいて、反射点までの距離をTOF方式に従って決定する。
より詳しく説明すると、演算処理部120は、第1経過時間T1と第2経過時間T2との差分が規定する受光信号Psのパルス幅Wを算出する。演算処理部120は、メモリ140から補正関数を読み出す。演算処理部120は、補正関数を参照して、算出した受光信号Psのパルス幅Wに対応する補正量Δtを決定し、決定した補正量Δtに基づいて反射点までの距離を補正する。演算処理部120は、基準パルスSPの繰り返し周期ごとに反射点までの距離を補正する処理を行う。反射点までの正確な距離を取得する手法は、図3を参照して説明したとおりである。
再び図6を参照する。
受光素子702Aから出力される受光信号Psの典型的な信号波形は、受光信号Psの立ち上がりの傾きが、立ち下がりの傾きよりも急峻となる特性を示す。また、受光信号Psの立ち上がり・立ち下がりにおいて、受光信号Psの傾きがより急峻であるほど、そのポイントにおける振幅変動はより小さくなる。
本実施形態によれば、振幅変動が比較的小さくなる受光信号Psの計測ポイントにおいて、第1経過時間T1および第2経過時間T2を計測できるので測定誤差を抑えた測距を実現することが可能となる。受光信号Psの立ち上がりの計測タイミングは、受光信号Psが閾値Vth1に交差するタイミングP1に相当し、受光信号Psの立ち下がりの計測タイミングは、受光信号Psが閾値Vth2に交差するタイミングP3に相当する。
閾値Vth2は閾値Vth1よりも大きな値に設定される。受光信号の立ち上がりが示す挙動から分かるように、これら閾値の設定の条件下では、タイミングP1における受光信号Psの時間微分の絶対値(つまり信号波形の傾きの大きさ)は、タイミングP4における受光信号Psの時間微分の絶対値よりも大きくなる。タイミングP4は、受光信号Psが閾値Vth2に交差するタイミングである。これにより、タイミングP1における受光信号Psの振幅変動は、タイミングP4における受光信号Psの振幅変動に比べ相対的に小さくなる。そのため、受光信号Psの立ち上がりの計測タイミングとしてタイミングP1を選択することにより、受光信号Psの振幅変動に起因してコンパレータ出力信号に生じ得るジッタを抑制することができる。その結果、基準パルスSPから受光信号Psの立ち上がりまでの第1経過時間T1を計測するときの計測誤差を低減することが可能となる。
受光信号の立ち下がりが示す挙動から分かるように、タイミングP3における受光信号Psの時間微分の絶対値は、タイミングP2における受光信号Psの時間微分の絶対値よりも大きくなる。タイミングP2は、受光信号Psが閾値Vth1に交差するタイミングである。これにより、タイミングP3における受光信号Psの振幅変動は、タイミングP2における受光信号Psの振幅変動に比べ相対的に小さくなる。そのため、受光信号Psの立ち下がりの計測タイミングとしてタイミングP3を選択することにより、受光信号Psの振幅変動に起因してコンパレータ出力信号に生じ得るジッタを抑制することができる。その結果、基準パルスSPから受光信号Psの立ち下がりまでの第2経過時間T2を計測するときの計測誤差を低減することが可能となる。特に、受光信号Psの立ち下がりをどのポイントで計測するかによって、振幅変動の程度が大きく変動し得る。そのために、タイミングP2ではなくP3において受光信号Psの立ち下がりを計測することは、計測誤差の低減に効果的である。
図8は、距離計測回路100の第2のハードウェア構成例を示すブロック図である。
図8に示される距離計測回路100は、レベルシフト回路150を備えている点において、上述した距離計測回路100と相違する。
距離計測回路100は、さらに、レベルシフト回路150を備えている。増幅回路702Bは、受光素子702Aから出力される、入射光L2の強度に応じた大きさの受光信号Psを増幅し、増幅した受光信号Psの正転信号および反転信号を差動信号として出力する回路である。
レベルシフト回路150は、レベルシフト回路151、152および153を有する。レベルシフト回路151は、増幅回路702Bから出力される正転信号および反転信号の一方に第1レベルのバイアスBL1を与え、第1レベルのバイアスBL1を与えた出力信号を出力する。レベルシフト回路152は、正転信号および反転信号の他方に第1レベルとは異なる第2レベルのバイアスBL2を与え、第2レベルのバイアスBL2を与えた出力信号を出力する。レベルシフト回路153は、正転信号および反転信号の当該他方に、第1レベルおよび第2レベルとは異なる第3レベルのバイアスBL3を与え、第3レベルのバイアスBL3を与えた出力信号を出力する。このように、レベルシフト回路150から、DCバイアスが互いに異なる3つの出力信号が出力される。
レベルシフト回路151、152および153のそれぞれは、ACカップリングコンデンサCおよび2つの分圧抵抗R1、R2を有するバイアス回路を備える。レベルシフト回路151、152および153のそれぞれのバイアス回路によって、互いに異なるバイアスレベルがそれぞれの出力信号に付与される。
例えば、レベルシフト回路151は、増幅回路702Bの反転出力端子(-)から出力される反転信号にバイアスBL1を与え、バイアスBL1を与えた反転信号をコンパレータ111Aおよび111Bのそれぞれの反転入力端子(-)に出力する。レベルシフト回路152は、増幅回路702Bの非反転出力端子(+)から出力される非反転信号にバイアスBL2を与え、バイアスBL2を与えた非反転信号をコンパレータ111Aの非反転入力端子(+)に出力する。レベルシフト回路153は、増幅回路702Bの非反転出力端子(+)から出力される非反転信号にバイアスBL3を与え、バイアスBL3を与えた非反転信号をコンパレータ111Bの非反転入力端子(+)に出力する。
図9は、バイアスBL1を与えた反転信号、バイアスBL2を与えた非反転信号、バイアスBL3を与えた非反転信号、コンパレータ出力信号cmp1およびcmp2の波形を例示するグラフである。ただし、上述したとおり、コンパレータの反転入力端子および非反転入力端子に上記とは逆の入力信号を入力することにより、コンパレータの出力信号の極性は反転する点に留意されたい。
第2のハードウェア構成例においては、図9に示されるように、閾値Vth1は、第1レベルおよび第2レベルのバイアスの差分(BL1-BL2)によってコンパレータ111Aに与えられる。閾値Vth2は、第1レベルおよび第3レベルのバイアスの差分(BL1-BL3)によってコンパレータ111Bに与えられる。
第2のハードウェア構成例によれば、コモンモードノイズを適切に除去できるという利点が得られる。例えばLRFの信号処理は微小信号を扱うために、ノイズを極力低減することが求められる。コモンモードの影響を減らすことにより、微小信号であっても測距が可能となり、遠方に存在する物体までの距離をも正確に測定することが可能となる。
図10~図15を参照しながら、距離計測回路100の第3~第5のハードウェア構成例を説明する。
第3~第5のハードウェア構成例は、微分回路113を備えている点において、第1および第2のハードウェア構成例と相違する。以下、共通点の説明は省略し、主に差異点を説明する。
図10は、距離計測回路100の第3のハードウェア構成例を示すブロック図である。図11は、コンパレータ111Aおよび111Bが出力するコンパレータ出力信号cmp1およびcmp2の波形の様子を例示する図である。
本実施形態にかかる距離計測回路100は、微分回路113をさらに備える。図12は、微分回路113が出力する受光信号Psの時間微分の波形を例示するグラフである。
コンパレータ111Aに、閾値Vth1が与えられており、コンパレータ111Bには、閾値Vth1とは異なる閾値Vth2が与えられている。本実施形態は、閾値の大小関係を問わない。
微分回路113は、オペアンプ、抵抗およびコンデンサなどの組み合わせにより構成される。微分回路113は、コンパレータ出力信号cmp1が変化するタイミングおよびコンパレータ出力信号cmp2が変化するタイミングにおける受光信号Psの時間微分を取得する。コンパレータ出力信号が変化するタイミングは、立ち上がり・立ち下がりの両方のタイミングを指す。
TDC112Aは、基準パルスSPから受光信号Psの立ち上がりまでの第1経過時間(以下、「経過時間T11」と表記する。)、および基準パルスから受光信号の立ち下がりまでの第2経過時間(以下、「経過時間T12」と表記する。)をコンパレータ出力信号cmp1に基づいて計測する。具体的には、TDC112Aは、基準パルスSPの立ち上がり(時刻t0:図3を参照)からコンパレータ出力信号cmp1の立ち上がり(時刻t1)までの経過時間T11、および基準パルスSPの立ち上がりからコンパレータ出力信号cmp1の立ち下がり(時刻t4)までの経過時間T12を計測する。
TDC112Bは、基準パルスSPから受光信号Psの立ち下がりまでの第3経過時間(以下、「経過時間T22」と表記する。)をコンパレータ出力信号cmp2に基づいて計測する。具体的には、TDC112Bは、基準パルスSPの立ち上がり(時刻t0:図3を参照)からコンパレータ出力信号cmp2の立ち下がり(時刻t3)までの経過時間T22を計測する。
ただし、TDC112Aが、経過時間T12を計測し、TDC112Bが、経過時間T22に加え、基準パルスSPの立ち上がりからコンパレータ出力信号cmp2の立ち上がり(時刻t2)までの第4経過時間(以下、「経過時間T21」と表記する。)をさらに計測してもよい。受光素子702Aから出力される受光信号の典型的な信号波形において、受光信号の立ち上がりの傾きは、立ち下がりの傾きよりも急峻となる。そのため、受光信号Psの立ち上がりの計測タイミングの相違は、受光信号Psの立ち下がりの計測タイミングと比べ、計測誤差にさほど影響しないと考えられる。本開示の一態様では、受光信号Psの立ち上がりの計測タイミングは問われない。つまり、受光信号Psの立ち上がりの計測タイミングは、タイミングP1およびP4のいずれのタイミングであっても構わない。
微分回路113は、コンパレータ出力信号cmp1の立ち上がり・立ち下がりのタイミング(時刻t1およびt4)、およびコンパレータ出力信号cmp2の立ち下がりのタイミング(時刻t3)において、受光信号Psの時間微分値を取得する。換言すると、微分回路113は、タイミングP1、P3およびP4において受光信号Psの時間微分値を取得する。
演算処理部120は、TDC112AおよびTDC112Bから経過時間T11、T12およびT22を受信し、かつ、微分回路113から受光信号Psの時間微分を受信する。演算処理部120は、経過時間T11を、反射点までの距離の算出に用いる第1時間情報として取得し、かつ、受光信号Psの時間微分に基づいて、経過時間T12および経過時間T22のうちの1つを第2時間情報として選択する。
演算処理部120は、タイミングP2において微分回路113が取得する受光信号Psの第3時間微分値と、タイミングP3において微分回路113が取得する受光信号Psの第4時間微分値とを比較する。第3時間微分値の絶対値が第4時間微分値のそれよりも大きいときに、演算処理部120は、経過時間T12を第2時間情報として選択し、第4時間微分値の絶対値が第3時間微分値のそれよりも大きいときに、演算処理部120は、経過時間T22を第2時間情報として選択する。
演算処理部120は、第1時間情報および第2時間情報に基づいて、反射点までの距離をTOF方式に従って決定する。例えば、第4時間微分値の絶対値が第3時間微分値のそれよりも大きい場合には、演算処理部120は、経過時間T11および経過時間T22に基づいて、反射点までの距離をTOF方式に従って決定する。反射点までの正確な距離を取得する手法は、図3を参照して説明したとおりである。
受光信号Psが立ち下がるときは、立ち上がるときと比べ、振幅変動の影響がより無視できなくなる。本実施形態によれば、少なくとも、受光信号Psの立ち下がりの計測において、2つの計測ポイントP2およびP3における時間微分値の絶対値が比較される。コンパレータ出力信号cmp1およびcmp2のうちのどちらの出力信号に基づいて受光信号Psの立ち下がりのタイミングを計測するかが、その比較結果に従って選択される。これにより、受光信号Psの振幅変動に起因してコンパレータ出力信号に生じ得るジッタを抑制することができる。その結果、基準パルスSPから受光信号Psの立ち下がりまでの経過時間を計測するときの計測誤差をより低減することが可能となる。
受光信号Psの立ち上がりの計測ポイントについても、立ち下がりの計測ポイントと同様に、受光信号Psの時間微分に基づいて2つの計測ポイントP1、P4のうちの1つを選択するようにしてもよい。その場合において、TDC112Bは、基準パルスSPから受光信号Psの立ち上がりまでの経過時間T21をコンパレータ出力信号cmp2に基づいてさらに計測する。具体的には、TDC112Bは、基準パルスSPの立ち上がり(時刻t0:図3を参照)からコンパレータ出力信号cmp2の立ち上がり(時刻t2)までの経過時間T21をさらに計測する。
演算処理部120は、受光信号Psの時間微分に基づいて、経過時間T11および経過時間T21のうちの1つを第1時間情報として選択する。演算処理部120は、受光信号Psの時間微分に基づいて、経過時間T12および経過時間T22のうちの1つを第2時間情報として選択する。以下、詳細に説明する。
演算処理部120は、受光信号Psの大きさが閾値Vth1を上回るタイミングP1において微分回路113が取得する受光信号Psの第1微分値と、受光信号Psの大きさが閾値Vth2を上回るタイミングP4において微分回路113が取得する受光信号Psの第2微分値とを比較する。第1微分値の絶対値が第2微分値の絶対値よりも大きいときに、演算処理部120は、経過時間T11を第1時間情報として選択する。第2微分値の絶対値が第1微分値の絶対値よりも大きいときに、演算処理部120は、経過時間T21を第1時間情報として選択する。
演算処理部120は、受光信号Psの大きさが閾値Vth1を下回るタイミングP2において微分回路113が取得する受光信号Psの第3微分値と、受光信号Psの大きさが閾値Vth2を下回るタイミングP3において微分回路113が取得する受光信号Psの第4微分値とを比較する。第3微分値の絶対値が第4微分値の絶対値よりも大きいときに、演算処理部120は、経過時間T12を第2時間情報として選択する。第4微分値の絶対値が第3微分値の絶対値よりも大きいときに、演算処理部120は、経過時間T22を第2時間情報として選択する。
演算処理部120は、第2時間情報として選択した経過時間と、第1時間情報として選択した経過時間との差分が規定する受光信号Psのパルス幅Wを算出し、メモリ140に格納された補正関数を利用して、算出した受光信号Psのパルス幅Wに対応する補正量Δtを決定する。演算処理部120は、補正量Δtに基づいて反射点までの距離を補正する。
この構成によれば、微分回路113が出力する受光信号Psの時間微分に基づいて立ち上がり・立ち下がり時の両方の計測ポイントを決定するために、受光信号Psの振幅変動に起因してコンパレータ出力信号に生じ得るジッタをより適切に抑制することが可能となる。
図13は、距離計測回路100の第4のハードウェア構成例を示すブロック図である。距離計測回路100の第1のハードウェア構成例と同様に、図13に示される第4のハードウェア構成例は、レベルシフト回路150を備え得る。
図14は、距離計測回路100の第5のハードウェア構成例を示すブロック図である。図15は、コンパレータ111A、111Bおよび111Cが出力するコンパレータ出力信号cmp1、cmp2およびcmp3の波形の様子を例示する図である。
距離計測回路100は、コンパレータおよびTDCを有する少なくとも1つのセットをさらに備え得る。図14に、3つのコンパレータおよび3つのTDCを備える距離計測回路100の構成を例示する。コンパレータおよびTDCを使用する数は、3つに限定されず、4つ以上であってもよい。
1つのセットは、コンパレータ111CおよびTDC112Cを有する。コンパレータ111Cには、閾値Vth1、Vth2とは異なる第3閾値Vth3(以下、「閾値Vth3」と表記する。)が基準電圧として与えられている。コンパレータ111Cは、受光信号Psの大きさと閾値Vth3とを比較し、受光信号Psの大きさが閾値Vth3を超えたときに第3コンパレータ出力信号cmp3(以下、「コンパレータ出力信号cmp3」と表記する。)を出力する。コンパレータ111CおよびTDC112Cのセットを2つ以上利用する場合においては、各セットが有するコンパレータ111Cには、互いに異なる閾値Vth3が基準電圧として与えられる。これにより、閾値Vth1、Vth2およびVth3は、互いに異なる値を示す。
TDC112Cは、基準パルスSPおよびコンパレータ出力信号cmp3を受信し、基準パルスSPから受光信号Psの立ち上がりまでの第5経過時間(以下、「経過時間T31」と表記する。)、および基準パルスSPから受光信号の立ち下がりまでの第6経過時間(以下、「経過時間T32」と表記する。)をコンパレータ出力信号cmp3に基づいて計測する。具体的には、TDC112Cは、基準パルスSPの立ち上がり(時刻t0:図3を参照)からコンパレータ出力信号cmp3の立ち上がり(時刻t3)までの経過時間T31、および基準パルスSPの立ち上がりからコンパレータ出力信号cmp3の立ち下がり(時刻t4)までの経過時間T32を計測する。
微分回路113は、コンパレータ出力信号cmp3が変化するタイミングにおける受光信号Psの時間微分をさらに取得する。
演算処理部120は、TDC112Aがコンパレータ出力信号cmp1に基づいて受光信号Psの立ち上がりを計測するタイミングP1、TDC112Bがコンパレータ出力信号cmp2に基づいて受光信号Psの立ち上がりを計測するタイミングP4、およびTDC112Cがコンパレータ出力信号cmp3に基づいて受光信号Psの立ち上がりを計測するタイミンP5の中から、微分回路113が最大の微分値の絶対値を取得する第1計測タイミングを決定する。
演算処理部120は、経過時間T11、経過時間T21および経過時間T31の中から、決定した第1計測タイミングにおいて計測された1つを第1時間情報として選択する。経過時間T11は、基準パルスSPの立ち上がりからコンパレータ出力信号cmp1の立ち上がり(時刻t1)までの経過時間である。経過時間T21は、基準パルスSPの立ち上がりからコンパレータ出力信号cmp2の立ち上がり(時刻t2)までの経過時間である。例えば、最大の微分値の絶対値がタイミングP4で取得される場合、演算処理部120はタイミングP4を第1計測タイミングとして決定し、経過時間T11、経過時間T21および経過時間T31の中から経過時間T21を選択する。
演算処理部120は、TDC112Aがコンパレータ出力信号cmp1に基づいて受光信号Psの立ち下がりを計測するタイミングP2、TDC112Bがコンパレータ出力信号cmp2に基づいて受光信号Psの立ち下がりを計測するタイミングP3、およびTDC112Cがコンパレータ出力信号cmp3に基づいて受光信号Psの立ち下がりを計測するタイミングP6の中から、微分回路113が最大の微分値の絶対値を取得する第2計測タイミングを決定する。
演算処理部120は、経過時間T12、経過時間T22および経過時間T32の中から、決定した第2計測タイミングにおいて計測された1つを第2時間情報として選択する。経過時間T12は、基準パルスSPの立ち上がりからコンパレータ出力信号cmp1の立ち下がり(時刻t6)までの経過時間である。経過時間T22は、基準パルスSPの立ち上がりからコンパレータ出力信号cmp2の立ち下がり(時刻t5)までの経過時間である。例えば、最大の微分値の絶対値がタイミングP6で取得される場合、演算処理部120はタイミングP6を第2計測タイミングとして決定し、経過時間T12、経過時間T22および経過時間T32の中から経過時間T32を選択する。
メモリ140に格納された補正関数は、閾値Vth1、Vth2およびVth3の組み合わせ毎に異なる。つまり、補正関数は、その組み合わせの数だけ存在し得る。
演算処理部120は、第2時間情報として選択した経過時間と、第1時間情報として選択した経過時間との差分が規定する受光信号Psのパルス幅Wを算出する。演算処理部120は、メモリ140に格納された補正関数を利用して、算出した受光信号Psのパルス幅Wに対応する補正量Δtを決定する。反射点までの正確な距離を取得する手法は、図3を参照して説明したとおりである。
この構成によれば、微分回路113が出力する受光信号Psの時間微分に基づいて立ち上がり・立ち下がり時の計測ポイントをより細かく決定できるので、受光信号Psの振幅変動に起因してコンパレータ出力信号に生じ得るジッタをより適切に抑制することが可能となる。
〔3.無人搬送車15の基本構成〕
<用語>
「無人搬送車」(AGV)とは、本体に人手または自動で荷物を積み込み、指示された場所まで自動走行し、人手または自動で荷卸しをする無軌道車両を意味する。「無人搬送車」は、無人牽引車および無人フォークリフトを含む。本明細書では、移動体の一例として無人搬送車を挙げる。
<用語>
「無人搬送車」(AGV)とは、本体に人手または自動で荷物を積み込み、指示された場所まで自動走行し、人手または自動で荷卸しをする無軌道車両を意味する。「無人搬送車」は、無人牽引車および無人フォークリフトを含む。本明細書では、移動体の一例として無人搬送車を挙げる。
「無人」の用語は、車両の操舵に人を必要としないことを意味しており、無人搬送車が「人(例えば荷物の積み下ろしを行う者)」を搬送することは除外しない。
「無人牽引車」とは、人手または自動で荷物の積み込み荷卸しをする台車を牽引して、指示された場所まで自動走行する無軌道車両である。
「無人フォークリフト」とは、荷物移載用のフォークなどを上下させるマストを備え、フォークなどに荷物を自動移載し指示された場所まで自動走行し、自動荷役作業をする無軌道車両である。
「無軌道車両」とは、車輪と、車輪を回転させる電気モータまたはエンジンを備える移動体(vehicle)である。
「移動体」とは、人または荷物を載せて移動する装置であり、移動のための駆動力(traction)を発生させる車輪、二足または多足歩行装置、プロペラなどの駆動装置を備える。本開示における「移動体」の用語は、狭義の無人搬送車のみならず、モバイルロボット、サービスロボット、およびドローンを含む。
「自動走行」は、無人搬送車が通信によって接続されるコンピュータの運行管理システムの指令に基づく走行と、無人搬送車が備える制御装置による自律的走行とを含む。自律的走行には、無人搬送車が所定の経路に沿って目的地に向かう走行のみならず、追尾目標に追従する走行も含まれる。また、無人搬送車は、一時的に作業者の指示に基づくマニュアル走行を行ってもよい。「自動走行」は、一般には「ガイド式」の走行および「ガイドレス式」の走行の両方を含むが、本開示では「ガイドレス式」の走行を意味する。
「ガイド式」とは、誘導体を連続的または断続的に設置し、誘導体を利用して無人搬送車を誘導する方式である。
「ガイドレス式」とは、誘導体を設置せずに誘導する方式である。本開示の実施形態における無人搬送車は、自己位置推定装置を備え、ガイドレス式で走行することができる。
「位置推定装置」は、レーザレンジファインダなどの外界センサによって取得されたセンサデータに基づいて地図上における自己位置を推定する装置である。
「外界センサ」は、移動体の外部の状態をセンシングするセンサである。外界センサには、例えば、レーザレンジファインダ(測域センサともいう)、カメラ(またはイメージセンサ)、LIDAR(Light Detection and Ranging)、ミリ波レーダ、超音波センサ、および磁気センサがある。
本開示の距離計測回路を備える測距装置(例えばLRF)は、例えばAGVに好適に搭載され得る。
(1)システムの基本構成
図16は、本実施形態にかかる例示的な移動体管理システム1000の基本構成例を示している。移動体管理システム1000は、少なくとも1台のAGV15と、AGV15の運行管理を行う運行管理装置50とを含む。図16には、ユーザ1によって操作される端末装置20も記載されている。
図16は、本実施形態にかかる例示的な移動体管理システム1000の基本構成例を示している。移動体管理システム1000は、少なくとも1台のAGV15と、AGV15の運行管理を行う運行管理装置50とを含む。図16には、ユーザ1によって操作される端末装置20も記載されている。
AGV15は、走行に磁気テープなどの誘導体が不要な「ガイドレス式」走行が可能な無人搬送台車である。AGV15は、自己位置推定を行い、推定の結果を端末装置20および運行管理装置50に送信することができる。AGV15は、運行管理装置50からの指令に従ってAGV15が存在する環境S内を自動走行することが可能である。
運行管理装置50は各AGV15の位置をトラッキングし、各AGV15の走行を管理するコンピュータシステムである。運行管理装置50は、デスクトップ型PC、ノート型PC、および/または、サーバコンピュータであり得る。運行管理装置50は、複数のアクセスポイント2を介して、各AGV15と通信する。例えば、運行管理装置50は、各AGV15が次に向かうべき位置の座標のデータを各AGV15に送信する。各AGV15は、定期的に、例えば250ミリ秒ごとに自身の位置および姿勢(orientation)を示すデータを運行管理装置50に送信する。指示した位置にAGV15が到達すると、運行管理装置50は、更に次に向かうべき位置の座標のデータを送信する。AGV15は、端末装置20に入力されたユーザ1の操作に応じて環境S内を走行することも可能である。端末装置20の一例はタブレットコンピュータである。
図17は、3台のAGV15a、15bおよび15cが存在する環境Sの一例を示している。いずれのAGVも図中の奥行き方向に走行しているとする。AGV15aおよび15bは天板に載置された荷物を搬送中である。AGV15cは、前方のAGV15bに追従して走行している。なお、説明の便宜のため、図17では参照符号15a、15bおよび15cを付したが、以下では、「AGV15」と記述する。
AGV15は、天板に載置された荷物を搬送する方法以外に、自身と接続された牽引台車を利用して荷物を搬送することも可能である。図18は接続される前のAGV15および牽引台車5を示している。牽引台車5の各足にはキャスターが設けられている。AGV15は牽引台車5と機械的に接続される。図19は、接続されたAGV15および牽引台車5を示している。AGV15が走行すると、牽引台車5はAGV15に牽引される。牽引台車5を牽引することにより、AGV15は、牽引台車5に載置された荷物を搬送できる。
AGV15と牽引台車5との接続方法は任意である。ここでは一例を説明する。AGV15の天板にはプレート6が固定されている。牽引台車5には、スリットを有するガイドGが設けられている。AGV15は牽引台車5に接近し、プレート6をガイドGのスリットに差し込む。差し込みが完了すると、AGV15は、図示されない電磁ロック式ピンをプレート6およびガイドGに貫通させ、電磁ロックをかける。これにより、AGV15と牽引台車5とが物理的に接続される。
再び図16を参照する。各AGV15と端末装置20とは、例えば1対1で接続されてBluetooth(登録商標)規格に準拠した通信を行うことができる。各AGV15と端末装置20とは、1または複数のアクセスポイント2を利用してWi-Fi(登録商標)に準拠した通信を行うこともできる。複数のアクセスポイント2は、例えばスイッチングハブ3を介して互いに接続されている。図16には2台のアクセスポイント2a、2bが記載されている。AGV15はアクセスポイント2aと無線で接続されている。端末装置20はアクセスポイント2bと無線で接続されている。AGV15が送信したデータはアクセスポイント2aで受信された後、スイッチングハブ3を介してアクセスポイント2bに転送され、アクセスポイント2bから端末装置20に送信される。また、端末装置20が送信したデータは、アクセスポイント2bで受信された後、スイッチングハブ3を介してアクセスポイント2aに転送され、アクセスポイント2aからAGV15に送信される。これにより、AGV15および端末装置20の間の双方向通信が実現される。複数のアクセスポイント2はスイッチングハブ3を介して運行管理装置50とも接続されている。これにより、運行管理装置50と各AGV15との間でも双方向通信が実現される。
(2)地図の作成
自己位置を推定しながらAGV15が走行できるようにするため、環境S内の地図が作成される。AGV15には位置推定装置およびLRFが搭載されており、LRFの出力を利用して地図を作成できる。
自己位置を推定しながらAGV15が走行できるようにするため、環境S内の地図が作成される。AGV15には位置推定装置およびLRFが搭載されており、LRFの出力を利用して地図を作成できる。
AGV15は、ユーザの操作によってデータ取得モードに遷移する。データ取得モードにおいて、AGV15はLRFを用いたセンサデータの取得を開始する。
位置推定装置は、センサデータを記憶装置に蓄積する。環境S内のセンサデータの取得が完了すると、記憶装置に蓄積されたセンサデータが外部装置に送信される。外部装置は、例えば信号処理プロセッサを有し、かつ、地図作成コンピュータプログラムがインストールされたコンピュータである。
外部装置の信号処理プロセッサは、スキャンごとに得られたセンサデータ同士を重ね合わせる。信号処理プロセッサが重ね合わせる処理を繰り返し行うことにより、環境Sの地図を作成することができる。地図は、例えば、地図を加工する装置(不図示)を用いて加工される。その装置は、地図から選択された特定領域の位置を示すデータを作成する。外部装置は、加工された地図のデータをAGV15に送信する。AGV15は、加工された地図のデータを内部の記憶装置に保存する。外部装置は、運行管理装置50であってもよいし、他の装置であってもよい。
外部装置ではなくAGV15が地図の作成および加工を行ってもよい。上述した外部装置の信号処理プロセッサが行った処理を、AGV15のマイクロコントローラユニット(マイコン)などの回路が行えばよい。AGV15内で地図を作成する場合には、蓄積されたセンサデータを外部装置に送信する必要がなくなる。センサデータのデータ容量は一般には大きいと考えられる。センサデータを外部装置に送信する必要がないため、通信回線の占有を回避できる。
センサデータを取得するための環境S内の移動は、ユーザの操作に従ってAGV15が走行することによって実現し得る。例えば、AGV15は、端末装置20を介して無線でユーザから前後左右の各方向への移動を指示する走行指令を受け取る。AGV15は走行指令に従って環境S内を前後左右に走行し、地図を作成する。AGV15がジョイスティック等の操縦装置と有線で接続されている場合には、当該操縦装置からの制御信号に従って環境S内を前後左右に走行し、地図を作成してもよい。LRFを搭載した計測台車を人が押し歩くことによってセンサデータを取得してもよい。
図16および図17には複数台のAGV15が示されているが、AGVは1台であってもよい。複数台のAGV15が存在する場合、ユーザ1は端末装置20を利用して、登録された複数のAGVのうちから1台のAGV15を選択して、環境Sの地図を作成させることができる。
地図が作成されると、以後、各AGV15は当該地図を利用して自己位置を推定しながら自動走行することができる。
(3)AGVの構成
図20は、本開示の実施形態にかかる例示的なAGV15の外観図である。AGV15は、2つの駆動輪11aおよび11bと、4つのキャスター11c、11d、11eおよび11fと、フレーム12と、搬送テーブル13と、走行制御装置14と、LRF7とを有する。2つの駆動輪11aおよび11bは、AGV15の右側および左側にそれぞれ設けられている。4つのキャスター11c、11d、11eおよび11fは、AGV15の4隅に配置されている。なお、AGV15は、2つの駆動輪11aおよび11bに接続される複数のモータも有するが、複数のモータは図20には示されていない。また、図20には、AGV15の右側に位置する1つの駆動輪11aおよび2つのキャスター11cおよび11eと、左後部に位置するキャスター11fとが示されているが、左側の駆動輪11bおよび左前部のキャスター11dはフレーム12の蔭に隠れているため明示されていない。4つのキャスター11c、11d、11eおよび11fは、自由に旋回することができる。以下の説明では、駆動輪11aおよび駆動輪11bを、それぞれ車輪11aおよび車輪11bとも称する。
図20は、本開示の実施形態にかかる例示的なAGV15の外観図である。AGV15は、2つの駆動輪11aおよび11bと、4つのキャスター11c、11d、11eおよび11fと、フレーム12と、搬送テーブル13と、走行制御装置14と、LRF7とを有する。2つの駆動輪11aおよび11bは、AGV15の右側および左側にそれぞれ設けられている。4つのキャスター11c、11d、11eおよび11fは、AGV15の4隅に配置されている。なお、AGV15は、2つの駆動輪11aおよび11bに接続される複数のモータも有するが、複数のモータは図20には示されていない。また、図20には、AGV15の右側に位置する1つの駆動輪11aおよび2つのキャスター11cおよび11eと、左後部に位置するキャスター11fとが示されているが、左側の駆動輪11bおよび左前部のキャスター11dはフレーム12の蔭に隠れているため明示されていない。4つのキャスター11c、11d、11eおよび11fは、自由に旋回することができる。以下の説明では、駆動輪11aおよび駆動輪11bを、それぞれ車輪11aおよび車輪11bとも称する。
走行制御装置14は、AGV15の動作を制御する装置であり、主としてマイコン(後述)を含む集積回路、電子部品およびそれらが搭載された基板を含む。走行制御装置14は、上述した、端末装置20とのデータの送受信、および、前処理演算を行う。
LRF7は、例えば赤外のレーザビーム15aを放射し、当該レーザビーム15aの反射光を検出することにより、反射点までの距離を測定する。本実施形態では、AGV15のLRF7は、例えばAGV15の正面を基準として左右135度(合計270度)の範囲の空間に、0.25度ごとに方向を変化させながらパルス状のレーザビーム15aを放射し、各レーザビーム15aの反射光を検出する。これにより、0.25度ごと、合計1081ステップ分の角度で決まる方向における反射点までの距離のデータを得ることができる。なお、本実施形態では、LRF7が行う周囲の空間のスキャンは実質的に床面に平行であり、平面的(二次元的)である。しかしながら、LRF7は高さ方向のスキャンを行ってもよい。
AGV15の位置および姿勢(向き)と、LRF7のスキャン結果とにより、AGV15は、環境Sの地図を作成することができる。地図には、AGVの周囲の壁、柱等の構造物、床の上に載置された物体の配置が反映され得る。地図のデータは、AGV15内に設けられた記憶装置に格納される。
AGV15の位置および姿勢、すなわちポーズ(x,y,θ)を、以下、単に「位置」と呼ぶことがある。
走行制御装置14は、前述したようにして、LRF7の測定結果と、自身が保持する地図データとを比較して、自身の現在位置を推定する。地図データは、他のAGV15が作成した地図データであってもよい。
図21Aは、AGV15の第1のハードウェア構成例を示している。また図21Aは、走行制御装置14の具体的な構成も示している。
AGV15は、走行制御装置14と、LRF7と、2台のモータ16aおよび16bと、駆動装置17と、車輪11aおよび11bとを備えている。
走行制御装置14は、マイコン14aと、メモリ14bと、記憶装置14cと、通信回路14dと、位置推定装置14eとを有している。マイコン14a、メモリ14b、記憶装置14c、通信回路14dおよび位置推定装置14eは通信バス14fで接続されており、相互にデータを授受することが可能である。LRF7もまた通信インタフェース(図示せず)を介して通信バス14fに接続されており、計測結果である計測データを、マイコン14a、位置推定装置14eおよび/またはメモリ14bに送信する。
マイコン14aは、走行制御装置14を含むAGV15の全体を制御するための演算を行うプロセッサまたは制御回路(コンピュータ)である。典型的にはマイコン14aは半導体集積回路である。マイコン14aは、制御信号であるPWM信号を駆動装置17に送信して駆動装置17を制御し、モータに印加する電圧を調整させる。これによりモータ16aおよび16bの各々が所望の回転速度で回転する。
左右のモータ16aおよび16bの駆動を制御する1つ以上の制御回路(例えばマイコン)を、マイコン14aとは独立して設けてもよい。例えば、駆動装置17が、モータ16aおよび16bの駆動をそれぞれ制御する2つのマイコンを備えていてもよい。
メモリ14bは、マイコン14aが実行するコンピュータプログラムを記憶する、揮発性の記憶装置である。メモリ14bは、マイコン14aおよび位置推定装置14eが演算を行う際のワークメモリとしても利用され得る。
記憶装置14cは、不揮発性の半導体メモリ装置である。ただし、記憶装置14cは、ハードディスクに代表される磁気記録媒体、または、光ディスクに代表される光学式記録媒体であってもよい。更に、記憶装置14cは、いずれかの記録媒体にデータを書き込みおよび/または読み出すためのヘッド装置および当該ヘッド装置の制御装置を含んでもよい。
記憶装置14cは、走行する環境Sの地図M、および、1または複数の走行経路のデータ(走行経路データ)Rを記憶する。地図Mは、AGV15が地図作成モードで動作することによって作成され記憶装置14cに記憶される。走行経路データRは、地図Mが作成された後に外部から送信される。本実施形態では、地図Mおよび走行経路データRは同じ記憶装置14cに記憶されているが、異なる記憶装置に記憶されてもよい。
走行経路データRの例を説明する。
端末装置20がタブレットコンピュータである場合には、AGV15はタブレットコンピュータから走行経路を示す走行経路データRを受信する。このときの走行経路データRは、複数のマーカの位置を示すマーカデータを含む。「マーカ」は走行するAGV15の通過位置(経由点)を示す。走行経路データRは、走行開始位置を示す開始マーカおよび走行終了位置を示す終了マーカの位置情報を少なくとも含む。走行経路データRは、更に、1以上の中間経由点のマーカの位置情報を含んでもよい。走行経路が1以上の中間経由点を含む場合には、開始マーカから、当該走行経由点を順に経由して終了マーカに至る経路が、走行経路として定義される。各マーカのデータは、そのマーカの座標データに加えて、次のマーカに移動するまでのAGV15の向き(角度)および走行速度のデータを含み得る。AGV15が各マーカの位置で一旦停止し、自己位置推定および端末装置20への通知などを行う場合には、各マーカのデータは、当該走行速度に達するまでの加速に要する加速時間、および/または、当該走行速度から次のマーカの位置で停止するまでの減速に要する減速時間のデータを含み得る。
端末装置20ではなく運行管理装置50(例えば、PCおよび/またはサーバコンピュータ)がAGV15の移動を制御してもよい。その場合には、運行管理装置50は、AGV15がマーカに到達する度に、次のマーカへの移動をAGV15に指示してもよい。例えば、AGV15は、運行管理装置50から、次に向かうべき目的位置の座標データ、または、当該目的位置までの距離および進むべき角度のデータを、走行経路を示す走行経路データRとして受信する。
AGV15は、作成された地図と走行中に取得されたLRF7が出力したセンサデータとを利用して自己位置を推定しながら、記憶された走行経路に沿って走行することができる。
通信回路14dは、例えば、Bluetooth(登録商標)および/またはWi-Fi(登録商標)規格に準拠した無線通信を行う無線通信回路である。いずれの規格も、2.4GHz帯の周波数を利用した無線通信規格を含む。例えばAGV15を走行させて地図を作成するモードでは、通信回路14dは、Bluetooth(登録商標)規格に準拠した無線通信を行い、1対1で端末装置20と通信する。
位置推定装置14eは、地図の作成処理、および、走行時には自己位置の推定処理を行う。位置推定装置14eは、AGV15の位置および姿勢とLRFのスキャン結果とにより、環境Sの地図を作成し得る。走行時には、位置推定装置14eは、LRF7からセンサデータを受け取り、また、記憶装置14cに記憶された地図Mおよび特定領域の位置データを読み出す。LRF7のスキャン結果から作成された局所的地図データ(センサデータ)を、より広範囲の地図Mとのマッチングを行うことにより、地図M上における自己位置(x,y,θ)を同定する。位置推定装置14eは、局所的地図データが地図Mに一致した程度を表す「信頼度」のデータを生成する。自己位置(x,y,θ)、および、信頼度の各データは、AGV15から端末装置20または運行管理装置50に送信され得る。端末装置20または運行管理装置50は、自己位置(x,y,θ)、および、信頼度の各データを受信して、内蔵または接続された表示装置に表示することができる。
本実施形態では、マイコン14aと位置推定装置14eとは別個の構成要素であるとしているが、これは一例である。マイコン14aおよび位置推定装置14eの各動作を独立して行うことが可能な1つのチップ回路または半導体集積回路であってもよい。図21Aには、マイコン14aおよび位置推定装置14eを包括するチップ回路14gが示されている。以下では、マイコン14aおよび位置推定装置14eが別個独立に設けられている例を説明する。
2台のモータ16aおよび16bは、それぞれ2つの車輪11aおよび11bに取り付けられ、各車輪を回転させる。つまり、2つの車輪11aおよび11bはそれぞれ駆動輪である。本明細書では、モータ16aおよびモータ16bは、それぞれAGV15の右輪および左輪を駆動するモータであるとして説明する。
駆動装置17は、2台のモータ16aおよび16bの各々に印加される電圧を調整するためのモータ駆動回路17aおよび17bを有する。モータ駆動回路17aおよび17bの各々はいわゆるインバータ回路を含む。モータ駆動回路17aおよび17bは、マイコン14aまたはモータ駆動回路17a内のマイコンから送信されたPWM信号によって各モータに流れる電流をオンまたはオフし、それによりモータに印加される電圧を調整する。
図21Bは、AGV15の第2のハードウェア構成例を示している。第2のハードウェア構成例は、レーザ測位システム14hを有する点、および、マイコン14aが各構成要素と1対1で接続されている点において、第1のハードウェア構成例(図24A)と相違する。
レーザ測位システム14hは、位置推定装置14eおよびLRF7を有する。位置推定装置14eおよびLRF7は、例えばイーサネット(登録商標)ケーブルで接続されている。位置推定装置14eおよびLRF7の各動作は上述した通りである。レーザ測位システム14hは、AGV15のポーズ(x,y,θ)を示す情報をマイコン14aに出力する。
マイコン14aは、種々の汎用I/Oインタフェースまたは汎用入出力ポート(図示せず)を有している。マイコン14aは、通信回路14d、レーザ測位システム14h等の、走行制御装置14内の他の構成要素と、当該汎用入出力ポートを介して直接接続されている。
図21Bに関して上述した構成以外は、図21Aの構成と共通である。よって共通の構成の説明は省略する。
本開示の実施形態におけるAGV15は、図示されていない障害物検知センサおよびバンパースイッチなどのセーフティセンサを備えていてもよい。
(4)運行管理装置の構成例
図22は、運行管理装置50のハードウェア構成例を示している。運行管理装置50は、CPU51と、メモリ52と、位置データベース(位置DB)53と、通信回路54と、地図データベース(地図DB)55と、画像処理回路56とを有する。
図22は、運行管理装置50のハードウェア構成例を示している。運行管理装置50は、CPU51と、メモリ52と、位置データベース(位置DB)53と、通信回路54と、地図データベース(地図DB)55と、画像処理回路56とを有する。
CPU51、メモリ52、位置DB53、通信回路54、地図DB55および画像処理回路56は通信バス57で接続されており、相互にデータを授受することが可能である。
CPU51は、運行管理装置50の動作を制御する信号処理回路(コンピュータ)である。典型的にはCPU51は半導体集積回路である。
メモリ52は、CPU51が実行するコンピュータプログラムを記憶する記憶装置である。メモリ52は、CPU51が演算を行う際のワークメモリとしても利用され得る。
位置DB53は、各AGV15の行き先となり得る各位置を示す位置データを格納する。位置データは、例えば管理者によって工場内に仮想的に設定された座標によって表され得る。位置データは管理者によって決定される。
通信回路54は、例えばイーサネット(登録商標)規格に準拠した有線通信を行う。通信回路54はアクセスポイント2(図16)と有線で接続されており、アクセスポイント2を介して、AGV15と通信することができる。通信回路54は、AGV15に送信すべきデータを、通信バス57を介してCPU51から受信する。また通信回路54は、AGV15から受信したデータ(通知)を、通信バス57を介してCPU51および/またはメモリ52に送信する。
地図DB55は、AGV15が走行する工場等の内部の地図のデータおよび特定領域の位置データを格納する。各AGV15の位置と1対1で対応関係を有する地図であれば、データの形式は問わない。例えば地図DB55に格納される地図は、CADによって作成された地図であってもよい。
運行管理装置50は、例えばAGV15が特定領域を迂回するようにAGV15の経路を決定し得る。
位置DB53および地図DB55は、不揮発性の半導体メモリ上に構築されてもよいし、ハードディスクに代表される磁気記録媒体、または光ディスクに代表される光学式記録媒体上に構築されてもよい。
画像処理回路56はモニタ58に表示される映像のデータを生成する回路である。画像処理回路56は、専ら、管理者が運行管理装置50を操作する際に動作する。本実施形態では特にこれ以上の詳細な説明は省略する。なお、モニタ58は運行管理装置50と一体化されていてもよい。また画像処理回路56の処理をCPU51が行ってもよい。
上記の包括的な態様は、システム、方法、集積回路、コンピュータプログラム、または記録媒体によって実現されてもよい。あるいは、システム、装置、方法、集積回路、コンピュータプログラム、および記録媒体の任意な組み合わせによって実現されてもよい。
本開示の技術は、自己位置を同定する処理を行う移動体、当該移動体を制御する走行管理装置、および移動体および走行管理装置を包含する管理システムにおいて広く用いられ得る。
77:光検出器、100:距離計測回路、110:距離計測部、111A、111B:コンパレータ、112A、112B:時間デジタル変換器(TDC)、120:演算処理部、140:メモリ、200:プロセッサ
Claims (13)
- 測定光を出射する光源、および入射光の強度に応じた大きさの受光信号を出力する光検出器を備える測距装置に搭載される距離計測回路であって、
前記光検出器から出力される、反射点で反射された反射光の強度に応じた大きさの受光信号を受信して、前記受光信号の大きさと第1閾値とを比較し、前記受光信号の大きさが前記第1閾値を超えたときに第1コンパレータ出力信号を出力する第1コンパレータと、
前記光検出器から出力される前記受光信号を受信して、前記受光信号の大きさと、前記第1閾値よりも大きい第2閾値とを比較し、前記受光信号の大きさが前記第2閾値を超えたときに第2コンパレータ出力信号を出力する第2コンパレータと、
前記光源が前記測定光を出射するタイミングを規定する基準パルスおよび前記第1コンパレータ出力信号を受信し、前記基準パルスから前記受光信号の立ち上がりまでの第1経過時間を前記第1コンパレータ出力信号に基づいて計測する第1の時間デジタル変換器と、
前記基準パルスおよび前記第2コンパレータ出力信号を受信し、前記基準パルスから前記受光信号の立ち下がりまでの第2経過時間を前記第2コンパレータ出力信号に基づいて計測する第2の時間デジタル変換器と、
前記第1経過時間を、前記反射点までの距離の算出に用いる第1時間情報として取得し、かつ、前記第2経過時間を、前記反射点までの距離の算出に用いる第2時間情報として取得し、
前記第1時間情報および前記第2時間情報に基づいて、前記反射点までの距離をTOF方式に従って決定する、プロセッサと、
を備える、距離計測回路。 - 前記第2閾値は、前記第1閾値の1.5倍以上2.0倍以下である、請求項1に記載の距離計測回路。
- 測定光を出射する光源および入射光の強度に応じた大きさの受光信号を出力する光検出器を備える測距装置に搭載される距離計測回路であって、
前記光検出器から出力される、反射点で反射された反射光の強度に応じた大きさの受光信号を受信して、前記受光信号の大きさと第1閾値とを比較し、前記受光信号の大きさが前記第1閾値を超えたときに第1コンパレータ出力信号を出力する第1コンパレータと、
前記光検出器から出力される前記受光信号を受信して、前記受光信号の大きさと、前記第1閾値とは異なる第2閾値とを比較し、前記受光信号の大きさが前記第2閾値を超えたときに第2コンパレータ出力信号を出力する第2コンパレータと、
前記光源が前記測定光を出射するタイミングを規定する基準パルスおよび前記第1コンパレータ出力信号を受信し、前記基準パルスから前記受光信号の立ち上がりまでの第1経過時間、および前記基準パルスから前記受光信号の立ち下がりまでの第2経過時間を前記第1コンパレータ出力信号に基づいて計測する第1の時間デジタル変換器と、
前記基準パルスおよび前記第2コンパレータ出力信号を受信し、前記基準パルスから前記受光信号の立ち下がりまでの第3経過時間を前記第2コンパレータ出力信号に基づいて計測する第2の時間デジタル変換器と、
前記第1経過時間を、前記反射点までの距離の算出に用いる第1時間情報として取得し、かつ、前記受光信号の時間微分に基づいて、前記第2経過時間および前記第3経過時間のうちの1つを第2時間情報として選択し、
前記第1時間情報および前記第2時間情報に基づいて、前記反射点までの距離をTOF方式に従って決定する、プロセッサと、
を備える、距離計測回路。 - 前記第2の時間デジタル変換器は、前記基準パルスから前記受光信号の立ち上がりまでの第4経過時間を前記第2コンパレータ出力信号に基づいてさらに計測し、
前記プロセッサは、
前記受光信号の時間微分に基づいて、前記第1経過時間および前記第4経過時間のうちの1つを前記第1時間情報として選択し、
前記受光信号の時間微分に基づいて、前記第2経過時間および前記第3経過時間のうちの1つを前記第2時間情報として選択する、請求項3に記載の距離計測回路。 - 前記第1コンパレータ出力信号が変化するタイミングおよび前記第2コンパレータ出力信号が変化するタイミングにおける前記受光信号の時間微分を取得する微分回路をさらに備える、請求項4に記載の距離計測回路。
- 前記プロセッサは、
前記受光信号の大きさが前記第1閾値を上回るタイミングにおいて前記微分回路が取得する前記受光信号の第1微分値と、前記受光信号が前記第2閾値を上回るタイミングにおいて前記微分回路が取得する前記受光信号の第2微分値とを比較し、前記第1微分値の絶対値が、前記第2微分値の絶対値よりも大きいときに、前記第1経過時間を前記第1時間情報として選択し、前記第2微分値の絶対値が、前記第1微分値の絶対値よりも大きいときに、前記第4経過時間を前記第1時間情報として選択し、
前記受光信号が前記第1閾値を下回るタイミングにおいて前記微分回路が取得する前記受光信号の第3微分値と、前記受光信号が前記第2閾値を下回るタイミングにおいて前記微分回路が取得する前記受光信号の第4微分値とを比較し、前記第3微分値の絶対値が、前記第4微分値の絶対値よりも大きいときに、前記第2経過時間を前記第2時間情報として選択し、前記第4微分値の絶対値が、前記第3微分値の絶対値よりも大きいときに、前記第3経過時間を前記第2時間情報として選択する、請求項5に記載の距離計測回路。 - 受光信号のパルス幅と、前記反射点までの距離を補正するために用いる補正量との対応を規定した補正関数であって、前記第1閾値および前記第2閾値の組み合わせ毎に異なる補正関数を予め格納したメモリをさらに備え、
前記プロセッサは、
前記2時間情報として選択した経過時間と、前記第1時間情報として選択した経過時間との差分が規定する、前記光検出器から出力される前記受光信号のパルス幅を算出し、
前記補正関数を利用して、算出した前記受光信号のパルス幅に対応する補正量を決定し、
前記補正量に基づいて前記反射点までの距離を補正する、請求項1~6のいずれかに記載の距離計測回路。 - 前記第1閾値は前記第1コンパレータに基準電圧として与えられ、前記第2閾値は前記第2コンパレータに基準電圧として与えられている、請求項1~7のいずれかに記載の距離計測回路。
- 前記光検出器から出力される、入射光の強度に応じた大きさの前記受光信号を増幅し、増幅した前記受光信号の正転信号および反転信号を差動信号として出力する増幅回路と、
前記正転信号および前記反転信号の一方に第1レベルのバイアスを与え、前記第1レベルのバイアスを与えた出力信号を出力し、
前記正転信号および前記反転信号の他方に前記第1レベルとは異なる第2レベルのバイアスを与え、前記第2レベルのバイアスを与えた出力信号を出力し、
前記正転信号および前記反転信号の前記他方に、前記第1レベルおよび前記第2レベルとは異なる第3レベルのバイアスを与え、前記第3レベルのバイアスを与えた出力信号を出力する、レベルシフト回路と、
をさらに備え、
前記第1閾値は、前記第1レベルおよび前記第2レベルのバイアスの差分によって前記第1コンパレータに与えられ、前記第2閾値は、前記第1レベルおよび前記第3レベルのバイアスの差分によって前記第2コンパレータに与えられる、請求項1~8のいずれかに記載の距離計測回路。 - 前記第1閾値および前記第2閾値とは異なる第3閾値が基準電圧として与えられた第3のコンパレータであって、前記光検出器から出力される前記受光信号を受信して、前記受光信号の大きさと、前記第1閾値および前記第2閾値とは異なる第3閾値とを比較し、前記受光信号の大きさが前記第3閾値を超えたときに第3コンパレータ出力信号を出力する第3のコンパレータと、
前記基準パルスおよび前記第3コンパレータ出力信号を受信し、前記基準パルスから前記受光信号の立ち上がりまでの第5経過時間、および前記基準パルスから前記受光信号の立ち下がりまでの第6経過時間を前記第3コンパレータ出力信号に基づいて計測する第3の時間デジタル変換器と、
を有する少なくとも1つのセットをさらに備え、
前記少なくとも1つのセットが有するそれぞれの第3コンパレータは、互いに異なる第3閾値を有し、
前記微分回路は、前記第3コンパレータ出力信号が変化するタイミングにおける前記受光信号の時間微分をさらに取得し、
前記プロセッサは、
前記第1の時間デジタル変換器が前記第1コンパレータ出力信号に基づいて前記受光信号の立ち上がりを計測するタイミング、前記第2の時間デジタル変換器が前記第2コンパレータ出力信号に基づいて前記受光信号の立ち上がりを計測するタイミング、および前記第3の時間デジタル変換器が前記第3コンパレータ出力信号に基づいて前記受光信号の立ち上がりを計測するタイミングの中から、前記微分回路が最大の微分値の絶対値を取得する第1計測タイミングを決定し、
前記第1経過時間、前記第4経過時間および前記第5経過時間の中から、決定した前記第1計測タイミングにおいて計測された1つを前記第1時間情報として選択し、
前記第1の時間デジタル変換器が前記第1コンパレータ出力信号に基づいて前記受光信号の立ち下がりを計測するタイミング、前記第2の時間デジタル変換器が前記第2コンパレータ出力信号に基づいて前記受光信号の立ち下がりを計測するタイミング、および前記第3の時間デジタル変換器が前記第3コンパレータ出力信号に基づいて前記受光信号の立ち下がりを計測するタイミングの中から、前記微分回路が最大の微分値の絶対値を取得する第2計測タイミングを決定し、
前記第2経過時間、前記第3経過時間および前記第6経過時間の中から、決定した前第2計測タイミングにおいて計測された1つを前記第2時間情報として選択する、請求項5に記載の距離計測回路。 - 受光信号のパルス幅と、前記反射点までの距離を補正するために用いる補正量との対応を規定した補正関数であって、前記第1閾値、前記第2閾値および前記第3閾値の組み合わせ毎に異なる補正関数を予め格納したメモリをさらに備え、
前記プロセッサは、
前記2時間情報として選択した経過時間と、前記第1時間情報として選択した経過時間との差分が規定する、前記光検出器から出力される前記受光信号のパルス幅を算出し、
前記補正関数を利用して、算出した前記受光信号のパルス幅に対応する補正量を決定し、
前記補正量に基づいて前記反射点までの距離を補正する、請求項10に記載の距離計測回路。 - 測定光を出射する光源と、
入射光の強度に応じた大きさの受光信号を出力する光検出器と、
請求項1~11のいずれかに記載の距離計測回路と、
を備える測距装置。 - 請求項12に記載の測距装置を備える移動体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021508251A JPWO2020195333A1 (ja) | 2019-03-28 | 2020-02-17 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019062422 | 2019-03-28 | ||
JP2019-062422 | 2019-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020195333A1 true WO2020195333A1 (ja) | 2020-10-01 |
Family
ID=72608764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/006095 WO2020195333A1 (ja) | 2019-03-28 | 2020-02-17 | 距離計測回路、測距装置および移動体 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020195333A1 (ja) |
WO (1) | WO2020195333A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112711010A (zh) * | 2021-01-26 | 2021-04-27 | 上海思岚科技有限公司 | 激光测距信号处理装置、激光测距设备及其对应的方法 |
WO2023123084A1 (zh) * | 2021-12-29 | 2023-07-06 | 深圳市大疆创新科技有限公司 | 测距方法、测距装置和可移动平台 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008180648A (ja) * | 2007-01-25 | 2008-08-07 | Matsushita Electric Works Ltd | 距離計測装置および距離計測方法 |
US20120069322A1 (en) * | 2008-06-27 | 2012-03-22 | Juha Kostamovaara | Method and Device For Measuring Distance |
US20180284275A1 (en) * | 2017-03-28 | 2018-10-04 | Luminar Technologies, Inc. | Lidar detector system having range walk compensation |
-
2020
- 2020-02-17 WO PCT/JP2020/006095 patent/WO2020195333A1/ja active Application Filing
- 2020-02-17 JP JP2021508251A patent/JPWO2020195333A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008180648A (ja) * | 2007-01-25 | 2008-08-07 | Matsushita Electric Works Ltd | 距離計測装置および距離計測方法 |
US20120069322A1 (en) * | 2008-06-27 | 2012-03-22 | Juha Kostamovaara | Method and Device For Measuring Distance |
US20180284275A1 (en) * | 2017-03-28 | 2018-10-04 | Luminar Technologies, Inc. | Lidar detector system having range walk compensation |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112711010A (zh) * | 2021-01-26 | 2021-04-27 | 上海思岚科技有限公司 | 激光测距信号处理装置、激光测距设备及其对应的方法 |
WO2023123084A1 (zh) * | 2021-12-29 | 2023-07-06 | 深圳市大疆创新科技有限公司 | 测距方法、测距装置和可移动平台 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020195333A1 (ja) | 2020-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11156498B2 (en) | Object detector, sensing device, and mobile apparatus | |
US10641875B2 (en) | Delay time calibration of optical distance measurement devices, and associated systems and methods | |
US20230280452A1 (en) | Range Calibration of Light Detectors | |
JP2023143941A (ja) | 分散型のビークルライダシステム | |
US20180222581A1 (en) | Gas Detection Device and Gas Detection Method | |
JP2018004426A (ja) | 物体検出装置、センシング装置及び移動体装置 | |
US11892567B2 (en) | LIDAR pulse elongation | |
WO2020195333A1 (ja) | 距離計測回路、測距装置および移動体 | |
JP2023011556A (ja) | 劣化したlidar範囲測定精度を検出するための方法およびシステム | |
JPWO2019064750A1 (ja) | 距離測定装置、および移動体 | |
WO2020071465A1 (ja) | 距離測定装置 | |
JP2020166702A (ja) | 移動体システム、地図作成システム、経路作成プログラムおよび地図作成プログラム | |
JP2017032329A (ja) | 障害物判定装置、移動体、及び障害物判定方法 | |
WO2019058679A1 (ja) | 距離測定装置及びそれを備えた移動体 | |
US20230051395A1 (en) | Scout pulsing | |
US12055664B2 (en) | Dual photodiode light detection and ranging | |
JP7396353B2 (ja) | 地図作成システム、信号処理回路、移動体および地図作成方法 | |
WO2019058678A1 (ja) | 距離測定装置及びそれを備えた移動体 | |
CN114556151A (zh) | 测距装置、测距方法和可移动平台 | |
KR102653633B1 (ko) | 무인 반송차 및 무인 반송차의 이동을 제어하기 위한 방법 | |
CN111670371A (zh) | 一种光探测模组及测距装置 | |
US20240085537A1 (en) | Lidar device and operating method thereof | |
US20240295637A1 (en) | Techniques for galvo afe with enhanced dynamic range control and improved sensitivity to electromagnetic interference | |
You et al. | Automatic LiDAR Extrinsic Calibration System using Photodetector and Planar Board for Large-scale Applications | |
KR20240042394A (ko) | 무인 반송차 및 무인 반송차의 이동을 제어하기 위한 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20776609 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021508251 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20776609 Country of ref document: EP Kind code of ref document: A1 |