WO2017110573A1 - 投受光ユニット及びレーダー - Google Patents

投受光ユニット及びレーダー Download PDF

Info

Publication number
WO2017110573A1
WO2017110573A1 PCT/JP2016/086978 JP2016086978W WO2017110573A1 WO 2017110573 A1 WO2017110573 A1 WO 2017110573A1 JP 2016086978 W JP2016086978 W JP 2016086978W WO 2017110573 A1 WO2017110573 A1 WO 2017110573A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
receiving element
receiving unit
reflected
Prior art date
Application number
PCT/JP2016/086978
Other languages
English (en)
French (fr)
Inventor
一生 松井
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017110573A1 publication Critical patent/WO2017110573A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention relates to a light projecting / receiving unit and a radar suitable for use in a radar that detects an object by irradiating a light beam from a light source.
  • a laser radar using the TOF (Time of Flight) method has already been developed.
  • the distance to the object can be measured by measuring the time until the pulsed laser light hits the object and returns.
  • a laser radar that employs the TOF method generally has an amplification factor such as an APD (avalanche photodiode) in order to detect the weak reflected light that is generated when a laser beam is irradiated to a distant object.
  • APD avalanche photodiode
  • a high light receiving element is used.
  • a plurality of light receiving elements that receive reflected light are arranged to ensure high resolution.
  • Patent Document 1 discloses a light receiving surface of a light detection unit in which a laser beam is emitted from a light source, and further, the emitted laser beam is scanned along a scanning direction by a one-dimensional scanner, and four pixels are arranged in a two-dimensional matrix.
  • a radar device is disclosed in which reflected light from an object is detected for each of four pixels.
  • a single laser light irradiation from a light source irradiates one pixel with reflected light along the scanning direction, and a plurality of pixels along a direction perpendicular to the scanning direction.
  • the radar device of Patent Document 1 detects an object. It inherently has a non-detection zone that cannot be performed, and as a result, it becomes difficult to accurately detect distant objects.
  • Patent Document 2 discloses that a laser beam emitted from a light source is reflected from an object by rotating a unit in which a large number of light sources and the same number of light receiving elements are arranged two-dimensionally.
  • An optical measuring device capable of receiving light one by one with a corresponding light receiving element is disclosed. According to such a light measuring apparatus, since the reflected light of the scanned laser light is detected by the corresponding light receiving element, there is an advantage that it is difficult to receive other disturbance light.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a radar capable of suppressing detection leakage while suppressing cost and having high resolution, and a light projecting / receiving unit used therefor.
  • the light projecting / receiving unit reflecting one aspect of the present invention is: A light source; A light projecting optical system for emitting a light beam emitted from the light source toward an object; A scanning mechanism for driving the light projecting optical system and scanning a light beam emitted from the light projecting optical system; A first light receiving portion for receiving a first reflected light beam reflected by the light beam at the object; A second light receiving unit that receives the second reflected light beam reflected from the object simultaneously with the first reflected light beam, The first light receiving unit and the second light receiving unit are arranged apart from each other in a second direction corresponding to a direction in which a light beam emitted from the light projecting optical system is scanned, The first light receiving unit includes a plurality of first light receiving elements arranged at intervals along a first direction orthogonal to the second direction, The second light receiving unit has a plurality of second light receiving elements arranged at intervals along the first direction, When the first light receiving element is scanned.
  • another light projecting / receiving unit reflecting one aspect of the present invention is: A light source; A light projecting optical system for emitting a light beam emitted from the light source toward an object; A scanning mechanism for driving the light projecting optical system and scanning a light beam emitted from the light projecting optical system; A light receiving optical system that receives a reflected light beam reflected from the object; Branching means comprising a branching surface that transmits a part of the reflected light beam collected by the light receiving optical system as a first light beam and reflects the rest of the reflected light beam as a second light beam; A first light receiving portion for receiving the first light flux; A second light receiving portion for receiving the second light flux,
  • the first light receiving unit includes a plurality of first light receiving elements arranged at intervals along a first direction orthogonal to a second direction corresponding to a direction in which a light beam emitted from the light projecting optical system is scanned.
  • the second light receiving unit has a plurality of second light receiving elements arranged at intervals along the first direction, When the first light receiving element is projected onto the branch surface along the first light flux, and the second light receiving element is projected onto the branch surface along the second light flux, two adjacent first light receiving elements are projected.
  • the projected image of the element is arranged so as to be in contact with or partially overlap the projected image of the second light receiving element sandwiched between them.
  • the present invention it is possible to provide a radar that can suppress detection leakage while suppressing cost and having high resolution, and a light projecting / receiving unit used therefor.
  • (A) is a figure which shows the light receiving element of the single light-receiving part shown as a comparative example
  • (b) is a figure which shows the light receiving element of the two light-receiving parts used by this embodiment. It is a flowchart which shows the judgment process performed in the control circuit CONT. It is a figure which shows the example of a pattern of the reflected light beam which injects into the light reception area
  • FIG. 1 is a schematic view showing a state in which a laser radar equipped with a light projecting / receiving unit according to the present embodiment is installed in a vehicle.
  • the laser radar LR of the present embodiment is provided behind the front window 1a of the vehicle 1 or behind the front grille 1b.
  • FIG. 2 is a schematic configuration diagram of the laser radar LR according to the present embodiment.
  • the laser radar LR includes a motor MT attached to the vehicle body of the vehicle 1 and a casing CS attached to the tip of the rotation shaft SFT of the motor MT.
  • the casing CS is rotatable around the rotation axis RO together with the rotation axis SFT.
  • the rotation axis RO extends in the vertical direction, but actually changes according to the inclination of the vehicle body.
  • the direction of the rotation axis RO is the Z direction
  • the optical axis direction of a semiconductor laser LD described later is the X direction
  • the Z direction and the direction orthogonal to the X direction are the Y direction.
  • a semiconductor laser (light source) LD that emits a pulsed laser beam
  • a collimator lens (light projecting optical system) CL that converts divergent light from the semiconductor laser LD into a collimated beam
  • a first lens (first light receiving optical system) LS1 that condenses the reflected light beam (first reflected light beam) from the scanned and projected object OBJ, and a first light that receives the light collected by the first lens LS1.
  • 1 light-receiving part PD1 and the 2nd lens (2nd light reception light) which is arrange
  • the semiconductor laser LD, the first light receiving part PD1, and the second light receiving part PD2 are connected to the control circuit CONT through the wiring HS so as to be able to transmit signals.
  • a laser beam emitted from the semiconductor laser LD passes through an aperture stop (not shown), a beam shaper, or the like, so that at least a cross section of the collimated beam LB incident on the object OBJ (hatched in FIG. 1).
  • a dimension A in the vertical direction is longer than a dimension B in the horizontal direction (scanning direction to be described later) perpendicular to the central axis of the collimated light beam.
  • the collimated light beam LB changes its emission direction while rotating in the XY plane.
  • the direction in which the collimated light beam LB rotates is the scanning direction (second direction), and the direction orthogonal to the scanning direction (that is, the Z direction: first direction) is the scanning orthogonal direction. That is, the motor MT constitutes a scanning mechanism that rotationally drives the housing CS.
  • the scanning mechanism includes a semiconductor laser (light source) LD, a collimator lens (light projecting optical system) CL, and a first lens (first light receiving light).
  • Optical system) LS1, first light receiving unit PD1, second lens (second light receiving optical system) LS2, and second light receiving unit PD2 are integrated around an axis along the scanning direction (second direction).
  • the object OBJ is scanned by scanning the collimated light beam LB.
  • FIG. 3 is a schematic diagram showing the light receiving surfaces of the first light receiving part PD1 and the second light receiving part PD2, and the Z direction is shown as the vertical direction in the figure.
  • the first light receiving part PD1 has a plurality of first light receiving elements PX1 arranged in a line at equal intervals in the Z direction on the light receiving surface facing the first lens LS1, and the second light receiving part PD2 is also equal in the Z direction.
  • a plurality of second light receiving elements PX2 are arranged in a line at intervals.
  • the first light receiving part PD1 other than the first light receiving element PX1 is a non-detection area
  • the second light receiving part PD2 other than the second light receiving element PX2 is a non-detection area, which is a part where wiring or the like is provided.
  • the first light receiving element PX1 and the second light receiving element PX2 that receive a light beam and output a signal have the same rectangular shape (for example, a length of 0.1 mm in the Z direction) and the same interval (for example, the Z direction). Are arranged in a staggered manner as shown in FIG.
  • the position of the lower edge of the first light receiving element PX1 in the Z direction coincides with the position of the upper edge of the second light receiving element PX2 closest to the first light receiving element PX2 (meaning the upper edge in the figure, the same applies hereinafter), and Since the position of the lower edge of the second light receiving element PX2 coincides with the position of the upper edge of the first light receiving element PX1 closest to the second light receiving element PX2, the first light receiving element PX1 is moved in the Y direction (the first light receiving element PX2). When shifted in two directions, the two are in contact with each other.
  • the center line (array center) of the first light receiving element PX1 is CP1
  • the center line (array center) of the second light receiving element PX2 is CP2. It is sufficient that this relationship is satisfied by at least some of the first light receiving elements PX1 and the second light receiving elements PX2.
  • FIG. 4 is a diagram showing the arrangement of each element when the light emitting / receiving unit is viewed in the direction of the rotation axis RO.
  • the array center CP1 of the first light receiving elements PX1 is shifted to the side away from the second light receiving part PD2 along the Y direction with respect to the optical axis OA1 of the first lens LS1. More preferably, the array center CP1 is shifted to such an extent that the reflected light beam incident along the optical axis OA1 of the first lens LS1 can be detected in the vicinity of the edge on the second light receiving part PD2 side in the first light receiving element PX1.
  • the array center CP2 of the second light receiving element PX2 is shifted to the side away from the first light receiving part PD1 along the Y direction with respect to the optical axis OA2 of the second lens LS2. More preferably, the array center CP2 is shifted to such an extent that a reflected light beam incident along the optical axis OA2 of the second lens LS2 can be detected in the vicinity of the edge on the first light receiving part PD1 side in the second light receiving element PX2. Note that it is sufficient that at least one of the array centers CP1 and CP2 is shifted.
  • the area inside the Y direction from the optical axes OA1 and OA2 is not necessary for detecting reflected light from the object from a short distance to an infinite distance.
  • the center CP1 of the first light receiving element PX1 and the center CP2 of the second light receiving element PX2 are shifted outward in the Y direction with respect to the optical axis OA1 and the optical axis OA2, thereby reducing the cost of the light receiving parts PD1 and PD2. Can be used.
  • the ranging operation of the laser radar LR will be described.
  • the light emission timing of the semiconductor laser LD is known by the control circuit CONT.
  • the divergent light emitted intermittently in a pulse form from the semiconductor laser LD is converted into a collimated light beam LB by the collimator lens CL, and is irradiated toward the object.
  • the collimated light beam LB is horizontally directed to the external environment (see FIG. 5) where the object exists according to the rotation of the casing CS. Will be scanned over 360 °. Since the collimated light beam LB is vertically long in the scanning orthogonal direction (vertical direction), a vertical field of view can be secured, and many objects can be detected by one scan.
  • the object OBJ When the object OBJ is irradiated with the collimated light beam LB, diffused light is generated from the same incident point on the object OBJ. In other words, a plurality of reflected lights are generated from the incident point. Therefore, a part of the reflected light (first reflected light beam) is received by the first light receiving unit PD1, and another part of the reflected light (second reflected light beam) is received by the second light receiving unit PD2.
  • a signal generated by the light reception is transmitted from the first light receiving unit PD1 and the second light receiving unit PD2 to the control circuit CONT.
  • the control circuit CONT transmits the light emission time of the semiconductor laser LD and the first light receiving unit PD1 and the second light receiving unit PD2. The distance to the object is measured from the difference from the light reception time.
  • FIG. 6 is a diagram showing the principle of detecting the reflected light beam generated on the object irradiated with the collimated light beam, but the optical system is omitted.
  • the object OBJ is formed of a continuous first portion PT1 to fourth portion PT4. Accordingly, the reflected light beams RB1 and RB2 simultaneously generated from the first part PT1 to the fourth part PT4 that have received the collimated light beam LB are received by the first light receiving part PD1 and the second light receiving part PD2.
  • the reflected light component generated from the first part PT1 enters the non-detection region (part indicated by the dotted line) of the first light receiving unit PD1, and enters the second light receiving element PX2a of the second light receiving unit PD2. To do. Therefore, only the signal of the second light receiving element PX2a is input to the control circuit CONT.
  • the reflected light component generated from the second part PT2 enters the first light receiving element PX1a of the first light receiving part PD1, and enters the non-detection region (part indicated by a dotted line) of the second light receiving part PD2. Therefore, only the signal of the first light receiving element PX1a is input to the control circuit CONT. Further, the reflected light component generated from the third part PT3 enters the non-detection region (part indicated by a dotted line) of the first light receiving unit PD1 and enters the second light receiving element PX2b of the second light receiving unit PD2. Therefore, only the signal of the second light receiving element PX2b is input to the control circuit CONT.
  • the reflected light component generated from the fourth part PT4 is incident on the first light receiving element PX1b of the first light receiving part PD1, and is incident on the non-detection region (part indicated by a dotted line) of the second light receiving part PD2. Therefore, only the signal of the first light receiving element PX1b is input to the control circuit CONT. From the above, the control circuit CONT adds the signals of the second light receiving element PX2a, the first light receiving element PX1a, the second light receiving element PX2b, and the first light receiving element PX1b, so that the object OBJ becomes the first part PT1 to the fourth part PT4. It can be grasped that it consists of the part PT4, and its size can be obtained.
  • the first light receiving part PD1 and the second light receiving part PD2 are spaced apart in the second direction, and the first light receiving element PX1 of the first light receiving part PD1 and the second light receiving part PD2 of the second light receiving part PD2.
  • the two light receiving elements PX2 are arranged at intervals along the first direction, and at least adjacent when the first light receiving element PX1 is shifted relative to the second light receiving element PX2 in the second direction.
  • the two first light receiving elements PX1 are configured so as to be in contact with the second light receiving element PX2 sandwiched between them without any gaps, and thus have a high resolution while suppressing the incidence of disturbance light.
  • FIG. 7A is a view showing a light receiving element of a single light receiving portion shown as a comparative example
  • FIG. 7B is a view showing light receiving elements of two light receiving portions used in this embodiment.
  • the light receiving unit PD shown in FIG. 7A includes light receiving elements PXa to PXc arranged at equal intervals, like the first light receiving unit PD1 of the present embodiment.
  • the control circuit CONT can detect the object if the reflected light beam enters one of the light receiving elements PXa to PXc.
  • the control circuit CONT It cannot be detected. That is, there is a risk of detection omission.
  • the reflected light beam RB ′ is incident across the non-detection region between the light receiving elements PXb and PXc and the light receiving element PXc, a signal is output from the light receiving element PXc, but the reflected light beam is applied only to the light receiving element PXc. Therefore, the accuracy of detecting the size of the reflected light beam RB ′ (that is, the size of the object) in the control circuit CONT may be reduced.
  • the control circuit CONT adds the signals output from the light receiving element PX1c and the light receiving element PX2b, and can accurately detect the size of the reflected light beam RB ′ (that is, the size of the object).
  • FIG. 8 is a flowchart showing a determination process performed by the control circuit CONT.
  • 9 and 10 are diagrams showing pattern examples of the reflected light beam incident on the light receiving element.
  • a description will be given by taking as an example a pattern of the two reflected light beams RB1 and RB2 incident on the two light receiving elements PX1a and PX1b of the first light receiving unit and the one light receiving element PX2a of the second light receiving unit.
  • the number of light receiving elements is more than three, the following determination processes may be used in combination.
  • the reflected light beam is received over 50% (when the threshold value is 0.5) of the maximum allowable light reception value of each light receiving element, a signal is output from the light receiving element. If the light receiving element is expressed as “light receiving element on”, and the reflected light beam is received for less than 50% of the maximum allowable light receiving value of each light receiving element or no light is received, no signal is output from the light receiving element. It is expressed that “the light receiving element is turned off”.
  • the control circuit CONT that receives a signal from each light receiving element detects that the light receiving element PX1a is on (Yes in step S101 of FIG. 8), and detects that the light receiving element PX2a is on ( If it is determined in step S102 that the light receiving element PX1b is turned on (Yes in step S103), then in step S105, the light receiving elements PX1a, PX1b, and the light receiving element PX2a receive the reflected light flux. Therefore, it is determined that the reflected light flux that is continuous for three light receiving elements such as the pattern 5 shown in FIG. That is, it can be seen that the laser radar LR has detected an object corresponding to this size (hereinafter the same).
  • step S103 when it is detected in step S103 that the light receiving element PX1b is in the OFF state (determination is No), the control circuit CONT does not substantially receive the reflected light beam on the light receiving element PX2a in step S104. Assuming that the light is incident only on the elements PX1a and PX1b, it is determined that the reflected light flux that is continuous for two light receiving elements such as the pattern 1 shown in FIG. 9A is incident. Further, when it is detected in step S102 that the light receiving element PX2a is in the off state (determination is No), the control circuit CONT determines the state of the light receiving element PX1b in step S106, and the light receiving element PX1b is in the off state.
  • step S106 determines whether the light receiving element PX1b is in the ON state.
  • step S108 it is determined that a discontinuous reflected light beam such as the pattern 7 shown in FIG.
  • step S101 when the control circuit CONT detects that the light receiving element PX1a is in the OFF state (determination is No), the state of the light receiving element PX2a is further determined in step S109, and the light receiving element PX2a is turned on. If it is detected that the light receiving element PX1b is in the ON state (determination is Yes), the control circuit CONT determines that the light receiving element PX1b is in the ON state in step S110. Assuming that the reflected light beam does not substantially enter the light receiving element PX1a and is incident only on the light receiving elements PX2a and PX1b, in step S112, two light receiving elements such as the pattern 4 shown in FIG. It is determined that the reflected light beam is incident.
  • step S110 when it is detected in step S110 that the light receiving element PX1b is in the OFF state (determination is No), the control circuit CONT does not substantially reflect the reflected light beam on the light receiving elements PX1a and PX1b, and only the light receiving element PX2a.
  • step S111 it is determined that a reflected light beam like the pattern 3 shown in FIG. 9C is incident.
  • step S109 when the control circuit CONT detects that the light receiving element PX2a is in the OFF state (determination is No), the state of the light receiving element PX1b is further determined in step S113, and the light receiving element PX1b is turned on.
  • the control circuit CONT detects that it is in a state (determination is Yes)
  • the control circuit CONT assumes that the reflected light beam is not substantially incident on the light receiving elements PX1a and PX2a but is incident only on the light receiving element PX1b. It is determined that a reflected light beam like the pattern 6 shown in FIG.
  • step S113 if it is detected in step S113 that the light receiving element PX1b is in the OFF state (determination is No), the control circuit CONT substantially reflects the reflected light beam on any of the light receiving elements PX1a, PX1b, and PX2a.
  • step S115 it is determined that a negligible reflected light beam such as the pattern 8 shown in FIG. 10D is incident or that there is no reflected light beam.
  • a reflected light beam straddling between the light receiving elements can be detected by making the same determination as above.
  • FIG. 11 is a view similar to FIG. 3 showing the light receiving surfaces of the first light receiving unit and the second light receiving unit according to the modification.
  • the position of the lower edge of the first light receiving element PX1 in the Z direction is located below the upper edge of the second light receiving element PX2 ′ closest thereto, and the position of the lower edge of the second light receiving element PX2 ′ is Since the first light receiving element PX1 is positioned below the position of the upper edge of the nearest first light receiving element PX1, when the first light receiving element PX1 is shifted in the Y direction (second direction) with respect to the second light receiving element PX2 ′, they overlap each other. It has become a relationship.
  • the overlapping amount on the upper edge side of the second light receiving element PX2 ' is ⁇ 1
  • the overlapping amount on the lower edge side is ⁇ 2
  • FIG. 12 is a perspective view of a laser radar LR including a light projecting / receiving unit according to another embodiment.
  • a light projecting / receiving unit of a laser radar LR includes a semiconductor laser (light source) LD that emits a pulse laser beam, and a collimator lens (light projecting optical system) CL that converts the divergent light from the semiconductor laser LD into a collimated beam.
  • the first lens (first light receiving optical system) LS1 that collects the reflected light beam (first reflected light beam) from the scanned and projected object OBJ, and the light collected by the first lens LS1.
  • the first light receiving unit PD1 that is arranged on the opposite side of the first lens LS1 across the optical axis of the collimating lens CL, and collects another reflected light beam (second reflected light beam) from the object OBJ. It has a lens (second light receiving optical system) LS2, a second light receiving part PD2 that receives the light collected by the second lens LS2, and a rotating mirror unit MU.
  • the direction of the rotation axis RO of the mirror unit MU is taken as the Z direction
  • the optical axis direction of the semiconductor laser LD is taken as the X direction
  • the direction perpendicular to the Z direction and the X direction is taken as the Y direction.
  • the scanning direction may not match the second direction and / or the scanning orthogonal direction may not match the first direction. Even in that case, they shall be associated with each other.
  • the semiconductor laser LD and the collimating lens CL constitute a light projecting system LPS
  • the first lens LS1 and the first light receiving part PD1 constitute the first light receiving system RPS1
  • the second lens LS2 and the second light receiving part PD2 A second light receiving system RPS2 is configured.
  • the first light receiving unit PD1 and the second light receiving unit PD2 have the same configuration as that of the above-described embodiment.
  • the light beam emitted from the light projecting system LPS is longer in the sub-scanning angle direction than in the scanning angle direction in the measurement range of the object.
  • the substantially square cylindrical mirror unit MU is rotatably held around the rotation axis RO, which is an axis, and four trapezoidal first mirror surfaces M1 are arranged on the outer periphery of the lower portion, and face each other.
  • four trapezoidal second mirror surfaces M2 are arranged on the outer periphery of the upper portion.
  • the crossing angles of the first mirror surface M1 and the second mirror surface M2 that are paired vertically are different.
  • the optical axis of the light projecting system LPS is orthogonal to the rotation axis RO of the mirror unit MU, and the optical axes of the first light receiving system RPS1 and the second light receiving system RPS2 sandwich the optical axis of the light projecting system LPS. And it is provided in parallel with it.
  • the scanning mechanism including a motor (not shown) or the like scans the object by scanning the collimated light beam by integrally rotating the mirror unit MU about the axis along the second direction. It has become.
  • a single mirror may be used, when a single mirror is used, it is desirable to reciprocally swing within a certain angular range. About another structure, it is the same as that of embodiment mentioned above.
  • the divergent light emitted intermittently in a pulse form from the semiconductor laser LD is converted into a parallel light beam by the collimator lens CL, is incident on the point P1 of the first mirror surface M1 of the rotating mirror unit MU, and is reflected here.
  • the light travels along the rotation axis RO, is further reflected at a point P2 on the second mirror surface M2, and is scanned and projected toward the object OBJ.
  • FIG. 13 is a diagram showing a state in which the screen G, which is the detection range of the laser radar LR, is scanned with the collimated light beam LB (shown by hatching) emitted according to the rotation of the mirror unit MU.
  • the crossing angles are different.
  • the collimated light beam LB is sequentially reflected by the first mirror surface M1 and the second mirror surface M2 that are rotated and moved. First, the collimate reflected by the first pair of the first mirror surface M1 and the second mirror surface M2 is reflected.
  • the light beam LB scans the uppermost region Ln1 of the screen G from the left to the right in the horizontal direction according to the rotation of the mirror unit MU.
  • the collimated light beam LB reflected by the second pair of the first mirror surface M1 and the second mirror surface M2 is left horizontally in the second region Ln2 from the top of the screen G according to the rotation of the mirror unit MU.
  • the collimated light beam LB reflected by the third pair of the first mirror surface M1 and the second mirror surface M2 moves the third region Ln3 from the top of the screen G horizontally in accordance with the rotation of the mirror unit MU. To the right.
  • the collimated light beam LB reflected by the fourth pair of the first mirror surface M1 and the second mirror surface moves the lowermost region Ln4 of the screen G horizontally from left to right according to the rotation of the mirror unit MU. Is scanned. Thereby, the scanning of one screen is completed. Then, after the mirror unit MU makes one rotation, if the first pair of the first mirror surface M1 and the second mirror surface M2 return, the scanning from the top of the screen G is repeated again.
  • one of the reflected light beams (first reflected light beam) reflected by the object OBJ among the scanned light beams is reflected at a point P3A on the second mirror surface M2 of the mirror unit MU as indicated by a dotted line.
  • reflected here travels along the rotation axis RO, further reflects at the point P4A of the first mirror surface M1, is condensed by the first lens LS1, and detected by the light receiving element of the first light receiving portion PD1 Is done.
  • another reflected light beam (second reflected light beam) reflected by the object OBJ is incident on the point P3B of the second mirror surface M2 of the mirror unit MU and reflected there, as indicated by the dotted line.
  • the light travels along the rotation axis RO, is further reflected at the point P4B of the first mirror surface M1, is condensed by the second lens LS1, and is detected by the light receiving element of the second light receiving unit PD2.
  • a signal generated when each light receiving element receives light is transmitted from the first light receiving unit PD1 and the second light receiving unit PD2 to a control circuit (not shown), where the light emission time of the semiconductor laser LD, the first light receiving unit PD1,
  • the distance to the object is measured from the difference from the light reception time of the second light receiving unit PD2.
  • the object OBJ can be detected in the entire range on the screen G.
  • FIG. 14 is a view similar to FIG. 13 according to another embodiment.
  • the first light receiving portion PD1 has four first light receiving elements PX11 to PX14 at equal intervals along the Z direction
  • the second light receiving portion PD2 has four equal intervals along the Z direction.
  • the second light receiving elements PX21 to PX24 are provided, and the shapes of the first light receiving element and the second light receiving element are all equal. Further, the positions of the lower edges of the first light receiving elements PX11 to PX14 in the Z direction are respectively positioned below the upper edges of the second light receiving elements PX21 to PX24 that are closest to the first light receiving elements PX11 to PX14.
  • This position coincides with the position of the upper edge of the first light receiving elements PX11 to PX14 that is closest thereto. That is, when the first light receiving element is shifted in the Y direction (second direction) with respect to the second light receiving element, a part of the light receiving region overlaps each other. In such a case, the control unit CONT responds to both. Subsequently, signal processing is performed as described later.
  • the first light receiving element PX11 and the second light receiving element PX21 closest to the first light receiving element PX11 will be described as an example.
  • the resolution can be improved by satisfying the following expression.
  • L / H ⁇ 0.5 (1)
  • L Amount of overlap between the first light receiving element PX11 and the second light receiving element PX21 in the Z direction
  • H Length of the first light receiving element PX11 or the second light receiving element PX21 in the Z direction
  • the non-polymerized area of the first light receiving element PX11 is defined as PX11a
  • the superposed area of the first light receiving element PX11 is defined as PX11b
  • the non-polymerized area of the light receiving area of the second light receiving element PX21 is defined as PX21a
  • the second light receiving element PX21 is defined.
  • the overlapping region is PX21b, as shown in the figure, the first reflected light RB1 from the object is incident only on the overlapping region of the light receiving region in the first light receiving element PX11 to PX11b. It is assumed that the two reflected light RB2 is incident on the non-polymerized region PX21a and the superimposed region PX21b of the light receiving region in the second light receiving element PX21.
  • the control device CONT compares the signal output from the first light receiving element PX11 with a threshold value, and determines that it is reflected light of the object if it exceeds the threshold value. On the other hand, the control device CONT compares the difference signal excluding the signal emitted from the overlapping region PX21b among the signals output from the second light receiving element PX21 with a threshold value, and if it exceeds the threshold value, Judged as reflected light of an object.
  • the resolution is improved by comparing the difference signal obtained by removing the signal emitted from the overlapping region PX21b from the signal output from the second light receiving element PX21 with a threshold value.
  • the difference signal can be obtained by multiplying the signal output from the second light receiving element PX21 by (HL) / H, for example.
  • the threshold value used here can be the same as the threshold value applied to the signal from the light receiving element of the above-described embodiment in which the light receiving regions do not overlap.
  • the relationship between the first light receiving element PX11 and the second light receiving element PX21 described above may be reversed.
  • FIG. 15 is a perspective view of a laser radar LR provided with a light projecting / receiving unit according to still another embodiment.
  • a light projecting / receiving unit of a laser radar LR includes a semiconductor laser (light source) LD that emits a pulsed laser beam, and a collimator lens (light projecting optical system) CL that converts the divergent light from the semiconductor laser LD into a collimated beam.
  • a semiconductor laser light source
  • CL light projecting optical system
  • a lens (light receiving optical system) LS that collects the reflected light beam from the scanned object OBJ, and a prism having a branched surface PR1 as a half mirror that is incident on the reflected light beam that has passed through the lens LS ( (Branching means) PR, a first light receiving portion PD1 that receives a reflected light beam (first light beam) transmitted through the branch surface PR1, and a second light receiving portion PD2 that receives a reflected light beam (second light beam) reflected by the branch surface PR1.
  • a mirror unit MU has the same configuration as that of the embodiment shown in FIG.
  • the direction of the rotation axis RO is the Z direction
  • the optical axis direction of the semiconductor laser LD is the X direction
  • the direction perpendicular to the Z direction and the X direction is the Y direction.
  • the light projecting system LPS is configured by the semiconductor laser LD and the collimating lens CL
  • the light receiving system RPS is configured by the lens LS, the prism PR, the first light receiving unit PD1, and the second light receiving unit PD2.
  • the light beam emitted from the light projecting system LPS is longer in the sub-scanning angle direction than in the scanning angle direction in the measurement range of the object.
  • the first light receiving part PD1 and the second light receiving part PD2 have the same configuration as that of the embodiment shown in FIGS. Further, at least when the light receiving element of the first light receiving unit PD1 is projected onto the branch surface PR1 along the first light flux, and the light receiving element of the second light receiving unit PD2 is projected onto the branch surface PR1 along the second light flux.
  • the projection images of the light receiving elements of the two adjacent first light receiving portions PD1 are arranged so as to be in contact with the projection images of the light receiving elements of the second light receiving portion PD2 sandwiched between them without a gap, or a part of the light receiving region overlaps. (See FIGS. 3 and 11).
  • the divergent light emitted intermittently in a pulse form from the semiconductor laser LD is converted into a parallel light beam by the collimator lens CL, is incident on the point P1 of the first mirror surface M1 of the rotating mirror unit MU, and is reflected here.
  • the light travels along the rotation axis RO, is further reflected at a point P2 on the second mirror surface M2, and is scanned and projected toward the object OBJ.
  • the reflected light beam reflected by the object OBJ out of the scanned light beam is incident on the point P3 of the second mirror surface M2 of the mirror unit MU as shown by the dotted line, reflected here, and along the rotation axis RO.
  • the reflected light beam reflected by the point P4 on the first mirror surface M1, condensed by the lens LS, and further transmitted through the branch surface PR1 is received by the first light receiving portion PD1 and reflected by the branch surface PR1.
  • the reflected light beam is received by the second light receiving part PD2.
  • a signal generated when each light receiving element receives light is transmitted from the first light receiving unit PD1 and the second light receiving unit PD2 to a control circuit (not shown), where the light emission time of the semiconductor laser LD, the first light receiving unit PD1, The distance to the object is measured from the difference from the light reception time of the second light receiving unit PD2. Similar to the embodiment shown in FIG. 12, the object OBJ can be detected in the entire range on the screen G by rotating the mirror unit MU.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

コストを抑制しつつ、高分解能を有しながらも検出洩れを抑制できるレーダー及びそれに用いる投受光ユニットを提供する。第1受光部PD1と第2受光部PD2とは第2方向に離間して配置され、第1受光部PD1の第1受光素子PX1と、第2受光部PD2の第2受光素子PX2は、それぞれ第1方向に沿って間隔をあけて並べられており、第1受光素子PX1を第2受光素子PX2に対して第2方向に相対的にシフトしたときに、少なくとも隣接する2つの第1受光素子PX1が、それらに挟まれる第2受光素子PX2と隙間なく接するように構成されているので、シンプルな構成でありながら高分解能を有し、外乱光の入射を抑制しつつ、対象物からの微弱な反射光束をもれなく検出することができる。

Description

投受光ユニット及びレーダー
 本発明は、光源から光束を照射して対象物を検出するレーダーに用いると好適な投受光ユニット及びレーダーに関する。
 近年、例えば自動車や警備ロボットなどの分野において、移動体における衝突防止の目的で移動体が進む範囲にある障害物を精度よく検知したいという要望がますます強くなっている。このような障害物の検知方法として、電波を発信して反射波を検出する電波式レーダーが提案されているが、解像度の観点から遠方の物体の位置を精度良く把握するのは難しいという課題がある。
 これに対し、TOF(Time of Flight)方式を採用したレーザーレーダーも既に開発されている。TOF方式とは、パルス発光させたレーザー光が、物体に当たって戻ってくるまでの時間を測ることにより、当該物体までの距離を測定することができるものである。しかるに、TOF方式を採用したレーザーレーダーは、遠方の物体にレーザー光を照射した際に発生する微弱な反射光を検知するために、一般的にはAPD(アバランシェ・フォトダイオード)等の増幅率の高い受光素子を使用している。また、検知すべき対象物の解像度を上げるため、反射光を受光する複数の受光素子を配列して高分解能を確保することも行われている。
 特許文献1には、光源からレーザー光を照射し、更に照射されたレーザー光を一次元スキャナーが走査方向に沿って走査し、4つの画素を二次元行列状に配列した光検出部の受光面が、4つの画素のそれぞれについて対象物からの反射光を検出するようになっているレーダー装置が開示されている。
 特許文献1のレーダー装置では、光源による1回のレーザー光照射で、走査方向に沿って1個の画素に反射光を照射させるとともに、走査方向に対して垂直な方向に沿った複数の画素に向けて同時に反射光を入射させることが可能となり、これにより1個の画素のみに反射光を入射させる場合に比して、増量した電気信号を得ることができるので、微弱な反射光であっても検出することができる。
特開2015-78953号公報 米国特許第7969558号明細書
 しかしながら、特許文献1のレーダー装置では、光源から出射されたレーザー光は一次元スキャナーにより走査されるのに対し、4つの画素は固定されているため、走査されたレーザー光の反射光とは光軸が異なることから、それ以外の外乱光を受光しやすくなり、よって誤検出を招く恐れがあるといえる。また物体の位置を精度良く検出するために、4つの画素それぞれが4つの受光素子を独立して設けているが、配線等を設けるためには受光素子間にある程度のスペースを確保する必要がある。ところが、このスペースに反射光が入射した場合には電気信号を発生することができず、しかもこのスペースは4つの画素において対応した同じ座標位置にあるから、特許文献1のレーダー装置は物体を検出できない非検出ゾーンを本来的に持つこととなり、結果として遠方の物体を精度良く検知することが困難となる。
 これに対し、特許文献2には、多数の光源と,これと同数の受光素子とを2次元的に配列させたユニットを回転させることで、光源から出射されたレーザー光の対象物からの反射光を、対応する受光素子で逐一受光可能な光測定装置が開示されている。かかる光測定装置によれば、走査されたレーザー光の反射光は、対応する受光素子で検出されるため、それ以外の外乱光を受光しにくいというメリットがある。
 しかしながら、特許文献2の光測定装置においては、多数の光源と受光素子とを設けることでコストが膨大となるほか、複数の光源間のスペースを完全に詰めることは物理的に困難であるから、対象物に照射されるレーザー光において局所的に抜けが生じる恐れが高く、これにより検出洩れが生じるという問題がある。
 本発明は、かかる問題に鑑みなされたものであり、コストを抑制しつつ、高分解能を有しながらも検出洩れを抑制できるレーダー及びそれに用いる投受光ユニットを提供することを目的とする。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した投受光ユニットは、
 光源と、
 前記光源から出射された光束を対象物に向けて出射する投光用光学系と、
 前記投光用光学系を駆動し、前記投光用光学系から出射される光束を走査させる走査機構と、
 前記対象物において前記光束が反射した第1反射光束を受光する第1受光部と、
 前記第1反射光束と同時に前記対象物から反射した第2反射光束を受光する第2受光部と、を有し、
 前記第1受光部と前記第2受光部とは前記投光用光学系から出射される光束が走査される方向に対応する第2方向に離間して配置され、
 前記第1受光部は、前記第2方向に直交する第1方向に沿って間隔をあけて並べられた複数の第1受光素子を有し、
 前記第2受光部は前記第1方向に沿って間隔をあけて並べられた複数の第2受光素子を有し、
 前記第1受光素子を前記第2受光素子に対して前記第2方向に相対的にシフトしたときに、隣接する2つの前記第1受光素子が、それらに挟まれる前記第2受光素子と隙間なく接するか、もしくは一部が重なるように配置されているものである。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した別の投受光ユニットは、
 光源と、
 前記光源から出射された光束を対象物に向けて出射する投光用光学系と、
 前記投光用光学系を駆動し、前記投光用光学系から出射される光束を走査させる走査機構と、
 前記光束が前記対象物から反射した反射光束を入射する受光用光学系と、
 前記受光用光学系によって集光された前記反射光束の一部を透過して第1光束とし、前記反射光束の残りを反射して第2光束とする分岐面を備えた分岐手段を有し、
 前記第1光束を受光する第1受光部と、
 前記第2光束を受光する第2受光部と、を有し、
 前記第1受光部は、前記投光用光学系から出射される光束が走査される方向に対応する第2方向に直交する第1方向に沿って間隔をあけて並べられた複数の第1受光素子を有し、
 前記第2受光部は前記第1方向に沿って間隔をあけて並べられた複数の第2受光素子を有し、
 前記第1受光素子を前記第1光束に沿って前記分岐面に投影し、前記第2受光素子を前記第2光束に沿って前記分岐面に投影したときに、隣接する2つの前記第1受光素子の投影像が、それらに挟まれる前記第2受光素子の投影像と隙間なく接するか、もしくは一部重なるように配置されているものである。
 本発明によれば、コストを抑制しつつ、高分解能を有しながらも検出洩れを抑制できるレーダー及びそれに用いる投受光ユニットを提供することができる。
本実施形態にかかる投受光ユニットを搭載したレーザーレーダーを車両に搭載した状態を示す概略図である。 本実施形態にかかるレーザーレーダーLRの概略構成図である。 第1受光部PD1と第2受光部PD2の受光面を示す概略図である。 投受光ユニットを回転軸線RO方向に見て、各要素の配置を示す図である。 レーザーレーダーLRで走査する対象領域を示す図である。 コリメート光束が照射された対象物に生じた反射光束を検出する原理を示す図である。 (a)は比較例として示す単独の受光部の受光素子を示す図であり、(b)は本実施形態で用いる2つの受光部の受光素子を示す図である。 制御回路CONTで行う判断処理を示すフローチャートである。 矩形枠で模式的に示す受光素子の受光領域に入射する反射光束のパターン例を示す図である。 矩形枠で模式的に示す受光素子の受光領域に入射する反射光束のパターン例を示す図である。 変形例にかかる第1受光部と第2受光部の受光面を示す図3と同様な図である。 別な実施形態にかかる投受光ユニットを備えたレーザーレーダーLRの斜視図である。 ミラーユニットMUの回転に応じて、出射するコリメート光束LB(ハッチングで示す)で、レーザーレーダーLRの検出範囲である画面G上を走査する状態を示す図である。 別な実施形態にかかる図13と同様な図である。 更に別な実施形態にかかる投受光ユニットを備えたレーザーレーダーLRの斜視図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。図1は、本実施形態にかかる投受光ユニットを搭載したレーザーレーダーを車両に搭載した状態を示す概略図である。本実施形態のレーザーレーダーLRは、車両1のフロントウィンドウ1aの背後、もしくはフロントグリル1bの背後に設けられている。
 図2は、本実施形態にかかるレーザーレーダーLRの概略構成図である。レーザーレーダーLRは、車両1の車体に取り付けられたモータMTと、モータMTの回転軸SFTの先端に取り付けられた筐体CSとを有する。筐体CSは、回転軸SFTと共に回転軸線RO回りに回転可能となっている。回転軸線ROは、垂直方向に延在しているが、実際は車体の傾きに応じて変化する。ここで、回転軸線ROの方向をZ方向とし、後述する半導体レーザーLDの光軸方向をX方向とし、Z方向及びX方向に直交する方向をY方向とする。
 筐体CSには、投受光ユニットとして、パルスレーザー光束を出射する半導体レーザー(光源)LDと、半導体レーザーLDからの発散光をコリメート光束に変換するコリメートレンズ(投光用光学系)CLと、走査投光された対象物OBJからの反射光束(第1反射光束)を集光する第1レンズ(第1受光用光学系)LS1と、第1レンズLS1により集光された光を受光する第1受光部PD1と、コリメートレンズCLを挟んで第1レンズLS1とは反対側に配置され、対象物OBJからの別な反射光束(第2反射光束)を集光する第2レンズ(第2受光用光学系)LS2と、第2レンズLS2により集光された光を受光する第2受光部PD2と、処理装置としての制御回路CONTを配置しており、これらは筐体CSと共に回転軸線RO回りに回転するようになっている。半導体レーザーLD,第1受光部PD1、第2受光部PD2は、配線HSにより信号を送信可能に制御回路CONTに接続されている。
 本実施形態においては、半導体レーザーLDから出射されたレーザー光束は、不図示の開口絞りやビームシェイパーなどを通過することにより、少なくとも対象物OBJに入射するコリメート光束LBの断面(図1にハッチングで示す)において、コリメート光束の中心軸に対して垂直方向(後述する走査直交方向)の寸法Aが、それに直交する水平方向(後述する走査方向)の寸法Bより長くなっている。筐体CSが回転することで、コリメート光束LBはXY平面内で回転しながら出射方向を変えることとなる。コリメート光束LBが回転移動する方向を走査方向(第2方向)とし、走査方向に直交する方向(すなわちZ方向:第1方向)を走査直交方向とする。すなわち、モータMTは筐体CSを回転駆動する走査機構を構成し、走査機構は、半導体レーザー(光源)LDと、コリメートレンズ(投光用光学系)CLと、第1レンズ(第1受光用光学系)LS1と、第1受光部PD1と、第2レンズ(第2受光用光学系)LS2と、第2受光部PD2とを、走査方向(第2方向)に沿った軸回りに一体的に回転させることで、コリメート光束LBを走査させて対象物OBJを走査するようになっている。
 図3は、第1受光部PD1と第2受光部PD2の受光面を示す概略図であり、Z方向を図の上下方向として示す。第1受光部PD1は、第1レンズLS1に向いた受光面に、Z方向に等間隔で一列に配置した複数の第1受光素子PX1を有し、第2受光部PD2も、Z方向に等間隔で一列に配置した複数の第2受光素子PX2を有する。第1受光素子PX1以外の第1受光部PD1は非検出領域であり、第2受光素子PX2以外の第2受光部PD2は非検出領域であり、ここは配線などを設ける部位となっている。
 光束を受光して信号を出力する第1受光素子PX1と第2受光素子PX2は、ここでは同一矩形形状(たとえばZ方向の長さ0.1mm)を有し、また同一の間隔(たとえばZ方向の間隔0.1mm)で配置されているが、図3に示すように千鳥状に配置されている。これを言い換えると、Z方向における第1受光素子PX1の下縁の位置は、それに最も近い第2受光素子PX2の上縁(図における上方の縁の意味、以下同様)の位置に一致し、且つ第2受光素子PX2の下縁の位置は、それに最も近い第1受光素子PX1の上縁の位置に一致しているから、第1受光素子PX1を第2受光素子PX2に対してY方向(第2方向)にシフトすると、お互いが接する関係となっている。第1受光素子PX1の中心線(配列中心)をCP1とし、第2受光素子PX2の中心線(配列中心)をCP2とする。尚、かかる関係は、少なくとも一部の第1受光素子PX1及び第2受光素子PX2が満たせば足りる。
 図4は、投受光ユニットを回転軸線RO方向に見て、各要素の配置を示す図である。図4に示すように、第1受光素子PX1の配列中心CP1は、第1レンズLS1の光軸OA1に対してY方向に沿って第2受光部PD2から離間する側にシフトしている。より好ましくは、第1レンズLS1の光軸OA1に沿って入射する反射光束を、第1受光素子PX1における第2受光部PD2側の縁近傍で検出できる程度に配列中心CP1がシフトしている。
 又、第2受光素子PX2の配列中心CP2は、第2レンズLS2の光軸OA2に対してY方向に沿って第1受光部PD1から離間する側にシフトしている。より好ましくは、第2レンズLS2の光軸OA2に沿って入射する反射光束を、第2受光素子PX2における第1受光部PD1側の縁近傍で検出できる程度に配列中心CP2がシフトしている。尚、配列中心CP1,CP2の少なくとも一方がシフトしていれば足りる。
 このように第1受光素子PX1の中心CP1と第2受光素子PX2の中心CP2をシフトさせる理由について説明する。図4において、遠方の対象物から反射した反射光は、実線で示すように第1レンズLS1及び第2レンズLS2に入射するので、それぞれ集光位置は光軸OA1、OA2上となる。一方、近距離の対象物から反射した反射光は、視差があることから一点鎖線で示すように第1レンズLS1及び第2レンズLS2に斜めに入射するので、それぞれ集光位置は光軸OA1、OA2よりもY方向外側となる。つまり、第1受光素子PX1と第2受光素子PX2とにおいて、光軸OA1、OA2よりY方向内側の領域は、近距離から無限遠方までの対象物からの反射光の検出に不要ということとなる。従って、第1受光素子PX1の中心CP1と第2受光素子PX2の中心CP2を、光軸OA1と光軸OA2に対してY方向外側にシフトさせることで、受光部PD1,PD2のコスト低減と有効活用を図ることができる。
 次に、レーザーレーダーLRの測距動作について説明する。図1において、半導体レーザーLDの発光タイミングは、制御回路CONTが把握しているものとする。半導体レーザーLDからパルス状に間欠的に出射された発散光は、コリメートレンズCLでコリメート光束LBに変換され、対象物に向かって照射される。ここで、筐体CSがモータMTにより回転軸線RO回りに回転させられているので、コリメート光束LBは、筐体CSの回転に応じて対象物が存在する外界(図5参照)に,水平方向に360°にわたって走査されることとなる。コリメート光束LBが走査直交方向(垂直方向)に縦長なので、垂直方向の視野を確保することができ、1度の走査で多くの対象物を検出できる。
 コリメート光束LBが対象物OBJに照射されたとき、対象物OBJにおける同じ入射点から拡散光が発生する。これを言い換えると、入射点から複数の反射光が生じることとなる。よって反射光の一部(第1反射光束)を第1受光部PD1で受光し、反射光の別の一部(第2反射光束)を第2受光部PD2で受光することとなる。受光によって発生した信号は、第1受光部PD1及び第2受光部PD2から制御回路CONTに送信され、制御回路CONTは半導体レーザーLDの発光時刻と、第1受光部PD1及び第2受光部PD2の受光時刻との差から、対象物までの距離を測定するようになっている。
 図6は、コリメート光束が照射された対象物に生じた反射光束を検出する原理を示す図であるが、光学系は省略している。図6において、対象物OBJは、連続する第1部分PT1~第4部分PT4から形成されているものとする。従って、コリメート光束LBを受けた第1部分PT1~第4部分PT4から同時に発生した反射光束RB1,RB2が、第1受光部PD1及び第2受光部PD2で受光されることとなる。具体的には、第1部分PT1から発生した反射光成分は、第1受光部PD1の非検出領域(点線で示す部位)に入射し、且つ第2受光部PD2の第2受光素子PX2aに入射する。よって、制御回路CONTには、第2受光素子PX2aの信号のみが入力されることとなる。
 また、第2部分PT2から発生した反射光成分は、第1受光部PD1の第1受光素子PX1aに入射し、且つ第2受光部PD2の非検出領域(点線で示す部位)に入射する。よって、制御回路CONTには、第1受光素子PX1aの信号のみが入力されることとなる。更に、第3部分PT3から発生した反射光成分は、第1受光部PD1の非検出領域(点線で示す部位)に入射し、且つ第2受光部PD2の第2受光素子PX2bに入射する。よって、制御回路CONTには、第2受光素子PX2bの信号のみが入力されることとなる。また、第4部分PT4から発生した反射光成分は、第1受光部PD1の第1受光素子PX1bに入射し、且つ第2受光部PD2の非検出領域(点線で示す部位)に入射する。よって、制御回路CONTには、第1受光素子PX1bの信号のみが入力されることとなる。以上より、制御回路CONTは、第2受光素子PX2a、第1受光素子PX1a、第2受光素子PX2b、第1受光素子PX1bの信号を足し合わせることで、対象物OBJが第1部分PT1~第4部分PT4からなることを把握でき、その大きさを求めることができる。
 本実施形態によれば、第1受光部PD1と第2受光部PD2とは第2方向に離間して配置され、第1受光部PD1の第1受光素子PX1と、第2受光部PD2の第2受光素子PX2は、それぞれ第1方向に沿って間隔をあけて並べられており、第1受光素子PX1を第2受光素子PX2に対して第2方向に相対的にシフトしたときに、少なくとも隣接する2つの第1受光素子PX1が、それらに挟まれる第2受光素子PX2と隙間なく接するように構成されているので、シンプルな構成でありながら高分解能を有し、外乱光の入射を抑制しつつ、対象物からの微弱な反射光束をもれなく検出することができる。
 次に、比較例を参照して、本実施形態の効果について説明する。図7(a)は比較例として示す単独の受光部の受光素子を示す図であり、図7(b)は本実施形態で用いる2つの受光部の受光素子を示す図である。図7(a)に示す受光部PDにおいては、本実施形態の第1受光部PD1と同様に、等間隔で配置された受光素子PXa~PXcを有している。ここで、受光部PDを単独で用いた場合でも、受光素子PXa~PXcのいずれかに反射光束が入射すれば、制御回路CONTが対象物を検出できるのである。しかしながら、図7(a)に示すように受光素子PXa、PXbの間の非検出領域に反射光束RBが入射した場合、いずれの受光素子からも信号が出力されず、制御回路CONTは対象物を検出できないこととなる。つまり、検出洩れが生じる恐れがある。又、受光素子PXb、PXcの間の非検出領域と、受光素子PXcに跨がって反射光束RB’が入射した場合、受光素子PXcから信号が出力されるが、受光素子PXcのみに反射光束が受光した信号と区別できないから、制御回路CONTにおける、反射光束RB’の大きさ(すなわち対象物の大きさ)を検出する精度が低下する恐れがある。
 これに対し、図7(b)に示す本実施形態の場合、第1受光部PD1の受光素子PX1a、PX1bの間の非検出領域に反射光束RB1が入射した場合には、第2受光部PD2の受光素子PX2aに同じ形状の反射光束RB2が入射するので、受光素子PX2aから信号が出力され、制御回路CONTは対象物を検出できる。又、反射光束RB1’が、第1受光部PD1の受光素子PX1b、PX1cの間の非検出領域と、受光素子PX1cに跨がって入射した場合、受光素子PX1cから信号が出力され、且つ同じ形状の反射光束RB2’が、第2受光部PD2の受光素子PX2b、PX2cの間の非検出領域と、受光素子PX2bに跨がって入射した場合、受光素子PX2bから信号が出力されるので、制御回路CONTは、受光素子PX1cと受光素子PX2bから出力された信号を足し合わせて、反射光束RB’の大きさ(すなわち対象物の大きさ)を精度良く検出できる。
 図8は、制御回路CONTで行う判断処理を示すフローチャートである。図9,10は、受光素子に入射する反射光束のパターン例を示す図である。ここでは、第1受光部の2つの受光素子PX1a、PX1bと、第2受光部の1つの受光素子PX2aに入射する第1反射光束RB1、第2反射光束RB2のパターンを例にとって説明する。受光素子数が3つより多い場合、以下の判断処理を組み合わせて用いれば良い。尚、判断基準として、例えば各受光素子の受光許容最大値の5割(閾値を0.5とした場合)以上にわたって反射光束を受光した場合、受光素子から信号が出力されるものとし、その場合「受光素子がオン」状態になると表現し、一方、各受光素子の受光許容最大値の5割未満にわたって反射光束を受光するか全く受光しない場合、受光素子から信号が出力されないものとし、その場合「受光素子がオフ」状態になると表現する。
 図8~10を参照して、制御回路CONTで行う判断処理について説明する。各受光素子からの信号を受ける制御回路CONTは、受光素子PX1aがオン状態であることを検出し(図8のステップS101で判断がYes)、受光素子PX2aがオン状態であることを検出し(ステップS102で判断がYes)、受光素子PX1bがオン状態であることを検出した場合(ステップS103で判断がYes)、更にステップS105で、受光素子PX1a、PX1b、受光素子PX2a全てで反射光束を受光したから、図10(a)に示すパターン5のような3受光素子分連続した反射光束を入射していると決定する。すなわちレーザーレーダーLRは、この大きさに対応する対象物を検知したことが分かる(以下、同様)。
 これに対しステップS103で、受光素子PX1bがオフ状態であることを検出した場合(判断がNo)、制御回路CONTは、ステップS104で、反射光束が受光素子PX2aに実質的に入射せず、受光素子PX1a、PX1bのみに入射しているとして、図9(a)に示すパターン1のような2受光素子分連続した反射光束を入射していると決定する。又、ステップS102で、受光素子PX2aがオフ状態であることを検出した場合(判断がNo)、制御回路CONTは、ステップS106で受光素子PX1bの状態を判断し、受光素子PX1bがオフ状態であることを検出した場合(判断がNo)、反射光束が受光素子PX2a,受光素子PX1bに実質的に入射せず、受光素子PX1aのみに入射しているとして、ステップS107で、図9(b)に示すパターン2のような反射光束を入射していると決定する。一方、ステップS106で、受光素子PX1bがオン状態であることを検出した場合(判断がYes)、制御回路CONTは、反射光束が受光素子PX2aに実質的に入射せず、受光素子PX1a、PX1bのみに入射しているとして、ステップS108で、図10(c)に示すパターン7のような不連続な反射光束を入射していると決定する。
 再びステップS101に説明を戻し、制御回路CONTが、受光素子PX1aがオフ状態であることを検出した場合(判断がNo)、更にステップS109で受光素子PX2aの状態を判断し、受光素子PX2aがオン状態であることを検出した場合(判断がYes)、続くステップS110で受光素子PX1bの状態を判断し、受光素子PX1bがオン状態であることを検出した場合(判断がYes)、制御回路CONTは、反射光束が受光素子PX1aに実質的に入射せず、受光素子PX2a、PX1bのみに入射しているとして、ステップS112で、図9(d)に示すパターン4のような2受光素子分連続した反射光束を入射していると決定する。一方、ステップS110で、受光素子PX1bがオフ状態であることを検出した場合(判断がNo)、制御回路CONTは、反射光束が受光素子PX1a、PX1bに実質的に入射せず、受光素子PX2aのみに入射しているとして、ステップS111で、図9(c)に示すパターン3のような反射光束を入射していると決定する。
 再びステップS109に説明を戻し、制御回路CONTが、受光素子PX2aがオフ状態であることを検出した場合(判断がNo)、更にステップS113で受光素子PX1bの状態を判断し、受光素子PX1bがオン状態であることを検出した場合(判断がYes)、制御回路CONTは、反射光束が受光素子PX1a、PX2aに実質的に入射せず、受光素子PX1bのみに入射しているとして、ステップS114で、図10(b)に示すパターン6のような反射光束を入射していると決定する。一方、ステップS113で、受光素子PX1bがオフ状態であることを検出した場合(判断がNo)、制御回路CONTは、反射光束が受光素子PX1a、PX1b、受光素子PX2aのいずれにも実質的に入射していないとして、ステップS115で、図10(d)に示すパターン8のような無視できる反射光束を入射しているか、或いは反射光束がないと決定する。受光素子の数が4つ以上の場合、以上と同様の判断を行って受光素子間に跨がる反射光束を検出できる。
 図11は、変形例にかかる第1受光部と第2受光部の受光面を示す図3と同様な図である。本変形例においては、第1受光素子PX1と第2受光素子PX2’のY方向の幅は同一であるが、Z方向の長さが互いに異なっている。より具体的には、第1受光素子PX1のZ方向の長さがL1であるのに対し、第2受光素子PX2’のZ方向の長さはL2(>L1)である。又、隣接する第1受光素子PX1同士の間隔はC1であり、隣接する第2受光素子PX2’同士の間隔はC2であり、(L1+C1)=(L2+C2)の関係が成立する。
 従って、Z方向における第1受光素子PX1の下縁の位置は、それに最も近い第2受光素子PX2’の上縁より下方に位置し、且つ第2受光素子PX2’の下縁の位置は、それに最も近い第1受光素子PX1の上縁の位置より下方に位置しているから、第1受光素子PX1を第2受光素子PX2’に対してY方向(第2方向)にシフトすると、お互いに重なり合う関係となっている。第2受光素子PX2’の上縁側の重なり量をΔ1とし、下縁側の重なり量をΔ2としたときに、Δ1=Δ2であると好ましい。
 このように第2受光素子PX2’のZ方向の寸法を、第1受光素子PX1のZ方向の寸法より大きくすることで、上述した実施形態のように第2受光素子PX2’の上下縁と第1受光素子PX1の上下縁を精度良く一致させる必要がなくなり、製造難易度を低下させコスト低減に貢献する。又、第2受光素子PX2’の面積が拡大するので受光量が増大することとなり、微弱な反射光束でも受光しやすくなる。尚、上述した実施形態では、図8に示す判断処理において、第1受光素子PX1と第2受光素子PX2のオン・オフ判断基準となる閾値を等しくしていたが、本変形例の場合、受光面積が比較的小さい第1受光素子PX1の(第2の)閾値に対して、それより受光面積が大きな第2受光素子PX2の(第1の)閾値を大きくすると好ましい。それ以外の構成については、上述した実施形態と同様である。
 図12は、別な実施形態にかかる投受光ユニットを備えたレーザーレーダーLRの斜視図である。ここでは制御回路等は省略している。図12において、レーザーレーダーLRの投受光ユニットは、パルスレーザー光束を出射する半導体レーザー(光源)LDと、半導体レーザーLDからの発散光をコリメート光束に変換するコリメートレンズ(投光用光学系)CLと、走査投光された対象物OBJからの反射光束(第1反射光束)を集光する第1レンズ(第1受光用光学系)LS1と、第1レンズLS1により集光された光を受光する第1受光部PD1と、コリメートレンズCLの光軸を挟んで第1レンズLS1とは反対側に配置され、対象物OBJからの別な反射光束(第2反射光束)を集光する第2レンズ(第2受光用光学系)LS2と、第2レンズLS2により集光された光を受光する第2受光部PD2と、回転するミラーユニットMUとを有している。ここで、ミラーユニットMUの回転軸線ROの方向をZ方向とし、半導体レーザーLDの光軸方向をX方向とし、Z方向及びX方向に直交する方向をY方向とする。尚、反射光束がミラーで反射されて第1受光部と第2受光部に入射する場合、走査方向は第2方向と一致せず、及び/又は走査直交方向は第1方向と一致しないこともあるが、その場合でもそれぞれ対応づけるものとする。
 半導体レーザーLDとコリメートレンズCLとで投光系LPSを構成し、第1レンズLS1と第1受光部PD1とで第1受光系RPS1を構成し、第2レンズLS2と第2受光部PD2とで第2受光系RPS2を構成する。第1受光部PD1と第2受光部PD2は、上述した実施形態と同様な構成を持つ。投光系LPSから出射された光束は、対象物の測定範囲で走査角方向よりも副走査角方向に長くなっている
 略四角筒状のミラーユニットMUは、軸線である回転軸線RO回りに回転可能に保持されており、下部外周に、4枚の台形状の第1ミラー面M1を配置しており、それに対向して、上部外周に、4枚の台形状の第2ミラー面M2を配置している。それぞれ上下に対になった第1ミラー面M1と第2ミラー面M2との交差角は,異なっている。投光系LPSの光軸は、ミラーユニットMUの回転軸線ROに対して直交しており、第1受光系RPS1と第2受光系RPS2の光軸は、投光系LPSの光軸を挟んで且つそれに平行に設けられている。すなわち、モータ(図示省略)等により構成される走査機構は、ミラーユニットMUを第2方向に沿った軸回りに一体的に回転させることで、コリメート光束を走査させて対象物を走査するようになっている。尚、ミラーは単一でも良いが、単一のミラーを用いる場合は、一定の角度範囲で往復揺動させることが望ましい。それ以外の構成については、上述した実施形態と同様である。
 次に、本実施形態のレーザーレーダーLRの測距動作について説明する。半導体レーザーLDからパルス状に間欠的に出射された発散光は、コリメートレンズCLで平行光束に変換され、回転するミラーユニットMUの第1ミラー面M1の点P1に入射し、ここで反射され、回転軸線ROに沿って進行し、更に第2ミラー面M2の点P2で反射して対象物OBJ側に走査投光される。
 図13は、ミラーユニットMUの回転に応じて、出射するコリメート光束LB(ハッチングで示す)で、レーザーレーダーLRの検出範囲である画面G上を走査する状態を示す図である。ミラーユニットMUの第1ミラー面M1と第2ミラー面M2の組み合わせにおいて、それぞれ交差角が異なっている。コリメート光束LBは、回転移動する第1ミラー面M1と第2ミラー面M2にて、順次反射してゆくが、まず1番対の第1ミラー面M1と第2ミラー面M2にて反射したコリメート光束LBは、ミラーユニットMUの回転に応じて、画面Gの一番上の領域Ln1を水平方向に左から右へと走査される。次に、2番対の第1ミラー面M1と第2ミラー面M2で反射したコリメート光束LBは、ミラーユニットMUの回転に応じて、画面Gの上から二番目の領域Ln2を水平方向に左から右へと走査される。次に、3番対の第1ミラー面M1と第2ミラー面M2で反射したコリメート光束LBは、ミラーユニットMUの回転に応じて、画面Gの上から三番目の領域Ln3を水平方向に左から右へと走査される。次に、4番対の第1ミラー面M1と第2ミラー面で反射したコリメート光束LBは、ミラーユニットMUの回転に応じて、画面Gの最も下の領域Ln4を水平方向に左から右へと走査される。これにより1画面の走査が完了する。そして、ミラーユニットMUが1回転した後、1番対の第1ミラー面M1と第2ミラー面M2が戻ってくれば、再び画面Gの一番上からの走査を繰り返す。
 図12において、走査投光された光束のうち対象物OBJに当たって反射した反射光束(第1反射光束)の1つは、点線で示すように、ミラーユニットMUの第2ミラー面M2の点P3Aに入射し、ここで反射され、回転軸線ROに沿って進行し、更に第1ミラー面M1の点P4Aで反射して、第1レンズLS1により集光され、第1受光部PD1の受光素子で検知される。これと同時に、対象物OBJに当たって反射した反射光束の別の1つ(第2反射光束)は、点線で示すように、ミラーユニットMUの第2ミラー面M2の点P3Bに入射し、ここで反射され、回転軸線ROに沿って進行し、更に第1ミラー面M1の点P4Bで反射して、第2レンズLS1により集光され、第2受光部PD2の受光素子で検知されることとなる。各受光素子が受光することによって発生した信号は、第1受光部PD1及び第2受光部PD2から不図示の制御回路に送信され、ここで半導体レーザーLDの発光時刻と、第1受光部PD1及び第2受光部PD2の受光時刻との差から、対象物までの距離を測定するようになっている。以上により画面G上の全範囲で、対象物OBJの検出を行える。
 図14は、別な実施形態にかかる図13と同様な図である。本実施形態においては、第1受光部PD1は、Z方向に沿って等間隔に4つの第1受光素子PX11~PX14を有し、第2受光部PD2は、Z方向に沿って等間隔に4つの第2受光素子PX21~PX24を有しており、第1受光素子と第2受光素子の形状は全て等しくなっている。又、Z方向における第1受光素子PX11~PX14の下縁の位置は、それに最も近い第2受光素子PX21~PX24の上縁よりそれぞれ下方に位置し、且つ第2受光素子PX21~PX24の下縁の位置は、それに最も近い第1受光素子PX11~PX14の上縁の位置と一致している。つまり、第1受光素子を第2受光素子に対してY方向(第2方向)にシフトすると、お互いに受光領域の一部が重なり合う関係となっており、かかる場合に制御装置CONTは両者を対応づけて,後述するように信号処理を行う。
 ここで、第1受光素子PX11と、それに最も近い第2受光素子PX21を例にとり、以下説明する。第1受光素子PX11を第2受光素子PX21に対してY方向に相対的にシフトさせて両者を重ねたときに、以下の式を満たすことで分解能を高めることができる。
 L/H<0.5   (1)
但し、
 L:Z方向における第1受光素子PX11と第2受光素子PX21の重なり量
 H:Z方向における第1受光素子PX11又は第2受光素子PX21の長さ
 更に、第1受光素子PX11における受光領域の非重合領域をPX11a、第1受光素子PX11における重合領域をPX11bとし、第2受光素子PX21における受光領域の非重合領域をPX21a、第2受光素子PX21における重合領域をPX21bとしたときに、図に示すように、対象物からの第1反射光RB1は、第1受光素子PX11における受光領域の重合領域をPX11bにのみ入射し、同じ対象物からの第2反射光RB2は、第2受光素子PX21における受光領域の非重合領域PX21a及び重合領域PX21bに入射したものとする。
 かかる場合、制御装置CONTは、第1受光素子PX11から出力された信号を閾値と比較して、かかる閾値を上回っていた場合、対象物の反射光であると判断する。一方、制御装置CONTは、第2受光素子PX21から出力された信号のうち、重合領域PX21bから出射される信号分を除いた差分信号を閾値と比較して、かかる閾値を上回っていた場合、対象物の反射光であると判断する。
 仮に、第1受光素子PX11から出力された信号と、第2受光素子PX21から出力された信号とを個々に閾値と比較するだけでは、重合領域PX11b、PX21bのいずれかより出射される信号分が余計になるので、分解能が低下する。そこで、本実施形態では、第2受光素子PX21から出力された信号のうち、重合領域PX21bから出射される信号分を除いた差分信号を閾値と比較することで、分解能を高めているのである。差分信号の求め方としては、例えば第2受光素子PX21から出力された信号に(H-L)/Hを乗算することで求めることができる。尚、ここで用いる閾値としては、受光領域が重ならない上述した実施形態の受光素子からの信号に対して適用する閾値と共通なものとすることができる。以上述べた第1受光素子PX11と第2受光素子PX21の関係を、逆にしても良い。
 図15は、更に別な実施形態にかかる投受光ユニットを備えたレーザーレーダーLRの斜視図である。ここでは制御回路等は省略している。図15において、レーザーレーダーLRの投受光ユニットは、パルスレーザー光束を出射する半導体レーザー(光源)LDと、半導体レーザーLDからの発散光をコリメート光束に変換するコリメートレンズ(投光用光学系)CLと、走査投光された対象物OBJからの反射光束を集光するレンズ(受光用光学系)LSと、レンズLSを通過した反射光束を入射すると共にハーフミラーとしての分岐面PR1を有するプリズム(分岐手段)PRと、分岐面PR1を透過した反射光束(第1光束)を受光する第1受光部PD1と、分岐面PR1で反射した反射光束(第2光束)を受光する第2受光部PD2と、ミラーユニットMUとを有している。ミラーユニットMUは、図12に示す実施形態と同様な構成を有する。ここで、回転軸線ROの方向をZ方向とし、半導体レーザーLDの光軸方向をX方向とし、Z方向及びX方向に直交する方向をY方向とする。
 半導体レーザーLDとコリメートレンズCLとで投光系LPSを構成し、レンズLSとプリズムPRと第1受光部PD1と第2受光部PD2とで受光系RPSを構成する。投光系LPSから出射された光束は、対象物の測定範囲で走査角方向よりも副走査角方向に長くなっている。
 第1受光部PD1と第2受光部PD2は、図3,11に示す実施形態と同様な構成を持つ。又、第1受光部PD1の受光素子を、第1光束に沿って分岐面PR1に投影し、第2受光部PD2の受光素子を第2光束に沿って分岐面PR1に投影したときに、少なくとも隣接する2つの第1受光部PD1の受光素子の投影像が、それらに挟まれる第2受光部PD2の受光素子の投影像と隙間なく接するか、もしくは受光領域の一部が重なるように配置されている(図3,11参照)。又、双方の投影像を重ねたときにその一部が重なる場合、以下の式を満たすと好ましい(図14参照)。
 L’/H<0.5   (2)
但し、
 L’:第1受光素子の投影像と第2受光素子の投影像の重なり量
 H:第1方向における第1受光素子又は第2受光素子の長さ
それ以外の構成については、図14に示す信号処理も含めて、上述した実施形態と同様である。
 次に、本実施形態のレーザーレーダーLRの測距動作について説明する。半導体レーザーLDからパルス状に間欠的に出射された発散光は、コリメートレンズCLで平行光束に変換され、回転するミラーユニットMUの第1ミラー面M1の点P1に入射し、ここで反射され、回転軸線ROに沿って進行し、更に第2ミラー面M2の点P2で反射して対象物OBJ側に走査投光される。
 走査投光された光束のうち対象物OBJに当たって反射した反射光束は、点線で示すように、ミラーユニットMUの第2ミラー面M2の点P3に入射し、ここで反射され、回転軸線ROに沿って進行し、更に第1ミラー面M1の点P4で反射して、レンズLSにより集光され、更に分岐面PR1を透過した反射光束は第1受光部PD1で受光され、分岐面PR1で反射した反射光束は第2受光部PD2で受光される。各受光素子が受光することによって発生した信号は、第1受光部PD1及び第2受光部PD2から不図示の制御回路に送信され、ここで半導体レーザーLDの発光時刻と、第1受光部PD1及び第2受光部PD2の受光時刻との差から、対象物までの距離を測定するようになっている。図12に示す実施形態と同様に、ミラーユニットMUを回転させることで、画面G上の全範囲で対象物OBJの検出を行える。
 本発明は、明細書に記載の実施形態や変形例に限定されるものではなく、他の実施形態・変形例を含むことは、本明細書に記載された実施形態や技術思想から本分野の当業者にとって明らかである。明細書の記載及び実施形態は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。例えば、図面を用いて説明した本発明の内容は、全て実施形態に適用できる。本レーザーレーダーは、自動車に限らず飛行体やロボット、監視カメラなどにも適用できる。第1受光素子と第2受光素子の形状は、特に断りがない限り同一であっても良いし、異なっていても良い。
1        車両
1a       フロントウィンドウ
1b       フロントグリル
CL       コリメートレンズ
CONT     制御回路
CP1、CP2  配列中心
CS       筐体
G        画面
HS       配線
LB       コリメート光束
LD       半導体レーザー
Ln1~LN4  領域
LR       レーザーレーダー
LS       レンズ
LS1      第1レンズ
LS2      第2レンズ
M1       第1ミラー面
M2       第2ミラー面
MT       モータ
MU       ミラーユニット
OA1      光軸
OA2      光軸
OBJ      対象物
PD       受光部
PD1      第1受光部
PD2      第2受光部
PR       プリズム
PR1      分岐面
PX1、PX1a、PX1b、PX1c、PX11~PX14      第1受光素子
PX2、PX1a、PX1b、PX1c、PX2’、PX21~PX24 第2受光素子
RB       反射光束
RB1      第1反射光束
RB2      第2反射光束
RO       回転軸線
RPS      受光系
SFT      回転軸

Claims (21)

  1.  光源と、
     前記光源から出射された光束を対象物に向けて出射する投光用光学系と、
     前記投光用光学系を駆動し、前記投光用光学系から出射される光束を走査させる走査機構と、
     前記対象物において前記光束が反射した第1反射光束を受光する第1受光部と、
     前記第1反射光束と同時に前記対象物から反射した第2反射光束を受光する第2受光部と、を有し、
     前記第1受光部と前記第2受光部とは前記投光用光学系から出射される光束が走査される方向に対応する第2方向に離間して配置され、
     前記第1受光部は、前記第2方向に直交する第1方向に沿って間隔をあけて並べられた複数の第1受光素子を有し、
     前記第2受光部は前記第1方向に沿って間隔をあけて並べられた複数の第2受光素子を有し、
     前記第1受光素子を前記第2受光素子に対して前記第2方向に相対的にシフトしたときに、隣接する2つの前記第1受光素子が、それらに挟まれる前記第2受光素子と隙間なく接するか、もしくは一部が重なるように配置されている投受光ユニット。
  2.  前記第1受光素子の配列中心は、前記第1受光用光学系の中心に対して前記第2受光素子から離間する側にシフトしている請求項1に記載の投受光ユニット。
  3.  前記第1受光素子を前記第2受光素子に対して前記第2方向に相対的にシフトさせたとき両者の一部が重なる場合、以下の式を満たす請求項1又は2に記載の投受光ユニット。
     L/H<0.5   (1)
    但し、
     L:前記第1方向における前記第1受光素子と前記第2受光素子の重なり量
     H:前記第1方向における前記第1受光素子又は前記第2受光素子の長さ
  4.  前記第1受光部からの信号と前記第2受光部からの信号を処理する処理装置を有し、前記処理装置は、前記第1受光素子を前記第2受光素子に対して前記第2方向に相対的にシフトしたときに相互に重なり合う受光領域を有する前記第1受光素子と前記第2受光素子を対応づけた上で、そのうち一方の前記受光素子からの信号が閾値を超えているときに、前記対象物からの反射光が入射したと判定し、また、他方の前記受光素子からの信号から、前記一方の受光素子に対して相互に重なり合う受光領域から出力された信号分を除いた差分信号が前記閾値を超えているときに、前記対象物からの反射光が入射したと判定する請求項3に記載の投受光ユニット。
  5.  前記閾値は、前記第1受光素子を前記第2受光素子に対して前記第2方向に相対的にシフトしたときに相互に重なり合う受光領域を有しない前記第1受光素子又は前記第2受光素子からの信号に用いる閾値と等しい請求項4に記載の投受光ユニット。
  6.  前記第1受光素子と前記第2受光素子は、互いに同一の形状を有している請求項1~5のいずれかに記載の投受光ユニット。
  7.  前記第1受光素子と前記第2受光素子は、互いに異なる形状を有している請求項1~5のいずれかに記載の投受光ユニット。
  8.  前記第1受光部からの信号と前記第2受光部からの信号を処理する処理装置を有し、前記第1受光素子を前記第2受光素子に対して前記第2方向に相対的にシフトさせたとき両者の一部が重なる場合、前記処理装置は、相互に重なり合う受光領域を有する前記第1受光素子と前記第2受光素子を対応づけた上で、そのうち一方の前記受光素子からの信号が第1の閾値を超えているときに、前記対象物からの反射光が入射したと判定し、また、他方の前記受光素子からの信号が第2の閾値を超えているときに、前記対象物からの反射光が入射したと判定する際に、前記一方の前記受光素子の受光面積が前記他方の受光素子の受光面積より大きいときは、前記第1の閾値を前記第2の閾値よりも大きくする請求項1~3のいずれかに記載の投受光ユニット。
  9.  前記走査機構は、前記光源、前記投光用光学系、前記第1受光部及び前記第2受光部を、前記第2方向に沿った軸回りに一体的に回転することにより、前記対象物を走査するようになっている請求項1~8のいずれかに記載の投受光ユニット。
  10.  前記走査機構は、前記投光用光学系から前記対象物に向かう前記光束を反射し、且つ前記対象物からの前記第1反射光束及び前記第2反射光束を反射して前記第1受光部及び前記第2受光部に入射させるミラーを有し、前記ミラーが前記第2方向に沿った軸回りに一体的に回転することにより、前記対象物を走査するようになっている請求項1~8のいずれかに記載の投受光ユニット。
  11.  光源と、
     前記光源から出射された光束を対象物に向けて出射する投光用光学系と、
     前記投光用光学系を駆動し、前記投光用光学系から出射される光束を走査させる走査機構と、
     前記光束が前記対象物から反射した反射光束を入射する受光用光学系と、
     前記受光用光学系によって集光された前記反射光束の一部を透過して第1光束とし、前記反射光束の残りを反射して第2光束とする分岐面を備えた分岐手段を有し、
     前記第1光束を受光する第1受光部と、
     前記第2光束を受光する第2受光部と、を有し、
     前記第1受光部は、前記投光用光学系から出射される光束が走査される方向に対応する第2方向に直交する第1方向に沿って間隔をあけて並べられた複数の第1受光素子を有し、
     前記第2受光部は前記第1方向に沿って間隔をあけて並べられた複数の第2受光素子を有し、
     前記第1受光素子を前記第1光束に沿って前記分岐面に投影し、前記第2受光素子を前記第2光束に沿って前記分岐面に投影したときに、隣接する2つの前記第1受光素子の投影像が、それらに挟まれる前記第2受光素子の投影像と隙間なく接するか、もしくは一部重なるように配置されている投受光ユニット。
  12.  前記走査機構は前記投光用光学系から出射した前記光束を反射して前記対象物に向かわせ、また前記対象物から戻る前記反射光束を反射して前記受光用光学系に入射させるミラーを有し、投光用光学系から出射される光束を走査させる方向に垂直な軸回りに前記ミラーが回転することにより、前記対象物を走査するようになっている請求項11に記載の投受光ユニット。
  13.  前記第1受光素子の投影像を前記第2受光素子の投影像に対して重ねたとき両像の一部が重なる場合、以下の式を満たす請求項11又は12に記載の投受光ユニット。
     L’/H<0.5   (2)但し、
     L’:前記第1受光素子の投影像と前記第2受光素子の投影像の重なり量
     H:前記第1方向における前記第1受光素子又は前記第2受光素子の長さ
  14.  前記第1受光部からの信号と前記第2受光部からの信号を処理する処理装置を有し、前記第1受光素子の投影像を前記第2受光素子の投影像に対して重ねたときに相互に重なり合う受光領域を有する前記第1受光素子と前記第2受光素子を対応づけた上で、そのうち一方の前記受光素子からの信号が閾値を超えているときに、前記対象物からの反射光が入射したと判定し、また、他方の前記受光素子からの信号から、前記一方の受光素子に対して相互に重なり合う受光領域から出力された信号分を除いた差分信号が前記閾値を超えているときに、前記対象物からの反射光が入射したと判定する請求項13に記載の投受光ユニット。
  15.  前記閾値は、前記第1受光素子の投影像を前記第2受光素子の投影像に対して重ねたときに相互に重なり合う受光領域を有しない前記第1受光素子又は前記第2受光素子からの信号に用いる閾値と等しい請求項14に記載の投受光ユニット。
  16.  前記第1受光素子と前記第2受光素子は、互いに同一の形状を有している請求項11~15のいずれかに記載の投受光ユニット。
  17.  前記第1受光素子と前記第2受光素子は、互いに異なる形状を有している請求項11~15のいずれかに記載の投受光ユニット。
  18.  前記第1受光部からの信号と前記第2受光部からの信号を処理する処理装置を有し、前記第1受光素子を前記第2受光素子に対して前記第2方向に相対的にシフトさせたとき両者の一部が重なる場合、前記処理装置は、相互に重なり合う受光領域を有する前記第1受光素子と前記第2受光素子を対応づけた上で、そのうち一方の前記受光素子からの信号が第1の閾値を超えているときに、前記対象物からの反射光が入射したと判定し、また、他方の前記受光素子からの信号が第2の閾値を超えているときに、前記対象物からの反射光が入射したと判定する際に、前記一方の前記受光素子の受光面積が前記他方の受光素子の受光面積より大きいときは、前記第1の閾値を前記第2の閾値よりも大きくする請求項11~13のいずれかに記載の投受光ユニット。
  19.  前記第1受光素子は、それぞれ同一形状を有し、前記第2受光素子は、それぞれ同一形状を有している請求項1~18のいずれかに記載の投受光ユニット。
  20.  前記投光用光学系の光軸と前記受光用光学系の光軸とは平行である請求項1~19のいずれかに記載の投受光ユニット。
  21.  請求項1~20のいずれかに記載の投受光ユニットを有し、前記光源から光束を出射した時刻と、前記第1受光部及び前記第2受光部で前記反射光束を受光した時刻との差に基づいて、前記対象物までの距離を測定するレーダー。
PCT/JP2016/086978 2015-12-24 2016-12-13 投受光ユニット及びレーダー WO2017110573A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015251136 2015-12-24
JP2015-251136 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110573A1 true WO2017110573A1 (ja) 2017-06-29

Family

ID=59090181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086978 WO2017110573A1 (ja) 2015-12-24 2016-12-13 投受光ユニット及びレーダー

Country Status (1)

Country Link
WO (1) WO2017110573A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874733A (en) * 1997-10-16 1999-02-23 Raytheon Company Convergent beam scanner linearizing method and apparatus
JP2002134765A (ja) * 2000-10-25 2002-05-10 Toyo Commun Equip Co Ltd 分光受光器
WO2011144454A1 (en) * 2010-05-17 2011-11-24 Iee International Electronics & Engineering S.A. Scanning 3d imager
WO2012085152A1 (en) * 2010-12-23 2012-06-28 Borowski Andre 3d landscape real-time imager and corresponding imaging methods
WO2014129152A1 (ja) * 2013-02-21 2014-08-28 三菱電機株式会社 導光体及び画像読取装置
US8836922B1 (en) * 2013-08-20 2014-09-16 Google Inc. Devices and methods for a rotating LIDAR platform with a shared transmit/receive path

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874733A (en) * 1997-10-16 1999-02-23 Raytheon Company Convergent beam scanner linearizing method and apparatus
JP2002134765A (ja) * 2000-10-25 2002-05-10 Toyo Commun Equip Co Ltd 分光受光器
WO2011144454A1 (en) * 2010-05-17 2011-11-24 Iee International Electronics & Engineering S.A. Scanning 3d imager
WO2012085152A1 (en) * 2010-12-23 2012-06-28 Borowski Andre 3d landscape real-time imager and corresponding imaging methods
WO2014129152A1 (ja) * 2013-02-21 2014-08-28 三菱電機株式会社 導光体及び画像読取装置
US8836922B1 (en) * 2013-08-20 2014-09-16 Google Inc. Devices and methods for a rotating LIDAR platform with a shared transmit/receive path

Similar Documents

Publication Publication Date Title
WO2017110574A1 (ja) 投受光ユニット及びレーダー
US20170219696A1 (en) Optical scanning type object detection device
US10989794B2 (en) Scanning optical system and radar
US10782392B2 (en) Scanning optical system and light projecting and receiving apparatus
US9568358B2 (en) Optical measurement device and vehicle
KR102020037B1 (ko) 하이브리드 라이다 스캐너
JP6032416B2 (ja) レーザレーダ
JP2020508457A (ja) センサーシステム及びその方法
WO2017183530A1 (ja) 対象物検出装置
US10816663B2 (en) Distance measuring device and distance measuring method
US9739874B2 (en) Apparatus for detecting distances in two directions
US10649071B2 (en) Scanning optical system and radar
WO2017135225A1 (ja) 光走査型の対象物検出装置
JP2017138298A (ja) 光走査型の対象物検知装置
US20170293138A1 (en) Scanning Optical System And Light Projection And Reception Apparatus
JPWO2017135224A1 (ja) 光走査型の対象物検出装置
US10048492B2 (en) Scanning optical system and radar
WO2017110573A1 (ja) 投受光ユニット及びレーダー
US10634773B2 (en) Monitoring sensor and floor-bound vehicle
EP3364229B1 (en) Optical-scanning-type object detection device
JP6676974B2 (ja) 対象物検出装置
US10605917B2 (en) Optical-scanning-type object detection device having a mirror surface to be inclined in a direction crossing a rotation axis
WO2017126356A1 (ja) 対象物検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP