JPWO2020071465A1 - 距離測定装置 - Google Patents

距離測定装置 Download PDF

Info

Publication number
JPWO2020071465A1
JPWO2020071465A1 JP2020550526A JP2020550526A JPWO2020071465A1 JP WO2020071465 A1 JPWO2020071465 A1 JP WO2020071465A1 JP 2020550526 A JP2020550526 A JP 2020550526A JP 2020550526 A JP2020550526 A JP 2020550526A JP WO2020071465 A1 JPWO2020071465 A1 JP WO2020071465A1
Authority
JP
Japan
Prior art keywords
distance
correction method
distance measuring
measured
angle position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020550526A
Other languages
English (en)
Inventor
和穂 江川
和穂 江川
岡本 修治
修治 岡本
石丸 裕
裕 石丸
智浩 江川
智浩 江川
佐伯 哲夫
哲夫 佐伯
裕多 堀
裕多 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec America Corp
Original Assignee
Nidec America Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec America Corp filed Critical Nidec America Corp
Publication of JPWO2020071465A1 publication Critical patent/JPWO2020071465A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract




出射光の出射と受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部を備え、前記距離計測部は、受光信号における立上りと立下りの両方の検出に応じて補正を行う第1補正手法を用いた距離の計測と、前記受光信号における前記立上りと前記立下りのうち一方の検出に応じた補正を行う第2補正手法を用いた距離の計測と、を行うことが可能であり、前記距離計測部は、前記第1補正手法を用いて計測された距離と、前記第2補正手法を用いて計測された距離とのうち、少なくとも前記第1補正手法を用いて計測された距離を用いた距離比較処理に基づき、前記第2補正手法を用いて計測された距離を計測距離として出力する、距離測定装置。

Description

本発明は、距離測定装置に関する。
従来、距離測定装置が種々開発されている。例えば、特許文献1には、次のような測距装置用の信号処理装置が開示される。
特許文献1の信号処理装置は、パルス状の測定光を光学窓を介して測定対象空間に出力する投光部と、上記測定対象空間に存在する被測定物からの反射光を検出して対応する反射信号を出力する受光部と、を備える測距装置から出力された信号を処理する。
上記信号処理装置は、微分処理部と、波形判定部と、演算部と、を備える。微分処理部は、受光部から出力された反射信号を微分する。波形判定部は、微分処理部により反射信号が一次微分された一次微分反射信号の立上りおよび立下り特性と、反射信号が二次微分された二次微分反射信号の立上り特性に基づいて、反射光が複数の被測定物からの反射光が重畳した反射光であるか否かを判定する。演算部は、波形判定部による判定結果に応じて、反射信号に基づいて被測定物までの距離を算出して出力する。
日本国公開公報:特開2011−215005号公報
測距装置と真に検出する必要がある被測定物との間にガラス等半透明の反射物が存在し、反射物が被測定物に近接しているとき、反射物からの反射信号が被測定物からの反射信号に重畳して、真に検出する必要がある被測定物に対する正確な距離が算出できない虞があるが、このような場合に特許文献1によると、被測定物に対する距離を正確に算出することが可能になるとされている。また、特許文献1では、上記半透明の反射物に限らず、測距装置と被測定物との間に樹木の枝等、測定光の光芒に比べ小さな物体が存在する場合などでも同様であるとしている。
しかしながら、特許文献1では、上記半透明の反射物または上記小さな物体などの距離測定精度を向上させることは課題としていない。さらに、特許文献1では、被測定物に対する距離を正確に算出できない虞のある状況を上記微分処理部による処理に基づいて検出する必要があるので、演算処理負荷が大きくなる。すなわち、特許文献1では、演算負荷が大きく、且つ距離測定対象の特性によっては距離測定精度が不十分となる虞があった。
上記状況に鑑み、本発明は、演算処理負荷を抑えつつ、且つ距離測定対象の特性によらず、距離測定精度を向上させることができる距離測定装置を提供することを目的とする。
本発明の例示的な距離測定装置は、発光部を含んで出射光の回転走査を行う投光部と、受光に基づいて受光信号を出力する受光部と、前記出射光の出射と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、を備え、前記距離計測部は、前記受光信号における立上りと立下りの両方の検出に応じて補正を行う第1補正手法を用いた距離の計測と、前記受光信号における前記立上りと前記立下りのうち一方の検出に応じた補正を行う第2補正手法を用いた距離の計測と、を行うことが可能であり、前記距離計測部は、前記第1補正手法を用いて計測された距離と、前記第2補正手法を用いて計測された距離とのうち、少なくとも前記第1補正手法を用いて計測された距離を用いた距離比較処理に基づき、前記第2補正手法を用いて計測された距離を計測距離として出力する。
本発明の例示的な距離測定装置によれば、演算処理負荷を抑えつつ、距離測定精度を向上させることができる。
図1は、理想的な受光信号と実際の受光信号の一例を示す図である。 図2は、パルス幅補正を説明するための受光信号の図である。 図3は、スルーレート補正を説明するための受光信号の図である。 図4は、透光性物体と物体への出射光の出射の一例を示す図である。 図5は、手前と奥側に位置する非透光性物体への出射光の出射の一例を示す図である。 図6は、2つの受光信号成分が離れている場合の一例を示す波形図である。 図7は、2つの受光信号成分が重なる場合の一例を示す波形図である。 図8は、パルス幅補正に用いられる予め設定されたパルス幅と補正量との関係の一例を示す図である。 図9は、図4に示す状況でのレーザ光の出射角度とパルス幅補正による計測距離との関係の一例を示す図である。 図10は、本発明の一実施形態に係る無人搬送車の概略全体斜視図である。 図11は、本発明の一実施形態に係る無人搬送車の概略側面図である。 図12は、本発明の一実施形態に係る無人搬送車の上方から視た平面図である。 図13は、距離測定装置の概略側面断面図である。 図14は、距離測定装置の電気的構成を示すブロック図である。 図15は、無人搬送車の電気的構成を示すブロック図である。 図16は、距離計測部の第1構成例を示すブロック図である。 図17は、受光信号と各閾値(基準電圧)との関係を示す図である。 図18は、距離測定装置による出射光の回転走査の一例を示す図である。 図19は、距離測定制御処理の第1例に関するフローチャートである。 図20は、距離測定制御処理の第1例に関するフローチャートである。 図21は、手前に突出した壁における距離計測の一例を示す図である。 図22は、距離測定装置が姿勢変化した場合の一例を示す図である。 図23は、距離測定装置が姿勢変化した場合の他の一例を示す図である。 図24は、距離計測部の第2構成例を示すブロック図である。 図25は、距離測定制御処理の第2例に関するフローチャートである。 図26は、距離測定制御処理の第3例に関するフローチャートである。 図27は、距離測定制御処理の第3例に関するフローチャートである。
以下に本発明の例示的な実施形態について図面を参照して説明する。
<1.距離補正手法> まず、本実施形態での距離測定に用いる距離補正手法について説明する。本実施形態の距離測定では、レーザ光を出射し、計測対象物でレーザ光が反射した反射光を受光することで、出射から受光までの時間を計測することで距離を取得する。
理想的には、図1に示す受光信号Ps’のように、受光信号はパルス波形である。この場合、レーザ光の出射タイミングt0から受光信号Ps’の立上りタイミングまでの経過時間T’を計測することで、計測対象物までの距離を正確に測定することができる。
しかしながら、実際には、図1に示す受光信号Psのように、受光信号は時間に対して傾きを持った立上りおよび立下りを有する。これにより、レーザ光の出射タイミングt0から受光信号Psの立上りタイミングまでの経過時間Tを計測しただけでは、計測対象物までの正確な距離は測定できない。そのため、図1に示す受光信号Psのゼロレベルから所定レベルまで立上るまでの時間を補正量ΔTとして、経過時間Tを補正量ΔTによって補正する必要がある。すなわち、経過時間Tから補正量ΔTを差し引く必要がある。
また、同じ距離であっても計測対象物の反射率の違いなどによって受光信号Psのピークは増減する。受光信号Psのピークの増減に応じて受光信号Psの立上り・立下りの傾きが変化し、補正量ΔTが変化する。従って、正確な距離測定には、このような補正量ΔTの変化も考慮する必要がある。
本実施形態では、距離を補正する手法として、パルス幅補正とスルーレート補正を採用している。
まず、第1補正手法としてのパルス幅補正について、図2に示す受光信号Psの波形を用いて説明する。パルス幅補正では、レーザ光の出射タイミングt0から受光信号Psが立ち上がって第1閾値Vth1を横切るタイミングt1までの経過時間T1と、レーザ光の出射タイミングt0から受光信号Psが立ち下がって第1閾値Vth1を横切るタイミングt2までの経過時間T2と、を計測する。そして、経過時間T1とT2との差分からパルス幅Wを算出する。
受光信号Psのピークが大きくなる程、受光信号Psの立上り・立下りの傾きが急峻となり、パルス幅Wは大きくなり、補正量ΔTは小さくなる。補正量ΔTは、受光信号Psがゼロレベルから第1閾値Vth1まで立ち上がるまでの時間である。そこで、予め設定されたパルス幅Wと補正量ΔTとの関係と、実際に算出されたパルス幅Wとから、補正量ΔTを決定する。計測された経過時間T1から決定された補正量ΔTを差し引くことで、距離を計測する。
なお、受光信号Psを反転させて、レーザ光の出射タイミングt0から受光信号Psが立ち下がって第1閾値を横切るタイミングt1までの経過時間と、レーザ光の出射タイミングt0から受光信号Psが立ち上がって第1閾値を横切るタイミングt2までの経過時間と、を計測することでパルス幅Wを算出してもよい。
すなわち、第1補正手法は、受光信号における立上りと立下りの両方の検出に応じて補正を行う。
次に、第2補正手法としてのスルーレート補正について、図3に示す受光信号Psの波形を用いて説明する。スルーレート補正では、レーザ光の出射タイミングt0から受光信号Psが立ち上がって第1閾値Vth1を横切るタイミングt1までの経過時間T11と、レーザ光の出射タイミングt0から受光信号Psが立ち上がって第2閾値Vth2を横切るタイミングt12までの経過時間T12と、を計測する。なお、第2閾値Vth2は、第1閾値Vth1よりも大きい。そして、経過時間T11とT12との差分からスルーレートSRを算出する。
受光信号Psのピークが大きくなる程、受光信号Psの立上りの傾きが急峻となり、スルーレートSRは小さくなり、補正量ΔTは小さくなる。補正量ΔTは、受光信号Psがゼロレベルから第1閾値Vth1まで立ち上がるまでの時間である。そこで、予め設定されたスルーレートSRと補正量ΔTとの関係と、実際に算出されたスルーレートSRとから、補正量ΔTを決定する。計測された経過時間T11から決定された補正量ΔTを差し引くことで、距離を計測する。
なお、受光信号Psを反転させて、レーザ光の出射タイミングt0から受光信号Psが立ち下がって第1閾値を横切るタイミングまでの経過時間と、レーザ光の出射タイミングt0から受光信号Psが立ち下がって第2閾値(<第1閾値)を横切るタイミングまでの経過時間と、を計測することでスルーレートSRを算出してもよい。
すなわち、第2補正手法は、受光信号における立上りと立下りのうち一方の検出に応じた補正を行う。
このように、第1補正手法は、立上りが第1閾値と交わるタイミングと、立下りが第1閾値と交わるタイミングとの間の時間に基づいて補正を行うパルス幅補正であり、第2補正手法は、立上りまたは立下りが第1閾値、第2閾値とそれぞれ交わるタイミング間の時間に基づいて補正を行うスルーレート補正である。これにより、補正のための演算処理負荷を抑えることができる。
<2.距離補正手法の課題> ここで、図4に示すように、ガラス等の光を透過する透光性物体200の後方に他の物体250が存在する場合に、レーザ光Lを出射すると、透光性物体200で反射した反射光と後方の物体250で反射した反射光を受光することになる。
透光性物体200と後方の物体250との間の距離が長い場合、図6に示すように、受光信号Psにおいて、透光性物体200での反射光による受光信号成分Ps200と、後方の物体250での反射光による受光信号成分Ps250とは時間的に離れる。このため、受光信号成分Ps200の立上りと立下りとで第1閾値Vth1を横切るので、正確なパルス幅W1を算出することができ、パルス幅補正により正確な透光性物体200までの距離を計測可能となる。
しかしながら、透光性物体200と後方の物体250との間の距離が短い場合、図7の上段に示すように、受光信号成分Ps200と受光信号成分Ps250とが重なり合う。その結果、図7の下段に示すように、受光信号Psは、受光信号成分Ps200と受光信号成分Ps250とが合成されて生成される。このため、受光信号Psの立上りで第1閾値Vth1を横切った後、受光信号Psの立下りで第1閾値Vth1を横切るまでの期間として算出されるパルス幅W2は正確なパルス幅W1よりも長くなる。
ここで、図8は、パルス幅補正に用いられる予め設定されたパルス幅Wと補正量ΔTとの関係の一例を示す図である。図8に示すように、パルス幅W2と上記関係によって決定される補正量ΔTは、正確なパルス幅W1と上記関係によって決定される補正量ΔTよりも、誤差ΔTerrだけ小さくなる。従って、パルス幅補正により距離を計測すると、透光性物体200までの距離を実際よりも長めに測定してしまう。
図9は、図4に示す状況でのレーザ光Lの出射角度θLとパルス幅補正による計測距離Dとの関係の一例を示す図である。なお、出射角度θLは、透光性物体200に対する正面方向からのレーザ光Lの出射方向のずれ角度を示す。
出射角度θLが小さい場合、透光性物体200からの反射光量が大きく、物体250からの反射光量は小さいので、正確なパルス幅を検出でき、図9に示す白塗部のように、パルス幅補正により正確に透光性物体200までの距離を計測できる。
出射角度θLがさらに大きくなると、透光性物体200からの反射光量が減少し、物体250からの反射光量が増加するので、図7に示す現象が生じる。これにより、パルス幅が長めに検出され、補正量が減少し、図9に示すハッチング部のように、透光性物体200までの距離が実際よりも長めに計測されてしまう。このハッチング部のように、パルス幅補正を用いると距離が長めに計測される距離位置を中間点MPと称する。
出射角度θLがさらに大きくなると、透光性物体200からの反射光量がさらに減少し、物体250からの反射光量がさらに増加するので、物体250について正確なパルス幅を検出でき、図9に示す黒塗部のように、パルス幅補正により正確な物体250までの距離を計測できる。
また、同様の現象は、例えば、図5に示す手前の壁等である非透光性物体300と、後方の壁等である非透光性物体350が存在する場合にレーザ光Lを出射した場合にも起こりうる。なお、非透光性物体300は、壁の他にも、例えば椅子の脚などの細い物体である場合もある。
このようにパルス幅補正を用いると中間点が生じる虞があるといった課題があるが、スルーレート補正であれば、図7に示す状況であっても、受光信号の立上りのみを検出することでスルーレートを算出するので、スルーレートを正確に得ることができる。従って、正確な距離を計測することが可能である。しかしながら、スルーレート補正を用いる場合は、受光信号のピークが十分に大きくないと、立上りを検出することができないため、パルス幅補正よりも距離測定可能範囲が小さくなる。
そこで、本実施形態の距離測定装置では、パルス幅補正とスルーレート補正のそれぞれの有利な点を利用する構成としている。
<3.無人搬送車の全体構成> 以下、本実施形態の距離測定装置について詳述する。ここでは、距離測定装置をレーザレンジファインダーとして構成した例について述べる。また、距離測定装置を搭載する移動体としては、荷物を運搬する用途である無人搬送車を例に挙げて説明する。無人搬送車は、一般的にAGV(Automatic Guided Vehicle)とも呼称される。
図10は、本発明の一実施形態に係る無人搬送車15の概略全体斜視図である。図11は、本発明の一実施形態に係る無人搬送車15の概略側面図である。図12は、本発明の一実施形態に係る無人搬送車15の上方から視た平面図である。無人搬送車15は、二輪駆動により自律的に走行し、荷物を運搬する。
無人搬送車15は、車体1と、荷台2と、支持部3L、3Rと、駆動モータ4L、4Rと、駆動輪5L、5Rと、従動輪6F、6Rと、距離測定装置7と、を備える。
車体1は、基部1Aと、台部1Bと、から構成される。板状の台部1Bは、基部1Aの後方上面に固定される。台部1Bは、前方に突出する三角形部Trを有する。板状の荷台2は、台部1Bの上面に固定される。荷台2の上面には、荷物を載置することが可能である。荷台2は、台部1Bよりも更に前方まで延びる。これにより、基部1Aの前方と荷台2の前方との間には隙間Sが構成される。
距離測定装置7は、隙間Sにおいて台部1Bの三角形部Tr頂点の前方位置に配置される。距離測定装置7は、レーザレンジファインダーとして構成され、レーザ光を走査しつつ計測対象物までの距離を計測する装置である。距離測定装置7は、後述する障害物検知、地図情報作成、および自己位置同定に用いられる。距離測定装置7自体の詳細な構成については後述する。
支持部3Lは、基部1Aの左方側に固定され、駆動モータ4Lを支持する。駆動モータ4Lは、一例としてACサーボモータにより構成される。駆動モータ4Lは、不図示の減速機を内蔵する。駆動輪5Lは、駆動モータ4Lの回転するシャフトに固定される。
支持部3Rは、基部1Aの右方側に固定され、駆動モータ4Rを支持する。駆動モータ4Rは、一例としてACサーボモータにより構成される。駆動モータ4Rは、不図示の減速機を内蔵する。駆動輪5Rは、駆動モータ4Rの回転するシャフトに固定される。
従動輪6Fは、基部1Aの前方側に固定される。従動輪6Rは、基部1Aの後方側に固定される。従動輪6F、6Rは、駆動輪5L、5Rの回転に応じて受動的に回転する。
駆動モータ4L、4Rにより駆動輪5L、5Rを回転駆動することで、無人搬送車15を前進および後進させることができる。また、駆動輪5L、5Rの回転速度に差を設けるよう制御することで、無人搬送車15を右回りまたは左回りに旋回させ、方向転換させることができる。また、駆動輪5L、5Rを逆方向に回転させることで、無人搬送車15をその場で回転させることもできる。
基部1Aは、内部に制御ユニットU、バッテリーB、および通信部Tを収容する。制御ユニットUは、距離測定装置7、駆動モータ4L、4R、および通信部T等に接続される。
制御ユニットUは、後述するように距離測定装置7との間で種々の信号の通信を行う。制御ユニットUは、駆動モータ4L、4Rの駆動制御も行う。通信部Tは、外部のタブレット端末(不図示)との間で通信を行い、例えばBluetooth(登録商標)に準拠する。これにより、タブレット端末により無人搬送車15を遠隔操作することができる。バッテリーBは、例えばリチウムイオン電池により構成され、距離測定装置7、制御ユニットU、通信部T等の各部に電力を供給する。
<4.距離測定装置の構成> 図13は、距離測定装置7の概略側面断面図である。レーザレンジファインダーとして構成される距離測定装置13は、レーザ光源71と、コリメートレンズ72と、投光ミラー73と、受光レンズ74と、受光ミラー75と、波長フィルタ76と、受光素子77と、回転筐体78と、モータ79と、筐体80と、基板81と、配線82と、を有する。
筐体80は、外観視で上下方向に延びる略円柱状であり、内部空間にレーザ光源71を初めとする各種構成を収容する。レーザ光源71は、筐体80の上端部の下面に固定される基板81の下面に実装される。レーザ光源71は、例えば赤外領域のレーザ光を下方に出射する。
コリメートレンズ72は、レーザ光源71の下方に配置される。コリメートレンズ72は、レーザ光源71から出射されるレーザ光を平行光として下方に出射する。コリメートレンズ72の下方には、投光ミラー73が配置される。
投光ミラー73は、回転筐体78に固定される。回転筐体78は、モータ79のシャフト79Aに固定され、モータ79によって回転軸J周りに回転駆動される。回転筐体78の回転ととともに、投光ミラー73も回転軸J周りに回転駆動される。投光ミラー73は、コリメートレンズ72から出射されるレーザ光を反射して、反射されたレーザ光を出射光L1として出射する。投光ミラー73は上記のように回転駆動されるので、出射光L1は回転軸J周りの360度の範囲で出射方向を変えながら出射される。
筐体80は上下方向の途中において、透過部801を有する。透過部801は、透光性の樹脂等から構成される。
投光ミラー73で反射されて出射される出射光L1は、透過部801を透過して、隙間Sを通り、無人搬送車15より外側へ出射される。本実施形態では、所定の回転走査角度範囲θは、図12に示すように、一例として回転軸J周りの270度に設定される。270度の範囲は、より具体的には、前方180度と後方左右それぞれ45度ずつを含む。出射光L1は、少なくとも回転軸J周り270度の範囲で透過部801を透過する。なお、後方の透過部801が配置されない範囲では、出射光L1は筐体80の内壁または配線82等により遮られる。
受光ミラー75は、投光ミラー73より下方の位置で回転筐体78に固定される。受光レンズ74は、回転筐体78の周方向側面に固定される。波長フィルタ76は、受光ミラー75より下方に位置し、回転筐体78に固定される。受光素子77は、波長フィルタ76より下方に位置し、回転筐体78に固定される。
距離測定装置7から出射された出射光L1は、計測対象物で反射して拡散光となる。拡散光の一部は、入射光L2として隙間Sおよび透過部801を透過して受光レンズ74に入射される。受光レンズ74を透過した入射光L2は、受光ミラー75へ入射され、受光ミラー75により下方へ反射される。反射された入射光L2は、波長フィルタ76を透過して受光素子77により受光される。波長フィルタ76は、赤外領域の光を透過させる。受光素子77は、受光した光を光電変換により電気信号に変換する。
モータ79により回転筐体78が回転駆動されると、受光レンズ74、受光ミラー75、波長フィルタ76、および受光素子77は、投光ミラー73とともに回転駆動される。
図12に示すように、回転走査角度範囲θ(一例として270度)で回転軸J周りに所定半径にて回転して形成される範囲が測定範囲Rsとして規定される。但し、上記所定半径は、出射光L1の出力レベルに応じて変化する。回転走査角度範囲θで出射光L1が出射され、測定範囲Rs内に位置する計測対象物で出射光L1が反射されると、反射光が入射光L2として透過部801を透過して受光レンズ74に入射される。
モータ79は、配線82によって基板81に接続され、基板81から通電されることで回転駆動される。モータ79は、回転筐体78を所定回転速度で回転させる。例えば、回転筐体78は、3000rpm程度で回転駆動される。配線82は、筐体80の後方内壁に上下方向に沿って引き回される。
<5.距離測定装置の電気的構成> 次に、距離測定装置7の電気的構成について説明する。図14は、距離測定装置7の電気的構成を示すブロック図である。
図14に示すように、距離測定装置7は、レーザ発光部701と、レーザ受光部702と、距離計測部703と、データ通信インタフェース704と、第2演算処理部705と、駆動部706と、モータ79と、を有する。
レーザ発光部701は、レーザ光源71(図13)と、レーザ光源71を駆動する不図示のLDドライバなどを有する。LDドライバは、基板81に実装される。レーザ発光部701と、投光ミラー73と、回転筐体78と、モータ79と、から投光部83(図13)が構成される。すなわち、距離測定装置7は、発光部(レーザ発光部701)を含んで出射光L1の回転走査を行う投光部83を備える。
レーザ受光部702は、受光素子77(図13)等を含み、受光に基づいて受光信号を出力する。すなわち、距離測定装置7は、受光に基づいて受光信号を出力する受光部(レーザ受光部702)を備える。なお、レーザ受光部702のより具体的な構成については、後述する。
距離計測部703は、レーザ受光部702から出力される受光信号を入力される。距離測定部703は、第1演算処理部703Aを有する。レーザ発光部701は、第1演算処理部703Aから出力されるレーザ発光パルスLPをトリガとしてパルス状のレーザ光を発光する。このとき、出射光L1が出射される。出射された出射光L1が計測対象物OJにより反射されると、入射光L2がレーザ受光部702により受光される。レーザ受光部702は、入射光L2の受光に基づいて受光信号を距離計測部703へ出力する。
ここで、第1演算処理部703Aは、レーザ発光パルスLPとともに出力される基準パルス(図14で不図示)を出力する。距離計測部703は、基準パルスの立ち上りタイミングから受光信号の立上り・立下りタイミングまでの経過時間を計測することで、計測対象物OJまでの距離を取得することができる。すなわち、距離計測部703は、所謂TOF(Time Of Flight)方式によって距離を計測する。距離計測部703は、先述したパルス幅補正およびスルーレート補正を用いた距離計測を行う。このように、距離測定装置7は、出射光の出射と受光部702による受光とに基づいて計測対象物OJまでの距離を計測する距離計測部703を備える。なお、距離計測部703のより具体的な構成については後述する。
駆動部706は、モータ79を回転駆動制御する。モータ79は、駆動部706によって所定の回転速度で回転駆動される。第1演算処理部703Aは、モータ79が所定単位角度回転するたびにレーザ発光パルスLPを出力する。これにより、回転筐体78および投光ミラー73が所定角度回転するたびにレーザ発光部701が発光し、出射光L1が出射される。図12には、出射光L1の出射を示す。
第1演算処理部703Aは、レーザ発光パルスLPを出力したタイミングでのモータ79の回転角度位置と、レーザ発光パルスLPに対応して得られる距離計測データに基づいて、距離測定装置7を基準とする直交座標系上の位置情報を生成する。すなわち、投光ミラー73の回転角度位置と計測された距離に基づき、計測対象物OJの位置が取得される。上記取得される位置情報は、測定距離データDTとして第1演算処理部703Aより出力される。このようにして、回転走査角度範囲θでの出射光L1の回転走査により、計測対象物OJの距離画像を取得することができる。
第1演算処理部703Aから出力された測定距離データDTは、データ通信インタフェース704を介して後述する図15に示す無人搬送車15側に伝送される。
第2演算処理部705は、測定距離データDTに基づき、所定エリア内に計測対象物が位置するか否かを判定する。具体的には、測定距離データDTで示される或る計測対象物の位置が所定エリア内に位置すれば、計測対象物が所定エリア内に位置すると判定される。第2演算処理部705は、所定エリア内に計測対象物が位置すると判定した場合、フラグである検出信号DsをHighレベルとして出力する。一方、所定エリア内に計測対象物が位置しない場合は、Lowレベルとした検出信号Dsを出力する。検出信号Dsは、後述する図15に示す無人搬送車15側に伝送される。
<6.無人搬送車の電気的構成> 先述のように距離測定装置7側の電気的構成を説明したが、ここでは、図15を用いて無人搬送車15側の電気的構成について説明する。図15は、無人搬送車15の電気的構成を示すブロック図である。
図15に示すように、無人搬送車15は、距離測定装置7と、制御部8と、駆動部9と、通信部Tと、を有する。
制御部8は、制御ユニットU(図10)に設けられる。駆動部9は、不図示のモータドライバと、駆動モータ4L、4Rなどを有する。モータドライバは、制御ユニットUに設けられる。制御部8は、駆動部9に対して指令を行い制御する。駆動部9は、駆動輪5L、5Rの回転速度および回転方向を駆動制御する。
制御部8は、通信部Tを介して不図示のタブレット端末と通信を行う。例えば、タブレット端末において操作された内容に応じた操作信号を通信部Tを介して制御部8が受信することができる。
制御部8は、距離測定装置7から出力される測定距離データDTを入力される。制御部8は、測定距離データDTに基づいて地図情報を作成することが可能である。地図情報とは、無人搬送車15の自己の位置を特定する自己位置同定を行うために生成される情報であり、無人搬送車15が走行する場所における静止物の位置情報として生成される。例えば、無人搬送車15が走行する場所が倉庫である場合は、静止物は倉庫の壁、倉庫内に配列された棚などである。
地図情報は、例えばタブレット端末により無人搬送車15の手動操作が行われる際に生成される。この場合、タブレット端末の例えばジョイスティックの操作に応じた操作信号が通信部Tを介して制御部8に送信されることで、制御部8は操作信号に応じて駆動部9に指令を行い、無人搬送車15を走行制御する。このとき、制御部8は、距離測定装置7から入力される測定距離データDTと、無人搬送車15の位置に基づき、無人搬送車15が走行する場所における計測対象物の位置を地図情報として特定する。無人搬送車15の位置は、駆動部9の駆動情報に基づき特定される。
上記のように生成された地図情報は、制御部8の記憶部85により記憶される。制御部8は、距離測定装置7から入力される測定距離データDTと、記憶部85に予め記憶された地図情報とを比較することにより、無人搬送車15の自己の位置を特定する自己位置同定を行う。すなわち、制御部8は、位置同定部として機能する。自己位置同定を行うことで、制御部8は、予め定められた経路に沿った無人搬送車15の自律的な走行制御を行うことができる。
また、制御部8は、距離測定装置7から出力される検出信号Dsに基づいて駆動部9の制御を行うこともできる。
<7.距離計測部の第1構成例> 図16は、距離計測部703の第1構成例を示すブロック図である。なお、図16は、レーザ受光部702の具体的な構成例を併せて示す。また、図17は、受光信号Psと各閾値(基準電圧)との関係を示す。
レーザ受光部702は、APD(アバランシェフォトダイオード)702Aと、増幅回路(トランスインピーダンスアンプ)702Bと、を有する。APD702Aは、受光素子77に相当し、受光したレーザ光を電流信号に変換する。増幅回路702Bは、APD702Aから出力される電流信号を受光信号Psに電流・電圧変換して出力する。
距離計測部703は、先述した第1演算処理部703Aに加えて、第1コンパレータ703Bと、第2コンパレータ703Cと、第1TDC(time to digital converter)703Dと、第2TDC703Eと、セレクタ703Fと、を有する。
第1コンパレータ703Bは、非反転入力端(+)に入力される受光信号Psと、反転入力端(−)に入力される第1閾値Vth1とを比較する。第1コンパレータ703Bの出力信号は、第1TDC703Dに入力されるとともに、セレクタ703Fへ入力される。第2コンパレータ703Cは、非反転入力端(+)に入力される受光信号Psと、反転入力端(−)に入力される第2閾値Vth2とを比較する。第2コンパレータ703Cの出力信号は、セレクタ703Fへ入力される。第2閾値Vth2は、第1閾値Vth1よりも大きい。
第1TDC703Dは、第1演算処理部703Aから出力される基準パルスSPの立上りタイミングから第1コンパレータ703Bから入力される出力信号のHighへの立上りタイミングまでの第1経過時間T10(図17)を計測する。セレクタ703Fは、第1コンパレータ703Bの出力信号と第2コンパレータ703Cの出力信号のうちいずれかを第1演算処理部703Aから出力される選択信号SSに応じて選択し、選択された出力信号を第2TDC703Eへ入力させる。
セレクタ703Fから第1コンパレータ703Bの出力信号が選択されて入力される場合、第2TDC703Eは、第1演算処理部703Aから出力される基準パルスSPの立ち上りタイミングからセレクタ703Fから入力される出力信号のLowへの立下りタイミングまでの第2経過時間T20(図17)を計測する。
セレクタ703Fから第2コンパレータ703Cの出力信号が選択されて入力される場合、第2TDC703Eは、第1演算処理部703Aから出力される基準パルスSPの立ち上りタイミングからセレクタ703Fから入力される出力信号のHighへの立上りタイミングまでの第3経過時間T30(図17)を計測する。
第1演算処理部703Aは、選択信号SSによって第1コンパレータ703Bの出力信号を選択した場合は、第1経過時間T10と第2経過時間T20との差分からパルス幅を算出することでパルス幅補正による距離計測を行う。一方、第1演算処理部703Aは、選択信号SSによって第2コンパレータ703Cの出力信号を選択した場合は、第1経過時間T10と第3経過時間T30との差分からスルーレートを算出することでスルーレート補正による距離計測を行う。従って、距離計測部703は、第1補正手法を用いた距離の計測と、第2補正手法を用いた距離の計測と、を行うことが可能である。
すなわち、距離計測部703は、受光信号Psを第1基準電圧Vth1と比較する第1コンパレータ703Bと、受光信号Psを第2基準電圧Vth2と比較する第2コンパレータ703Cと、基準パルスSPと第1コンパレータ703Bの出力とが入力される第1TDC703Dと、基準パルスPsが入力される第2TDC703Eと、第1コンパレータ703Bの出力と第2コンパレータ703Cの出力の一方を選択して第2TDC703Eへ出力するセレクタ703Fと、を有する。これにより、距離計測部703は、第1補正手法としてのパルス幅補正と、第2補正手法としてのスルーレート補正と、を切替えて用いることができる。
<8.距離測定制御処理の第1例> 次に、先述した第1構成例に係る距離計測部703(図16)による距離測定制御処理について、図19および図20に示すフローチャートに沿って説明する。
ここで、図18は、距離測定装置7による出射光L1の回転走査の一例を示す図である。距離測定装置7は、一例として270°である回転走査角度範囲θにおいて、所定単位角度ごとにずれた各走査位置で出射光L1を出射させる。図18では、反時計周りに走査位置をずらしながら出射光L1が出射される。各走査位置は、角度位置n(n=1〜N)として表される。
図19および図20に示すフローチャートは、図18に示す各角度位置nごとの処理を示す。電源がオンとなると図19に示す処理が開始され、以降、電源がオフとなるまで処理は継続される。また、図19および図20に示すmは、回転走査の周回を示す。図19に示す処理が開始された時点でm=0である。
ステップS1で周回が次の周回に移行すると、ステップS2で、第1演算処理部703Aは、選択信号SSによって第1コンパレータ703Bの出力信号を選択することで、パルス幅補正による距離測定を行う。そして、ステップS3で、第1演算処理部703Aは、ステップS2で測定された距離を出力する。
次に、ステップS4に進み、第1演算処理部703Aは、ステップS2で取得された距離がエラーであった場合は(ステップS4のYES)、次の周回において(ステップS1)、ステップS2でパルス幅補正による距離測定を行う。なお、上記エラーとは、計測対象物までの距離が遠く、受光信号Psのピークが過小となり、受光信号Psが第1閾値Vth1を上回らないために、距離測定を行えない場合である。
一方、ステップS4で、取得距離がエラーでない場合は(ステップS4のNO)、ステップS5に進む。ステップS5で、第1演算処理部703Aは、ステップS2で取得された距離と、直前の角度位置(n−1)での取得された距離との差分を算出する。ここで、先述した図9に示すような中間点MPで距離計測を行うと、直前の角度位置での距離との差分が大きくなる。
ここで、先述した図4に示すように、計測対象物は、透光性物体200と、当該透光性物体より奥側に位置する物体250と、を含む。これにより、透光性物体での反射光による受光信号成分と、透光性物体を透過して奥側に位置する物体で反射した光による受光信号成分とが重なることにより生じる中間点を検出できる。
また、先述した図5に示すように、計測対象物は、非透光性物体300と、当該非透光性物体より奥側に位置する他の非透光性物体350と、を含む。これにより、非透光性物体での反射光による受光信号成分と、他の非透光性物体での反射光による受光信号成分とが重なることにより生じる中間点を検出できる。
そこで、ステップS5で算出された差分値が設定された値以下でない場合は(ステップS6のNO)、中間点が検出されたとして、次の周回において(ステップS7)、ステップS8に進む。ステップS8で、第1演算処理部703Aは、選択信号SSによって第2コンパレータ703Cの出力信号を選択することで、スルーレート補正による距離測定を行う。そして、ステップS9で、第1演算処理部703Aは、ステップS8で測定された距離を出力する。
一方、ステップS5で算出された差分値が設定された値以下であった場合は(ステップS6のYES)、中間点は検出されていないとして、次の周回において(ステップS1)、ステップS2でパルス幅補正による距離測定を行う。
このように、中間点が検出された場合は、中間点での距離測定精度の高いスルーレート補正による距離測定に切替え、そうでない場合は、距離測定可能範囲の大きいパルス幅補正による距離測定を行う。
なお、ステップS5で、直前の角度位置での取得された距離がエラーであるために差分を計算できない場合は、ステップS1、S2に進む。また、角度位置n=1の場合は、直前の角度位置が存在しないので、ステップS1、S2に進む。
すなわち、距離計測部703は、第1補正手法(パルス幅補正)を用いて計測された距離と、第2補正手法(スルーレート補正)を用いて計測された距離とのうち、少なくとも第1補正手法を用いて計測された距離を用いた距離比較処理に基づき、第2補正手法を用いて計測された距離を計測距離として出力する。
これにより、第1物体での反射光に基づく受光信号成分と第2物体での反射光に基づく受光信号成分とが重なることにより、第1補正手法を用いると距離が長めに計測される距離位置(中間点)が検出された場合に、より正確に距離を計測できる第2補正手法を用いた計測距離を出力することができる。中間点の検出は、距離比較処理に基づくので、演算処理負荷を抑えることができる。
より具体的には、距離計測部703は、回転走査における第1角度位置(n−1)で第1補正手法を用いて計測された距離と、回転走査において第1角度位置よりも走査が後である第2角度位置(n)で第1補正手法を用いて計測された距離と、を比較し、当該比較結果に基づき、第2補正手法を用いて計測された距離を第2角度位置での計測距離として出力する。
なお、第1角度位置(n−1)と第2角度位置(n)とは、隣接する角度位置である。なお、隣接する角度位置とは、回転走査において出射光を出射させる各タイミングのうち時間的に隣接するタイミングのそれぞれの角度位置である。これにより、中間点を精度良く検出することができる。
また、距離計測部703は、上記比較結果に基づき、第2角度位置で第1補正手法を用いて距離を計測した第m周回(mは自然数)の次の第(m+1)周回の第2角度位置での距離計測に用いる手法を、第1補正手法から前記第2補正手法へ切替える。
これにより、同一周回の角度位置では第1補正手法と第2補正手法の一方を用いて距離計測を行う構成で実現可能となり、構成を簡易化できる。
また、距離計測部703は、第1角度位置で計測された距離と、第2角度位置で第1補正手法を用いて計測された距離との差分を算出して得られた算出結果が第1所定値を上回る場合に、第(m+1)周回の第2角度位置での距離計測に用いる手法を、第1補正手法から第2補正手法へ切替える。
これにより、第1角度位置で計測された距離と第2角度位置で計測された距離との差分値が第1所定値を上回ったことにより、中間点を検出できる。
また、距離計測部703は、上記算出結果が第1所定値以下の場合は、第(m+1)周回の第2角度位置での距離計測に用いる手法を、第1補正手法とする。
これにより、中間点以外については第1補正手法を用いることにより、距離測定可能範囲を確保できる。
ステップS9の後、ステップS10で、ステップS8で取得された距離がエラーであった場合は(ステップS10のYES)、次の周回において(ステップS1)、ステップS2でパルス幅補正による距離測定を行う。なお、上記エラーとは、計測対象物までの距離が遠く、受光信号Psのピークが過小となり、受光信号Psが第2閾値Vth2を上回らないために、距離測定を行えない場合である。
一方、ステップS10で、取得距離がエラーでない場合は(ステップS10のNO)、図20に示すステップS11に進む。ステップS11で、第1演算処理部703Aは、直前の周回での距離測定がパルス幅補正によるかを判定する。もし、直前の周回での距離測定がパルス幅補正であった場合は(ステップS11のYES)、ステップS12に進み、第1演算処理部703Aは、ステップS8で取得された距離と、直前の周回で取得された距離との差分を算出する。
ここで、例えば図21に示すような手前に突出した壁等の傾きを持った物体の距離を計測した場合、ステップS5で算出される差分値が大きくなり(ステップS6のNO)、中間点であると誤検出される場合がある。この場合、ステップS12で算出される差分値は小さくなるので、中間点の誤検出を検出することができる。
そこで、ステップS12で算出された差分値が設定した値以下であった場合は(ステップS13のYES)、次の周回において(ステップS1)、ステップS2でパルス幅補正による距離測定を行う。
すなわち、距離計測部703は、第(m+1)周回の第2角度位置で第2補正手法を用いて計測された距離と、第m周回の第2角度位置で計測された距離との差分を算出して得られた算出結果が第2所定値以下の場合は、第(m+1)周回の次の第(m+2)周回の第2角度位置で用いる距離計測に用いる手法を、第2補正手法から第1補正手法へ切替える。
これにより、検出した中間点が実際には中間点ではないと確認した場合に、第1補正手法に戻すことにより、距離測定可能範囲を確保できる。
一方、直前の周回の距離測定はパルス幅補正によらない場合(ステップS11のNO)、または、上記差分値が設定した値以下でない場合は(ステップS13のNO)、ステップS14に進む。
ステップS14で、第1演算処理部703Aは、ステップS8で取得した距離から直前の角度位置で取得された距離を差し引いて差分値を算出する。
ここで、図22に示すように、距離測定装置7を備えた無人搬送車15の姿勢の変化により、角度位置nで出射された出射光L1は、透光性物体400の後方に位置する物体450に向かい、直前の角度位置(n−1)で出射された出射光L1は、透光性物体400に向かう状況となる場合がある。この場合、角度位置nで取得される距離は、角度位置(n−1)で取得される距離よりも長くなり、上記ステップS14で算出される差分値は、正の値となる。
従って、算出された差分値が設定された値以下でなく(ステップS15のNO)、且つ、上記差分値が正の値である場合は(ステップS16のYES)、次の周回において(ステップS1)、ステップS2でパルス幅補正による距離測定を行う。
すなわち、距離計測部703は、第2角度位置で第2補正手法を用いて計測された距離から第1角度位置で計測された距離を差し引いた差分値が第3所定値を上回って且つ正の値である場合、次の周回の第2角度位置で用いる距離計測に用いる手法を、第2補正手法から第1補正手法へ切替える。
これにより、距離測定装置7の姿勢が変化することにより、第2角度位置での距離計測対象が中間点の生じる物体から、より遠い物体に変化した場合に、第1補正手法に戻すことにより、距離測定可能範囲を確保できる。
上記算出された差分値が設定した値以下であった場合(ステップS15のYES)、または、上記算出された差分値が設定した値以下ではないが、正の値でない場合は(ステップS16のNO)、ステップS17に進む。
ステップS17で、第1演算処理部703Aは、直後の角度位置で取得された距離からステップS8で取得した距離を差し引いて差分値を算出する。
ここで、図23に示すように、距離測定装置7を備えた無人搬送車15の姿勢の変化により、角度位置nで出射された出射光L1は、透光性物体400の後方に位置する物体450に向かい、直後の角度位置(n+1)で出射された出射光L1は、透光性物体400に向かう状況となる場合がある。この場合、角度位置nで取得される距離は、角度位置(n+1)で取得される距離よりも長くなり、上記ステップS17で算出される差分値は、負の値となる。
従って、算出された差分値が設定された値以下でなく(ステップS18のNO)、且つ、上記差分値が負の値である場合は(ステップS19のYES)、次の周回において(ステップS1)、ステップS2でパルス幅補正による距離測定を行う。
すなわち、距離計測部703は、第2角度位置よりも走査順が後である第3角度位置で計測された距離から第2角度位置で第2補正手法を用いて計測された距離を差し引いた差分値を算出し、当該差分値が第4所定値を上回って且つ負の値である場合、次の周回の第2角度位置で用いる距離計測に用いる手法を、第2補正手法から第1補正手法へ切替える。
これにより、距離測定装置7の姿勢が変化することにより、第2角度位置での距離計測対象が中間点の生じる物体から、より遠い物体に変化した場合に、第1補正手法に戻すことにより、距離測定可能範囲を確保できる。
上記算出された差分値が設定した値以下であった場合(ステップS18のYES)、または、上記算出された差分値が設定した値以下ではないが、負の値でない場合は(ステップS19のNO)、次の周回において(ステップS7)、ステップS8でスルーレート補正による距離測定を行う。
<9.距離計測部の第2構成例> 図24は、距離計測部703の第2構成例を示すブロック図である。図24に示す第2構成例に係る距離計測部703は、先述した図16に示す第1構成例との構成上の相違として、セレクタ703Fの代わりに第3TDC703Gを有する。
第1コンパレータ703Bの出力信号は、第2TDC703Eに入力される。第3TDC703Gには、基準パルスSPとともに、第2コンパレータ703Cの出力信号が入力される。
第1TDC703Dは、第1演算処理部703Aから出力される基準パルスSPの立上りタイミングから第1コンパレータ703Bから入力される出力信号のHighへの立上りタイミングまでの第1経過時間T10(図17)を計測する。第2TDC703Eは、第1演算処理部703Aから出力される基準パルスSPの立上りタイミングから第1コンパレータ703Bから入力される出力信号のLowへの立下りタイミングまでの第2経過時間T20(図17)を計測する。第3TDC703Gは、第1演算処理部703Aから出力される基準パルスSPの立上りタイミングから第2コンパレータ703Cから入力される出力信号のHighへの立上りタイミングまでの第3経過時間T30(図17)を計測する。
第1演算処理部703Aは、第1経過時間T10と第2経過時間T20との差分からパルス幅を算出することでパルス幅補正による距離計測を行うとともに、第1経過時間T10と第3経過時間T30との差分からスルーレートを算出することでスルーレート補正による距離計測を行う。従って、本構成例によれば、同一周回での同一角度位置において両方の補正手法による距離を取得することができる。
すなわち、距離計測部703は、同一周回の回転走査における同一角度位置において、第1補正手法を用いた距離の計測と、第2補正手法を用いた距離の計測と、を行うことが可能である。
また、距離計測部703は、受光信号を第1基準電圧Vth1と比較する第1コンパレータ703Bと、受光信号を第2基準電圧Vth2と比較する第2コンパレータ703Cと、基準パルスSPと第1コンパレータ703Bの出力とが入力される第1TDC703Dと、基準パルスSPと第1コンパレータ703Bの出力とが入力される第2TDC703Eと、基準パルスSPと第2コンパレータ703Cの出力とが入力される第3TDGと、を有する。
これにより、同一周回での同一角度位置における第1補正手法と第2補正手法の両方を用いた距離計測を簡易な構成で実現できる。
<10.距離測定制御処理の第2例> 次に、先述した第2構成例に係る距離計測部703(図24)による距離測定制御処理について、図25に示すフローチャートに沿って説明する。
図25に示すフローチャートは、先述した図18に示す各角度位置nごとの処理を示す。電源がオンとなると図25に示す処理が開始され、以降、電源がオフとなるまで処理は継続される。また、図25に示すmは、回転走査の周回を示す。図25に示す処理が開始された時点でm=0である。
ステップS21で周回が次の周回に移行すると、ステップS22で、第1演算処理部703Aは、パルス幅補正による距離測定を行う。そして、ステップS23で、第1演算処理部703Aは、スルーレート補正による距離測定を行う。
ステップS24で、第1演算処理部703Aは、スルーレート補正による取得された距離がエラーであるかを判定し、エラーの場合は(ステップS24のYES)、ステップS27に進む。ステップS27で、第1演算処理部703Aは、パルス幅補正により測定した距離を出力する。その後、次の周回へ進む(ステップS21)。
一方、スルーレート補正による取得された距離がエラーでなかった場合は(ステップS24のNO)、ステップS25に進み、第1演算処理部703Aは、ステップS22でパルス幅補正により取得された距離と、ステップS23でスルーレート補正により取得された距離との差分を算出する。
ステップS25で算出された差分値が設定した値以下でない場合は(ステップS26のNO)、中間点を検出したとして、ステップS28に進み、第1演算処理部703Aは、スルーレート補正により測定された距離を出力する。その後、次の周回へ進む(ステップS21)。
一方、上記差分値が設定した値以下であった場合は(ステップS26のYES)、中間点を検出していないとして、ステップS27に進み、第1演算処理部703Aは、パルス幅補正により測定された距離を出力する。
すなわち、距離計測部703は、同一角度位置で、第1補正手法を用いて計測された距離と、第2補正手法を用いて計測された距離と、を比較し、当該比較結果に基づき、第2補正手法を用いて計測された距離を計測距離として出力する。
これにより、第1物体での反射光に基づく受光信号成分と第2物体での反射光に基づく受光信号成分とが重なることにより、第1補正手法を用いると距離が長めに計測される距離位置(中間点)が検出された場合に、より正確に距離を計測できる第2補正手法を用いた計測距離を出力することができる。中間点の検出は、演算処理負荷を抑えた方法で行うことができる。また、計測距離データのリアルタイム性を向上させることができる。
<11.距離測定制御処理の第3例> 次に、先述した第1構成例に係る距離計測部703(図16)による距離測定制御処理の変形例について、図26および図27に示すフローチャートに沿って説明する。なお、当該処理を行うには、第1演算処理部703Aは、不図示のバッファ(記憶部)を有する必要がある。
図26および図27に示すフローチャートは、先述した図18に示す各角度位置nごとの処理を示す。電源がオンとなると図26に示す処理が開始され、以降、電源がオフとなるまで処理は継続される。また、図26に示すmは、回転走査の周回を示す。図26に示す処理が開始された時点でm=0であり、第1演算処理部703Aは、mを変数として保有する。
図26に示す処理が開始されると、まず、ステップS31で、第1演算処理部703Aは、mが3を上回るかを判定し、もし上回る場合は(ステップS31のYES)、ステップS32に進み、第1演算処理部703Aは、バッファに記憶された最新の測定距離を出力する。このとき、第1演算処理部703Aは、バッファに記憶された測定距離を消去するとともに、変数mを0に初期化する。
ステップS32の後、または、ステップS31でmが3以下である場合は(ステップS31のNO)、ステップS33に進み、第1演算処理部703Aは、変数mを1だけ増加させる。
その後、ステップS34に進み、第1演算処理部703Aは、mが3を上回るかを判定し、もし上回る場合は(ステップS34のYES)、ステップS35に進む。ステップS35で、第1演算処理部703Aは、(m−1)周回での測定方法と(m−2)周回での測定方法が異なるかを判定し、もし同じである場合は(ステップS35のNO)、ステップS38に進む。
一方、測定方法が異なる場合は(ステップS35のYES)、ステップS36に進み、第1演算処理部703Aは、(m−1)周回で取得された距離と(m−2)周回で取得された距離との差分を算出する。第1演算処理部703Aは、算出された差分値が設定した値以下であるかを判定し、設定した値以下であった場合は(ステップS37のYES)、ステップS38に進む。上記差分値が設定した値以下でない場合は(ステップS37のNO)、ステップS42に進む。
ステップS38で、第1演算処理部703Aは、パルス幅補正による距離測定を行う。ここで、第1演算処理部703Aは、取得した距離をバッファに記憶させる。そして、ステップS38で取得された距離がエラーであった場合は(ステップS39のYES)、ステップS31に戻る。
一方、ステップS38で取得された距離がエラーでなかった場合は(ステップS39のNO)、ステップS40に進む。ステップS40で、第1演算処理部703Aは、ステップS38で取得された距離と、直前の角度位置(n−1)での取得された距離との差分を算出する。
ステップS41で、第1演算処理部703Aは、算出された差分値が設定した値以下であるかを判定し、もし設定した値以下である場合は(ステップS41のYES)、ステップS31に戻る。一方、算出された差分値が設定した値以下でなかった場合は(ステップS41のNO)、ステップS42に進む。
ステップS42で、第1演算処理部703Aは、mが3を上回るかを判定し、もし上回る場合は(ステップS42のYES)、ステップS43に進み、第1演算処理部703Aは、バッファに記憶された最新の測定距離を出力する。このとき、第1演算処理部703Aは、バッファに記憶された測定距離を消去するとともに、変数mを0に初期化する。
ステップS43の後、または、ステップS42でmが3以下である場合は(ステップS42のNO)、ステップS44に進み、第1演算処理部703Aは、変数mを1だけ増加させる。
そして、ステップS45で、第1演算処理部703Aは、スルーレート補正による距離測定を行う。ここで、第1演算処理部703Aは、取得した距離をバッファに記憶させる。そして、ステップS45で取得された距離がエラーであった場合は(ステップS46のYES)、ステップS31に戻る。
一方、ステップS45で取得された距離がエラーでなかった場合は(ステップS46のNO)、図27のステップS47に進む。ステップS47〜S55の処理は、先述した図20のステップS11〜S19の処理と同様である。ステップS49のYES、またはステップS55のYESの場合は、ステップS31に戻る。また、ステップS54のYES、またはステップS55のNOの場合は、ステップS42に戻る。
すなわち、距離測定装置7は、第2角度位置で第1補正手法を用いて計測された距離を記憶する記憶部(バッファ)をさらに備え、距離計測部703は、上記算出結果が第1所定値以下の場合は(ステップS41のYES)、上記記憶部に記憶された上記距離を出力する(ステップS32)。
これにより、中間点でないことを検出してから、第2角度位置で第1補正手法を用いて計測された距離を出力するので、第1補正手法が適切でない場合に第1補正手法を用いて計測された距離が出力されることを回避できる。
<12.その他> 以上、本発明の実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は種々の変更が可能である。
例えば、第2補正手法としては、スルーレート補正に限らず、例えば、受光信号の微分処理に基づいて補正を行う手法を採用してもよい。この場合、受光信号の立上りまたは立下りにおいて1次微分を行えばよいので、従来の1次微分および2次微分を行う必要がある方法よりも演算負荷を抑制できる。
また、上記実施形態では、距離測定装置を搭載する移動体として無人搬送車を例に挙げて説明したが、これに限らず、移動体は掃除ロボット、監視ロボットなど、運搬用途以外の装置に適用してもよい。
本発明は、例えば、荷物を運搬する無人搬送車に利用することができる。
1・・・車体、1A・・・基部、1B・・・台部、2・・・荷台、3L、3R・・・支持部、4L、4R・・・駆動モータ、5L、5R・・・駆動輪、6F、6R・・・従動輪、7・・・距離測定装置、71・・・レーザ光源、72・・・コリメートレンズ、73・・・投光ミラー、74・・・受光レンズ、75・・・受光ミラー、76・・・波長フィルタ、77・・・受光素子、78・・・回転筐体、79・・・モータ、701・・・レーザ発光部、702・・・レーザ受光部、702A・・・APD、702B・・・増幅回路、703・・・距離計測部、703A・・・第1演算処理部、703B・・・第1コンパレータ、703C・・・第2コンパレータ、703D・・・第1TDC、703E・・・第2TDC、703F・・・セレクタ、703G・・・第3TDC、704・・・データ通信インタフェース、705・・・第2演算処理部、706・・・駆動部、80・・・筐体、801・・・透
過部、81・・・基板、82・・・配線、8・・・制御部、85・・・記憶部、9・・・駆動部、15・・・無人搬送車、U・・・制御ユニット、B・・・バッテリー、T・・・通信部、Rs・・・測定範囲、θ・・・回転走査角度範囲、J・・・回転軸、L1・・・出射光、L2・・・入射光、OJ・・・計測対象物、200、400・・・透光性物体、250、450・・・物体、300、350・・・非透光性物体

Claims (16)

  1. 発光部を含んで出射光の回転走査を行う投光部と、 受光に基づいて受光信号を出力する受光部と、 前記出射光の出射と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、 を備え、 前記距離計測部は、前記受光信号における立上りと立下りの両方の検出に応じて補正を行う第1補正手法を用いた距離の計測と、前記受光信号における前記立上りと前記立下りのうち一方の検出に応じた補正を行う第2補正手法を用いた距離の計測と、を行うことが可能であり、 前記距離計測部は、前記第1補正手法を用いて計測された距離と、前記第2補正手法を用いて計測された距離とのうち、少なくとも前記第1補正手法を用いて計測された距離を用いた距離比較処理に基づき、前記第2補正手法を用いて計測された距離を計測距離として出力する、 距離測定装置。
  2. 前記距離計測部は、前記回転走査における第1角度位置で前記第1補正手法を用いて計測された距離と、前記回転走査において前記第1角度位置よりも走査が後である第2角度位置で前記第1補正手法を用いて計測された距離と、を比較し、当該比較結果に基づき、前記第2補正手法を用いて計測された距離を前記第2角度位置での計測距離として出力する、請求項1に記載の距離測定装置。
  3. 前記距離計測部は、前記比較結果に基づき、前記第2角度位置で前記第1補正手法を用いて距離を計測した第m周回(mは自然数)の次の第(m+1)周回の前記第2角度位置での距離計測に用いる手法を、前記第1補正手法から前記第2補正手法へ切替える、請求項2に記載の距離測定装置。
  4. 前記距離計測部は、前記第1角度位置で計測された距離と、前記第2角度位置で前記第1補正手法を用いて計測された距離との差分を算出して得られた算出結果が第1所定値を上回る場合に、前記第(m+1)周回の前記第2角度位置での距離計測に用いる手法を、前記第1補正手法から前記第2補正手法へ切替える、請求項3に記載の距離測定装置。
  5. 前記距離計測部は、前記算出結果が前記第1所定値以下の場合は、前記第(m+1)周回の前記第2角度位置での距離計測に用いる手法を、前記第1補正手法とする、請求項4に記載の距離測定装置。
  6. 前記第2角度位置で前記第1補正手法を用いて計測された距離を記憶する記憶部をさらに備え、 前記距離計測部は、前記算出結果が前記第1所定値以下の場合は、前記記憶部に記憶された前記距離を出力する、請求項5に記載の距離測定装置。
  7. 前記距離計測部は、前記第(m+1)周回の前記第2角度位置で第2補正手法を用いて計測された距離と、前記第m周回の前記第2角度位置で計測された距離との差分を算出して得られた算出結果が第2所定値以下の場合は、前記第(m+1)周回の次の第(m+2)周回の前記第2角度位置で用いる距離計測に用いる手法を、前記第2補正手法から前記第1補正手法へ切替える、請求項3から請求項6のいずれか1項に記載の距離測定装置。
  8. 前記距離計測部は、前記第2角度位置で前記第2補正手法を用いて計測された距離から前記第1角度位置で計測された距離を差し引いた差分値が第3所定値を上回って且つ正の値である場合、次の周回の前記第2角度位置で用いる距離計測に用いる手法を、前記第2補正手法から前記第1補正手法へ切替える、請求項3から請求項7のいずれか1項に記載の距離測定装置。
  9. 前記距離計測部は、前記第2角度位置よりも走査順が後である第3角度位置で計測された距離から前記第2角度位置で前記第2補正手法を用いて計測された距離を差し引いた差分値を算出し、当該差分値が第4所定値を上回って且つ負の値である場合、次の周回の前記第2角度位置で用いる距離計測に用いる手法を、前記第2補正手法から前記第1補正手法へ切替える、請求項3から請求項8のいずれか1項に記載の距離測定装置。
  10. 前記距離計測部は、 前記受光信号を第1基準電圧と比較する第1コンパレータと、 前記受光信号を第2基準電圧と比較する第2コンパレータと、 基準パルスと前記第1コンパレータの出力とが入力される第1TDC(time to digital converter)と、 前記基準パルスが入力される第2TDCと、 前記第1コンパレータの出力と前記第2コンパレータの出力の一方を選択して前記第2TDCへ出力するセレクタと、 を有する、請求項3から請求項9のいずれか1項に記載の距離測定装置。
  11. 前記第1角度位置と前記第2角度位置とは、隣接する角度位置である、請求項2から請求項10のいずれか1項に記載の距離測定装置。
  12. 前記距離計測部は、同一周回の前記回転走査における同一角度位置において、前記第1補正手法を用いた距離の計測と、前記第2補正手法を用いた距離の計測と、を行うことが可能であり、 前記距離計測部は、同一角度位置で、前記第1補正手法を用いて計測された距離と、前記第2補正手法を用いて計測された距離と、を比較し、当該比較結果に基づき、前記第2補正手法を用いて計測された距離を計測距離として出力する、請求項1に記載の距離測定装置。
  13. 前記距離計測部は、 前記受光信号を第1基準電圧と比較する第1コンパレータと、 前記受光信号を第2基準電圧と比較する第2コンパレータと、 基準パルスと前記第1コンパレータの出力とが入力される第1TDC(time to digital converter)と、 前記基準パルスと前記第1コンパレータの出力とが入力される第2TDCと、 前記基準パルスと前記第2コンパレータの出力とが入力される第3TDCと、 を有する、請求項12に記載の距離測定装置。
  14. 前記計測対象物は、透光性物体と、当該透光性物体より奥側に位置する物体と、を含む、請求項1から請求項13のいずれか1項に記載の距離測定装置。
  15. 前記計測対象物は、非透光性物体と、当該非透光性物体より奥側に位置する他の非透光性物体と、を含む、請求項1から請求項13のいずれか1項に記載の距離測定装置。
  16. 前記第1補正手法は、前記立上りが第1閾値と交わるタイミングと、前記立下りが前記第1閾値と交わるタイミングとの間の時間に基づいて補正を行うパルス幅補正であり、 前記第2補正手法は、前記立上りまたは前記立下りが前記第1閾値、第2閾値とそれぞれ交わるタイミング間の時間に基づいて補正を行うスルーレート補正である、請求項1から請求項15のいずれか1項に記載の距離測定装置。
JP2020550526A 2018-10-05 2019-10-03 距離測定装置 Pending JPWO2020071465A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018190068 2018-10-05
JP2018190068 2018-10-05
PCT/JP2019/039044 WO2020071465A1 (ja) 2018-10-05 2019-10-03 距離測定装置

Publications (1)

Publication Number Publication Date
JPWO2020071465A1 true JPWO2020071465A1 (ja) 2021-09-02

Family

ID=70055802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020550526A Pending JPWO2020071465A1 (ja) 2018-10-05 2019-10-03 距離測定装置

Country Status (2)

Country Link
JP (1) JPWO2020071465A1 (ja)
WO (1) WO2020071465A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434119B2 (ja) * 2020-09-11 2024-02-20 株式会社東芝 距離計測装置
WO2023281802A1 (ja) * 2021-07-06 2023-01-12 ソニーグループ株式会社 信号処理装置および信号処理方法
WO2023190278A1 (ja) * 2022-04-01 2023-10-05 ソニーセミコンダクタソリューションズ株式会社 光検出装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6054994B2 (ja) * 2015-01-29 2016-12-27 シャープ株式会社 距離測定装置
JP2017053833A (ja) * 2015-09-10 2017-03-16 ソニー株式会社 補正装置、補正方法および測距装置
CN106054205A (zh) * 2016-08-05 2016-10-26 上海思岚科技有限公司 一种激光测距装置及其激光测距方法
US10962647B2 (en) * 2016-11-30 2021-03-30 Yujin Robot Co., Ltd. Lidar apparatus based on time of flight and moving object
CN107688185A (zh) * 2017-06-05 2018-02-13 罗印龙 一种激光测距装置及其测距方法
JP7210915B2 (ja) * 2017-11-17 2023-01-24 株式会社リコー 距離測定装置、移動体装置及び距離測定方法
WO2019181692A1 (ja) * 2018-03-19 2019-09-26 日本電産株式会社 距離測定装置および移動体
WO2019181691A1 (ja) * 2018-03-19 2019-09-26 日本電産株式会社 距離測定装置および移動体

Also Published As

Publication number Publication date
WO2020071465A1 (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
US9046599B2 (en) Object detection apparatus and method
JPWO2020071465A1 (ja) 距離測定装置
US20160209499A1 (en) Object detection device, sensing device, movable body device, and object detection method
JP2018004426A (ja) 物体検出装置、センシング装置及び移動体装置
EP3786668A1 (en) High definition lidar system
JP2018077071A (ja) 測距装置、監視カメラ、3次元計測装置、移動体、ロボット、光源駆動条件設定方法及び測距方法
JPWO2019064750A1 (ja) 距離測定装置、および移動体
US20230133767A1 (en) Lidar device and method for operating same
JP7210915B2 (ja) 距離測定装置、移動体装置及び距離測定方法
JP2006349694A (ja) 物体検知装置および方法
EP3884301A1 (en) Context aware real-time power adjustment for steerable lidar
JP2017026535A (ja) 障害物判定装置及び障害物判定方法
JP4890928B2 (ja) レーダ装置
WO2018173595A1 (ja) 移動装置
KR102595870B1 (ko) 초소형 라이다 센서
US20240053448A1 (en) Laser Detection Apparatus and Control Method Thereof, Control Apparatus, and Terminal
WO2020195333A1 (ja) 距離計測回路、測距装置および移動体
WO2018173594A1 (ja) 距離測定装置、および搬送車
WO2020045445A1 (ja) 距離測定装置、距離測定装置群、および距離測定装置システム
WO2019181691A1 (ja) 距離測定装置および移動体
WO2019181692A1 (ja) 距離測定装置および移動体
WO2019146440A1 (ja) 距離測定装置、および移動体
WO2019058678A1 (ja) 距離測定装置及びそれを備えた移動体
JP2019109193A (ja) 距離測定装置、移動体装置及び距離測定方法
WO2020045474A1 (ja) センサユニット、移動体