WO2017110574A1 - 投受光ユニット及びレーダー - Google Patents

投受光ユニット及びレーダー Download PDF

Info

Publication number
WO2017110574A1
WO2017110574A1 PCT/JP2016/086979 JP2016086979W WO2017110574A1 WO 2017110574 A1 WO2017110574 A1 WO 2017110574A1 JP 2016086979 W JP2016086979 W JP 2016086979W WO 2017110574 A1 WO2017110574 A1 WO 2017110574A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
receiving element
receiving unit
reflected
Prior art date
Application number
PCT/JP2016/086979
Other languages
English (en)
French (fr)
Inventor
一生 松井
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017557892A priority Critical patent/JPWO2017110574A1/ja
Priority to EP16878465.0A priority patent/EP3396403A4/en
Priority to US16/065,006 priority patent/US20190011539A1/en
Publication of WO2017110574A1 publication Critical patent/WO2017110574A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention relates to a light projecting / receiving unit and a radar suitable for use in a radar that detects an object by irradiating a light beam from a light source.
  • a laser radar using the TOF (Time of Flight) method has already been developed.
  • the distance to the object can be measured by measuring the time until the pulsed laser light hits the object and returns.
  • a laser radar that employs the TOF method generally has an amplification factor such as an APD (avalanche photodiode) in order to detect the weak reflected light that is generated when a laser beam is irradiated to a distant object.
  • APD avalanche photodiode
  • a high light receiving element is used.
  • a plurality of light receiving elements that receive reflected light are arranged to ensure high resolution.
  • Patent Document 1 discloses a light receiving surface of a light detection unit in which a laser beam is emitted from a light source, and further, the emitted laser beam is scanned along a scanning direction by a one-dimensional scanner, and four pixels are arranged in a two-dimensional matrix.
  • a radar device is disclosed in which reflected light from an object is detected for each of four pixels.
  • a single laser light irradiation from a light source irradiates one pixel with reflected light along the scanning direction, and a plurality of pixels along a direction perpendicular to the scanning direction.
  • the radar device of Patent Document 1 detects an object. It inherently has a non-detection zone that cannot be performed, and as a result, it becomes difficult to accurately detect distant objects.
  • Patent Document 2 discloses that a laser beam emitted from a light source is reflected from an object by rotating a unit in which a large number of light sources and the same number of light receiving elements are arranged two-dimensionally.
  • An optical measuring device capable of receiving light one by one with a corresponding light receiving element is disclosed. According to such a light measuring apparatus, since the reflected light of the scanned laser light is detected by the corresponding light receiving element, there is an advantage that it is difficult to receive other disturbance light.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a radar that can suppress detection leakage while suppressing cost and having high sensitivity, and a light projecting / receiving unit used therefor.
  • the light projecting / receiving unit reflecting one aspect of the present invention is: A light source; A light projecting optical system for emitting a light beam emitted from the light source toward an object; A scanning mechanism for driving the light projecting optical system and scanning a light beam emitted from the light projecting optical system; A first light receiving portion for receiving a first reflected light beam reflected by the light beam at the object; A second light receiving unit that receives the second reflected light beam reflected from the object simultaneously with the first reflected light beam, The first light receiving unit and the second light receiving unit are arranged apart from each other in a second direction corresponding to a direction in which a light beam emitted from the light projecting optical system is scanned, The first light receiving unit includes a plurality of first light receiving elements arranged at intervals along a first direction orthogonal to the second direction, The second light receiving unit has a plurality of second light receiving elements arranged at intervals along the first direction, When the first light receiving element is scanned.
  • another light projecting / receiving unit reflecting one aspect of the present invention is: A light source; A light projecting optical system for emitting a light beam emitted from the light source toward an object; A scanning mechanism for driving the light projecting optical system and scanning a light beam emitted from the light projecting optical system; A light receiving optical system that receives a reflected light beam reflected from the object; Branching means comprising a branching surface that transmits a part of the reflected light beam collected by the light receiving optical system as a first light beam and reflects the rest of the reflected light beam as a second light beam; When, A first light receiving portion for receiving the first light flux; A second light receiving portion for receiving the second light flux, The first light receiving unit includes a plurality of first light receiving elements arranged at intervals along a first direction orthogonal to a second direction corresponding to a direction in which a light beam emitted from the light projecting optical system is scanned.
  • the second light receiving unit has a plurality of second light receiving elements arranged at intervals along the first direction, A projected image of the first light receiving element when the first light receiving element is projected onto the branch surface along the first light flux and the second light receiving element is projected onto the branch surface along the second light flux.
  • the first light receiving element and the second light receiving element which are arranged so that a part of the first light receiving element overlaps a part of the projection image of the second light receiving element, are associated with each other.
  • the object is detected based on a total value obtained by adding signals output from the second light receiving elements.
  • the present invention it is possible to provide a radar that can suppress detection leakage while having high sensitivity while suppressing cost, and a light projecting / receiving unit used therefor.
  • (A) is a comparative example, where the vertical axis represents the sum of the signals of the first light receiving element and the second light receiving element, and the horizontal axis represents the size of the light receiving element in the Z direction with the end of the first light receiving element PX11 as the origin.
  • 6 is a graph showing the position in the Z direction where the reflected light RB1, RB2 that is one time the size of the light receiving element is incident, where (b) is the origin of the Z direction in the arrangement of the comparative example. It is a figure which shows the state in which reflected light RB1, RB2 of 1 time the light receiving element size injected into the position.
  • (A) is a comparative example, where the vertical axis represents the sum of the signals of the first light receiving element and the second light receiving element, and the horizontal axis represents the size of the light receiving element in the Z direction with the end of the first light receiving element PX11 as the origin.
  • FIG. 6 is a diagram illustrating an arrangement state of first light receiving elements PX11 to PX14 and second light receiving elements PX21 to PX24 according to an example.
  • the vertical axis represents the sensor sensitivity of the embodiment, and the horizontal axis represents the position in the Z direction when the end of the first light receiving element PX11 is the origin and the light receiving element size in the Z direction is 1.
  • the vertical axis represents the added value of the signals of the first light receiving element and the second light receiving element, and the horizontal axis represents the size of the light receiving element in the Z direction with the end of the first light receiving element PX11 as the origin.
  • FIG. 6 is a graph showing the position in the Z direction where the reflected light RB1, RB2 that is one time the size of the light receiving element is incident, where (b) is the origin in the Z direction in the arrangement of the embodiment. It is a figure which shows the state in which reflected light RB1, RB2 of 1 time the light receiving element size injected into the position.
  • the vertical axis represents the added value of the signals of the first light receiving element and the second light receiving element
  • the horizontal axis represents the size of the light receiving element in the Z direction with the end of the first light receiving element PX11 as the origin.
  • FIG. 1 is a schematic view showing a state in which a laser radar equipped with a light projecting / receiving unit according to the present embodiment is installed in a vehicle.
  • the laser radar LR of the present embodiment is provided behind the front window 1a of the vehicle 1 or behind the front grille 1b.
  • FIG. 2 is a schematic configuration diagram of the laser radar LR according to the present embodiment.
  • the laser radar LR includes a motor MT attached to the vehicle body of the vehicle 1 and a casing CS attached to the tip of the rotation shaft SFT of the motor MT.
  • the casing CS is rotatable around the rotation axis RO together with the rotation axis SFT.
  • the rotation axis RO extends in the vertical direction, but actually changes according to the inclination of the vehicle body.
  • the direction of the rotation axis RO is the Z direction
  • the optical axis direction of a semiconductor laser LD described later is the X direction
  • the Z direction and the direction orthogonal to the X direction are the Y direction.
  • a semiconductor laser (light source) LD that emits a pulsed laser beam
  • a collimator lens (light projecting optical system) CL that converts divergent light from the semiconductor laser LD into a collimated beam
  • a first lens (first light receiving optical system) LS1 that condenses the reflected light beam (first reflected light beam) from the scanned and projected object OBJ, and a first light that receives the light collected by the first lens LS1.
  • 1 light-receiving part PD1 and the 2nd lens (2nd light reception light) which is arrange
  • the semiconductor laser LD, the first light receiving part PD1, and the second light receiving part PD2 are connected to the control circuit CONT through the wiring HS so as to be able to transmit signals.
  • a laser beam emitted from the semiconductor laser LD passes through an aperture stop (not shown), a beam shaper, or the like, so that at least a cross section of the collimated beam LB incident on the object OBJ (hatched in FIG. 1).
  • a dimension A in the vertical direction is longer than a dimension B in the horizontal direction (scanning direction to be described later) perpendicular to the central axis of the collimated light beam.
  • the collimated light beam LB changes its emission direction while rotating in the XY plane.
  • the direction in which the collimated light beam LB rotates is the scanning direction (second direction), and the direction orthogonal to the scanning direction (that is, the Z direction: first direction) is the scanning orthogonal direction. That is, the motor MT constitutes a scanning mechanism that rotationally drives the housing CS.
  • the scanning mechanism includes a semiconductor laser (light source) LD, a collimator lens (light projecting optical system) CL, and a first lens (first light receiving light).
  • Optical system) LS1, first light receiving unit PD1, second lens (second light receiving optical system) LS2, and second light receiving unit PD2 are integrated around an axis along the scanning direction (second direction).
  • the object OBJ is scanned by scanning the collimated light beam LB.
  • FIG. 3 is a schematic diagram showing the light receiving surfaces of the first light receiving part PD1 and the second light receiving part PD2, and the Z direction is shown as the vertical direction in the figure.
  • the first light receiving unit PD1 includes a plurality of first light receiving elements PX11 to PX14 arranged along the Z direction on the light receiving surface facing the first lens LS1, and the second light receiving unit PD2 is also arranged in the Z direction.
  • a plurality of second light receiving elements PX21 to PX24 arranged side by side.
  • the first light receiving part PD1 other than the first light receiving elements PX11 to PX14 is a non-detection area
  • the second light receiving part PD2 other than the second light receiving elements PX21 to PX24 is a non-detection area. It has become.
  • the first light receiving elements PX11 to PX14 and the second light receiving elements PX21 to PX24 each receive a light beam and output a signal, and here have the same rectangular shape (for example, a length of 0.1 mm in the Z direction). 3 are arranged in a staggered manner as shown in FIG.
  • the positions of the lower edges of the first light receiving elements PX11 and PX12 in the Z direction are respectively positioned below the upper edges of the second light receiving elements PX21 and PX22 that are closest thereto.
  • the positions of the lower edges of the first light receiving elements PX13 and PX14 in the Z direction coincide with the upper edges of the second light receiving elements PX23 and PX24 that are closest thereto.
  • the positions of the lower edges of the second light receiving elements PX21 to PX23 coincide with the positions of the upper edges of the first light receiving elements PX12 to PX14 that are closest thereto.
  • the edges do not overlap each other and the edges are in contact with each other.
  • the center line (array center) of the first light receiving elements PX11 to PX14 is CP1
  • the center line (array center) of the second light receiving elements PX21 to PX24 is CP2.
  • the sensitivity can be increased by satisfying the following expression.
  • L Amount of overlap between the first light receiving element and the second light receiving element in the Z direction
  • H Length of the first light receiving element or the second light receiving element in the Z direction
  • FIG. 4 is a diagram showing the arrangement of each element when the light emitting / receiving unit is viewed in the direction of the rotation axis RO.
  • the array center CP1 of the first light receiving elements PX11 to PX14 is shifted to the side away from the second light receiving part PD2 along the Y direction with respect to the optical axis OA1 of the first lens LS1.
  • the array center CP1 is shifted to such an extent that the reflected light beam incident along the optical axis OA1 of the first lens LS1 can be detected in the vicinity of the edge on the second light receiving part PD2 side of the first light receiving elements PX11 to PX14. Yes.
  • the array center CP2 of the second light receiving elements PX21 to PX24 is shifted to the side away from the first light receiving part PD1 along the Y direction with respect to the optical axis OA2 of the second lens LS2. More preferably, the array center CP2 is shifted to such an extent that the reflected light beam incident along the optical axis OA2 of the second lens LS2 can be detected in the vicinity of the edge on the first light receiving part PD1 side in the second light receiving elements PX21 to PX24. Yes. Note that it is sufficient that at least one of the array centers CP1 and CP2 is shifted.
  • the condensing positions are respectively the optical axes OA1, Outside of OA2 in the Y direction. That is, in the first light receiving elements PX11 to PX14 and the second light receiving elements PX21 to PX24, the area inside the Y direction from the optical axes OA1 and OA2 is not necessary for detecting the reflected light from the object from a short distance to infinity. It will be said that.
  • the ranging operation of the laser radar LR will be described.
  • the light emission timing of the semiconductor laser LD is known by the control circuit CONT.
  • the divergent light emitted intermittently in a pulse form from the semiconductor laser LD is converted into a collimated light beam LB by the collimator lens CL, and is irradiated toward the object.
  • the collimated light beam LB is horizontally directed to the external environment (see FIG. 5) where the object exists according to the rotation of the casing CS. Will be scanned over 360 °. Since the collimated light beam LB is vertically long in the scanning orthogonal direction (vertical direction), a vertical field of view can be secured, and many objects can be detected by one scan.
  • the object OBJ When the object OBJ is irradiated with the collimated light beam LB, diffused light is generated from the same incident point on the object OBJ. In other words, a plurality of reflected lights are generated from the incident point. Therefore, a part of the reflected light (first reflected light beam) is received by the first light receiving unit PD1, and another part of the reflected light (second reflected light beam) is received by the second light receiving unit PD2.
  • a signal generated by the light reception is transmitted from the first light receiving unit PD1 and the second light receiving unit PD2 to the control circuit CONT.
  • the control circuit CONT transmits the light emission time of the semiconductor laser LD and the first light receiving unit PD1 and the second light receiving unit PD2. The distance to the object is measured from the difference from the light reception time.
  • the reflected light beams RB1 and RB2 simultaneously generated from the object that has received the collimated light beam LB are received by the first light receiving unit PD1 and the second light receiving unit PD2.
  • the reflected light beams RB1 and RB2 are incident so as to straddle the light receiving elements PX13, PX14, PX23, and PX24, these light receiving elements are relatively shifted in the Y direction.
  • the component of the reflected light beam RB1 incident on the non-detection region (other than the light receiving element) of the first light receiving portion PD1 is the reflected light beam RB2 corresponding thereto.
  • the RB1 component can be detected by the first light receiving elements PX13 and PX14 of the first light receiving unit PD1. Therefore, the control circuit CONT compares the signals from the light receiving elements PX13, PX14, PX23, and PX24 with the threshold value (second threshold value), respectively, and if it exceeds that, the reflected light from the object is incident. It is also possible to estimate the size of the object from the number of consecutive detected light receiving elements.
  • the first light receiving elements PX11 and PX12 and the second light receiving elements PX21 and PX22 detect an object present above the horizontal line
  • the first light receiving element PX13. , PX14 and the second light receiving elements PX23, PX24 detect an object existing below the horizontal line.
  • the control circuit CONT as the processing device associates the first light receiving element PX11 and the second light receiving element PX21 that overlap each other, and associates the first light receiving element PX12 and the second light receiving element PX22 that overlap each other.
  • a sum value obtained by adding the signals output from the first and second light receiving elements associated with each other is first obtained, and an object is detected based on the sum.
  • the first light receiving element PX11 and the second light receiving element PX21 closest to the first light receiving element PX11 will be described as an example.
  • the sensitivity can be increased by satisfying the following expression.
  • L Amount of overlap between the first light receiving element PX11 and the second light receiving element PX21 in the Z direction
  • H Length of the first light receiving element PX11 or the second light receiving element PX21 in the Z direction
  • the non-overlapping region where the light receiving region in the first light receiving element PX11 does not overlap due to the shift in the Y direction is referred to as PX11a
  • the overlapping region where the light receiving region in the first light receiving element PX11 overlaps is defined as PX11b.
  • a non-overlapping region where the regions do not overlap is referred to as PX21a
  • a overlapping region where the light receiving regions in the second light receiving element PX21 overlap is referred to as PX21b.
  • the first reflected light RB1 ′ from the object shown in FIG. 3 protrudes from the first light receiving element PX11 of the first light receiving unit PD1 to the non-detection region, but the second corresponding to the protruding portion.
  • the component of the reflected light RB2 ′ can be detected in the non-polymerized region PX21a in the second light receiving element PX21 of the second light receiving unit PD2. Therefore, even if the first reflected light beam RB1 ′ protrudes from the first light receiving element PX11 in this way, the component of the second reflected light beam RB2 ′ corresponding to the protruding portion is reflected in the non-polymerized region PX21a in the second light receiving element PX21. Since detection is possible, detection leakage can be prevented by providing only this non-polymerized region PX21a.
  • the reflected light from a distant object is weak, so we want to increase the sensitivity as much as possible. Therefore, in the present embodiment, when the first light receiving element PX11 is shifted relative to the second light receiving element PX21 in the Y direction, the overlapping region PX11b of the first light receiving element PX11 becomes the overlapping region of the second light receiving element PX21. It is arranged so as to overlap with PX21b. As a result, the control circuit CONT obtains a sum value obtained by adding the signals output from the first light receiving element PX11 and the second light receiving element PX12, so that the outputs in the overlapping regions PX11b and 21b are superimposed.
  • the total value is larger than the simple addition value of the signals of both light receiving elements on the assumption that the same reflected light is incident on the first light receiving element PX13 and the second light receiving element PX23 having no overlapping region. Thus, this can increase sensitivity. The same applies to the relationship between the first light receiving element PX12 and the second light receiving element PX22.
  • the first threshold value to be compared with the total value for determining whether or not the object is detected by the control circuit CONT (determined as the object if this value or more) is an independent light receiving element. Although it is larger than the second threshold value compared with the signals from the light receiving elements PX13, PX14, PX23, and PX24, it is smaller than twice the second threshold value.
  • the first light receiving elements PX11 and PX12 when the first light receiving elements PX11 and PX12 are shifted relative to the second light receiving elements PX21 and PX22 in the Y direction, the first light receiving elements PX11 and PX12 become the second light receiving elements PX21, By arranging so as to overlap each of PX22, it is possible to increase the detection sensitivity for an object above the horizontal line.
  • the first light receiving elements PX13 and PX14 are shifted relative to the second light receiving elements PX23 and PX24 in the Y direction, the first light receiving elements PX13 and PX14 are arranged so as not to overlap each other. Resolution can be increased.
  • all the first light receiving elements may be arranged so as to overlap each other when shifted relative to the second light receiving element in the Y direction. Further, the number of light receiving elements is not limited to four.
  • FIG. 6 is a perspective view of a laser radar LR provided with a light projecting / receiving unit according to another embodiment.
  • a light projecting / receiving unit of a laser radar LR includes a semiconductor laser (light source) LD that emits a pulsed laser beam, and a collimator lens (projecting optical system) CL that converts the divergent light from the semiconductor laser LD into a collimated beam.
  • the first lens (first light receiving optical system) LS1 that collects the reflected light beam (first reflected light beam) from the scanned and projected object OBJ, and the light collected by the first lens LS1.
  • the first light receiving unit PD1 that is arranged on the opposite side of the first lens LS1 across the optical axis of the collimating lens CL, and collects another reflected light beam (second reflected light beam) from the object OBJ. It has a lens (second light receiving optical system) LS2, a second light receiving part PD2 that receives the light collected by the second lens LS2, and a rotating mirror unit MU.
  • the direction of the rotation axis RO of the mirror unit MU is taken as the Z direction
  • the optical axis direction of the semiconductor laser LD is taken as the X direction
  • the direction perpendicular to the Z direction and the X direction is taken as the Y direction.
  • the scanning direction may not match the second direction and / or the scanning orthogonal direction may not match the first direction. Even in that case, they shall be associated with each other.
  • the semiconductor laser LD and the collimating lens CL constitute a light projecting system LPS
  • the first lens LS1 and the first light receiving part PD1 constitute the first light receiving system RPS1
  • the second lens LS2 and the second light receiving part PD2 A second light receiving system RPS2 is configured.
  • the first light receiving unit PD1 and the second light receiving unit PD2 have the same configuration as that of the above-described embodiment.
  • the light beam emitted from the light projecting system LPS is longer in the sub-scanning angle direction than in the scanning angle direction in the measurement range of the object.
  • the substantially square cylindrical mirror unit MU is rotatably held around the rotation axis RO, which is an axis, and four trapezoidal first mirror surfaces M1 are arranged on the outer periphery of the lower portion, and face each other.
  • four trapezoidal second mirror surfaces M2 are arranged on the outer periphery of the upper portion.
  • the crossing angles of the first mirror surface M1 and the second mirror surface M2 that are paired vertically are different.
  • the optical axis of the light projecting system LPS is orthogonal to the rotation axis RO of the mirror unit MU, and the optical axes of the first light receiving system RPS1 and the second light receiving system RPS2 sandwich the optical axis of the light projecting system LPS. And it is provided in parallel with it.
  • the scanning mechanism including a motor (not shown) or the like scans the object by scanning the collimated light beam by integrally rotating the mirror unit MU about the axis along the second direction. It has become.
  • a single mirror may be used, when a single mirror is used, it is desirable to reciprocally swing within a certain angular range. About another structure, it is the same as that of embodiment mentioned above.
  • the divergent light emitted intermittently in a pulse form from the semiconductor laser LD is converted into a parallel light beam by the collimator lens CL, is incident on the point P1 of the first mirror surface M1 of the rotating mirror unit MU, and is reflected here.
  • the light travels along the rotation axis RO, is further reflected at a point P2 on the second mirror surface M2, and is scanned and projected toward the object OBJ.
  • FIG. 7 is a diagram showing a state in which the screen G, which is a detection range of the laser radar LR, is scanned with the collimated light beam LB (shown by hatching) emitted according to the rotation of the mirror unit MU.
  • the crossing angles are different.
  • the collimated light beam LB is sequentially reflected by the first mirror surface M1 and the second mirror surface M2 that are rotated and moved. First, the collimate reflected by the first pair of the first mirror surface M1 and the second mirror surface M2 is reflected.
  • the light beam LB scans the uppermost region Ln1 of the screen G from the left to the right in the horizontal direction according to the rotation of the mirror unit MU.
  • the collimated light beam LB reflected by the second pair of the first mirror surface M1 and the second mirror surface M2 is left horizontally in the second region Ln2 from the top of the screen G according to the rotation of the mirror unit MU.
  • the collimated light beam LB reflected by the third pair of the first mirror surface M1 and the second mirror surface M2 moves the third region Ln3 from the top of the screen G horizontally in accordance with the rotation of the mirror unit MU. To the right.
  • the collimated light beam LB reflected by the fourth pair of the first mirror surface M1 and the second mirror surface moves the lowermost region Ln4 of the screen G horizontally from left to right according to the rotation of the mirror unit MU. Is scanned. Thereby, the scanning of one screen is completed. Then, after the mirror unit MU makes one rotation, if the first pair of the first mirror surface M1 and the second mirror surface M2 return, the scanning from the top of the screen G is repeated again.
  • one of the reflected light beams (first reflected light beam) reflected by the object OBJ among the scanned light beams is reflected at a point P3A on the second mirror surface M2 of the mirror unit MU as indicated by a dotted line.
  • reflected here travels along the rotation axis RO, further reflects at the point P4A of the first mirror surface M1, is condensed by the first lens LS1, and detected by the light receiving element of the first light receiving portion PD1 Is done.
  • another reflected light beam (second reflected light beam) reflected by the object OBJ is incident on the point P3B of the second mirror surface M2 of the mirror unit MU and reflected there, as indicated by the dotted line.
  • the light travels along the rotation axis RO, is further reflected at the point P4B of the first mirror surface M1, is condensed by the second lens LS1, and is detected by the light receiving element of the second light receiving unit PD2.
  • a signal generated when each light receiving element receives light is transmitted from the first light receiving unit PD1 and the second light receiving unit PD2 to a control circuit (not shown), where the light emission time of the semiconductor laser LD, the first light receiving unit PD1,
  • the distance to the object is measured from the difference from the light reception time of the second light receiving unit PD2.
  • the object OBJ can be detected in the entire range on the screen G.
  • FIG. 8 is a perspective view of a laser radar LR provided with a light projecting / receiving unit according to still another embodiment.
  • the control circuit and the like are omitted.
  • the light projecting / receiving unit of the laser radar LR includes a semiconductor laser (light source) LD that emits a pulsed laser beam, and a collimator lens (light projecting optical system) CL that converts the divergent light from the semiconductor laser LD into a collimated beam.
  • a lens (light receiving optical system) LS that collects the reflected light beam from the scanned object OBJ, and a prism having a branched surface PR1 as a half mirror that is incident on the reflected light beam that has passed through the lens LS ( (Branching means) PR, a first light receiving portion PD1 that receives a reflected light beam (first light beam) transmitted through the branch surface PR1, and a second light receiving portion PD2 that receives a reflected light beam (second light beam) reflected by the branch surface PR1.
  • a mirror unit MU has the same configuration as that of the embodiment shown in FIG.
  • the direction of the rotation axis RO is the Z direction
  • the optical axis direction of the semiconductor laser LD is the X direction
  • the direction perpendicular to the Z direction and the X direction is the Y direction.
  • the light projecting system LPS is configured by the semiconductor laser LD and the collimating lens CL
  • the light receiving system RPS is configured by the lens LS, the prism PR, the first light receiving unit PD1, and the second light receiving unit PD2.
  • the light beam emitted from the light projecting system LPS is longer in the sub-scanning angle direction than in the scanning angle direction in the measurement range of the object.
  • the first light receiving part PD1 and the second light receiving part PD2 have the same configuration as that of the embodiment shown in FIG. Further, at least when the light receiving element of the first light receiving unit PD1 is projected onto the branch surface PR1 along the first light flux, and the light receiving element of the second light receiving unit PD2 is projected onto the branch surface PR1 along the second light flux.
  • the projection images of the light receiving elements of the two adjacent first light receiving portions PD1 are arranged so as to be in contact with or partially overlap the projection images of the light receiving elements of the second light receiving portion PD2 sandwiched between them (see FIG. 3). Further, when the projection images of both are overlapped, it is preferable that the following expression is satisfied (see FIG. 3).
  • L ' Amount of overlap between the projected image of the first light receiving element and the projected image of the second light receiving element H: Length of the first light receiving element or the second light receiving element in the first direction
  • the divergent light emitted intermittently in a pulse form from the semiconductor laser LD is converted into a parallel light beam by the collimator lens CL, is incident on the point P1 of the first mirror surface M1 of the rotating mirror unit MU, and is reflected here.
  • the light travels along the rotation axis RO, is further reflected at a point P2 on the second mirror surface M2, and is scanned and projected toward the object OBJ.
  • the reflected light beam reflected by the object OBJ out of the scanned light beam is incident on the point P3 of the second mirror surface M2 of the mirror unit MU as shown by the dotted line, reflected here, and along the rotation axis RO.
  • the reflected light beam reflected by the point P4 on the first mirror surface M1, condensed by the lens LS, and further transmitted through the branch surface PR1 is received by the first light receiving portion PD1 and reflected by the branch surface PR1.
  • the reflected light beam is received by the second light receiving part PD2.
  • a signal generated when each light receiving element receives light is transmitted from the first light receiving unit PD1 and the second light receiving unit PD2 to a control circuit (not shown), where the light emission time of the semiconductor laser LD, the first light receiving unit PD1, The distance to the object is measured from the difference from the light reception time of the second light receiving unit PD2. Similar to the embodiment shown in FIG. 6, the object OBJ can be detected in the entire range on the screen G by rotating the mirror unit MU.
  • the first light receiving unit has four or more first light receiving elements PX11 to PX14
  • the second light receiving unit has four or more second light receiving elements PX21 to PX24. It is assumed that the shape of each light receiving element is the same, but here, in order to simplify the description, the reflected light RB1, RB2 is applied to the first light receiving elements PX11, PX12 and the second light receiving elements PX21, PX22. It was assumed to be incident.
  • FIG. 9 shows an arrangement state of the first light receiving elements PX11 to PX14 and the second light receiving elements PX21 to PX24 according to the comparative example.
  • the size of the light receiving element in the Z direction (left and right direction in the figure, hereinafter the same) is 1.0, and the gap between the light receiving elements in the Z direction is 0.5, and the first light receiving elements PX11 to PX14
  • the second light receiving elements PX21 to PX24 are shifted in the Y direction (vertical direction in the figure, the same applies hereinafter)
  • the arrangement relationship is completely overlapped.
  • the sensor sensitivity of the comparative example is a value obtained by adding the signals of the first light receiving element PX11 and the second light receiving element PX21 according to the incident position of the reflected light, and the first light receiving element PX12 and the second light receiving element PX22.
  • the sensor sensitivity is zero (that is, the non-detection region) between the light receiving elements (Z coordinates 1.0 to 1.5), and the detection performance is degraded. I understand.
  • FIG. 11A shows changes in the value obtained by adding the signals of the element PX11 and the second light receiving element PX21 and the value obtained by adding the signals of the first light receiving element PX12 and the second light receiving element PX22.
  • FIG. 12A shows changes in the value obtained by adding the signals of the first light receiving element PX11 and the second light receiving element PX21 and the value obtained by adding the signals of the first light receiving element PX12 and the second light receiving element PX22.
  • FIG. 13 shows an arrangement state of the first light receiving elements PX11 to PX14 and the second light receiving elements PX21 to PX24 according to the embodiment.
  • the size of the light receiving element in the Z direction is 1.0
  • the gap between the light receiving elements in the Z direction is 0.5
  • the first light receiving elements PX11 and PX12 and the second light receiving elements PX21 and PX22 are Y
  • the overlapping amount becomes 0.5 (that is, the second light receiving element is shifted by 0.5 in the Z direction with respect to the first light receiving element).
  • the sensor sensitivity of the example is a value obtained by adding the signal value of only the first light receiving element PX11, the signal of the first light receiving element PX11 and the second light receiving element PX21, and the second value according to the incident position of the reflected light.
  • the non-detection region between the light receiving elements is eliminated as compared with the comparative example, and it can be seen that the detection performance is improved.
  • FIG. 15A shows changes in the value obtained by adding the signals of the element PX11 and the second light receiving element PX21 and the value obtained by adding the signals of the first light receiving element PX12 and the second light receiving element PX22.
  • the area (image position) that can be detected with a higher sensitivity than the sensitivity when detecting without addition is enlarged.
  • the region exceeding the sensitivity without addition for a 1-size object is 0.5 (A in FIG. 11) in the comparative example, but in the case of the example. It can be seen that is improved to about 0.75 (B in FIG. 15).
  • FIG. 16A shows changes in the value obtained by adding the signals of the first light receiving element PX11 and the second light receiving element PX21 and the value obtained by adding the signals of the first light receiving element PX12 and the second light receiving element PX22.
  • the area (image position) that can be detected with a higher sensitivity than the sensitivity when detecting without addition is enlarged.
  • the region exceeding the sensitivity without addition for an object of 0.6 times size is 0.7 (C in FIG. 12) in the case of the comparative example.
  • the level is improved to about 0.9 (D in FIG. 16).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

コストを抑制しつつ、高感度を有しながらも検出洩れを抑制できるレーダー及びそれに用いる投受光ユニットを提供する。第1受光素子PX11を第2受光素子PX21に対してY方向に相対的にシフトしたときに、第1受光素子PX11の重合領域PX11bが第2受光素子PX21の重合領域PX21bと重なるように配置しているので、これにより制御回路CONTが、第1受光素子PX11と第2受光素子PX12のそれぞれから出力された信号を足し合わせた合算値を求めることで、重合領域PX11b、21bでの出力が重畳させられるため、仮に第1受光素子PX13及び第2受光素子PX23に同じ反射光が入射した場合に両受光素子の信号を合算した値と比べて、より大きな出力値を得ることが出来、対象物の検出感度を増大させることができる。

Description

投受光ユニット及びレーダー
 本発明は、光源から光束を照射して対象物を検出するレーダーに用いると好適な投受光ユニット及びレーダーに関する。
 近年、例えば自動車や警備ロボットなどの分野において、移動体における衝突防止の目的で移動体が進む範囲にある障害物を精度よく検知したいという要望がますます強くなっている。このような障害物の検知方法として、電波を発信して反射波を検出する電波式レーダーが提案されているが、解像度の観点から遠方の物体の位置を精度良く把握するのは難しいという課題がある。
 これに対し、TOF(Time of Flight)方式を採用したレーザーレーダーも既に開発されている。TOF方式とは、パルス発光させたレーザー光が、物体に当たって戻ってくるまでの時間を測ることにより、当該物体までの距離を測定することができるものである。しかるに、TOF方式を採用したレーザーレーダーは、遠方の物体にレーザー光を照射した際に発生する微弱な反射光を検知するために、一般的にはAPD(アバランシェ・フォトダイオード)等の増幅率の高い受光素子を使用している。また、検知すべき対象物の解像度を上げるため、反射光を受光する複数の受光素子を配列して高分解能を確保することも行われている。
 特許文献1には、光源からレーザー光を照射し、更に照射されたレーザー光を一次元スキャナーが走査方向に沿って走査し、4つの画素を二次元行列状に配列した光検出部の受光面が、4つの画素のそれぞれについて対象物からの反射光を検出するようになっているレーダー装置が開示されている。
 特許文献1のレーダー装置では、光源による1回のレーザー光照射で、走査方向に沿って1個の画素に反射光を照射させるとともに、走査方向に対して垂直な方向に沿った複数の画素に向けて同時に反射光を入射させることが可能となり、これにより1個の画素のみに反射光を入射させる場合に比して、増量した電気信号を得ることができるので、微弱な反射光であっても検出することができる。
特開2015-78953号公報 米国特許第7969558号明細書
 しかしながら、特許文献1のレーダー装置では、光源から出射されたレーザー光は一次元スキャナーにより走査されるのに対し、4つの画素は固定されているため、走査されたレーザー光の反射光とは光軸が異なることから、それ以外の外乱光を受光しやすくなり、よって誤検出を招く恐れがあるといえる。また物体の位置を精度良く検出するために、4つの画素それぞれが4つの受光素子を独立して設けているが、配線等を設けるためには受光素子間にある程度のスペースを確保する必要がある。ところが、このスペースに反射光が入射した場合には電気信号を発生することができず、しかもこのスペースは4つの画素において対応した同じ座標位置にあるから、特許文献1のレーダー装置は物体を検出できない非検出ゾーンを本来的に持つこととなり、結果として遠方の物体を精度良く検知することが困難となる。
 これに対し、特許文献2には、多数の光源と,これと同数の受光素子とを2次元的に配列させたユニットを回転させることで、光源から出射されたレーザー光の対象物からの反射光を、対応する受光素子で逐一受光可能な光測定装置が開示されている。かかる光測定装置によれば、走査されたレーザー光の反射光は、対応する受光素子で検出されるため、それ以外の外乱光を受光しにくいというメリットがある。
 しかしながら、特許文献2の光測定装置においては、多数の光源と受光素子とを設けることでコストが膨大となるほか、複数の光源間のスペースを完全に詰めることは物理的に困難であるから、対象物に照射されるレーザー光において局所的に抜けが生じる恐れが高く、これにより検出洩れが生じるという問題がある。更に、対象物からの反射光はきわめて微弱であるので、検出洩れを抑えつつも受光素子から出力する信号の感度を高めたいという要請もある。
 本発明は、かかる問題に鑑みなされたものであり、コストを抑制しつつ、高感度を有しながらも検出洩れを抑制できるレーダー及びそれに用いる投受光ユニットを提供することを目的とする。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した投受光ユニットは、
 光源と、
 前記光源から出射された光束を対象物に向けて出射する投光用光学系と、
 前記投光用光学系を駆動し、前記投光用光学系から出射される光束を走査させる走査機構と、
 前記対象物において前記光束が反射した第1反射光束を受光する第1受光部と、
 前記第1反射光束と同時に前記対象物から反射した第2反射光束を受光する第2受光部と、を有し、
 前記第1受光部と前記第2受光部とは前記投光用光学系から出射される光束が走査される方向に対応する第2方向に離間して配置され、
 前記第1受光部は、前記第2方向に直交する第1方向に沿って間隔をあけて並べられた複数の第1受光素子を有し、
 前記第2受光部は前記第1方向に沿って間隔をあけて並べられた複数の第2受光素子を有し、
 前記第1受光素子を前記第2受光素子に対して前記第2方向に相対的にシフトしたときに、前記第1受光素子の一部が前記第2受光素子の一部に重なるように配置された前記第1受光素子と前記第2受光素子とが対応づけられ、この対応づけられた前記第1受光素子と前記第2受光素子のそれぞれから出力された信号を足し合わせた合算値に基づいて、前記対象物を検出するようになっているものである。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した別の投受光ユニットは、
 光源と、
 前記光源から出射された光束を対象物に向けて出射する投光用光学系と、
 前記投光用光学系を駆動し、前記投光用光学系から出射される光束を走査させる走査機構と、
 前記光束が前記対象物から反射した反射光束を入射する受光用光学系と、
 前記受光用光学系によって集光された前記反射光束の一部を透過して第1光束とし、前記反射光束の残りを反射して第2光束とする分岐面を備えた分岐手段を有し、と、
 前記第1光束を受光する第1受光部と、
 前記第2光束を受光する第2受光部と、を有し、
 前記第1受光部は、前記投光用光学系から出射される光束が走査される方向に対応する第2方向に直交する第1方向に沿って間隔をあけて並べられた複数の第1受光素子を有し、
 前記第2受光部は前記第1方向に沿って間隔をあけて並べられた複数の第2受光素子を有し、
 前記第1受光素子を前記第1光束に沿って前記分岐面に投影し、前記第2受光素子を前記第2光束に沿って前記分岐面に投影したときに、前記第1受光素子の投影像の一部が前記第2受光素子の投影像の一部に重なるように配置された前記第1受光素子と前記第2受光素子とが対応づけられ、この対応づけられた前記第1受光素子と前記第2受光素子のそれぞれから出力された信号を足し合わせた合算値に基づいて、前記対象物を検出するようになっているものである。
 本発明によれば、コストを抑制しつつ、高感度を有しながらも検出洩れを抑制できるレーダー及びそれに用いる投受光ユニットを提供することができる。
本実施形態にかかる投受光ユニットを搭載したレーザーレーダーを車両に搭載した状態を示す概略図である。 本実施形態にかかるレーザーレーダーLRの概略構成図である。 第1受光部PD1と第2受光部PD2の受光面を示す概略図であり、反射光が入射した状態を示している。 投受光ユニットを回転軸線RO方向に見て、各要素の配置を示す図である。 レーザーレーダーLRで走査する対象領域を示す図である。 別な実施形態にかかる投受光ユニットを備えたレーザーレーダーLRの斜視図である。 ミラーユニットMUの回転に応じて、出射するコリメート光束LB(ハッチングで示す)で、レーザーレーダーLRの検出範囲である画面G上を走査する状態を示す図である。 更に別な実施形態にかかる投受光ユニットを備えたレーザーレーダーLRの斜視図である。 比較例にかかる第1受光素子PX11~PX14と第2受光素子PX21~PX24の配列状態を示す図である。 縦軸に比較例のセンサー感度をとり、横軸に第1受光素子PX11の端を原点とし且つZ方向の受光素子サイズを1としたときにおけるZ方向の位置をとって示す図である。 (a)は、比較例において、縦軸に第1受光素子と第2受光素子の信号の加算値をとり、横軸に、第1受光素子PX11の端を原点とし且つZ方向の受光素子サイズを1としたときにおける、受光素子サイズの1倍の反射光RB1,RB2が入射するZ方向の位置をとって示すグラフであり、(b)は、比較例の配置にて、Z方向の原点位置に受光素子サイズの1倍の反射光RB1,RB2が入射した状態を示す図である。 (a)は、比較例において、縦軸に第1受光素子と第2受光素子の信号の加算値をとり、横軸に、第1受光素子PX11の端を原点とし且つZ方向の受光素子サイズを1としたときにおける、受光素子サイズの0.6倍の反射光RB1,RB2が入射するZ方向の位置をとって示すグラフであり、(b)は、比較例の配置にて、Z方向の原点位置に受光素子サイズの0.6倍の反射光RB1,RB2が入射した状態を示す図である。 実施例にかかる第1受光素子PX11~PX14と第2受光素子PX21~PX24の配列状態を示す図である。 縦軸に実施例のセンサー感度をとり、横軸に第1受光素子PX11の端を原点とし且つZ方向の受光素子サイズを1としたときにおけるZ方向の位置をとって示す図である。 (a)は、実施例において、縦軸に第1受光素子と第2受光素子の信号の加算値をとり、横軸に、第1受光素子PX11の端を原点とし且つZ方向の受光素子サイズを1としたときにおける、受光素子サイズの1倍の反射光RB1,RB2が入射するZ方向の位置をとって示すグラフであり、(b)は、実施例の配置にて、Z方向の原点位置に受光素子サイズの1倍の反射光RB1,RB2が入射した状態を示す図である。 (a)は、実施例において、縦軸に第1受光素子と第2受光素子の信号の加算値をとり、横軸に、第1受光素子PX11の端を原点とし且つZ方向の受光素子サイズを1としたときにおける、受光素子サイズの0.6倍の反射光RB1,RB2が入射するZ方向の位置をとって示すグラフであり、(b)は、実施例の配置にて、Z方向の原点位置に受光素子サイズの0.6倍の反射光RB1,RB2が入射した状態を示す図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。図1は、本実施形態にかかる投受光ユニットを搭載したレーザーレーダーを車両に搭載した状態を示す概略図である。本実施形態のレーザーレーダーLRは、車両1のフロントウィンドウ1aの背後、もしくはフロントグリル1bの背後に設けられている。
 図2は、本実施形態にかかるレーザーレーダーLRの概略構成図である。レーザーレーダーLRは、車両1の車体に取り付けられたモータMTと、モータMTの回転軸SFTの先端に取り付けられた筐体CSとを有する。筐体CSは、回転軸SFTと共に回転軸線RO回りに回転可能となっている。回転軸線ROは、垂直方向に延在しているが、実際は車体の傾きに応じて変化する。ここで、回転軸線ROの方向をZ方向とし、後述する半導体レーザーLDの光軸方向をX方向とし、Z方向及びX方向に直交する方向をY方向とする。
 筐体CSには、投受光ユニットとして、パルスレーザー光束を出射する半導体レーザー(光源)LDと、半導体レーザーLDからの発散光をコリメート光束に変換するコリメートレンズ(投光用光学系)CLと、走査投光された対象物OBJからの反射光束(第1反射光束)を集光する第1レンズ(第1受光用光学系)LS1と、第1レンズLS1により集光された光を受光する第1受光部PD1と、コリメートレンズCLを挟んで第1レンズLS1とは反対側に配置され、対象物OBJからの別な反射光束(第2反射光束)を集光する第2レンズ(第2受光用光学系)LS2と、第2レンズLS2により集光された光を受光する第2受光部PD2と、処理装置としての制御回路CONTを配置しており、これらは筐体CSと共に回転軸線RO回りに回転するようになっている。半導体レーザーLD,第1受光部PD1、第2受光部PD2は、配線HSにより信号を送信可能に制御回路CONTに接続されている。
 本実施形態においては、半導体レーザーLDから出射されたレーザー光束は、不図示の開口絞りやビームシェイパーなどを通過することにより、少なくとも対象物OBJに入射するコリメート光束LBの断面(図1にハッチングで示す)において、コリメート光束の中心軸に対して垂直方向(後述する走査直交方向)の寸法Aが、それに直交する水平方向(後述する走査方向)の寸法Bより長くなっている。筐体CSが回転することで、コリメート光束LBはXY平面内で回転しながら出射方向を変えることとなる。コリメート光束LBが回転移動する方向を走査方向(第2方向)とし、走査方向に直交する方向(すなわちZ方向:第1方向)を走査直交方向とする。すなわち、モータMTは筐体CSを回転駆動する走査機構を構成し、走査機構は、半導体レーザー(光源)LDと、コリメートレンズ(投光用光学系)CLと、第1レンズ(第1受光用光学系)LS1と、第1受光部PD1と、第2レンズ(第2受光用光学系)LS2と、第2受光部PD2とを、走査方向(第2方向)に沿った軸回りに一体的に回転させることで、コリメート光束LBを走査させて対象物OBJを走査するようになっている。
 図3は、第1受光部PD1と第2受光部PD2の受光面を示す概略図であり、Z方向を図の上下方向として示す。第1受光部PD1は、第1レンズLS1に向いた受光面に、Z方向に沿って並べて配置された複数の第1受光素子PX11~PX14を有し、第2受光部PD2も、Z方向に沿って並べて配置された複数の第2受光素子PX21~PX24を有する。第1受光素子PX11~PX14以外の第1受光部PD1は非検出領域であり、第2受光素子PX21~PX24以外の第2受光部PD2は非検出領域であり、ここは配線などを設ける部位となっている。
 第1受光素子PX11~PX14と第2受光素子PX21~PX24は、それぞれ光束を受光して信号を出力するものであり、ここでは同一矩形形状(たとえばZ方向の長さ0.1mm)を有し、図3に示すように千鳥状に配置されている。ここで、Z方向における第1受光素子PX11、PX12の下縁の位置は、それに最も近い第2受光素子PX21、PX22の上縁よりそれぞれ下方に位置している。又、Z方向における第1受光素子PX13、PX14の下縁の位置は、それに最も近い第2受光素子PX23、PX24の上縁に一致している。一方、第2受光素子PX21~PX23の下縁の位置は、それに最も近い第1受光素子PX12~PX14の上縁の位置と一致している。
 つまり、第1受光素子PX11、PX12を第2受光素子PX21、PX22に対してY方向(第2方向)にシフトすると、お互いに一部が重なり合う関係となっているが、第1受光素子PX13、PX14を第2受光素子PX23、PX24に対してY方向(第2方向)にシフトしても、お互いに一部が重ならず、縁同士が接する関係となっている。第1受光素子PX11~PX14の中心線(配列中心)をCP1とし、第2受光素子PX21~PX24の中心線(配列中心)をCP2とする。尚、Y方向へのシフトにより、全ての第1受光素子及び第2受光素子同士が重なり合うように配置しても良い。
 第1受光素子PX11、PX12を第2受光素子PX21、PX22に対してY方向に相対的にシフトさせて両者を重ねたときに、以下の式を満たすことで感度を高めることができる。
 L/H>0.5   (1)
但し、
 L:Z方向における第1受光素子と第2受光素子の重なり量
 H:Z方向における第1受光素子又は第2受光素子の長さ
 図4は、投受光ユニットを回転軸線RO方向に見て、各要素の配置を示す図である。図4に示すように、第1受光素子PX11~PX14の配列中心CP1は、第1レンズLS1の光軸OA1に対してY方向に沿って第2受光部PD2から離間する側にシフトしている。より好ましくは、第1レンズLS1の光軸OA1に沿って入射する反射光束を、第1受光素子PX11~PX14における第2受光部PD2側の縁近傍で検出できる程度に配列中心CP1がシフトしている。
 又、第2受光素子PX21~PX24の配列中心CP2は、第2レンズLS2の光軸OA2に対してY方向に沿って第1受光部PD1から離間する側にシフトしている。より好ましくは、第2レンズLS2の光軸OA2に沿って入射する反射光束を、第2受光素子PX21~PX24における第1受光部PD1側の縁近傍で検出できる程度に配列中心CP2がシフトしている。尚、配列中心CP1,CP2の少なくとも一方がシフトしていれば足りる。
 このように第1受光素子PX11~PX14の中心CP1と第2受光素子PX21~PX24の中心CP2をシフトさせる理由について説明する。図4において、遠方の対象物から反射した反射光は、実線で示すように第1レンズLS1及び第2レンズLS2に入射するので、それぞれ集光位置は光軸OA1、OA2上となる。一方、近距離の対象物から反射した反射光は、視差があることから一点鎖線で示すように第1レンズLS1及び第2レンズLS2に斜めに入射するので、それぞれ集光位置は光軸OA1、OA2よりもY方向外側となる。つまり、第1受光素子PX11~PX14と第2受光素子PX21~PX24とにおいて、光軸OA1、OA2よりY方向内側の領域は、近距離から無限遠方までの対象物からの反射光の検出に不要ということとなる。従って、第1受光素子PX11~PX14の中心CP1と第2受光素子PX21~PX24の中心CP2を、光軸OA1と光軸OA2に対してY方向外側にシフトさせることで、受光部PD1,PD2のコスト低減と有効活用を図ることができる。
 次に、レーザーレーダーLRの測距動作について説明する。図1において、半導体レーザーLDの発光タイミングは、制御回路CONTが把握しているものとする。半導体レーザーLDからパルス状に間欠的に出射された発散光は、コリメートレンズCLでコリメート光束LBに変換され、対象物に向かって照射される。ここで、筐体CSがモータMTにより回転軸線RO回りに回転させられているので、コリメート光束LBは、筐体CSの回転に応じて対象物が存在する外界(図5参照)に,水平方向に360°にわたって走査されることとなる。コリメート光束LBが走査直交方向(垂直方向)に縦長なので、垂直方向の視野を確保することができ、1度の走査で多くの対象物を検出できる。
 コリメート光束LBが対象物OBJに照射されたとき、対象物OBJにおける同じ入射点から拡散光が発生する。これを言い換えると、入射点から複数の反射光が生じることとなる。よって反射光の一部(第1反射光束)を第1受光部PD1で受光し、反射光の別の一部(第2反射光束)を第2受光部PD2で受光することとなる。受光によって発生した信号は、第1受光部PD1及び第2受光部PD2から制御回路CONTに送信され、制御回路CONTは半導体レーザーLDの発光時刻と、第1受光部PD1及び第2受光部PD2の受光時刻との差から、対象物までの距離を測定するようになっている。
 コリメート光束LBを受けた対象物から同時に発生した反射光束RB1,RB2が、第1受光部PD1及び第2受光部PD2で受光される。例えば、図3に示すように反射光束RB1,RB2が受光素子PX13,PX14,PX23,PX24に跨がるようにして入射したものとすると、これらの受光素子はY方向に相対的にシフトすることで上下縁同士が接するように配置されている(つまり重なってない)ので、第1受光部PD1の非検出領域(受光素子以外)に入射した反射光束RB1の成分は、それに相当する反射光束RB2の成分として第2受光部PD2の第2受光素子PX23,PX24で検出でき、また第2受光部PD2の非検出領域(受光素子以外)に入射した反射光束RB2の成分は、それに相当する反射光束RB1の成分として第1受光部PD1の第1受光素子PX13,PX14で検出できる。従って、制御回路CONTは、受光素子PX13,PX14,PX23,PX24からの信号を、それぞれ閾値(第2の閾値)と単独で比較して、それ以上の場合には対象物からの反射光が入射したと判定し、更に検出した受光素子が連続する数から対象物の大きさを推定することもできる。
 ところで、図1に示すような車載用のレーザーレーダーの場合、水平線より下方に存在する対象物は高い分解能で検出することで衝突などを未然に防ぎ、水平線より上方に存在する対象物については、受光部の感度を上げてなるべく早期に検出したいという要請がある。このような要請に応じるために、本実施形態では、第1受光素子PX11、PX12及び第2受光素子PX21、PX22で、水平線より上方に存在する対象物を検出するようにし、第1受光素子PX13、PX14及び第2受光素子PX23、PX24で、水平線より下方に存在する対象物を検出するようにしている。
 より具体的に説明すると、第1受光素子PX11,PX12を第2受光素子PX21,PX22に対してY方向(第2方向)に相対的にシフトしたときに、第1受光素子PX11,PX12の一部が第2受光素子PX21,PX22の一部にそれぞれ重なるように配置している。このとき、処理装置である制御回路CONTが、相互に重なる第1受光素子PX11と第2受光素子PX21とを対応づけ、また相互に重なる第1受光素子PX12と第2受光素子PX22とを対応づけて、対応づけられた第1受光素子と第2受光素子のそれぞれから出力された信号を足し合わせた合算値をまず求め、それに基づいて対象物を検出する。
 ここで、第1受光素子PX11と、それに最も近い第2受光素子PX21を例にとり、以下説明する。第1受光素子PX11を第2受光素子PX21に対してY方向に相対的にシフトさせて両者を重ねたときに、以下の式を満たすことで感度を高めることができる。
 L/H>0.5   (1)
但し、
 L:Z方向における第1受光素子PX11と第2受光素子PX21の重なり量
 H:Z方向における第1受光素子PX11又は第2受光素子PX21の長さ
 図3において、Y方向のシフトにより、第1受光素子PX11における受光領域が重ならない非重合領域をPX11a、第1受光素子PX11における受光領域が重なる重合領域をPX11bとし、第2受光素子PX21における受光領域が重ならない非重合領域をPX21a、第2受光素子PX21における受光領域が重なる重合領域をPX21bとする。ここで、図3に示す対象物からの第1反射光RB1’は、第1受光部PD1の第1受光素子PX11をはみ出して非検出領域まではみ出しているが、このはみ出し分に相当する第2反射光RB2’の成分は、第2受光部PD2の第2受光素子PX21における非重合領域PX21aで検出できる。従って、このように第1受光素子PX11を第1反射光束RB1’がはみ出したとしても、そのはみ出し分に相当する第2反射光束RB2’の成分を、第2受光素子PX21における非重合領域PX21aで検出できるのであるから、この非重合領域PX21aのみを設ければ検出洩れを防ぐことはできる。
 しかしながら、遠方の対象物からの反射光は微弱であるので、なるべく感度を高めたい。そこで、本実施形態では、第1受光素子PX11を第2受光素子PX21に対してY方向に相対的にシフトしたときに、第1受光素子PX11の重合領域PX11bが第2受光素子PX21の重合領域PX21bと重なるように配置しているのである。これにより制御回路CONTが、第1受光素子PX11と第2受光素子PX12のそれぞれから出力された信号を足し合わせた合算値を求めることで、重合領域PX11b、21bでの出力分が重畳させられる。かかる合算値は、重合領域を持たない第1受光素子PX13及び第2受光素子PX23に同じ反射光が入射したと仮定して両受光素子の信号の単純加算値と比べて、より大きな信号値となるので、これにより感度を増大させることができる。第1受光素子PX12と第2受光素子PX22との関係も同様である。このとき、制御回路CONTが、対象物を検出したか否かを判定するために合算値と比較する第1の閾値(この値以上であれば対象物と判定する)は、独立受光素子である受光素子PX13,PX14,PX23,PX24からの信号と比較する第2の閾値より大きくなっているが、第2の閾値の2倍より小さい値である。
 本実施形態によれば、第1受光素子PX11、PX12を第2受光素子PX21、PX22に対してY方向に相対的にシフトしたときに、第1受光素子PX11、PX12が第2受光素子PX21、PX22にそれぞれ重なるように配置することで、水平線より上方の対象物に対して検出感度を増大させることが出来る。一方、第1受光素子PX13、PX14を第2受光素子PX23、PX24に対してY方向に相対的にシフトしたときに、相互に重ならないように配置することで、水平線より下方の対象物に対して分解能を高めることができる。以上にかかわらず、全ての第1受光素子を第2受光素子に対してY方向に相対的にシフトしたときに、相互に重なるように配置しても良い。又、受光素子は4つに限られない。
 図6は、別な実施形態にかかる投受光ユニットを備えたレーザーレーダーLRの斜視図である。ここでは制御回路等は省略している。図6において、レーザーレーダーLRの投受光ユニットは、パルスレーザー光束を出射する半導体レーザー(光源)LDと、半導体レーザーLDからの発散光をコリメート光束に変換するコリメートレンズ(投光用光学系)CLと、走査投光された対象物OBJからの反射光束(第1反射光束)を集光する第1レンズ(第1受光用光学系)LS1と、第1レンズLS1により集光された光を受光する第1受光部PD1と、コリメートレンズCLの光軸を挟んで第1レンズLS1とは反対側に配置され、対象物OBJからの別な反射光束(第2反射光束)を集光する第2レンズ(第2受光用光学系)LS2と、第2レンズLS2により集光された光を受光する第2受光部PD2と、回転するミラーユニットMUとを有している。ここで、ミラーユニットMUの回転軸線ROの方向をZ方向とし、半導体レーザーLDの光軸方向をX方向とし、Z方向及びX方向に直交する方向をY方向とする。尚、反射光束がミラーで反射されて第1受光部と第2受光部に入射する場合、走査方向は第2方向と一致せず、及び/又は走査直交方向は第1方向と一致しないこともあるが、その場合でもそれぞれ対応づけるものとする。
 半導体レーザーLDとコリメートレンズCLとで投光系LPSを構成し、第1レンズLS1と第1受光部PD1とで第1受光系RPS1を構成し、第2レンズLS2と第2受光部PD2とで第2受光系RPS2を構成する。第1受光部PD1と第2受光部PD2は、上述した実施形態と同様な構成を持つ。投光系LPSから出射された光束は、対象物の測定範囲で走査角方向よりも副走査角方向に長くなっている
 略四角筒状のミラーユニットMUは、軸線である回転軸線RO回りに回転可能に保持されており、下部外周に、4枚の台形状の第1ミラー面M1を配置しており、それに対向して、上部外周に、4枚の台形状の第2ミラー面M2を配置している。それぞれ上下に対になった第1ミラー面M1と第2ミラー面M2との交差角は,異なっている。投光系LPSの光軸は、ミラーユニットMUの回転軸線ROに対して直交しており、第1受光系RPS1と第2受光系RPS2の光軸は、投光系LPSの光軸を挟んで且つそれに平行に設けられている。すなわち、モータ(図示省略)等により構成される走査機構は、ミラーユニットMUを第2方向に沿った軸回りに一体的に回転させることで、コリメート光束を走査させて対象物を走査するようになっている。尚、ミラーは単一でも良いが、単一のミラーを用いる場合は、一定の角度範囲で往復揺動させることが望ましい。それ以外の構成については、上述した実施形態と同様である。
 次に、本実施形態のレーザーレーダーLRの測距動作について説明する。半導体レーザーLDからパルス状に間欠的に出射された発散光は、コリメートレンズCLで平行光束に変換され、回転するミラーユニットMUの第1ミラー面M1の点P1に入射し、ここで反射され、回転軸線ROに沿って進行し、更に第2ミラー面M2の点P2で反射して対象物OBJ側に走査投光される。
 図7は、ミラーユニットMUの回転に応じて、出射するコリメート光束LB(ハッチングで示す)で、レーザーレーダーLRの検出範囲である画面G上を走査する状態を示す図である。ミラーユニットMUの第1ミラー面M1と第2ミラー面M2の組み合わせにおいて、それぞれ交差角が異なっている。コリメート光束LBは、回転移動する第1ミラー面M1と第2ミラー面M2にて、順次反射してゆくが、まず1番対の第1ミラー面M1と第2ミラー面M2にて反射したコリメート光束LBは、ミラーユニットMUの回転に応じて、画面Gの一番上の領域Ln1を水平方向に左から右へと走査される。次に、2番対の第1ミラー面M1と第2ミラー面M2で反射したコリメート光束LBは、ミラーユニットMUの回転に応じて、画面Gの上から二番目の領域Ln2を水平方向に左から右へと走査される。次に、3番対の第1ミラー面M1と第2ミラー面M2で反射したコリメート光束LBは、ミラーユニットMUの回転に応じて、画面Gの上から三番目の領域Ln3を水平方向に左から右へと走査される。次に、4番対の第1ミラー面M1と第2ミラー面で反射したコリメート光束LBは、ミラーユニットMUの回転に応じて、画面Gの最も下の領域Ln4を水平方向に左から右へと走査される。これにより1画面の走査が完了する。そして、ミラーユニットMUが1回転した後、1番対の第1ミラー面M1と第2ミラー面M2が戻ってくれば、再び画面Gの一番上からの走査を繰り返す。
 図6において、走査投光された光束のうち対象物OBJに当たって反射した反射光束(第1反射光束)の1つは、点線で示すように、ミラーユニットMUの第2ミラー面M2の点P3Aに入射し、ここで反射され、回転軸線ROに沿って進行し、更に第1ミラー面M1の点P4Aで反射して、第1レンズLS1により集光され、第1受光部PD1の受光素子で検知される。これと同時に、対象物OBJに当たって反射した反射光束の別の1つ(第2反射光束)は、点線で示すように、ミラーユニットMUの第2ミラー面M2の点P3Bに入射し、ここで反射され、回転軸線ROに沿って進行し、更に第1ミラー面M1の点P4Bで反射して、第2レンズLS1により集光され、第2受光部PD2の受光素子で検知されることとなる。各受光素子が受光することによって発生した信号は、第1受光部PD1及び第2受光部PD2から不図示の制御回路に送信され、ここで半導体レーザーLDの発光時刻と、第1受光部PD1及び第2受光部PD2の受光時刻との差から、対象物までの距離を測定するようになっている。以上により画面G上の全範囲で、対象物OBJの検出を行える。
 図8は、更に別な実施形態にかかる投受光ユニットを備えたレーザーレーダーLRの斜視図である。ここでは制御回路等は省略している。図8において、レーザーレーダーLRの投受光ユニットは、パルスレーザー光束を出射する半導体レーザー(光源)LDと、半導体レーザーLDからの発散光をコリメート光束に変換するコリメートレンズ(投光用光学系)CLと、走査投光された対象物OBJからの反射光束を集光するレンズ(受光用光学系)LSと、レンズLSを通過した反射光束を入射すると共にハーフミラーとしての分岐面PR1を有するプリズム(分岐手段)PRと、分岐面PR1を透過した反射光束(第1光束)を受光する第1受光部PD1と、分岐面PR1で反射した反射光束(第2光束)を受光する第2受光部PD2と、ミラーユニットMUとを有している。ミラーユニットMUは、図6に示す実施形態と同様な構成を有する。ここで、回転軸線ROの方向をZ方向とし、半導体レーザーLDの光軸方向をX方向とし、Z方向及びX方向に直交する方向をY方向とする。
 半導体レーザーLDとコリメートレンズCLとで投光系LPSを構成し、レンズLSとプリズムPRと第1受光部PD1と第2受光部PD2とで受光系RPSを構成する。投光系LPSから出射された光束は、対象物の測定範囲で走査角方向よりも副走査角方向に長くなっている。
 第1受光部PD1と第2受光部PD2は、図3に示す実施形態と同様な構成を持つ。又、第1受光部PD1の受光素子を、第1光束に沿って分岐面PR1に投影し、第2受光部PD2の受光素子を第2光束に沿って分岐面PR1に投影したときに、少なくとも隣接する2つの第1受光部PD1の受光素子の投影像が、それらに挟まれる第2受光部PD2の受光素子の投影像と隙間なく接するか、もしくは一部重なるように配置されている(図3参照)。又、双方の投影像を重ねたときにその一部が重なる場合、以下の式を満たすと好ましい(図3参照)。
 L’/H>0.5   (2)
但し、
 L’:第1受光素子の投影像と第2受光素子の投影像の重なり量
 H:第1方向における第1受光素子又は第2受光素子の長さ
それ以外の構成については、信号処理も含めて、上述した実施形態と同様である。
 次に、本実施形態のレーザーレーダーLRの測距動作について説明する。半導体レーザーLDからパルス状に間欠的に出射された発散光は、コリメートレンズCLで平行光束に変換され、回転するミラーユニットMUの第1ミラー面M1の点P1に入射し、ここで反射され、回転軸線ROに沿って進行し、更に第2ミラー面M2の点P2で反射して対象物OBJ側に走査投光される。
 走査投光された光束のうち対象物OBJに当たって反射した反射光束は、点線で示すように、ミラーユニットMUの第2ミラー面M2の点P3に入射し、ここで反射され、回転軸線ROに沿って進行し、更に第1ミラー面M1の点P4で反射して、レンズLSにより集光され、更に分岐面PR1を透過した反射光束は第1受光部PD1で受光され、分岐面PR1で反射した反射光束は第2受光部PD2で受光される。各受光素子が受光することによって発生した信号は、第1受光部PD1及び第2受光部PD2から不図示の制御回路に送信され、ここで半導体レーザーLDの発光時刻と、第1受光部PD1及び第2受光部PD2の受光時刻との差から、対象物までの距離を測定するようになっている。図6に示す実施形態と同様に、ミラーユニットMUを回転させることで、画面G上の全範囲で対象物OBJの検出を行える。
 以下、本発明者らが行ったシミュレーション結果を示す。図9,13に示すように、第1の受光部は、4つ以上の第1受光素子PX11~PX14を有し、第2の受光部は、4つ以上の第2受光素子PX21~PX24を有し、各受光素子の形状は同一であるとするが、ここでは説明を簡略化するために、第1受光素子PX11,PX12と第2受光素子PX21,PX22に対して反射光RB1,RB2が入射したものとした。まず、図9は、比較例にかかる第1受光素子PX11~PX14と第2受光素子PX21~PX24の配列状態を示している。具体的に比較例は、Z方向(図で左右方向、以下同じ)の受光素子サイズが1.0で、Z方向における受光素子間のギャップを0.5として、第1受光素子PX11~PX14と第2受光素子PX21~PX24をY方向(図で上下方向、以下同じ)にシフトすると、完全に重なる配置関係である。
 図10において、比較例のセンサー感度は、反射光の入射位置に応じて、第1受光素子PX11と第2受光素子PX21の信号を加算した値、及び第1受光素子PX12と第2受光素子PX22の信号を加算した値となるが、受光素子間(Z座標1.0~1.5)に、センサー感度がゼロの領域(すなわち非検出領域)が生じ、検出性能が低下していることが分かる。
 又、図11(b)に示すように、受光素子サイズの1倍の反射光RB1,RB2が入射した場合において、反射光RB1,RB2をZ方向に変位させていった際に、第1受光素子PX11と第2受光素子PX21の信号を加算した値、及び第1受光素子PX12と第2受光素子PX22の信号を加算した値の変化を図11(a)に示す。
 更に、図12(b)に示すように、受光素子サイズの0.6倍の反射光RB1,RB2が入射した場合において、反射光RB1,RB2をZ方向に変位させていった際に、第1受光素子PX11と第2受光素子PX21の信号を加算した値、及び第1受光素子PX12と第2受光素子PX22の信号を加算した値の変化を図12(a)に示す。
 次に、実施例について説明する。図13は、実施例にかかる第1受光素子PX11~PX14と第2受光素子PX21~PX24の配列状態を示している。具体的に実施例は、Z方向の受光素子サイズが1.0で、Z方向における受光素子間のギャップを0.5として、第1受光素子PX11,PX12と第2受光素子PX21,PX22をY方向にシフトすると、重なり量が0.5となる(つまり第1受光素子に対して第2受光素子をZ方向に0.5シフトした)配置関係である。
 図14において、実施例のセンサー感度は、反射光の入射位置に応じて、第1受光素子PX11のみの信号値、第1受光素子PX11と第2受光素子PX21の信号を加算した値、第2受光素子PX21のみの信号値、及び第1受光素子PX12のみの信号値、第1受光素子PX12と第2受光素子PX22の信号を加算した値、第2受光素子PX22のみの信号値というように段階的に変化するが、比較例に比較すると受光素子間の非検出領域がなくなっており、検出性能が向上していることが分かる。
 更に、図15(b)に示すように、受光素子サイズの1倍の反射光RB1,RB2が入射した場合において、反射光RB1,RB2をZ方向に変位させていった際に、第1受光素子PX11と第2受光素子PX21の信号を加算した値、及び第1受光素子PX12と第2受光素子PX22の信号を加算した値の変化を図15(a)に示す。比較例に比べ、加算なしで検知する場合の感度より高い感度で検知できる領域(像の位置)が拡大している。例えば、1倍サイズ物体に対して加算なしでの感度を上回る領域(加算値1.0相当)は、比較例の場合0.5(図11のA)であるのに対して実施例の場合は0.75程度(図15のB)に改善してことがわかる。
 更に、図16(b)に示すように、受光素子サイズの0.6倍の反射光RB1,RB2が入射した場合において、反射光RB1,RB2をZ方向に変位させていった際に、第1受光素子PX11と第2受光素子PX21の信号を加算した値、及び第1受光素子PX12と第2受光素子PX22の信号を加算した値の変化を図16(a)に示す。比較例に比べ、加算なしで検知する場合の感度より高い感度で検知できる領域(像の位置)が拡大している。例えば、0.6倍サイズ物体に対して加算なしでの感度を上回る領域(加算値0.6相当)は、比較例の場合0.7(図12のC)であるのに対して実施例の場合は0.9程度(図16のD)に改善してことがわかる。
 本発明は、明細書に記載の実施形態・実施例に限定されるものではなく、他の実施形態・変形例を含むことは、本明細書に記載された実施形態や技術思想から本分野の当業者にとって明らかである。明細書の記載・実施形態・実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。例えば、図面を用いて説明した本発明の内容は、全て実施形態に適用できる。本レーザーレーダーは、自動車に限らず飛行体やロボット、監視カメラなどにも適用できる。
1          車両
1a         フロントウィンドウ
1b         フロントグリル
CL         コリメートレンズ
CONT       制御回路
CP1、CP2    配列中心
CS         筐体
G          画面
HS         配線
LB         コリメート光束
LD         半導体レーザー
Ln1~LN4    領域
LR         レーザーレーダー
LS         レンズ
LS1        第1レンズ
LS2        第2レンズ
M1         第1ミラー面
M2         第2ミラー面
MT         モータ
MU         ミラーユニット
OA1        光軸
OA2        光軸
OBJ        対象物
PD1        第1受光部
PD2        第2受光部
PR         プリズム
PR1        分岐面
PX11~PX14  第1受光素子
PX21~PX24  第2受光素子
RB1        第1反射光束
RB2        第2反射光束
RO         回転軸線
RPS        受光系
SFT        回転軸

Claims (19)

  1.  光源と、
     前記光源から出射された光束を対象物に向けて出射する投光用光学系と、
     前記投光用光学系を駆動し、前記投光用光学系から出射される光束を走査させる走査機構と、
     前記対象物において前記光束が反射した第1反射光束を受光する第1受光部と、
     前記第1反射光束と同時に前記対象物から反射した第2反射光束を受光する第2受光部と、を有し、
     前記第1受光部と前記第2受光部とは前記投光用光学系から出射される光束が走査される方向に対応する第2方向に離間して配置され、
     前記第1受光部は、前記第2方向に直交する第1方向に沿って間隔をあけて並べられた複数の第1受光素子を有し、
     前記第2受光部は前記第1方向に沿って間隔をあけて並べられた複数の第2受光素子を有し、
     前記第1受光素子を前記第2受光素子に対して前記第2方向に相対的にシフトしたときに、前記第1受光素子の一部が前記第2受光素子の一部に重なるように配置された前記第1受光素子と前記第2受光素子とが対応づけられ、この対応づけられた前記第1受光素子と前記第2受光素子のそれぞれから出力された信号を足し合わせた合算値に基づいて、前記対象物を検出するようになっている投受光ユニット。
  2.  前記第1受光素子の配列中心は、前記第1受光用光学系の中心に対して前記第2受光素子から離間する側にシフトしている請求項1に記載の投受光ユニット。
  3.  前記第1受光素子を前記第2受光素子に対して前記第2方向に相対的にシフトさせて両者を重ねたとき両者の一部が重なる場合、以下の式を満たす請求項1又は2に記載の投受光ユニット。
     L/H>0.5   (1)但し、
     L:前記第1方向における前記第1受光素子と前記第2受光素子の重なり量
     H:前記第1方向における前記第1受光素子又は前記第2受光素子の長さ
  4.  前記第1受光部からの信号と前記第2受光部からの信号を処理する処理装置を有し、前記処理装置は、前記合算値が第1の閾値を超えているときに、前記対象物からの反射光が入射したと判定する請求項1~3のいずれかに記載の投受光ユニット。
  5.  前記第1受光素子を前記第2受光素子に対して前記第2方向に相対的にシフトしたときに、前記第1受光素子と前記第2受光素子とが重ならない関係にある前記第1受光素子と前記第2受光素子を独立受光素子としたときに、前記処理装置は、前記独立受光素子からの信号が第2の閾値を超えているときに、前記対象物からの反射光が入射したと判定する請求項4に記載の投受光ユニット。
  6.  前記第1の閾値は前記第2の閾値と異なっている請求項5に記載の投受光ユニット。
  7.  前記走査機構は、前記光源、前記投光用光学系、前記第1受光部及び前記第2受光部を、前記第2方向に沿った軸回りに一体的に回転することにより、前記対象物を走査するようになっている請求項1~6のいずれかに記載の投受光ユニット。
  8.  前記走査機構は、前記投光用光学系から前記対象物に向かう前記光束を反射し、且つ前記対象物からの前記第1反射光束及び前記第2反射光束を反射して前記第1受光部及び前記第2受光部に入射させるミラーを有し、前記ミラーが前記第2方向に沿った軸回りに一体的に回転することにより、前記対象物を走査するようになっている請求項1~6のいずれかに記載の投受光ユニット。
  9.  光源と、
     前記光源から出射された光束を対象物に向けて出射する投光用光学系と、
     前記投光用光学系を駆動し、前記投光用光学系から出射される光束を走査させる走査機構と、
     前記光束が前記対象物から反射した反射光束を入射する受光用光学系と、
     前記受光用光学系によって集光された前記反射光束の一部を透過して第1光束とし、前記反射光束の残りを反射して第2光束とする分岐面を備えた分岐手段を有し、と、
     前記第1光束を受光する第1受光部と、
     前記第2光束を受光する第2受光部と、を有し、
     前記第1受光部は、前記投光用光学系から出射される光束が走査される方向に対応する第2方向に直交する第1方向に沿って間隔をあけて並べられた複数の第1受光素子を有し、
     前記第2受光部は前記第1方向に沿って間隔をあけて並べられた複数の第2受光素子を有し、
     前記第1受光素子を前記第1光束に沿って前記分岐面に投影し、前記第2受光素子を前記第2光束に沿って前記分岐面に投影したときに、前記第1受光素子の投影像の一部が前記第2受光素子の投影像の一部に重なるように配置された前記第1受光素子と前記第2受光素子とが対応づけられ、この対応づけられた前記第1受光素子と前記第2受光素子のそれぞれから出力された信号を足し合わせた合算値に基づいて、前記対象物を検出するようになっている投受光ユニット。
  10.  前記走査機構は前記投光用光学系から出射した前記光束を反射して前記対象物に向かわせ、また前記対象物から戻る前記反射光束を反射して前記受光用光学系に入射させるミラーを有し、投光用光学系から出射される光束を走査させる方向に垂直な軸回りに前記ミラーが回転することにより、前記対象物を走査するようになっている請求項9に記載の投受光ユニット。
  11.  前記第1受光素子の投影像を前記第2受光素子の投影像に対して重ねたとき両像の一部が重なる場合、以下の式を満たす請求項9又は10に記載の投受光ユニット。
     L’/H>0.5   (2)但し、
     L’:前記第1受光素子の投影像と前記第2受光素子の投影像の重なり量
     H:前記第1方向における前記第1受光素子又は前記第2受光素子の長さ
  12.  前記第1受光部からの信号と前記第2受光部からの信号を処理する処理装置を有し、前記処理装置は、前記合算値が第1の閾値を超えているときに、前記対象物からの反射光が入射したと判定する請求項9~11のいずれかに記載の投受光ユニット。
  13.  前記第1受光素子の投影像と前記第2受光素子の投影像とが重ならない関係にある前記第1受光素子と前記第2受光素子を独立受光素子としたときに、前記処理装置は、前記独立受光素子からの信号が第2の閾値を超えているときに、前記対象物からの反射光が入射したと判定する請求項12に記載の投受光ユニット。
  14.  前記第1の閾値は前記第2の閾値と異なっている請求項13に記載の投受光ユニット。
  15.  前記第1受光素子は、それぞれ同一形状を有し、前記第2受光素子は、それぞれ同一形状を有している請求項1~14のいずれかに記載の投受光ユニット。
  16.  前記第1受光素子と前記第2受光素子は、互いに同一の形状を有している請求項15に記載の投受光ユニット。
  17.  前記第1受光素子と前記第2受光素子は、互いに異なる形状を有している請求項15に記載の投受光ユニット。
  18.  前記投光用光学系の光軸と前記受光用光学系の光軸とは平行である請求項1~17のいずれかに記載の投受光ユニット。
  19.  請求項1~18のいずれかに記載の投受光ユニットを有し、前記光源から光束を出射した時刻と、前記第1受光部及び前記第2受光部で前記反射光束を受光した時刻との差に基づいて、前記対象物までの距離を測定するレーダー。
PCT/JP2016/086979 2015-12-24 2016-12-13 投受光ユニット及びレーダー WO2017110574A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017557892A JPWO2017110574A1 (ja) 2015-12-24 2016-12-13 投受光ユニット及びレーダー
EP16878465.0A EP3396403A4 (en) 2015-12-24 2016-12-13 Light projection/reception unit, and radar
US16/065,006 US20190011539A1 (en) 2015-12-24 2016-12-13 Light Projecting/Reception Unit And Radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-251137 2015-12-24
JP2015251137 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110574A1 true WO2017110574A1 (ja) 2017-06-29

Family

ID=59090213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086979 WO2017110574A1 (ja) 2015-12-24 2016-12-13 投受光ユニット及びレーダー

Country Status (4)

Country Link
US (1) US20190011539A1 (ja)
EP (1) EP3396403A4 (ja)
JP (1) JPWO2017110574A1 (ja)
WO (1) WO2017110574A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096871A (ja) * 2016-12-14 2018-06-21 アイシン精機株式会社 測距センサ
WO2019044823A1 (ja) * 2017-08-31 2019-03-07 パイオニア株式会社 光学装置
CN110275176A (zh) * 2019-08-08 2019-09-24 厦门市和奕华光电科技有限公司 一种激光雷达
WO2024042803A1 (ja) * 2022-08-24 2024-02-29 住友電気工業株式会社 光モジュール

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021913A1 (ja) * 2017-07-26 2019-01-31 株式会社小糸製作所 光学ユニット
JP2020153715A (ja) * 2019-03-18 2020-09-24 株式会社リコー 測距装置および測距方法
WO2021010383A1 (ja) * 2019-07-16 2021-01-21 キヤノン株式会社 光学装置、それを備える車載システム及び移動装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284980A (ja) * 1987-05-15 1988-11-22 Fujitsu Ltd 固体撮像装置
US5270780A (en) * 1991-09-13 1993-12-14 Science Applications International Corporation Dual detector lidar system and method
US5874733A (en) * 1997-10-16 1999-02-23 Raytheon Company Convergent beam scanner linearizing method and apparatus
WO2012085152A1 (en) * 2010-12-23 2012-06-28 Borowski Andre 3d landscape real-time imager and corresponding imaging methods
US8836922B1 (en) * 2013-08-20 2014-09-16 Google Inc. Devices and methods for a rotating LIDAR platform with a shared transmit/receive path
JP2015154411A (ja) * 2014-02-18 2015-08-24 株式会社リコー 読取画像処理装置、画像読取装置、画像形成装置、読取画像処理プログラム及び読取画像処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284980A (ja) * 1987-05-15 1988-11-22 Fujitsu Ltd 固体撮像装置
US5270780A (en) * 1991-09-13 1993-12-14 Science Applications International Corporation Dual detector lidar system and method
US5874733A (en) * 1997-10-16 1999-02-23 Raytheon Company Convergent beam scanner linearizing method and apparatus
WO2012085152A1 (en) * 2010-12-23 2012-06-28 Borowski Andre 3d landscape real-time imager and corresponding imaging methods
US8836922B1 (en) * 2013-08-20 2014-09-16 Google Inc. Devices and methods for a rotating LIDAR platform with a shared transmit/receive path
JP2015154411A (ja) * 2014-02-18 2015-08-24 株式会社リコー 読取画像処理装置、画像読取装置、画像形成装置、読取画像処理プログラム及び読取画像処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3396403A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096871A (ja) * 2016-12-14 2018-06-21 アイシン精機株式会社 測距センサ
WO2019044823A1 (ja) * 2017-08-31 2019-03-07 パイオニア株式会社 光学装置
JPWO2019044823A1 (ja) * 2017-08-31 2020-09-17 パイオニア株式会社 光学装置
CN110275176A (zh) * 2019-08-08 2019-09-24 厦门市和奕华光电科技有限公司 一种激光雷达
WO2024042803A1 (ja) * 2022-08-24 2024-02-29 住友電気工業株式会社 光モジュール

Also Published As

Publication number Publication date
US20190011539A1 (en) 2019-01-10
EP3396403A1 (en) 2018-10-31
EP3396403A4 (en) 2018-12-26
JPWO2017110574A1 (ja) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2017110574A1 (ja) 投受光ユニット及びレーダー
US10782392B2 (en) Scanning optical system and light projecting and receiving apparatus
US9568358B2 (en) Optical measurement device and vehicle
KR102020037B1 (ko) 하이브리드 라이다 스캐너
JP6111617B2 (ja) レーザレーダ装置
CN102253392B (zh) 飞行时间摄像机单元和光学监视系统
JP6032416B2 (ja) レーザレーダ
JP6737296B2 (ja) 対象物検出装置
US10816663B2 (en) Distance measuring device and distance measuring method
WO2017183530A1 (ja) 対象物検出装置
US10649071B2 (en) Scanning optical system and radar
US9739874B2 (en) Apparatus for detecting distances in two directions
WO2017135225A1 (ja) 光走査型の対象物検出装置
US10048492B2 (en) Scanning optical system and radar
JP2023159092A (ja) 光走査装置、物体検出装置及びセンシング装置
EP3364229B1 (en) Optical-scanning-type object detection device
JP6825093B2 (ja) 動力車両のための検知装置、運転支援システム、動力車両、及び方法
US20180196128A1 (en) Monitoring Sensor and Floor-Bound Vehicle
JP6676974B2 (ja) 対象物検出装置
WO2017110573A1 (ja) 投受光ユニット及びレーダー
JP2023020552A (ja) 測量装置
US10605917B2 (en) Optical-scanning-type object detection device having a mirror surface to be inclined in a direction crossing a rotation axis
WO2017126356A1 (ja) 対象物検出装置
JP2023128023A (ja) 測距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557892

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016878465

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016878465

Country of ref document: EP

Effective date: 20180724