WO2019181692A1 - 距離測定装置および移動体 - Google Patents
距離測定装置および移動体 Download PDFInfo
- Publication number
- WO2019181692A1 WO2019181692A1 PCT/JP2019/010302 JP2019010302W WO2019181692A1 WO 2019181692 A1 WO2019181692 A1 WO 2019181692A1 JP 2019010302 W JP2019010302 W JP 2019010302W WO 2019181692 A1 WO2019181692 A1 WO 2019181692A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- pulse signal
- distance
- unit
- light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/02—Details
- G01C3/06—Use of electric means to obtain final indication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
Definitions
- the present invention relates to a distance measuring device and a moving body.
- Japanese Patent Application Laid-Open No. 2011-215005 discloses a scanning distance measuring device that can accurately calculate a distance to a measured object even when an obstacle exists between the scanned distance measuring apparatus and the measured object. Is disclosed.
- the scanning distance measuring device includes a differential processing unit, a calculation unit, and a waveform determination unit.
- the differentiation processing unit differentiates the reflected signal corresponding to the reflected light from the measured object detected by the light receiving unit, corresponding to the pulsed measurement light periodically deflected and scanned by the scanning unit.
- the calculation unit calculates the position of the center of gravity of the first-order differential reflection signal based on the rise time of the first-order differentiated first-order differential reflection signal, obtains the time corresponding to the position of the center of gravity as the detection time of the reflected light, and outputs the measurement light Based on the time difference between the time and the detection time of the reflected light, the distance to the object to be measured is calculated and output.
- the waveform determination unit reflects the rising and falling characteristics of the first-order differential reflected signal obtained by first-order differentiation of the reflected signal by the differentiation processing section, and the rising characteristics of the second-order differential reflected signal obtained by second-order differentiation of the reflected signal. It is determined whether the light is reflected light in which reflected light from a plurality of objects to be measured is superimposed.
- the differential processing unit performs primary and secondary differential processing on the reflected signal. For this reason, the structure which can perform a differentiation process very rapidly is calculated
- the avalanche photodiode (hereinafter referred to as APD) used in the light receiving portion varies greatly in multiplication factor depending on the temperature. Variations in multiplication factor can reduce the accuracy of distance measurement to the object.
- APD avalanche photodiode
- An object of this invention is to provide the technique which can obtain
- An exemplary distance measuring device of the present invention includes a light projecting unit that emits projection light, a movable unit that varies the direction of the projection light, and a reflection unit that is provided in a part of the variation range of the direction of the projection light.
- a detection unit that detects the direction of the projection light, a light receiving unit that receives reflected light generated by reflection of the projection light by an object outside the apparatus or the reflection unit, and converts the reflected light into an electrical signal; and processes the electrical signal
- a control unit that receives a signal from the signal processing unit and calculates a distance to the object and performs control processing of the light receiving unit.
- the control unit detects, based on information from the detection unit, whether the projection light is directed to a measurement angle range projected outside the apparatus or a reflection unit range projected to the reflection unit.
- the type of the signal output from the signal processing unit is different at the time of detection of the measurement angle range and at the time of detection of the reflection unit range at all times or under a predetermined condition.
- the exemplary mobile body of the present invention has the distance measuring device having the above-described configuration.
- the exemplary present invention can accurately determine the distance to various types of objects including glass and thin objects while suppressing the increase in size of the apparatus.
- FIG. 1 is a schematic perspective view of a moving body according to an embodiment of the present invention.
- FIG. 2 is a schematic side view of the moving body according to the embodiment of the present invention.
- FIG. 3 is a schematic plan view of the moving body according to the embodiment of the present invention as viewed from above.
- FIG. 4 is a schematic vertical sectional view of the distance measuring apparatus according to the embodiment of the present invention.
- FIG. 5 is a plan view showing a configuration of an encoder included in the distance measuring apparatus according to the embodiment of the present invention.
- FIG. 6 is a block diagram showing an electrical configuration of the distance measuring apparatus according to the embodiment of the present invention.
- FIG. 7 is a block diagram illustrating a configuration of a signal processing unit included in the distance measuring apparatus according to the embodiment of the present invention.
- FIG. 8 is a flowchart showing an example of control processing of the control unit in the distance measuring apparatus according to the first embodiment of the present invention.
- FIG. 9 is a model diagram for explaining the function and effect of the distance measuring device.
- FIG. 10 is an example of a signal when the distance between the first object and the second object is small.
- FIG. 11 is a flowchart showing an example of control processing of the control unit in the distance measuring apparatus according to the second embodiment of the present invention.
- FIG. 12 is a flowchart showing an example of the twice measurement process performed by the distance measuring apparatus according to the second embodiment of the present invention.
- FIG. 13 is a diagram for explaining the operational effects of the distance measuring device according to the second embodiment of the present invention.
- FIG. 14 is a flowchart showing an example of the twice measurement process performed by the distance measuring apparatus according to the third embodiment of the present invention.
- the distance measuring device is a laser range finder
- the mobile body having the distance measuring device is an automatic guided vehicle used for transporting luggage.
- the automatic guided vehicle is generally called AGV (Automatic Guided Vehicle).
- FIG. 1 is a schematic perspective view of a moving body 15 according to an embodiment of the present invention.
- FIG. 2 is a schematic side view of the moving body 15 according to the embodiment of the present invention.
- FIG. 3 is a schematic plan view of the moving body 15 according to the embodiment of the present invention as viewed from above.
- the mobile body 15 travels autonomously by two-wheel drive and carries a load.
- the moving body 15 can also rotate on the spot. *
- the moving body 15 includes a distance measuring device 7.
- the distance measuring device 7 is a device that measures the distance to an object to be measured by scanning a laser beam.
- the distance measuring device 7 is used, for example, to perform self-position identification in which the moving body 15 identifies its own position.
- the distance measuring device 7 is used for creating map information.
- the map information is information generated to identify the position of the mobile object 15 and is position information of a stationary object at the place where the mobile object 15 travels.
- the stationary object is a wall of the warehouse, a shelf arranged in the warehouse, or the like. *
- the distance measuring device 7 can accurately obtain distances to various types of objects. For this reason, the mobile body 15 can perform self-position identification and generation of map information accurately. The detailed configuration of the distance measuring device 7 itself will be described later. *
- the moving body 15 includes a vehicle body 1, a loading platform 2, support portions 3L and 3R, drive motors 4L and 4R, drive wheels 5L and 5R, and driven wheels 6F and 6R. It has further. *
- the vehicle body 1 has a base 1A and a base 1B.
- the plate-like base portion 1B is fixed to the rear upper surface of the rectangular parallelepiped base portion 1A.
- the base part 1B has a triangular part Tr protruding forward.
- the plate-shaped loading platform 2 is fixed to the upper surface of the platform 1B.
- a load can be placed on the upper surface of the loading platform 2.
- the loading platform 2 extends further forward than the platform 1B.
- a gap S is formed between the front of the base 1A and the front of the loading platform 2.
- the distance measuring device 7 is disposed in the gap S.
- the distance measuring device 7 is located in front of the apex protruding forward of the triangular portion Tr. *
- the support portion 3L is fixed to the left side of the base portion 1A and supports the drive motor 4L.
- the drive motor 4L is configured by an AC servo motor as an example.
- the drive motor 4L incorporates a reduction gear (not shown).
- the drive wheel 5L is fixed to a shaft SH that the drive motor 4L rotates. *
- the support portion 3R is fixed to the right side of the base portion 1A and supports the drive motor 4R.
- the drive motor 4R is configured by an AC servo motor as an example.
- the drive motor 4R incorporates a reduction gear (not shown).
- the drive wheel 5R is fixed to a shaft SH that the drive motor 4R rotates. *
- the driven wheel 6F is fixed to the front side of the base 1A.
- the driven wheel 6R is fixed to the rear side of the base 1A.
- the driven wheels 6F and 6R rotate passively according to the rotation of the drive wheels 5L and 5R. Apart from the rotation, the driven wheels 6F and 6R can rotate around an axis extending in the vertical direction.
- the driven wheels 6F and 6R can be constituted by so-called universal casters. *
- the moving body 15 By rotating the drive wheels 5L and 5R by the drive motors 4L and 4R, the moving body 15 can be moved forward and backward. Further, by controlling so as to provide a difference in the rotational speeds of the drive wheels 5L and 5R, the moving body 15 can be rotated clockwise or counterclockwise to change the direction.
- the base 1A accommodates the control unit U, the battery B, and the communication unit T therein.
- the control unit U is connected to the distance measuring device 7, the drive motors 4L and 4R, the communication unit T, and the like so as to be communicable by wire or wirelessly.
- the control unit U communicates various signals with the distance measuring device 7.
- the control unit U also performs drive control of the drive motors 4L and 4R.
- the communication unit T performs communication based on, for example, Bluetooth (registered trademark) with an external tablet terminal (not shown). Thereby, the mobile body 15 can be remotely operated by the tablet terminal.
- the battery B is composed of, for example, a lithium ion battery, and supplies power to each unit such as the distance measuring device 7, the control unit U, the communication unit T, and the like. *
- the map information described above is generated, for example, by manually operating the moving body 15 using a tablet terminal.
- the control unit U controls the traveling of the moving body 15.
- the control unit U specifies the measured position of the target object as map information based on the distance measurement data input from the distance measuring device 7 and the position information of the moving body 15.
- the position of the moving body 15 is specified based on drive information of the drive motors 4L and 4R configured by a servo motor, for example.
- FIG. 4 is a schematic vertical sectional view of the distance measuring device 7 according to the embodiment of the present invention.
- the distance measuring device 7 includes a laser light source 71, a collimating lens 72, a light projecting mirror 73, a light receiving lens 74, a light receiving mirror 75, a wavelength filter 76, a light receiving element 77, and a rotation.
- a housing 78, a motor 79, a housing 80, and a substrate 81 are included. *
- the casing 80 has a substantially cylindrical shape extending in the vertical direction in appearance, and accommodates various elements such as the laser light source 71 in the internal space.
- the laser light source 71 is mounted on a substrate 81 fixed to the lower surface of the upper wall of the housing 80. For example, the laser light source 71 emits laser light in the infrared region downward.
- the collimating lens 72 is disposed below the laser light source 71.
- the collimating lens 72 emits the laser light emitted from the laser light source 71 downward as parallel light.
- a light projecting mirror 73 is disposed below the collimating lens 72.
- the light projecting mirror 73 is fixed to a rotary casing 78 disposed below the mirror.
- the rotating casing 78 is fixed to a shaft 79A of a motor 79 disposed on the lower side of the casing.
- the shaft 79A rotates around a central axis J that extends in the vertical direction. That is, the rotary casing 78 is rotated around the central axis J by the motor 79.
- the light projection mirror 73 rotates about the central axis J.
- the light projection mirror 73 is a movable part.
- the light projecting mirror 73 may be referred to as the movable portion 73.
- the light projection mirror 73 reflects the laser light emitted from the collimator lens 72 and emits it as projection light L1. Since the light projection mirror 73 rotates around the central axis J as described above, the projection light L1 is emitted from the light projection mirror 73 while changing the emission direction in the range of 360 degrees around the central axis J.
- the distance measuring device 7 includes the movable unit 73 that varies the direction of the projection light L1.
- the movable unit 73 varies the direction of the projection light L1 over a range of 360 degrees.
- the range in which the movable portion 73 varies the direction of the projection light L1 may be smaller than the range of 360 degrees.
- the housing 80 has a transmission portion 801 extending in the circumferential direction at a midway position in the vertical direction.
- the transmission part 801 is made of a translucent resin or the like.
- the transmission part 801 is not provided on the entire circumference of the housing 80 but is provided in a partial range in the circumferential direction. For this reason, the projection light L ⁇ b> 1 reflected by the light projecting mirror 73 is emitted to the outside of the housing 80 from a limited range in the circumferential direction of the housing 80.
- the measurement angle range R1 from which the distance measuring device 7 emits laser light to the outside of the device is a range of 270 degrees around the central axis J as an example, as shown in FIG. More specifically, the range of 270 degrees is a range obtained by combining a range rotated 135 degrees clockwise from the front and a range rotated 135 degrees counterclockwise from the front, where 0 degree is the front. .
- the projection light L1 passes through the transmission unit 801 at least in the range of 270 degrees around the central axis J. Note that the projection light L ⁇ b> 1 is not emitted outside the housing 80 in a range where the rear transmission part 801 is not disposed. *
- the light receiving mirror 75 is fixed to the rotary casing 78 at a position below the light projecting mirror 73.
- the light receiving lens 74 is fixed to the side surface of the rotating housing 78.
- the wavelength filter 76 is positioned below the light receiving mirror 75 and is fixed to the rotary casing 78.
- the light receiving element 77 is positioned below the wavelength filter 76 and is fixed to the rotary casing 78.
- the projection light L1 emitted to the outside from the distance measuring device 7 is reflected by an object to be measured and becomes diffused light.
- a part of the diffused light passes through the gap S and the transmitting portion 801 as reflected light L2 and enters the light receiving lens 74.
- the reflected light L 2 that has passed through the light receiving lens 74 is incident on the light receiving mirror 75 and reflected downward by the light receiving mirror 75.
- the reflected light L 2 reflected by the light receiving mirror 75 passes through the wavelength filter 76 and is received by the light receiving element 77.
- the wavelength filter 76 transmits light in the infrared region.
- the light receiving element 77 converts the received light into an electrical signal by photoelectric conversion. *
- the rotating casing 78 When the rotating casing 78 is rotated by the motor 79, the light receiving lens 74, the light receiving mirror 75, the wavelength filter 76, and the light receiving element 77 are rotated together with the light projecting mirror 73.
- the motor 79 is connected to the substrate 81 by a wiring (not shown) and is driven to rotate when energized from the substrate 81.
- the motor 79 rotates the rotary casing 78 at a predetermined rotation speed. For example, the rotary casing 78 is rotated at about 3000 rpm. *
- the measurement range Rs in the distance measuring device 7 is surrounded by an arc formed by rotating around the central axis J by a measurement angle range R1 (270 degrees in this embodiment) with a predetermined radius. It is a range.
- the projection light L1 is emitted within the measurement angle range R1
- the projection light L1 is reflected by an object located within the measurement range Rs
- the reflected light L2 passes through the transmission unit 801 and enters the light receiving element 77. That is, the distance measuring device 7 can acquire the distance to the object.
- the distance measuring device 7 further includes a reflection unit 82 and a detection unit 83.
- the reflection part 82 is provided in a part of the fluctuation range of the direction of the projection light L1. That is, the projection light L ⁇ b> 1 may enter the reflection unit 82.
- the variation range of the direction of the projection light L1 is a range of 360 degrees as described above, and the reflecting portion 82 is provided in a part of a range of 360 degrees centering on the central axis J. . *
- the reflecting part 82 is made of a material having at least a high reflectance on the surface.
- the reflection part 82 is provided inside the housing 80 and is fixed at a position facing the transmission part 801. In other words, the reflecting portion 82 is disposed on the inner rear side of the housing 80.
- the reflection part 82 may be provided in the whole range of the range in which the transmission part 801 of the housing
- the projection light L1 incident on the reflection unit 82 is reflected by the reflection unit 82. At least a part of the reflected light L ⁇ b> 2 reflected by the reflecting portion 82 is incident on the light receiving element 77 through the light receiving lens 74, the light receiving mirror 75, and the wavelength filter 76.
- the detection unit 83 detects the direction of the projection light L1.
- the detection unit 83 is a sensor provided to detect the direction of the projection light L1.
- the detection unit 83 includes an encoder 831 and a sensor unit 832. *
- FIG. 5 is a plan view showing a configuration of an encoder 831 included in the distance measuring device 7 according to the embodiment of the present invention.
- the encoder 831 is provided to be rotatable about the central axis J.
- the encoder 831 is an annular plate member.
- the encoder 831 is positioned on the radially outer side of the rotary casing 78 around the central axis J, and is fixed to the rotary casing 78. That is, the encoder 831 rotates with the rotation of the rotary casing 78.
- the encoder 831 is fixed to the rotary casing 78 below the light receiving lens 74. *
- the encoder 831 has a plurality of slits 833.
- the plurality of slits 833 are arranged in the circumferential direction around the central axis J.
- the plurality of slits 833 are arranged radially outward of the encoder 831 around the central axis J.
- the shape of each slit 833 is rectangular.
- the shape of the slit 833 may be another shape such as a circular shape or an elliptical shape. *
- the sensor unit 832 detects the position of the slit 833.
- the sensor unit 832 is fixed inside the housing 80.
- the sensor unit 832 can be composed of, for example, a photo interrupter.
- the sensor unit 832 outputs a pulse signal according to the presence or absence of the slit 833 by the rotation of the encoder 831. For example, the sensor unit 832 outputs a high level signal at a position where the slit 833 is provided, and outputs a low level signal at a position where the slit 833 is not provided. That is, the slit 833 can be detected by detecting the high level signal.
- the direction of the rotary casing 78 can be determined by analyzing the pulse signal. That is, the direction of the projection light L1 can be detected by analyzing the pulse signal.
- the detection unit 83 By configuring the detection unit 83 with the encoder 831 and the sensor unit 832 such as a photo interrupter, the detection unit 83 can be reduced in size, and the distance measurement device 7 can be prevented from being increased in size.
- the plurality of slits 833 include a first slit 833a and a second slit 833b.
- a plurality of the first slits 833a are arranged at a first interval ⁇ 1 in the circumferential direction around the central axis J, and detect the measurement angle range R1.
- the measurement angle range R1 is a range in which the projection light L1 is projected to the outside of the apparatus 7.
- the second slit 833b detects the reflection part range R2.
- the reflection part range R2 is a range in which the projection light L1 is projected onto the reflection part 82.
- the second slit 833b has a second interval ⁇ 2 that is different from the first interval ⁇ 1 in the circumferential direction around the central axis J with respect to the first slit 833a arranged at the end of the plurality of first slits 833a. It is arranged with a gap.
- the second slit 833b is arranged with a second interval ⁇ 2 larger than the first interval ⁇ 1 with respect to the first slit 833a arranged at both ends in the circumferential direction among the plurality of first slits 833a. Is done. According to this embodiment, since the interval ⁇ 1 between the adjacent first slits 833a and the interval ⁇ 2 between the adjacent first slits 833a and the second slits 833b are different, the measurement angle range R1 and the reflection portion range R2 Can be easily distinguished, and erroneous detection of the direction of the projection light L1 can be suppressed. *
- a plurality of second slits 833b are preferably provided, and in the present embodiment, the number of second slits 833b is plural. By making the number of the second slits 833b plural, it is possible to detect the reflection part range R2 with high accuracy.
- the interval between the adjacent second slits 833b is preferably the same as the first interval ⁇ 1. This avoids complicated control processing of the laser light source 71. *
- the first slit 833a and the second slit 833b have the same shape and the same size. However, this is merely an example, and the first slit 833a and the second slit 833b may have different shapes or different sizes, for example.
- the analysis of the pulsed signal indicates that the projection light L1 is directed to the measurement angle range R1, or the reflection portion range. Whether it is suitable for R2 can be detected.
- the slits 833 may be arranged at equal intervals over the entire circumference of the encoder 831 in the circumferential direction. *
- FIG. 6 is a block diagram showing an electrical configuration of the distance measuring device 7 according to the embodiment of the present invention.
- FIG. 6 also shows the object OJ whose distance is measured by the distance measuring device 7 and the above-described reflecting portion 82.
- the distance measuring device 7 includes a light projecting unit 701, a light receiving unit 702, a signal processing unit 703, and a control unit 704. *
- the light projecting unit 701 emits the projection light L1.
- the light projecting unit 701 includes a laser light source 71 and a laser driver (not shown) that drives the laser light source 71.
- the laser driver is mounted on the substrate 81.
- the light projecting unit 701 emits laser light using a laser emission pulse output from the control unit 704 as a trigger.
- the light projecting unit 701 emits pulsed light as projection light. *
- the light receiving unit 702 receives the reflected light L2 generated when the projection light L1 is reflected by the object OJ or the reflection unit 82 outside the apparatus, and converts it into an electrical signal.
- the light receiving unit 702 includes a light receiving element 77.
- the light receiving element 77 is configured by an APD as an example.
- the light receiving unit 702 preferably includes an amplifier circuit that amplifies the signal output from the light receiving element 77. *
- the signal processing unit 703 processes the electrical signal output from the light receiving unit 702.
- the signal processing unit 703 includes a circuit that processes an analog signal and a circuit that processes a digital signal.
- FIG. 7 is a block diagram showing a configuration of the signal processing unit 703 of the distance measuring device 7 according to the embodiment of the present invention. As illustrated in FIG. 7, the signal processing unit 703 includes a first comparator 7031, a second comparator 7032, a first timer circuit 7033, a selector circuit 7034, and a second timer circuit 7035. *
- the first comparator 7031 generates the first pulse signal by comparing the electrical signal output from the light receiving unit 702 with the first threshold value.
- the electrical signal output from the light receiving unit 702 is an analog signal.
- the first comparator 7031 compares the signal level of the input analog signal with the first threshold value, and generates a digital signal having a high level or a low level according to the comparison result. When the signal level of the input analog signal exceeds the first threshold, the signal becomes High level, and the first pulse signal is output from the first comparator 7031.
- the second comparator 7032 compares the electrical signal output from the light receiving unit 702 with a second threshold different from the first threshold, and generates a second pulse signal.
- the second threshold is greater than the first threshold.
- the second comparator 7032 compares the signal level of the input analog signal with the second threshold value, and generates a digital signal having a high level or a low level according to the comparison result. When the signal level of the input analog signal exceeds the second threshold value, it becomes High level, and the second pulse signal is output from the second comparator 7032.
- a first pulse signal is input to the first timer circuit 7033.
- the first time measuring circuit 7033 is configured by a so-called TDC (Time-to-digital-Converter).
- a reference pulse signal RP synchronized with the laser emission pulse is input from the control unit 704 to the first timer circuit 7033.
- the first timer circuit 7033 measures the elapsed time from the rising timing of the reference pulse signal RP to the rising timing of the first pulse signal.
- the first timer circuit 7033 outputs the measurement result to the control unit 704.
- the first timer circuit 7033 outputs an output signal including the first timer information to the control unit 704. *
- the selector circuit 7034 is provided so that the first pulse signal and the second pulse signal can be input, and outputs either one of the pulse signals.
- the selector circuit 7034 receives the instruction signal IS from the control unit 704.
- the selector circuit 7034 outputs the first pulse signal or the second pulse signal to the second timer circuit 7035 based on the instruction signal IS.
- the second timer circuit 7035 receives the signal output from the selector circuit 7034.
- the second timing circuit 7035 is a so-called TDC.
- the reference pulse signal RP is also input to the second timer circuit 7035.
- the second timer circuit 7035 measures the elapsed time from the rising timing of the reference pulse signal RP to the falling timing of the first pulse signal.
- the second timer circuit 7035 measures the elapsed time from the rising timing of the reference pulse signal RP to the rising timing of the second pulse signal.
- the second timing circuit 7035 outputs the measurement result to the control unit 704.
- the second timing circuit 7035 outputs an output signal including the second timing information to the control unit 704. *
- the control unit 704 controls the entire distance measuring device 7.
- the control unit 704 receives a signal from the signal processing unit 703.
- the control unit 704 performs calculation of the distance to the object OJ and control processing of the light receiving unit 702.
- the control unit 704 receives a signal from the detection unit 83. Based on the information from the detection unit 83, the control unit 704 determines whether the projection light L1 is directed to the measurement angle range R1 projected to the outside of the apparatus or the reflection unit range R2 projected to the reflection unit 82. To detect.
- the control unit 704 receives the above-described pulse signal from the detection unit 83.
- the control unit 704 detects the direction of the projection light L1 by monitoring the pulse signal. *
- control unit 704 performs calculation processing of the distance to the object OJ and control processing of the light receiving unit 702 in consideration of information acquired from the detection unit 83. Specifically, the control unit 704 corrects the object OJ in consideration of the reflectance of the object OJ based on information obtained from the signal processing unit 703 when the projection light L1 is emitted in the measurement angle range R1. Find the distance to OJ. The control unit 704 controls the voltage applied to the light receiving unit 702 based on information obtained from the signal processing unit 703 when the projection light L1 is emitted to the reflection unit range R2. *
- the control unit 704 determines the type of signal output from the signal processing unit 703 when the measurement angle range R1 is detected and when the reflection unit range R2 is detected, always or under a predetermined condition. Make it different. According to this, since the type of the signal input to the control unit 704 can be changed between the detection of the measurement angle range R1 and the detection of the reflection unit range R2, the control unit 704 performs distance calculation processing, light reception An appropriate signal can be acquired for each scene with the control processing of the unit 702. By appropriately controlling the light receiving unit 702, an appropriate signal can be input from the light receiving unit 702 to the control unit 704 via the signal processing unit 703, and the distance calculation can be performed accurately.
- control unit 704 also determines the distance measuring device 7 based on the rotational angle position of the motor 79 at the timing when the laser light emission pulse is output and the distance information obtained corresponding to the laser light emission pulse.
- the position information on the orthogonal coordinate system with reference to is generated. That is, the control unit 704 acquires the position of the object OJ with reference to the distance measuring device 7. Note that the rotation angle position of the motor 79 can be acquired from the information from the detection unit 83 described above.
- the control unit 704 can be configured by, for example, a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input / output port, and the like.
- the function of the control unit 704 is realized by the CPU executing a program stored in the ROM or the like.
- the distance measuring device 7 includes a data communication interface 705 and a motor driver 706. Information on the distance to the object OJ obtained by the control unit 704 is transmitted to the control unit U via the data communication interface 705. *
- the motor driver 706 controls driving of the motor 79.
- the motor 79 is rotationally driven by a motor driver 706 at a predetermined rotational speed.
- the control unit 704 outputs a laser emission pulse every time the motor 79 rotates by a predetermined unit angle.
- the predetermined unit angle is 1 degree.
- the laser light source 71 emits light and the projection light L1 is emitted every time the rotary casing 78 and the light projection mirror 73 rotate by a predetermined unit angle.
- the projection light L ⁇ b> 1 is scanned in a constant rotation direction around the central axis J.
- the projection light L1 may be alternately scanned in the clockwise direction and the counterclockwise direction around the central axis J. *
- the control unit 704 In the distance measurement device 7 of the first embodiment, the control unit 704 always detects the type of signal output from the signal processing unit 703 when detecting the measurement angle range R1 and detecting the reflection unit range R2. Make it different from time. *
- FIG. 8 is a flowchart illustrating a control processing example of the control unit 704 in the distance measuring device 7 according to the first embodiment of the present invention.
- the control unit 704 starts a control operation in response to a distance measurement instruction from the control unit U.
- the control unit 704 confirms whether or not the projection direction of the projection light L1 is the reflection unit range R2 based on the information obtained from the detection unit 83 (step S1).
- the control unit 704 determines whether or not the reflection unit range R2 based on the pulse signal pattern acquired from the detection unit 83.
- the control unit 704 detects that the projection direction of the projection light L1 is the reflection unit range R2. *
- the control unit 704 transmits an instruction signal IS instructing the selector circuit 7034 to select the first pulse signal (step S2).
- the first pulse signal is input to the second timer circuit 7035 in response to the reflected light L2 from the reflecting portion 82.
- the second timer circuit 7035 measures the elapsed time from the rising timing of the reference pulse signal RP to the falling timing of the first pulse signal.
- the first time measuring circuit 7033 measures the elapsed time from the rising timing of the reference pulse signal RP to the rising timing of the first pulse signal.
- the control unit 704 acquires the pulse width of the first pulse signal based on the measurement results output from the first timer circuit 7033 and the second timer circuit 7035 (step S3).
- the reflection part 82 is fixedly arranged in the housing 80 and has a constant reflectance. For this reason, the pulse width of the first pulse signal acquired corresponding to the reflected light L2 from the reflecting unit 82 is normally a constant value.
- the light receiving element 77 is configured by an APD that has a large gain variation due to a temperature change. For this reason, the pulse width of the first pulse signal acquired corresponding to the reflected light L2 from the reflecting unit 82 may fluctuate and may not become a constant value.
- the control unit 704 determines an applied voltage to be applied to the APD based on the pulse width acquired in step S3 (step S4).
- the APD gain fluctuation makes the result of distance calculation, which will be described in detail later, inaccurate. Therefore, in this embodiment, in order to make the APD gain constant, the applied voltage applied to the APD is adjusted using the pulse width as an index. This is to make use of the fact that the APD has a characteristic of changing the multiplication factor according to the applied voltage.
- the control unit 704 applies the applied voltage based on the pulse width acquired in step S3 so that the pulse width of the first pulse signal acquired corresponding to the reflected light L2 from the reflection unit 82 is constant. To decide. *
- the control unit 704 instructs the light receiving unit 702 to apply the applied voltage to the APD (step S5).
- the light receiving unit 702 applies a voltage having a magnitude to the APD in accordance with an instruction from the control unit 704. That is, the control unit 704 performs control processing for the light receiving unit 702. *
- step S5 the control unit 704 confirms whether or not an instruction to end distance measurement is issued from the control unit U (step S6).
- step S6 the control unit 704 ends the process.
- step S6 the control unit 704 returns to step S1 and continues the process.
- step S7 the control unit 704 determines that the projection direction of the projection light L1 is the measurement angle range R1 based on the information obtained from the detection unit 83. It is confirmed whether or not there is (step S7).
- the control unit 704 determines whether or not the measurement angle range R1 is based on the pulse signal pattern acquired from the detection unit 83.
- the control unit 704 detects that the projection direction of the projection light L1 is within the measurement angle range R1.
- the control unit 704 returns to step S1 and continues the process.
- the control unit 704 transmits an instruction signal IS instructing the selector circuit 7034 to select the second pulse signal (step S8).
- the first pulse signal is input to the first timer circuit 7033 and the second pulse signal is input to the second timer circuit 7035 in response to the projection of the projection light L1 to the outside of the apparatus.
- the first timer circuit 7033 measures the elapsed time from the rising timing of the reference pulse signal RP to the rising timing of the first pulse signal.
- the second timing circuit 7035 measures the elapsed time from the rising timing of the reference pulse signal RP to the rising timing of the second pulse signal.
- the control unit 704 calculates the distance to the object OJ based on the information input from the first timer circuit 7033 and the second timer circuit 7035 (step S9).
- the control unit 704 obtains the distance to the object OJ based on the elapsed time from the rising timing of the reference pulse signal RP to the rising timing of the first pulse signal input from the first timing circuit 7033. That is, the control unit 704 calculates the distance by a so-called TOF (Time Of Flight) method.
- TOF Time Of Flight
- the control unit 704 is configured to correct the distance to the object OJ calculated based on the time information obtained from the first time circuit 7033 by using the time information obtained from the second time circuit 7035. It has become.
- the control unit 704 performs the first time measurement based on the correction amount determined by the time difference between the rises of the first pulse signal and the second pulse signal obtained by calculating the time information from the first time measurement circuit 7033 and the second time measurement circuit 7035.
- the distance to the object OJ calculated based on the information from the circuit 7033 is corrected.
- the correction amount can be obtained from, for example, a functional equation or a correction amount table obtained by experiment or simulation.
- a functional expression or a correction amount table indicating the relationship between the rise time difference and the correction amount is stored in the storage unit of the control unit 704.
- the distance to the object OJ calculated based on the information from the first time measuring circuit 7033 is expected to be larger than the original value, and correction to reduce the value is performed.
- control unit 704 When calculating the distance to the object OJ, the control unit 704 performs step S6 described above. *
- the control unit 704 when the measurement angle range R1 is detected, the control unit 704 requests the selector circuit 7034 to output the second pulse signal and calculates the distance to the object OJ.
- the control unit 704 detects the reflection unit range R ⁇ b> 2, the control unit 704 requests the selector circuit 7034 to output the first pulse signal and performs control processing of the light receiving unit 702. *
- the light receiving unit 702 is controlled using the pulse width of the first pulse signal, and the gain of the APD that is easily affected by the temperature change can be kept constant. That is, in this embodiment, it is possible to suppress the signal obtained from the light receiving unit 702 from varying due to a temperature change, and to obtain an accurate distance to the object OJ.
- the first pulse signal and the second pulse signal can be selectively input to the second timing circuit 7035 using the selector circuit 7034, the number of timing circuits can be reduced. it can.
- the apparatus for making the temperature of APD constant is unnecessary, and the distance measuring device 7 can be reduced in size.
- FIG. 9 is a model diagram for explaining the function and effect of the distance measuring device 7.
- the distance measuring device 7 measures the distance to the first object OJ1.
- the first object OJ1 is, for example, a thin object such as a bar or a chair leg, or an object that transmits light such as glass.
- the second object OJ2 is an object that exists behind the first object OJ1 when viewed from the distance measuring device 7. Let D be the distance between the first object OJ1 and the second object OJ2. *
- FIG. 10 is a signal example when the distance D between the first object OJ1 and the second object OJ2 is small.
- signal (a) is an analog signal output from the light receiving unit 702
- signal (b) is a first pulse signal
- signal (c) is a second pulse signal.
- TH1 is a first threshold value
- TH2 is a second threshold value. *
- the projection light L1 of the distance measuring device 7 reaches the second object OJ2 and is reflected. That is, the reflected light L2 from the first object OJ1 and the second object OJ2 is received by the light receiving unit 702. Since the distance D between the first object OJ1 and the second object OJ2 is small, an analog signal derived from the reflected light L2 from the first object OJ1 and an analog signal derived from the reflected light L2 from the second object OJ2 Some overlap. *
- the pulse width Tw1 of the first pulse signal is used in order to keep the APD gain constant. Further, the pulse width Tw1 of the first pulse signal varies according to the reflectance of the object OJ.
- the control unit 704 controls the first timer circuit 7033 according to the correction amount determined by the pulse width Tw1 of the first pulse signal obtained by calculating the timer information from the first timer circuit 7033 and the second timer circuit 7035. It is conceivable to correct the distance to the object OJ calculated based on the information from. In this way, the second comparator 7032 and the selector circuit 7034 are not necessary. *
- the pulse width Tw1 of the first pulse signal obtained by calculating the time information from the first time circuit 7033 and the second time circuit 7035 is It appears to be wider than the original pulse width obtained from the reflected light from one object OJ1. That is, when correction is performed using the pulse width Tw1, the distance of the first object OJ1 is calculated to be longer than the original distance.
- the correction is performed using the time difference Tw2 of the rise of the first pulse signal and the second pulse signal as in the present embodiment, even if the second object OJ2 exists near the first object OJ1.
- the distance can be calculated while suppressing the influence of the second object OJ2. That is, according to the present embodiment, the distance to the first object OJ1 can be accurately calculated.
- the selector circuit 7034 can be omitted.
- the rise of the analog signal output from the light receiving unit 702 corresponding to the reflected light L2 from the reflecting unit 82 becomes very steep. For this reason, it is difficult to accurately calculate the time difference Tw2 between the first pulse signal and the second pulse signal, and it is difficult to use the time difference Tw2 between the first pulse signal and the second pulse signal for controlling the light receiving unit 702. Have difficulty. *
- the distance measuring device 7A of the second embodiment has substantially the same configuration as the distance measuring device 7 of the first embodiment. However, in the distance measuring device 7A of the second embodiment, the control unit 704 determines the type of signal output from the signal processing unit 703 when the measurement angle range R1 is detected and the reflection unit range R2 Different at the time of detection. This is different from the first embodiment. *
- the control unit 704 opens the predetermined distance from the light projecting unit 701 to the object OJ based on the result of the two distance calculations obtained by the two projection lights L1 emitted to the measurement angle range R1. Determine the distance.
- the control unit 704 makes the type of signal output from the signal processing unit 703 different from that at the time of detecting the reflection unit range R2.
- the control unit 704 makes the type of signal output from the signal processing unit 703 different from that at the time of detecting the reflection unit range R2 in one of the two projection lights L1.
- the aforementioned predetermined time which is the projection interval between the two projection lights L1 may be, for example, the time required for the laser light source 71 to perform a certain light emission before the next light emission.
- the control unit 704 determines the distance to the object OJ based on the results of the two distance calculations obtained by the two continuous projection lights L1.
- the predetermined time may be a time required for the movable portion 73 to make one rotation.
- the control unit 704 obtains two pieces of projection light L ⁇ b> 1 ⁇ / b> A projected at a certain angle and two projection lights L ⁇ b> 1 ⁇ / b> B that are projected after the rotation of the rotary casing 78 once.
- the distance to the object OJ is determined based on the result of the distance calculation. According to this, since the directions of the two projection lights used for determining the distance can be made uniform, it is possible to prevent a decrease in angular resolution in the distance measurement. *
- FIG. 11 is a flowchart illustrating an example of control processing of the control unit 704 in the distance measuring device 7A according to the second embodiment of the present invention.
- the control unit 704 starts a control operation in response to a distance measurement instruction from the control unit U.
- the control unit 704 confirms whether or not the projection direction of the projection light L1 is the reflection unit range R2 based on the information obtained from the detection unit 83 (step S11).
- the confirmation process is the same as that in the first embodiment. *
- the control unit 704 performs the same process as in the first embodiment. That is, the control unit 704 transmits an instruction signal IS for instructing selection of the first pulse signal to the selector circuit 7034 (step S12). The control unit 704 acquires the pulse width of the first pulse signal based on the measurement results output from the first timer circuit 7033 and the second timer circuit 7035 (step S13). The control unit 704 determines an applied voltage to be applied to the APD based on the acquired pulse width (step S14). When determining the applied voltage, the control unit 704 instructs the light receiving unit 702 to apply the applied voltage to the APD (step S15). Thereby, even if the temperature change occurs, the gain of the APD can be maintained at a constant value. *
- step S15 the control unit 704 confirms whether or not an instruction to end the distance measurement is issued from the control unit U (step S16).
- step S16 the control unit 704 ends the process.
- step S16 the control unit 704 returns to step S11 and continues the process.
- step S11 When the reflection part range R2 is not detected in step S11 (No in step S11), the control unit 704 determines whether the projection direction of the projection light L1 is the measurement angle range R1 based on the information obtained from the detection unit 83. It is confirmed whether or not (step S17). The confirmation process is the same as that in the first embodiment. When the measurement angle range R1 is not detected (No in step S17), the control unit 704 returns to step S11 and continues the process. *
- control unit 704 When the measurement angle range R1 is detected (Yes in step S17), the control unit 704 performs a twice measurement process for obtaining the distance to the object OJ (step S18). *
- FIG. 12 is a flowchart showing an example of the twice measurement process performed by the distance measuring device 7A according to the second embodiment of the present invention.
- the control unit 704 transmits an instruction signal IS for instructing the selector circuit 7034 to select the first pulse signal (step S21).
- the control unit 704 transmits an instruction signal IS corresponding to the output of the laser light emission pulse serving as a trigger for projecting the first projection light L1A out of the two projection lights L1 used for determining the distance.
- the control unit 704 calculates the first distance D1 to the object OJ based on the information obtained by the first timer circuit 7033 and the second timer circuit 7035 corresponding to the first projection light L1A (step S22). Specifically, the control unit 704 calculates the first distance D1 to the object OJ using the first correction method.
- a first correction amount determined from the pulse width of the first pulse signal obtained by calculating the time information from the first time circuit 7033 and the second time circuit 7035 is a value from the first time circuit 7033.
- the distance to the object OJ calculated based on the information is corrected.
- the first correction amount can be obtained from a functional expression or a correction amount table obtained by experiment or simulation, for example.
- a functional expression or a correction amount table indicating the relationship between the pulse width and the first correction amount is stored in the storage unit of the control unit 704. For example, when the pulse width is small, the object is a low reflectance, and the distance to the object OJ calculated based on the information from the first timing circuit 7033 is expected to be larger than the original value. The For this purpose, correction is performed to reduce the distance to the object OJ calculated based on the information from the first timing circuit 7033.
- control unit 704 transmits an instruction signal IS instructing the selector circuit 7034 to select the second pulse signal (step S23).
- the control unit 704 transmits an instruction signal IS corresponding to the output of the laser light emission pulse serving as a trigger for projecting the second projection light L1B out of the two projection lights L1 used for determining the distance.
- the instruction signal IS transmission process may be performed in parallel with the calculation process of the first distance D1.
- control unit 704 After instructing the selector circuit 7034 to select the second pulse signal, the control unit 704 checks whether or not the second pulse signal is output from the selector circuit 7034 (step S24). For example, the control unit 704 can determine whether or not the second pulse signal is output from the selector circuit 7034 based on the information output from the second timing circuit 7035. *
- the control unit 704 determines that the second pulse signal is output from the selector circuit 7034 (Yes in step S24), the control unit 704 calculates the second distance D2 (step S25).
- the second distance D2 is a distance to the object OJ calculated based on the information acquired by the first timer circuit 7033 and the second timer circuit 7035 corresponding to the second projection light L1B.
- the control unit 704 calculates the second distance D2 to the object OJ by the second correction method using the time difference between the rises of the first pulse signal and the second pulse signal. Note that the second correction method is the same as the correction method described in the first embodiment. *
- the control unit 704 checks whether or not the absolute value of the difference between the two is equal to or less than a predetermined reference value RV (step S26). If the absolute value of the difference between the two is equal to or less than the predetermined reference value RV (Yes in step S26), the control unit 704 determines the average value of the first distance D1 and the second distance D2 as the distance to the object OJ (Ste S27). However, this is merely an example, and the control unit 704 may determine, for example, one of the first distance D1 and the second distance D2 as the distance to the object OJ instead of the average value. *
- the control unit 704 determines whether the first distance D1 is larger than the second distance D2. Is confirmed (step S28). When the first distance D1 is larger than the second distance D2, it is considered that signals having an overlap as shown in FIG. 10 are obtained, and the first distance D1 is expected to be an inappropriate value. . For this reason, when the first distance D1 is larger than the second distance D2 (Yes in step S28), the control unit 704 determines the second distance D2 as the distance to the object OJ (step S29). That is, an accurate distance to the object OJ can be obtained for a thin object OJ or an object OJ that transmits light such as glass. *
- the control unit 704 determines an error and makes it impossible to measure the distance to the object OJ (step S30).
- step S24 If it is determined in step S24 that the second pulse signal is not output, the second distance D2 cannot be calculated using the second correction method. That is, the second distance calculation results in no distance value. For this reason, when it is determined that the second pulse signal is not output in Step S24 (No in Step S24), the control unit 704 determines the first distance D1 as the distance to the object OJ (Step S31). . *
- the first pulse signal is selected by the selector circuit 7034 for the first projection light L1A, and the second pulse by the selector circuit 7034 for the second projection light L1B.
- the pulse signal is selected.
- the second pulse signal is selected by the selector circuit 7034 for the first projection light L1A out of the two projection lights L1, and the first selector circuit 7034 is selected for the second projection light L1B.
- a configuration may be employed in which a pulse signal is selected. *
- the control unit 704 requests the selector circuit 7034 to output the first pulse signal in one of the two projection lights L1 emitted to the measurement angle range R1. To calculate the distance to the object OJ. The control unit 704 calculates the distance to the object OJ by requesting the selector circuit 7034 to output the second pulse signal in the other case of the two projection lights L1 emitted in the measurement angle range R1. When the control unit 704 detects the reflection unit range R ⁇ b> 2, the control unit 704 requests the selector circuit 7034 to output the first pulse signal and performs control processing of the light receiving unit 702. *
- the pulse width of the first pulse signal is obtained and the reflectivity of the object OJ is determined.
- the correct distance to the object OJ can be obtained by correcting the error. This will be supplemented with reference to FIG. *
- FIG. 13 is a diagram for explaining the operational effects of the distance measuring device 7A according to the second embodiment of the present invention.
- a signal (a) is an analog signal output from the light receiving unit 702
- a signal (b) is a first pulse signal.
- TH1 is a first threshold value
- TH2 is a second threshold value.
- the object OJ located far away or the object OJ having low reflectance has a low signal intensity of the analog signal output from the light receiving unit 702. For this reason, the signal level may not exceed the second threshold TH2, and the second pulse signal may not be obtained. In such a case, the distance to the object OJ using the second correction method cannot be calculated. However, in this embodiment, when the second correction method cannot be used, an accurate distance to the object OJ can be calculated using the first correction method. *
- the light receiving unit 702 is controlled using the pulse width of the first pulse signal, and the gain of the APD that is easily affected by the temperature change can be kept constant. That is, in this embodiment, it is possible to suppress the signal obtained from the light receiving unit 702 from varying due to a temperature change, and to obtain an accurate distance to the object OJ.
- the distance measuring device 7B of the third embodiment has substantially the same configuration as the distance measuring device 7A of the second embodiment. That is, also in the distance measuring device 7B of the third embodiment, the control unit 704 has two distances obtained by the two projection lights L1 emitted from the light projecting unit 701 to the measurement angle range R1 with a predetermined time interval. The distance to the object OJ is determined based on the calculation result. In at least one of the two projection lights L1, the control unit 704 makes the type of signal output from the signal processing unit 703 different from that at the time of detecting the reflection unit range R2. *
- control unit 704 of the distance measuring device 7B according to the third embodiment executes the control process shown in FIG. 11 as in the second embodiment.
- the distance measuring device 7B of the third embodiment performs a measurement process twice different from the case of the second embodiment.
- explanation will be made focusing on this difference.
- FIG. 14 is a flowchart showing an example of the twice measurement process performed by the distance measuring device 7B according to the third embodiment of the present invention.
- the control unit 704 transmits an instruction signal IS instructing the selector circuit 7034 to select the second pulse signal (step S41).
- the control unit 704 transmits an instruction signal IS corresponding to the output of the laser light emission pulse serving as a trigger for projecting the first projection light L1A out of the two projection lights L1 used for determining the distance.
- control unit 704 After instructing the selector circuit 7034 to select the second pulse signal, the control unit 704 checks whether or not the second pulse signal is output from the selector circuit 7034 (step S42). For example, the control unit 704 can determine whether or not the second pulse signal is output from the selector circuit 7034 based on the information output from the second timing circuit 7035. *
- Step S43 the control unit 704 performs a first distance calculation (Step S43).
- the first distance calculation is performed based on the information acquired by the first timer circuit 7033 and the second timer circuit 7035 corresponding to the first projection light L1A.
- the control unit 704 calculates the first distance d1 to the object OJ using a second correction method based on the rising time difference between the first pulse signal and the second pulse signal.
- control unit 704 transmits an instruction signal IS for instructing selection of the second pulse signal to the selector circuit 7034 (step S44).
- the control unit 704 transmits an instruction signal IS corresponding to the output of the laser light emission pulse serving as a trigger for projecting the second projection light L1B out of the two projection lights L1 used for determining the distance.
- the instruction signal IS may be transmitted in parallel with the first calculation of the distance d1. Further, since the signal selected by the selector circuit 7034 is not changed, the transmission of the instruction signal IS may be omitted.
- the control unit 704 performs the second distance calculation based on the information obtained by the first timer circuit 7033 and the second timer circuit 7035 corresponding to the second projection light L1B (step S45). Specifically, the control unit 704 calculates the second distance d2 to the object OJ using the second correction method.
- the second pulse signal is obtained with the first projection light L1A
- it is assumed that the second pulse signal is obtained with the second projection light L1B.
- the second pulse signal may not be obtained with the second projection light L1B. Therefore, a configuration for confirming whether or not the second pulse signal is output from the selector circuit 7034 may be added after step S44. In this case, when it is determined that the second pulse signal is not output, for example, an error determination may be performed.
- the control unit 704 determines the average value of the two distances d1 and d2 obtained by the first and second projection lights L1 as the distance to the object OJ (step S46). *
- step S42 When it is determined in step S42 that the second pulse signal has not been output (No in step S42), the control unit 704 cannot perform an accurate correction. Determination is made (step S47). In other words, the first distance calculation result is a result that there is no distance value. *
- control unit 704 transmits an instruction signal IS instructing the selector circuit 7034 to select the first pulse signal (step S47).
- the control unit 704 transmits an instruction signal IS corresponding to the output of the laser light emission pulse serving as a trigger for projecting the second projection light L1B out of the two projection lights L1 used for determining the distance.
- the control unit 704 performs the second distance calculation based on the information obtained by the first timer circuit 7033 and the second timer circuit 7035 corresponding to the second projection light L1B (step S49). Specifically, the control unit 704 calculates the second distance d2 to the object OJ using the first correction method based on the pulse width of the first pulse signal. Note that the first distance calculation result (distance d1) has no numerical value due to a measurement error. *
- the control unit 704 determines the distance d2 obtained corresponding to the second projection light L1B as the distance to the object OJ. (Step S50). *
- the control unit 704 causes the selector circuit 7034 to change the first projection light L1A temporally ahead of the two projection lights L1 emitted to the measurement angle range R1. It requests the output of a two-pulse signal and calculates the distance to the object OJ.
- the control unit 704 selects the selector circuit 7034 according to the measurement result using the first projection light L1A. Then, it is determined which output of the first pulse signal and the second pulse signal is required, and the distance to the object OJ is calculated.
- the control unit 704 detects the reflection unit range R ⁇ b> 2
- the control unit 704 requests the selector circuit 7034 to output the first pulse signal and performs control processing of the light receiving unit 702.
- an accurate distance to the object OJ can be obtained by the second correction method using the rise time difference between the first pulse signal and the second pulse signal. For example, even when the object OJ that is far away or the object OJ with low reflectivity is targeted and the second pulse signal cannot be obtained, the pulse width of the first pulse signal is obtained and the error due to the reflectivity of the object OJ is corrected. Thus, an accurate distance to the object OJ can be obtained.
- the light receiving unit 702 is controlled using the pulse width of the first pulse signal, and the gain of the APD that is easily affected by the temperature change can be kept constant. That is, also in this embodiment, the signal obtained from the light receiving unit 702 can be prevented from varying due to a temperature change, and an accurate distance to the object OJ can be obtained.
- the moving body may be a device other than a transportation application such as a cleaning robot or a monitoring robot.
- the moving body may be a vehicle such as an automobile.
- the present invention can be used, for example, in an automated guided vehicle that transports luggage.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
本発明は、装置の大型化を抑制しながらガラスおよび細い物体を含む様々な種類の物体までの距離を精度よく求めることができる距離測定装置を提供することを目的とする。本発明の距離測定装置は、投射光(L1)を出射する投光部(701)と、前記投射光の向きを変動させる可動部(73)と、前記投射光の向きの変動範囲の一部に設けられる反射部(82)と、前記投射光の向きを検出する検出部(83)と、前記投射光が装置外部の物体(OJ)又は前記反射部で反射されて生じる反射光(L2)を受光して電気信号に変換する受光部(702)と、前記電気信号を処理する信号処理部(703)と、前記信号処理部から信号が入力され、前記物体までの距離の演算及び前記受光部の制御処理を行う制御部(704)と、を有する。前記制御部(704)は、前記検出部からの情報に基づいて、前記投射光が装置外部に投射される計測角度範囲(R1)に向いているか、前記反射部に投射される反射部範囲(R2)に向いているかを検出し、前記信号処理部(703)から出力される信号の種類を、常に又は所定条件の場合に、前記計測角度範囲(R1)の検出時と前記反射部範囲(R2)の検出時とで異ならせる。
Description
本発明は、距離測定装置および移動体に関する。
特開2011-215005号公報には、走査式測距装置と被測定物との間に障害物が存在する場合であっても、被測定物に対する距離を正確に算出可能な走査式測距装置が開示される。走査式測距装置は、微分処理部と、演算部と、波形判定部とを備えている。
微分処理部は、走査部で周期的に偏向走査されたパルス状の測定光に対応して、受光部で検出された被測定物からの反射光に対応する反射信号を微分する。演算部は、一次微分された一次微分反射信号の立上り時期を基準に当該一次微分反射信号の重心位置を算出し、当該重心位置に対応する時期を反射光の検出時期として求め、測定光の出力時期と当該反射光の検出時期との時間差に基づいて被測定物までの距離を算出して出力する。波形判定部は、微分処理部により反射信号が一次微分された一次微分反射信号の立上り及び立下り特性と、反射信号が二次微分された二次微分反射信号の立上り特性とに基づいて、反射光が複数の被測定物からの反射光が重畳した反射光であるか否かを判定する。
特開2011-215005号公報に開示される構成では、微分処理部が反射信号に対して一次および二次の微分処理を行う。このために、受光部から出力された反射信号を処理する信号処理装置に対して、非常に高速に微分処理を行うことができる構成が求められる。
ところで、受光部に用いられるアバランシェフォトダイオード(以下、APDと記載する)は、温度によって増倍率が大きく変動する。増倍率の変動は、物体までの距離測定の精度を低下させる可能性がある。増倍率の変動を抑制するため、例えば、装置内の温度を一定に保つことが考えられる。しかし、装置内の温度を一定に保とうとすると、例えば装置が大型化したり、距離測定装置の製造コストが上昇したりする。
本発明は、装置の大型化を抑制しながらガラスおよび細い物体を含む様々な種類の物体までの距離を精度よく求めることができる技術を提供することを目的とする。
本発明の例示的な距離測定装置は、投射光を出射する投光部と、前記投射光の向きを変動させる可動部と、前記投射光の向きの変動範囲の一部に設けられる反射部と、前記投射光の向きを検出する検出部と、前記投射光が装置外部の物体又は前記反射部で反射されて生じる反射光を受光して電気信号に変換する受光部と、前記電気信号を処理する信号処理部と、前記信号処理部から信号が入力され、前記物体までの距離の演算及び前記受光部の制御処理を行う制御部と、を有する。前記制御部は、前記検出部からの情報に基づいて、前記投射光が装置外部に投射される計測角度範囲に向いているか、前記反射部に投射される反射部範囲に向いているかを検出し、前記信号処理部から出力される信号の種類を、常に又は所定条件の場合に、前記計測角度範囲の検出時と前記反射部範囲の検出時とで異ならせる。
また、本発明の例示的な移動体は、上記構成の距離測定装置を有する。
例示的な本発明は、装置の大型化を抑制しながらガラスおよび細い物体を含む様々な種類の物体までの距離を精度よく求めることができる。
以下に本発明の例示的な実施形態について図面を参照して説明する。ここでは、距離測定装置がレーザレンジファインダーである場合を例として説明する。また、距離測定装置を有する移動体が、荷物の運搬に用いられる無人搬送車である場合を例として説明する。無人搬送車は、一般的にAGV(Automatic Guided Vehicle)とも呼称される。
また、図1に示す移動体15の駆動モータ4L、4RのシャフトSHが延びる方向を左右方向とする。なお、駆動モータ4L、4Rは駆動輪5L、5Rを回転させる。移動体15が走行する走行面と平行で、左右方向に直交する方向を前後方向とする。前後方向および左右方向と直交する方向を上下方向とする。ただし、これらの方向は単に説明のために用いられる名称であって、これらの方向の定義によって、本発明の距離測定装置および移動体の使用時の向きを限定する意図はない。
<1.移動体の構成> 図1は、本発明の実施形態に係る移動体15の概略斜視図である。図2は、本発明の実施形態に係る移動体15の概略側面図である。図3は、本発明の実施形態に係る移動体15を上から見た概略平面図である。移動体15は、二輪駆動により自律的に走行し、荷物を運搬する。移動体15は、その場において回転することもできる。
図1から図3に示すように、移動体15は距離測定装置7を有する。距離測定装置7は、レーザ光を走査して計測対象となる物体までの距離を計測する装置である。距離測定装置7は、例えば、移動体15が自己の位置を特定する自己位置同定を行うために用いられる。また、距離測定装置7はマップ情報作成に用いられる。マップ情報は、移動体15の自己位置同定を行うために生成される情報であり、移動体15が走行する場所における静止物の位置情報である。移動体15の走行場所が例えば倉庫である場合には、静止物は倉庫の壁、倉庫内に配列された棚などである。
距離測定装置7は、後述のように、様々な種類の物体までの距離を正確に求めることができる。このために、移動体15は、自己位置同定、および、マップ情報の生成を正確に行うことができる。距離測定装置7自体の詳細な構成については後述する。
図1から図3に示すように、移動体15は、車体1と、荷台2と、支持部3L、3Rと、駆動モータ4L、4Rと、駆動輪5L、5Rと、従動輪6F、6Rとを更に有する。
車体1は、基部1Aと台部1Bとを有する。板状の台部1Bは、直方体状の基部1Aの後方上面に固定される。台部1Bは、前方に突出する三角形部Trを有する。板状の荷台2は、台部1Bの上面に固定される。荷台2の上面には、荷物を載置することができる。荷台2は、台部1Bよりも前方まで延びる。これにより、基部1Aの前方と荷台2の前方との間には隙間Sが構成される。距離測定装置7は隙間Sに配置される。距離測定装置7は、三角形部Trの前方に突出する頂点の前方に位置する。
支持部3Lは、基部1Aの左方側に固定され、駆動モータ4Lを支持する。駆動モータ4Lは、一例としてACサーボモータにより構成される。駆動モータ4Lは、不図示の減速機を内蔵する。駆動輪5Lは、駆動モータ4Lの回転するシャフトSHに固定される。
支持部3Rは、基部1Aの右方側に固定され、駆動モータ4Rを支持する。駆動モータ4Rは、一例としてACサーボモータにより構成される。駆動モータ4Rは、不図示の減速機を内蔵する。駆動輪5Rは、駆動モータ4Rの回転するシャフトSHに固定される。
従動輪6Fは、基部1Aの前方側に固定される。従動輪6Rは、基部1Aの後方側に固定される。従動輪6F、6Rは、駆動輪5L、5Rの回転に応じて受動的に回転する。当該回転とは別に、従動輪6F、6Rは、上下方向に延びる軸を中心として回転することができる。従動輪6F、6Rは、いわゆる自在式のキャスタで構成できる。
駆動モータ4L、4Rにより駆動輪5L、5Rを回転駆動することで、移動体15を前進および後進させることができる。また、駆動輪5L、5Rの回転速度に差を設けるよう制御することで、移動体15を右回りまたは左回りに回転させ、方向転換させることができる。
基部1Aは、内部に制御ユニットU、バッテリーB、および通信部Tを収容する。制御ユニットUは、距離測定装置7、駆動モータ4L、4R、および通信部T等に、有線又は無線により通信可能に接続される。
制御ユニットUは、距離測定装置7との間で種々の信号の通信を行う。制御ユニットUは、駆動モータ4L、4Rの駆動制御も行う。通信部Tは、外部のタブレット端末(不図示)との間で、例えばBluetooth(登録商標)に準拠する通信を行う。これにより、タブレット端末により移動体15を遠隔操作することができる。バッテリーBは、例えばリチウムイオン電池により構成され、距離測定装置7、制御ユニットU、通信部T等の各部に電力を供給する。
上述のマップ情報は、例えばタブレット端末により移動体15の手動操作を行うことによって生成される。タブレット端末の操作に応じた操作信号が通信部Tを介して制御ユニットUに送信されることで、制御ユニットUは移動体15の走行を制御する。制御ユニットUは、距離測定装置7から入力される測距データと、移動体15の位置情報とに基づいて、計測した対象物体の位置をマップ情報として特定する。移動体15の位置は、例えば、サーボモータによって構成される駆動モータ4L、4Rの駆動情報に基づいて特定される。
<2.距離測定装置の概要> 図4は、本発明の実施形態に係る距離測定装置7の概略垂直断面図である。図4に示すように、距離測定装置7は、レーザ光源71と、コリメートレンズ72と、投光ミラー73と、受光レンズ74と、受光ミラー75と、波長フィルタ76と、受光素子77と、回転筐体78と、モータ79と、筐体80と、基板81とを有する。
筐体80は、外観視で上下方向に延びる略円柱状であり、内部空間にレーザ光源71等の各種の要素を収容する。レーザ光源71は、筐体80の上壁の下面に固定される基板81に実装される。レーザ光源71は、例えば赤外領域のレーザ光を下方に出射する。
コリメートレンズ72は、レーザ光源71の下方に配置される。コリメートレンズ72は、レーザ光源71から出射されるレーザ光を平行光として下方に出射する。コリメートレンズ72の下方には、投光ミラー73が配置される。
投光ミラー73は、当該ミラーの下側に配置される回転筐体78に固定される。回転筐体78は、当該筐体の下側に配置されるモータ79のシャフト79Aに固定される。シャフト79Aは、上下方向に延びる中心軸Jを中心として回転する。すなわち、回転筐体78は、モータ79によって中心軸J周りに回転される。回転筐体
78の回転に伴って、投光ミラー73は中心軸Jを中心として回転する。換言すると、投光ミラー73は可動部である。以下、投光ミラー73のことを可動部73と記載することがある。投光ミラー73は、コリメートレンズ72から出射されるレーザ光を反射して投射光L1として出射する。投光ミラー73は上記のように中心軸Jを中心として回転するので、投射光L1は中心軸J周りの360度の範囲で出射方向を変えながら投光ミラー73から出射される。換言すると、距離測定装置7は、投射光L1の向きを変動させる可動部73を有する。本実施形態では、可動部73は、投射光L1の向きを360度の範囲にわたって変動させる。ただし、可動部73が投射光L1の向きを変動させる範囲は、360度の範囲より小さくてもよい。
78の回転に伴って、投光ミラー73は中心軸Jを中心として回転する。換言すると、投光ミラー73は可動部である。以下、投光ミラー73のことを可動部73と記載することがある。投光ミラー73は、コリメートレンズ72から出射されるレーザ光を反射して投射光L1として出射する。投光ミラー73は上記のように中心軸Jを中心として回転するので、投射光L1は中心軸J周りの360度の範囲で出射方向を変えながら投光ミラー73から出射される。換言すると、距離測定装置7は、投射光L1の向きを変動させる可動部73を有する。本実施形態では、可動部73は、投射光L1の向きを360度の範囲にわたって変動させる。ただし、可動部73が投射光L1の向きを変動させる範囲は、360度の範囲より小さくてもよい。
筐体80は上下方向の途中位置に、周方向に延びる透過部801を有する。透過部801は、透光性の樹脂等から構成される。本実施形態では、透過部801は、筐体80の全周に設けられず、周方向の一部の範囲に設けられる。このため、投光ミラー73で反射された投射光L1は、筐体80の周方向の限られた範囲から筐体80の外部に出射される。
投光ミラー73で反射され透過部801を透過した投射光L1は、隙間Sを通り、移動体15より外側へ出射される。本実施形態では、距離測定装置7がレーザ光を装置外部に出射する計測角度範囲R1は、図3に示すように、一例として中心軸J周りの270度の範囲である。270度の範囲は、より具体的には、前方を0度として、前方から時計回り方向に135度回転した範囲と、前方から反時計回り方向に135度回転した範囲とを合わせた範囲である。投射光L1は、少なくとも中心軸J周り270度の範囲で透過部801を透過する。なお、後方の透過部801が配置されない範囲では、投射光L1は、筐体80の外部に出射されない。
受光ミラー75は、投光ミラー73より下方の位置で回転筐体78に固定される。受光レンズ74は、回転筐体78の側面に固定される。波長フィルタ76は、受光ミラー75より下方に位置し、回転筐体78に固定される。受光素子77は、波長フィルタ76より下方に位置し、回転筐体78に固定される。
距離測定装置7から外部に出射された投射光L1は、計測対象となる物体で反射されて拡散光となる。拡散光の一部は、反射光L2として隙間Sおよび透過部801を透過して受光レンズ74に入射される。受光レンズ74を透過した反射光L2は、受光ミラー75へ入射され、受光ミラー75により下方へ反射される。受光ミラー75で反射された反射光L2は、波長フィルタ76を透過して受光素子77により受光される。波長フィルタ76は、赤外領域の光を透過させる。受光素子77は、受光した光を光電変換により電気信号に変換する。
モータ79により回転筐体78が回転されると、受光レンズ74、受光ミラー75、波長フィルタ76、および受光素子77は、投光ミラー73とともに回転される。なお、モータ79は、不図示の配線によって基板81に接続され、基板81から通電されることで回転駆動される。モータ79は、回転筐体78を所定回転速度で回転させる。例えば、回転筐体78は、3000rpm程度で回転される。
図3に示すように、距離測定装置7における測定範囲Rsは、中心軸J回りを所定半径にて計測角度範囲R1(本実施形態では270度)だけ回転して形成される円弧に囲まれた範囲である。計測角度範囲R1内で投射光L1が出射され、測定範囲Rs内に位置する物体で投射光L1が反射されると、反射光L2が透過部801を透過して受光素子77に入射される。すなわち、距離測定装置7は物体までの距離を取得することができる。
距離測定装置7は、反射部82と検出部83とを更に有する。反射部82は、投射光L1の向きの変動範囲の一部に設けられる。すなわち、投射光L1は、反射部82に入射することがある。本実施形態では、投射光L1の向きの変動範囲は、上述のように360度の範囲であり、反射部82は、中心軸Jを中心とする360度の範囲の一部の範囲に設けられる。
反射部82は、少なくとも表面が反射率の高い素材で構成される。反射部82は、筐体80の内部に設けられ、透過部801と対向する位置に固定される。換言すると、反射部82は、筐体80の内部後方に配置される。反射部82は、周方向において、筐体80の透過部801が設けられない範囲の全範囲に設けられてもよいし、一部の範囲に設けられてもよい。反射部82に入射された投射光L1は、反射部82で反射される。反射部82で反射された反射光L2の少なくとも一部は、受光レンズ74、受光ミラー75、および、波長フィルタ76を介して受光素子77に入射される。
検出部83は投射光L1の向きを検出する。詳細には、検出部83は投射光L1の向きを検出するために設けられるセンサである。本実施形態においては、検出部83は、エンコーダ831とセンサ部832とを有する。
図5は、本発明の実施形態に係る距離測定装置7が有するエンコーダ831の構成を示す平面図である。エンコーダ831は、中心軸Jを中心として回転可能に設けられる。本実施形態では、図4および図5に示すように、エンコーダ831は円環状の板状部材である。エンコーダ831は、中心軸Jを中心として回転筐体78の径方向外側に位置し、回転筐体78に固定される。すなわち、エンコーダ831は、回転筐体78の回転とともに回転する。本実施形態では、エンコーダ831は受光レンズ74より下側で回転筐体78に固定される。
図5に示すように、エンコーダ831は複数のスリット833を有する。複数のスリット833は、中心軸Jを中心とする周方向に配列される。複数のスリット833は、中心軸Jを中心として、エンコーダ831の径方向外方に配置される。本実施形態では、各スリット833の形状は矩形状である。ただし、スリット833の形状は、例えば円形状または楕円状等、他の形状であってよい。
センサ部832は、スリット833の位置を検出する。センサ部832は筐体80の内部に固定される。センサ部832は、例えばフォトインタラプタ等で構成することができる。センサ部832は、エンコーダ831の回転により、スリット833の有無に応じてパルス状の信号を出力する。例えば、センサ部832は、スリット833が設けられる位置でHighレベル信号を出力し、スリット833が設けられない位置でLowレベル信号を出力する。すなわち、Highレベル信号の検出により、スリット833を検出することができる。
パルス状の信号の解析により、回転筐体78の向きがわかる。すなわち、パルス状の信号の解析により、投射光L1の方向を検出することができる。検出部83をエンコーダ831と、フォトインタラプタ等のセンサ部832とで構成することによって、検出部83の小型化を図ることができ、距離測定装置7の大型化を抑制することができる。
複数のスリット833は、詳細には、第1スリット833aと第2スリット833bとを有する。第1スリット833aは、中心軸Jを中心とする周方向に第1間隔θ1をあけて複数並び、計測角度範囲R1を検出する。計測角度範囲R1は、上述のように、投射光L1が装置7の外部に投射される範囲である。計測角度範囲R1に細かい間隔で複数の第1スリット833aが設けられることによって、投射光L1が計測角度範囲R1内のどの向きに向いているかを細かく検出することができる。
第2スリット833bは反射部範囲R2を検出する。反射部範囲R2は、投射光L1が反射部82に投射される範囲である。第2スリット833bは、複数の第1スリット833aのうちの端部に配置される第1スリット833aに対して、中心軸Jを中心とする周方向に第1間隔θ1とは異なる第2間隔θ2をあけて配置される。
本実施形態では、第2スリット833bは、複数の第1スリット833aのうちの周方向の両端部に配置される第1スリット833aに対して第1間隔θ1より大きな第2間隔θ2をあけて配置される。本実施形態によれば、隣り合う第1スリット833a間の間隔θ1と、隣り合う第1スリット833aと第2スリット833bとの間隔θ2とが異なるために、計測角度範囲R1と反射部範囲R2とを容易に区別することができ、投射光L1の方向を誤検出することを抑制できる。
なお、第2スリット833bは複数設けられることが好ましく、本実施形態では、第2スリット833bの数は複数である。第2スリット833bの数を複数にすることによって、反射部範囲R2を精度良く検出することができる。第2スリット833bが複数設けられる場合において、隣り合う第2スリット833bの間隔は、第1間隔θ1と同じにすることが好ましい。これにより、レーザ光源71の制御処理が複雑になることを避けられる。
また、以上では、第1スリット833aと第2スリット833bとは同一形状かつ同一サイズとした。ただし、これは例示であり、第1スリット833aと第2スリット833bとは、例えば異なる形状又は異なるサイズにされてよい。例えば、第1スリット833aと第2スリット833bとの周方向の幅が異なる構成とされることによって、パルス状の信号の解析により、投射光L1が計測角度範囲R1に向いているか、反射部範囲R2に向いているかを検出することができる。また、このような構成では、スリット833は、エンコーダ831の周方向の全周にわたって等間隔に配列されてもよい。
次に、距離測定装置7の電気的構成について説明する。図6は、本発明の実施形態に係る距離測定装置7の電気的構成を示すブロック図である。なお、図6には、距離測定装置7によって距離測定が行われる物体OJ、および、上述の反射部82も併せて示されている。図6に示すように、距離測定装置7は、投光部701と、受光部702と、信号処理部703と、制御部704とを有する。
投光部701は、投射光L1を出射する。詳細には、投光部701は、レーザ光源71と、レーザ光源71を駆動する不図示のレーザドライバとを有する。レーザドライバは、基板81に実装される。投光部701は、制御部704から出力されるレーザ発光パルスをトリガとしてレーザ光を発光する。投光部701は、投射光としてパルス光を出射する。
受光部702は、投射光L1が装置外部の物体OJ又は反射部82で反射されて生じる反射光L2を受光して電気信号に変換する。受光部702は、受光素子77を有する。本実施形態では、受光素子77は、一例としてAPDで構成される。受光部702は、受光素子77から出力される信号を増幅する増幅回路を有することが好ましい。
信号処理部703は、受光部702から出力される電気信号を処理する。本実施形態では、信号処理部703は、アナログ信号を処理する回路と、デジタル信号を処理する回路とを含む。図7は、本発明の実施形態に係る距離測定装置7の信号処理部703の構成を示すブロック図である。図7に示すように、信号処理部703は、第1コンパレータ7031と、第2コンパレータ7032と、第1計時回路7033と、セレクタ回路7034と、第2計時回路7035とを有する。
第1コンパレータ7031は、受光部702から出力される電気信号を第1閾値と比較して第1パルス信号を生成する。本実施形態では、受光部702から出力される電気信号はアナログ信号である。第1コンパレータ7031は、入力されたアナログ信号の信号レベルを第1閾値と比較し、比較結果に応じてHighレベルまたはLowレベルとしたデジタル信号を生成する。入力されたアナログ信号の信号レベルが第1閾値を超えた場合にHighレベルになり、第1コンパレータ7031から第1パルス信号が出力される。
第2コンパレータ7032は、受光部702か
ら出力される電気信号を第1閾値と異なる第2閾値と比較して第2パルス信号を生成する。本実施形態では、第2閾値は第1閾値より大きい。第2コンパレータ7032は、入力されたアナログ信号の信号レベルを第2閾値と比較し、比較結果に応じてHighレベルまたはLowレベルとしたデジタル信号を生成する。入力されたアナログ信号の信号レベルが第2閾値を超えた場合にHighレベルになり、第2コンパレータ7032から第2パルス信号が出力される。
ら出力される電気信号を第1閾値と異なる第2閾値と比較して第2パルス信号を生成する。本実施形態では、第2閾値は第1閾値より大きい。第2コンパレータ7032は、入力されたアナログ信号の信号レベルを第2閾値と比較し、比較結果に応じてHighレベルまたはLowレベルとしたデジタル信号を生成する。入力されたアナログ信号の信号レベルが第2閾値を超えた場合にHighレベルになり、第2コンパレータ7032から第2パルス信号が出力される。
第1計時回路7033には、第1パルス信号が入力される。第1計時回路7033は、いわゆるTDC(Time to digital Converter)で構成される。第1計時回路7033には、制御部704からレーザ発光パルスと同期した基準パルス信号RPが入力される。第1計時回路7033は、基準パルス信号RPの立ち上りタイミングから第1パルス信号の立ち上りタイミングまでの経過時間を計測する。第1計時回路7033は、計測結果を制御部704に出力する。第1計時回路7033は、第1計時情報を含む出力信号を制御部704に出力する。
セレクタ回路7034は、第1パルス信号および第2パルス信号を入力可能に設けられ、いずれか一方のパルス信号を出力する。本実施形態では、セレクタ回路7034には、制御部704から指示信号ISが入力される。セレクタ回路7034は、指示信号ISに基づいて、第1パルス信号又は第2パルス信号を第2計時回路7035に出力する。
第2計時回路7035には、セレクタ回路7034から出力された信号が入力される。第2計時回路7035は、いわゆるTDCである。第2計時回路7035にも基準パルス信号RPが入力される。第2計時回路7035は、セレクタ回路7034から第1パルス信号が入力された場合、基準パルス信号RPの立ち上がりタイミングから第1パルス信号の立ち下りタイミングまでの経過時間を計測する。第2計時回路7035は、セレクタ回路7034から第2パルス信号が入力された場合、基準パルス信号RPの立ち上がりタイミングから第2パルス信号の立ち上がりタイミングまでの経過時間を計測する。第2計時回路7035は、計測結果を制御部704に出力する。第2計時回路7035は、第2計時情報を含む出力信号を制御部704に出力する。
制御部704は、距離測定装置7の全体を制御する。制御部704は、信号処理部703から信号が入力される。制御部704は、物体OJまでの距離の演算および受光部702の制御処理を行う。また、制御部704は検出部83から信号が入力される。制御部704は、検出部83からの情報に基づいて、投射光L1が装置外部に投射される計測角度範囲R1に向いているか、反射部82に投射される反射部範囲R2に向いているかを検出する。詳細には、制御部704には、検出部83から上述のパルス状の信号が入力される。制御部704は、パルス状の信号を監視することで投射光L1の向きを検出する。
本実施形態では、制御部704は、検出部83から取得される情報も加味して、物体OJまでの距離の演算処理および受光部702の制御処理を行う。詳細には、制御部704は、投射光L1が計測角度範囲R1に出射されている場合に信号処理部703から得られる情報に基づいて、物体OJの反射率等を考慮した補正を行い、物体OJまでの距離を求める。制御部704は、投射光L1が反射部範囲R2に出射されている場合に信号処理部703から得られる情報に基づいて、受光部702に印加される電圧を制御する。
また、本実施形態では、制御部704は、信号処理部703から出力される信号の種類を、常に又は所定条件の場合に、計測角度範囲R1の検出時と反射部範囲R2の検出時とで異ならせる。これによれば、計測角度範囲R1の検出時と反射部範囲R2の検出時とで制御部704に入力される信号の種類を変えることができるために、制御部704は距離演算処理と、受光部702の制御処理とのそれぞれの場面に対して適切な信号を取得することができる。受光部702を適切に制御することによって、受光部702から信号処理部703を介して適切な信号を制御部704に入力することができ、距離演算を正確に行える。また、本構成によれば、制御部704からの指示によって、信号処理部703から出力される信号の種類を切り替えることができるために、信号の切替えのために信号処理部703に部品を追加することを避けられ、製造コストの上昇を抑制できる。本構成の詳細については後述する。
また、本実施形態では、制御部704は、レーザ発光パルスを出力したタイミングでのモータ79の回転角度位置と、レーザ発光パルスに対応して得られた距離情報とに基づいて、距離測定装置7を基準とする直交座標系上の位置情報を生成する。すなわち、制御部704は、距離測定装置7を基準とした物体OJの位置を取得する。なお、モータ79の回転角度位置は上述の検出部83からの情報によって取得できる。
制御部704は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入出力ポートなどを有するマイクロコンピュータで構成することができる。制御部704の機能は、CPUがROM等に記憶されたプログラムを実行することによって実現される。
この他、距離測定装置7は、データ通信インタフェース705と、モータドライバ706とを有する。制御部704で得られた物体OJまでの距離情報等は、データ通信インタフェース705を介して制御ユニットUに送信される。
モータドライバ706は、モータ79の駆動を制御する。モータ79は、モータドライバ706によって所定の回転速度で回転駆動される。制御部704は、モータ79が所定単位角度回転するたびにレーザ発光パルスを出力する。例えば、所定単位角度は1度とされる。これにより、回転筐体78および投光ミラー73が所定単位角度回転するたびにレーザ光源71が発光し、投射光L1が出射される。本実施形態では、投射光L1は、中心軸Jを中心とする一定の回転方向に走査される。ただし、投射光L1は、中心軸Jを中心とする時計回り方向と反時計回り方向とに交互に走査されてもよい。
<3.距離測定装置の詳細> 次に、以上のように構成される距離測定装置7について、第1実施形態、第2実施形態、および、第3実施形態に分けて更に詳細に説明する。
<3-1.第1実施形態> 第1実施形態の距離測定装置7では、制御部704は、信号処理部703から出力される信号の種類を、常に、計測角度範囲R1の検出時と反射部範囲R2の検出時とで異ならせる。
図8は、本発明の第1実施形態に係る距離測定装置7における、制御部704の制御処理例を示すフローチャートである。例えば、制御部704は、制御ユニットUから距離測定の指示によって制御動作を開始する。まず、制御部704は、検出部83から得られる情報に基づいて、投射光L1の投射方向が反射部範囲R2であるか否かを確認する(ステップS1)。制御部704は、検出部83から取得されるパルス信号のパターンに基づいて反射部範囲R2であるか否かを判断する。制御部704は、第2スリット833bのパルス信号を検出すると、投射光L1の投射方向が反射部範囲R2であることを検出する。
反射部範囲R2が検出された場合(ステップS1でYes)、制御部704は、セレクタ回路7034に第1パルス信号の選択を指示する指示信号ISを送信する(ステップS2)。これにより、反射部82からの反射光L2に対応して、第2計時回路7035に第1パルス信号が入力される。第2計時回路7035は、基準パルス信号RPの立ち上りタイミングから第1パルス信号の立ち下がりタイミングまでの経過時間を計測する。なお、第1計時回路7033は、基準パルス信号RPの立ち上りタイミングから第1パルス信号の立ち上りタイミングまでの経過時間を計測する。
制御部704は、第1計時回路7033および第2計時回路7035から出力される計測結果により、第1パルス信号のパルス幅を取得する(ステップS3)。反射部82は、筐体80内に固定配置され、反射率が一定である。このために、反射部82からの反射光L2に対応して取得される第1パルス信号のパルス幅は、通常は一定の値になる。しかし、本実施形態では、受光素子77が、温度変化によるゲインの変動が大きいAPDで構成される。このために、反射部82からの反射光L2に対応して取得される第1パルス信号のパルス幅が変動し、一定の値にならないことがある。
制御部704は、ステップS3で取得したパルス幅に基づいてAPDに印加する印加電圧を決定する(ステップS4)。APDのゲイン変動は、詳細は後述する距離演算の結果を不正確にする。そこで、本実施形態では、APDのゲインを一定にするために、パルス幅を指標にして、APDに印加する印加電圧を調整する。これは、APDが印加電圧に応じて増倍率を変化させる特性を有することを利用する趣旨である。詳細には、制御部704は、反射部82からの反射光L2に対応して取得される第1パルス信号のパルス幅が一定になるように、ステップS3で取得したパルス幅に基づいて印加電圧を決定する。
制御部704は、印加電圧を決定すると、受光部702に当該印加電圧をAPDに印加することを指示する(ステップS5)。これにより、受光部702は、制御部704の指示にしたがって大きさの電圧をAPDに印加する。すなわち、制御部704は受光部702の制御処理を行う。
ステップS5の後、制御部704は、制御ユニットUから距離測定を終了する指示が出ているか否かを確認する(ステップS6)。距離測定を終了する指示が出ている場合(ステップS6でYes)、制御部704は処理を終了する。一方、距離測定を終了する指示が出ていない場合(ステップS6でNo)、制御部704はステップS1に戻って処理を継続する。
ところで、ステップS1で反射部範囲R2が検出されなかった場合(ステップS1でNo)、制御部704は、検出部83から得られる情報に基づいて、投射光L1の投射方向が計測角度範囲R1であるか否かを確認する(ステップS7)。制御部704は、検出部83から取得されるパルス信号のパターンに基づいて計測角度範囲R1であるか否かを判断する。制御部704は、第1スリット833aのパルス信号を検出すると、投射光L1の投射方向が計測角度範囲R1であることを検出する。計測角度範囲R1が検出されない場合(ステップS7でNo)、制御部704はステップS1に戻って処理を続ける。
計測角度範囲R1が検出された場合(ステップS7でYes)、制御部704は、セレクタ回路7034に第2パルス信号の選択を指示する指示信号ISを送信する(ステップS8)。これにより、装置外部への投射光L1の投射に対応して、第1計時回路7033に第1パルス信号が入力され、第2計時回路7035に第2パルス信号が入力される。第1計時回路7033は、基準パルス信号RPの立ち上りタイミングから第1パルス信号の立ち上りタイミングまでの経過時間を計測する。第2計時回路7035は、基準パルス信号RPの立ち上りタイミングから第2パルス信号の立ち上りタイミングまでの経過時間を計測する。
制御部704は、第1計時回路7033および第2計時回路7035から入力された情報に基づいて物体OJまでの距離を算出する(ステップS9)。制御部704は、第1計時回路7033から入力された、基準パルス信号RPの立ち上りタイミングから第1パルス信号の立ち上りタイミングまでの経過時間に基づいて物体OJまでの距離を求める。すなわち、制御部704は、いわゆるTOF(Time Of Flight)方式によって距離を算出する。
ただし、例えば物体OJごとの光の反射率の違いによって、物体OJまでの距離が同じであっても、受光部702に
おける受光量が変動する。受光量が小さいと、第1パルス信号の立ち上がりのタイミングが遅くなる。このために、第1計時回路7033から入力された計時情報のみから物体OJまでの距離を算出すると、物体OJまでの距離が不正確になることがある。そこで、本実施形態では、制御部704は、第1計時回路7033から得られる計時情報に基づいて算出された物体OJまでの距離を、第2計時回路7035から得られる計時情報によって補正する構成になっている。
おける受光量が変動する。受光量が小さいと、第1パルス信号の立ち上がりのタイミングが遅くなる。このために、第1計時回路7033から入力された計時情報のみから物体OJまでの距離を算出すると、物体OJまでの距離が不正確になることがある。そこで、本実施形態では、制御部704は、第1計時回路7033から得られる計時情報に基づいて算出された物体OJまでの距離を、第2計時回路7035から得られる計時情報によって補正する構成になっている。
制御部704は、第1計時回路7033および第2計時回路7035からの計時情報を演算して得られた第1パルス信号と第2パルス信号との立ち上がりの時間差により決まる補正量によって、第1計時回路7033からの情報に基づいて算出された物体OJまでの距離を補正する。補正量は、例えば、実験またはシミュレーションによって得られた関数式または補正量テーブルから求めることができる。立ち上がり時間差と補正量との関係を示す関数式または補正量テーブルは、制御部704の記憶部に記憶される。例えば、第1パルス信号と第2パルス信号の立ち上がりの時間差が大きい場合には、受光部702から出力されたアナログ信号の立ち上がりの傾きが小さく、反射率が小さい物体と予想される。この場合、第1計時回路7033からの情報に基づいて算出された物体OJまでの距離は本来より大きい値になっていると予想され、値を小さくする補正が行われる。
制御部704は、物体OJまでの距離を算出すると、上述のステップS6を行う。
以上からわかるように、本実施形態では、制御部704は、計測角度範囲R1を検出した場合に、セレクタ回路7034に第2パルス信号の出力を要求して物体OJまでの距離を演算する。制御部704は、反射部範囲R2を検出した場合に、セレクタ回路7034に第1パルス信号の出力を要求して受光部702の制御処理を行う。
これによれば、距離演算の場合に、第1パルス信号と第2パルス信号との立ち上がりの時間差を求めて、物体OJの反射率による誤差を補正して物体OJまでの正確な距離を求めることができる。また、本実施形態では、第1パルス信号のパルス幅を用いて受光部702の制御を行い、温度変化の影響を受け易いAPDのゲインを一定に保つことができる。すなわち、本実施形態では、受光部702から得られる信号が温度変化によってばらつくことを抑制することができ、物体OJまでの正確な距離を求めることができる。また、本施形態では、セレクタ回路7034を用いて第2計時回路7035に第1パルス信号と第2パルス信号とを選択的に入力することができるために、計時回路の数を少なくすることができる。また、本実施形態では、APDの温度を一定にするための装置が不必要であり、距離測定装置7を小型化することができる。
図9は、距離測定装置7の作用効果を説明するためのモデル図である。図9において、距離測定装置7は、第1物体OJ1までの距離を測定する。第1物体OJ1は、例えば、棒または椅子の脚等の細い物体、又は、ガラス等の光を透過する物体である。第2物体OJ2は、距離測定装置7から見て第1物体OJ1の後方に存在する物体である。第1物体OJ1と第2物体OJ2との距離をDとする。
図10は、第1物体OJ1と第2物体OJ2との距離Dが小さい場合の信号例である。図10において、信号(a)は受光部702から出力されるアナログ信号、信号(b)は第1パルス信号、信号(c)は第2パルス信号である。図10において、TH1は第1閾値、TH2は第2閾値である。
第1物体OJ1が細い物体又は光を透過する物体であるために、距離測定装置7の投射光L1は第2物体OJ2に到達して反射される。すなわち、第1物体OJ1および第2物体OJ2からの反射光L2が受光部702で受光される。第1物体OJ1と第2物体OJ2との距離Dが小さいために、第1物体OJ1からの反射光L2に由来するアナログ信号と、第2物体OJ2からの反射光L2に由来するアナログ信号とが一部において重なっている。
本実施形態では、APDのゲインを一定に保つために、第1パルス信号のパルス幅Tw1を利用する。また、第1パルス信号のパルス幅Tw1は物体OJの反射率に応じて変動する。このために、制御部704は、第1計時回路7033および第2計時回路7035からの計時情報を演算して得られた第1パルス信号のパルス幅Tw1により決まる補正量によって、第1計時回路7033からの情報に基づいて算出された物体OJまでの距離を補正することが考えられる。このようにすれば、第2コンパレータ7032およびセレクタ回路7034が不要になる。
しかし、図10に示すようにアナログ信号に重なりが生じた場合に、第1計時回路7033および第2計時回路7035からの計時情報を演算して得られる第1パルス信号のパルス幅Tw1が、第1物体OJ1からの反射光に由来して得られる本来のパルス幅よりも見かけ上広くなる。すなわち、パルス幅Tw1による補正を行うと、第1物体OJ1の距離が本来の距離よりも長く算出されてしまう。この点、本実施形態のように、第1パルス信号と第2パルス信号の立ち上がりの時間差Tw2を利用して補正を行う構成では、第2物体OJ2が第1物体OJ1の近くに存在しても、第2物体OJ2の影響を抑制して距離の算出を行える。すなわち、本実施形態によれば、第1物体OJ1までの距離を正確に算出することができる。
なお、APDのゲインを一定に保つために、第1パルス信号と第2パルス信号の時間差Tw2を利用することも考えられる。この場合、セレクタ回路7034を不要にできる。しかし、反射部82からの反射光L2に対応して受光部702から出力されるアナログ信号の立ち上がりは非常に急峻になる。このために、第1パルス信号と第2パルス信号の時間差Tw2を正確に算出することは難しく、受光部702の制御のために第1パルス信号と第2パルス信号の時間差Tw2を利用することは困難である。
<3-2.第2実施形態> 第2実施形態の距離測定装置7Aは、第1実施形態の距離測定装置7とほぼ同様の構成である。ただし、第2実施形態の距離測定装置7Aでは、制御部704は、信号処理部703から出力される信号の種類を、所定条件の場合に、計測角度範囲R1の検出時と反射部範囲R2の検出時とで異ならせる。この点が第1実施形態と異なる。
詳細には、制御部704は、所定の時間をあけて投光部701から計測角度範囲R1に出射される2つの投射光L1によって得られる2回の距離演算の結果に基づいて物体OJまでの距離を決定する。制御部704は、2つの投射光L1のうちの少なくとも一方の場合に、信号処理部703から出力される信号の種類を、反射部範囲R2の検出時と異ならせる。本実施形態では、制御部704は、2つの投射光L1のうちの一方の場合に、信号処理部703から出力される信号の種類を、反射部範囲R2の検出時と異ならせる。本構成では、物体OJまでの距離を求めるために2回の測定を行う構成であるために、物体OJまでの正確な距離を求めることができる。
2つの投射光L1の投射間隔である前述の所定の時間は、例えば、レーザ光源71が或る発光を行ってから次の発光を行うまでに要する時間であってよい。この場合、制御部704は、連続する2つの投射光L1によって得られる2回の距離演算の結果に基づいて物体OJまでの距離を決定する。別の例として、所定の時間は、可動部73が1回転に要する時間であってよい。この場合、制御部704は、或る角度で投射された投射光L1Aと、その後に回転筐体78が1回転して投射された投射光L1Bとで構成される2つの投射光によって得られる2回の距離演算の結果に基づいて、物体OJまでの距離を決定する。これによれば、距離決定に用いられる2つの投射光の向きを揃えることができるために、距離測定における角度分解能の低下を防ぐことができる。
図11は、本発明の第2実施形態に係る距離測定装置7Aにおける、制御部704の制御処理例を示すフローチャートである。例えば、制御部704は、制御ユニットUから距離測定の指示によって制御動作を開始する。まず、制御部704は、検出部83から得られる情報に基づいて、投射光L1の投射方向が反射部範囲R2であるか否かを確認する(ステップS11)。当該確認処理は、第1実施形態の場合と同様である。
また、反射部範囲R2が検出された場合(ステップS11でYes)、制御部704は、第1実施形態と同様の処理を行う。すなわち、制御部704は、セレクタ回路7034に第1パルス信号の選択を指示する指示信号ISを送信する(ステップS12)。制御部704は、第1計時回路7033および第2計時回路7035から出力される計測結果により、第1パルス信号のパルス幅を取得する(ステップS13)。制御部704は、取得したパルス幅に基づいてAPDに印加する印加電圧を決定する(ステップS14)。制御部704は、印加電圧を決定すると、受光部702に当該印加電圧をAPDに印加することを指示する(ステップS15)。これにより、温度変化が起こってもAPDのゲインを一定値に保つことができる。
ステップS15の後、制御部704は、制御ユニットUから距離測定を終了する指示が出ているか否かを確認する(ステップS16)。距離測定を終了する指示が出ている場合(ステップS16でYes)、制御部704は処理を終了する。一方、距離測定を終了する指示が出ていない場合(ステップS16でNo)、制御部704はステップS11に戻って処理を継続する。
ステップS11で反射部範囲R2が検出されなかった場合(ステップS11でNo)、制御部704は、検出部83から得られる情報に基づいて、投射光L1の投射方向が計測角度範囲R1であるか否かを確認する(ステップS17)。当該確認処理は、第1実施形態の場合と同様である。計測角度範囲R1が検出されない場合(ステップS17でNo)、制御部704はステップS11に戻って処理を続ける。
計測角度範囲R1が検出された場合(ステップS17でYes)、制御部704は、物体OJまでの距離を求めるための2回測定処理を行う(ステップS18)。
図12は、本発明の第2実施形態に係る距離測定装置7Aで行われる2回測定処理の一例を示すフローチャートである。2回測定処理が開始されると、まず、制御部704は、セレクタ回路7034に第1パルス信号の選択を指示する指示信号ISを送信する(ステップS21)。制御部704は、距離決定に用いる2つの投射光L1のうち、1回目の投射光L1Aを投射するトリガとなるレーザ発光パルスの出力に対応して指示信号ISを送信する。
制御部704は、1回目の投射光L1Aに対応して第1計時回路7033および第2計時回路7035で得られた情報に基づいて物体OJまでの第1距離D1を算出する(ステップS22)。詳細には、制御部704は、第1補正方式を利用して物体OJまでの第1距離D1を算出する。
第1補正方式では、第1計時回路7033および第2計時回路7035からの計時情報を演算して得られた第1パルス信号のパルス幅により決まる第1補正量によって、第1計時回路7033からの情報に基づいて算出された物体OJまでの距離が補正される。第1補正量は、例えば、実験またはシミュレーションによって得られた関数式または補正量テーブルから求めることができる。パルス幅と第1補正量との関係を示す関数式または補正量テーブルは、制御部704の記憶部に記憶される。例えば、パルス幅が小さい場合には、反射率が小さい物体であり、第1計時回路7033からの情報に基づいて算出された物体OJまでの距離は、本来より大きい値になっていると予想される。このために、第1計時回路7033からの情報に基づいて算出された物体OJまでの距離を小さくする補正が行わ
れる。
れる。
次に、制御部704は、セレクタ回路7034に第2パルス信号の選択を指示する指示信号ISを送信する(ステップS23)。制御部704は、距離決定に用いる2つの投射光L1のうち、2回目の投射光L1Bを投射するトリガとなるレーザ発光パルスの出力に対応して指示信号ISを送信する。なお、当該指示信号ISの送信処理は、第1距離D1の算出処理を並行して行われてよい。
制御部704は、第2パルス信号の選択をセレクタ回路7034に指示した後、セレクタ回路7034から第2パルス信号が出力されたか否かを確認する(ステップS24)。制御部704は、例えば、第2計時回路7035から出力される情報によって、セレクタ回路7034から第2パルス信号が出力されたか否かを判断することができる。
制御部704は、セレクタ回路7034から第2パルス信号が出力されたと判断した場合(ステップS24でYes)、第2距離D2を算出する(ステップS25)。第2距離D2は、2回目の投射光L1Bに対応して第1計時回路7033および第2計時回路7035で取得された情報に基づいて算出される物体OJまでの距離である。詳細には、制御部704は、第1パルス信号と第2パルス信号との立ち上がりの時間差を利用した第2補正方式により、物体OJまでの第2距離D2を算出する。なお、第2補正方式は、第1実施形態で説明した補正方式と同じである。
制御部704は、第1距離D1と第2距離D2とを算出すると、両者の差の絶対値が所定の基準値RV以下であるか否かを確認する(ステップS26)。両者の差の絶対値が所定の基準値RV以下である場合(ステップS26でYes)、制御部704は第1距離D1と第2距離D2との平均値を物体OJまでの距離に決定する(ステップS27)。ただし、これは例示であり、制御部704は、平均値に替えて、例えば、第1距離D1と第2距離D2とのいずれか一方を物体OJまでの距離に決定してよい。
第1距離D1と第2距離D2との差の絶対値が所定の基準値RVより大きい場合(ステップS26でNo)、制御部704は、第1距離D1が第2距離D2より大きいか否かを確認する(ステップS28)。第1距離D1が第2距離D2より大きい場合、図10に示すような重なりを持った信号が得られていることが考えられ、第1距離D1は不適切な値であることが予想される。このために、第1距離D1が第2距離D2より大きい場合(ステップS28でYes)、制御部704は第2距離D2を物体OJまでの距離に決定する(ステップS29)。すなわち、細い物体OJまたはガラス等の光を透過する物体OJに対しても物体OJまでの正確な距離を求めることができる。
一方、第2距離D2が第1距離D1より大きくなることは通常考えられない。このために、第2距離D2が第1距離D1より大きい場合(ステップS28でNo)、制御部704はエラー判定をして、物体OJまでの距離について測定不能とする(ステップS30)。
ステップS24で第2パルス信号が出力されていない判断される場合、第2補正方式を用いて第2距離D2を算出することができない。すなわち、2回目の距離演算では、距離値なしとの結果になる。このために、制御部704は、ステップS24で第2パルス信号が出力されていないと判断される場合(ステップS24でNo)、第1距離D1を物体OJまでの距離に決定する(ステップS31)。
なお、以上においては、2つの投射光L1のうち、1回目の投射光L1Aに対してセレクタ回路7034で第1パルス信号が選択され、2回目の投射光L1Bに対してセレクタ回路7034で第2パルス信号が選択される構成とした。これは例示であり、2つの投射光L1のうち、1回目の投射光L1Aに対してセレクタ回路7034で第2パルス信号が選択され、2回目の投射光L1Bに対してセレクタ回路7034で第1パルス信号が選択される構成としてもよい。
以上に示すように、本実施形態では、制御部704は、計測角度範囲R1に出射される2つの投射光L1のうちの一方の場合に、セレクタ回路7034に第1パルス信号の出力を要求して物体OJまでの距離を演算する。制御部704は、計測角度範囲R1に出射される2つの投射光L1のうちの他方の場合に、セレクタ回路7034に第2パルス信号の出力を要求して物体OJまでの距離を演算する。制御部704は、反射部範囲R2を検出した場合に、セレクタ回路7034に第1パルス信号の出力を要求して受光部702の制御処理を行う。
これによれば、例えば遠くある物体OJ又は反射率が低い物体OJがターゲットとなって第2パルス信号を得られない場合でも、第1パルス信号のパルス幅を求めて、物体OJの反射率による誤差を補正して物体OJまでの正確な距離を求めることができる。これについて、図13を用いて補足する。
図13は、本発明の第2実施形態に係る距離測定装置7Aの作用効果について説明するための図である。図13において、信号(a)は受光部702から出力されるアナログ信号、信号(b)は第1パルス信号である。図13において、TH1は第1閾値、TH2は第2閾値である。図13に示すように、遠くにある物体OJ又は反射率が低い物体OJは、受光部702から出力されるアナログ信号の信号強度が小さい。このために、信号レベルが第2閾値TH2を超えず、第2パルス信号が得られない場合がある。このような場合には、第2補正方式を用いた物体OJまでの距離算出を行えない。しかし、本実施形態では、第2補正方式を利用できない場合には、第1補正方式を利用して物体OJまでの正確な距離を算出することができる。
なお、本実施形態においても、第1パルス信号のパルス幅を用いて受光部702の制御を行い、温度変化の影響を受け易いAPDのゲインを一定に保つことができる。すなわち、本実施形態では、受光部702から得られる信号が温度変化によってばらつくことを抑制することができ、物体OJまでの正確な距離を求めることができる。
<3-3.第3実施形態> 第3実施形態の距離測定装置7Bは、第2実施形態の距離測定装置7Aとほぼ同じ構成を有する。すなわち、第3実施形態の距離測定装置7Bにおいても、制御部704は、所定の時間をあけて投光部701から計測角度範囲R1に出射される2つの投射光L1によって得られる2回の距離演算の結果に基づいて物体OJまでの距離を決定する。制御部704は、2つの投射光L1のうちの少なくとも一方の場合に、信号処理部703から出力される信号の種類を、反射部範囲R2の検出時と異ならせる。
また、第3実施形態の距離測定装置7Bの制御部704は、第2実施形態と同じく、図11に示す制御処理を実行する。ただし、第3実施形態の距離測定装置7Bは、第2実施形態の場合と異なる2回測定処理を行う。以下、この違いに絞って説明を行う。
図14は、本発明の第3実施形態に係る距離測定装置7Bで行われる2回測定処理の一例を示すフローチャートである。2回測定処理が開始されると、まず、制御部704は、セレクタ回路7034に第2パルス信号の選択を指示する指示信号ISを送信する(ステップS41)。制御部704は、距離決定に用いる2つの投射光L1のうち、1回目の投射光L1Aを投射するトリガとなるレーザ発光パルスの出力に対応して指示信号ISを送信する。
制御部704は、第2パルス信号の選択をセレクタ回路7034に指示した後、セレクタ回路7034から第2パルス信号が出力されたか否かを確認する(ステップS42)。制御部704は、例えば、第2計時回路7035から出力される情報によって、セレクタ回路7034から第2パルス信号が出力されたか否かを判断することができる。
制御部704は、セレクタ回路7034から第2パルス信号が出力されたと判断した場合(ステップS42でYes)、1回目の距離算出を行う(ステップS43)。第1回目の距離算出は、1回目の投射光L1Aに対応して第1計時回路7033および第2計時回路7035で取得された情報に基づいて行われる。詳細には、制御部704は、第1パルス信号と第2パルス信号との立ち上がりの時間差に基づく第2補正方式を利用して、物体OJまでの1回目の距離d1を算出する。
次に、制御部704は、セレクタ回路7034に第2パルス信号の選択を指示する指示信号ISを送信する(ステップS44)。制御部704は、距離決定に用いる2つの投射光L1のうち、2回目の投射光L1Bを投射するトリガとなるレーザ発光パルスの出力に対応して指示信号ISを送信する。なお、当該指示信号ISの送信処理は、1回目の距離d1の算出処理を並行して行われてよい。また、セレクタ回路7034で選択される信号に変更がないために、指示信号ISの送信は省略されてもよい。
制御部704は、2回目の投射光L1Bに対応して第1計時回路7033および第2計時回路7035で得られた情報に基づいて2回目の距離算出を行う(ステップS45)。詳細には、制御部704は、第2補正方式を用いて、物体OJまでの2回目の距離d2を算出する。
なお、本実施形態では、1回目の投射光L1Aで第2パルス信号が得られたために、2回目の投射光L1Bでも第2パルス信号が得られると想定している。ただし、1回目の投射光L1Aで第2パルス信号が得られても、2回目の投射光L1Bで第2パルス信号が得られないことも生じ得る。このために、ステップS44の後に、セレクタ回路7034から第2パルス信号が出力されたか否かを確認する構成を追加してもよい。この場合、第2パルス信号が出力されていないと判断される場合に、例えばエラー判定が行われる構成としてもよい。
制御部704は、1回目と2回目の投射光L1によって得られた2つの距離d1、d2の平均値を、物体OJまでの距離に決定する(ステップS46)。
制御部704は、ステップS42で第2パルス信号が出力されていない判断される場合(ステップS42でNo)、正確な補正を行うことができないために、1回目の距離算出の結果について測定エラーと判定する(ステップS47)。換言すると、1回目の距離算出結果は、距離値なしとの結果になる。
次に、制御部704は、セレクタ回路7034に第1パルス信号の選択を指示する指示信号ISを送信する(ステップS47)。制御部704は、距離決定に用いる2つの投射光L1のうち、2回目の投射光L1Bを投射するトリガとなるレーザ発光パルスの出力に対応して指示信号ISを送信する。
制御部704は、2回目の投射光L1Bに対応して第1計時回路7033および第2計時回路7035で得られた情報に基づいて2回目の距離算出を行う(ステップS49)。詳細には、制御部704は、第1パルス信号のパルス幅に基づく第1補正方式を用いて、物体OJまでの2回目の距離d2を算出する。なお、1回目の距離算出の結果(距離d1)は、測定エラーによって数値なしである。
制御部704は、1回目の投射光L1Aに対応した距離演算がエラー判定されているために、2回目の投射光L1Bに対応して得られた距離d2を、物体OJまでの距離に決定する(ステップS50)。
以上に示すように、本実施形態では、制御部704は、計測角度範囲R1に出射される2つの投射光L1のうち時間的に先の第1投射光L1Aの場合に、セレクタ回路7034に第2パルス信号の出力を要求して物体OJまでの距離を演算する。制御部704は、計測角度範囲R1に出射される2つの投射光L1のうち時間的に後の第2投射光L1Bの場合に、第1投射光L1Aを用いた測定結果に応じてセレクタ回路7034に第1パルス信号及び第2パルス信号のうちいずれの出力を要求するかを判断して物体OJまでの距離を演算する。制御部704は、反射部範囲R2を検出した場合に、セレク
タ回路7034に第1パルス信号の出力を要求して受光部702の制御処理を行う。
タ回路7034に第1パルス信号の出力を要求して受光部702の制御処理を行う。
これによれば、第1パルス信号と第2パルス信号の立ち上がり時間差を用いた第2補正方式により物体OJまでの正確な距離を求めることができる。そして、例えば遠くある物体OJ又は反射率が低い物体OJがターゲットとなって第2パルス信号を得られない場合でも、第1パルス信号のパルス幅を求めて、物体OJの反射率による誤差を補正して物体OJまでの正確な距離を求めることができる。本実施形態においても、第1パルス信号のパルス幅を用いて受光部702の制御を行い、温度変化の影響を受け易いAPDのゲインを一定に保つことができる。すなわち、本実施形態でも、受光部702から得られる信号が温度変化によってばらつくことを抑制することができ、物体OJまでの正確な距離を求めることができる。
<4.その他> 本明細書中に開示されている種々の技術的特徴は、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。また、本明細書中に示される複数の実施形態および変形例は可能な範囲で組み合わせて実施されてよい。
例えば、以上においては、移動体が無人搬送車である場合を例示したが、これに限らず、移動体は掃除ロボット、監視ロボット等の運搬用途以外の装置であってもよい。移動体は自動車等の車両であってもよい。
本発明は、例えば、荷物を運搬する無人搬送車に利用することができる。
7,7A,7B・・・距離測定装置、15・・・移動体、73・・・投光ミラー(可動部)、82・・・反射部、83・・・検出部、701・・・投光部、702・・・受光部、703・・・信号処理部、704・・・制御部、831・・・エンコーダ、832・・・センサ部、833・・・スリット、833a・・・第1スリット、833b・・・第2スリット、7031・・・第1コンパレータ、7032・・・第2コンパレータ、7033・・・第1計時回路、7034・・・セレクタ回路、7035・・・第2計時回路、J・・・中心軸、OJ・・・物体、R1・・・計測角度範囲、R2・・・反射部範囲、TH1・・・第1閾値、TH2・・・第2閾値
Claims (8)
- 投射光を出射する投光部と、 前記投射光の向きを変動させる可動部と、 前記投射光の向きの変動範囲の一部に設けられる反射部と、 前記投射光の向きを検出する検出部と、 前記投射光が装置外部の物体又は前記反射部で反射されて生じる反射光を受光して電気信号に変換する受光部と、 前記電気信号を処理する信号処理部と、 前記信号処理部から信号が入力され、前記物体までの距離の演算及び前記受光部の制御処理を行う制御部と、 を有し、 前記制御部は、 前記検出部からの情報に基づいて、前記投射光が装置外部に投射される計測角度範囲に向いているか、前記反射部に投射される反射部範囲に向いているかを検出し、 前記信号処理部から出力される信号の種類を、常に又は所定条件の場合に、前記計測角度範囲の検出時と前記反射部範囲の検出時とで異ならせる、距離測定装置。
- 前記信号処理部は、 前記電気信号を第1閾値と比較して第1パルス信号を生成する第1コンパレータと、 前記電気信号を前記第1閾値と異なる第2閾値と比較して第2パルス信号を生成する第2コンパレータと、 記第1パルス信号が入力される第1計時回路と、 前記第1パルス信号及び前記第2パルス信号を入力可能に設けられ、いずれか一方のパルス信号を出力するセレクタ回路と、 前記セレクタ回路から出力された信号が入力される第2計時回路と、 を有し、 前記制御部は、 前記計測角度範囲を検出した場合に、前記セレクタ回路に前記第2パルス信号の出力を要求して前記物体までの距離を演算し、 前記反射部範囲を検出した場合に、前記セレクタ回路に前記第1パルス信号の出力を要求して前記受光部の制御処理を行う、請求項1に記載の距離測定装置。
- 前記制御部は、 所定の時間をあけて前記投光部から前記計測角度範囲に出射される2つの投射光によって得られる2回の距離演算の結果に基づいて前記物体までの距離を決定し、 前記2つの投射光のうちの少なくとも一方の場合に、前記信号処理部から出力される信号の種類を、前記反射部範囲の検出時と異ならせる、請求項1に記載の距離測定装置。
- 前記信号処理部は、 前記電気信号を第1閾値と比較して第1パルス信号を生成する第1コンパレータと、 前記電気信号を前記第1閾値より大きい第2閾値と比較して第2パルス信号を生成する第2コンパレータと、 前記第1パルス信号が入力される第1計時回路と、 前記第1パルス信号及び前記第2パルス信号を入力可能に設けられ、いずれか一方のパルス信号を出力するセレクタ回路と、 前記セレクタ回路から出力された信号が入力される第2計時回路と、 を有し、 前記制御部は、 前記2つの投射光のうちの一方の場合に、前記セレクタ回路に前記第1パルス信号の出力を要求して前記物体までの距離を演算し、 前記2つの投射光のうちの他方の場合に、前記セレクタ回路に前記第2パルス信号の出力を要求して前記物体までの距離を演算し、 前記反射部範囲を検出した場合に、前記セレクタ回路に前記第1パルス信号の出力を要求して前記受光部の制御処理を行う、請求項3に記載の距離測定装置。
- 前記信号処理部は、 前記電気信号を第1閾値と比較して第1パルス信号を生成する第1コンパレータと、 前記電気信号を前記第1閾値より大きい第2閾値と比較して第2パルス信号を生成する第2コンパレータと、 前記第1パルス信号が入力される第1計時回路と、 前記第1パルス信号及び前記第2パルス信号を入力可能に設けられ、いずれか一方のパルス信号を出力するセレクタ回路と、 前記セレクタ回路から出力された信号が入力される第2計時回路と、 を有し、 前記制御部は、 前記2つの投射光のうち時間的に先の第1投射光の場合に、前記セレクタ回路に前記第2パルス信号の出力を要求して前記物体までの距離を演算し、 前記2つの投射光のうち時間的に後の第2投射光の場合に、前記第1投射光を用いた測定結果に応じて前記セレクタ回路に前記第1パルス信号及び前記第2パルス信号のうちいずれの出力を要求するかを判断して前記物体までの距離を演算し、 前記反射部範囲を検出した場合に、前記セレクタ回路に前記第1パルス信号の出力を要求して前記受光部の制御処理を行う、請求項3に記載の距離測定装置。
- 前記検出部は、 中心軸を中心として回転可能に設けられ、複数のスリットを有するエンコーダと、 前記スリットの位置を検出するセンサ部と、 を有する、請求項1から5のいずれか1項に記載の距離測定装置。
- 複数の前記スリットは、 前記中心軸を中心とする周方向に第1間隔をあけて複数並び、前記計測角度範囲を検出する第1スリットと、 複数の前記第1スリットのうちの端部に配置される前記第1スリットに対して、前記中心軸を中心とする周方向に前記第1間隔とは異なる第2間隔をあけて配置され、前記反射部範囲を検出する第2スリットと、 を有する、請求項6に記載の距離測定装置。
- 請求項1から7のいずれか1項に記載の距離測定装置を有する、移動体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018051172 | 2018-03-19 | ||
JP2018-051172 | 2018-03-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019181692A1 true WO2019181692A1 (ja) | 2019-09-26 |
Family
ID=67987697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/010302 WO2019181692A1 (ja) | 2018-03-19 | 2019-03-13 | 距離測定装置および移動体 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019181692A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020071465A1 (ja) * | 2018-10-05 | 2020-04-09 | 日本電産株式会社 | 距離測定装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06214025A (ja) * | 1993-01-20 | 1994-08-05 | Koden Electron Co Ltd | レーザレーダ |
JP2010203820A (ja) * | 2009-03-02 | 2010-09-16 | Denso Wave Inc | レーザ距離測定装置 |
JP2012242189A (ja) * | 2011-05-18 | 2012-12-10 | Hokuyo Automatic Co | 走査式測距装置の信号処理装置、信号処理方法、及び走査式測距装置 |
JP2014109686A (ja) * | 2012-12-03 | 2014-06-12 | Hokuyo Automatic Co | 偏向装置、光走査装置及び走査式測距装置 |
JP2018009829A (ja) * | 2016-07-12 | 2018-01-18 | パイオニア株式会社 | 情報処理装置、光学機器、制御方法、プログラム及び記憶媒体 |
-
2019
- 2019-03-13 WO PCT/JP2019/010302 patent/WO2019181692A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06214025A (ja) * | 1993-01-20 | 1994-08-05 | Koden Electron Co Ltd | レーザレーダ |
JP2010203820A (ja) * | 2009-03-02 | 2010-09-16 | Denso Wave Inc | レーザ距離測定装置 |
JP2012242189A (ja) * | 2011-05-18 | 2012-12-10 | Hokuyo Automatic Co | 走査式測距装置の信号処理装置、信号処理方法、及び走査式測距装置 |
JP2014109686A (ja) * | 2012-12-03 | 2014-06-12 | Hokuyo Automatic Co | 偏向装置、光走査装置及び走査式測距装置 |
JP2018009829A (ja) * | 2016-07-12 | 2018-01-18 | パイオニア株式会社 | 情報処理装置、光学機器、制御方法、プログラム及び記憶媒体 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020071465A1 (ja) * | 2018-10-05 | 2020-04-09 | 日本電産株式会社 | 距離測定装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004125739A (ja) | 物体検知装置および方法 | |
EP1801538B1 (en) | Distance measuring method and distance measuring device | |
JP4345783B2 (ja) | 物体検知装置および方法 | |
JP7031724B2 (ja) | Lidar装置 | |
JP2014215296A (ja) | 移動体ナビゲーション用レーザスキャナ | |
WO2019064750A1 (ja) | 距離測定装置、および移動体 | |
JP2019008359A (ja) | 移動装置 | |
WO2020071465A1 (ja) | 距離測定装置 | |
US20230133767A1 (en) | Lidar device and method for operating same | |
WO2019181691A1 (ja) | 距離測定装置および移動体 | |
WO2019181692A1 (ja) | 距離測定装置および移動体 | |
WO2018173595A1 (ja) | 移動装置 | |
KR20170001290A (ko) | 개선된 레이저 거리 측정 장치 | |
JP2010256179A (ja) | 測距方法及び車載測距装置 | |
KR20150130201A (ko) | 3차원 스캐너 | |
WO2018173594A1 (ja) | 距離測定装置、および搬送車 | |
WO2019146440A1 (ja) | 距離測定装置、および移動体 | |
WO2019058679A1 (ja) | 距離測定装置及びそれを備えた移動体 | |
WO2020045445A1 (ja) | 距離測定装置、距離測定装置群、および距離測定装置システム | |
WO2020045474A1 (ja) | センサユニット、移動体 | |
EP1375249A1 (fr) | Dispositif et procédé de réglage de l'orientation d'au moins un projecteur de véhicule automobile | |
KR20240022533A (ko) | 위치 측정 장치, 위치 측정 시스템, 및 측정 장치 | |
WO2019058678A1 (ja) | 距離測定装置及びそれを備えた移動体 | |
WO2018173589A1 (ja) | 距離測定装置、及び移動装置 | |
WO2020039916A1 (ja) | 距離測定装置、移動体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19771365 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19771365 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |