WO2019146440A1 - 距離測定装置、および移動体 - Google Patents

距離測定装置、および移動体 Download PDF

Info

Publication number
WO2019146440A1
WO2019146440A1 PCT/JP2019/000847 JP2019000847W WO2019146440A1 WO 2019146440 A1 WO2019146440 A1 WO 2019146440A1 JP 2019000847 W JP2019000847 W JP 2019000847W WO 2019146440 A1 WO2019146440 A1 WO 2019146440A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
reflected
projection
intensity
Prior art date
Application number
PCT/JP2019/000847
Other languages
English (en)
French (fr)
Inventor
智浩 江川
石丸 裕
佐伯 哲夫
岡本 修治
仁志 直江
和穂 江川
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019146440A1 publication Critical patent/WO2019146440A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present invention relates to a distance measuring device and a moving body.
  • Patent Document 1 discloses the following laser sensor.
  • the laser sensor of Patent Document 1 includes a light emitting unit, a light receiving unit, a polarization mirror, a scanning mechanism, and a light receiving lens.
  • the scanning mechanism has a motor installed in the upper casing.
  • the polarization mirror is mounted on the rotation axis at an angle to the rotation axis of the motor.
  • a light emitting unit and a light receiving unit are disposed coaxially with the rotational axis of the motor.
  • the measurement light output from the light emitting unit is reflected by the polarization mirror, transmitted through the optical window provided in the upper casing, and scanned toward the monitoring area.
  • the reflected light with respect to the measurement light is incident on the polarization mirror through the optical window, and is condensed toward the light receiving unit by the light receiving lens.
  • the light signal is converted into an electrical signal by the light receiving unit and sent to the signal processing unit.
  • the distance from the laser sensor to the position of the object is calculated based on the time difference from the light emission timing of the light emitting unit to the detection timing of the reflected light received by the light receiving unit.
  • the signal processing unit includes a distance calculation unit that calculates a distance, and a correction data storage unit that stores correction data for correcting operation errors due to variations in sensor components such as a light receiving unit. And a correction processing unit that corrects the calculation result by the distance calculation unit based on the correction data.
  • a distance calculation unit that calculates a distance
  • a correction data storage unit that stores correction data for correcting operation errors due to variations in sensor components such as a light receiving unit.
  • a correction processing unit that corrects the calculation result by the distance calculation unit based on the correction data.
  • Patent Document 1 since the measurement light can not be emitted to the outside in the scanning range in which the reflecting member is located, there is a problem that distance measurement can not be performed in the range in which the measurement light can not be emitted.
  • the present invention has an object to provide a distance measuring device capable of performing high precision and wide distance measurement.
  • An exemplary distance measuring device includes a light emitting unit that includes a light emitting unit and performs rotational scanning with projection light, a light transmitting unit that transmits the projection light, a light receiving unit, and the emission of the projection light
  • a distance measuring unit that measures a distance to a measurement object based on light reception by the light receiving unit; and a light receiving intensity signal output from the light receiving unit that receives the reflected light reflected by the light transmitting unit; And an intensity adjusting unit that adjusts the light emission intensity.
  • the exemplary distance measurement device of the present invention it is possible to perform high-accuracy and wide-range distance measurement.
  • FIG. 1 is a schematic side cross-sectional view of the non-coaxial distance measurement apparatus according to the first embodiment.
  • FIG. 2 is a block diagram of the distance measuring device according to the first embodiment.
  • FIG. 3 is a block diagram of the automatic guided vehicle according to the first embodiment.
  • FIG. 4 is a schematic side sectional view of the non-coaxial distance measuring device according to the first embodiment.
  • FIG. 5 is a schematic side sectional view of a non-coaxial distance measuring device according to a comparative example.
  • FIG. 6 is a schematic side sectional view of a non-coaxial distance measuring device according to a comparative example.
  • FIG. 7 is a schematic side sectional view of a coaxial type distance measuring device according to a second embodiment.
  • FIG. 1 is a schematic side cross-sectional view of the non-coaxial distance measurement apparatus according to the first embodiment.
  • FIG. 2 is a block diagram of the distance measuring device according to the first embodiment.
  • FIG. 3 is a block diagram of the automatic guided
  • FIG. 8 is a schematic side sectional view of a coaxial type distance measuring device according to a second embodiment.
  • FIG. 9 is a schematic side cross-sectional view of a coaxial distance measuring device according to a comparative example.
  • FIG. 10 is a schematic side sectional view of a coaxial type distance measuring device according to a comparative example.
  • FIG. 11 is a flowchart of an example of the control of the light emission intensity of the LD element in consideration of the contamination of the light transmission part.
  • FIG. 12 is a graph showing an example of the relationship between the reflected light intensity at the light transmission part and the adjustment gain.
  • FIG. 13 is a graph showing an example of the distribution of the reflected light intensity in the light transmission part according to the rotational angle position.
  • the distance measuring device is configured as a laser range finder.
  • FIG. 1 is a schematic side sectional view of the non-coaxial distance measurement device 15 according to the first embodiment.
  • the distance measuring device 15 configured as a laser range finder includes an LD (laser diode) element 1, a collimator lens 2, a light projecting mirror 3, a holder 4, a light receiving lens 5, a light receiving mirror 6, and a wavelength filter 7. , The light receiving element 8, the motor 9, and the housing 10.
  • LD laser diode
  • the housing 10 has a cylindrical shape with a lid extending in the vertical direction, has a top surface portion 10A at the upper end, and has a bottom portion 10B at the lower end.
  • Various configurations including the LD element 1 are accommodated in the internal space of the housing 10.
  • the LD element 1 is provided on the lower surface of the top surface portion 10A and emits, for example, laser light in the infrared region downward.
  • the collimator lens 2 is disposed below the LD element 1.
  • the collimator lens 2 emits the laser beam emitted from the LD element 1 downward as parallel light.
  • a light projecting mirror 3 is disposed below the collimating lens 2.
  • the optical axis of the LD element 1 and the optical axis of the collimator lens 2 are located on the rotation axis J of the motor 9.
  • the projection mirror 3 is fixed to the holder 4.
  • the holder 4 is fixed to the shaft 91 of the motor 9 and is rotationally driven by the motor 9 around the rotation axis J.
  • the projection mirror 3 is also rotationally driven around the rotation axis J.
  • the light projection mirror 3 reflects the laser beam emitted from the collimator lens 2 and emits the reflected laser beam as the projection light L1. Since the light projection mirror 3 is rotationally driven as described above, the projection light L1 is emitted while changing the emission direction in the range of 360 ° around the rotation axis J.
  • the housing 10 has a light transmission unit 101 in the middle of the vertical direction.
  • the light transmitting portion 101 is a cover member made of, for example, a translucent resin (polycarbonate or the like).
  • the light transmitting portion 101 has an annular shape centered on the rotation axis J in a cross section viewed in the rotation axis J direction. The diameter of the annular shape becomes larger as it goes downward. Therefore, as shown in FIG. 1, the side cross section of the light transmission part 101 is inclined in the vertical direction.
  • the projection light L1 reflected and emitted by the light projection mirror 3 is transmitted through the light transmission portion 101 and emitted to the outside.
  • the projection light L1 can be transmitted through the light transmission unit 101 and emitted around the entire rotation axis J of 360 °.
  • the light receiving mirror 6 is fixed to the holder 4 at a position below the light projecting mirror 3.
  • the light receiving lens 5 is fixed to the side surface of the holder 4 in the circumferential direction.
  • the wavelength filter 7 is located below the light receiving mirror 6 and is fixed to the holder 4.
  • the light receiving element 8 is located below the wavelength filter 7 and is fixed to the holder 4.
  • the projection light L1 emitted from the light transmitting unit 101 is reflected by the measurement object located outside and becomes scattered light. A part of the scattered light passes through the light transmitting portion 101 as incident light L 2 and is incident on the light receiving lens 5.
  • the incident light L 2 collected and emitted by the light receiving lens 5 is incident on the light receiving mirror 6 and is reflected downward by the light receiving mirror 6.
  • the reflected incident light L 2 passes through the wavelength filter 7 and is received by the light receiving element 8.
  • the wavelength filter 7 transmits light in the infrared region.
  • the light receiving unit 8 converts the received light into an electrical signal by photoelectric conversion.
  • the light receiving lens 5, the light receiving mirror 6, the wavelength filter 7, and the light receiving element 8 are rotationally driven together with the light projecting mirror 3.
  • a part of the projection light L1 reflected by the light projection mirror 3 and emitted from the light transmission part 101 to the outside and reflected by the measurement object is received as the incident light L2 in the same direction as the light projection mirror 3
  • the light is received by the lens 5.
  • the motor 9 is connected to a substrate (not shown) by a wire (not shown), and is rotationally driven by being energized from the substrate.
  • the motor 9 rotates the holder 4 at a predetermined rotational speed.
  • the holder 4 is rotationally driven at about 3000 rpm.
  • FIG. 2 is a block diagram showing the electrical configuration of the distance measuring device 15. As shown in FIG.
  • the distance measuring device 15 includes a laser emitting unit 151, a laser receiving unit 152, a distance measuring unit 153, an arithmetic processing unit 154, a data communication interface 155, a driving unit 156, and a motor 9. And.
  • the laser light emitting unit 151 has an LD element 1 (FIG. 1), an LD driver (not shown) for driving the LD element 1 and the like.
  • the laser emitting unit 151, the light projecting mirror 3, the holder 4, and the motor 9 constitute a light emitting unit.
  • the light projector performs rotational scanning with the projection light L1.
  • the laser light receiving unit 152 includes a light receiving element 8 and a comparator (not shown) that receives an electrical signal output from the light receiving element 8.
  • the comparator compares the level of the electrical signal with a predetermined threshold level, and outputs a measurement pulse which is set to High level or Low level according to the comparison result.
  • the distance measuring unit 153 receives the measurement pulse output from the laser light receiving unit 152.
  • the laser emission unit 151 emits a pulse-like laser beam using the laser emission pulse output from the arithmetic processing unit 154 as a trigger.
  • the projection light L1 is emitted.
  • the incident light L2 is received by the laser light receiving unit 152.
  • a measurement pulse is generated according to the amount of light received by the laser light receiving unit 152, and the measurement pulse is output to the distance measurement unit 153.
  • the reference pulse output together with the laser emission pulse by the arithmetic processing unit 154 is input to the distance measuring unit 153.
  • the distance measuring unit 153 can acquire the distance to the measurement object OJ by measuring the elapsed time from the rising timing of the reference pulse to the rising timing of the measurement pulse. That is, the distance measuring unit 153 measures the distance by the so-called TOF (Time Of Flight) method.
  • the measurement result of the distance is output from the distance measurement unit 153 as measurement data.
  • the drive unit 156 rotationally controls the motor 9.
  • the motor 9 is rotationally driven by the drive unit 156 at a predetermined rotational speed.
  • the arithmetic processing unit 154 outputs a laser emission pulse each time the motor 9 rotates by a predetermined unit angle. Thereby, whenever the holder 4 and the light projecting mirror 3 rotate by a predetermined unit angle, the laser light emitting unit 151 emits light, and the projection light L1 is emitted. For example, pulsed projection light L1 is projected every 1 °.
  • Arithmetic processing unit 154 is based on the orthogonal coordinate system with reference to distance measuring device 15 based on the rotational angle position of motor 9 at the timing when the laser emission pulse is output and the measurement data obtained corresponding to the laser emission pulse. Generate location information for That is, based on the rotation angle position of the light projection mirror 3 and the measured distance, the position of the measurement object OJ is acquired. The acquired position information is output from the arithmetic processing unit 154 as measurement distance data. As described above, since the projection light L1 can be transmitted through the light transmission part 101 around 360 ° and emitted, the distance of the measurement object OJ by scanning with the projection light L1 in the rotational scanning range of the entire circumference Images can be acquired.
  • the measured distance data output from the arithmetic processing unit 154 is transmitted to the unmanned transfer vehicle 200 shown in FIG. 3 described later via the data communication interface 155.
  • FIG. 3 is a block diagram showing the electrical configuration of the automatic guided vehicle 200.
  • the unmanned transfer vehicle 200 is an application for transporting luggage, and is also referred to as an AGV (Automatic Guided Vehicle).
  • the unmanned transfer vehicle 200 has a distance measurement device 15, a control unit 201, a drive unit 202, a communication unit 203, and a power button 204.
  • the drive unit 202 includes a motor driver (not shown), a drive motor (not shown), and the like.
  • the drive motor drives the drive wheels of the AGV 200.
  • the control unit 201 issues commands to the drive unit 202 and controls them.
  • the drive unit 202 drives and controls the rotational speed and rotational direction of the drive wheel. Thereby, the traveling of the unmanned carrier 200 is controlled.
  • the control unit 201 communicates with a tablet terminal (not shown) via the communication unit 203.
  • the control unit 201 can receive an operation signal corresponding to the content operated on the tablet terminal via the communication unit 203.
  • the power button 204 is an operation button for turning on the unmanned transfer vehicle 200 and activating it.
  • the control unit 201 receives the measured distance data output from the distance measuring device 15.
  • the control unit 201 can create map information based on the measured distance data.
  • the map information is information generated to perform self-position identification for specifying the position of the unmanned carrier 200, and is generated as position information of a stationary object at a place where the unmanned carrier 200 travels.
  • the stationary object is a wall of the warehouse, a shelf arranged in the warehouse, or the like.
  • the map information is generated, for example, when a manual operation of the AGV 200 is performed by a tablet terminal.
  • an operation signal corresponding to the operation of, for example, a joystick of the tablet terminal is transmitted to the control unit 201 via the communication unit 203, and the control unit 201 instructs the drive unit 202 according to the operation signal.
  • the traveling control of the carrier 200 is performed.
  • the control unit 201 specifies the position of the measurement object at the location where the unmanned transfer vehicle 200 travels as map information. .
  • the position of the automatic guided vehicle 200 is specified based on the drive information of the drive unit 202.
  • the map information generated as described above is stored by the storage unit 201A of the control unit 201.
  • the control unit 201 compares the measured distance data input from the distance measurement device 15 with the map information stored in advance in the storage unit 201A to identify the position of the unmanned carrier 200 itself. Do. Thus, the control unit 201 can perform autonomous travel control of the unmanned transfer vehicle 200 along a predetermined route.
  • emission intensity control of the projection light L1 performed in the distance measurement device 15 of the present embodiment will be described.
  • description will be given based on the drawing of distance measurement 15 in a state of being shifted by 180 ° from the rotational angle position of FIG. 1.
  • the light emission intensity of the LD element 1 changes even with the same drive current value due to a temperature change or the like. For example, the higher the temperature, the lower the light emission intensity of the LD element 1.
  • the intensity of the projection light L1 transmitted through the light transmitting portion 101 changes and the rising speed of the electrical signal based on the light reception by the light receiving element 8 changes.
  • the rise timing of the measurement pulse output from the aforementioned comparator included in the laser light receiving unit 152 changes. Therefore, even if the distance to the object to be measured is actually the same, the distance to be measured changes, which affects the accuracy of the measurement distance. So, in this embodiment, even if temperature change etc. arise, control which makes intensity of projection light L1 fixed is performed.
  • a part of the light reflected by the light projection mirror 3 is scattered and reflected by the light transmitting portion 101, and the reflected light L 3 is emitted to the inside of the housing 10. That is, the light reflected by the light projection mirror 3 is divided into the projection light L1 and the reflection light L3 in the light transmission part 101.
  • the light transmission part 101 is made of, for example, polycarbonate
  • 90% of the light reflected by the light projection mirror 3 is the projection light L1.
  • the reflected light L 3 is received and condensed by the light receiving lens 5, is incident on the light receiving mirror 6 side, is reflected by the light receiving mirror 6, and is received by the light receiving element 8.
  • the laser light receiving section 152 Based on light reception by the light receiving element 8, as shown in FIG. 2, the laser light receiving section 152 outputs a light reception intensity signal.
  • the LD intensity adjustment unit 154A included in the arithmetic processing unit 154 outputs, to the laser emission unit 151, an LD adjustment signal that makes the amount of light received by the light receiving element 8, ie, the intensity of the reflected light L3, constant based on the light reception intensity signal. . Thereby, the drive current of the LD element 1 is adjusted, and the light emission intensity of the LD element 1 is adjusted.
  • the intensity of the reflected light L3 is controlled to be constant, so the intensity of the projection light L1 emitted from the light transmitting portion 101 can be controlled to be constant. . Therefore, the accuracy of distance measurement can be improved.
  • the arithmetic processing unit 154 adjusts the light emission intensity of the LD element 1 by the LD adjustment signal based on the light emitted from the laser light emitting unit 151 at, for example, a predetermined one rotation angle position in the 360.degree. You may In this case, the distance measurement to the measurement object based on the projection light L1 is performed together with the light emission intensity adjustment of the LD element 1 at the one point, and only the distance measurement at rotational angle positions other than the one point in the rotational scanning range. You may
  • the arithmetic processing unit 154 generates an LD adjustment signal of the LD element 1 based on the light emitted from the laser emission unit 151 for each predetermined unit angle (for example, 1 °) in the 360 ° rotational scan range.
  • the emission intensity may be adjusted.
  • the light emission intensity adjustment of the LD element 1 may be performed, for example, in each cycle of rotational scanning, or may be performed at intervals of a predetermined number of cycles.
  • the light transmitting portion 101 is a cross section viewed in the direction of the rotation axis J, and has an annular shape centered on the rotation axis J, so that the amount of light received by the light receiving element 8 of the reflected light L3 is constant over 360 °. Become. Therefore, the target value used when adjusting the light emission intensity of the LD element 1 based on the light reception intensity signal can be made constant over the entire circumference, and the adjustment control becomes easy.
  • the position of the light receiving element 8 is adjusted to the light collecting position by the light receiving lens 5 when the distance measuring device 15 is assembled, thereby suppressing the variation in the light receiving amount among the products and projecting by the light emission intensity adjustment of the LD element 1 Variations in the intensity of the light L1 can be suppressed.
  • FIG. 5 is a schematic side cross-sectional view of a distance measuring apparatus 1501 according to a comparative example for comparison with the distance measuring apparatus 15 of the present embodiment.
  • the casing 1000 has a light transmitting portion 1010 having a shape in which a part of portions is broken in the circumferential direction.
  • the distance measuring device 1501 has a reflecting member 1501A disposed at a position interrupted in the circumferential direction of the light transmitting portion 1010.
  • the reflecting member 1501A is not disposed unlike in FIG. 6, and the projected light L1 is transmitted even at the same rotational position as FIG. It can be emitted through the portion 101. That is, in the present embodiment, the light emission intensity of the LD element 1 can be adjusted, and the distance measurement can be performed in a 360 ° rotation scan range. Therefore, according to the distance measuring device 15, it is possible to perform distance measurement with high accuracy and wide range.
  • FIG. 7 is a schematic side sectional view of a coaxial type distance measuring device 25 according to a second embodiment.
  • the distance measuring device 25 includes a motor 16, a light emitting / receiving mirror 17, a mirror 18, a collimator lens 19, an LD element 20, a light receiving lens 21, a light receiving element 22, and a housing 23.
  • the housing 23 has a configuration similar to that of the housing 10 described above, and has a light transmitting portion 231 that is similar to the light transmitting portion 101 described above.
  • the internal space of the housing 23 accommodates various configurations including the motor 16.
  • the motor 16 is installed on the lower surface of the top surface 23 A of the housing 23.
  • the motor 16 rotationally drives the shaft 161 projecting downward about the rotation axis J.
  • the light emitting / receiving mirror 17 is fixed to the shaft 161 and is rotationally driven around the rotation axis J by the motor 16.
  • a mirror 18 is disposed below the light emitting / receiving mirror 17.
  • the collimator lens 19 is disposed at a position radially separated from the mirror 18.
  • the LD element 20 is disposed on the optical axis of the collimator lens 19.
  • the laser beam emitted from the LD element 20 is condensed by the collimator lens 19 and is incident on the mirror 18, is reflected by the mirror 18, is incident on the light emitting / receiving mirror 17, and is reflected by the light emitting / receiving mirror 17
  • a projection light L1 the light is transmitted through the light transmission portion 231 and emitted to the outside.
  • the light transmitting portion 231 can transmit and emit the projection light L1 all around 360 °.
  • a light receiving lens 21 is disposed below the mirror 18.
  • the light receiving element 22 is disposed below the light receiving lens 21.
  • a part of the light which is scattered and reflected by the object to be measured by the projection light L1 is transmitted as the incident light L2 from the outside through the light transmitting portion 231, is incident on the light emitting / receiving mirror 17, and is reflected by the light emitting / receiving mirror 17
  • the light enters the light receiving lens 21 in a range other than the range blocked by the mirror 18, is condensed by the light receiving lens 21, and is received by the light receiving element 22.
  • the electrical configuration of the distance measuring device 25 is the same as the configuration shown in FIG. 2, the laser light receiving unit outputs a measurement pulse based on the light received by the light receiving element 22, and the distance measuring unit outputs a measurement pulse. Based on the distance data is generated. Thus, the distance measuring device 25 performs distance measurement.
  • FIG. 8 is a side cross-sectional view of the distance measurement 25 in a state of being shifted by 180 ° from the rotational angle position of FIG.
  • a part of the light emitted from the LD element 20 and reflected by the light emitting / receiving mirror 17 is scattered and reflected by the light transmitting portion 231 and is reflected on the light emitting / receiving mirror 17 as the reflected light L3.
  • the light is incident, is reflected by the light emitting / receiving mirror 17, is condensed by the light receiving lens 21, and is received by the light receiving element 22.
  • the laser light receiving unit outputs a light receiving intensity signal based on the light received by the light receiving element 22, and the LD intensity adjusting unit laser emits a LD adjusting signal that makes the intensity of the reflected light L3 constant based on the light receiving intensity signal. Output to the unit.
  • the drive current of the LD element 20 is adjusted, and the light emission intensity of the LD element 20 is adjusted. Therefore, even when the light emission intensity of the LD element 20 changes due to a temperature change or the like, the intensity of the projection light L1 is controlled to be constant. That is, the accuracy of distance measurement can be improved.
  • FIG. 9 is a schematic side sectional view of a distance measuring device 2501 according to a comparative example for comparing with the distance measuring device 25 of the present embodiment.
  • the housing 2300 has a light transmitting portion 2310 having a shape in which a part of portions is broken in the circumferential direction.
  • the distance measuring device 2501 has a reflecting member 2501A disposed at a position interrupted in the circumferential direction of the light transmitting portion 2310.
  • the light reflected by the light emitting / receiving mirror 17 is directed to the reflecting member 2501A according to the rotational position of the light emitting / receiving mirror 17 by the motor 16, the light reflected by the reflecting member 2501A Is reflected by the light emitting / receiving mirror 17, received and condensed by the light receiving lens 21, and received by the light receiving element 22.
  • the light emission intensity of the LD element 20 can be adjusted based on the amount of light received by the light receiving element 22.
  • the arrangement of the reflecting member 2501A produces a range in which the projection light L1 can not be emitted, and the range of distance measurement is limited.
  • the reflecting member 2501A is not disposed unlike in FIG. 10, and the projection light L1 transmits light even at the same rotational position as FIG. The light can be emitted through the portion 231. That is, in the present embodiment, the light emission intensity of the LD element 20 can be adjusted, and the distance measurement can be performed in the 360 ° rotation scan range. Therefore, according to the distance measurement device 25, it is possible to perform high-accuracy and wide-range distance measurement.
  • the distance measuring device of the present embodiment can also adjust the light emission intensity of the LD element in consideration of the occurrence of contamination in the light transmission part.
  • it will be described based on the distance measurement device 15 according to the first embodiment described above.
  • FIG. 11 is a flowchart of an example of the control of the light emission intensity of the LD element in consideration of the contamination of the light transmission part.
  • the LD intensity adjustment unit 154A causes the laser light emitting unit 151 to emit light from the laser light emitting unit 151 in the 360 ° rotational scanning range, and the light reception element 8 receives the reflected light L3. Acquire a light reception intensity signal. That is, the LD intensity adjustment unit 154A acquires the intensity of the reflected light L3 in the entire circumference. At this time, for example, it is possible to obtain the intensity distribution of the reflected light L3 according to the rotational angle position as shown in FIG.
  • step S2 the LD intensity adjustment unit 154A determines whether the peak value (the difference between the maximum value and the minimum value) of the acquired light reception intensity signal is less than or equal to a predetermined allowable value, that is, reflected light L3. It is determined whether the change width of the strength of the is within the allowable range.
  • a predetermined allowable value that is, reflected light L3.
  • the occurrence of contamination in a certain rotation angle range ⁇ 1 causes the intensity of the reflected light L3 to increase, and the peak peak value PP of the intensity of the reflected light L3 exceeds the allowable value.
  • the light transmitting portion may be scratched. Even in the case of a scratch, the reflectance in the light transmission part is high, so that the variation of the intensity of the reflected light L3 is large. That is, in the present embodiment, not only dirt but also scratches can be detected.
  • step S2 If it is determined in step S2 that the peak value is equal to or less than the allowable value (Y in step S2), it is determined that no contamination has occurred in the light transmitting portion 101, and the process proceeds to step S3.
  • the LD intensity adjustment unit 154A causes the laser emission unit 151 to emit light from the LD element 1 at a predetermined rotation angle position. Then, in step S4, the LD intensity adjustment unit 154A acquires a light reception intensity signal based on the reflected light L3, outputs the LD adjustment signal to the laser light emission unit 151, and adjusts the light emission intensity of the LD element 1.
  • the light emission intensity adjustment for 360 ° all around is representatively performed. Can reduce the load of adjustment processing.
  • step S5 the LD intensity adjustment unit 154A causes the laser emission unit 151 to emit light from the LD element 1 at the rotation angle position where no contamination occurs.
  • step S6 the LD intensity adjustment unit 154A acquires a light reception intensity signal based on the reflected light L3, outputs the LD adjustment signal to the laser emission unit 151, and adjusts the emission intensity of the LD element 1.
  • step S7 the LD intensity adjusting unit 154A causes the laser emitting unit 151 to emit the LD element 1 at the emission intensity after adjustment at the rotational angle position where the contamination occurs.
  • step S8 the LD intensity adjustment unit 154A acquires a light reception intensity signal based on the reflected light L3 and outputs the LD adjustment signal to the laser light emission unit 151, and the LD element 1 with respect to the rotation angle position where contamination occurs. Adjust the light emission intensity of
  • the LD intensity adjustment unit 154A has, for example, the relationship between the intensity of the reflected light L3 and the adjustment gain of the light emission intensity of the LD element 1 as shown in FIG. In FIG. 12, as the intensity of the reflected light L3 is higher, the adjustment gain is larger.
  • the LD intensity adjustment unit 154A sets the adjustment gain according to the light reception intensity signal based on this relationship. As a result, the projection light L1 is adjusted to a higher intensity at the portion where the contamination occurs in the light transmitting portion 101, so that it is possible to suppress a decrease in the emission intensity of the projection light L1 transmitted by the contamination. That is, the intensity of the projection light L1 can be made constant regardless of the contamination.
  • the distance measuring device (15 or the like) of the present embodiment includes the light emitting unit including the light emitting unit (151 or the like) and performing rotational scanning with the projection light (L1); A distance measurement unit (153 for measuring the distance to the measurement object based on the light transmission unit (101 etc.) that transmits light, the light reception unit (152 etc.), and the emission of the projection light and the light reception by the light reception unit. And an intensity adjusting unit (154A) for adjusting the light emission intensity of the light emitting unit based on the light receiving intensity signal output from the light receiving unit that has received the reflected light (L3) reflected by the light transmitting unit.
  • the light transmitting portion can be configured to be performed in the circumferential range. That is, it becomes possible to perform high precision and wide range measurement.
  • the light projection unit reflects a light projection mirror (3 or the like) that reflects the projection light (L1) toward the light transmission unit (101 or the like), and a motor (9 or the like) that rotationally drives the light projection mirror
  • the light transmitting portion has an annular shape centered on the rotation axis in a cross section viewed in the direction of the rotation axis (J) of the motor.
  • the amount of light received by the light receiving portion to receive the reflected light reflected by the light transmitting portion can be made constant over the entire 360 ° of the rotational scan, and the intensity of light emitted from the light transmitting portion can be made constant. It becomes easy to control.
  • the intensity adjusting unit (154A or the like) is configured to receive the light based on the light reception intensity signal output from the light receiving unit (152 or the like) that receives the reflected light (L3) reflected by the light transmitting unit (101 or the like).
  • the light emission intensity of the light emitting portion (such as 151) is adjusted based on the light receiving intensity signal output from the light receiving portion that received the reflected light reflected by the soiled portion in the light transmitting portion. .
  • the intensity adjusting unit (154A or the like) is configured to receive the light based on the light reception intensity signal output from the light receiving unit (152 or the like) that receives the reflected light (L3) reflected by the light transmitting unit (101 or the like).
  • the projection light (L1) is emitted from the light emitting portion at one rotation angle position on the entire circumference, and the reflected light is reflected by the light transmitting portion
  • the light emission intensity of the light emitting unit (151 or the like) is adjusted based on the light reception intensity signal output from the light receiving unit that has received light.
  • the movable body (20) includes the measurement distance data output unit (154, 155, etc.) for outputting measurement distance data based on the distance measurement result by the distance measurement unit (153, etc.)
  • a distance measuring device (15 or the like) of any configuration is provided.
  • the mobile object can perform control effectively by using the measurement distance data of a wide range at 360 ° with high accuracy by the distance measurement device.
  • an unmanned transport vehicle has been described as an example of the moving body.
  • the moving body may be applied to devices other than transport applications such as a cleaning robot and a monitoring robot.
  • the present invention can be used, for example, in an automatic guided vehicle for carrying a load.
  • Top surface part, 231 light transmitting part
  • 1501 distance measuring device
  • 1000 housing
  • 1010 light transmitting part
  • 1501A reflecting member
  • 2501 distance measuring device
  • 2300 housing
  • 2310 ... light transmitting portion
  • 2501 A ... reflecting member
  • L1 projection light
  • L2 ... incident light
  • L3 ... reflected light
  • J rotation axis
  • OJ ... Measurement object

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【解決手段】発光部を含んで投射光による回転走査を行う投光部と、前記投射光を透過する光透過部と、受光部と、前記投射光の出射と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、前記光透過部で反射した反射光を受光した前記受光部から出力される受光強度信号に基づき前記発光部の発光強度を調整する強度調整部と、を備える距離測定装置としている。

Description

距離測定装置、および移動体
本発明は、距離測定装置、および移動体に関する。
従来、距離測定装置が種々開発されている。例えば、特許文献1には、次のようなレーザセンサが開示される。 
特許文献1のレーザセンサは、発光部と、受光部と、偏光ミラーと、走査機構と、受光レンズと、を備える。走査機構は、上部ケーシングに設置されるモータを有する。偏光ミラーは、モータの回転軸に対して傾斜して回転軸に取り付けられる。モータの回転軸と同軸心上に発光部と受光部が配置される。 
発光部から出力された測定光は、偏光ミラーで反射され、上部ケーシングに設けられる光学窓を透過し、監視領域へ向けて走査される。測定光に対する反射光は、光学窓を介して偏光ミラーに入射し、受光レンズによって受光部に向けて集光される。受光部で光信号が電気信号に変換されて信号処理部へ送られる。 
信号処理部において、発光部の発光時期から受光部で受光された反射光の検知時期までの時間差に基づき、レーザセンサから物体の位置までの距離が算出される。
特開2015-230527号公報
上記特許文献1では、信号処理部は、距離を算出する距離演算部と、受光部等のセンサ構成部材のバラツキに起因する演算誤差を補正するための補正データが格納された補正データ記憶部と、距離演算部による演算結果を補正データに基づいて補正する補正処理部と、を有する。偏光ミラーで回転走査される測定光が、上部ケーシングのうち光学窓が途切れる基準位置を走査する際に、基準位置に配置された反射部材からの反射光に基づいて演算された距離測定値が予め設定された基準値となるように補正データが定められる。 
しかしながら、上記特許文献1では、反射部材が位置する走査範囲では、測定光を外部へ出射することができないので、出射できない範囲で距離測定が行えない問題があった。 
上記状況に鑑み、本発明は、高精度且つ広範囲な距離測定を行うことが可能となる距離測定装置を提供することを目的とする。
本発明の例示的な距離測定装置は、発光部を含んで投射光による回転走査を行う投光部と、前記投射光を透過する光透過部と、受光部と、前記投射光の出射と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、前記光透過部で反射した反射光を受光した前記受光部から出力される受光強度信号に基づき前記発光部の発光強度を調整する強度調整部と、を備える。
本発明の例示的な距離測定装置によれば、高精度且つ広範囲な距離測定を行うことが可能となる。
図1は、第1実施形態に係る非同軸型の距離測定装置の概略側面断面図である。 図2は、第1実施形態に係る距離測定装置のブロック図である。 図3は、第1実施形態に係る無人搬送車のブロック図である。 図4は、第1実施形態に係る非同軸型の距離測定装置の概略側面断面図である。 図5は、比較例に係る非同軸型の距離測定装置の概略側面断面図である。 図6は、比較例に係る非同軸型の距離測定装置の概略側面断面図である。 図7は、第2実施形態に係る同軸型の距離測定装置の概略側面断面図である。 図8は、第2実施形態に係る同軸型の距離測定装置の概略側面断面図である。 図9は、比較例に係る同軸型の距離測定装置の概略側面断面図である。 図10は、比較例に係る同軸型の距離測定装置の概略側面断面図である。 図11は、光透過部の汚れを考慮したLD素子発光強度制御の一例に関するフローチャートである。 図12は、光透過部での反射光強度と調整ゲインとの関係の一例を示すグラフである。 図13は、回転角度位置に応じた光透過部での反射光強度の分布の一例を示すグラフである。
以下に本発明の例示的な実施形態について図面を参照して説明する。ここでは、距離測定装置をレーザレンジファインダーとして構成した例について述べる。 
<1.距離測定装置の構成> 図1は、第1実施形態に係る非同軸型の距離測定装置15の概略側面断面図である。レーザレンジファインダーとして構成される距離測定装置15は、LD(レーザダイオード)素子1と、コリメートレンズ2と、投光ミラー3と、ホルダー4と、受光レンズ5と、受光ミラー6と、波長フィルタ7と、受光素子8と、モータ9と、筐体10と、を有する。 
筐体10は、上下方向に延びる有蓋円筒形状であり、上端に天面部10Aを有し、下端に底部10Bを有する。LD素子1を初めとする各種構成は、筐体10の内部空間に収容される。LD素子1は、天面部10Aの下面に設けられ、例えば赤外領域のレーザ光を下方に出射する。 
コリメートレンズ2は、LD素子1の下方に配置される。コリメートレンズ2は、LD素子1から出射されるレーザ光を平行光として下方に出射する。コリメートレンズ2の下方には、投光ミラー3が配置される。LD素子1の光軸およびコリメートレンズ2の光軸は、モータ9の回転軸J上に位置する。 
投光ミラー3は、ホルダー4に固定される。ホルダー4は、モータ9のシャフト91に固定され、モータ9によって回転軸J周りに回転駆動される。ホルダー4の回転ととともに、投光ミラー3も回転軸J周りに回転駆動される。投光ミラー3は、コリメートレンズ2から出射されるレーザ光を反射して、反射されたレーザ光を投射光L1として出射する。投光ミラー3は上記のように回転駆動されるので、投射光L1は回転軸J周りの360°の範囲で出射方向を変えながら出射される。 
筐体10は上下方向の途中において、光透過部101を有する。光透過部101は、例えば透光性の樹脂(ポリカーボネート等)から構成されるカバー部材である。光透過部101は、回転軸J方向に視た断面で、回転軸Jを中心とした円環形状を有する。円環形状の径は、下方へ向かうほど大きくなる。従って、図1に示すように、光透過部101の側面断面は、上下方向に傾斜する。 
投光ミラー3で反射されて出射される投射光L1は、光透過部101を透過して外部へ出射される。光透過部101の上記構成により、投射光L1は、回転軸J周り360°の全周において光透過部101を透過して出射することが可能である。 
受光ミラー6は、投光ミラー3より下方の位置でホルダー4に固定される。受光レンズ5は、ホルダー4の周方向側面に固定される。波長フィルタ7は、受光ミラー6より下方に位置し、ホルダー4に固定される。受光素子8は、波長フィルタ7より下方に位置し、ホルダー4に固定される。 
光透過部101から出射された投射光L1は、外部に位置する計測対象物で反射して散乱光となる。散乱光の一部は、入射光L2として光透過部101を透過して受光レンズ5に入射される。受光レンズ5で集光されて出射される入射光L2は、受光ミラー6へ入射され、受光ミラー6により下方へ反射される。反射された入射光L2は、波長フィルタ7を透過して受光素子8により受光される。波長フィルタ7は、赤外領域の光を透過させる。受光部8は、受光した光を光電変換により電気信号に変換する。 
モータ9によりホルダー4が回転駆動されると、受光レンズ5、受光ミラー6、波長フィルタ7、および受光素子8は、投光ミラー3とともに回転駆動される。これにより、投光ミラー3で反射されて光透過部101から外部へ出射されて計測対象物で反射した投射光L1の一部は、入射光L2として投光ミラー3と同じ方向を向いた受光レンズ5により受光される。 
モータ9は、不図示の配線によって不図示の基板に接続され、当該基板から通電されることで回転駆動される。モータ9は、ホルダー4を所定回転速度で回転させる。例えば、ホルダー4は、3000rpm程度で回転駆動される。 
<2.距離測定装置の電気的構成> 次に、距離測定装置15の電気的構成について説明する。図2は、距離測定装置15の電気的構成を示すブロック図である。 
図2に示すように、距離測定装置15は、レーザ発光部151と、レーザ受光部152と、距離計測部153と、演算処理部154と、データ通信インタフェース155と、駆動部156と、モータ9と、を有する。 
レーザ発光部151は、LD素子1(図1)と、LD素子1を駆動する不図示のLDドライバなどを有する。レーザ発光部151と、投光ミラー3と、ホルダー4と、モータ9と、から投光部が構成される。当該投光部は、投射光L1による回転走査を行う。 
レーザ受光部152は、受光素子8と、受光素子8から出力される電気信号を受信する不図示のコンパレータなどを有する。当該コンパレータは、上記電気信号のレベルを所定閾値レベルと比較し、比較結果に応じてHighレベルまたはLowレベルとした計測パルスを出力する。 
距離計測部153は、レーザ受光部152から出力される計測パルスを入力される。レーザ発光部151は、演算処理部154から出力されるレーザ発光パルスをトリガとしてパルス状のレーザ光を発光する。このとき、投射光L1が出射される。出射された投射光L1が計測対象物OJにより反射されると、入射光L2がレーザ受光部152により受光される。レーザ受光部152の受光量に応じて計測パルスが生成され、計測パルスが距離計測部153に出力される。 
ここで、距離計測部153には、演算処理部154によりレーザ発光パルスとともに出力される基準パルスが入力される。距離計測部153は、基準パルスの立ち上りタイミングから計測パルスの立ち上りタイミングまでの経過時間を計測することで、計測対象物OJまでの距離を取得することができる。すなわち、距離計測部153は、所謂TOF(Time Of Flight)方式によって距離を計測する。距離の計測結果は計測データとして距離計測部153から出力される。 
駆動部156は、モータ9を回転駆動制御する。モータ9は、駆動部156によって所定の回転速度で回転駆動される。演算処理部154は、モータ9が所定単位角度回転するたびにレーザ発光パルスを出力する。これにより、ホルダー4および投光ミラー3が所定単位角度回転するたびにレーザ発光部151が発光し、投射光L1が出射される。例えば、1°ごとにパルス状の投射光L1が投射される。 
演算処理部154は、レーザ発光パルスを出力したタイミングでのモータ9の回転角度位置と、レーザ発光パルスに対応して得られる計測データに基づいて、距離測定装置15を基準とする直交座標系上の位置情報を生成する。すなわち、投光ミラー3の回転角度位置と計測された距離に基づき、計測対象物OJの位置が取得される。上記取得される位置情報は、測定距離データとして演算処理部154より出力される。先述したように、投射光L1は、光透過部101を360°全周において透過して出射することができるので、全周の回転走査範囲における投射光L1による走査により、計測対象物OJの距離画像を取得することができる。 
演算処理部154から出力された測定距離データは、データ通信インタフェース155を介して後述する図3に示す無人搬送車200側に伝送される。 
<3.無人搬送車の電気的構成> 先述のように距離測定装置15側の電気的構成を説明したが、ここでは、図3を用いて移動体の一例としての無人搬送車200側の電気的構成について説明する。図3は、無人搬送車200の電気的構成を示すブロック図である。無人搬送車200は、荷物を運搬する用途であり
、AGV(Automatic  Guided  Vehicle)とも呼称される。 
図3に示すように、無人搬送車200は、距離測定装置15と、制御部201と、駆動部202と、通信部203と、電源ボタン204と、を有する。 
駆動部202は、不図示のモータドライバと、不図示の駆動モータなどを有する。当該駆動モータは、無人搬送車200の駆動輪を駆動する。制御部201は、駆動部202に対して指令を行い制御する。駆動部202は、上記駆動輪の回転速度および回転方向を駆動制御する。これにより、無人搬送車200の走行が制御される。 
制御部201は、通信部203を介して不図示のタブレット端末と通信を行う。例えば、タブレット端末において操作された内容に応じた操作信号を通信部203を介して制御部201が受信することができる。 
電源ボタン204は、無人搬送車200に電源を投入して起動させるための操作ボタンである。 
制御部201は、距離測定装置15から出力される測定距離データを入力される。制御部201は、測定距離データに基づいて地図情報を作成することが可能である。地図情報とは、無人搬送車200の自己の位置を特定する自己位置同定を行うために生成される情報であり、無人搬送車200が走行する場所における静止物の位置情報として生成される。例えば、無人搬送車200が走行する場所が倉庫である場合は、静止物は倉庫の壁、倉庫内に配列された棚などである。 
地図情報は、例えばタブレット端末により無人搬送車200の手動操作が行われる際に生成される。この場合、タブレット端末の例えばジョイスティックの操作に応じた操作信号が通信部203を介して制御部201に送信されることで、制御部201は操作信号に応じて駆動部202に指令を行い、無人搬送車200を走行制御する。このとき、制御部201は、距離測定装置15から入力される測定距離データと、無人搬送車200の位置に基づき、無人搬送車200が走行する場所における計測対象物の位置を地図情報として特定する。無人搬送車200の位置は、駆動部202の駆動情報に基づき特定される。 
上記のように生成された地図情報は、制御部201の記憶部201Aにより記憶される。制御部201は、距離測定装置15から入力される測定距離データと、記憶部201Aに予め記憶された地図情報とを比較することにより、無人搬送車200の自己の位置を特定する自己位置同定を行う。これにより、制御部201は、予め定められた経路に沿った無人搬送車200の自律的な走行制御を行うことができる。 
<4.発光強度制御について> 次に、本実施形態の距離測定装置15において実施される投射光L1の発光強度制御について述べる。ここでは、図4に示すように、図1の回転角度位置から180°だけずれた状態での距離測定15の図に基づき説明する。 
LD素子1は、温度変化などによって同じ駆動電流値であっても発光強度が変化する。例えば、温度が高いほど、LD素子1の発光強度は低くなる。LD素子1の発光強度が変化すると、光透過部101を透過して出射される投射光L1の強度が変化し、受光素子8による受光に基づく電気信号の立ち上り速度が変化する。これにより、レーザ受光部152に含まれる先述のコンパレータから出力される計測パルスの立ち上がりタイミングが変化する。従って、実際には計測対象物までの距離が同じであっても、計測される距離が変化し、測定距離精度への影響が生じる。そこで、本実施形態では、温度変化などが生じても投射光L1の強度を一定とする制御を行う。 
図4に示すように、投光ミラー3で反射された光の一部は、光透過部101で散乱反射されて、筐体10の内部側へ反射光L3が出射される。すなわち、投光ミラー3で反射された光は、光透過部101において投射光L1と反射光L3に分かれる。光透過部101が例えばポリカーボネートにより構成される場合は、投光ミラー3で反射された光のうち、90%が投射光L1となる。反射光L3は、受光レンズ5により受光および集光されて受光ミラー6側へ入射され、受光ミラー6で反射されて受光素子8により受光される。 
受光素子8による受光に基づき、図2に示すように、レーザ受光部152からは受光強度信号が出力される。演算処理部154に含まれるLD強度調整部154Aは、受光強度信号に基づき、受光素子8での受光量、すなわち、反射光L3の強度を一定にするLD調整信号をレーザ発光部151に出力する。これにより、LD素子1の駆動電流が調整され、LD素子1の発光強度が調整される。 
従って、温度変化などが生じてLD素子1の発光強度が変化した場合でも、反射光L3の強度を一定に制御するので、光透過部101から出射される投射光L1の強度を一定に制御できる。よって、距離測定の精度を向上させることができる。 
演算処理部154は、例えば、360°全周の回転走査範囲における所定の1点の回転角度位置においてレーザ発光部151から発光させた光に基づき、LD調整信号によってLD素子1の発光強度を調整してもよい。この場合、上記1点においては、LD素子1の発光強度調整とともに、投射光L1に基づく計測対象物までの距離測定を行い、回転走査範囲における上記1点以外の回転角度位置においては距離測定のみを行ってもよい。 
または、例えば、演算処理部154は、360°全周の回転走査範囲における所定単位角度(例えば1°)ごとに、レーザ発光部151から発光させた光に基づき、LD調整信号によってLD素子1の発光強度を調整してもよい。 
また、LD素子1の発光強度調整は、例えば、回転走査の毎周期で行ってもよいし、所定回数の周期の間隔を空けて行ってもよい。 
なお、光透過部101は、回転軸J方向に視た断面で、回転軸Jを中心とした円環形状を有するので、反射光L3の受光素子8における受光量が360°全周において一定となる。従って、受光強度信号に基づいてLD素子1の発光強度を調整するときに用いる目標値を全周において一定とすることができ、調整制御が容易となる。 
また、受光素子8の位置は、距離測定装置15の組み立て時に受光レンズ5による集光位置に調整されることで、製品間の受光量のバラツキを抑制し、LD素子1の発光強度調整による投射光L1の強度のバラツキを抑制できる。 
<5.比較例との比較> ここで、図5は、本実施形態の距離測定装置15と比較を行うための比較例に係る距離測定装置1501の概略側面断面図である。図5に示すように、距離測定装置1501においては、距離測定装置15との構成上の相違点として、筐体1000は、周方向において一部の箇所が途切れた形状である光透過部1010を有する。そして、距離測定装置1501は、光透過部1010の周方向に途切れた箇所に配置される反射部材1501Aを有する。 
図5に示すように、投射光L1が光透過部1010を透過して出射される回転角度位置においては、入射光L2の受光素子8での受光に基づき距離測定が行われる。一方、図6に示すように、モータ9によるホルダー4の回転位置によって投光ミラー3で反射された光が反射部材1501Aに向かう場合は、反射部材1501Aで反射された光は、受光レンズ5により受光および集光され、受光素子8で受光される。この場合、受光素子8での受光量に基づき、LD素子1の発光強度を調整することができる。しかしながら、反射部材1501Aの配置により投射光L1を出射できない範囲が生じ、距離測定の範囲が制限される。 
これに対し、本実施形態の距離測定装置15では、図4に示すように、図6と異なり反射部材1501Aは配置されず、図6と同じ回転位置であっても、投射光L1は光透過部101を透過して出射することできる。すなわち、本実施形態では、LD素子1の発光強度調整を行うことができるとともに、360°全周の回転走査範囲において距離測定を行うことが可能となる。従って、距離測定装置15によれば、高精度且つ広範囲な距離測定を行うことが可能となる。 
<6.変形例に係る距離測定装置> 図7は、第2実施形態に係る同軸型の距離測定装置25の概略側面断面図である。距離測定装置25は、モータ16と、投光/受光ミラー17と、ミラー18と、コリメートレンズ19と、LD素子20と、受光レンズ21と、受光素子22と、筐体23と、を有する。 
筐体23は、先述した筐体10と同様な構成であり、先述した光透過部101と同様な構成である光透過部231を有する。筐体23の内部空間には、モータ16を初めとする各種構成が収容される。 
モータ16は、筐体23の天面部23Aの下面に設置される。モータ16は、下向きに突出したシャフト161を回転軸J周りに回転駆動する。投光/受光ミラー17は、シャフト161に固定されることで、モータ16により回転軸J周りに回転駆動される。 
投光/受光ミラー17の下方には、ミラー18が配置される。コリメートレンズ19は、ミラー18に対して径方向に離れた位置に配置される。コリメートレンズ19の光軸上にLD素子20が配置される。LD素子20から出射されたレーザ光は、コリメートレンズ19により集光されてミラー18へ入射され、ミラー18で反射して投光/受光ミラー17に入射され、投光/受光ミラー17で反射されて投射光L1として光透過部231を透過して外部へ出射される。光透過部231は、360°全周において投射光L1を透過および出射することができる。 
ミラー18の下方には、受光レンズ21が配置される。受光レンズ21の下方には、受光素子22が配置される。投射光L1が計測対象物で散乱反射した一部の光が入射光L2として外部から光透過部231を透過して投光/受光ミラー17へ入射され、投光/受光ミラー17により反射され、ミラー18で遮られる範囲以外の範囲で受光レンズ21に入射し、受光レンズ21により集光されて受光素子22で受光される。 
距離測定装置25の電気的構成は図2に示した構成と同様であり、レーザ受光部は、受光素子22により受光された光に基づいて計測パルスを出力し、距離計測部は、計測パルスに基づき距離データを生成する。これにより、距離測定装置25は、距離測定を行う。 
また、図8は、図7の回転角度位置から180°だけずれた状態での距離測定25の側面断面図である。図8に示すように、LD素子20から出射されて投光/受光ミラー17で反射された光の一部は、光透過部231で散乱反射されて反射光L3として投光/受光ミラー17に入射され、投光/受光ミラー17で反射されて受光レンズ21により集光され、受光素子22で受光される。レーザ受光部は、受光素子22で受光された光に基づいて受光強度信号を出力し、LD強度調整部は、受光強度信号に基づいて反射光L3の強度を一定にするLD調整信号をレーザ発光部に出力する。これにより、LD素子20の駆動電流が調整され、LD素子20の発光強度が調整される。従って、温度変化などによりLD素子20の発光強度が変化した場合でも、投射光L1の強度が一定に制御される。すなわち、距離測定の精度を向上できる。 
ここで、図9は、本実施形態の距離測定装置25と比較を行うための比較例に係る距離測定装置2501の概略側面断面図である。図9に示すように、距離測定装置2501においては、距離測定装置25との構成上の相違点として、筐体2300は、周方向において一部の箇所が途切れた形状である光透過部2310を有する。そして、距離測定装置2501は、光透過部2310の周方向に途切れた箇所に配置される反射部材2501Aを有する。 
図9に示すように、投射光L1が光透過部2310を透過して出射される回転角度位置においては、入射光L2の受光素子22での受光に基づき距離測定が行われる。一方、図10に示すよう
に、モータ16による投光/受光ミラー17の回転位置によって投光/受光ミラー17で反射された光が反射部材2501Aに向かう場合は、反射部材2501Aで反射された光は、投光/受光ミラー17で反射され、受光レンズ21により受光および集光され、受光素子22で受光される。この場合、受光素子22での受光量に基づき、LD素子20の発光強度を調整することができる。しかしながら、反射部材2501Aの配置により投射光L1を出射できない範囲が生じ、距離測定の範囲が制限される。 
これに対し、本実施形態の距離測定装置25では、図8に示すように、図10と異なり反射部材2501Aは配置されず、図10と同じ回転位置であっても、投射光L1は光透過部231を透過して出射することできる。すなわち、本実施形態では、LD素子20の発光強度調整を行うことができるとともに、360°全周の回転走査範囲において距離測定を行うことが可能となる。従って、距離測定装置25によれば、高精度且つ広範囲な距離測定を行うことが可能となる。 
<7.光透過部の汚れを考慮した実施形態> また、本実施形態の距離測定装置は、光透過部における汚れが生じた場合を考慮したLD素子の発光強度調整を行うこともできる。ここでは、一例として、先述した第1実施形態に係る距離測定装置15に基づいて説明する。 
図11は、光透過部の汚れを考慮したLD素子発光強度制御の一例に関するフローチャートである。図11に沿って説明すると、まずステップS1で、LD強度調整部154Aは、360°の回転走査範囲でレーザ発光部151によりLD素子1を発光させ、反射光L3の受光素子8による受光に基づく受光強度信号を取得する。すなわち、LD強度調整部154Aは、全周における反射光L3の強度を取得する。このとき、例えば、図13に示すような回転角度位置に応じた反射光L3の強度分布を得ることができる。 
次に、ステップS2で、LD強度調整部154Aは、取得した受光強度信号のピークピーク値(最大値と最小値との差)が所定の許容値以下であるか否か、すなわち、反射光L3の強度の変化幅が許容範囲内であるかを判定する。光透過部101における一部に汚れが生じた場合、光透過部101のその箇所において反射率が高くなり、反射光L3の強度が大きくなる。これにより、受光強度信号のピークピーク値は、許容値を超える。 
例えば、図13に示す例の場合、或る回転角度範囲θ1において汚れが生じたことにより反射光L3の強度が大きくなり、反射光L3の強度のピークピーク値P-Pが許容値を超える。 
なお、距離測定装置の使用状況によっては、汚れのみならず、例えば使用者が光透過部の汚れをふき取るときに光透過部にキズがつく場合もある。キズがついた場合でも、光透過部における反射率は高くなるので、反射光L3の強度の変化幅が大きくなる。すなわち、本実施形態では、汚れのみならず、キズを検知することもできる。 
ステップS2で、ピークピーク値が許容値以下である場合は(ステップS2のY)、光透過部101において汚れが生じていないと判断し、ステップS3に進む。ステップS3で、LD強度調整部154Aは、所定の1点の回転角度位置において、レーザ発光部151にLD素子1の発光をさせる。そして、ステップS4で、LD強度調整部154Aは、反射光L3に基づく受光強度信号を取得し、LD調整信号をレーザ発光部151に出力し、LD素子1の発光強度を調整する。 
これにより、光透過部101に汚れが生じていないので、1点の回転角度位置でのLD素子1の発光強度調整を行うことで、360°全周分の発光強度調整を代表的に行うことができ、調整処理の負荷を軽減できる。 
一方、ステップS2で、ピークピーク値が許容値を上回る場合は(ステップS2のN)、光透過部101において汚れが生じたと判断し、ステップS5に進む。ステップS5で、LD強度調整部154Aは、汚れの生じていない回転角度位置において、レーザ発光部151にLD素子1を発光させる。次に、ステップS6で、LD強度調整部154Aは、反射光L3に基づく受光強度信号を取得し、LD調整信号をレーザ発光部151に出力し、LD素子1の発光強度を調整する。 
次に、ステップS7で、LD強度調整部154Aは、汚れの生じている回転角度位置において、レーザ発光部151に調整後の発光強度でLD素子1を発光させる。次に、ステップS8で、LD強度調整部154Aは、反射光L3に基づく受光強度信号を取得し、LD調整信号をレーザ発光部151に出力し、汚れの生じている回転角度位置に対するLD素子1の発光強度を調整する。 
具体的には、LD強度調整部154Aは、例えば図12に示すような反射光L3の強度とLD素子1の発光強度の調整ゲインとの関係を有している。図12では、反射光L3の強度が高いほど、調整ゲインが大きくなる。LD強度調整部154Aは、この関係に基づき、受光強度信号に応じた調整ゲインの設定を行う。これにより、光透過部101において汚れが生じた箇所においては、投射光L1が高めの強度に調整されるので、汚れによって透過する投射光L1の出射強度が低下することを抑制できる。すなわち、汚れに依らず、投射光L1の強度を一定とすることができる。 
<8.本実施形態の作用効果> 以上のように本実施形態の距離測定装置(15等)は、発光部(151等)を含んで投射光(L1)による回転走査を行う投光部と、前記投射光を透過する光透過部(101等)と、受光部(152等)と、前記投射光の出射と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部(153)と、前記光透過部で反射した反射光(L3)を受光した前記受光部から出力される受光強度信号に基づき前記発光部の発光強度を調整する強度調整部(154A)と、を備える。 
このような構成によれば、光透過部から出射される光の強度を一定に制御できるとともに、基準光を取得するための反射部材を設置する必要が無くなり、投射光による距離測定を360°全周の範囲で行うよう光透過部を構成できる。すなわち、高精度且つ広範囲な距離測定を行うことが可能となる。 
また、前記投光部は、前記投射光(L1)を前記光透過部(101等)の方向へ反射させる投光ミラー(3等)と、前記投光ミラーを回転駆動するモータ(9等)と、を有し、前記光透過部は、前記モータの回転軸(J)方向に視た断面で、前記回転軸を中心とした円環形状を有する。 
これにより、光透過部で反射した反射光を受光部で受光する受光量を回転走査の360°全周の範囲で一定とすることができ、光透過部から出射される光の強度を一定に制御することが容易となる。 
また、前記強度調整部(154A等)は、前記光透過部(101等)で反射した反射光(L3)を受光した前記受光部(152等)から出力される受光強度信号に基づき、前記光透過部における汚れを検知した場合、前記光透過部における汚れ箇所で反射した反射光を受光した前記受光部から出力される受光強度信号に基づき、前記発光部(151等)の発光強度を調整する。 
これにより、光透過部において汚れが生じた場合に、投射光の出射強度が低下することを抑制できる。 
また、前記強度調整部(154A等)は、前記光透過部(101等)で反射した反射光(L3)を受光した前記受光部(152等)から出力される受光強度信号に基づき、前記光透過部において汚れが生じていないことを検知した場合は、全周のうち1点の回転角度位置にて前記投光部から投射光(L1)を出射させ、前記光透過部で反射した反射光を受光した前記受光部から出力される受光強度信号に基づき、前記発光部(151等)の発光強度を調整する。 
1点の回転角度位置にて出射させた投射光に基づき全周分の発光強度調整を代表的に行うことができ、調整処理の負荷を軽減できる。 
また、本実施形態に係る移動体(20)は、前記距離計測部(153等)による距離計測結果に基づいて測定距離データを出力する測定距離データ出力部(154,155等)を備える上記いずれかの構成の距離測定装置(15等)を備える。 
これにより、移動体は、距離測定装置による精度の高く、且つ360°で広範囲の測定距離データを用いて、制御を有効に行うことができる。 
<9.その他> 以上、本発明の実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は種々の変更が可能である。 
例えば、上記実施形態では、移動体として無人搬送車を例に挙げて説明したが、これに限らず、移動体は掃除ロボット、監視ロボットなど、運搬用途以外の装置に適用してもよい。
本発明は、例えば、荷物を運搬する無人搬送車に利用することができる。
1・・・LD素子、2・・・コリメートレンズ、3・・・投光ミラー、4・・・ホルダー、5・・・受光レンズ、6・・・受光ミラー、7・・・波長フィルタ、8・・・受光素子、9・・・モータ、91・・・シャフト、10・・・筐体、101・・・光透過部、10A・・・天面部、10B・・・底部、15・・・距離測定装置、151・・・レーザ発光部、152・・・レーザ受光部、153・・・距離測定部、154・・・演算処理部、154A・・・LD強度調整部、155・・・データ通信インタフェース、156・・・駆動部、200・・・無人搬送車、201・・・制御部、201A・・・記憶部、202・・・駆動部、203・・・通信部、204・・・電源ボタン、16・・・モータ、161・・・シャフト、17・・・投光/受光ミラー、18・・・ミラー、19・・・コリメートレンズ、20・・・LD素子、21・・・受光レンズ、22・・・受光素子、23・・・筐体、23A・・・天面部、231・・・光透過部、1501・・・距離測定装置、1000・・・筐体、1010・・・光透過部、1501A・・・反射部材、2501・・・距離測定装置、2300・・・筐体、2310・・・光透過部、2501A・・・反射部材、L1・・・投射光、L2・・・入射光、L3・・・反射光、J・・・回転軸、OJ・・・計測対象物

Claims (5)

  1. 発光部を含んで投射光による回転走査を行う投光部と、 前記投射光を透過する光透過部と、 受光部と、 前記投射光の出射と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、 前記光透過部で反射した反射光を受光した前記受光部から出力される受光強度信号に基づき前記発光部の発光強度を調整する強度調整部と、 を備える距離測定装置。
  2. 前記投光部は、前記投射光を前記光透過部の方向へ反射させる投光ミラーと、前記投光ミラーを回転駆動するモータと、を有し、 前記光透過部は、前記モータの回転軸方向に視た断面で、前記回転軸を中心とした円環形状を有する、請求項1に記載の距離測定装置。
  3. 前記強度調整部は、前記光透過部で反射した反射光を受光した前記受光部から出力される受光強度信号に基づき、前記光透過部における汚れを検知した場合、 前記光透過部における汚れ箇所で反射した反射光を受光した前記受光部から出力される受光強度信号に基づき、前記発光部の発光強度を調整する、請求項1または請求項2に記載の距離測定装置。
  4. 前記強度調整部は、前記光透過部で反射した反射光を受光した前記受光部から出力される受光強度信号に基づき、前記光透過部において汚れが生じていないことを検知した場合は、全周のうち1点の回転角度位置にて前記投光部から投射光を出射させ、前記光透過部で反射した反射光を受光した前記受光部から出力される受光強度信号に基づき、前記発光部の発光強度を調整する、請求項3に記載の距離測定装置。
  5. 前記距離計測部による距離計測結果に基づいて測定距離データを出力する測定距離データ出力部を
    備える請求項1から請求項4のいずれか1項に記載の距離測定装置を備える移動体。
PCT/JP2019/000847 2018-01-23 2019-01-15 距離測定装置、および移動体 WO2019146440A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-008991 2018-01-23
JP2018008991 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019146440A1 true WO2019146440A1 (ja) 2019-08-01

Family

ID=67395408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000847 WO2019146440A1 (ja) 2018-01-23 2019-01-15 距離測定装置、および移動体

Country Status (1)

Country Link
WO (1) WO2019146440A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198520A (zh) * 2020-09-29 2021-01-08 上海兰宝传感科技股份有限公司 一种红外光电传感器测距盲区减小方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111488A (ja) * 1986-10-29 1988-05-16 Sotsukishiya:Kk 光波距離計による測距方法
JPH1031064A (ja) * 1996-07-16 1998-02-03 Omron Corp 走査型レーザレーダ装置
JP2005257325A (ja) * 2004-03-09 2005-09-22 Denso Corp 距離検出装置
JP2006308558A (ja) * 2005-03-31 2006-11-09 Sanyo Electric Co Ltd ビーム照射装置
JP2008070159A (ja) * 2006-09-12 2008-03-27 Hokuyo Automatic Co 走査式測距装置
JP2016125898A (ja) * 2014-12-26 2016-07-11 富士通株式会社 レーザ測距装置、レーザ測距方法、およびレーザ測距プログラム
JP2017067559A (ja) * 2015-09-29 2017-04-06 シャープ株式会社 距離測定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111488A (ja) * 1986-10-29 1988-05-16 Sotsukishiya:Kk 光波距離計による測距方法
JPH1031064A (ja) * 1996-07-16 1998-02-03 Omron Corp 走査型レーザレーダ装置
JP2005257325A (ja) * 2004-03-09 2005-09-22 Denso Corp 距離検出装置
JP2006308558A (ja) * 2005-03-31 2006-11-09 Sanyo Electric Co Ltd ビーム照射装置
JP2008070159A (ja) * 2006-09-12 2008-03-27 Hokuyo Automatic Co 走査式測距装置
JP2016125898A (ja) * 2014-12-26 2016-07-11 富士通株式会社 レーザ測距装置、レーザ測距方法、およびレーザ測距プログラム
JP2017067559A (ja) * 2015-09-29 2017-04-06 シャープ株式会社 距離測定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198520A (zh) * 2020-09-29 2021-01-08 上海兰宝传感科技股份有限公司 一种红外光电传感器测距盲区减小方法
CN112198520B (zh) * 2020-09-29 2022-11-04 上海兰宝传感科技股份有限公司 一种红外光电传感器测距盲区减小方法

Similar Documents

Publication Publication Date Title
US20230205222A1 (en) Planar-Beam, Light Detection and Ranging System
JP6819098B2 (ja) 物体検出装置、センシング装置及び移動体装置
KR20190073380A (ko) 비행 시간법을 기반으로 하는 레이저 레이더 시스템
TWI684084B (zh) 移動裝置
KR102263182B1 (ko) 라이다 장치 및 라이다 장치에 이용되는 회전 미러
CN116710801A (zh) 具有发射光功率监视器的LiDAR系统
US9739874B2 (en) Apparatus for detecting distances in two directions
WO2019064750A1 (ja) 距離測定装置、および移動体
JP2006349694A (ja) 物体検知装置および方法
US20230133767A1 (en) Lidar device and method for operating same
US20130346019A1 (en) Signal processing device of scanning-type distance measurement device, signal processing method, and scanning-type distance measurement device
WO2020071465A1 (ja) 距離測定装置
WO2019146440A1 (ja) 距離測定装置、および移動体
KR102527887B1 (ko) 라이다 센서용 광학계
US20240053448A1 (en) Laser Detection Apparatus and Control Method Thereof, Control Apparatus, and Terminal
KR102595870B1 (ko) 초소형 라이다 센서
WO2018173595A1 (ja) 移動装置
WO2019181691A1 (ja) 距離測定装置および移動体
WO2018173594A1 (ja) 距離測定装置、および搬送車
KR20150130201A (ko) 3차원 스캐너
WO2019181692A1 (ja) 距離測定装置および移動体
WO2020045474A1 (ja) センサユニット、移動体
WO2020045445A1 (ja) 距離測定装置、距離測定装置群、および距離測定装置システム
US20230139369A1 (en) Micro-lidar sensor
WO2019058678A1 (ja) 距離測定装置及びそれを備えた移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP