WO2018173595A1 - 移動装置 - Google Patents

移動装置 Download PDF

Info

Publication number
WO2018173595A1
WO2018173595A1 PCT/JP2018/005928 JP2018005928W WO2018173595A1 WO 2018173595 A1 WO2018173595 A1 WO 2018173595A1 JP 2018005928 W JP2018005928 W JP 2018005928W WO 2018173595 A1 WO2018173595 A1 WO 2018173595A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
distance
control unit
unit
moving
Prior art date
Application number
PCT/JP2018/005928
Other languages
English (en)
French (fr)
Inventor
石丸 裕
佐伯 哲夫
智浩 江川
岡本 修治
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2018173595A1 publication Critical patent/WO2018173595A1/ja

Links

Images

Definitions

  • the present invention relates to a mobile device.
  • AGV Automatic Guided Vehicle
  • the movement apparatus of patent document 1 is provided with the movement recognition part as a laser range finder.
  • the movement recognition unit emits laser light, scans at a horizontal scanning pitch and a vertical scanning pitch, receives a reflected wave at each scanning point, and measures a distance based on the reception timing.
  • the moving device of Patent Document 1 includes a risk determination unit that determines the risk of collision with an object according to the recognition result of the object recognition unit.
  • the risk determination unit determines that the risk is dangerous when the number of measurement points near the distance measured by the object recognition unit is equal to or greater than a predetermined number. That is, the risk level determination unit determines the risk level according to the size of the object recognized by the object recognition unit. If it is determined to be dangerous, the target speed of the mobile device is controlled to decrease.
  • the mobile device performs autonomous movement by performing self-location identification that identifies the location of the mobile device based on comparison between the measurement distance data generated by the laser range finder and existing map information. Can do.
  • a laser range finder for self-position identification and a laser range finder for collision avoidance are usually provided separately. . *
  • Patent Document 1 there is a danger even when an object for which it is determined that the number of measurement points near the distance measured by the object recognition unit is equal to or greater than a predetermined number is not a moving object but a stationary object such as a wall. It is determined that the target speed of the mobile device is reduced.
  • the obstacle is a stationary object, the possibility of collision may be lower than when the obstacle is a moving object, and the moving device may be controlled in the same manner as when the obstacle is a moving object. It is not appropriate.
  • An exemplary moving device of the present invention includes a light emitting unit, a light receiving unit, a distance measuring unit that measures a distance to a measurement object based on light emission by the light emitting unit and light reception by the light receiving unit, and the distance measurement.
  • a measurement distance data output unit that outputs measurement distance data based on a measurement result by the unit, and a detection signal that outputs a detection signal indicating whether or not the measurement object is located within a predetermined area based on the measurement distance data
  • An output unit; and a distance measuring device including: a control unit to which the measurement distance data and the detection signal are input.
  • the control unit is based on a comparison between the measurement distance data and existing map information.
  • the self-position of the mobile device is identified, and the control unit is configured to perform the calculation based on the measurement distance data when the detection signal indicates that the measurement object is located within the predetermined area.
  • Object determines whether the moving body has a configuration.
  • the exemplary moving device of the present invention it is possible to suppress the processing load of the signal output from the distance measuring device, and to perform an appropriate moving operation according to the obstacle.
  • FIG. 1 is a schematic overall perspective view of an automatic guided vehicle according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of the automatic guided vehicle according to the embodiment of the present invention.
  • FIG. 3 is a plan view seen from above of the automatic guided vehicle according to the embodiment of the present invention.
  • FIG. 4 is a schematic side cross-sectional view of a distance measuring device according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing an electrical configuration of the distance measuring apparatus according to the embodiment of the present invention.
  • FIG. 6 is a block diagram showing an electrical configuration of the automatic guided vehicle according to the embodiment of the present invention.
  • FIG. 7A is a flowchart relating to the movement operation control when creating map information.
  • FIG. 7A is a flowchart relating to the movement operation control when creating map information.
  • FIG. 7B is a flowchart relating to the movement operation control when creating map information.
  • FIG. 8 is a flowchart regarding the movement operation control at the time of self-position identification.
  • FIG. 9A is a flowchart regarding a modification of the movement operation control when creating map information.
  • FIG. 9B is a flowchart regarding a modification of the movement operation control when creating map information.
  • FIG. 1 is a schematic overall perspective view of an automatic guided vehicle 15 according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of the automatic guided vehicle 15 according to the embodiment of the present invention.
  • FIG. 3 is a plan view seen from above the automatic guided vehicle 15 according to the embodiment of the present invention.
  • the automatic guided vehicle 15 travels autonomously by two-wheel drive and transports luggage. *
  • the automatic guided vehicle 15 includes a vehicle body 1, a loading platform 2, support portions 3L and 3R, drive motors 4L and 4R, drive wheels 5L and 5R, driven wheels 6F and 6R, and a distance measuring device 7. . *
  • the vehicle body 1 includes a base portion 1A and a base portion 1B.
  • the plate-like pedestal 1B is fixed to the rear upper surface of the base 1A.
  • the base part 1B has a triangular part Tr protruding forward.
  • the plate-shaped loading platform 2 is fixed to the upper surface of the platform 1B.
  • a load can be placed on the upper surface of the loading platform 2.
  • the loading platform 2 extends further forward than the platform 1B. Thus, a gap S is formed between the front of the base 1A and the front of the loading platform 2. *
  • the distance measuring device 7 is disposed at the front position of the apex of the triangular portion Tr of the base portion 1B in the gap S.
  • the distance measuring device 7 is configured as a laser range finder, and is a device that measures the distance to the measurement object while scanning the laser beam.
  • the distance measuring device 7 is used for map information creation, self-position identification, and obstacle detection described later. The detailed configuration of the distance measuring device 7 itself will be described later. *
  • the support portion 3R is fixed to the right side of the base portion 1A and supports the drive motor 4R.
  • the drive motor 4R is configured by an AC servo motor as an example.
  • the drive motor 4R incorporates a reduction gear (not shown).
  • the drive wheel 5R is fixed to a rotating shaft of the drive motor 4R. *
  • the driven wheel 6F is fixed to the front side of the base 1A.
  • the driven wheel 6R is fixed to the rear side of the base 1A.
  • the driven wheels 6F and 6R rotate passively according to the rotation of the drive wheels 5L and 5R. *
  • the automatic guided vehicle 15 can be moved forward and backward by rotationally driving the drive wheels 5L and 5R by the drive motors 4L and 4R. In addition, by controlling the rotational speeds of the drive wheels 5L and 5R to be different, the automatic guided vehicle 15 can be rotated clockwise or counterclockwise to change the direction. *
  • the base 1A accommodates the control unit U, the battery B, and the communication unit T therein.
  • the control unit U is connected to the distance measuring device 7, the drive motors 4L and 4R, the communication unit T, and the like.
  • the control unit U receives various signals from the distance measuring device 7 and performs various controls.
  • the control unit U also performs drive control of the drive motors 4L and 4R.
  • the communication unit T communicates with an external tablet terminal (not shown) and complies with, for example, Bluetooth (registered trademark). Thereby, the automatic guided vehicle 15 can be remotely operated by the tablet terminal.
  • the battery B is composed of, for example, a lithium ion battery, and supplies power to each unit such as the distance measuring device 7, the control unit U, the communication unit T, and the like. *
  • FIG. 4 is a schematic side sectional view of the distance measuring device 7.
  • the distance measuring device 7 configured as a laser range finder includes a laser light source 71, a collimating lens 72, a light projecting mirror 73, a light receiving lens 74, a light receiving mirror 75, a wavelength filter 76, a light receiving unit 77, and a rotation.
  • a housing 78, a motor 79, a housing 80, a substrate 81, a wiring 82, and a rotation speed sensor 83 are included. *
  • the casing 80 has a transmission part 801 in the middle in the vertical direction.
  • the transmission part 801 is made of a translucent resin or the like. *
  • the projection light L ⁇ b> 1 reflected and emitted by the light projecting mirror 73 passes through the transmission part 801, passes through the gap S, and is emitted to the outside from the automatic guided vehicle 15.
  • the predetermined scanning rotation angle range ⁇ is set to 270 degrees around the rotation axis J as an example, as shown in FIG. More specifically, the range of 270 degrees includes forward 180 degrees and rear left and right 45 degrees.
  • the projection light L1 passes through the transmission unit 801 at least in the range of 270 degrees around the rotation axis J. In the range where the rear transmission portion 801 is not disposed, the projection light L1 is blocked by the inner wall of the housing 80, the wiring 82, or the like. *
  • the light receiving mirror 75 is fixed to the rotary casing 78 at a position below the light projecting mirror 73.
  • the light receiving lens 74 is fixed to the circumferential side surface of the rotating housing 78.
  • the wavelength filter 76 is positioned below the light receiving mirror 75 and is fixed to the rotary casing 78.
  • the light receiving unit 77 is positioned below the wavelength filter 76 and is fixed to the rotating housing 78.
  • the projection light L1 emitted from the distance measuring device 7 is reflected by the measurement object and becomes diffused light.
  • a part of the diffused light passes through the gap S and the transmission part 801 as incident light L2 and enters the light receiving lens 74.
  • the incident light L2 that has passed through the light receiving lens 74 enters the light receiving mirror 75 and is reflected downward by the light receiving mirror 75.
  • the reflected incident light L 2 passes through the wavelength filter 76 and is received by the light receiving unit 77.
  • the wavelength filter 76 transmits light in the infrared region.
  • the light receiving unit 77 converts the received light into an electrical signal by photoelectric conversion.
  • a range formed by rotating at a predetermined radius around the rotation axis J in the scanning rotation angle range ⁇ is defined as the measurement range Rs.
  • the projection light L1 is emitted within the scanning rotation angle range ⁇ and the projection light L1 is reflected by the measurement object located within the measurement range Rs, the reflected light passes through the transmission unit 801 as the incident light L2 and is received by the light receiving lens 74. Is incident on. *
  • the motor 79 is connected to the substrate 81 by the wiring 82 and is driven to rotate when energized from the substrate 81.
  • the motor 79 rotates the rotary casing 78 at a predetermined rotation speed.
  • the rotary casing 78 is driven to rotate at about 3000 rpm.
  • the wiring 82 is routed along the vertical direction on the rear inner wall of the housing 80. *
  • the rotation speed sensor 83 is mounted on the substrate 81.
  • the rotational speed sensor 83 is a sensor that detects the rotational speed of the distance measuring device 7.
  • a rotation speed sensor 83 is used to correct distortion of the measured distance image caused by the rotation of the automatic guided vehicle 15 itself and the distance measuring device 7. *
  • FIG. 5 is a block diagram showing an electrical configuration of the distance measuring device 7. *
  • the distance measuring device 7 includes a laser light emitting unit 701, a laser light receiving unit 702, a distance measuring unit 703, a first arithmetic processing unit 704, a data communication interface 705, and a second arithmetic processing unit. 706, a driving unit 707, and a motor 79. *
  • the laser light emitting unit 701 includes a laser light source 71 (FIG. 4) and an LD driver (not shown) that drives the laser light source 71.
  • the LD driver is mounted on the substrate 81.
  • the laser light receiving unit 702 includes a light receiving unit 77 and a comparator (not shown) that receives an electrical signal output from the light receiving unit 77.
  • the comparator is mounted on the light receiving unit 77, compares the level of the electric signal with a predetermined threshold level, and outputs a measurement pulse having a high level or a low level according to the comparison result. *
  • the distance measuring unit 703 receives a measurement pulse output from the laser light receiving unit 702.
  • the laser light emitting unit 701 emits laser light using the laser light emission pulse output from the first arithmetic processing unit 704 as a trigger.
  • the projection light L1 is emitted.
  • the incident light L2 is received by the laser light receiving unit 702.
  • a measurement pulse is generated according to the amount of light received by the laser light receiving unit 702, and the measurement pulse is output to the distance measuring unit 703. *
  • the reference pulse output together with the laser emission pulse by the first arithmetic processing unit 704 is input to the distance measuring unit 703.
  • the distance measuring unit 703 can acquire the distance to the measurement object OJ by measuring the elapsed time from the rising timing of the reference pulse to the rising timing of the measurement pulse. That is, the distance measuring unit 703 measures the distance by a so-called TOF (Time Of Flight) method.
  • the distance measurement result is output from the distance measurement unit 703 as measurement data.
  • the drive unit 707 controls the rotation of the motor 79.
  • the motor 79 is driven to rotate at a predetermined rotation speed by the drive unit 707.
  • the first arithmetic processing unit 704 outputs a laser emission pulse every time the motor 79 rotates by a predetermined unit angle.
  • the predetermined unit angle is 1 degree.
  • the first arithmetic processing unit 704 generates orthogonal coordinates based on the distance measuring device 7 based on the rotation angle position of the motor 79 at the timing when the laser emission pulse is output and the measurement data obtained corresponding to the laser emission pulse. Generate position information on the system. That is, the position of the measurement object OJ is acquired based on the rotation angle position of the projection mirror 73 and the measured distance. The acquired position information is output from the first calculation processing unit 704 as measurement distance data. In this way, a distance image of the measurement object OJ can be acquired by scanning with the projection light L1 in the scanning rotation angle range ⁇ . *
  • the amount of light received by the laser light receiving unit 702 varies depending on the reflectance of light at the measurement object OJ. For example, when the measurement object OJ is a black object and the light reflectance is reduced, the amount of received light is reduced and the rise of the measurement pulse is delayed. Then, the distance measurement unit 703 measures the distance longer. As described above, the measured distance may change depending on the reflectance of the light at the measurement object OJ even if the distance is actually the same.
  • the first arithmetic processing unit 704 improves the measurement accuracy of the distance by correcting the measurement data according to the length of the measurement pulse.
  • the first arithmetic processing unit 704 uses the corrected measurement data when generating the measurement distance data. *
  • the measurement distance data output from the first arithmetic processing unit 704 is transmitted to the automatic guided vehicle 15 side shown in FIG. 6 to be described later via the data communication interface 705. Further, the measurement distance data output from the first arithmetic processing unit 704 is also input to the second arithmetic processing unit 706. *
  • a predetermined area R ⁇ b> 1 is set around the automatic guided vehicle 15.
  • the predetermined area R1 includes a range of a predetermined distance in front of the automatic guided vehicle 15 and a range of predetermined distances on both the left and right sides. For example, it includes a range of 1 m forward and a range of 0.5 m on both the left and right sides.
  • the second arithmetic processing unit 706 determines whether or not the measurement object is located in the predetermined area R1 based on the measurement distance data. Specifically, if the position of a certain measurement object indicated by the measurement distance data is located within the predetermined area R1, it is determined that the measurement object is located within the predetermined area R1. When the second arithmetic processing unit 706 determines that the measurement target is located within the predetermined area R1, the second arithmetic processing unit 706 outputs a detection signal that is a flag as a high level. On the other hand, when the measurement object is not located in the predetermined area R1, a detection signal having a low level is output. The detection signal is transmitted to the automatic guided vehicle 15 side shown in FIG. *
  • the distance measuring device 7 detects an obstacle located in the predetermined area R1 around the automatic guided vehicle 15 as well as the function of outputting the measurement distance data that is a distance image of the measurement object. It has a function. Therefore, since these two functions can be realized by one distance measuring device 7, it is advantageous in terms of cost as the automatic guided vehicle 15 and power consumption can be suppressed. Thereby, since the power consumption of the battery B can be suppressed, the operation possible time of the automatic guided vehicle 15 can be lengthened.
  • FIG. 6 is a block diagram showing an electrical configuration of the automatic guided vehicle 15. *
  • the automatic guided vehicle 15 includes a distance measuring device 7, a control unit 8, a drive unit 9, a notification unit 10, and a communication unit T. *
  • the control unit 8 is provided in the control unit U (FIG. 1).
  • the drive unit 9 includes a motor driver (not shown) and drive motors 4L and 4R.
  • the motor driver is provided in the control unit U.
  • the control unit 8 controls the drive unit 9 by giving a command.
  • the drive unit 9 controls the rotation speed and direction of the drive wheels 5L and 5R. *
  • the control unit 8 communicates with a tablet terminal (not shown) via the communication unit T.
  • the control part 8 can receive the operation signal according to the content operated in the tablet terminal via the communication part T.
  • the notification unit 10 notifies the outside, for example, by voice or light.
  • the notification unit 10 is configured by a speaker or the like, it can be notified by voice.
  • reporting part 10 is comprised by LED etc., it can alert
  • the notification unit 10 is provided, for example, in the vehicle body 1 (FIG. 1).
  • the notification unit 10 is controlled by the control unit 8. *
  • the control unit 8 receives the measurement distance data and the detection signal output from the distance measurement device 7.
  • the control unit 8 can create map information based on the measured distance data.
  • the map information is information that is generated to perform self-position identification that specifies the position of the automatic guided vehicle 15 to be described later, and is generated as position information of a stationary object at a place where the automatic guided vehicle 15 travels. .
  • the stationary object is a wall of the warehouse, a shelf arranged in the warehouse, or the like.
  • the map information is generated when a manual operation of the automatic guided vehicle 15 is performed by a tablet terminal, for example.
  • an operation signal corresponding to, for example, operation of the joystick of the tablet terminal is transmitted to the control unit 8 via the communication unit T, so that the control unit 8 instructs the drive unit 9 according to the operation signal, and the unmanned The conveyance vehicle 15 is travel-controlled.
  • the control unit 8 specifies, as map information, the position of the measurement object at the place where the automatic guided vehicle 15 travels based on the measurement distance data input from the distance measuring device 7 and the position of the automatic guided vehicle 15. .
  • the position of the automatic guided vehicle 15 is specified based on the drive information of the drive unit 9. *
  • the map information generated as described above is stored in the storage unit 81 of the control unit 8.
  • the control unit 8 compares the measured distance data input from the distance measuring device 7 with the map information stored in advance in the storage unit 81 to perform self-position identification that identifies the self-position of the automatic guided vehicle 15. Do. By performing self-position identification, the control unit 8 can perform autonomous traveling control of the automatic guided vehicle 15 along a predetermined route.
  • control unit 8 can perform a control operation as described later based on the detection signal input from the distance measuring device 7. Since the measurement distance data and the detection signal are input to the control unit 8 from one distance measurement device 7, the processing load of the control unit 8 that processes the input data can be suppressed.
  • step S1 the control unit 8 confirms whether or not the detection signal input from the distance measuring device 7 is at a high level. If the detection signal is at the low level (N in step S1), the process returns to step S1 as it is. At this time, since no obstacle is detected in the predetermined area R1, the control unit 8 generates map information using all of the measured distance data input from the distance measuring device 7. The generated map information is stored in the storage unit 81. *
  • step S1 the control unit 8 detects the distance to the detection object located in the predetermined area R1 based on the measured distance data input from the distance measuring device 7.
  • step S ⁇ b> 2 the control unit 8 confirms whether or not the detected object is a moving body based on the measurement distance data input from the distance measurement device 7. At this time, the control unit 8 determines whether or not the detection object is moving based on the previous measurement distance data stored in the storage unit 81, the current measurement distance data, and the position of the automatic guided vehicle 15. To do. When the detected object is a moving object, the control unit 8 detects the relative moving direction of the detected object with respect to the automatic guided vehicle 15 based on the measurement distance data and the position of the automatic guided vehicle 15. The moving direction is whether or not the automatic guided vehicle 15 is approaching. When the scanning speed of the distance measuring device 7 is high, the measurement distance data stored in the storage unit 81 may be used two times before, or before that.
  • step S3 the control unit 8 determines whether or not the detected object is a moving object. If the detected object is not a moving object (N in step S3), the process proceeds to step S5.
  • the control unit 8 uses all of the measurement distance data input from the distance measurement device 7. To generate map information. The generated map information is stored in the storage unit 81. *
  • step S5 the control unit 8 determines whether or not the distance to the detected object detected in step S2 is equal to or less than the first threshold value. If the distance is equal to or smaller than the first threshold (Y in Step S5), the process proceeds to Step S6, and the control unit 8 controls the driving unit 9 to rotate the automatic guided vehicle 15 in a direction avoiding the detection object. And continue to move. On the other hand, when the distance is not equal to or smaller than the first threshold (N in Step S5), the process proceeds to Step S7, and the control unit 8 continues the movement of the automatic guided vehicle 15. After steps S6 and S7, the process returns to step S1. *
  • step S3 If the detected object is a moving object in step S3 (Y in step S3), the process proceeds to step S4.
  • step S4 the control unit 8 generates map information based on measurement distance data other than the detected measurement distance data of the moving body. That is, the map information based on the position of the moving body is not included in the generated map information. Thereby, the moving body that is not appropriate as the map information can be excluded from the map information.
  • step S8 the control part 8 determines whether the moving direction of the detected object detected by step S2 is a direction which approaches relatively.
  • the control unit 8 determines whether or not the distance to the detected object detected in step S2 is equal to or less than the second threshold value.
  • the second threshold is a distance at which the automatic guided vehicle 15 and the detected object may collide.
  • step S9 When the distance to the detected object is equal to or smaller than the second threshold value (Y in step S9), the process proceeds to step S10, and the control unit 8 performs control to notify the notification unit 10. At the same time, the control unit 8 performs control to reduce the speed of the automatic guided vehicle 15. Alternatively, the control unit 8 may continue the movement of the automatic guided vehicle 15 without reducing the speed. In this way, a warning can be given by notifying the detected object that is relatively close to the automatic guided vehicle 15, and a collision can be avoided. *
  • Step S11 If the distance to the detected object is equal to or smaller than the third threshold (Y in Step S11), the process proceeds to Step S12, and the control unit 8 controls the driving unit 9 to stop the automatic guided vehicle 15. Thereby, a collision can be avoided when the possibility of a collision with a detection object is high. After step S12, the process returns to step S1. *
  • the first threshold value used in step S5 is a value smaller than the second threshold value or a value smaller than the third threshold value.
  • step S11 If the distance to the detected object is not less than or equal to the third threshold value in step S11 (N in step S11), the process returns to step S1 as it is. *
  • step S8 when the moving direction of the detected object is relatively far (N in step S8), the process proceeds to step S13.
  • the control unit 8 determines whether or not the distance to the detected object detected in step S2 is equal to or less than a fourth threshold value.
  • Step S14 when the distance is not equal to or smaller than the fourth threshold (N in Step S13), the process proceeds to Step S14, and the control unit 8 continues the movement of the automatic guided vehicle 15. Thereby, when the detection object is relatively far away, if the detection object is away from the detection object to some extent, the possibility of a collision is low, so that the movement can be continued without stopping the automatic guided vehicle 15.
  • the process proceeds to Step S15, and the control unit 8 stops the automatic guided vehicle 15. Thereby, it is possible to avoid a collision with a detection object that moves relatively far away.
  • steps S14 and S15 the process returns to step S1. *
  • FIG. 8 The flowchart shown in FIG. 8 is processing corresponding to FIG. 7A at the time of creating the map information described above, and the processing shown in FIG.
  • the difference between FIG. 8 and FIG. 7A is step S40.
  • the difference between the process of FIG. 8 and the process of FIG. 7A will be particularly described.
  • control unit 8 When the flowchart of FIG. 8 is started and the detection signal is not at the high level in step S1 (N in step S1), the control unit 8 includes all of the measurement distance data input from the distance measurement device 7 and the storage unit 81. The position of the automatic guided vehicle 15 is specified based on the comparison with the map information stored in (1). *
  • step S3 When it is determined in step S3 that the detected object located in the predetermined area R1 is not a moving body (N in step S3), the control unit 8 uses all of the measurement distance data input from the distance measurement device 7. Based on the comparison with the map information stored in the storage unit 81, the position of the automatic guided vehicle 15 is specified. *
  • step S3 when it is determined in step S3 that the detected object is a moving body (Y in step S3), the process proceeds to step S40, and the control unit 8 detects the measurement distance data input from the distance measurement device 7. Except for the data corresponding to the object, the map information stored in the storage unit 81 is compared with the position of the automatic guided vehicle 15. *
  • the automatic guided vehicle 15 can perform an appropriate moving operation according to whether or not the detected object (obstacle) located in the predetermined area R1 is a moving object when the map information is created as described above. It is the same.
  • FIGS. 9A and 9B are flowcharts of modified examples of control performed by the control unit 8 at the time of creating the map information described above. Here, differences from the processing shown in FIGS. 7A and 7B described above will be particularly described. *
  • step S21 if the detection signal is at a high level in step S21, the process proceeds to step S22.
  • step S22 the control unit 8 detects the distance to the detected object located in the predetermined area R1 and the moving direction of the detected object, and determines the relative speed of the detected object with respect to the automatic guided vehicle 15 based on the measured distance data. To detect. *
  • the first to fourth threshold values used in steps S25, S29, S31, and S33 are variable according to the relative speed detected in step S22. Specifically, if the relative speed is fast, the threshold is increased, and if the relative speed is slow, the threshold is decreased. As a result, when the relative speed is high, collision avoidance can be attempted from a position far from the detected object, and when the relative speed is low, the detected object can be approached. *
  • the moving device (15) of the present embodiment includes the light emitting unit (701), the light receiving unit (702), light emission by the light emitting unit, and light reception by the light receiving unit.
  • a distance measurement unit (703) that measures the distance to the measurement object based on the measurement distance
  • a measurement distance data output unit (704) that outputs measurement distance data based on the measurement result by the distance measurement unit, and the measurement distance data
  • a distance measurement device (7) having a detection signal output unit (706) for outputting a detection signal indicating whether or not the measurement object is located within a predetermined area (R1) based on the measurement distance data
  • a control unit (8) to which the detection signal is input.
  • the said control part identifies the self-position of a moving apparatus based on the comparison with measurement distance data and the existing map information. Further, when the detection signal indicates that the measurement target is located within the predetermined area, the control unit determines whether the measurement target is a moving body based on the measurement distance data. To do. *
  • the processing load of the control unit can be suppressed.
  • the moving device can perform an appropriate moving operation depending on whether or not the measurement object located in the predetermined area is a moving object.
  • the said control part when it determines with the said measurement target object being a moving body, the said control part does not include the map information of the said measurement target object in the map information produced
  • the mobile body which should not be included in map information can be excluded from map information.
  • the control unit detects a distance to the measurement object based on the measurement distance data when the detection signal indicates that the measurement object is located in the predetermined area.
  • the control unit compares the detected distance with a predetermined threshold value, and the threshold value (first threshold value) when the measurement object is not a moving object is the threshold value when the measurement object is a moving object. It is smaller than the threshold (second or third threshold).
  • the moving device can be closer to the measurement object.
  • the control unit determines the distance to the measurement object and the measurement based on the measurement distance data. The moving direction of the object is detected.
  • the moving device can perform an appropriate operation according to the moving direction of the measurement object and the distance to the measurement object.
  • control unit is further detected when the notification unit (10) is further provided, the measurement target is a moving body, and the moving direction is a direction relatively approaching the moving device.
  • the distance is compared with a predetermined threshold (second threshold), and when the distance is equal to or less than the threshold, the control unit causes the notification unit to notify.
  • second threshold a predetermined threshold
  • the control unit compares the distance with a threshold smaller than the threshold (third threshold), and the distance is equal to or smaller than the threshold smaller than the threshold. If so, the control unit stops the moving device.
  • the control unit sets the detected distance to a predetermined threshold value (first threshold value). If the distance is not less than or equal to the threshold value, the control unit continues the movement of the moving device.
  • the mobile device is relatively far from the mobile device and is somewhat distant from the mobile body, the possibility of collision is small, and the movement can be continued without stopping.
  • the control unit determines the distance to the measurement object and the measurement based on the measurement distance data.
  • the relative speed of the moving object with respect to the moving device is detected, and the control unit compares the detected distance with a predetermined threshold (first to fourth thresholds), and the threshold is variable according to the relative speed. is there.
  • the threshold value can be increased to avoid collision from a position farther from the measurement object, and if the relative speed is slow, the threshold value can be reduced to approach the measurement object. . *
  • the automatic guided vehicle has been described as an example of the moving device.
  • the moving device is not limited thereto, and the moving device may be applied to a device other than the transportation application such as a cleaning robot and a monitoring robot.
  • the present invention can be used, for example, in an automated guided vehicle that transports luggage.

Abstract

【解決手段】発光部と、受光部と、前記発光部による発光と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、前記距離計測部による計測結果に基づいて測定距離データを出力する測定距離データ出力部と、前記測定距離データに基づいて所定エリア内に前記計測対象物が位置するか否かを示す検出信号を出力する検出信号出力部と、を有する距離測定装置と、前記測定距離データと前記検出信号が入力される制御部と、を備え、前記制御部は、測定距離データと、既存のマップ情報との比較に基づき、移動装置の自己位置を同定し、前記制御部は、前記検出信号が前記所定エリア内に前記計測対象物が位置することを示す場合に、前記測定距離データに基づいて前記計測対象物が移動体であるか否かを判定する、移動装置としている。

Description

移動装置
本発明は、移動装置に関する。
従来、自立的に移動することが可能な移動装置が開発されており、そのような移動装置には、AGV(Automatic  Guided  Vehicle)と呼ばれる無人で荷物を運搬する無人搬送車が含まれる。 
上記従来の移動装置には、レーザレンジファインダーを一例とする距離測定装置が搭載されることが多い。レーザレンジファインダーを搭載する移動装置の一例が特許文献1に開示される。 
特許文献1の移動装置は、レーザレンジファインダーとしての移動認識部を備える。移動認識部は、レーザ光を出射し、水平方向の走査ピッチおよび垂直方向の走査ピッチで走査し、各走査点における反射波を受信し、その受信タイミングにより距離を測定する。また、上記特許文献1の移動装置は、物体認識部の認識結果に応じて物体との衝突の危険度を判定する危険度判定部を備える。危険度判定部は、物体認識部により計測された距離の近い測定点が所定個数以上である場合に危険であると判定する。すなわち、危険度判定部は、物体認識部により認識された物体の大きさに応じて危険度を判定する。危険であると判定された場合、移動装置の目標速度は低下するように制御される。
特開2016-78665号公報
ここで、レーザレンジファインダーにより生成される測定距離データと、既存のマップ情報との比較に基づいて移動装置の自己の位置を特定する自己位置同定を行うことで、移動装置は自律移動を行うことができる。このような移動装置において、上記特許文献1のような物体との衝突回避機能を備える場合、自己位置同定用のレーザレンジファインダーと、衝突回避用のレーザレンジファインダーは別個に設けることが通常である。 
しかしながら、そのようにすると、自己位置同定用のレーザレンジファインダーから出力される測定距離データと、衝突回避用のレーザレンジファインダーから出力される危険と判定された物体の検知信号と、を移動装置側で処理する必要がある。従って、別々のレーザレンジファインダーからの信号を処理するので、処理負荷が増大する問題がある。 
また、上記特許文献1では、物体認識部により計測された距離の近い測定点が所定個数以上であると判定された物体が移動体でなく、例えば壁などの静止物である場合にも、危険であると判定され、移動装置の目標速度が低下することが生じる。障害物が静止物である場合は、障害物が移動体である場合に比べて、衝突の虞が低い場合もあり、障害物が移動体である場合と同様に移動装置の制御を行うことが適切であるとは言えない。 
また、レーザレンジファインダーを別個に設けると、移動装置のコスト面で問題があるとともに、消費電力の増大により移動装置の動作可能時間が短くなるという問題もある。 
上記状況に鑑み、本発明は、距離測定装置から出力される信号の処理負荷を抑制することができ、且つ、障害物に応じて適切な移動動作を行うことができる移動装置を提供することを目的とする。
本発明の例示的な移動装置は、 発光部と、 受光部と、 前記発光部による発光と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、 前記距離計測部による計測結果に基づいて測定距離データを出力する測定距離データ出力部と、 前記測定距離データに基づいて所定エリア内に前記計測対象物が位置するか否かを示す検出信号を出力する検出信号出力部と、 を有する距離測定装置と、 前記測定距離データと前記検出信号が入力される制御部と、を備え、 前記制御部は、測定距離データと、既存のマップ情報との比較に基づき、移動装置の自己位置を同定し、 前記制御部は、前記検出信号が前記所定エリア内に前記計測対象物が位置することを示す場合に、前記測定距離データに基づいて前記計測対象物が移動体であるか否かを判定する、構成としている。
本発明の例示的な移動装置によれば、距離測定装置から出力される信号の処理負荷を抑制することができ、且つ、障害物に応じて適切な移動動作を行うことができる。
図1は、本発明の一実施形態に係る無人搬送車の概略全体斜視図である。 図2は、本発明の一実施形態に係る無人搬送車の概略側面図である。 図3は、本発明の一実施形態に係る無人搬送車の上方から視た平面図である。 図4は、本発明の一実施形態に係る距離測定装置の概略側面断面図である。 図5は、本発明の一実施形態に係る距離測定装置の電気的構成を示すブロック図である。 図6は、本発明の一実施形態に係る無人搬送車の電気的構成を示すブロック図である。 図7Aは、マップ情報作成時の移動動作制御に関するフローチャートである。 図7Bは、マップ情報作成時の移動動作制御に関するフローチャートである。 図8は、自己位置同定時の移動動作制御に関するフローチャートである。 図9Aは、マップ情報作成時の移動動作制御の変形例に関するフローチャートである。 図9Bは、マップ情報作成時の移動動作制御の変形例に関するフローチャートである。
以下に本発明の例示的な実施形態について図面を参照して説明する。ここでは、移動装置の一例として、荷物の運搬を用途とする無人搬送車を挙げて説明する。 
<1.無人搬送車の全体構成> 図1は、本発明の一実施形態に係る無人搬送車15の概略全体斜視図である。図2は、本発明の一実施形態に係る無人搬送車15の概略側面図である。図3は、本発明の一実施形態に係る無人搬送車15の上方から視た平面図である。無人搬送車15は、二輪駆動により自律的に走行し、荷物を運搬する。 
無人搬送車15は、車体1と、荷台2と、支持部3L、3Rと、駆動モータ4L、4Rと、駆動輪5L、5Rと、従動輪6F、6Rと、距離測定装置7と、を備える。 
車体1は、基部1Aと、台部1Bと、から構成される。板状の台部1Bは、基部1Aの後方上面に固定される。台部1Bは、前方に突出する三角形部Trを有する。板状の荷台2は、台部1Bの上面に固定される。荷台2の上面には、荷物を載置することが可能である。荷台2は、台部1Bよりも更に前方まで延びる。これにより、基部1Aの前方と荷台2の前方との間には隙間Sが構成される。 
距離測定装置7は、隙間Sにおいて台部1Bの三角形部Tr頂点の前方位置に配置される。距離測定装置7は、レーザレンジファインダーとして構成され、レーザ光を走査しつつ計測対象物までの距離を計測する装置である。距離測定装置7は、後述するマップ情報作成、自己位置同定、および障害物検知に用いられる。距離測定装置7自体の詳細な構成については後述する。 
支持部3Lは、基部1Aの左方側に固定され、駆動モータ4Lを支持する。駆動モータ4Lは、一例としてACサーボモータにより構成される。駆動モータ4Lは、不図示の減速機を内蔵する。駆動輪5Lは、駆動モータ4Lの回転するシャフトに固定される。 
支持部3Rは、基部1Aの右方側に固定され、駆動モータ4Rを支持する。駆動モータ4Rは、一例としてACサーボモータにより構成される。駆動モータ4Rは、不図示の減速機を内蔵する。駆動輪5Rは、駆動モータ4Rの回転するシャフトに固定される。 
従動輪6Fは、基部1Aの前方側に固定される。従動輪6Rは、基部1Aの後方側に固定される。従動輪6F、6Rは、駆動輪5L、5Rの回転に応じて受動的に回転する。 
駆動モータ4L、4Rにより駆動輪5L、5Rを回転駆動することで、無人搬送車15を前進および後進させることができる。また、駆動輪5L、5Rの回転速度に差を設けるよう制御することで、無人搬送車15を右回りまたは左回りに回転させ、方向転換させることができる。 
基部1Aは、内部に制御ユニットU、バッテリーB、および通信部Tを収容する。制御ユニットUは、距離測定装置7、駆動モータ4L、4R、および通信部T等に接続される。 
制御ユニットUは、後述するように距離測定装置7から各種信号を受信して各種の制御を行う。制御ユニットUは、駆動モータ4L、4Rの駆動制御も行う。通信部Tは、外部のタブレット端末(不図示)との間で通信を行い、例えばBluetooth(登録商標)に準拠する。これにより、タブレット端末により無人搬送車15を遠隔操作することができる。バッテリーBは、例えばリチウムイオン電池により構成され、距離測定装置7、制御ユニットU、通信部T等の各部に電力を供給する。 
<2.距離測定装置の構成> 図4は、距離測定装置7の概略側面断面図である。レーザレンジファインダーとして構成される距離測定装置7は、レーザ光源71と、コリメートレンズ72と、投光ミラー73と、受光レンズ74と、受光ミラー75と、波長フィルタ76と、受光部77と、回転筐体78と、モータ79と、筐体80と、基板81と、配線82と、回転速度センサ83と、を有する。 
筐体80は、外観視で上下方向に延びる略円柱状であり、内部空間にレーザ光源71を初めとする各種構成を収容する。レーザ光源71は、筐体80の上端部の下面に固定される基板81の下面に実装される。レーザ光源71は、例えば赤外領域のレーザ光を下方に出射する。 
コリメートレンズ72は、レーザ光源71の下方に配置される。コリメートレンズ72は、レーザ光源71から出射されるレーザ光を平行光として下方に出射する。コリメートレンズ72の下方には、投光ミラー73が配置される。 
投光ミラー73は、回転筐体78に固定される。回転筐体78は、モータ79のシャフト79Aに固定され、モータ79によって回転軸J周りに回転駆動される。回転筐体78の回転ととともに、投光ミラー73も回転軸J周りに回転駆動される。投光ミラー73は、コリメートレンズ72から出射されるレーザ光を反射して、反射されたレーザ光を投射光L1として出射する。投光ミラー73は上記のように回転駆動されるので、投射光L1は回転軸J周りの360度の範囲で出射方向を変えながら出射される。 
筐体80は上下方向の途中において、透過部801を有する。透過部801は、透光性の樹脂等から構成される。 
投光ミラー73で反射されて出射される投射光L1は、透過部801を透過して、隙間Sを通り、無人搬送車15より外側へ出射される。本実施形態では、上記所定の走査回転角度範囲θは、図3に示すように、一例として回転軸J周りの270度に設定される。270度の範囲は、より具体的には、前方180度と後方左右それぞれ45度ずつを含む。投射光L1は、少なくとも回転軸J周り270度の範囲で透過部801を透過する。なお、後方の透過部801が配置されない範囲では、投射光L1は筐体80の内壁または配線82等により遮られる。 
受光ミラー75は、投光ミラー73より下方の位置で回転筐体78に固定される。受光レンズ74は、回転筐体78の周方向側面に固定される。波長フィルタ76は、受光ミラー75より下方に位置し、回転筐体78に固定される。受光部77は、波長フィルタ76より下方に位置し、回転筐体78に固定される。 
距離測定装置7から出射された投射光L1は、計測対象物で反射して拡散光となる。拡散光の一部は、入射光L2として隙間Sおよび透過部801を透過して受光レンズ74に入射される。受光レンズ74を透過した入射光L2は、受光ミラー75へ入射され、受光ミラー75により下方へ反射される。反射された入射光L2は、波長フィルタ76を透過
して受光部77により受光される。波長フィルタ76は、赤外領域の光を透過させる。受光部77は、受光した光を光電変換により電気信号に変換する。 
モータ79により回転筐体78が回転駆動されると、受光レンズ74、受光ミラー75、波長フィルタ76、および受光部77は、投光ミラー73とともに回転駆動される。 
図3に示すように、走査回転角度範囲θ(=270度)で回転軸J周りに所定半径にて回転して形成される範囲が測定範囲Rsとして規定される。走査回転角度範囲θで投射光L1が出射され、測定範囲Rs内に位置する計測対象物で投射光L1が反射されると、反射光が入射光L2として透過部801を透過して受光レンズ74に入射される。 
モータ79は、配線82によって基板81に接続され、基板81から通電されることで回転駆動される。モータ79は、回転筐体78を所定回転速度で回転させる。例えば、回転筐体78は、3000rpm程度で回転駆動される。配線82は、筐体80の後方内壁に上下方向に沿って引き回される。 
回転速度センサ83は、基板81に実装される。回転速度センサ83は、距離測定装置7の回転速度を検出するセンサである。無人搬送車15自体の回転とともに距離測定装置7も回転することで生じる計測された距離画像の歪を補正するために回転速度センサ83が用いられる。 
<3.距離測定装置の電気的構成> 次に、距離測定装置7の電気的構成について説明する。図5は、距離測定装置7の電気的構成を示すブロック図である。 
図5に示すように、距離測定装置7は、レーザ発光部701と、レーザ受光部702と、距離計測部703と、第1演算処理部704と、データ通信インタフェース705と、第2演算処理部706と、駆動部707と、モータ79と、を有する。 
レーザ発光部701は、レーザ光源71(図4)と、レーザ光源71を駆動する不図示のLDドライバなどを有する。LDドライバは、基板81に実装される。レーザ受光部702は、受光部77と、受光部77から出力される電気信号を受信する不図示のコンパレータなどを有する。コンパレータは、受光部77に実装され、上記電気信号のレベルを所定閾値レベルと比較し、比較結果に応じてHighレベルまたはLowレベルとした計測パルスを出力する。 
距離計測部703は、レーザ受光部702から出力される計測パルスを入力される。レーザ発光部701は、第1演算処理部704から出力されるレーザ発光パルスをトリガとしてレーザ光を発光する。このとき、投射光L1が出射される。出射された投射光L1が計測対象物OJにより反射されると、入射光L2がレーザ受光部702により受光される。レーザ受光部702の受光量に応じて計測パルスが生成され、計測パルスが距離計測部703に出力される。 
ここで、距離計測部703には、第1演算処理部704によりレーザ発光パルスとともに出力される基準パルスが入力される。距離計測部703は、基準パルスの立ち上りタイミングから計測パルスの立ち上りタイミングまでの経過時間を計測することで、計測対象物OJまでの距離を取得することができる。すなわち、距離計測部703は、所謂TOF(Time Of Flight)方式によって距離を計測する。距離の計測結果は計測データとして距離計測部703から出力される。 
駆動部707は、モータ79を回転駆動制御する。モータ79は、駆動部707によって所定の回転速度で回転駆動される。第1演算処理部704は、モータ79が所定単位角度回転するたびにレーザ発光パルスを出力する。例えば、上記所定単位角度は1度とする。これにより、回転筐体78および投光ミラー73が所定単位角度回転するたびにレーザ発光部701が発光し、投射光L1が出射される。 
第1演算処理部704は、レーザ発光パルスを出力したタイミングでのモータ79の回転角度位置と、レーザ発光パルスに対応して得られる計測データに基づいて、距離測定装置7を基準とする直交座標系上の位置情報を生成する。すなわち、投光ミラー73の回転角度位置と計測された距離に基づき、計測対象物OJの位置が取得される。上記取得される位置情報は、測定距離データとして第1演算処理部704より出力される。このようにして、走査回転角度範囲θでの投射光L1による走査により、計測対象物OJの距離画像を取得することができる。 
なお、計測対象物OJでの光の反射率によって、レーザ受光部702における受光量が変化する。例えば計測対象物OJが黒い物体で光の反射率が低下する場合、受光量が低下し、計測パルスの立ち上がりが遅くなる。すると、距離計測部703により距離が長めに計測されることになる。このように、計測対象物OJでの光の反射率によって、実際には同じ距離であっても、計測された距離が変化することが生じる。ここで、受光量が低下すると、計測パルスの長さは短くなる。そこで、第1演算処理部704は、計測パルスの長さに応じて計測データを補正することで、距離の計測精度を向上させる。第1演算処理部704は、測定距離データの生成時に、上記補正した計測データを用いる。 
第1演算処理部704から出力された測定距離データは、データ通信インタフェース705を介して後述する図6に示す無人搬送車15側に伝送される。また、第1演算処理部704から出力された測定距離データは、第2演算処理部706にも入力される。 
ここで、図3に一例を示すように、無人搬送車15の周辺に所定エリアR1が設定される。所定エリアR1は、図3の例では、無人搬送車15の前方所定距離の範囲と、左右両側所定距離の範囲を含む。例えば、前方1mの範囲と、左右両側0.5mの範囲を含む。 
第2演算処理部706は、測定距離データに基づき、所定エリアR1内に計測対象物が位置するか否かを判定する。具体的には、測定距離データで示される或る計測対象物の位置が所定エリアR1内に位置すれば、計測対象物が所定エリアR1内に位置すると判定される。第2演算処理部706は、所定エリアR1内に計測対象物が位置すると判定した場合、フラグである検出信号をHighレベルとして出力する。一方、所定エリアR1内に計測対象物が位置しない場合は、Lowレベルとした検出信号を出力する。検出信号は、後述する図6に示す無人搬送車15側に伝送される。 
このように、本実施形態に係る距離測定装置7は、計測対象物の距離画像である測定距離データを出力する機能とともに、無人搬送車15周辺の所定エリアR1内に位置する障害物を検知する機能を有する。従って、このような二つの機能を一つの距離測定装置7により実現できるので、無人搬送車15としてのコスト面で有利であるとともに、消費電力を抑えることができる。これにより、バッテリーBの電力消費を抑えられるので、無人搬送車15の動作可能時間を長くすることができる。 
<4.無人搬送車の電気的構成> 先述のように距離測定装置7側の電気的構成を説明したが、ここでは、図6を用いて無人搬送車15側の電気的構成について説明する。図6は、無人搬送車15の電気的構成を示すブロック図である。 
図6に示すように、無人搬送車15は、距離測定装置7と、制御部8と、駆動部9と、報知部10と、通信部Tと、を有する。 
制御部8は、制御ユニットU(図1)に設けられる。駆動部9は、不図示のモータドライバと、駆動モータ4L、4Rなどを有する。モータドライバは、制御ユニットUに設けられる。制御部8は、駆動部9に対して指令を行い制御する。駆動部9は、駆動輪5L、5Rの回転速度および回転方向を駆動制御する。 
制御部8は、通信部Tを介して不図示のタブレット端末と通信を行う。例えば、タブレット端末において操作された内容に応じた操作信号を通信部Tを介して制御部8が受信することができる。 
報知部10は、例えば音声または光などにより外部に報知を行う。報知部10がスピーカ等により構成される場合は、音声により報知することができる。報知部10がLED等により構成される場合は、光により報知することができる。報知部10は、例えば車体1(図1)に備えられる。報知部10は、制御部8により制御される。 
制御部8は、距離測定装置7から出力される測定距離データと検出信号を入力される。制御部8は、測定距離データに基づいてマップ情報を作成することが可能である。マップ情報とは、後述する無人搬送車15の自己の位置を特定する自己位置同定を行うために生成される情報であり、無人搬送車15が走行する場所における静止物の位置情報として生成される。例えば、無人搬送車15が走行する場所が倉庫である場合は、静止物は倉庫の壁、倉庫内に配列された棚などである。 
マップ情報は、例えばタブレット端末により無人搬送車15の手動操作が行われる際に生成される。この場合、タブレット端末の例えばジョイスティックの操作に応じた操作信号が通信部Tを介して制御部8に送信されることで、制御部8は操作信号に応じて駆動部9に指令を行い、無人搬送車15を走行制御する。このとき、制御部8は、距離測定装置7から入力される測定距離データと、無人搬送車15の位置に基づき、無人搬送車15が走行する場所における計測対象物の位置をマップ情報として特定する。無人搬送車15の位置は、駆動部9の駆動情報に基づき特定される。 
上記のように生成されたマップ情報は、制御部8の記憶部81により記憶される。制御部8は、距離測定装置7から入力される測定距離データと、記憶部81に予め記憶されたマップ情報とを比較することにより、無人搬送車15の自己の位置を特定する自己位置同定を行う。自己位置同定を行うことで、制御部8は、予め定められた経路に沿った無人搬送車15の自律的な走行制御を行うことができる。 
また、制御部8は、距離測定装置7から入力される検出信号に基づいて後述するような制御動作を行うことができる。制御部8には、一つの距離測定装置7から測定距離データと検出信号が入力されるので、入力されるデータを処理する制御部8の処理負荷を抑制することができる。 
<5.マップ情報作成時の制御動作> 次に、上述したマップ情報を新たに作成する際の制御部8が行う制御動作について、図7Aおよび図7Bに示すフローチャートを用いて説明する。ここで、マップ情報の作成時には、上述したように例えばタブレット端末によって無人搬送車15は手動操作により走行制御される。 
図7Aのフローチャートが開始されると、まずステップS1で、制御部8は、距離測定装置7から入力される検出信号がHighレベルであるか否かを確認する。もし、検出信号がLowレベルである場合は(ステップS1のN)、そのままステップS1に戻る。このとき、所定エリアR1内に障害物が検知されない状態であるので、制御部8は、距離測定装置7から入力された測定距離データの全てを用いてマップ情報を生成する。生成されたマップ情報は、記憶部81に記憶される。 
一方、ステップS1で、検出信号がHighレベルである場合は(ステップS1のY)、ステップS2に進む。ステップS2で、制御部8は、距離測定装置7から入力された測定距離データに基づき、所定エリアR1内に位置する検出物体までの距離を検出する。 
また、ステップS2で、制御部8は、距離測定装置7から入力された測定距離データに基づき、上記検出物体が移動体であるか否かを確認する。このとき、制御部8は、記憶部81に記憶された前回の測定距離データと、今回の測定距離データと、無人搬送車15の位置に基づき、上記検出物体が移動しているか否かを判定する。検出物体が移動体である場合は、制御部8は、測定距離データと、無人搬送車15の位置に基づき、検出物体の無人搬送車15に対する相対的な移動方向を検出する。移動方向とは、無人搬送車15に近づ
いているか否かである。なお、距離測定装置7の走査速度が速い場合は、記憶部81に記憶された前々回、または更にそれより前の測定距離データを用いてもよい。 
ステップS2の後、ステップS3で、制御部8は、検出物体が移動体であるか否かを判定する。検出物体が移動体でない場合は(ステップS3のN)、ステップS5に進む。検出物体が移動体でない場合は、例えば所定エリアR1内に壁などの静止物が侵入した場合であり、この場合、制御部8は、距離測定装置7から入力された測定距離データの全てを用いてマップ情報を生成する。生成されたマップ情報は、記憶部81に記憶される。 
ステップS5で、制御部8は、ステップS2で検出された検出物体までの距離が第1閾値以下であるか否かを判定する。もし、距離が第1閾値以下である場合は(ステップS5のY)、ステップS6に進み、制御部8は、駆動部9を制御することで、無人搬送車15を検出物体を避ける方向へ回転させ、移動を継続させる。一方、距離が第1閾値以下でない場合は(ステップS5のN)、ステップS7に進み、制御部8は、無人搬送車15の移動を継続させる。ステップS6、S7の後、ステップS1に戻る。 
ステップS3で、検出物体が移動体である場合は(ステップS3のY)、ステップS4に進む。ステップS4で、制御部8は、検出された移動体の測定距離データ以外の測定距離データに基づいてマップ情報を生成する。すなわち、移動体の位置に基づくマップ情報は、生成するマップ情報に含めない。これにより、マップ情報として適切でない移動体をマップ情報から除くことができる。 
そして、ステップS8に進み(図7B)、制御部8は、ステップS2で検出された検出物体の移動方向が相対的に近づく方向であるか否かを判定する。検出物体の移動方向が相対的に近づく方向である場合は(ステップS8のY)、ステップS9に進む。ステップS9で、制御部8は、ステップS2で検出された検出物体までの距離は、第2閾値以下であるか否かを判定する。ここで、第2閾値は、無人搬送車15と検出物体とが衝突する可能性のある距離である。 
検出物体までの距離が第2閾値以下である場合は(ステップS9のY)、ステップS10に進み、制御部8は、報知部10に報知させる制御を行う。それとともに、制御部8は、無人搬送車15の速度を低下させる制御を行う。または、制御部8は、速度を低下させずに無人搬送車15の移動を継続させてもよい。このように無人搬送車15に相対的に近づく検出物体に対して報知することで警告を行うことができ、衝突を回避することができる。 
ステップS10の後、ステップS11に進む。ステップS9で、距離が第2閾値以下でない場合(ステップS9のN)、ステップS1に戻る。ステップS11で、制御部8は、ステップS2で検出された検出物体までの距離は、第3閾値以下であるか否かを判定する。ここで、第3閾値は、無人搬送車15と検出物体とが衝突する可能性の高い距離であり、第2閾値よりも小さい値である。 
もし、検出物体までの距離が第3閾値以下である場合は(ステップS11のY)、ステップS12に進み、制御部8は、駆動部9を制御して無人搬送車15を停止させる。これにより、検出物体との衝突の可能性が高い場合に、衝突を回避することができる。ステップS12の後、ステップS1に戻る。 
なお、検出物体が移動体でない場合にステップS5で用いる第1閾値は、第2閾値より小さい値または第3閾値より小さい値とする。これにより、検出物体が移動体でない場合に、無人搬送車15は検出物体に、より接近することができる。 
ステップS11で、検出物体までの距離が第3閾値以下でない場合は(ステップS11のN)、そのままステップS1に戻る。 
また、ステップS8で、検出物体の移動方向が相対的に遠のく方向である場合は(ステップS8のN)、ステップS13に進む。ステップS13で、制御部8は、ステップS2で検出された検出物体までの距離は、第4閾値以下であるか否かを判定する。 
ここで、距離が第4閾値以下でない場合は(ステップS13のN)、ステップS14に進み、制御部8は、無人搬送車15の移動を継続させる。これにより、検出物体が相対的に遠のく場合に、検出物体から或る程度離れていれば、衝突の可能性が低いため、無人搬送車15を停止させずに移動を継続させることができる。一方、距離が第4閾値以下である場合は(ステップS13のY)、ステップS15に進み、制御部8は、無人搬送車15を停止させる。これにより、相対的に遠のくように移動する検出物体との衝突を回避できる。ステップS14、S15の後、ステップS1に戻る。 
このように、本実施形態の図7A、図7Bの処理によれば、マップ情報の作成時に、所定エリアR1内に位置する検出物体(障害物)が移動体であるか否かに応じて、無人搬送車15は適切な移動動作を行うことができる。 
<6.自己位置同定時の移動動作> 次に、先述のようにしてマップ情報が作成された後に行われる自己位置同定時の制御部8の制御動作について説明する。この制御動作を図8に示す。なお、図8に示すフローチャートは、先述したマップ情報作成時の図7Aに対応する処理であり、図7Bで示す処理は自己位置同定時も同様に行われるので図示を省略する。なお、図8の図7Aとの相違点は、ステップS40である。ここでは、図8の処理について、図7Aの処理との相違点について特に述べる。 
図8のフローチャートが開始されて、ステップS1で検出信号がHighレベルでない場合は(ステップS1のN)、制御部8は、距離測定装置7から入力された測定距離データの全てと、記憶部81に記憶されたマップ情報との比較に基づき、無人搬送車15の位置を特定する。 
また、ステップS3で、所定エリアR1内に位置する検出物体が移動体でないと判定された場合は(ステップS3のN)、制御部8は、距離測定装置7から入力された測定距離データの全てと、記憶部81に記憶されたマップ情報との比較に基づき、無人搬送車15の位置を特定する。 
一方、ステップS3で、検出物体が移動体であると判定された場合は(ステップS3のY)、ステップS40に進み、制御部8は、距離測定装置7から入力された測定距離データのうち検出物体に相当するデータを除いて、記憶部81に記憶されたマップ情報と比較し、無人搬送車15の位置を特定する。 
これにより、検出物体が移動体である場合に、移動体のデータを自己位置同定に用いることを回避し、自己位置同定の精度を向上させることができる。なお、所定エリアR1内に位置する検出物体(障害物)が移動体であるか否かに応じて、無人搬送車15が適切な移動動作を行うことができるのは、先述したマップ情報作成時と同様である。 
<7.移動動作制御の変形例> 図9Aおよび図9Bは、先述したマップ情報作成時の制御部8が行う制御の変形例についてのフローチャートである。ここでは、先述した図7Aおよび図7Bに示す処理との相違点について特に述べる。 
図9Aに示す処理では、ステップS21で検出信号がHighレベルの場合、ステップS22に進み。ステップS22で、制御部8は、所定エリアR1内に位置する検出物体までの距離、および検出物体の移動方向を検出するとともに、測定距離データに基づいて検出物体の無人搬送車15に対する相対速度を検出する。 
そして、ステップS25、S29、S31、S33で用いられる第1~第4閾値は、各々、ステップS22で検出された相対速度に応じて可変とする。具体的には、相対速度が速ければ、閾値を大きくし、相対速度が遅ければ、閾値を小さくする。これにより、相対速度が速い場合には、検出物体から遠いところから衝突回避を図ったり、相対速度が遅ければ、検出物体により接近することができる。 
なお、このような変形例は、自己位置同定時の制御についても同様に適用される。 
<8.本実施形態の作用効果> 以上説明したように、本実施形態の移動装置(15)は、発光部(701)と、受光部(702)と、前記発光部による発光と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部(703)と、前記距離計測部による計測結果に基づいて測定距離データを出力する測定距離データ出力部(704)と、前記測定距離データに基づいて所定エリア(R1)内に前記計測対象物が位置するか否かを示す検出信号を出力する検出信号出力部(706)と、を有する距離測定装置(7)と、前記測定距離データと前記検出信号が入力される制御部(8)と、を備える。前記制御部は、測定距離データと、既存のマップ情報との比較に基づき、移動装置の自己位置を同定する。また、前記制御部は、前記検出信号が前記所定エリア内に前記計測対象物が位置することを示す場合に、前記測定距離データに基づいて前記計測対象物が移動体であるか否かを判定する。 
このような構成によれば、一つの距離測定装置から出力される測定距離データと検出信号を処理するので、制御部の処理負荷を抑えることができる。また、所定エリア内に位置する計測対象物が移動体であるか否かに応じて、移動装置は適切な移動動作を行うことができる。 
また、上記構成において、前記計測対象物が移動体であると判定された場合に、前記制御部は、前記測定距離データに基づいて生成するマップ情報に前記計測対象物のマップ情報は含めない。これにより、マップ情報に含めるべきでない移動体をマップ情報から外すことができる。 
また、上記構成において、前記制御部は、前記検出信号が前記所定エリア内に前記計測対象物が位置することを示す場合に、前記測定距離データに基づいて前記計測対象物までの距離を検出し、前記制御部は、検出された前記距離を所定の閾値と比較し、前記計測対象物が移動体でない場合の前記閾値(第1閾値)は、前記計測対象物が移動体である場合の前記閾値(第2または第3閾値)よりも小さい。 
これにより、所定エリア内に位置する計測対象物が移動体でない場合に、移動装置は、より計測対象物に接近することが可能となる。 
また、上記構成において、前記制御部は、前記検出信号が前記所定エリア内に前記計測対象物が位置することを示す場合に、前記測定距離データに基づいて前記計測対象物までの距離および前記計測対象物の移動方向を検出する。 
これにより、計測対象物が移動体である場合に、計測対象物の移動方向および計測対象物までの距離に応じて、移動装置は適切な動作を行うことができる。 
また、上記構成において、報知部(10)をさらに備え、前記計測対象物が移動体であり、且つ前記移動方向が移動装置に相対的に近づく方向である場合に、前記制御部は、検出された前記距離を所定の閾値(第2閾値)と比較し、前記距離が前記閾値以下である場合、前記制御部は、報知部に報知させる。 
これにより、移動装置に相対的に近づく移動体に対して報知部によって警告することでき、衝突を回避することができる。 
また、上記構成において、前記距離が前記閾値以下である場合、前記制御部は、前記距離を前記閾値よりも小さな閾値(第3閾値)と比較し、前記距離が前記閾値よりも小さな前記閾値以下である場合、前記制御部は、移動装置を停止させる。 
これにより、移動装置に相対的に近づく移動体に対して警告を行うとともに、移動装置は停止するので、衝突をより回避することができる。 
また、上記構成において、前記計測対象物が移動体であり、且つ前記移動方向が移動装置から相対的に遠のく方向である場合に、前記制御部は、検出された前記距離を所定の閾値(第4閾値)と比較し、前記距離が前記閾値以下でない場合に、前記制御部は、移動装置の移動を継続させる。 
これにより
、移動装置から相対的に遠のく移動体から或る程度離れている移動装置であれば、衝突する可能性が少ないので、移動を停止させることなく継続することができる。 
また、上記構成において、前記制御部は、前記検出信号が前記所定エリア内に前記計測対象物が位置することを示す場合に、前記測定距離データに基づいて前記計測対象物までの距離および前記計測対象物の移動装置に対する相対速度を検出し、前記制御部は、検出された前記距離と所定の閾値(第1~第4閾値)を比較し、前記閾値は、前記相対速度に応じて可変である。 
これにより、相対速度が速ければ、閾値を大きくして、計測対象物のより遠いところから衝突回避を図ったり、相対速度が遅ければ、閾値を小さくして、計測対象物により接近することができる。 
<9.その他> 以上、本発明の実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は種々の変更が可能である。 
例えば、上記実施形態では、移動装置として無人搬送車を例に挙げて説明したが、これに限らず、移動装置は掃除ロボット、監視ロボットなど、運搬用途以外の装置に適用してもよい。
本発明は、例えば、荷物を運搬する無人搬送車に利用することができる。
1・・・車体、1A・・・基部、1B・・・台部、2・・・荷台、3L、3R・・・支持部、4L、4R・・・駆動モータ、5L、5R・・・駆動輪、6F、6R・・・従動輪、7・・・距離測定装置、71・・・レーザ光源、72・・・コリメートレンズ、73・・・投光ミラー、74・・・受光レンズ、75・・・受光ミラー、76・・・波長フィルタ、77・・・受光部、78・・・回転筐体、79・・・モータ、701・・・レーザ発光部、702・・・レーザ受光部、703・・・距離計測部、704・・・第1演算処理部、705・・・データ通信インタフェース、706・・・第2演算処理部、707・・・駆動部、80・・・筐体、801・・・透過部、81・・・基板、82・・・配線、83・・・回転速度センサ、8・・・制御部、81・・・記憶部、9・・・駆動部、10・・・報知部、15・・・無人搬送車、U・・・制御ユニット、B・・・バッテリー、T・・・通信部、S・・・隙間、R1・・・所定エリア、Rs・・・測定範囲、θ・・・走査回転角度範囲、J・・・回転軸、L1・・・投射光、L2・・・入射光、OJ・・・計測対象物

Claims (8)

  1. 発光部と、 受光部と、 前記発光部による発光と前記受光部による受光とに基づいて計測対象物までの距離を計測する距離計測部と、 前記距離計測部による計測結果に基づいて測定距離データを出力する測定距離データ出力部と、 前記測定距離データに基づいて所定エリア内に前記計測対象物が位置するか否かを示す検出信号を出力する検出信号出力部と、 を有する距離測定装置と、 前記測定距離データと前記検出信号が入力される制御部と、を備え、 前記制御部は、測定距離データと、既存のマップ情報との比較に基づき、移動装置の自己位置を同定し、 前記制御部は、前記検出信号が前記所定エリア内に前記計測対象物が位置することを示す場合に、前記測定距離データに基づいて前記計測対象物が移動体であるか否かを判定する、移動装置。
  2. 前記計測対象物が移動体であると判定された場合に、前記制御部は、前記測定距離データに基づいて生成するマップ情報に前記計測対象物のマップ情報は含めない、請求項1に記載の移動装置。
  3. 前記制御部は、前記検出信号が前記所定エリア内に前記計測対象物が位置することを示す場合に、前記測定距離データに基づいて前記計測対象物までの距離を検出し、前記制御部は、検出された前記距離を所定の閾値と比較し、前記計測対象物が移動体でない場合の前記閾値は、前記計測対象物が移動体である場合の前記閾値よりも小さい、請求項1または請求項2に記載の移動装置。
  4. 前記制御部は、前記検出信号が前記所定エリア内に前記計測対象物が位置することを示す場合に、前記測定距離データに基づいて前記計測対象物までの距離および前記計測対象物の移動方向を検出する、請求項1または請求項2に記載の移動装置。
  5. 報知部をさらに備え、 前記計測対象物が移動体であり、且つ前記移動方向が移動装置に相対的に近づく方向である場合に、前記制御部は、検出された前記距離を所定の閾値と比較し、前記距離が前記閾値以下である場合、前記制御部は、報知部に報知させる、請求項4に記載の移動装置。
  6. 前記距離が前記閾値以下である場合、前記制御部は、前記距離を前記閾値よりも小さな閾値と比較し、 前記距離が前記閾値よりも小さな前記閾値以下である場合、前記制御部は、移動装置を停止させる、請求項5に記載の移動装置。
  7. 前記計測対象物が移動体であり、且つ前記移動方向が移動装置から相対的に遠のく方向である場合に、前記制御部は、検出された前記距離を所定の閾値と比較し、 前記距離が前記閾値以下でない場合に、前記制御部は、移動装置の移動を継続させる、請求項4から請求項6のいずれか1項に記載の移動装置。
  8. 前記制御部は、前記検出信号が前記所定エリア内に前記計測対象物が位置することを示す場合に、前記測定距離データに基づいて前記計測対象物までの距離および前記計測対象物の移動装置に対する相対速度を検出し、 前記制御部は、検出された前記距離と所定の閾値を比較し、 前記閾値は、前記相対速度に応じて可変である、請求項1から請求項7のいずれか1項に記載の移動装置。
PCT/JP2018/005928 2017-03-22 2018-02-20 移動装置 WO2018173595A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-056187 2017-03-22
JP2017056187 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173595A1 true WO2018173595A1 (ja) 2018-09-27

Family

ID=63584365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005928 WO2018173595A1 (ja) 2017-03-22 2018-02-20 移動装置

Country Status (1)

Country Link
WO (1) WO2018173595A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020055490A (ja) * 2018-10-04 2020-04-09 関西電力株式会社 走行制御装置及び走行制御方法、並びに自動走行車
JP2020111160A (ja) * 2019-01-10 2020-07-27 シャープ株式会社 台車及び搬送システム
WO2022145081A1 (ja) * 2020-12-28 2022-07-07 パナソニックIpマネジメント株式会社 搬送システム、搬送方法、経路情報作成システムならびに経路情報作成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004280451A (ja) * 2003-03-14 2004-10-07 Matsushita Electric Works Ltd 自律移動装置
JP2006293662A (ja) * 2005-04-11 2006-10-26 Figla Co Ltd 作業ロボット
JP2012168990A (ja) * 2012-06-11 2012-09-06 Panasonic Corp 自律移動装置
JP2013225253A (ja) * 2012-04-23 2013-10-31 Panasonic Corp 自律移動装置、自律移動方法及び自律移動装置用のプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004280451A (ja) * 2003-03-14 2004-10-07 Matsushita Electric Works Ltd 自律移動装置
JP2006293662A (ja) * 2005-04-11 2006-10-26 Figla Co Ltd 作業ロボット
JP2013225253A (ja) * 2012-04-23 2013-10-31 Panasonic Corp 自律移動装置、自律移動方法及び自律移動装置用のプログラム
JP2012168990A (ja) * 2012-06-11 2012-09-06 Panasonic Corp 自律移動装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020055490A (ja) * 2018-10-04 2020-04-09 関西電力株式会社 走行制御装置及び走行制御方法、並びに自動走行車
JP2020111160A (ja) * 2019-01-10 2020-07-27 シャープ株式会社 台車及び搬送システム
JP7181097B2 (ja) 2019-01-10 2022-11-30 シャープ株式会社 台車及び搬送システム
WO2022145081A1 (ja) * 2020-12-28 2022-07-07 パナソニックIpマネジメント株式会社 搬送システム、搬送方法、経路情報作成システムならびに経路情報作成方法

Similar Documents

Publication Publication Date Title
US20160170412A1 (en) Autonomous mobile device and method for controlling same
US9964953B2 (en) Autonomous moving object
WO2018173595A1 (ja) 移動装置
JP2005077379A (ja) レーダ装置
US20160236347A1 (en) Movable object controller and method for controlling movable object
JP6464410B2 (ja) 障害物判定装置および障害物判定方法
JP5152898B2 (ja) 障害認識装置及びこれを有する自律走行移動体並びにその制御方法
JP4340247B2 (ja) 自律移動ロボット
WO2018235602A1 (ja) 移動装置
JPWO2019064750A1 (ja) 距離測定装置、および移動体
JP2010256179A (ja) 測距方法及び車載測距装置
JPWO2020071465A1 (ja) 距離測定装置
KR101257566B1 (ko) 자동 이송 차량 및 이의 제어 방법
WO2018173594A1 (ja) 距離測定装置、および搬送車
US20190204438A1 (en) Control device, measuring device, control method, and program
WO2020045445A1 (ja) 距離測定装置、距離測定装置群、および距離測定装置システム
WO2019181691A1 (ja) 距離測定装置および移動体
WO2020045474A1 (ja) センサユニット、移動体
WO2018173589A1 (ja) 距離測定装置、及び移動装置
JPWO2019058678A1 (ja) 距離測定装置及びそれを備えた移動体
WO2019181692A1 (ja) 距離測定装置および移動体
WO2019064741A1 (ja) 距離測定装置、および移動体
CN111033302A (zh) 距离测量装置及移动体
WO2019146440A1 (ja) 距離測定装置、および移動体
WO2019058679A1 (ja) 距離測定装置及びそれを備えた移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP