WO2018235602A1 - 移動装置 - Google Patents

移動装置 Download PDF

Info

Publication number
WO2018235602A1
WO2018235602A1 PCT/JP2018/021718 JP2018021718W WO2018235602A1 WO 2018235602 A1 WO2018235602 A1 WO 2018235602A1 JP 2018021718 W JP2018021718 W JP 2018021718W WO 2018235602 A1 WO2018235602 A1 WO 2018235602A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle sensor
obstacle
distance
measurement
measuring device
Prior art date
Application number
PCT/JP2018/021718
Other languages
English (en)
French (fr)
Inventor
真史 則座
Original Assignee
日本電産シンポ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産シンポ株式会社 filed Critical 日本電産シンポ株式会社
Publication of WO2018235602A1 publication Critical patent/WO2018235602A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to mobile devices.
  • Patent Document 1 discloses an example of a conventional automatic guided vehicle.
  • the unmanned transfer vehicle of Patent Document 1 includes a main body and two obstacle sensors.
  • the obstacle sensor is configured by an LRF (laser range finder).
  • one obstacle sensor is disposed at one corner of the main body, and the other obstacle sensor is disposed at the other corner of the main body located diagonally to the corner Be done.
  • the two obstacle sensors are arranged at the same height.
  • the two obstacle sensors perform the detection operation by irradiating the laser beam and receiving the reflected light in the scan areas covered respectively. Thereby, an obstacle located around the unmanned transfer vehicle is detected.
  • unmanned conveyance vehicles having a function of creating map information indicating the shape of an object around the unmanned conveyance vehicle so that the vehicle can travel autonomously without a track.
  • LRF is used, which scans the laser light in a predetermined scanning range and measures the distance to the measurement object.
  • the patent document 1 does not disclose that the LRF for creating the map information as described above is disposed on an unmanned transport vehicle. If the position where the LRF is arranged is inappropriate, there is a risk that the LRF scanning range may interfere with the obstacle sensor. In this case, the measurement effective area of the LRF is limited. In order to create map information well, it is desirable to avoid such limitation of measurement effective area.
  • the present invention has an object to provide a mobile apparatus capable of generating map information well.
  • An exemplary moving apparatus rotationally drives a light projecting unit that emits projected light, and outputs distance measurement data based on reception of reflected light that the projected light is reflected by a measurement object
  • a map generation unit for generating map information based on the distance measurement data
  • an obstacle sensor for detecting an obstacle, wherein the obstacle sensor is a circular area including the measurement effective area of the distance measurement device In the measurement ineffective area of the distance measuring device.
  • FIG. 1 is a schematic overall perspective view of an automatic guided vehicle according to an embodiment of the present invention.
  • FIG. 2 is a schematic side sectional view of a distance measuring device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the electrical configuration of the distance measuring device according to the embodiment of the present invention.
  • FIG. 4 is a block diagram showing an electrical configuration of an obstacle sensor according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing the electrical configuration of the automatic guided vehicle according to the embodiment of the present invention.
  • FIG. 6 is a schematic plan view of the automatic guided vehicle according to the embodiment as viewed from above.
  • FIG. 7 is a diagram showing a measurement effective area and a measurement ineffective area of the distance measurement device.
  • FIG. 1 is a schematic overall perspective view of an automatic guided vehicle according to an embodiment of the present invention.
  • FIG. 2 is a schematic side sectional view of a distance measuring device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing
  • FIG. 8 is a diagram showing a setting example of an obstacle detection area of an obstacle sensor.
  • FIG. 9 is a view showing a case where an obstacle sensor is temporarily disposed at another position.
  • FIG. 10 is a schematic plan view of the automatic guided vehicle according to the modification as viewed from above.
  • FIG. 11 is a schematic side view of an automated guided vehicle according to a modification.
  • An unmanned carrier which is an application for carrying a load
  • An unmanned carrier is generally referred to as an AGV (Automatic Guided Vehicle).
  • the forward and reverse direction of the AGV is described as the X direction
  • the traversing movement direction of the AGV orthogonal to the X direction is described as the Y direction
  • the X direction and the Y direction are described as the Z direction.
  • FIG. 1 is a schematic overall perspective view of an automated guided vehicle 100 according to an embodiment of the present invention.
  • the unmanned transfer vehicle 100 travels autonomously without a track by two-wheel drive and transports a load.
  • the unmanned transfer vehicle 100 includes a main body portion 1, a bumper portion 2, and a top plate portion 3.
  • the main body portion 1 has a substantially rectangular shape having a side extending in the X direction and a side extending in the Y direction in a plan view as viewed from above.
  • the main body 1 includes a frame (not shown), a first cover 11A that covers the frame from four sides, a second cover 11B, a third cover 11C, and a fourth cover 11D.
  • the first cover portion 11A to the fourth cover portion 11D are separate members, and made of a resin material.
  • the cover portion may be configured as one member.
  • the cover may use a material other than the resin material.
  • the first cover portion 11A extending in the Y direction is attached to one end of the frame in the X direction.
  • the third cover 11C extending in the Y direction is attached to the other end of the frame in the X direction. That is, the first cover portion 11A and the third cover portion 11C face in the X direction.
  • the second cover 11B extending in the X direction is attached to one end of the frame in the Y direction.
  • the fourth cover 11D extending in the X direction is attached to the other end of the frame in the Y direction. That is, the second cover portion 11B and the fourth cover portion 11D face in the Y direction.
  • the drive wheels 12A and 12B, the drive motors 13A and 13B, and the casters 14A and 14B are fixed to the frame in an internal space surrounded by the first cover portion 11A to the fourth cover portion 11D. That is, the body portion 1 further includes drive wheels 12A and 12B, drive motors 13A and 13B, and casters 14A and 14B.
  • the set of the drive wheel 12A and the drive motor 13A is disposed on one side in the Y direction inside the frame.
  • the drive motor 13A is formed of an AC servomotor as an example.
  • the drive motor 13A incorporates a speed reducer (not shown).
  • the drive wheel 12A is fixed to the rotating shaft of the drive motor 13A.
  • the set of the drive wheel 12B and the drive motor 13B is disposed on the other side in the Y direction inside the frame.
  • the drive motor 13B is formed of an AC servomotor as an example.
  • the drive motor 13B incorporates a reduction gear (not shown).
  • the drive wheel 12B is fixed to the rotating shaft of the drive motor 13B.
  • forward / reverse control By controlling the speed difference between the drive wheel 12A and the drive wheel 12B, forward / reverse control (X direction travel) of the unmanned transfer vehicle 100 is performed. Forward and reverse includes straight movement and bending movement.
  • the unmanned transfer vehicle 100 can move laterally (travel in the Y direction) by performing steering control on the drive wheels 12A and the drive wheels 12B.
  • the unmanned transfer vehicle 100 can also be rotated on the spot by reversely rotating the driving wheel 12A and the driving wheel 12B.
  • the caster 14A is fixed to one side in the X direction of the frame.
  • the caster 14B is fixed to the other side of the frame in the X direction.
  • the casters 14A, 14B each have a driven wheel.
  • the driven wheels passively rotate according to the rotation of the drive wheels 12A and 12B.
  • a control unit In addition, in the frame, a control unit, a battery, a communication unit (all not shown), etc. are accommodated.
  • the main body unit 1 further includes a distance measurement device 15, a first obstacle sensor 16, and a second obstacle sensor 17.
  • the distance measuring device 15 is configured as an LRF (laser range finder), and is used to create map information as described later.
  • the first obstacle sensor 16 and the second obstacle sensor 17 are both configured as LRF, and are used to detect an obstacle located around the automated guided vehicle 100.
  • the distance measuring device 15 is fixed to one corner of the frame.
  • the first obstacle sensor 16 is fixed to a corner of the frame at a position facing the distance measuring device 15 in the X direction.
  • the second obstacle sensor 17 is fixed to a corner of the frame at a position facing the distance measuring device 15 in the Y direction. That is, the first obstacle sensor 16 and the second obstacle sensor 17 are disposed at diagonal positions.
  • the distance measuring device 15 is disposed at a corner of the main body 1 where the end of the first cover 11A and the end of the second cover 11B meet.
  • the first obstacle sensor 16 is disposed at the corner of the main body 1 where the end of the second cover 11B and the end of the third cover 11C meet.
  • the second obstacle sensor 17 is disposed at the corner of the main body 1 where the end of the first cover 11A and the end of the fourth cover 11D meet. That is, the first obstacle sensor 16 is disposed at one corner adjacent to the corner at which the distance measuring device 15 is disposed, and the second obstacle sensor 17 is disposed at the corner at which the distance measuring device 15 is disposed. It is arranged at the other adjacent corner.
  • the bumper portion 2 is disposed around the frame at a position below the first cover portion 11A to the fourth cover portion 11D.
  • the bumper unit 2 suppresses an impact when the unmanned transfer vehicle 100 collides with an object.
  • a plurality of switches (not shown) arranged in the X direction and the Y direction are provided. When the object comes in contact with the bumper portion 2 and the switch is pressed, the unmanned transfer vehicle 100 is urgently stopped to travel.
  • top plate portion 3 is fixed to the frame and disposed above the first cover portion 11A to the fourth cover portion 11D.
  • the top plate 3 has a substantially rectangular shape in plan view as viewed from above, and is made of metal. A load can be placed on the upper surface of the top plate portion 3.
  • the first cover portion 11A has a flat portion S1 extending in the Y direction at the top in the Z direction.
  • the second cover portion 11B has a flat portion S2 extending in the X direction at the top in the Z direction.
  • the flat portions S1 and S2 are disposed at the same height position, and the distance measuring device 15 is disposed at a place where the respective end portions meet.
  • the wall portion W1 stands upward from the inner end of the flat portion S1. From the inner end of the flat surface portion S2, the wall portion W2 is erected upward.
  • the third cover portion 11C has a flat portion S3 extending in the Y direction at the top in the Z direction.
  • the flat portions S2 and S3 are disposed at the same height position, and the first obstacle sensor 16 is disposed at a position where the respective end portions meet.
  • the wall portion W3 stands upward from the inner end of the flat portion S3.
  • the fourth cover portion 11D has a flat portion S4 extending in the X direction at the top in the Z direction.
  • the flat portions S1 and S4 are disposed at the same height position, and the second obstacle sensor 17 is disposed at a place where the respective end portions meet.
  • the wall portion W4 stands upward from the inner end of the flat portion S4.
  • the flat portions S1 to S4, the walls W1 to W4, and the lower surface of the outer edge portion of the top plate 3 constitute one concave portion recessed inward.
  • the distance measurement device 15, the first obstacle sensor 16, and the second obstacle sensor 17 are disposed in the recess.
  • FIG. 2 is a schematic side cross-sectional view showing one configuration example of the distance measurement device 15.
  • the distance measuring device 15 configured as LRF scans the laser light in a predetermined scanning range to measure the distance to the measurement object.
  • the distance measuring device 15 includes a laser light source 151, a collimating lens 152, a light projecting mirror 153, a light receiving lens 154, a light receiving mirror 155, a wavelength filter 156, a light receiving unit 157, a rotating housing 158, and a motor 159.
  • the housing 160 has a substantially cylindrical shape extending in the vertical direction in appearance, and accommodates various configurations including the laser light source 151 in the internal space.
  • the laser light source 151 is mounted on the lower surface of the substrate 161 fixed to the lower surface of the upper end portion of the housing 160.
  • the laser light source 151 emits, for example, laser light in the infrared region downward.
  • the collimator lens 152 is disposed below the laser light source 151.
  • the collimator lens 152 emits the laser light emitted from the laser light source 151 downward as parallel light.
  • a light projecting mirror 153 is disposed below the collimator lens 152.
  • the projection mirror 153 is fixed to the rotating housing 158.
  • the rotating housing 158 is fixed to the shaft 159A of the motor 159 and is rotationally driven around the rotation axis J by the motor 159.
  • the light projecting mirror 153 is also rotationally driven around the rotation axis J.
  • the light projection mirror 153 reflects the laser beam emitted from the collimator lens 152, and emits the reflected laser beam as the projection light L1. Since the light projection mirror 153 is rotationally driven as described above, the projection light L1 is emitted while changing the emission direction in the range of 360 degrees around the rotation axis J.
  • the housing 160 has a transmitting portion 1601 midway in the vertical direction.
  • the transmitting portion 1601 is made of a translucent resin or the like.
  • the projection light L1 reflected and emitted by the light projection mirror 153 is transmitted through the transmission unit 1601 and emitted outward from the unmanned transfer vehicle 100.
  • the projection light L1 since the measurement effective area of the distance measurement device 15 is the rotation angle range of 270 degrees, the projection light L1 transmits the transmission portion 1601 at least in the range of 270 degrees around the rotation axis J. . In the range in which the rear transmitting portion 1601 is not disposed, the projection light L1 is blocked by the inner wall of the housing 160, the wiring 162, and the like.
  • the light receiving mirror 155 is fixed to the rotating housing 158 at a position below the light projecting mirror 153.
  • the light receiving lens 154 is fixed to the circumferential side surface of the rotary housing 158.
  • the wavelength filter 156 is located below the light receiving mirror 155 and is fixed to the rotating housing 158.
  • the light receiving unit 157 is located below the wavelength filter 156 and is fixed to the rotating housing 158.
  • the projection light L1 emitted from the distance measuring device 15 is reflected by the object to be measured and becomes diffused light.
  • a part of the diffused light passes through the transmitting portion 1601 as incident light L 2 and is incident on the light receiving lens 154.
  • the incident light L2 transmitted through the light receiving lens 164 is incident on the light receiving mirror 155, and is reflected downward by the light receiving mirror 155.
  • the reflected incident light L 2 passes through the wavelength filter 156 and is received by the light receiving unit 157.
  • the wavelength filter 156 transmits light in the infrared region.
  • the light receiving unit 157 converts the received light into an electrical signal by photoelectric conversion.
  • the rotary housing 158 When the rotary housing 158 is rotationally driven by the motor 159, the light receiving lens 154, the light receiving mirror 155, the wavelength filter 156, and the light receiving unit 157 are rotationally driven together with the light projecting mirror 153.
  • the motor 159 is connected to the substrate 161 by the wiring 162 and is rotationally driven by being energized from the substrate 161.
  • the motor 159 rotates the rotating housing 158 at a predetermined rotational speed.
  • the rotating housing 158 is rotationally driven at about 3000 rpm.
  • the wires 162 are routed around the rear inner wall of the housing 160 along the vertical direction.
  • FIG. 3 is a block diagram showing an electrical configuration of the distance measuring device 15. As shown in FIG.
  • the distance measuring device 15 includes a laser light emitting unit 15A, a laser light receiving unit 15B, a distance measuring unit 15C, an arithmetic processing unit 15D, a data communication interface 15E, a driving unit 15F, and a motor 159. And.
  • the laser light emitting unit 15A has a laser light source 151 (FIG. 2), an LD driver (not shown) for driving the laser light source 151, and the like.
  • the LD driver is mounted on the substrate 151.
  • the laser light receiving unit 15B includes a light receiving unit 157, and a comparator (not shown) that receives an electrical signal output from the light receiving unit 157. The comparator compares the level of the electric signal with a predetermined threshold level, and outputs a measurement pulse which is set to High level or Low level according to the comparison result.
  • the measurement pulse output from the laser receiving unit 15B is input to the distance measuring unit 15C.
  • the laser emission unit 15A emits a laser beam using a laser emission pulse output from the arithmetic processing unit 15D as a trigger.
  • the projection light L1 is emitted.
  • the incident light L2 is received by the laser light receiving unit 15B.
  • a measurement pulse is generated according to the amount of light received by the laser light receiving unit 15B, and the measurement pulse is output to the distance measurement unit 15C.
  • the reference pulse output together with the laser emission pulse by the arithmetic processing unit 15D is input to the distance measuring unit 15C.
  • the distance measuring unit 15C can acquire the distance to the measurement object OJ by measuring the elapsed time from the rising timing of the reference pulse to the rising timing of the measurement pulse. That is, the distance measuring unit 15C measures the distance by the so-called TOF (Time of Flight) method.
  • the measurement result of the distance is output from the distance measurement unit 15C as measurement data.
  • the drive unit 15F rotationally controls the motor 159.
  • the motor 159 is rotationally driven at a predetermined rotational speed by the drive unit 15F.
  • the arithmetic processing unit 15D outputs a laser emission pulse each time the motor 159 rotates by a predetermined unit angle.
  • the predetermined unit angle is one degree.
  • the laser light emitting unit 15A emits light each time the rotary housing 158 and the light projecting mirror 153 rotate by a predetermined unit angle, and the projection light L1 is emitted.
  • Arithmetic processing unit 15D calculates distance measurement data including the rotation angle position and the distance data based on the rotation angle position of motor 159 at the timing when the laser emission pulse is output and the measurement data obtained corresponding to the laser emission pulse. Generate The distance measurement data indicates position information in the polar coordinate format of the measurement object. Thereby, the distance image of the measurement object OJ can be acquired by scanning with the projection light L1 in the rotation angle range of 270 degrees. Therefore, the effective measurement area of the distance measuring device 15 is a rotation angle range of 270 degrees.
  • the arithmetic processing unit 15D does not generate distance measurement data for scanning with the projection light L1 in the 90 ° rotation angle range other than the 270 ° rotation angle range. That is, the rotation angle range of 90 degrees becomes the measurement ineffective area of the distance measuring device 15.
  • the distance measurement data output from the arithmetic processing unit 15D is transmitted to the unmanned transfer vehicle 100 shown in FIG. 5 described later via the data communication interface 15E.
  • the distance measurement data is used to create map information described later.
  • the hardware configuration of the first obstacle sensor 16 configured as the LRF is the same as the configuration of the distance measurement device 15 illustrated in FIG. 2 and thus the detailed description is omitted here. Since the first obstacle sensor 16 has an effective angle range of 270 degrees capable of detecting an obstacle, the projection light L1 is a transmitting portion (corresponding to the transmitting portion 1601) in a range of at least 270 degrees around the rotation axis J Through.
  • FIG. 4 is a block diagram showing the electrical configuration of the first obstacle sensor 16.
  • the first obstacle sensor 16 includes a laser light emitting unit 16A, a laser light receiving unit 16B, a distance measuring unit 16C, an arithmetic processing unit 16D, a data communication interface 16E, and a driving unit 16F. And a motor 169.
  • the projection light L1 is emitted from the laser light emitting unit 16A, and the reflected light from the measurement object OJ is received by the laser light receiving unit 16B to measure distance. It is the same as the distance measuring device 15 that the unit 16C measures the distance based on the measurement pulse.
  • the arithmetic processing unit 16D grasps the position of the measurement object OJ in the polar coordinate format based on the rotational angle position of the motor 169 and the measurement data from the distance measurement unit 16C.
  • a predetermined obstacle detection area is set in the arithmetic processing unit 16D.
  • Arithmetic processing unit 16D determines whether the position of the measured object OJ grasped above is located within the obstacle detection area, and if it is located, outputs obstacle detection data indicating that an obstacle is present. .
  • the obstacle detection area can be set from the outside of the first obstacle sensor 16, and the range of the area can be changed.
  • the obstacle detection area can be set so that the obstacle can be detected by the projection light L1 scanned in the rotational angle range of 270 degrees.
  • the setting of the obstacle detection area is limited so that the obstacle can not be detected by the projection light L1 scanned in the 90 degree rotation angle range other than 270 degrees. Thereby, the effective angle range of the first obstacle sensor 16 is set to 270 degrees.
  • a specific setting example of the obstacle detection area will be described later.
  • the obstacle detection data output from the arithmetic processing unit 16D is transmitted to the unmanned transfer vehicle 100 shown in FIG. 5 described later via the data communication interface 16E.
  • FIG. 5 is a block diagram showing the electrical configuration of the automatic guided vehicle 100. As shown in FIG.
  • the unmanned transfer vehicle 100 includes a distance measurement device 15, a first obstacle sensor 16, a second obstacle sensor 17, a control unit 100A, a communication unit 100B, and a power button 100C. And a drive unit 100D.
  • the control unit 100A controls each part of the unmanned transfer vehicle 100.
  • the drive unit 100D includes a motor driver (not shown), drive motors 13A and 13B, and the like.
  • the control unit 100A instructs and controls the drive unit 100D.
  • Drive part 100D drive-controls the rotational speed and rotational direction of drive wheel 12A, 12B.
  • the control unit 100A communicates with a tablet terminal (not shown) via the communication unit 100B.
  • the control unit 100A can receive an operation signal according to the content operated on the tablet terminal via the communication unit 100B.
  • the power button 100C is an operation button for turning on the unmanned transfer vehicle 100 and activating it.
  • the control unit 100A has a map creation unit M1.
  • the map creation unit M1 can create map information based on the distance measurement data acquired from the distance measurement device 15.
  • the map information is information generated to perform self-location identification for specifying the position of the unmanned transfer vehicle 100, and is generated as position information of a stationary object at a place where the unmanned transfer vehicle 100 travels.
  • the stationary object is a wall of the warehouse, a shelf arranged in the warehouse, or the like.
  • the map information is generated, for example, when a manual operation of the AGV 100 is performed by a tablet terminal.
  • an operation signal corresponding to the operation of, for example, a joystick of the tablet terminal is transmitted to the control unit 100A via the communication unit 100B, and the control unit 100A instructs the drive unit 100D according to the operation signal.
  • the traveling control of the carrier 100 is performed.
  • the control unit 100A specifies the position of the measurement object at the location where the unmanned transfer vehicle 100 travels as map information. .
  • the position of the automatic guided vehicle 100 is specified based on, for example, drive information of the drive unit 100D.
  • the map information generated as described above is stored by the storage unit M2 of the control unit 100A.
  • the control unit 100A compares the distance measurement data input from the distance measurement device 15 with the map information stored in advance in the storage unit M2 to identify the position of the unmanned carrier 100 itself. Do. By performing the self position identification, the control unit 100A can perform autonomous traveling control of the unmanned transfer vehicle 100 along a predetermined route.
  • control unit 100A can also control the traveling of the automatic guided vehicle 100 based on obstacle detection data acquired from the first obstacle sensor 16 and the second obstacle sensor 17.
  • FIG. 6 is a schematic plan view of the automated guided vehicle 100 according to the present embodiment as viewed from above. However, in FIG. 6, illustration of various configurations such as the top plate portion 3, the frame, and the components inside the frame is omitted for the sake of convenience.
  • the first cover portion 11A has a portion extending between the distance measuring device 15 and the second obstacle sensor 17, and the wall portion W1 stands upward from the inner end portion of the portion.
  • the second cover portion 11B has a portion extending between the distance measuring device 15 and the first obstacle sensor 16, and the wall portion W2 stands upward from the inner end portion of the portion.
  • a radially outer edge E2 is a line segment extending from the rotational axis J of the distance measuring device 15 toward the second obstacle sensor 17 in parallel with the wall portion W1 with the radially outer edge E1
  • an arc-shaped area defined by an angle of 270 degrees formed by the radially outer edges E1, E2 and E1, E2 on the outer side of the main body 1 becomes the measurement effective area R1.
  • Distance measurement data is generated based on the projection light L1 scanned within the measurement effective area R1.
  • the reachable distance of the projection light L1 by the distance measurement device 15 is, for example, 30 m.
  • the radial outer edges E1, E2 have a length of 30 m.
  • an arc-shaped area defined by the radial outer edges E1 and E2 and the 90-degree angle formed by the E1 and E2 on the inner side of the main body 1 is a measurement invalid area R2. That is, in the circular area including the measurement effective area R1, an area other than the measurement effective area R1 is the measurement ineffective area R2. No distance measurement data is generated based on the projection light L1 scanned in the range of the measurement invalid area R2.
  • the height positions of the optical axes of the projection lights L1 projected from the distance measurement device 15, the first obstacle sensor 16 and the second obstacle sensor 17 coincide with each other. Therefore, depending on the arrangement position of each obstacle sensor, the projection light L1 projected from the distance measurement device 15 in the measurement effective area R1 is irradiated to the first obstacle sensor 16 and the second obstacle sensor 17, and each obstacle is It may interfere with the sensor. Note that, even if the height positions of the optical axes do not coincide, the distance measurement device 15 and the obstacle sensors 16 and 17 may be selected depending on the arrangement position of the distance measurement device 15 and the obstacle sensors 16 and 17 in the height direction. Each other's projected light may interfere with the other side.
  • the 1st obstacle sensor 16 and the 2nd obstacle sensor 17 are arranged in measurement invalid field R2 of distance measurement device 15. As shown in FIG. At that time, the first obstacle sensor 16 is in contact with the radial outer edge E1, and the second obstacle sensor 17 is in contact with the radial outer edge E2.
  • the projection light L1 projected from the distance measurement device 15 interferes with the first obstacle sensor 16 and the second obstacle sensor 17 in the measurement effective area R1, and the measurement effective area R1 is limited. You can avoid that. Therefore, the measurement effective area R1 can be made effective in the entire area, and the map generation unit M1 can generate the map information well.
  • FIG. 8 is a plan view showing an example of obstacle detection areas set in the first obstacle sensor 16 and the second obstacle sensor 17.
  • a line segment extending in the Y direction from the rotation axis J of the first obstacle sensor 16 toward the second obstacle sensor 17 by the reachable distance of the projection light L1 has a radial outer edge E31.
  • a line segment extending in the X direction from the rotation axis J of the first obstacle sensor 16 toward the distance measurement device 15 by the reachable distance of the projection light L1 is the radial outer edge E32
  • the radial outer edge E31 An arc-shaped area R3 is defined by an angle of 270 degrees where E32 and E31, E32 make an outer side of the main body 1.
  • the reachable distance of the projection light L1 by the first obstacle sensor 16 is shorter than the distance measurement device 15, for example, 5 m.
  • the radial outer edges E31, E32 have a length of 5 m.
  • the first obstacle sensor 16 can set an obstacle detection area within the range of the arc-shaped area R3, and can detect an object located in the set obstacle detection area as an obstacle.
  • stop areas A1 and A2 and deceleration areas B1 and B2 are set as obstacle detection areas set in the first obstacle sensor 16.
  • the stop area A1 is set in a rectangular shape along the outer edge of the bumper portion 2 extending in the Y direction near the first obstacle sensor 16.
  • the deceleration area B1 is set in a rectangular shape adjacent to the stop area A1 on the outer side in the X direction.
  • the stop area A2 is set in a rectangular shape along the outer edge portion of the bumper portion 2 extending in the X direction near the first obstacle sensor 16.
  • the deceleration area B2 is set in a rectangular shape adjacent to the stop area A2 on the outer side in the Y direction.
  • the first obstacle sensor 16 When the first obstacle sensor 16 detects an obstacle located in the stop area A1 or A2, the first obstacle sensor 16 outputs obstacle detection data to that effect to the control unit 100A (FIG. 5), and the control unit 100A outputs the drive unit 100D. It controls and stops travel of the AGV 100. In addition, when the first obstacle sensor 16 detects an obstacle located in the deceleration area B1 or B2, the first obstacle sensor 16 outputs obstacle detection data to that effect to the control unit 100A, and the control unit 100A controls the drive unit 100D. Thus, the traveling speed of the AGV 100 is reduced. Thereby, collision of the unmanned transfer vehicle 100 with an obstacle can be suppressed.
  • a line segment extending in the Y direction from the rotation axis J of the second obstacle sensor 17 toward the distance measurement device 15 by the reachable distance of the projection light L1 is taken as the radially outer edge E41, Assuming that a line segment extending from the rotation axis J of the second obstacle sensor 17 toward the first obstacle sensor 16 in the X direction by the reachable distance of the projection light L1 is the radial outer edge E42, the radial outer edge E41, An arc-shaped region R4 is defined by an angle of 270 degrees where E42 and E41 and E42 are on the outer side of the main body 1.
  • the reachable distance of the projection light L1 by the second obstacle sensor 16 is shorter than the distance measurement device 15, for example, 5 m. In this case, the radial outer edges E41 and E42 have a length of 5 m.
  • the second obstacle sensor 17 can set an obstacle detection area within the range of the arc-shaped area R4, and can detect an object located in the set obstacle detection area as an obstacle.
  • stop areas A3 and A4 and deceleration areas B3 and B4 are set as obstacle detection areas set in the second obstacle sensor 17.
  • the stop area A3 is set in a rectangular shape along the outer edge of the bumper portion 2 extending in the Y direction near the second obstacle sensor 17.
  • the deceleration area B3 is set in a rectangular shape adjacent to the stop area A3 on the outer side in the X direction.
  • the stop area A4 is set in a rectangular shape along the outer edge portion of the bumper portion 2 extending in the X direction near the second obstacle sensor 17.
  • the deceleration area B4 is set in a rectangular shape adjacent to the stop area A4 on the outer side in the Y direction.
  • the second obstacle sensor 17 When the second obstacle sensor 17 detects an obstacle located in the stop area A3 or A4, the second obstacle sensor 17 outputs obstacle detection data to that effect to the control unit 100A, and the control unit 100A controls the drive unit 100D. The travel of the AGV 100 is stopped. Further, when the second obstacle sensor 17 detects an obstacle located in the deceleration region B3 or B4, the second obstacle sensor 17 outputs obstacle detection data to that effect to the control unit 100A, and the control unit 100A controls the drive unit 100D. Thus, the traveling speed of the AGV 100 is reduced. Thereby, collision of the unmanned transfer vehicle 100 with an obstacle can be suppressed.
  • the first obstacle sensor 16 and the second obstacle sensor 17 can detect an obstacle around the entire circumference of the automated guided vehicle 100.
  • the distance measuring device 15 is disposed within an effective angle range of 270 degrees capable of detecting the obstacle of the first obstacle sensor 16 by the arrangement position of the first obstacle sensor 16 with respect to the distance measuring device 15 described above. .
  • the projection light L1 projected from the first obstacle sensor 16 interferes with the distance measurement device 15 in the range of the angle ⁇ 1 shown in FIG. 8, and obstacle detection in the range of the angle ⁇ 1 becomes impossible. Therefore, the first obstacle sensor 16 can not detect an obstacle in the hatched area H1 in the range of the angle ⁇ 1.
  • the second obstacle sensor 17 since detection of an obstacle is possible by the second obstacle sensor 17 in which the stop area A3 and the deceleration area B3 are set, there is no problem.
  • the distance measurement device 15 is disposed within an effective angle range of 270 degrees capable of detecting the obstacle of the second obstacle sensor 17 by the arrangement position of the second obstacle sensor 17 with respect to the distance measurement device 15 described above. .
  • the projection light L1 projected from the second obstacle sensor 17 interferes with the distance measuring device 15 in the range of the angle ⁇ 2 shown in FIG. 8, and obstacle detection in the range of the angle ⁇ 2 becomes impossible. Therefore, the second obstacle sensor 17 can not detect an obstacle in a region H2 indicated by hatching in the range of the angle ⁇ 2.
  • the area H2 since the detection of an obstacle is possible by the first obstacle sensor 16 in which the stop area A2 and the deceleration area B2 are set, there is no problem.
  • the bumper portion 2 is not provided around the main body portion 1, an area that can not detect an obstacle within the range of the angle ⁇ 1 is outside the outer edge of the automated guided vehicle 100 depending on the thickness of the second cover portion 11B. There is also a possibility of reaching up to. In this case, an area where an obstacle can not be detected around the unmanned transfer vehicle 100 is generated.
  • the thickness of the bumper portion 2 (the thickness in the Y direction) can prevent the region where the obstacle can not be detected from reaching the outer edge of the automated guided vehicle 100 . The same applies to the range of the angle ⁇ 2.
  • the first obstacle sensor 16 contacts the radial outer edge E1.
  • the second obstacle sensors 17 are disposed at positions in contact with the radial outer edge E2 (FIG. 7).
  • FIG. 9 shows a case where the first obstacle sensor 16 is temporarily disposed in the invalid measurement area R2 but at a position largely shifted inward of the radial outer edge E1.
  • the position P shown in FIG. 9 is a temporary position at which the first obstacle sensor 16 is disposed.
  • the first obstacle sensor 16 When the first obstacle sensor 16 is disposed at the position P, obstacle detection can not be performed in the range of the angle ⁇ 3 at which the projection light L1 projected from the first obstacle sensor 16 interferes with the distance measurement device 15. Then, the range of the angle ⁇ 3 overlaps the stop area A2 in the area H3 indicated by hatching. Therefore, in the area H3 of the stop area A2, the detection of an obstacle by the first obstacle sensor 16 becomes impossible. Therefore, the area H3 needs to be set as an obstacle detection area of the second obstacle sensor 17, and the setting becomes complicated.
  • an obstacle sensor is disposed further inside the main body 1 as in the position P, it is necessary to ensure a large space through which the projection light L1 can pass in the main body 1 in order to ensure the scanning of the projection light L1. Design of the main unit 1 becomes difficult.
  • the first obstacle sensor 16 by arranging the first obstacle sensor 16 at a position in contact with the radial outer edge E1 as in the present embodiment, it is possible to avoid the occurrence of the above-mentioned problems.
  • the moving apparatus (the UAV 100) of this embodiment rotationally drives the light projection unit (light projection mirror 153) that emits the projection light L1, and the reflection that the projection light is reflected by the measurement object OJ Distance measurement device 15 which outputs distance measurement data based on light reception, map creation unit M1 which creates map information based on the distance measurement data, and an obstacle sensor (16, 17) which detects an obstacle And.
  • the obstacle sensor is disposed in the measurement invalid area R2 of the distance measurement device in a circular area including the measurement effective area R1 of the distance measurement device.
  • map information can be favorably created by the map creation unit.
  • the obstacle sensor (16, 17) rotationally drives a light projecting unit that emits the projection light L1, and measures the distance based on the reception of the reflected light that the projection light is reflected by the measurement object OJ, A sensor for detecting an obstacle based on the measured distance, wherein the distance measurement device 15 is disposed within an effective angle range in which the obstacle of the obstacle sensor can be detected.
  • the distance measuring device By arranging the obstacle sensor (for example, the first obstacle sensor 16) in the measurement invalid area of the distance measuring device, the distance measuring device is arranged within the effective angle range of the obstacle sensor, and the obstacle sensor Even if the detectable partial area becomes undetectable, this is not a problem since the partial area can be detected by another obstacle sensor (for example, the second obstacle sensor 17).
  • the obstacle sensor for example, the first obstacle sensor 16
  • the obstacle sensor (16, 17) is in contact with the radial outer edge (E1, E2) of the measurement invalid region R2.
  • the obstacle sensor If the obstacle sensor is shifted from the position in contact with the radial outer edge of the measurement invalid area, an area where obstacle detection is not possible due to interference with the distance measuring device, and an obstacle detection area set around the moving device Overlaps, and a part of the obstacle detection area may become undetectable. In that case, the partial area needs to be set by another obstacle sensor, which makes the setting complicated. Therefore, it is desirable to dispose the obstacle sensor at a position in contact with the radial outer edge of the measurement invalid area.
  • the moving device 100 further includes a main body 1 having the distance measuring device 15 and the obstacle sensor (16, 17), and a bumper 2 disposed around the main body.
  • the obstacle sensor is the first obstacle sensor 16 and the second obstacle sensor 17, and the distance measurement device 15, the first obstacle sensor 16, and the second obstacle sensor
  • the main body 1 has a substantially rectangular shape in a plan view as viewed from above, and the distance measuring device 15 is disposed at a corner of the main body 1, and The obstacle sensor 16 is disposed at one corner adjacent to the corner, and the second obstacle sensor 17 is disposed at the other corner adjacent to the corner.
  • first obstacle sensor 16 and the second obstacle sensor 17 rotationally drive a light projecting unit that emits the projection light L1, and based on the reception of the reflected light that the projection light is reflected by the measurement object OJ.
  • Distance measuring device for detecting an obstacle based on the measured distance, wherein the distance measuring device 15 detects an obstacle of the first obstacle sensor 16 and the second obstacle sensor 17 It is placed within the possible effective angle range.
  • the obstacle sensors detect each other in the partial area. Can be made possible.
  • the body portion 1 has cover portions (11A to 11D), and at least a part of the cover portion is between the distance measuring device 15 and the first obstacle sensor 16, and the distance measuring device 15 and the second obstacle sensor 17.
  • the cover portion is a flat portion (S2, S1) extending between the distance measuring device and the first obstacle sensor, and between the distance measuring device and the second obstacle sensor, and the measurement effective area And a wall portion (W2, W1) disposed inside the two radial outer edges (E1, E2) of R1 and standing upward from the flat portion.
  • the projection light is applied to the wall at the radial outer edge of the measurement effective area of the distance measuring device. It can be emitted along with it and can secure a 270 degree measurement effective area.
  • FIG. 10 is a schematic plan view of an unmanned transfer vehicle 200 according to a modification as viewed from above.
  • FIG. 11 is a schematic side view of an unmanned carrier 200 according to a modification.
  • the unmanned transfer vehicle 200 includes a main body portion 18, a top plate portion 19, and a bumper portion 20.
  • the main body portion 18 includes a main body cover portion 18A, a drive wheel 18B, and a driven wheel 18C.
  • the top plate portion 19 is disposed above the main body cover portion 18A, and can load luggage.
  • the bumper portion 20 is disposed below the main body cover portion 18A, and surrounds the entire circumference of the main body cover portion 18A in a top view.
  • the main body cover portion 18A has a protrusion C1 formed by the front portion being swept backward.
  • the main body cover portion 18A has a mounting surface 18A1 in front of the protrusion C1.
  • the height position of the mounting surface 18A1 is lower than the position where the projection C1 is formed.
  • the main body 18 further includes a distance measuring device 181, a first obstacle sensor 182, and a second obstacle sensor 183.
  • the configuration of the distance measurement device 181 configured as LRF is the same as the distance measurement device 15 described above.
  • the unmanned transfer vehicle 200 has a map creation unit that creates map information based on the distance measurement data output by the distance measurement device 181.
  • the distance measuring device 181 is disposed at a position in front of the protrusion C1 on the mounting surface 18A1.
  • a first obstacle sensor 182 and a second obstacle sensor 183 that detect obstacles located around the automated guided vehicle 200 are disposed on the mounting surface 18A1.
  • a line segment extending from the rotation axis of the distance measuring device 181 toward the rear right diagonally by the reachable distance of the projection light is taken as the radial outer edge E11 and projected from the rotation axis of the distance measuring device 181 toward the rear left diagonally.
  • the line segment extending by the reachable distance of light is the radial outer edge E12
  • the radial effective edges E11 and E12 and the measurement effective region R11 which is a circular arc region at an angle of 270 degrees that E11 and E12 are on the front side It is prescribed.
  • the measurement invalid area R12 which is an arc-shaped area is defined by the radial outer edges E11 and E12 and the angle of 90 degrees which E11 and E12 make a back side.
  • the first obstacle sensor 182 and the second obstacle sensor 183 are disposed in the measurement invalid area R12 of the distance measurement device 181. That is, the moving apparatus (the unmanned transfer vehicle 200) of the present embodiment rotationally drives the light projecting unit that emits the projection light, and the distance measurement data is received based on the reception of the reflected light reflected by the object to be measured.
  • the apparatus includes: a distance measuring device for outputting 181; a map creating unit for creating map information based on the distance measurement data; and an obstacle sensor (182, 183) for detecting an obstacle, wherein the obstacle sensor It is disposed in the measurement invalid area R12 of the distance measuring device in a circular area including the measurement effective area R11 of the distance measuring device.
  • an unmanned transfer vehicle has been described as an example of the moving device.
  • the moving device may be applied to devices other than transport applications such as a cleaning robot and a monitoring robot.
  • the present invention can be used, for example, in an automatic guided vehicle for carrying a load.
  • 100 ⁇ Unmanned transport vehicle 100A ⁇ ⁇ ⁇ Control unit, 100B ⁇ ⁇ ⁇ Communication unit, 100C ⁇ ⁇ ⁇ Power button, 100D ⁇ ⁇ ⁇ Drive unit, M1 ⁇ ⁇ ⁇ map creation unit, M2 ⁇ ⁇ ⁇ storage unit , 1 ... main body portion 11A ... first cover portion, 11B ... second cover portion, 11C ... third cover portion, 11D ... fourth cover portion, 12A, 12B ... Drive wheel, 13A, 13B: Drive motor, 14A, 14B: Caster, 15: Distance measuring device, 15 DESCRIPTION OF SYMBOLS 1 ... laser light source, 152 ... collimation lens, 153 ... light projection mirror, 154 ...
  • Second obstacle sensor S1 to S4 ⁇ Flat surface, W1 to W4 ⁇ Wall, 200 ⁇ Unmanned carrier, 18 ⁇ Main body, 18A ⁇ Body cover part, 18A1 ... mounting surface, 18B ... driving wheel, 18C ... driven wheel, 181 ... distance measuring device, 182 ... first obstacle sensor, 183 ... second Obstacle sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

投射光を出射する投光部を回転駆動させ、前記投射光が計測対象物で反射した反射光の受光に基づいて距離測定データを出力する距離測定装置15と、前記距離測定データに基づいてマップ情報を作成するマップ作成部と、障害物を検知する障害物センサ16,17と、を備え、前記障害物センサは、前記距離測定装置の測定有効領域R1を含んだ円形領域における前記距離測定装置の測定無効領域R2に配置される移動装置100としている。

Description

移動装置
 本発明は、移動装置に関する。
 従来、無人搬送車を含めた様々な移動装置が開発されている。従来の無人搬送車の一例が特許文献1に開示される。
 特許文献1の無人搬送車は、本体部と、2つの障害物センサを備える。障害物センサは、LRF(レーザレンジファインダ)により構成される。
 2つの障害物センサのうち一方の障害物センサは、本体部の一方の角部に配置され、他方の障害物センサは、上記角部と対角に位置する本体部の他方の角部に配置される。2つの障害物センサは、同じ高さとなる位置に配置される。2つの障害物センサは、それぞれカバーするスキャン領域でレーザ光の照射と反射光の受光を行うことで、検知動作を行う。これにより、無人搬送車の周囲に位置する障害物が検知される。
特開2015-185130号公報(第14図等)
 ここで、無人搬送車には、無軌道で自律的に走行可能となるように、無人搬送車周辺の物体の形状を示すマップ情報を作成する機能を有するものが存在する。当該マップ情報を作成するためには、所定の走査範囲でレーザ光を走査して計測対象物までの距離を測定するLRFが用いられる。
 しかしながら、上記特許文献1には、上記のようなマップ情報を作成するためのLRFを無人搬送車に配置することについては開示されていない。上記LRFを配置する位置が不適切であると、LRFの走査範囲と障害物センサとが干渉する虞がある。この場合、上記LRFの測定有効領域が制限されてしまう。マップ情報を良好に作成するためには、このような測定有効領域の制限は回避することが望ましい。
 上記状況に鑑み、本発明は、マップ情報を良好に作成することが可能となる移動装置を提供することを目的とする。
 本発明の例示的な移動装置は、投射光を出射する投光部を回転駆動させ、前記投射光が計測対象物で反射した反射光の受光に基づいて距離測定データを出力する距離測定装置と、前記距離測定データに基づいてマップ情報を作成するマップ作成部と、障害物を検知する障害物センサと、を備え、前記障害物センサは、前記距離測定装置の測定有効領域を含んだ円形領域における前記距離測定装置の測定無効領域に配置される構成としている。
 本発明の例示的な移動装置によれば、マップ情報を良好に作成することが可能となる。
図1は、本発明の一実施形態に係る無人搬送車の概略全体斜視図である。 図2は、本発明の一実施形態に係る距離測定装置の概略側面断面図である。 図3は、本発明の一実施形態に係る距離測定装置の電気的構成を示すブロック図である。 図4は、本発明の一実施形態に係る障害物センサの電気的構成を示すブロック図である。 図5は、本発明の一実施形態に係る無人搬送車の電気的構成を示すブロック図である。 図6は、一実施形態に係る無人搬送車の上方から視た概略平面図である。 図7は、距離測定装置の測定有効領域および測定無効領域を示す図である。 図8は、障害物センサの障害物検知領域の設定例を示す図である。 図9は、障害物センサを仮に別の位置に配置した場合を示す図である。 図10は、変形例に係る無人搬送車の上方から視た概略平面図である。 図11は、変形例に係る無人搬送車の概略側面図である。
 以下に本発明の例示的な実施形態について図面を参照して説明する。ここでは、移動装置として、荷物を運搬する用途である無人搬送車を例に挙げて説明する。無人搬送車は、一般的にAGV(Automatic Guided Vehicle)とも呼称される。
 また、以下に参照する図面において、無人搬送車の前進・後進する方向をX方向として記載し、X方向と直交する無人搬送車の横行移動の方向をY方向として記載し、X方向およびY方向に直交する無人搬送車の高さ方向をZ方向として記載する。
<1.無人搬送車の全体構成>
 図1は、本発明の一実施形態に係る無人搬送車100の概略全体斜視図である。無人搬送車100は、二輪駆動により無軌道で自律的に走行し、荷物を運搬する。
 無人搬送車100は、本体部1と、バンパー部2と、天板部3と、を備える。本体部1は、上方から視た平面視において、X方向に延びる辺とY方向に延びる辺を有する略四角形状である。本体部1は、不図示であるフレームと、当該フレームを四方からカバーする第1カバー部11A、第2カバー部11B、第3カバー部11C、および第4カバー部11Dを有する。第1カバー部11A~第4カバー部11Dは、それぞれ別個の部材であり、樹脂材により構成される。なお、カバー部は、一つの部材として構成してもよい。カバー部は、樹脂材以外の材料を用いてもよい。
 Y方向に延びる第1カバー部11Aは、フレームのX方向一端部に取り付けられる。Y方向に延びる第3カバー部11Cは、フレームのX方向他端部に取り付けられる。すなわち、第1カバー部11Aと第3カバー部11Cは、X方向に対向する。X方向に延びる第2カバー部11Bは、フレームのY方向一端部に取り付けられる。X方向に延びる第4カバー部11Dは、フレームのY方向他端部に取り付けられる。すなわち、第2カバー部11Bと第4カバー部11Dは、Y方向に対向する。
 駆動輪12A、12Bと、駆動モータ13A、13Bと、キャスター14A、14Bは、第1カバー部11A~第4カバー部11Dによって囲まれる内部空間において、フレームに固定される。すなわち、本体部1は、駆動輪12A、12Bと、駆動モータ13A、13Bと、キャスター14A、14Bをさらに有する。
 駆動輪12Aと駆動モータ13Aの組は、フレーム内部のY方向一方側に配置される。駆動モータ13Aは、一例としてACサーボモータにより構成される。駆動モータ13Aは、不図示の減速機を内蔵する。駆動輪12Aは、駆動モータ13Aの回転するシャフトに固定される。
 駆動輪12Bと駆動モータ13Bの組は、フレーム内部のY方向他方側に配置される。駆動モータ13Bは、一例としてACサーボモータにより構成される。駆動モータ13Bは、不図示の減速機を内蔵する。駆動輪12Bは、駆動モータ13Bの回転するシャフトに固定される。
 駆動輪12Aと駆動輪12Bの速度差が制御されることにより、無人搬送車100の前進・後進制御(X方向走行)が行われる。前進・後進には、直進移動と、曲がりながらの移動とが含まれる。また、駆動輪12Aと駆動輪12Bがステアリング制御されることにより、無人搬送車100は横行移動(Y方向走行)が可能である。なお、駆動輪12Aと駆動輪12Bを逆回転させることにより、無人搬送車100をその場で回転させることも可能である。
 キャスター14Aは、フレームのX方向一方側に固定される。キャスター14Bは、フレームのX方向他方側に固定される。キャスター14A、14Bは、それぞれ従動輪を有する。当該従動輪は、駆動輪12A、12Bの回転に応じて受動的に回転する。
 なお、フレーム内部には、その他にも、制御ユニット、バッテリー、および通信ユニット(いずれも不図示)などが収容される。
 また、本体部1は、距離測定装置15と、第1障害物センサ16と、第2障害物センサ17をさらに有する。距離測定装置15は、LRF(レーザレンジファインダ)として構成され、後述するように、マップ情報を作成するために用いられる。第1障害物センサ16および第2障害物センサ17は、ともにLRFとして構成され、無人搬送車100周辺に位置する障害物を検知するために用いられる。
 距離測定装置15は、フレームの一つの角部に固定される。第1障害物センサ16は、フレームにおける距離測定装置15とX方向に対向する位置の角部に固定される。第2障害物センサ17は、フレームにおける距離測定装置15とY方向に対向する位置の角部に固定される。すなわち、第1障害物センサ16と第2障害物センサ17は、対角位置に配置される。
 第1カバー部11Aの端部と第2カバー部11Bの端部とが合わさる本体部1の角部に距離測定装置15が配置される。第2カバー部11Bの端部と第3カバー部11Cの端部とが合わさる本体部1の角部に第1障害物センサ16が配置される。第1カバー部11Aの端部と第4カバー部11Dの端部とが合わさる本体部1の角部に第2障害物センサ17が配置される。すなわち、第1障害物センサ16は、距離測定装置15が配置される角部に隣接する一方の角部に配置され、第2障害物センサ17は、距離測定装置15が配置される角部に隣接する他方の角部に配置される。
 バンパー部2は、第1カバー部11A~第4カバー部11Dより下方の位置において、フレームの周囲に配置される。バンパー部2は、無人搬送車100が物体に衝突した場合の衝撃を抑える。また、バンパー部2内部には、X方向、Y方向それぞれに複数配列されたスイッチ(不図示)が設けられる。バンパー部2に物体が接触して上記スイッチが押されると、無人搬送車100は走行を緊急的に停止される。
 また、天板部3は、フレームに固定され、第1カバー部11A~第4カバー部11Dの上方に配置される。天板部3は、上方から視た平面視において、略四角形状であり、金属製である。天板部3の上面には、荷物が載置可能である。
 第1カバー部11Aは、Y方向に延びる平面部S1をZ方向上部に有する。第2カバー部11Bは、X方向に延びる平面部S2をZ方向上部に有する。平面部S1とS2は同じ高さ位置に配置され、それぞれの端部同士が合わさる箇所に距離測定装置15が配置される。平面部S1の内側端部からは上方に向かって壁部W1が起立する。平面部S2の内側端部からは上方に向かって壁部W2が起立する。
 第3カバー部11Cは、Y方向に延びる平面部S3をZ方向上部に有する。平面部S2とS3は同じ高さ位置に配置され、それぞれの端部同士が合わさる箇所に第1障害物センサ16が配置される。平面部S3の内側端部からは上方に向かって壁部W3が起立する。
 第4カバー部11Dは、X方向に延びる平面部S4をZ方向上部に有する。平面部S1とS4は同じ高さ位置に配置され、それぞれの端部同士が合わさる箇所に第2障害物センサ17が配置される。平面部S4の内側端部からは上方に向かって壁部W4が起立する。
 平面部S1~S4、壁部W1~W4、および天板部3の外縁部の下面によって、内側へ凹んだ一つの凹部が構成される。当該凹部に、距離測定装置15、第1障害物センサ16、および第2障害物センサ17が配置される。
<2.距離測定装置の構成>
 図2は、距離測定装置15の一構成例を示す概略側面断面図である。LRFとして構成される距離測定装置15は、レーザ光を所定の走査範囲で走査して計測対象物までの距離を測定する。距離測定装置15は、レーザ光源151と、コリメートレンズ152と、投光ミラー153と、受光レンズ154と、受光ミラー155と、波長フィルタ156と、受光部157と、回転筐体158と、モータ159と、筐体160と、基板161と、配線162と、を有する。
 筐体160は、外観視で上下方向に延びる略円柱状であり、内部空間にレーザ光源151を初めとする各種構成を収容する。レーザ光源151は、筐体160の上端部の下面に固定される基板161の下面に実装される。レーザ光源151は、例えば赤外領域のレーザ光を下方に出射する。
 コリメートレンズ152は、レーザ光源151の下方に配置される。コリメートレンズ152は、レーザ光源151から出射されるレーザ光を平行光として下方に出射する。コリメートレンズ152の下方には、投光ミラー153が配置される。
 投光ミラー153は、回転筐体158に固定される。回転筐体158は、モータ159のシャフト159Aに固定され、モータ159によって回転軸J周りに回転駆動される。回転筐体158の回転とともに、投光ミラー153も回転軸J周りに回転駆動される。投光ミラー153は、コリメートレンズ152から出射されるレーザ光を反射して、反射されたレーザ光を投射光L1として出射する。投光ミラー153は上記のように回転駆動されるので、投射光L1は回転軸J周りの360度の範囲で出射方向を変えながら出射される。
 筐体160は上下方向の途中において、透過部1601を有する。透過部1601は、透光性の樹脂等から構成される。
 投光ミラー153で反射されて出射される投射光L1は、透過部1601を透過して、無人搬送車100より外側へ出射される。本実施形態では、後述するように、距離測定装置15の測定有効領域は270度の回転角度範囲であるので、投射光L1は、少なくとも回転軸J周り270度の範囲で透過部1601を透過する。なお、後方の透過部1601が配置されない範囲では、投射光L1は筐体160の内壁または配線162等により遮られる。
 受光ミラー155は、投光ミラー153より下方の位置で回転筐体158に固定される。受光レンズ154は、回転筐体158の周方向側面に固定される。波長フィルタ156は、受光ミラー155より下方に位置し、回転筐体158に固定される。受光部157は、波長フィルタ156より下方に位置し、回転筐体158に固定される。
 距離測定装置15から出射された投射光L1は、計測対象物で反射して拡散光となる。拡散光の一部は、入射光L2として透過部1601を透過して受光レンズ154に入射される。受光レンズ164を透過した入射光L2は、受光ミラー155へ入射され、受光ミラー155により下方へ反射される。反射された入射光L2は、波長フィルタ156を透過して受光部157により受光される。波長フィルタ156は、赤外領域の光を透過させる。受光部157は、受光した光を光電変換により電気信号に変換する。
 モータ159により回転筐体158が回転駆動されると、受光レンズ154、受光ミラー155、波長フィルタ156、および受光部157は、投光ミラー153とともに回転駆動される。
 モータ159は、配線162によって基板161に接続され、基板161から通電されることで回転駆動される。モータ159は、回転筐体158を所定回転速度で回転させる。例えば、回転筐体158は、3000rpm程度で回転駆動される。配線162は、筐体160の後方内壁に上下方向に沿って引き回される。
<3.距離測定装置の電気的構成>
 次に、距離測定装置15の電気的構成について説明する。図3は、距離測定装置15の電気的構成を示すブロック図である。
 図3に示すように、距離測定装置15は、レーザ発光部15Aと、レーザ受光部15Bと、距離計測部15Cと、演算処理部15Dと、データ通信インタフェース15Eと、駆動部15Fと、モータ159と、を有する。
 レーザ発光部15Aは、レーザ光源151(図2)と、レーザ光源151を駆動する不図示のLDドライバなどを有する。LDドライバは、基板151に実装される。レーザ受光部15Bは、受光部157と、受光部157から出力される電気信号を受信する不図示のコンパレータなどを有する。コンパレータは、上記電気信号のレベルを所定閾値レベルと比較し、比較結果に応じてHighレベルまたはLowレベルとした計測パルスを出力する。
 距離計測部15Cには、レーザ受光部15Bから出力される計測パルスが入力される。レーザ発光部15Aは、演算処理部15Dから出力されるレーザ発光パルスをトリガとしてレーザ光を発光する。このとき、投射光L1が出射される。出射された投射光L1が計測対象物OJにより反射されると、入射光L2がレーザ受光部15Bにより受光される。レーザ受光部15Bの受光量に応じて計測パルスが生成され、計測パルスが距離計測部15Cに出力される。
 ここで、距離計測部15Cには、演算処理部15Dによりレーザ発光パルスとともに出力される基準パルスが入力される。距離計測部15Cは、基準パルスの立ち上りタイミングから計測パルスの立ち上りタイミングまでの経過時間を計測することで、計測対象物OJまでの距離を取得することができる。すなわち、距離計測部15Cは、所謂TOF(Ti me Of Flight)方式によって距離を計測する。距離の計測結果は計測データとして距離計測部15Cから出力される。
 駆動部15Fは、モータ159を回転駆動制御する。モータ159は、駆動部15Fによって所定の回転速度で回転駆動される。演算処理部15Dは、モータ159が所定単位角度回転するたびにレーザ発光パルスを出力する。例えば、上記所定単位角度は1度とする。これにより、回転筐体158および投光ミラー153が所定単位角度回転するたびにレーザ発光部15Aが発光し、投射光L1が出射される。
 演算処理部15Dは、レーザ発光パルスを出力したタイミングでのモータ159の回転角度位置と、レーザ発光パルスに対応して得られる計測データに基づいて、回転角度位置と距離データからなる距離測定データを生成する。距離測定データは、計測対象物の極座標形式での位置情報を示す。これにより、270度の回転角度範囲での投射光L1による走査により、計測対象物OJの距離画像を取得できる。従って、距離測定装置15の測定有効領域は270度の回転角度範囲となる。
 なお、270度の回転角度範囲以外の90度の回転角度範囲での投射光L1による走査については、演算処理部15Dは距離測定データを生成しない。つまり、上記90度の回転角度範囲は、距離測定装置15の測定無効領域となる。
 演算処理部15Dから出力された距離測定データは、データ通信インタフェース15Eを介して後述する図5に示す無人搬送車100側に伝送される。距離測定データは、後述するマップ情報の作成に使用される。
<4.障害物センサの構成>
 次に、第1障害物センサ16および第2障害物センサ17の構成について述べる。なお、第1障害物センサ16と第2障害物センサ17は、構成が共通であるので、ここでは、第1障害物センサ16の構成について代表的に説明する。
 LRFとして構成される第1障害物センサ16のハードウェア的な構成は、図2に示した距離測定装置15の構成と同様であるので、ここでは詳細な説明を省く。なお、第1障害物センサ16は、障害物を検知可能な有効角度範囲が270度であるので、投射光L1は、少なくとも回転軸J周り270度の範囲で透過部(透過部1601に相当)を透過する。
 図4は、第1障害物センサ16の電気的構成を示すブロック図である。図4に示すように、第1障害物センサ16は、レーザ発光部16Aと、レーザ受光部16Bと、距離計測部16Cと、演算処理部16Dと、データ通信インタフェース16Eと、駆動部16Fと、モータ169と、を有する。
 モータ169により投光ミラー(投光ミラー153に相当)を回転させつつ、レーザ発光部16Aから投射光L1を出射し、計測対象物OJでの反射光をレーザ受光部16Bで受光し、距離計測部16Cが計測パルスに基づいて距離を計測することは距離測定装置15と同様である。
 演算処理部16Dは、モータ169の回転角度位置と、距離計測部16Cからの計測データに基づいて極座標形式における計測対象物OJの位置を把握する。ここで、演算処理部16Dには、所定の障害物検知領域が設定される。演算処理部16Dは、上記把握された計測対象物OJの位置が上記障害物検知領域内に位置するかを判定し、もし位置する場合は、障害物が存在するとした障害物検知データを出力する。
 上記障害物検知領域は、第1障害物センサ16の外部より設定可能であり、領域の範囲を変更可能である。270度の回転角度範囲で走査される投射光L1により障害物を検知可能なように上記障害物検知領域は設定可能である。270度以外の90度の回転角度範囲で走査される投射光L1によっては障害物を検知できないように上記障害物検知領域の設定は制限される。これにより、第1障害物センサ16の有効角度範囲は270度に設定される。なお、障害物検知領域の具体的な設定例については後述する。
 演算処理部16Dから出力された障害物検知データは、データ通信インタフェース16Eを介して後述する図5に示す無人搬送車100側に伝送される。
<5.無人搬送車の電気的構成>
 ここでは、図5を用いて無人搬送車100側の電気的構成について説明する。図5は、無人搬送車100の電気的構成を示すブロック図である。
 図5に示すように、無人搬送車100は、距離測定装置15と、第1障害物センサ16と、第2障害物センサ17と、制御部100Aと、通信部100Bと、電源ボタン100Cと、駆動部100Dと、を有する。
 制御部100Aは、無人搬送車100の各部を制御する。駆動部100Dは、不図示のモータドライバと、駆動モータ13A、13Bなどを有する。制御部100Aは、駆動部100Dに対して指令を行い制御する。駆動部100Dは、駆動輪12A、12Bの回転速度および回転方向を駆動制御する。
 制御部100Aは、通信部100Bを介して不図示のタブレット端末と通信を行う。例えば、タブレット端末において操作された内容に応じた操作信号を通信部100Bを介して制御部100Aが受信することができる。
 電源ボタン100Cは、無人搬送車100に電源を投入して起動させるための操作ボタンである。
 制御部100Aは、マップ作成部M1を有する。マップ作成部M1は、距離測定装置15から取得される距離測定データに基づいてマップ情報を作成することが可能である。マップ情報とは、無人搬送車100の自己の位置を特定する自己位置同定を行うために生成される情報であり、無人搬送車100が走行する場所における静止物の位置情報として生成される。例えば、無人搬送車100が走行する場所が倉庫である場合は、静止物は倉庫の壁、倉庫内に配列された棚などである。
 マップ情報は、例えばタブレット端末により無人搬送車100の手動操作が行われる際に生成される。この場合、タブレット端末の例えばジョイスティックの操作に応じた操作信号が通信部100Bを介して制御部100Aに送信されることで、制御部100Aは操作信号に応じて駆動部100Dに指令を行い、無人搬送車100を走行制御する。このとき、制御部100Aは、距離測定装置15から入力される距離測定データと、無人搬送車100の位置に基づき、無人搬送車100が走行する場所における計測対象物の位置をマップ情報として特定する。無人搬送車100の位置は、例えば駆動部100Dの駆動情報に基づき特定される。
 上記のように生成されたマップ情報は、制御部100Aの記憶部M2により記憶される。制御部100Aは、距離測定装置15から入力される距離測定データと、記憶部M2に予め記憶されたマップ情報とを比較することにより、無人搬送車100の自己の位置を特定する自己位置同定を行う。自己位置同定を行うことで、制御部100Aは、予め定められた経路に沿った無人搬送車100の自律的な走行制御を行うことができる。
 また、制御部100Aは、後述するように、第1障害物センサ16および第2障害物センサ17から取得される障害物検知データに基づき、無人搬送車100の走行制御を行なうこともできる。
<6.距離測定装置と障害物センサとの位置関係に関して>
 図6は、本実施形態に係る無人搬送車100の上方から視た概略平面図である。但し、図6では、天板部3、フレーム、フレーム内部の部品等の各種構成の図示は便宜上省略している。
 第1カバー部11Aは、距離測定装置15と第2障害物センサ17との間を延びる部分を有し、当該部分の内側端部から上方へ壁部W1が起立する。第2カバー部11Bは、距離測定装置15と第1障害物センサ16との間を延びる部分を有し、当該部分の内側端部から上方へ壁部W2が起立する。
 ここで、図7の概略平面図に示すように、壁部W2と平行に距離測定装置15の回転軸Jから第1障害物センサ16側へ向かって投射光L1の到達可能距離だけ延びた線分を径方向外縁E1とし、壁部W1と平行に距離測定装置15の回転軸Jから第2障害物センサ17側へ向かって投射光L1の到達可能距離だけ延びた線分を径方向外縁E2とすれば、径方向外縁E1、E2と、E1、E2が本体部1外側になす270度の角度により規定される円弧状領域が測定有効領域R1となる。測定有効領域R1の範囲内で走査された投射光L1に基づき距離測定データが生成される。なお、距離測定装置15による投射光L1の到達可能距離は、例えば30mである。この場合、径方向外縁E1、E2の長さは30mとなる。
 一方、径方向外縁E1、E2と、E1、E2が本体部1内側になす90度の角度により規定される円弧状領域は測定無効領域R2となる。すなわち、測定有効領域R1を含んだ円形領域において測定有効領域R1以外の領域が測定無効領域R2である。測定無効領域R2の範囲内で走査された投射光L1に基づいて距離測定データは生成されない。
 ここで、距離測定装置15、第1障害物センサ16および第2障害物センサ17のそれぞれから投射される各投射光L1の光軸の高さ位置は一致する。従って、各障害物センサの配置位置によっては、測定有効領域R1内で距離測定装置15から投射される投射光L1が第1障害物センサ16および第2障害物センサ17に照射され、各障害物センサと干渉する可能性がある。なお、上記光軸の高さ位置は一致しなくても、距離測定装置15および各障害物センサ16、17の高さ方向の配置位置によっては、距離測定装置15と各障害物センサ16、17の互いの投射光が相手側と干渉する可能性もある。
 そこで、本実施形態では、図7に示すように、第1障害物センサ16および第2障害物センサ17は、距離測定装置15の測定無効領域R2内に配置する。その際、第1障害物センサ16は径方向外縁E1に接し、第2障害物センサ17は径方向外縁E2に接する。
 このようにすることで、距離測定装置15から投射された投射光L1が測定有効領域R1内で第1障害物センサ16および第2障害物センサ17と干渉し、測定有効領域R1が制限されることを回避できる。従って、測定有効領域R1を全領域で有効とすることができ、マップ作成部M1はマップ情報を良好に作成することが可能となる。
 また、図8は、第1障害物センサ16および第2障害物センサ17に設定される障害物検知領域の一例を示す平面図である。
 第1障害物センサ16については、Y方向に第1障害物センサ16の回転軸Jから第2障害物センサ17側へ向かって投射光L1の到達可能距離だけ延びた線分を径方向外縁E31とし、X方向に第1障害物センサ16の回転軸Jから距離測定装置15側へ向かって投射光L1の到達可能距離だけ延びた線分を径方向外縁E32とすれば、径方向外縁E31、E32と、E31、E32が本体部1外側になす270度の角度により円弧状領域R3が規定される。なお、第1障害物センサ16による投射光L1の到達可能距離は、距離測定装置15よりも短く、例えば5mである。この場合、径方向外縁E31、E32の長さは5mである。
 第1障害物センサ16では、円弧状領域R3の範囲内で障害物検知領域を設定可能であり、設定された障害物検知領域に位置する物体を障害物として検知することができる。図8の例では、第1障害物センサ16に設定される障害物検知領域として、停止領域A1、A2、および減速領域B1、B2が設定される。
 停止領域A1は、第1障害物センサ16近傍にY方向に延びるバンパー部2の外縁部に沿って矩形状に設定される。減速領域B1は、停止領域A1とX方向外側に隣接して矩形状に設定される。停止領域A2は、第1障害物センサ16近傍にX方向に延びるバンパー部2の外縁部に沿って矩形状に設定される。減速領域B2は、停止領域A2とY方向外側に隣接して矩形状に設定される。
 第1障害物センサ16は、停止領域A1またはA2に位置する障害物を検知すると、その旨の障害物検知データを制御部100A(図5)に出力し、制御部100Aは、駆動部100Dを制御して、無人搬送車100の走行を停止させる。また、第1障害物センサ16は、減速領域B1またはB2に位置する障害物を検知すると、その旨の障害物検知データを制御部100Aに出力し、制御部100Aは、駆動部100Dを制御して、無人搬送車100の走行速度を減速させる。これにより、無人搬送車100が障害物に衝突することを抑制できる。
 第2障害物センサ17については、Y方向に第2障害物センサ17の回転軸Jから距離測定装置15側へ向かって投射光L1の到達可能距離だけ延びた線分を径方向外縁E41とし、X方向に第2障害物センサ17の回転軸Jから第1障害物センサ16側へ向かって投射光L1の到達可能距離だけ延びた線分を径方向外縁E42とすれば、径方向外縁E41、E42と、E41、E42が本体部1外側になす270度の角度により円弧状領域R4が規定される。なお、第2障害物センサ16による投射光L1の到達可能距離は、距離測定装置15よりも短く、例えば5mである。この場合、径方向外縁E41、E42の長さは5mである。
 第2障害物センサ17では、円弧状領域R4の範囲内で障害物検知領域を設定可能であり、設定された障害物検知領域に位置する物体を障害物として検知することができる。図8の例では、第2障害物センサ17に設定される障害物検知領域として、停止領域A3、A4、および減速領域B3、B4が設定される。
 停止領域A3は、第2障害物センサ17近傍にY方向に延びるバンパー部2の外縁部に沿って矩形状に設定される。減速領域B3は、停止領域A3とX方向外側に隣接して矩形状に設定される。停止領域A4は、第2障害物センサ17近傍にX方向に延びるバンパー部2の外縁部に沿って矩形状に設定される。減速領域B4は、停止領域A4とY方向外側に隣接して矩形状に設定される。
 第2障害物センサ17は、停止領域A3またはA4に位置する障害物を検知すると、その旨の障害物検知データを制御部100Aに出力し、制御部100Aは、駆動部100Dを制御して、無人搬送車100の走行を停止させる。また、第2障害物センサ17は、減速領域B3またはB4に位置する障害物を検知すると、その旨の障害物検知データを制御部100Aに出力し、制御部100Aは、駆動部100Dを制御して、無人搬送車100の走行速度を減速させる。これにより、無人搬送車100が障害物に衝突することを抑制できる。
 このように、第1障害物センサ16と第2障害物センサ17によって、無人搬送車100の全周における障害物を検知することが可能となる。
 ここで、先述した距離測定装置15に対する第1障害物センサ16の配置位置により、第1障害物センサ16の障害物を検知可能な270度の有効角度範囲内に距離測定装置15が配置される。これにより、図8に示す角度θ1の範囲で第1障害物センサ16から投射される投射光L1が距離測定装置15と干渉し、角度θ1の範囲での障害物検知が不可能となる。従って、角度θ1の範囲でのハッチングで示す領域H1では、第1障害物センサ16は障害物を検知できない。しかしながら、領域H1については、停止領域A3と減速領域B3が設定された第2障害物センサ17により障害物の検知は可能となるので、問題とはならない。
 同様に、先述した距離測定装置15に対する第2障害物センサ17の配置位置により、第2障害物センサ17の障害物を検知可能な270度の有効角度範囲内に距離測定装置15が配置される。これにより、図8に示す角度θ2の範囲で第2障害物センサ17から投射される投射光L1が距離測定装置15と干渉し、角度θ2の範囲での障害物検知が不可能となる。従って、角度θ2の範囲でのハッチングで示す領域H2では、第2障害物センサ17は障害物を検知できない。しかしながら、領域H2については、停止領域A2と減速領域B2が設定された第1障害物センサ16により障害物の検知は可能となるので、問題とはならない。
 また、仮に本体部1の周囲にバンパー部2を設けない場合は、第2カバー部11Bの厚みによっては、角度θ1の範囲である障害物を検知できない領域が無人搬送車100の外縁よりも外側まで達する可能性もある。この場合、無人搬送車100の周囲で障害物が検知できない領域が生じてしまう。しかしながら、本実施形態では、バンパー部2を設けるので、バンパー部2の厚み(Y方向の厚み)によって、上記障害物を検知できない領域が無人搬送車100の外縁よりも外側まで達することを回避できる。これは、角度θ2の範囲についても同様である。
 また、先述したように、第1障害物センサ16と第2障害物センサ17を距離測定装置15の測定無効領域R2内に配置する際に、第1障害物センサ16は径方向外縁E1に接し、第2障害物センサ17は径方向外縁E2に接する位置にそれぞれ配置される(図7)。
 ここで、仮に第1障害物センサ16を無効測定領域R2内ではあるが、径方向外縁E1よりも内側へ大きくずらした位置に配置した場合を図9に示す。図9に示す位置Pが第1障害物センサ16を配置する仮の位置である。
 第1障害物センサ16を位置Pに配置した場合、第1障害物センサ16から投射される投射光L1が距離測定装置15と干渉する角度θ3の範囲で障害物検知が不可能となる。そして、角度θ3の範囲が停止領域A2とハッチングにより示す領域H3で重なる。従って、停止領域A2のうち領域H3では、第1障害物センサ16による障害物の検知が不可能となる。よって、領域H3については、第2障害物センサ17の障害物検知領域として設定する必要が生じ、設定が複雑となる。また、位置Pのように本体部1のより内側に障害物センサを配置すると、投射光L1の走査を確保するために本体部1において投射光L1が通過できる空間を大きく確保する必要があり、本体部1の設計が困難となる。
 従って、本実施形態のように、第1障害物センサ16は径方向外縁E1に接する位置に配置することで、上記のような問題が発生することを回避できる。第2障害物センサ17についても同様である。
<7.本実施形態の作用効果>
 以上のように本実施形態の移動装置(無人搬送車100)は、投射光L1を出射する投光部(投光ミラー153)を回転駆動させ、前記投射光が計測対象物OJで反射した反射光の受光に基づいて距離測定データを出力する距離測定装置15と、前記距離測定データに基づいてマップ情報を作成するマップ作成部M1と、障害物を検知する障害物センサ(16,17)と、を備える。前記障害物センサは、前記距離測定装置の測定有効領域R1を含んだ円形領域における前記距離測定装置の測定無効領域R2に配置される。
 これにより、距離測定装置の測定有効領域が障害物センサの配置によって制限されることを回避できる。従って、マップ作成部によりマップ情報を良好に作成することができる。
 また、前記障害物センサ(16,17)は、投射光L1を出射する投光部を回転駆動させ、前記投射光が計測対象物OJで反射した反射光の受光に基づいて距離を測定し、測定された距離に基づいて障害物を検知するセンサであって、前記距離測定装置15は、前記障害物センサの障害物を検知可能な有効角度範囲内に配置される。
 障害物センサ(例えば第1障害物センサ16)を距離測定装置の測定無効領域に配置したことで、距離測定装置が障害物センサの有効角度範囲内に配置され、障害物センサにより障害物を本来検知可能な一部領域が検知不可能になったとしても、当該一部領域については別の障害物センサ(例えば第2障害物センサ17)により検知可能であるので、問題とはならない。
 また、前記障害物センサ(16,17)は、前記測定無効領域R2の径方向外縁(E1,E2)に接する。
 障害物センサを測定無効領域の径方向外縁に接する位置よりもずらすと、距離測定装置との干渉により障害物検知が不可能となる領域と、移動装置の周囲に設定される障害物検知領域とが重なって、当該障害物検知領域の一部が検知不可能となる場合がある。その場合、その一部の領域については、他の障害物センサにより設定する必要があり、設定が複雑となる。従って、障害物センサは測定無効領域の径方向外縁に接する位置に配置すると望ましい。
 また、移動装置100は、前記距離測定装置15および前記障害物センサ(16,17)を有する本体部1と、前記本体部の周囲に配置されるバンパー部2と、をさらに備える。
 バンパー部を設けることにより、障害物を検知不可能となる上記一部領域が、移動装置の外縁位置より外側に達することを回避できる。
 また、移動装置100は、前記障害物センサは、第1障害物センサ16および第2障害物センサ17であり、前記距離測定装置15、前記第1障害物センサ16、および前記第2障害物センサ17を有する本体部1をさらに備え、前記本体部1は、上方から視た平面視において略四角形状であり、前記距離測定装置15は、前記本体部1の角部に配置され、前記第1障害物センサ16は、前記角部に隣接する一方の角部に配置され、前記第2障害物センサ17は、前記角部に隣接する他方の角部に配置される。
 これにより、270度の角度範囲の上記測定有効領域が2つの障害物センサの配置によって制限されることを回避できる。
 また、前記第1障害物センサ16および前記第2障害物センサ17は、投射光L1を出射する投光部を回転駆動させ、前記投射光が計測対象物OJで反射した反射光の受光に基づいて距離を測定し、測定された距離に基づいて障害物を検知するセンサであって、前記距離測定装置15は、前記第1障害物センサ16および前記第2障害物センサ17の障害物を検知可能な有効角度範囲内に配置される。
 これにより、第1障害物センサと第2障害物センサのそれぞれについて、障害物を本来検知可能な一部領域が検知不可能になったとしても、互いの障害物センサによって当該一部領域における検知を可能とすることができる。
 また、前記本体部1は、カバー部(11A~11D)を有し、前記カバー部の少なくとも一部は、前記距離測定装置15と前記第1障害物センサ16との間、および前記距離測定装置15と前記第2障害物センサ17との間に配置される。前記カバー部は、前記距離測定装置と前記第1障害物センサとの間、および前記距離測定装置と前記第2障害物センサとの間で延びる平面部(S2,S1)と、前記測定有効領域R1の二つの径方向外縁(E1,E2)よりも内側に配置され、前記平面部より上方へ起立する壁部(W2,W1)と、を有する。
 これにより、各センサが外側に飛び出して配置されないように、カバー部により形成される窪みに各センサを配置しつつ、距離測定装置の測定有効領域の径方向外縁においては、投射光を壁部に沿って出射でき、270度の測定有効領域を確保できる。
<8.無人搬送車の変形例>
 次に、無人搬送車の変形例に係る実施形態について説明する。図10は、変形例に係る無人搬送車200の上方から視た概略平面図である。また、図11は、変形例に係る無人搬送車200の概略側面図である。
 無人搬送車200は、本体部18と、天板部19と、バンパー部20と、を備える。本体部18は、本体カバー部18Aと、駆動輪18Bと、従動輪18Cと、を有する。天板部19は、本体カバー部18Aの上方に配置され、荷物を載置可能である。バンパー部20は、本体カバー部18Aより下方位置に配置され、上面視で本体カバー部18Aの全周を取り囲む。駆動輪18Bが駆動されることで従動輪18Cは受動的に回転し、無人搬送車200は走行する。
 本体カバー部18Aは、前方部が後方へえぐれることで形成される突部C1を有する。本体カバー部18Aは、突部C1の前方において載置面18A1を有する。載置面18A1の高さ位置は、突部C1が形成される位置よりも低い。
 本体部18は、距離測定装置181と、第1障害物センサ182と、第2障害物センサ183をさらに有する。LRFとして構成される距離測定装置181の構成は、先述した距離測定装置15と同様である。無人搬送車200は、距離測定装置181により出力された距離測定データに基づきマップ情報を作成するマップ作成部を有する。
 距離測定装置181は、載置面18A1上の突出部C1の前方の位置において配置される。無人搬送車200の周辺に位置する障害物を検知する第1障害物センサ182と第2障害物センサ183は、載置面18A1上に配置される。
 ここで、後方右斜めに向かって距離測定装置181の回転軸から投射光の到達可能距離だけ延びた線分を径方向外縁E11とし、後方左斜めに向かって距離測定装置181の回転軸から投射光の到達可能距離だけ延びた線分を径方向外縁E12とすれば、径方向外縁E11、E12と、E11、E12が前方側になす270度の角度により円弧状領域である測定有効領域R11が規定される。一方、径方向外縁E11、E12と、E11、E12が後方側になす90度の角度により円弧状領域である測定無効領域R12が規定される。
 第1障害物センサ182と第2障害物センサ183は、距離測定装置181の測定無効領域R12内に配置される。すなわち、本実施形態の移動装置(無人搬送車200)は、投射光を出射する投光部を回転駆動させ、前記投射光が計測対象物で反射した反射光の受光に基づいて距離測定データを出力する距離測定装置181と、前記距離測定データに基づいてマップ情報を作成するマップ作成部と、障害物を検知する障害物センサ(182,183)と、を備え、前記障害物センサは、前記距離測定装置の測定有効領域R11を含んだ円形領域における前記距離測定装置の測定無効領域R12に配置される。
 このような本実施形態によっても、距離測定装置の測定有効領域が障害物センサの配置によって制限されることを回避し、マップ情報を良好に作成することができる。
<9.その他>
 以上、本発明の実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は種々の変更が可能である。
 例えば、上記実施形態では、移動装置として無人搬送車を例に挙げて説明したが、これに限らず、移動装置は掃除ロボット、監視ロボットなど、運搬用途以外の装置に適用してもよい。
 本発明は、例えば、荷物を運搬する無人搬送車に利用することができる。
 100・・・無人搬送車、100A・・・制御部、100B・・・通信部、100C・・・電源ボタン、100D・・・駆動部、M1・・・マップ作成部、M2・・・記憶部、1・・・本体部、11A・・・第1カバー部、11B・・・第2カバー部、11C・・・第3カバー部、11D・・・第4カバー部、12A、12B・・・駆動輪、13A、13B・・・駆動モータ、14A、14B・・・キャスター、15・・・距離測定装置、15
1・・・レーザ光源、152・・・コリメートレンズ、153・・・投光ミラー、154・・・受光レンズ、155・・・受光ミラー、156・・・波長フィルタ、157・・・受光部、158・・・回転筐体、159・・・モータ、159A・・・シャフト、160・・・筐体、1601・・・透過部、161・・・基板、162・・・配線、15A・・・レーザ発光部、15B・・・レーザ受光部、15C・・・距離計測部、15D・・・演算処理部、15E・・・データ通信インタフェース、15F・・・駆動部、16・・・第1障害物センサ、16A・・・レーザ発光部、16B・・・レーザ受光部、16C・・・距離計測部、16D・・・演算処理部、16E・・・データ通信インタフェース、16F・・・駆動部、169・・・モータ、17・・・第2障害物センサ、S1~S4・・・平面部、W1~W4・・・壁部、200・・・無人搬送車、18・・・本体部、18A・・・本体カバー部、18A1・・・載置面、18B・・・駆動輪、18C・・・従動輪、181・・・距離測定装置、182・・・第1障害物センサ、183・・・第2障害物センサ

 

Claims (7)

  1.  投射光を出射する投光部を回転駆動させ、前記投射光が計測対象物で反射した反射光の受光に基づいて距離測定データを出力する距離測定装置と、
     前記距離測定データに基づいてマップ情報を作成するマップ作成部と、
     障害物を検知する障害物センサと、を備え、
     前記障害物センサは、前記距離測定装置の測定有効領域を含んだ円形領域における前記距離測定装置の測定無効領域に配置される、
     移動装置。
  2.  前記障害物センサは、投射光を出射する投光部を回転駆動させ、前記投射光が計測対象物で反射した反射光の受光に基づいて距離を測定し、測定された距離に基づいて障害物を検知するセンサであって、
     前記距離測定装置は、前記障害物センサの障害物を検知可能な有効角度範囲内に配置される、請求項1に記載の移動装置。
  3.  前記障害物センサは、前記測定無効領域の径方向外縁に接する、請求項2に記載の移動装置。
  4.  前記距離測定装置および前記障害物センサを有する本体部と、
     前記本体部の周囲に配置されるバンパー部と、をさらに備える請求項2または請求項3に記載の移動装置。
  5.  前記障害物センサは、第1障害物センサおよび第2障害物センサであり、
     前記距離測定装置、前記第1障害物センサ、および前記第2障害物センサを有する本体部をさらに備え、
     前記本体部は、上方から視た平面視において略四角形状であり、
     前記距離測定装置は、前記本体部の角部に配置され、
     前記第1障害物センサは、前記角部に隣接する一方の角部に配置され、
     前記第2障害物センサは、前記角部に隣接する他方の角部に配置される、請求項1から請求項4のいずれか1項に記載の移動装置。
  6.  前記第1障害物センサおよび前記第2障害物センサは、投射光を出射する投光部を回転駆動させ、前記投射光が計測対象物で反射した反射光の受光に基づいて距離を測定し、測定された距離に基づいて障害物を検知するセンサであって、
     前記距離測定装置は、前記第1障害物センサおよび前記第2障害物センサの障害物を検知可能な有効角度範囲内に配置される、請求項5に記載の移動装置。
  7.  前記本体部は、カバー部を有し、
     前記カバー部の少なくとも一部は、前記距離測定装置と前記第1障害物センサとの間、および前記距離測定装置と前記第2障害物センサとの間に配置され、
     前記カバー部は、
     前記距離測定装置と前記第1障害物センサとの間、および前記距離測定装置と前記第2障害物センサとの間で延びる平面部と、
     前記測定有効領域の二つの径方向外縁よりも内側に配置され、前記平面部より上方へ起立する壁部と、を有する、請求項5または請求項6に記載の移動装置。

     
PCT/JP2018/021718 2017-06-20 2018-06-06 移動装置 WO2018235602A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-120654 2017-06-20
JP2017120654A JP2019008359A (ja) 2017-06-20 2017-06-20 移動装置

Publications (1)

Publication Number Publication Date
WO2018235602A1 true WO2018235602A1 (ja) 2018-12-27

Family

ID=64737568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021718 WO2018235602A1 (ja) 2017-06-20 2018-06-06 移動装置

Country Status (3)

Country Link
JP (1) JP2019008359A (ja)
TW (1) TWI684084B (ja)
WO (1) WO2018235602A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110442126A (zh) * 2019-07-15 2019-11-12 北京三快在线科技有限公司 一种移动机器人及其避障方法
DE102019213922A1 (de) 2019-09-12 2021-03-18 Jungheinrich Aktiengesellschaft Fahrzeug mit Umfeldüberwachungseinrichtung
JP7225069B2 (ja) * 2019-09-18 2023-02-20 株式会社クボタ 農業機械
CN110794848B (zh) * 2019-11-27 2020-11-03 北京三快在线科技有限公司 一种无人车控制方法及装置
JP6779398B1 (ja) 2020-02-06 2020-11-04 Dmg森精機株式会社 走行装置
US20230367326A1 (en) 2020-09-30 2023-11-16 Dmg Mori Co., Ltd. Self-propelled Device
TWI739622B (zh) * 2020-10-05 2021-09-11 國立虎尾科技大學 多光點雷射測距儀以及利用多光點雷射測距儀判斷反射光束種類及中心點位置之方法
US20240094738A1 (en) 2020-12-11 2024-03-21 Dmg Mori Co., Ltd. Autonomous Traveling Apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108056A (ja) * 2009-11-19 2011-06-02 Hitachi Industrial Equipment Systems Co Ltd 移動ロボット

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4802096A (en) * 1987-05-14 1989-01-31 Bell & Howell Company Controlled direction non-contact detection system for automatic guided vehicles
TWI408397B (zh) * 2008-08-15 2013-09-11 Univ Nat Chiao Tung Automatic navigation device with ultrasonic and computer vision detection and its navigation method
JP5312367B2 (ja) * 2010-02-12 2013-10-09 村田機械株式会社 走行台車システム
JP5503419B2 (ja) * 2010-06-03 2014-05-28 株式会社日立製作所 無人搬送車および走行制御方法
CN103019240B (zh) * 2012-11-30 2015-08-12 大连理工大学 一种agv小车平面定位导航系统及方法
CN106200643A (zh) * 2014-02-13 2016-12-07 苏州艾吉威机器人有限公司 无反射板激光自主导航agv小车
JP5766839B1 (ja) * 2014-03-26 2015-08-19 シャープ株式会社 移動体の障害物検知方法、そのシステムおよび無人搬送車
CN103935365B (zh) * 2014-05-14 2016-04-13 袁培江 一种新型物料搬运自动引导车智能防撞系统
CN106371101B (zh) * 2015-07-20 2019-08-16 北醒(北京)光子科技有限公司 一种智能测距及避障的装置
CN105204510B (zh) * 2015-10-09 2016-06-22 福州华鹰重工机械有限公司 一种用于精确定位的概率地图的生成方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108056A (ja) * 2009-11-19 2011-06-02 Hitachi Industrial Equipment Systems Co Ltd 移動ロボット

Also Published As

Publication number Publication date
TW201905618A (zh) 2019-02-01
JP2019008359A (ja) 2019-01-17
TWI684084B (zh) 2020-02-01

Similar Documents

Publication Publication Date Title
WO2018235602A1 (ja) 移動装置
US20160170412A1 (en) Autonomous mobile device and method for controlling same
US4849731A (en) Scanning obstacle detection apparatus
JPH01316808A (ja) 自走車の操向制御装置
JPWO2019064750A1 (ja) 距離測定装置、および移動体
CN111596659A (zh) 基于麦克纳姆轮的自动导引车及系统
WO2017110574A1 (ja) 投受光ユニット及びレーダー
KR20150039483A (ko) 스캔 레이다
JPH01287415A (ja) 自走車の位置制御装置
JP2017123065A (ja) 自律走行装置
JP2009050937A (ja) 原点位置設定装置、原点位置設定方法、リンク機構及び脚車輪型ロボット
JPH05296777A (ja) 車両の目標位置誘導装置
JP2010256179A (ja) 測距方法及び車載測距装置
WO2018173595A1 (ja) 移動装置
CN216816942U (zh) 一种自移动设备的测距传感器及自移动设备
US20230135740A1 (en) Distance measurement device, and mounting orientation sensing method and mounting orientation sensing program for same
WO2018173594A1 (ja) 距離測定装置、および搬送車
KR20150130201A (ko) 3차원 스캐너
WO2020045474A1 (ja) センサユニット、移動体
WO1990000746A1 (en) Scanning obstacle detection apparatus
WO2020045445A1 (ja) 距離測定装置、距離測定装置群、および距離測定装置システム
WO2019181691A1 (ja) 距離測定装置および移動体
WO2018173589A1 (ja) 距離測定装置、及び移動装置
WO2019181692A1 (ja) 距離測定装置および移動体
JP2022103971A (ja) 光走査装置及び測距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820491

Country of ref document: EP

Kind code of ref document: A1