WO2020008798A1 - 流体機械 - Google Patents

流体機械 Download PDF

Info

Publication number
WO2020008798A1
WO2020008798A1 PCT/JP2019/022551 JP2019022551W WO2020008798A1 WO 2020008798 A1 WO2020008798 A1 WO 2020008798A1 JP 2019022551 W JP2019022551 W JP 2019022551W WO 2020008798 A1 WO2020008798 A1 WO 2020008798A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
fixed
sliding surface
scroll
orbiting
Prior art date
Application number
PCT/JP2019/022551
Other languages
English (en)
French (fr)
Inventor
岩波 重樹
渓太 齋藤
晴永 中山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018126764A external-priority patent/JP2020007912A/ja
Priority claimed from JP2018233633A external-priority patent/JP7010202B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980043679.3A priority Critical patent/CN112352103A/zh
Priority to DE112019003353.0T priority patent/DE112019003353T5/de
Publication of WO2020008798A1 publication Critical patent/WO2020008798A1/ja
Priority to US17/136,965 priority patent/US20210131433A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0284Details of the wrap tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/06Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements
    • F01C17/063Arrangements for drive of co-operating members, e.g. for rotary piston and casing using cranks, universal joints or similar elements with only rolling movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/221Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/14Self lubricating materials; Solid lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/20Resin

Definitions

  • the present disclosure relates to a scroll-type fluid machine, and more particularly, to a machine used without lubrication.
  • Fluid machines used without lubrication are effective pneumatic pressure sources without the need for oil separators when clean air (for example, medical air or factory air) is required.
  • Scroll-type fluid machines are the most likely candidates for use as a non-lubricated air pressure source because of their structure, the turning radius of the movable member is small and the sliding speed is low.
  • the scroll member is made of metal, the processing time is long, which is disadvantageous in terms of manufacturing cost. Therefore, in Patent Document 1, both scroll members (that is, the fixed scroll and the orbiting scroll) are molded from resin.
  • Scroll-type fluid machines are characterized by a low sliding speed and a low PV value, which is the product of the surface pressure and the sliding speed.
  • a scroll-type fluid machine it is difficult to put it into practical use to use oilless lubrication and to use a scroll member, which is a sliding portion, made of resin.
  • the scroll member is formed of a resin that is excellent in cost, and since the sliding portion of the scroll member cannot remain abrasion-resistant if the sliding portion is made of the resin, the sliding portion has metal. Abrasion resistant material made of steel is provided.
  • Patent Document 2 discloses a scroll compressor.
  • This compressor has a rotation preventing mechanism portion including a plurality of annular holes provided in a housing, and a plurality of pins that rotate inside the annular hole while being restricted by inner peripheral walls forming the annular hole. ing.
  • An interposition member is provided between each pin and the annular hole so as to be loosely fitted to the pin and capable of sliding contact and rolling contact.
  • the orbiting scroll member orbits around the orbital center with respect to the fixed scroll member while the rotation preventing mechanism prevents the movable scroll member from rotating.
  • the fluid machine described in Patent Literature 1 has a complicated structure because wear-resistant materials are provided on both the fixed scroll and the orbiting scroll.
  • the fluid machine described in Patent Literature 1 is provided with a wear-resistant material in the orbiting scroll, so that the weight of the orbiting scroll increases and disadvantageous in terms of vibration due to an increase in centrifugal force.
  • the wear-resistant material is provided only in the sliding portion of the fixed scroll and the sliding portion of the orbiting scroll, heat generated by sliding between the wear-resistant materials is transmitted to the outside. The heat is not dissipated, and the heat of both scroll members rises without catching up with the heat dissipation. For this reason, there is a possibility that abnormal wear may occur at the sliding portion of the scroll member.
  • the resin forming the scroll member has a low melting point, there is a possibility that seizure may occur immediately.
  • resin has a lower hardness than metals and the like and is originally inferior in abrasion resistance, has a low melting point, and abrasion increases rapidly depending on a rise in the temperature of a sliding portion, and in the worst case, fusion adhesion (so-called seizure). ). Further, with respect to temperature rise, resin has a lower thermal conductivity than metal, so that under the same load (that is, load ⁇ speed / heat generation), resin is less likely to diffuse heat than metal, It is considered that the moving part locally has a high temperature, and the rapid increase in wear described above easily leads to fusion adhesion.
  • Patent Document 1 does not consider heat conduction from the wear-resistant material provided on the scroll member.
  • an abrasion-resistant material is provided only on the sliding portion of the scroll member provided inside the fluid machine, and heat radiation to the outside is not considered.
  • the anti-rotation mechanism of Patent Document 2 has a feature that the outer peripheral portion of the pin and the inner peripheral portion of the interposition member slide and slide, and the peripheral speed is high. In addition, there is a problem of abnormal wear of the protrusion and the interposition member.
  • a first object of the present disclosure is to provide a scroll-type fluid machine used without lubrication, in which the orbiting scroll is formed of resin, and a fluid capable of improving its wear resistance and reliability. To provide a machine.
  • a second object of the present disclosure is to provide a fluid machine capable of suppressing abrasion of a protruding portion and an interposition member in a rotation prevention mechanism even without lubrication.
  • a scroll-type fluid machine that suctions and discharges a fluid, Fixed base, and a fixed scroll having a spiral fixed tooth portion provided on the fixed base, It has a revolving base arranged opposite to the fixed base, and a spiral revolving tooth part provided on the revolving base, the fixed tooth part and the revolving tooth part fit together and revolve around a predetermined central axis.
  • Orbiting scroll made of resin, A housing for fixing the fixed scroll and accommodating the fixed scroll and the orbiting scroll; A revolving sliding surface provided in a portion of the revolving base of the revolving scroll that is radially outward from the revolving tooth portion, A housing sliding surface that is provided at a portion of the housing that faces the turning sliding surface and slides with the turning sliding surface; The housing is configured such that a portion where the housing sliding surface is provided is made of metal, and an outer wall thereof is exposed to the atmosphere.
  • the housing is made of a metal having a high thermal conductivity, and the outer wall thereof is exposed to the atmosphere. And diffuses heat to the atmosphere from the outer wall of the housing. Therefore, a rise in temperature due to sliding between the rotating sliding surface and the housing sliding surface is suppressed, so that the wear resistance of the rotating sliding surface is improved and fusion adhesion of the resin sliding surface is prevented. Therefore, this fluid machine can improve reliability.
  • the weight of the orbiting scroll is reduced by being made of resin, vibration due to the revolution of the orbiting scroll can be reduced.
  • the orbiting scroll is made of resin, the manufacturing cost can be reduced.
  • a scroll-type fluid machine that sucks in and discharges fluid
  • Fixed base and a fixed scroll having a spiral fixed tooth portion provided on the fixed base, It has a revolving base arranged opposite to the fixed base, and a spiral revolving tooth part provided on the revolving base, the fixed tooth part and the revolving tooth part fit together and revolve around a predetermined central axis.
  • Orbiting scroll made of resin, A first housing and a second housing for fixing the fixed scroll and accommodating the fixed scroll and the orbiting scroll; A revolving sliding surface provided in a portion of the revolving base of the revolving scroll that is radially outward from the revolving tooth portion,
  • the first housing or the second housing is provided between a portion opposing the swivel sliding surface and the swivel sliding surface, and is formed of a metal having a self-lubricating coating applied to the surface sliding with the swiveling sliding surface.
  • a spacer At least one of the first housing and the second housing is made of metal, and the outer wall thereof is configured to be exposed to the atmosphere.
  • the coating can be easily performed by coating the metal spacer without coating the large-sized first housing or the second housing, thereby reducing the manufacturing cost. can do.
  • heat is conducted from the metal spacer to one of the housings and dissipated to the atmosphere. Therefore, the disclosure described in another viewpoint can also have the same operation and effect as the disclosure described in the above one viewpoint.
  • one of the disclosed fluid machines has a fixed scroll having a spiral fixed side wrap, and a turning side wrap forming a fluid chamber for sucking, compressing and discharging fluid between the fixed side wrap.
  • Orbiting scroll a restricting portion having a circular inner peripheral wall in order to prevent the orbiting scroll from rotating, a protruding portion that revolves inside the restricting portion while being restricted by the inner peripheral wall of the restricting portion, and
  • a plurality of rotation-preventing mechanism portions each having a ring-shaped interposition member interposed between the peripheral walls and sliding with respect to the protruding portion and the inner peripheral wall, and the interposition member has a surface hardness of the protruding portion.
  • the protrusion is formed of a material lower than the surface hardness, and the surface roughness of the protruding portion is formed smaller than the inner peripheral portion of the interposition member.
  • the inner peripheral portion of the interposed member is worn more than the outer peripheral portion of the protruded portion, and the inner peripheral portion of the interposed member is The part is adapted to the protrusion.
  • the sliding portion between the interposition member and the protruding portion is adapted to the protruding portion having a small surface roughness, the sliding resistance between the interposition member and the protruding portion is suppressed, and wear and seizure can be suppressed. Therefore, it is possible to provide a fluid machine capable of suppressing wear of the protruding portion in the rotation preventing mechanism.
  • the thrust sliding portion has abrasion resistance.
  • a balance is needed.
  • the wear resistance of the thrust sliding portion cannot be maintained if the sliding portion of the scroll member is made of resin, a metal wear-resistant material is provided in the sliding portion. I have.
  • the wear-resistant material is provided only in the sliding portion of the fixed scroll and the sliding portion of the orbiting scroll, the heat generated by the sliding between the wear-resistant materials is not radiated to the outside, and the heat cannot catch up with the heat. The temperature of the scroll member increases. For this reason, there is a possibility that abnormal wear may occur at the sliding portion of the scroll member.
  • the resin forming the scroll member has a low melting point, there is a possibility that seizure may occur immediately.
  • a disclosure of still another aspect discloses a housing that is formed integrally with or separately from the fixed scroll and that accommodates the orbiting scroll, and a diameter of the base portion of the orbiting scroll that is larger than that of the orbiting wrap.
  • a turning-side sliding surface provided at a portion outside the direction, and a housing-side sliding surface that slides with the turning-side sliding surface, which is provided at a portion of the housing that faces the turning-side sliding surface,
  • the housing is configured such that a portion where the housing-side sliding surface is provided is made of metal, and an outer wall thereof is exposed to the atmosphere.
  • the housing is made of metal having high thermal conductivity and its outer wall is exposed to the atmosphere, the heat generated by the sliding between the swiveling side sliding surface and the housing side sliding surface is made of metal. The heat is diffused to the housing and is radiated to the atmosphere from the outer wall of the housing. As a result, the temperature rise due to the sliding between the turning side sliding surface and the housing side sliding surface is suppressed, so that the wear resistance of the turning side sliding surface is improved and the fusion and adhesion of the resin sliding surface is prevented. It is. Therefore, the fluid machine can improve the reliability, the anti-rotation portion and the abrasion resistance of the thrust sliding portion are compatible, and can further function as an oil-free fluid machine.
  • FIG. 2 is a cross-sectional view of the fluid machine according to the first embodiment.
  • FIG. 2 is an enlarged view of a portion II in FIG. 1.
  • It is a schematic diagram which shows the experimental device regarding sliding of two members. 6 is a graph showing an experimental result on sliding between resins.
  • 5 is a graph showing an experimental result regarding sliding between metal and resin. 5 is a graph showing experimental results regarding sliding between a coated metal and a resin.
  • FIG. 15 is a partial cross-sectional view of the orbiting scroll, the sliding portion, and the interposition member, which is taken along the line XV-XV in FIG. It is a partial top view showing composition of a regulation part in a 7th embodiment.
  • FIG. 14 is a partial longitudinal sectional view showing a configuration of a fluid machine according to an eleventh embodiment.
  • FIG. 14 is a partial longitudinal sectional view showing a configuration of a fluid machine according to an eleventh embodiment.
  • 21 is a partial longitudinal sectional view showing a configuration of a fluid machine according to a twelfth embodiment. It is the partial longitudinal section showing the composition of the fluid machine of a 13th embodiment. It is a top view showing only a sleeve member with which a fluid machine of a 13th embodiment is provided.
  • the fluid machine 1 of the present embodiment is a scroll-type fluid machine in which the fixed scroll 100 and the orbiting scroll 200 are made of resin, and are used without lubrication. Since the fluid machine 1 of the present embodiment is used without lubrication, an auxiliary device such as an oil separator is not required, and is used as an air pressure source for supplying clean air such as medical air or factory air. Things. That is, the fluid that the fluid machine 1 according to the present embodiment sucks, compresses, and discharges is air.
  • the fluid machine 1 of the present embodiment includes a housing 300, a fixed scroll 100, an orbiting scroll 200, a motor unit 400, and the like.
  • the housing 300 includes a first housing 301 and a second housing 302. Both the first housing 301 and the second housing 302 are formed of a metal having high thermal conductivity such as aluminum. The first housing 301 and the second housing 302 are fixed by bolts or welding (not shown). The outer wall of the first housing 301 and the outer wall of the second housing 302 are configured to be exposed to the atmosphere. Note that the first housing 301 and the second housing 302 only need to be formed at least in part from metal, and may be configured so that at least a part is exposed to the atmosphere.
  • the fixed scroll 100 and the orbiting scroll 200 are housed inside the housing 300.
  • the fixed scroll 100 and the orbiting scroll 200 are referred to as both scroll members 100 and 200.
  • the scroll members 100 and 200 constitute a compression mechanism for sucking, compressing, and discharging air.
  • the fixed scroll 100 is formed of a resin.
  • the fixed scroll 100 has a substantially disc-shaped fixed base 110 and a fixed tooth portion 120 provided on the fixed base 110. Although not shown, the fixed tooth portion 120 is formed in a spiral shape when viewed from the axial direction.
  • the outer wall 130 on the outer side in the radial direction of the fixed base 110 is fixed to the inner wall of the first housing 301 by press fitting or the like.
  • the portion where the outer wall 130 on the radially outer side of the fixed base 110 and the inner wall of the first housing 301 are fixed is referred to as a fitting portion.
  • the fixed base 110 of the fixed scroll 100 is provided with a supply port 150 for supplying air to a compression chamber 140 formed between the scroll members 100 and 200, and a discharge port 160 for discharging air from the compression chamber 140.
  • the first housing 301 is provided with a supply port 310 communicating with the supply port 150 of the fixed scroll 100 and a discharge port 340 communicating with the discharge port 160 of the fixed scroll 100.
  • the orbiting scroll 200 has a substantially disc-shaped orbiting base 260 and a orbiting tooth 220 provided on the orbiting base 260.
  • the turning tooth portion 220 is formed in a spiral shape when viewed from the axial direction.
  • the orbiting scroll 200 is formed of a resin.
  • On the turning base 260 a turning sliding surface 230 that slides on the inner wall of the first housing 301 is provided at a portion radially outside the turning tooth portion 220. The sliding between the inner wall of the first housing 301 and the turning sliding surface 230 will be described later.
  • the orbiting tooth portion 220 of the orbiting scroll 200 and the fixed tooth portion 120 of the fixed scroll 100 are fitted to each other to form a compression chamber 140 for compressing air.
  • the compression chamber 140 is formed in a crescent shape when viewed from the axial direction.
  • a cylindrical boss 240 is provided on the side of the turning base 260 opposite to the compression chamber 140.
  • the orbiting scroll 200 is provided with a not-shown anti-rotation mechanism for preventing the orbiting scroll 200 from rotating.
  • the motor unit 400 is provided outside the second housing 302.
  • the motor unit 400 has a stator 420, a rotor 430, a shaft 440, and the like inside a motor case 410.
  • various motors such as a brush motor or a brushless motor can be used as the motor unit 400.
  • the shaft 44 is rotatably provided around the central axis O1 by bearings 450 and 460 provided inside the motor case 41. That is, the central axis O1 is the rotation axis of the shaft 440.
  • the end of the shaft 440 is inserted inside the second housing 302.
  • An eccentric part 47 is fixed to an end of the shaft 440.
  • the center O2 of the eccentric part 470 is provided eccentrically from the center axis O1 of the shaft 440.
  • the eccentric part 470 is provided via a bearing 480 inside the boss part 240 provided on the revolving base 260 of the revolving scroll 200.
  • the shaft 440 rotates around the axis.
  • the torque output by the motor unit 40 is transmitted to the boss 240 of the orbiting scroll 200 via the eccentric part 470.
  • the orbiting scroll 200 revolves around the central axis O1 of the shaft 440 while its rotation is restricted by a rotation preventing mechanism (not shown).
  • the compression chamber 140 formed between the two scroll members 100 and 200 orbits from the outside in the radial direction to the inside in the radial direction to gradually reduce the volume.
  • the air supplied from the supply port 310 to the compression chamber 140 through the supply port 150 is compressed, and the air is discharged from the discharge port 160 through the discharge port 340.
  • a back pressure chamber 350 is formed between the surface of the revolving base 260 opposite to the fixed scroll 100 and the inner wall of the second housing 302. A part of the air compressed by the compression chamber 140 is supplied to the back pressure chamber 350 via a back pressure introduction hole 250 provided in the swivel base 260. Accordingly, the orbiting scroll 200 is urged toward the fixed scroll 100 by the pressure of the air supplied to the back pressure chamber 350.
  • the orbiting sliding surface 230 that slides on the inner wall of the first housing 301 is provided on a portion of the orbiting base 260 of the orbiting scroll 200 radially outside the orbiting tooth portion 220.
  • a housing sliding surface 360 that slides on the turning sliding surface 230 is provided in a portion of the first housing 301 that faces the turning sliding surface 230.
  • the high-pressure air supplied from the compression chamber 140 to the back pressure chamber 350 passes through the gap and the low-pressure space inside the fixed scroll 10. 170 could leak.
  • the orbiting scroll 200 is urged toward the fixed scroll 100 by the pressure of the air in the back pressure chamber 350, the orbiting sliding surface 230 and the housing sliding surface 360 surely contact each other. It slides in a state. Therefore, the high-pressure air in the back pressure chamber 350 is prevented from leaking into the low-pressure space 170 inside the fixed scroll 100. Therefore, the fluid machine 1 can prevent a decrease in air compression efficiency.
  • the housing sliding surface 360 is provided with a coating 3610 containing self-lubricating fluorine or molybdenum disulfide. Thereby, the friction coefficient of the housing sliding surface 360 can be reduced.
  • a coating 3610 containing self-lubricating fluorine or molybdenum disulfide thereby, the friction coefficient of the housing sliding surface 360 can be reduced.
  • PTFE polytetrafluoroethylene
  • the coating 3610 applied to the housing sliding surface 360 is a thin film, heat transfer from the orbiting scroll 200 to the housing 300 is not hindered. Therefore, even when the turning sliding surface 230 and the housing sliding surface 360 slide under a higher load, the temperature rise of the sliding portion is suppressed.
  • the first housing 301 has a concave portion 370 that is recessed away from the swiveling sliding surface 230 on the radial outside of the housing sliding surface 360.
  • the concave portion 370 of the first housing 301 is a portion that does not slide on the orbiting sliding surface 230 of the orbiting scroll 200.
  • the radial width W of the housing sliding surface 360 is set.
  • the radial width W of the housing sliding surface 360 is equal to the distance E at which the orbiting scroll 200 is eccentric with respect to the revolving center axis O1.
  • the distance E at which the orbiting scroll 200 is eccentric with respect to the revolving center axis O1 is the same as the distance E between the center O2 of the eccentric part 470 and the center axis O1 of the shaft 44 shown in FIG.
  • the radial width W of the housing sliding surface 360 is smaller than twice the distance E that the orbiting scroll 200 is eccentric with respect to the center axis O1 of the revolution. Good.
  • the turning sliding surface 230 and the housing sliding surface 360 intermittently slide. This will be described with reference to FIGS.
  • FIGS. 3 and 4 show a state in which the orbiting sliding surface 230 and the housing sliding surface 360 of the orbiting scroll 200 are viewed from the axial direction. 3 and 4, the outer peripheral edge of the orbital sliding surface 230 of the orbiting scroll 20 is indicated by reference numeral 230a. Further, a predetermined sliding point P in the turning sliding surface 230 is indicated by a reference symbol P, and a locus T around which the sliding point P revolves is indicated by a circular broken line.
  • the outer peripheral edge of the housing sliding surface 360 is denoted by reference numeral 360a, and the inner peripheral edge of the housing sliding surface 360 is denoted by reference numeral 360b.
  • FIG. 3 and FIG. 4 each show a state where the revolution phases of the orbiting scroll 200 are different by 180 °.
  • the width W in the radial direction of the housing sliding surface 360 is determined by the distance E (ie, the trajectory T around which the sliding point P revolves) at which the orbiting scroll 200 is eccentric with respect to the center axis O1 of the revolution. Radius). Therefore, of the trajectory T around which the predetermined sliding point P in the revolving sliding surface 230 revolves, about half is outside the housing sliding face 360, and the other half is on the housing sliding face 360. . Therefore, the time when the predetermined sliding point P in the swivel sliding surface 230 slides on the housing sliding surface 360 is about 50% of the entire operation time of the fluid machine 1.
  • the ratio of the time during which the predetermined sliding point P in the turning sliding surface 230 slides on the housing sliding surface 360 to the entire operation time of the fluid machine 1 is referred to as a sliding ratio. It shall be.
  • the sliding ratio is less than 100% by setting the radial width W of the housing sliding surface 360 to be smaller than twice the distance E in which the orbiting scroll 200 is eccentric with respect to the revolving center axis O1. It is possible to As a result, the turning sliding surface 230 and the housing sliding surface 360 intermittently slide, and the amount of heat generated by sliding between the turning sliding surface 230 and the housing sliding surface 360 can be reduced.
  • the first housing 301 and the second housing 302 are formed of metal, and the scroll members 100 and 200 are formed of resin.
  • the coefficient of thermal expansion of a resin is larger than the coefficient of thermal expansion of a metal. Therefore, in the present embodiment, even when the temperature of the fluid machine 1 rises, the two scroll members 100 and 200 are configured not to contact each other.
  • a predetermined gap CL10 is provided between the tip 1210 of the fixed tooth portion 120 of the fixed scroll 100 and the turning base 260 of the turning scroll 200.
  • a predetermined gap CL20 is provided between the tip 2210 of the orbiting tooth portion 220 of the orbiting scroll 200 and the fixed base 110 of the fixed scroll 100.
  • the tip 1210 of the fixed tooth portion 12 is located closer to the fixed base 11 than the turning sliding surface 230 and the housing sliding surface 360.
  • the sliding sliding surface 230 and the housing sliding surface 360 slide in a state in which they are securely in contact with each other. Therefore, the high-pressure air in the back pressure chamber 350 is prevented from leaking into the low-pressure space 17 inside the fixed scroll 10.
  • a tip seal 500 is provided at the tip 1210 of the fixed tooth portion 120 and the tip 2210 of the turning tooth portion 220, respectively.
  • the tip seal 500 prevents the air in the compression chamber 140 from leaking in the thrust direction through the gaps CL10 and CL20.
  • the height of the fixed tooth portion 120 or the orbiting tooth portion 220 is H
  • the maximum value of the temperature change at which the fluid machine 1 is used is ⁇ T
  • the linear expansion coefficient of both scroll members 100 and 200 is ⁇ 1
  • the first housing 301 Is assumed to be ⁇ 2.
  • the gap CL10 between the tip 1210 of the fixed tooth portion 120 and the gap CL20 between the tip 2210 of the turning tooth portion 220 are set so as to satisfy the following Expressions 1 and 2, respectively.
  • a predetermined gap CL30 is always formed at a position where the side surface of the fixed tooth portion 120 and the side surface of the orbiting tooth portion 220 are closest to each other. It is configured to: Thereby, abrasion and fusion adhesion between the side surface of the fixed tooth portion 120 and the side surface of the turning tooth portion 220 are prevented.
  • the length of the gap CL30 is the height H of the fixed tooth portion 120 and the turning tooth portion 220.
  • the gap CL20 at 2210 is shorter than the circumferential length. Therefore, the influence on the compression efficiency of air is small.
  • the orbiting sliding surface 230 of the orbiting scroll 200 and the housing sliding surface 360 slide.
  • the heat generated by the sliding is diffused through the metal first housing 301 and the second housing 302 without being stored at the place, and is radiated to the atmosphere from the outer wall. This suppresses a rise in temperature due to the sliding between the rotating sliding surface 230 and the housing sliding surface 360, thereby improving the wear resistance of the rotating sliding surface 230 and preventing fusion and adhesion of the resin sliding surface. It comes off.
  • a flat resin plate 600 and a cylindrical member 700 were used as test pieces.
  • a polyphenylene sulfide resin hereinafter, referred to as “PPS”
  • PPS polyphenylene sulfide resin
  • the cylindrical member 700 three types of PPS, aluminum, and aluminum having a sliding surface coated with PTFE were used.
  • the resin plate 600 and the cylindrical member 700 may be referred to as test pieces 600 and 700.
  • the cylinder member 700 was arranged on the resin plate 600, and the cylinder member 70 was rotated at a constant speed in the circumferential direction R with a predetermined load F applied from the axial direction of the cylinder member 700. .
  • the load F applied to the cylindrical member 700 is increased stepwise at predetermined time intervals from the start of the test to change the temperature of the sliding surface between the resin plate 600 and the cylindrical member 700 and to rotate the cylindrical member 700.
  • High torque was measured.
  • the temperature change on the sliding surface was measured by a thermocouple 610 disposed below the sliding surface of the resin plate 600.
  • a test stage corresponding to an increase in the load F applied to the cylindrical member 700 will be referred to as a first step S1, a second step S2, and the like. That is, as each step proceeds, the load F applied to the cylindrical member 70 increases.
  • the graph of FIG. 6 shows the test results when both the resin plate 600 and the cylindrical member 700 are PPS.
  • the temperature increased from the first step S1, and the temperature gradient rapidly increased and the torque also increased rapidly in the second step S2. Therefore, the test after the second step S2 was stopped, and the test pieces 600 and 700 were confirmed. As a result, the resin was melted and adhesion was found.
  • the graph of FIG. 7 shows the test results when the resin plate 600 is PPS and the cylindrical member 700 is aluminum. In this case, the temperature rise was very gradual from the first step S1 to the second step S2. However, in the third step S3, both the temperature and the torque sharply increased. After the test, the sliding surfaces of the test pieces 600 and 700 tended to adhere.
  • the graph of FIG. 8 shows the test results when the resin plate 600 was PPS and the cylindrical member 700 was aluminum with a sliding surface coated with PTFE. In this case, there was no abrupt increase in temperature from the first step S1 to the fourth step S4, and there was no adhesion on the sliding surfaces of the test pieces 600 and 700 after the test.
  • the two scroll members 100 and 200 are formed of resin
  • the housing 300 that slides on one of the orbiting scrolls 200 is formed of a material having high heat conductivity
  • the housing 300 is exposed to the atmosphere.
  • the heat generated in the sliding portion between the orbiting scroll 200 and the housing 300 is diffused into the housing 300 and heat is radiated from the outer wall of the housing 30 to the atmosphere, whereby the temperature of the resin orbiting scroll 200 rises. Can be suppressed.
  • both scroll members 100 and 200 are used under a high load, the surface of the sliding surface of the housing 300 is subjected to a surface treatment such as PTFE coating to reduce its friction coefficient, thereby reducing the heat generation amount itself. Reductions can be made.
  • a surface treatment such as PTFE coating
  • the temperature rise of the orbiting scroll 200 is suppressed even if the sliding surface of the housing 300 is not subjected to a surface treatment such as coating, and the melting is prevented. Since the adhesion is prevented, the fluid machine 1 can be used.
  • the fluid machine 1 has the following functions and effects.
  • the orbiting sliding surface 230 provided on the resin orbiting scroll 200 and the housing sliding surface 360 provided on the metal housing 300 slide.
  • the housing 300 is made of a metal having high thermal conductivity, and is configured such that its outer wall is exposed to the atmosphere.
  • the heat generated by the sliding between the turning sliding surface 230 and the housing sliding surface 360 is diffused to the metal housing 300 and is radiated to the atmosphere from the outer wall of the housing 300. Therefore, the temperature rise due to the sliding of the rotating sliding surface 230 and the housing sliding surface 360 is suppressed, so that the wear resistance of the rotating sliding surface 230 is improved and the fusion and adhesion of the resin sliding surface is prevented. It is. Therefore, the fluid machine 1 can improve reliability.
  • the weight of the orbiting scroll 200 is reduced by being made of resin, vibration caused by the revolution of the orbiting scroll 200 can be reduced.
  • the orbiting scroll 200 is made of resin, the manufacturing cost can be reduced.
  • the coating 3610 containing self-lubricating fluorine or molybdenum disulfide is applied to the housing sliding surface 360.
  • the coating 3610 by applying the coating 3610 to the housing sliding surface 360, the friction coefficient of the housing sliding surface 360 can be reduced. Further, since the coating 3610 is a thin film, heat transfer from the orbiting scroll 200 to the housing 300 is not hindered. Experiments have shown that even when the swiveling sliding surface 230 and the housing sliding surface 360 slide under a higher load, the temperature rise is suppressed, and abnormal wear and fusion adhesion are prevented. Therefore, when the coating 3610 is applied to the housing sliding surface 360, the fluid machine 1 improves the wear resistance of the revolving sliding surface 230 even when discharging high-pressure air, and melts the resin sliding surface. Since wearing is prevented, reliability can be improved.
  • the fixed scroll 100 is made of resin.
  • both scroll members 100 and 200 can stabilize the performance of compressing air with respect to a temperature change. Further, by making both scroll members 100 and 200 made of resin, it is possible to further reduce manufacturing costs.
  • a predetermined gap CL30 is formed at a position where the side surface of the fixed tooth portion 120 and the side surface of the orbiting tooth portion 220 are closest to each other. It is configured to:
  • the distal end 1210 of the fixed tooth portion 120 is located closer to the fixed base 110 than the turning sliding surface 230 and the housing sliding surface 360.
  • the fluid machine 1 can prevent a decrease in air compression efficiency.
  • the orbiting scroll 200 is urged toward the fixed scroll 100 by the pressure of the back pressure chamber 350, and the orbiting sliding surface 230 provided on the surface of the orbiting base 260 on the fixed scroll 100 side and the housing.
  • the sliding surface 360 is configured to slide.
  • the orbiting sliding surface 230 is provided on the surface of the orbiting base 260 of the orbiting scroll 200 opposite to the fixed scroll 100, and the housing sliding surface 360 that slides there is coated.
  • the orbiting scroll 200 is provided with the orbiting sliding surface 230 on the surface of the orbiting base 260 on the fixed scroll 100 side. Therefore, when the coating 3610 is applied to the housing sliding surface 360 that slides on the turning sliding surface 230, the configuration can be simplified and the manufacturing cost can be reduced.
  • the housing 300 has a recess 370 that is recessed away from the swivel sliding surface 230 so as not to slide with the swivel sliding surface 230 on the radially outer side of the housing sliding surface 360.
  • the radial width W of the housing sliding surface 360 is smaller than twice the distance E at which the orbiting scroll 200 is eccentric with respect to the revolving center axis O1.
  • the second embodiment is different from the first embodiment in that a part of the configuration of the housing 300, the fixed scroll 100, and the orbiting scroll 200 is changed, and the other configuration is the same as that of the first embodiment. Only parts different from the embodiment will be described.
  • the housing 300 includes first to third housings 301, 302, and 303.
  • the first to third housings 301, 302, 303 are formed of a metal having high thermal conductivity such as aluminum.
  • the second housing 302 and the third housing 303 that do not have the housing sliding surface 360 are not limited to metal and may be formed of resin or the like.
  • the first to third housings 301, 302, and 303 are all made of metal, it is possible to further improve heat dissipation.
  • the first housing 301 and the third housing 303 are fixed by bolts or an adhesive (not shown).
  • the fixed scroll 100 has a cutout portion 18 formed so as to be cutout inward in the radial direction at a portion on the revolving base 260 side and radially outside of the fixed tooth portion 120.
  • the first housing 301 has an overhang portion 390 provided so as to enter the cutout portion 180 of the fixed scroll 100.
  • the radially outer wall of the cutout portion 180 of the fixed scroll 100 and the radially inner wall of the overhang portion 390 are fixed by press-fitting. Therefore, in the second embodiment, the fixed portion (that is, the fitting portion) between the first housing 301 and the fixed scroll 100 is located at the center position M between the surface of the fixed base 110 on the turning base 260 side and the housing sliding surface 360. Are also located on the turning base 260 side.
  • the height h of the overhang portion 390 in the axial direction is smaller than the height H of the turning tooth portion 220.
  • the fixed scroll 100 thermally expands due to a temperature change
  • the fixed scroll 100 moves in a direction in which the fixed base 110 moves away from the housing sliding surface 360. Therefore, the tip 1210 of the fixed tooth portion 120 does not come into contact with the turning base 260, and slides in a state where the turning sliding surface 230 and the housing sliding surface 360 are surely in contact with each other. Therefore, the high-pressure air in the back pressure chamber 350 is prevented from leaking into the low-pressure space 170 inside the fixed scroll 100. Therefore, the fluid machine 1 can prevent a decrease in air compression efficiency.
  • an O-ring 510 is provided between the fixed base 110 of the fixed scroll 100 and the third housing 303 as an urging member and a seal member. That is, the O-ring 510 corresponds to an example of an urging member.
  • the O-ring 510 urges the fixed scroll 100 toward the orbiting scroll 200 to bring the axial contact surface of the cutout portion 180 of the fixed scroll 100 into contact with the axial contact surface of the overhang portion 390. . Thereby, even when the fluid machine 1 is not operating, the attitude of the fixed scroll 100 is stabilized.
  • the O-ring 510 is provided so as to surround the discharge port 340 of the third housing 303. That is, the O-ring 510 is provided so as to surround the periphery of the discharge port 160 of the fixed scroll 100.
  • the surface of the overhang portion 390 facing the turning sliding surface 230 constitutes the housing sliding surface 360.
  • the inner diameter D1 of the housing sliding surface 360 according to the configuration of the second embodiment shown in FIG. 10 is smaller than the inner diameter D2 of the housing sliding surface 360 according to the configuration of the first embodiment shown in FIG. Become. Therefore, in the configuration of the second embodiment shown in FIG. 10, the outer diameter D3 of the swivel base 260 having the swivel sliding surface 230 sliding on the housing sliding surface 360 is changed to the outer diameter D3 of the first embodiment shown in FIG. Can be made smaller than the outer diameter D4 of the turning sliding surface 230. Therefore, the fluid machine 1 of the second embodiment can have a smaller physique in the radial direction than the fluid machine 1 of the first embodiment.
  • the second embodiment can also provide the same functions and effects as the first embodiment.
  • a third embodiment will be described.
  • the third embodiment is different from the first embodiment in that a part of the configuration of the first housing 301 is changed from the first embodiment and the like, and the other is the same as the first embodiment. Only the portions will be described.
  • the first housing 301 does not have the concave portion 370 on the outer side in the radial direction of the housing sliding surface 360. Therefore, in the third embodiment, the turning sliding surface 230 and the housing sliding surface 360 always slide without intermittent sliding. That is, the sliding ratio of the rotating sliding surface 230 to the housing sliding surface 360 is 100%. Even with such a configuration, the heat generated by sliding between the swivel sliding surface 230 and the housing sliding surface 360 diffuses into the metal housing 300 and is radiated from the outer wall of the housing 300 to the atmosphere. .
  • a spacer 530 is provided between the first housing 301 and the second housing 302. Specifically, the spacer 530 is provided between a portion where the first housing 301 faces the orbiting sliding surface 230 and the orbiting sliding surface 230 of the orbiting scroll 200.
  • the spacer 530 is formed in an annular shape when viewed from the axial direction.
  • the spacer 530 is formed of a metal such as iron or aluminum, and has a self-lubricating coating 5310 applied to a surface that slides on the turning sliding surface 230.
  • the coating 5310 fluorine or molybdenum disulfide having self-lubricating properties is exemplified. Note that, as the fluorine coating, coating with PTFE is preferable.
  • the coating 5310 can be easily applied by applying the coating 5310 to the metal spacer 530 without applying the coating to the large first housing 301 or the second housing 302. . Therefore, manufacturing costs can be reduced.
  • the fourth embodiment can also provide the same operation and effect as the first embodiment.
  • the spacer 530 is provided between a portion where the second housing 302 faces the orbiting sliding surface 230 and the orbiting sliding surface 230 of the orbiting scroll 200.
  • the orbiting sliding surface 230 of the orbiting scroll 200 is provided on the surface of the orbiting base 260 opposite to the fixed scroll 100.
  • the orbiting scroll 200 of the fifth embodiment is not provided with the back pressure introducing hole 250 shown in FIG. Therefore, high-pressure air is not supplied to the space between the surface of the revolving base 260 opposite to the fixed scroll 100 and the inner wall of the second housing 302. That is, the space is not used as the back pressure chamber 350.
  • the orbiting base 260 of the orbiting scroll 200 is urged toward the spacer 530 by the pressure of the air in the compression chamber 140, and the orbiting sliding surface 230 provided on the surface of the orbiting base 260 opposite to the fixed scroll 100. And the spacer 530 slide.
  • the spacer 530 is formed in a ring shape from a metal such as iron or aluminum, and has a self-lubricating coating 5310 applied to a surface that slides on the revolving sliding surface 230. .
  • Fluid machines capable of achieving the objects disclosed herein include machines that compress fluid or devices that expand fluid.
  • the fluid machine 1 disclosed in the sixth embodiment can compress or expand a liquid, a gas, a gas-liquid mixed fluid, or the like employed as a working fluid and cause the fluid to flow out.
  • the working fluid is air, water, various refrigerants, and the like.
  • the fluid machine 1 is a scroll fluid machine including the fixed scroll 33 and the orbiting scroll 20.
  • the fluid machine 1 at least the orbiting scroll 20 is made of resin, and can be used without lubrication. For this reason, the fluid machine 1 does not require an accessory device such as an oil separator.
  • the fluid machine 1 can be applied as an air pressure source for supplying clean air such as medical air or factory air.
  • the fluid machine 1 includes a housing 30, a fixed scroll 33, an orbiting scroll 20, a motor unit 40, and the like.
  • the housing 30 includes a first housing 31 and a second housing 32.
  • the first housing 31 and the second housing 32 are stationary members that are stationary with respect to the movable orbiting scroll 20 in the fluid machine 1.
  • Both the first housing 31 and the second housing 32 are formed of a metal having high thermal conductivity such as aluminum.
  • the first housing 31 and the second housing 32 are fixed by bolting or welding.
  • the first housing 31 and the second housing 32 are installed such that their outer walls are exposed to the atmosphere. At least a part of the first housing 31 and the second housing 32 may be formed of metal.
  • the first housing 31 and the second housing 32 only need to be configured so that at least a part thereof is exposed to the atmosphere.
  • the fixed scroll 33 and the orbiting scroll 20 are provided inside the housing 30.
  • the fixed scroll 33 is configured as a part of the first housing 31. That is, the fixed scroll 33 and the first housing 31 form one member.
  • the fixed scroll 33 and the orbiting scroll 20 may be referred to as both scroll members.
  • the two scroll members constitute a compression mechanism for sucking, compressing, and discharging air, which is an example of a working fluid.
  • the fixed scroll 33 includes a disk-shaped base 330 and fixed-side teeth 331 protruding from the base 330.
  • the fixed-side tooth portion 331 is a fixed-side wrap provided on the fixed scroll 33, and is formed in a spiral shape when the fixed scroll 33 is viewed in the axial direction.
  • a cylindrical wall portion 332 that is coupled to the second housing 32 in the first housing 31 is provided. As shown in FIG. 14, the cylindrical wall portion 332 protrudes in the axial direction of the fluid machine 1 so as to surround the base portion 330 from the outer peripheral edge of the base portion 330.
  • the base portion 330 of the first housing 31 is provided with a suction port 34 for supplying air to a compression chamber 38 formed between both scroll members, and a discharge port 35 for discharging air from the compression chamber 38.
  • the orbiting scroll 20 has a disc-shaped base portion 21 and a turning-side tooth portion 22 provided on the base portion 21.
  • the revolving-side tooth portion 22 is a revolving-side wrap provided on the revolving scroll 20, and is formed in a spiral shape when the revolving scroll 20 is viewed in the axial direction.
  • the compression chamber 38 is a fluid chamber that sucks, compresses, and discharges fluid between the fixed-side wrap and the turning-side wrap.
  • the compression chamber 38 is formed in a crescent shape when viewed in the axial direction.
  • the cylindrical boss 24 is provided on the side of the base 21 opposite to the compression chamber 38.
  • the fixed-side tooth portion 331 and the turning-side tooth portion 22 have a relationship of forming an asymmetric spiral structure having different winding angle ranges. It is preferable that the difference between the winding angle range of the fixed-side tooth portion 331 and the winding angle range of the turning-side tooth portion 22 is 30 degrees or more. This is because in the case of having an asymmetric spiral structure, the inside and outside of the scroll can be effectively used, and the physical size can be reduced with respect to the suction volume.
  • the fixed-side tooth portion 331 has a spiral-shaped portion located further radially outward than a radially outer portion of the turning-side tooth portion 22.
  • the spiral part of the fixed tooth part 331 is provided on the cylindrical wall part 332. Due to the spiral portion provided on the cylindrical wall portion 332, the winding angle range of the fixed-side tooth portion 331 is larger than the winding angle range of the turning-side tooth portion 22 by an angle included in the range of 170 to 190 degrees. It is preferred that
  • the fluid chamber When the fluid machine 1 is an expander that expands a fluid, the fluid chamber has a configuration in which the fluid chamber moves from the center to the outer end of the fixed scroll 33.
  • the suction port 34 functions as a discharge port and the discharge port 35 functions as a suction port, the volume of the fluid chamber changes so as to increase, and the fluid chamber is taken into the fluid chamber from the center. The fluid begins to expand.
  • the fluid machine 1 includes a rotation preventing mechanism 50 for preventing the orbiting scroll 20 from rotating.
  • the anti-rotation mechanism 50 includes a regulating portion 51, a projecting portion 52 that is rotated by the inside of the regulating portion 51 while being regulated by the inner peripheral wall of the regulating portion 51, and a ring-shaped member interposed between the projecting portion 52 and the regulating portion 51. And an interposition member 53.
  • the fluid machine 1 includes four rotation preventing mechanisms 50. The four rotation preventing mechanisms 50 are located at substantially equal intervals around the central axis of the orbiting scroll 20.
  • substantially equal intervals means a configuration including an equal interval and a configuration displaced from the equal intervals within a predetermined dimensional tolerance.
  • the predetermined dimensional tolerance is about ⁇ 5 degrees.
  • the rotation preventing mechanism 50 provided in the fluid machine 1 may be three or five or more.
  • the regulating portion 51 is a hole formed by a circular inner peripheral wall or a concave portion having a bottom surface.
  • the restricting portion 51 is, for example, a concave portion having a predetermined depth provided on the base portion 21 of the orbiting scroll 20 on a side opposite to the fixed scroll 33.
  • the restricting portion 51 faces an end surface of the second housing 32 perpendicular to the rotation axis CL1.
  • the restricting portion 51 has a configuration having an inner peripheral wall having a circular opening end and a bottom portion closing the fixed scroll 33 side of the inner peripheral wall.
  • the inner peripheral wall and the bottom forming the recess are a part of the base 21 made of resin.
  • the projecting part 52 is a rod-shaped body having a fixed part 520 fixed to the second housing 32 and a sliding part 521 as a tip side part protruding toward the bottom surface of the regulating part 51.
  • the protrusion 52 is formed of iron or an alloy containing iron.
  • the protrusion 52 is also called a pin.
  • the fixed portion 520 is fixed in a state of being pressed into a cylindrical concave portion 320 formed in the second housing 32.
  • the projecting portion 52 is fixed to the second housing 32 in a state where the tip of the sliding portion 521 and the tip of the interposition member 53 are separated from the bottom surface of the regulating portion 51.
  • An interposed member 53 is attached to the protruding portion 52 at a distal end side portion that slides with respect to the regulating portion 51.
  • the interposition member 53 is rotatably installed outside the distal end portion of the protrusion 52.
  • the rotation preventing mechanism 50 of this embodiment includes an interposition member 53 rotatable with respect to the pin.
  • the sliding portion 521 slides while being regulated with respect to the inner peripheral wall of the regulating portion 51 via the interposition member 53.
  • the sliding portion 521 and the interposition member 53 constitute a sliding structure that slides while being regulated with respect to the inner peripheral wall of the regulating portion 51.
  • the interposition member 53 is formed of, for example, metal. As the orbiting scroll 20 revolves, the interposition member 53 rotates while rotating with respect to the pin inside the regulating portion 51 while being regulated by the inner peripheral wall of the regulating portion 51.
  • the material of the interposition member 53 is a material whose surface hardness is lower than the surface hardness of the protrusion 52.
  • the interposition member 53 is formed of a material that is more easily worn than the protruding portion 52, and the surface roughness of the protruding portion is formed smaller than the inner peripheral portion of the interposition member.
  • the surface hardness of the interposition member 53 and the surface hardness of the sliding portion 521 can be measured in accordance with, for example, JIS ⁇ Z ⁇ 2244 which shows a Vickers hardness test method.
  • the interposition member 53 is preferably formed of a metal containing copper or tin. Since the metal containing copper or tin is a metal having a solid lubricating action, it exerts a function of reducing the frictional resistance of the oilless sliding portion in the fluid machine 1. Further, the interposition member 53 may be formed of a metal including iron.
  • the interposition member 53 is formed of a porous body and contains oil. This is because even without lubrication, wear can be reduced by the lubricating effect of the self-held oil.
  • the porous body forming the interposition member 53 is, for example, a sintered metal or plastic sintered porous body.
  • Sintered metal is a substance obtained by sintering metal powder at a temperature around the melting point, and metal powder such as iron, copper, aluminum, and magnesium can be used.
  • the plastic sintered porous body can be manufactured by sintering and molding a purified plastic powder.
  • the interposition member 53 preferably contains a solid lubricant. As the solid lubricant, molybdenum disulfide, graphite, an organic molybdenum compound, a fluorine compound, or the like can be used.
  • the interposition member 53 is formed of a metal containing copper or tin and contains a solid lubricant.
  • One end portion 53a of the interposition member 53 in the axial direction and the bottom surface 51a of the regulating portion 51 are in a separated positional relationship.
  • the one end 53a is an end face located on the fluid chamber or fixed scroll 33 side of the interposition member 53 and orthogonal to the axial direction.
  • the protruding portion 52 is supported by the second housing 32, which is a fixed-side member, and the orbiting scroll 20, which is a movable-side member, at the fixed portion 520, the interposition member 53, and the sliding portion 521 located at both ends. I have.
  • the protruding portion 52 is fixed to the solid-side member at the fixed portion 520 at one end, and is supported while sliding on the regulating portion 51 at the sliding portion 521 and the interposition member 53 at the other end, which are the tips. .
  • a motor unit 40 is provided integrally with the second housing 32 on the side opposite to the first housing 31.
  • the motor section 40 has a stator 42, a rotor 43, a shaft 44, and the like inside a motor case 41.
  • Various motors such as a brush motor or a brushless motor can be used as the motor unit 40.
  • the shaft 44 is rotatably provided by bearings 45 and 46 provided inside the motor case 41.
  • the shaft 44 is rotationally driven by the motor unit 40.
  • the end of the shaft 44 is inserted inside the second housing 32.
  • An eccentric part 47 is fixed to an end of the shaft 44.
  • the center axis CL2 of the eccentric part 47 is installed at a position eccentric with respect to the rotation axis CL1 of the shaft 44.
  • the eccentric part 47 is provided via a bearing 48 inside the boss part 24 provided on the base part 21 of the orbiting scroll 20.
  • the compression chamber 38 formed between the two scroll members orbits from the outside in the radial direction to the inside in the radial direction. While the rotation angle of the shaft 44 changes from 0 degrees to 360 degrees, the compression chamber 38 located on the suction port 34 side changes so that its volume gradually decreases while approaching the rotation axis CL1 or the discharge port 35. . As a result, air supplied to the compression chamber 38 from the outside of the fluid machine 1 through the suction port 34 is compressed, and the air is discharged from the discharge port 35 to the outside of the fluid machine 1.
  • a back pressure chamber 39 is provided between a surface of the base 21 opposite to the fixed scroll 33 and a separation wall 321 which is an inner wall of the second housing 32 on the rotation axis CL1 side.
  • a part of the air compressed in the compression chamber 38 is supplied to the back pressure chamber 39 via the back pressure introduction passage 25 penetrating the base 21.
  • the back pressure introduction passage 25 is a passage that connects the compression chamber 38 and the back pressure chamber 39.
  • a housing-side sliding surface 36 that slides on the turning-side sliding surface 23 is provided at a portion of the first housing 31 that faces the turning-side sliding surface 23.
  • the housing-side sliding surface 36 functions as a thrust bearing for receiving a load in the axial direction of the orbiting scroll 20.
  • the orbiting scroll 20 revolves while being supported by the housing-side sliding surface 36 as a thrust bearing.
  • the high-pressure air supplied from the compression chamber 38 to the back pressure chamber 39 passes through the gap and has a low pressure inside the fixed scroll 33. It is possible that it leaks into the space.
  • the orbiting scroll 20 is urged toward the fixed scroll 33 by the pressure of the air in the back pressure chamber 39, so that the orbiting sliding surface 23 and the housing-side sliding surface 36 are securely contacted. Slide. Therefore, there is an effect that high-pressure air in the back pressure chamber 39 is prevented from leaking into the low-pressure space inside the fixed scroll 33. According to the fluid machine 1, it is possible to prevent a decrease in the air compression efficiency.
  • the housing-side sliding surface 36 is preferably provided with a coating containing fluorine or molybdenum disulfide having self-lubricating properties. Thereby, the friction coefficient of the housing-side sliding surface 36 can be reduced.
  • a coating containing fluorine or molybdenum disulfide having self-lubricating properties.
  • the friction coefficient of the housing-side sliding surface 36 can be reduced.
  • the fluorine coating coating with polytetrafluoroethylene is preferable. Further, since this coating is a thin film, it has an effect that heat transfer from the orbiting scroll 20 to the housing 30 is hardly hindered. Therefore, even when the turning-side sliding surface 23 and the housing-side sliding surface 36 slide under a higher load, it is possible to suppress an increase in the temperature of the sliding portion.
  • the first housing 31 is provided with a concave portion 37 that is recessed so as to be spaced apart from the orbiting scroll 20 on the radially outer side than the housing-side sliding surface 36.
  • the concave portion 37 is a portion that does not contact the orbiting side sliding surface 23 of the orbiting scroll 20.
  • a gap is provided between the tip of the fixed side tooth portion 331 and the base portion 21 of the orbiting scroll 20.
  • a gap is provided between the tip of the turning-side tooth portion 22 and the base portion 330 of the fixed scroll 33.
  • the tip of the fixed-side tooth portion 331 is located closer to the base portion 330 than the turning-side sliding surface 23 and the housing-side sliding surface 36, so that the turning-side sliding surface 23 and the housing-side sliding surface 36 Slides in a state where it is securely contacted. This has the effect of preventing the high-pressure air in the back pressure chamber 39 from leaking into the low-pressure space inside the fixed scroll 33.
  • the fluid machine 1 includes a fixed scroll 33 having a fixed side wrap, and a turning scroll 20 having a turning side wrap that forms a fluid chamber for sucking, compressing, and discharging fluid between the fixed side wrap.
  • the fluid machine 1 includes a plurality of rotation preventing mechanisms 50 arranged at substantially equal intervals in the circumferential direction.
  • the anti-rotation mechanism 50 includes a regulating portion 51 having a circular inner peripheral wall, a protruding portion 52 that is rotated by the inside of the regulating portion 51 while being regulated by the inner peripheral wall of the regulating portion 51, and between the protruding portion 52 and the inner peripheral wall.
  • the interposition member 53 is formed of a material whose surface hardness is lower than the surface hardness of the protrusion 52, and the surface roughness of the protrusion 52 is smaller than the inner peripheral portion of the interposition member 53.
  • the reason for reducing the surface roughness of the protruding portion 52 is that the protruding portion 52 has an outer diameter, and the surface roughness is more easily reduced by processing than the inner peripheral portion of the interposition member 53.
  • the inner peripheral portion of the interposition member 53 wears more than the outer peripheral portion of the protrusion 52, and The inner peripheral portion of the mounting member 53 is adapted to the protrusion having a small surface roughness.
  • the portion that slides between the interposition member 53 and the protruding portion 52 becomes familiar, the sliding resistance between the interposition member 53 and the protruding portion 52 is suppressed, and wear and seizure can be suppressed.
  • the fluid machine 1 has the interposition member 53 formed of a metal containing copper or tin, excessive wear between the interposition member 53 and the sliding portion 521 is prevented by the solid lubrication of the metal even without lubrication. It can suppress abnormal wear and seizure.
  • the fluid machine 1 includes the interposition member 53 formed of a porous body and containing oil, excessive wear between the interposition member 53 and the sliding portion 521 due to the fluid lubrication action of the self-holding oil even without lubrication. And abnormal wear and seizure can be suppressed.
  • the fluid machine 1 includes the interposition member 53 containing the solid lubricant, excessive wear between the interposition member 53 and the sliding portion 521 is suppressed due to a decrease in the coefficient of friction, and abnormal wear and seizure are suppressed. be able to.
  • the interposition member 53 is formed such that the ratio of the outer diameter to the inner diameter is 2 or more. According to this configuration, since the ratio of the outer peripheral surface sliding resistance to the inner peripheral surface sliding resistance of the interposition member 53 increases, slippage between the interposition member 53 and the inner peripheral wall of the regulating portion 51 decreases. The interposition member 53 becomes easy to roll. Thereby, abrasion between the interposition member 53 and the inner peripheral wall of the regulating portion 51 can be suppressed, and abnormal wear and image sticking can be suppressed.
  • the inner peripheral wall of the regulating portion 51 is a part of the orbiting scroll 20.
  • the orbiting scroll 20 is formed of a fiber reinforced resin.
  • the orbiting scroll 20 is made of a resin having a relatively small specific gravity, so that the fluid machine 1 with reduced vibration can be provided.
  • the fiber reinforced resin is a resin material containing, for example, glass fiber or talc material.
  • the seventh embodiment will be described with reference to FIGS.
  • the seventh embodiment is different from the sixth embodiment in the configuration of the regulating portion 151. Configurations, operations, and effects that are not particularly described in the seventh embodiment are the same as those in the sixth embodiment, and only different points will be described below.
  • the concave portion forming the regulating portion 151 is provided with a partial concave portion 1511 that is further concaved toward the fluid chamber than the bottom surface 51 a where the one end portion 53 a in the axial direction of the interposition member 53 faces.
  • the partial concave portion 1511 is an annular groove that is provided over the entire periphery of the bottom surface 51a and has an annular shape. Further, the partial concave portion 1511 may be an arc-shaped groove portion provided partially on the peripheral edge portion of the bottom surface 51a. In this case, the partial concave portion 1511 is a single or a plurality of arc-shaped grooves provided at the peripheral portion of the bottom surface 51a.
  • the regulating portion 151 is partially recessed in the axial direction of the interposition member 53 with the bottom surface 51a facing the one end 53a and in the direction away from the interposition member 53 with respect to the bottom surface 51a. And a partial recessed portion 1511.
  • a mixture of oil and abrasion powder oozing out from the interposition member 53 and the like can be stored in the partial recess 1511. Accordingly, it is possible to suppress the intervening member 53, the orbiting scroll 20, or other sliding objects from being in an abnormally worn state due to foreign matters such as abrasion powder oozing out from the interposed member 53.
  • the amount of oil, foreign matter, and the like collected near the inner peripheral wall of the regulating portion 151 can be improved, so that the ability to collect foreign matter and the like moving toward the inner peripheral wall due to centrifugal force can be increased.
  • the eighth embodiment will be described with reference to FIGS.
  • the eighth embodiment is different from the sixth embodiment in the configuration of the regulating portion 251. Configurations, operations, and effects that are not particularly described in the eighth embodiment are the same as those in the sixth embodiment, and only different points will be described below.
  • the concave portion forming the regulating portion 251 is provided with a partial concave portion 2511 that is further concaved toward the fluid chamber than the bottom surface 51a.
  • the partial recess 2511 is a groove that extends radially from the center of the bottom surface 51a.
  • the radial groove portion extends in all directions from the center of the bottom surface 51a and reaches the inner peripheral wall of the regulating portion 251.
  • the regulating portion 251 is formed of a bottom surface 51a on which the one end portion 53a of the interposition member 53 is opposed, and a partial concave portion partially depressed in a direction away from the interposition member 53 with respect to the bottom surface 51a. 2511.
  • a mixture of oil and abrasion powder oozing out from the interposition member 53 and the like can be stored in the partial recess 2511.
  • the fluid machine 1 according to the eighth embodiment can prevent the intervening member 53, the orbiting scroll 20, or other sliding objects from being in an abnormally worn state due to foreign matter such as abrasion powder seeping out from the interposed member 53.
  • the partial concave portion 2511 is provided both on the center side of the regulating portion 251 and near the inner peripheral wall, so that the ability to collect a wide range of foreign substances and the like on the bottom surface 51a can be enhanced.
  • the ninth embodiment will be described with reference to FIGS.
  • the ninth embodiment is different from the sixth embodiment in the configuration of the regulating portion 351. Configurations, operations, and effects not particularly described in the ninth embodiment are the same as those in the sixth embodiment, and only different points will be described below.
  • the concave portion forming the regulating portion 351 is provided with a partial concave portion 3511 which is further concaved toward the fluid chamber than the bottom surface 51 a where the one end portion 53 a in the axial direction of the interposition member 53 faces.
  • the partial recesses 3511 are a plurality of cylindrical recesses arranged at intervals on the peripheral edge of the bottom surface 51a. It is preferable that the partial recesses 3511 are provided at substantially equal intervals on the peripheral edge of the bottom surface 51a.
  • the regulating portion 351 is formed of a bottom surface 51a on which the one end portion 53a of the interposition member 53 faces, and a partial concave portion partially recessed in a direction away from the interposition member 53 with respect to the bottom surface 51a. 3511. According to this configuration, a mixture of oil and abrasion powder oozing out from the interposition member 53 and the like can be stored in the partial recess 3511.
  • the fluid machine 1 according to the ninth embodiment can prevent the intervening member 53, the orbiting scroll 20, or other sliding objects from being in an abnormally worn state due to foreign matter such as abrasion powder oozing out from the interposed member 53.
  • the amount of oil, foreign matter, and the like collected in the vicinity of the inner peripheral wall of the regulating portion 351 can be improved, so that the ability to collect foreign matter and the like moving toward the inner peripheral wall due to centrifugal force can be enhanced.
  • the outer diameter of the projection 52 is larger than the inner diameter of the interposition member 53.
  • the interposition member 53 is fitted outside in a state where a gap is formed with respect to the sliding portion 521. With this configuration, when the interposition member 53 is inclined at the maximum with respect to the protruding portion 52 as shown in FIG. 22, a part of the inner peripheral surface of the interposition member 53 contacts the outer peripheral surface of the sliding portion 521. Will do. In this state, the surface 322, the interposition member 53, and the bottom surface 51a of the fixed member are in contact with one end 53a of the interposition member 53 and the bottom surface 51a, and the other end 53b of the interposition member 53 is fixed to the fixed side. It is provided in such a positional relationship that neither the contact state with the member occurs.
  • the restricting portion 51 includes the bottom surface 51a facing the one end 53a of the interposition member 53.
  • the bottom surface 51a and the fixed side member are fixed to the bottom surface 51a when the interposition member 53 in a state of being fitted to the outside of the protrusion 52 is at a maximum inclination with respect to the protrusion 52. It is provided so as not to contact with both side members.
  • the following operation and effect can be obtained. That is, when the interposition member 53 is greatly inclined with respect to the protruding portion 52, the axial end of the interposition member 53 is prevented from sliding while being in contact with the fixed member or the bottom surface 51a. Can be. Thereby, abnormal wear and seizure of the interposition member 53 or the fixed-side member and the bottom surface 51a can be suppressed.
  • the plate-shaped member 54 is provided between the other end 53b of the interposition member 53 in the axial direction and the fixed-side member.
  • the plate-shaped member 54 is provided between the surface 210 of the base 21 and the surface 322 of the second housing 32 so as to face both the surface 210 and the surface 322.
  • the plate-shaped member 54 is one member provided so as to be axially opposed to all of the plurality of interposition members 53 included in the fluid machine 1.
  • the plate-shaped member 54 functions as a displacement restricting structure that prevents the interposition member 53 from being displaced in the axial direction and falling off from the restricting portion 51, and is formed of, for example, metal.
  • the plate-shaped member 54 functions as a wear-resistant plate-shaped member that suppresses wear of the interposition member 53 and the fixed-side member.
  • the protruding portion 52 has a sliding portion 521 that is regulated on the inner peripheral wall of the regulating portion 51 via the interposition member 53 on one end side, and a fixed side member on the other end side.
  • a fixed portion 520 that is fixed to The fluid machine 1 further includes a plate-shaped member 54 provided between the other end 53b of the interposition member 53 in the axial direction and the fixed-side member. According to this configuration, the contact between the interposition member 53 and the fixed-side member can be avoided by the plate-shaped member 54, so that the abrasion between the interposition member 53 and the fixed-side member can be suppressed.
  • Twelfth embodiment A twelfth embodiment will be described with reference to FIG.
  • the twelfth embodiment is different from the sixth embodiment in that the twelfth embodiment has a sleeve member 60 for restricting the turning movement of the interposition member 53.
  • Configurations, operations, and effects that are not particularly described in the twelfth embodiment are the same as those in the sixth embodiment, and only differences from the above-described embodiment will be described below.
  • a cylindrical sleeve member 60 is housed in the concave portion forming the above-described regulating portion 51.
  • the sleeve member 60 may be configured to be fixed to the concave portion or may be configured to be rotatable. Further, as the orbiting scroll 20 revolves, the sliding portion 521 and the interposition member 53 rotate inside the sleeve member 60 while being restricted by the inner peripheral wall of the sleeve member 60. Further, the sleeve member 60 is preferably formed of a fiber reinforced resin or metal.
  • the sleeve member 60 is formed of, for example, metal. With these configurations, the orbiting scroll 20 is not a member that slides on the outer periphery of the interposition member 53. As a result, the material of the orbiting scroll 20 can be selected without considering the necessary wear resistance and surface hardness.
  • the fluid machine 1 further includes a tubular sleeve member 60 provided between the inner peripheral wall of the regulating portion 51 and the interposition member 53.
  • the sleeve member 60 is formed of fiber reinforced resin or metal.
  • the inner peripheral wall of the regulating portion 51 is not limited to the fiber reinforced resin, and can be formed of a material having high molding accuracy.
  • a thirteenth embodiment will be described with reference to FIGS.
  • the thirteenth embodiment differs from the twelfth embodiment in the configuration of the sleeve member 61. Configurations, operations, and effects that are not particularly described in the twelfth embodiment are the same as those in the thirteenth embodiment, and only differences from the above-described embodiment will be described below.
  • the sleeve member 61 provided in the fluid machine 1 according to the thirteenth embodiment is an integral member connected in the circumferential direction.
  • the sleeve member 61 has a plurality of tubular portions 62 and a connecting portion 63 that connects the plurality of tubular portions 62 to each other.
  • the plurality of cylindrical portions 62 are housed in the concave portions forming the restricting portions 51. Note that the number of the plurality of cylindrical portions 62 corresponds to the number of concave portions forming the regulating portion 51. The number of the plurality of cylindrical portions 62 and the concave portions is not limited to four as shown in FIG. 26, and may be three or five or more.
  • the connecting portion 63 may be embedded in the orbiting scroll 20 as shown in FIG. 25, or may protrude from the orbiting scroll 20 toward the second housing 32.
  • the sleeve member 61 is formed as an integral member, so that it can be easily assembled to the orbiting scroll 20. Further, the number of parts can be reduced.
  • the disclosure of this specification is not limited to the illustrated embodiment.
  • the disclosure embraces the illustrated embodiments and variations thereon based on those skilled in the art.
  • the disclosure is not limited to the combination of parts and elements shown in the embodiment, but can be implemented in various modifications.
  • the disclosure can be implemented in various combinations.
  • the disclosure may have additional parts that can be added to the embodiments.
  • the disclosure includes those in which the components and elements of the embodiments are omitted.
  • the disclosure encompasses the replacement or combination of parts, elements, between one embodiment and another.
  • the disclosed technical scope is not limited to the description of the embodiments.
  • the technical scope disclosed is indicated by the description of the claims, and should be construed to include all modifications within the meaning and scope equivalent to the description of the claims.
  • the orbiting slide surface 230 is provided on the surface of the orbiting base 260 of the orbiting scroll 200 on the fixed scroll 100 side, and the housing slide is provided on the portion of the first housing 301 facing the orbiting sliding surface 230.
  • the moving surface 360 is provided, it is not limited to this.
  • the orbiting base 260 of the orbiting scroll 200 may be provided with a orbiting sliding surface on a surface opposite to the fixed scroll 100 and a housing sliding surface may be provided on a portion of the second housing 302 facing the orbiting sliding surface. Good.
  • the motor unit 400 is described as an example of the drive source of the orbiting scroll 200.
  • the drive source is not limited to this, and may be, for example, an engine.
  • the fluid device may be configured such that torque is transmitted via a pulley and a belt from a drive source provided at a position distant from the compression mechanism that compresses the fluid.
  • the fixed scroll 100 is described as being formed of resin, but is not limited thereto, and the fixed scroll 100 may be formed of, for example, metal.
  • the protruding portion is a rod-like body such as a pin.
  • the protruding portion capable of achieving the object disclosed in the specification is a rod-like body or a cylindrical body having a hollow inside. Is also good.
  • the fixed scroll 33 is a part of the first housing 31, but may be configured by a member separate from the first housing 31.
  • the fixed scroll 33 which is a separate member, is fixed to the first housing 31 to be integrated with the first housing 31.
  • the fixed scroll 33 is described as being formed of a metal such as aluminum in the above-described embodiment, but may be formed of a resin material. In this case, the fixed scroll 33 may be a part of the first housing 31 or may be a separate member fixed to the first housing 31.
  • the fixed side wrap and the turning side wrap are described as having an asymmetric spiral structure having different winding angle ranges.
  • these wraps are symmetrical spirals having the same winding angle range.
  • the relationship may form a structure.
  • the fixed scroll has a fixed base and a spiral fixed tooth portion provided on the fixed base.
  • the orbiting scroll is made of resin, has a revolving base arranged opposite to the fixed base, and a spiral revolving tooth provided on the revolving base, and the fixed tooth and the revolving tooth are fitted with each other, Revolves around a predetermined central axis.
  • the housing fixes the fixed scroll and houses the fixed scroll and the orbiting scroll.
  • the orbiting sliding surface is provided on a portion of the orbiting base of the orbiting scroll that is radially outward from the orbiting tooth portion.
  • the housing sliding surface is provided in a portion of the housing that faces the turning sliding surface, and slides on the turning sliding surface.
  • the housing is configured such that a portion where the housing sliding surface is provided is made of metal, and an outer wall thereof is exposed to the atmosphere.
  • the sliding surface of the housing is provided with a coating containing fluorine or molybdenum disulfide having self-lubricating properties.
  • the fixed scroll is made of resin.
  • the two scroll members can stabilize the performance of compressing the fluid against the temperature change.
  • both scroll members are made of resin, manufacturing costs can be further reduced.
  • the fixed scroll and the orbiting scroll are configured such that, when the orbiting scroll revolves, a predetermined gap is formed at a position where the side surface of the fixed tooth portion and the side surface of the orbiting tooth portion are closest. ing.
  • the tip of the fixed tooth portion is located closer to the fixed base than the turning sliding surface and the housing sliding surface.
  • the tip of the fixed tooth portion slides with the turning sliding surface and the housing sliding surface surely in contact with each other without touching the turning base. Therefore, leakage of fluid from a space outside the fixed scroll and the orbiting scroll (for example, a back pressure chamber) to a low-pressure space inside the fixed scroll is prevented. Therefore, this fluid machine can prevent a decrease in fluid compression efficiency.
  • the fixing portion between the housing and the fixed scroll is located closer to the turning base than the center position between the surface of the fixed base on the turning base side and the housing sliding surface.
  • the fixed tooth portion of the fixed scroll has a cutout portion formed so as to be cutout radially outward and radially inward at a portion on the turning base side.
  • the housing has an overhang portion provided so as to enter the cutout portion of the fixed scroll.
  • the surface of the overhang portion facing the orbital sliding surface of the orbiting scroll forms a housing sliding surface.
  • the inner diameter of the sliding surface of the housing is reduced, it is possible to reduce the outer diameter of the revolving sliding surface that slides on the housing, thereby reducing the outer diameter of the revolving base. Therefore, the size of the fluid machine in the radial direction can be reduced.
  • an urging member provided between the fixed base and the housing, for urging the fixed base toward the orbiting scroll, and for bringing the cutout portion of the fixed scroll into contact with the overhang portion.
  • the fluid machine includes a back pressure chamber between the surface of the turning base opposite to the fixed scroll and the inner wall of the housing, to which the fluid compressed by the fixed scroll and the turning scroll is supplied. Further prepare.
  • the orbiting scroll is urged toward the fixed scroll by the fluid pressure of the back pressure chamber, so that the orbiting sliding surface provided on the surface of the orbiting base on the fixed scroll side is in contact with the housing sliding surface. Is configured to slide.
  • the orbiting base of the orbiting scroll is provided with a orbiting sliding surface on the surface opposite to the fixed scroll, and if a coating is applied to the housing sliding surface that slides on the rotating base, the rotation is not shown. Coatings may also be required for prevention mechanisms and the like. In that case, there is a concern that the manufacturing cost will increase.
  • the orbiting scroll is provided with the orbital sliding surface on the surface of the orbiting base on the fixed scroll side. Therefore, when coating is performed on the sliding surface of the housing that slides on the revolving sliding surface, the configuration can be simplified and the manufacturing cost can be reduced.
  • the housing has, on the radially outer side of the housing sliding surface, a concave portion that does not slide on the turning sliding surface by being recessed away from the turning sliding surface.
  • the radial width of the housing sliding surface is smaller than twice the distance that the orbiting scroll is eccentric with respect to the center axis of the revolution.
  • the sliding sliding surface and the housing sliding surface slide intermittently.
  • the time during which a given sliding point in the swivel sliding surface slides on the housing sliding surface can be less than 100% of the total operating time of the fluid machine. Therefore, it is possible to suppress a rise in temperature due to sliding between the turning sliding surface and the housing sliding surface.
  • the fixed scroll has a fixed base and a spiral fixed tooth portion provided on the fixed base.
  • the orbiting scroll is made of resin, has a revolving base arranged opposite to the fixed base, and a spiral revolving tooth provided on the revolving base, and the fixed tooth and the revolving tooth are fitted with each other, Revolves around a predetermined central axis.
  • the first housing and the second housing fix the fixed scroll and accommodate the fixed scroll and the orbiting scroll.
  • the orbiting sliding surface is provided on a portion of the orbiting base of the orbiting scroll that is radially outward from the orbiting tooth portion.
  • the spacer is made of metal, and is provided between a portion where the first housing or the second housing faces the turning sliding surface and the turning sliding surface. Coated. At least one of the first housing and the second housing is made of metal, and the outer wall thereof is configured to be exposed to the atmosphere.
  • the coating can be easily performed by coating the metal spacer without coating the large-sized first housing or the second housing, thereby reducing the manufacturing cost. It is possible to do. Further, the heat conduction from the metal spacer to one of the housings and heat radiation to the atmosphere, and the disclosure according to the eleventh aspect can have the same operation and effect as the disclosure according to the first aspect described above. .
  • the fixed scroll may be made of resin.
  • a predetermined gap is formed at a position where the side surface of the fixed tooth portion and the side surface of the orbiting tooth portion are closest when the orbiting scroll revolves. It may be configured as follows.
  • the tip of the fixed tooth portion may be located closer to the fixed base than the turning sliding surface.
  • the fixed portion between the housing and the fixed scroll may be located closer to the turning base than the center between the turning base side surface of the fixed base and the metal spacer.
  • the housing has an overhang portion provided so as to enter the cutout portion of the fixed scroll, and a metal surface is formed on the surface of the overhang portion facing the orbital sliding surface of the orbiting scroll. May be arranged.
  • an urging member provided between the fixed base and the housing, for urging the fixed base toward the orbiting scroll and for bringing the cutout portion of the fixed scroll into contact with the overhang portion. May be further provided.
  • the orbiting scroll is urged toward the fixed scroll by the fluid pressure of the back pressure chamber, so that the orbiting sliding surface provided on the surface of the orbiting base on the fixed scroll side.
  • a metal spacer may be configured to slide in contact with each other.
  • the radial width of the metal spacer may be smaller than twice the distance that the orbiting scroll is eccentric with respect to the center axis of the revolution.
  • the fixed scroll has a spiral fixed side wrap.
  • the orbiting scroll has a orbiting wrap that forms a fluid chamber for sucking, compressing, and discharging fluid between the orbiting scroll and the stationary wrap.
  • Each of the plurality of rotation preventing mechanisms has a restricting portion, a protruding portion, and an interposition member.
  • the restricting portion has a circular inner peripheral wall to prevent the orbiting scroll from rotating.
  • the protruding portion pivots inside the regulating portion while being regulated by the inner peripheral wall.
  • the ring-shaped interposition member is interposed between the protrusion and the inner peripheral wall and slides with respect to the protrusion and the inner peripheral wall.
  • the interposition member is formed of a material whose surface hardness is lower than the surface hardness of the protruding portion, and the surface roughness of the protruding portion is smaller than the inner peripheral portion of the interposition member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

固定スクロール(100)は、固定基盤(110)、および、渦巻き状の固定歯部(120)を有する。旋回スクロール(200)は、樹脂製であり、固定基盤(110)に対向して配置される旋回基盤(260)、および、渦巻き状の旋回歯部(220)を有する。ハウジング(300)は、固定スクロール(100)を固定すると共に、固定スクロール(100)および旋回スクロール(200)を収容する。旋回摺動面(230)は、旋回スクロール(200)が有する旋回基盤(260)のうち旋回歯部(220)より径方向外側の部位に設けられている。ハウジング摺動面(360)は、ハウジング(300)のうち旋回摺動面(230)に対向する部位に設けられ、旋回摺動面(230)と摺動する。ハウジング(300)は、ハウジング摺動面(360)が設けられる部位が金属製であり、その外壁が大気に露出するように構成されている。

Description

流体機械 関連出願への相互参照
 本出願は、2018年7月3日に出願された日本特許出願番号2018-126764号と、2018年12月13日に出願された日本特許出願番号2018-233633号とに基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示はスクロール型の流体機械に関するものであり、特に、無給油にて使用されるものに関する。
 無給油で使用される流体機械は、クリーンな空気(例えば医療用エアや工場用エア)が必要な場面において、オイルセパレータなどの必要なく、有効な空気圧源である。スクロール型の流体機械は、その構造上、可動部材の旋回半径が小さく、摺動速度が低いため、無給油の空気圧源としてもっとも採用候補となり易いものであった。しかしながら、スクロール部材を金属製とすると、その加工時間が長く、製造コスト的には不利である。そこで、特許文献1では、両スクロール部材(すなわち、固定スクロールと旋回スクロール)を樹脂で成型したものを用いている。
 スクロール型の流体機械は、摺動速度が低く、面圧と摺動速度との積であるPV値が低いことが特徴である。しかし、そのスクロール型の流体機械においても、無給油で使用し、さらに摺動部位となるスクロール部材を樹脂製とすることは実用化の難易度が高く、これまで実用化された実績は少ない。
 特許文献1に記載の流体機械は、スクロール部材をコスト的に優れる樹脂で形成するとともに、スクロール部材の摺動部位が樹脂のままでは耐磨耗性が保てないため、その摺動部位に金属製の耐磨耗材を設けている。
 また、特許文献2にはスクロール型圧縮機が開示されている。この圧縮機は、ハウジングに設けられた複数の円環孔と、円環孔を形成する内周壁にそれぞれ規制されつつ円環孔の内側に旋回する複数のピンとを含む自転防止機構部を有している。各ピンと円環孔との間には、ピンに対して遊嵌して滑り接触および転がり接触可能な介装部材が設けられている。この圧縮機は、自転防止機構部が可動スクロール部材の自転を阻止しながら、旋回スクロール部材が固定スクロール部材に対して公転中心周りに旋回運動する。
特開昭61-38187号公報 特開平10-220367号公報
 しかしながら、特許文献1に記載の流体機械は、固定スクロールと旋回スクロールの両方に耐磨耗材を設けているので、その構造が複雑化している。それと共に、特許文献1に記載の流体機械は、旋回スクロールに耐磨耗材を設けているので、旋回スクロールの重量が増加し、遠心力の増大に伴って振動面で不利となっている。さらに、特許文献1に記載の流体機械は、固定スクロールの摺動部と旋回スクロールの摺動部のみに耐磨耗材を設けているので、耐磨耗材同士の摺動による発生した熱が外部に放熱されず、放熱が追い付かずに両スクロール部材の温度が上昇する構成となっている。そのため、スクロール部材の摺動部位に異常磨耗が生じるおそれがある。また、スクロール部材を形成する樹脂が融点の低いものであれば即、焼付きに至るおそれがある。
 すなわち、一般に樹脂は金属等に比べて硬度が低く、元々耐磨耗性に劣る上に、融点が低く、摺動部の温度上昇によっては磨耗が急増したり、最悪は溶融凝着(いわゆる焼き付き)に至る。更には、温度上昇に関し、樹脂は金属に比べて熱伝導率が低いため、同じ負荷(すなわち、荷重×速度≒発熱量)の環境下において、樹脂は金属に比べて熱拡散しにくいため、摺動部が局所的に高温となり、上述した磨耗の急増は溶融凝着に至りやすいと考えられる。
 このことに関し、特許文献1に記載の構成は、スクロール部材に設けられた耐磨耗材からの熱伝導が考慮されていない。それに加えて、特許文献1に記載の構成は、流体機械の内部に設けられるスクロール部材の摺動部のみに耐磨耗材が設けられており、外部への放熱も考慮されていない。
 一方、特許文献2の自転防止機構は、ピン外径部と介装部材内周部がすべり摺動で周速が速いという特徴があり、無給油で使用することは実用化の難易度が高く、突出部と介装部材の異常磨耗という課題がある。
 本開示の第1の目的は、無給油にて使用されるスクロール型の流体機械において、旋回スクロールを樹脂で形成すると共に、その耐磨耗性を向上し、信頼性を高めることの可能な流体機械を提供することにある。
 また、本開示の第2の目的は、自転防止機構部における突出部と介装部材の摩耗を無給油でも抑制可能な流体機械を提供することにある。
 この明細書に開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。また、請求の範囲およびこの項に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示す一例であって、技術的範囲を限定するものではない。
 本開示の1つの観点によれば、流体を吸入して吐き出すスクロール型の流体機械であって、
 固定基盤、および、固定基盤に設けられる渦巻き状の固定歯部を有する固定スクロールと、
 固定基盤に対向して配置される旋回基盤、および、旋回基盤に設けられる渦巻き状の旋回歯部を有し、固定歯部と旋回歯部とが嵌り合い、所定の中心軸に対して公転する樹脂製の旋回スクロールと、
 固定スクロールを固定すると共に固定スクロールおよび旋回スクロールを収容するハウジングと、
 旋回スクロールが有する旋回基盤のうち旋回歯部より径方向外側の部位に設けられた旋回摺動面と、
 ハウジングのうち旋回摺動面に対向する部位に設けられ、旋回摺動面と摺動するハウジング摺動面と、を備え、
 ハウジングは、ハウジング摺動面が設けられる部位が金属製であり、その外壁が大気に露出するように構成されている。
 これによれば、旋回スクロールの公転時に、旋回スクロールに設けられた旋回摺動面と、ハウジングに設けられたハウジング摺動面とが摺動する。この流体機械は、ハウジングが熱伝導率の大きい金属製であり、その外壁が大気に露出しているので、旋回摺動面とハウジング摺動面の摺動により生じた熱は、金属製のハウジングに熱拡散し、ハウジングの外壁から大気に放熱される。そのため、旋回摺動面とハウジング摺動面の摺動による温度上昇が抑制されるので、旋回摺動面の耐摩耗性が向上すると共に、樹脂摺動面の溶融凝着が防がれる。したがって、この流体機械は信頼性を向上することができる。
 また、旋回スクロールを樹脂製とすることで軽量化されるので、旋回スクロールの公転による振動を低減することができる。また、旋回スクロールを樹脂製とすることで、その製造上のコストを低減することができる。
 別の観点によれば、流体を吸入して吐き出すスクロール型の流体機械であって、
 固定基盤、および、固定基盤に設けられる渦巻き状の固定歯部を有する固定スクロールと、
 固定基盤に対向して配置される旋回基盤、および、旋回基盤に設けられる渦巻き状の旋回歯部を有し、固定歯部と旋回歯部とが嵌り合い、所定の中心軸に対して公転する樹脂製の旋回スクロールと、
 固定スクロールを固定すると共に固定スクロールおよび旋回スクロールを収容する第1ハウジングおよび第2ハウジングと、
 旋回スクロールが有する旋回基盤のうち旋回歯部より径方向外側の部位に設けられた旋回摺動面と、
 第1ハウジングまたは第2ハウジングが旋回摺動面に対向する部位と旋回摺動面との間に設けられ、旋回摺動面と摺動する面に自己潤滑性のコーティングが施された金属製のスペーサと、を備え、
 第1ハウジングおよび第2ハウジングのうち少なくともどちらかのハウジングは金属製であり、その外壁が大気に露出するように構成されている。
 これによれば、体格の大きい第1ハウジングまたは第2ハウジングにコーティングを施すことなく、金属製のスペーサにコーティングを施すことで、そのコーティングを容易に行うことが可能となるので、製造コストを低減することができる。また、金属製のスペーサからどちらかのハウジングに熱伝導し大気へ放熱する。そのため、別の観点に記載の開示も、上述した1つの観点に記載の開示と同様の作用効果を奏することが可能である。
 さらに、開示された流体機械の一つは、渦巻き状の固定側ラップを有した固定スクロールと、固定側ラップとの間に流体を吸入、圧縮および吐出する流体室を形成する旋回側ラップを有した旋回スクロールと、旋回スクロールの自転運動を阻止するために、円形状の内周壁を有する規制部、規制部の内周壁に規制されつつ規制部の内側において旋回する突出部、および突出部と内周壁の間に介在して突出部および内周壁に対して摺動するリング状の介装部材をそれぞれ有する複数の自転防止機構部と、を備え、介装部材は、表面硬さが突出部の表面硬さよりも低い材質によって形成され、かつ突出部の表面粗さは介装部材の内周部よりも小さく形成されている。
 この流体機械によれば、介装部材の表面硬さは突出部の表面硬さよりも低いため、介装部材における内周部が突出部における外周部よりも摩耗して、介装部材の内周部が突出部になじむようになる。介装部材と突出部との摺動部分が面粗さの小さい突出部になじむようになると、介装部材と突出部との摺動抵抗が抑えられて、摩耗や焼き付きを抑えることができる。したがって、自転防止機構部における突出部の摩耗を抑制可能な流体機械を提供できる。
 更に、上記流体機械の固定および旋回スクロール部材の材質をコストと振動に有利な樹脂として、且つ、無給油にて使用する場合、自転防止機構の他に、スラスト摺動部の耐摩耗性との両立が必要である。特許文献1に記載の流体機械では、スクロール部材の摺動部位が樹脂のままではスラスト摺動部の耐磨耗性が保てないため、その摺動部位に金属製の耐磨耗材を設けている。しかしながら、固定スクロールの摺動部と旋回スクロールの摺動部のみに耐磨耗材を設けているので、耐磨耗材同士の摺動による発生した熱が外部に放熱されず、放熱が追い付かずに両スクロール部材の温度が上昇する構成となっている。そのため、スクロール部材の摺動部位に異常磨耗が生じるおそれがある。また、スクロール部材を形成する樹脂が融点の低いものであれば即、焼付きに至るおそれがある。
 そこで、前記自転防止部の開示に加え、さらに別の観点の開示は、固定スクロールと一体または別個に形成され、旋回スクロールを収容するハウジングと、旋回スクロールが有する基盤部のうち旋回側ラップより径方向外側の部位に設けられた旋回側摺動面と、ハウジングのうち旋回側摺動面に対向する部位に設けられ、旋回側摺動面と摺動するハウジング側摺動面と、を備え、ハウジングは、ハウジング側摺動面が設けられる部位が金属製であり、その外壁が大気に露出するように構成されている。これによれば、旋回スクロールの公転時に、旋回スクロールに設けられた旋回側摺動面と、ハウジングに設けられたハウジング側摺動面とが摺動する。この流体機械は、ハウジングが熱伝導率の大きい金属製であり、その外壁が大気に露出しているので、旋回側摺動面とハウジング側摺動面の摺動により生じた熱は、金属製のハウジングに熱拡散し、ハウジングの外壁から大気に放熱される。そのため、旋回側摺動面とハウジング側摺動面の摺動による温度上昇が抑制されるので、旋回側摺動面の耐摩耗性が向上すると共に、樹脂摺動面の溶融凝着が防がれる。したがって、この流体機械は信頼性を向上することができ、自転防止部とスラスト摺動部の耐摩耗性が両立し、無給油の流体機械としてより機能を果たすことができる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係る流体機械の断面図である。 図1のII部分の拡大図である。 ハウジング摺動面に対する旋回スクロールの旋回摺動面の動作を説明するための説明図である。 ハウジング摺動面に対する旋回スクロールの旋回摺動面の動作を説明するための説明図である。 2部材の摺動に関する実験装置を示す模式図である。 樹脂同士の摺動に関する実験結果を示すグラフである。 金属と樹脂との摺動に関する実験結果を示すグラフである。 コーティングを施した金属と樹脂との摺動に関する実験結果を示すグラフである。 第2実施形態に係る流体機械の断面図である。 図9のX部分の拡大図である。 第3実施形態に係る流体機械の一部を示す断面図である。 第4実施形態に係る流体機械の一部を示す断面図である。 第5実施形態に係る流体機械の一部を示す断面図である。 第6実施形態の流体機械の構成を示した縦断面図である。 旋回スクロール、摺動部および介装部材について、図14のXV-XV切断面を図示した部分断面図である。 第7実施形態における規制部の構成を示す部分平面図である。 第7実施形態における規制部の構成を示す部分縦断面図である。 第8実施形態における規制部の構成を示す部分平面図である。 第8実施形態における規制部の構成を示す部分縦断面図である。 第9実施形態における規制部の構成を示す部分平面図である。 第9実施形態における規制部の構成を示す部分縦断面図である。 第10実施形態における規制部と介装部材との位置関係を示す部分縦断面図である。 第11実施形態の流体機械の構成を示した部分縦断面図である。 第12実施形態の流体機械の構成を示した部分縦断面図である。 第13実施形態の流体機械の構成を示した部分縦断面図である。 第13実施形態の流体機械が備えるスリーブ部材のみを示す平面図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 第1実施形態について図1および図2を参照しつつ説明する。本実施形態の流体機械1は、固定スクロール100と旋回スクロール200が樹脂製であり、且つ、無給油にて使用されるスクロール型流体機械である。本実施形態の流体機械1は、無給油にて使用されるのでオイルセパレータなどの付属装置が不要であり、例えば医療用エアや工場用エアなど、クリーンな空気を供給する空気圧源として使用されるものである。すなわち、本実施形態の流体機械1が吸入し、圧縮して吐き出す流体は、空気である。
 図1に示すように、本実施形態の流体機械1は、ハウジング300、固定スクロール100、旋回スクロール200およびモータ部400などを備えている。
 ハウジング300は、第1ハウジング301と第2ハウジング302を含んで構成されている。第1ハウジング301と第2ハウジング302はいずれも、例えばアルミニウムなど、熱伝導性の高い金属により形成されている。第1ハウジング301と第2ハウジング302は、図示しないボルトまたは溶接等により固定されている。また、第1ハウジング301の外壁と第2ハウジング302の外壁は、大気に露出するように構成されている。なお、第1ハウジング301と第2ハウジング302は、少なくとも一部が金属により形成されていればよく、また、少なくとも一部が大気に露出するように構成されていればよい。
 ハウジング300の内側には、固定スクロール100と旋回スクロール200が収容されている。以下の説明では、固定スクロール100と旋回スクロール200を、両スクロール部材100、200という。両スクロール部材100、200は、空気を吸入し、圧縮し、吐き出すための圧縮機構部を構成している。固定スクロール100は、樹脂により形成されている。固定スクロール100は、略円盤状の固定基盤110と、その固定基盤110に設けられる固定歯部120を有している。図示していないが、固定歯部120は、軸方向から視て渦巻状に形成されている。固定基盤110の径方向外側の外壁130は、第1ハウジング301の内壁に対し、圧入などにより固定されている。なお、固定基盤110の径方向外側の外壁130と第1ハウジング301の内壁とが固定されている箇所を、嵌合部と呼ぶ。
 固定スクロール100の固定基盤110には、両スクロール部材100、200の間に形成される圧縮室140に空気を供給する供給口150と、その圧縮室140から空気を吐き出す吐出口160が設けられている。また、第1ハウジング301には、固定スクロール100の供給口150に連通する供給ポート310と、固定スクロール100の吐出口160に連通する吐出ポート340が設けられている。
 旋回スクロール200は、略円盤状の旋回基盤260と、その旋回基盤260に設けられる旋回歯部220を有している。図示していないが、旋回歯部220は、軸方向から視て渦巻状に形成されている。旋回スクロール200は、樹脂により形成されている。旋回基盤260のうち、旋回歯部220より径方向外側の部位には、第1ハウジング301の内壁と摺動する旋回摺動面230が設けられている。この第1ハウジング301の内壁と旋回摺動面230との摺動については後述する。
 旋回スクロール200の旋回歯部220と固定スクロール100の固定歯部120とが嵌り合い、空気を圧縮するための圧縮室140が形成される。なお、図示していないが、圧縮室140は、軸方向から視て三日月状に形成される。また、旋回基盤260のうち圧縮室140とは反対側には、円筒状のボス部240が設けられている。なお、旋回スクロール200には、旋回スクロール200の自転を防止するための図示しない自転防止機構が設けられている。
 第2ハウジング302の外側には、モータ部400が設けられている。モータ部400は、モータケース410の内側にステータ420、ロータ430およびシャフト440等を有している。なお、モータ部400として、ブラシ付モータまたはブラシレスモータなど、種々のモータを採用することが可能である。シャフト44は、モータケース41の内側に設けられた軸受450、460により、中心軸O1周りに回転可能に設けられている。すなわち、中心軸O1は、シャフト440の回転軸である。
 シャフト440の端部は、第2ハウジング302の内側に挿入されている。そのシャフト440の端部には、偏心部47が固定されている。偏心部470の中心O2は、シャフト440の中心軸O1から偏心して設けられている。偏心部470は、旋回スクロール200の旋回基盤260に設けられたボス部240の内側に軸受480を介して設けられている。
 モータ部400に通電されると、シャフト440が軸周りに回転する。その際、モータ部40が出力するトルクは、偏心部470を介して旋回スクロール200のボス部240に伝達される。旋回スクロール200は、偏心部470からトルクを伝達されると、図示しない自転防止機構により自転を規制されつつ、シャフト440の中心軸O1の周りを公転する。そして、旋回スクロール200が公転すると、両スクロール部材100、200の間に形成される圧縮室140は、径方向外側から径方向内側に向かって旋回移動し、その容積を次第に縮小する。これにより、供給ポート310から供給口150を通じて圧縮室140に供給された空気が圧縮され、その空気は吐出口160から吐出ポート340を通じて吐き出される。
 なお、旋回基盤260の固定スクロール100とは反対側の面と、第2ハウジング302の内壁との間には、背圧室350が形成されている。背圧室350には、圧縮室140で圧縮された空気の一部が、旋回基盤260に設けられた背圧導入孔250を経由して供給される。これにより、旋回スクロール200は、背圧室350に供給された空気の圧力により、固定スクロール100側に付勢される。
 上述したように、旋回スクロール200の旋回基盤260のうち、旋回歯部220より径方向外側の部位には、第1ハウジング301の内壁と摺動する旋回摺動面230が設けられている。一方、第1ハウジング301のうち旋回摺動面230に対向する部位には、その旋回摺動面230と摺動するハウジング摺動面360が設けられている。旋回スクロール200が公転する際、背圧室350の空気の圧力により旋回スクロール200は固定スクロール100側に付勢される。そのため、旋回スクロール200の旋回摺動面230と第1ハウジング301のハウジング摺動面360とは、常に接した状態で摺動する。そのため、ハウジング摺動面360は、旋回スクロール200の軸方向の荷重を受けるためのスラスト軸受部として機能する。したがって、旋回スクロール200は、スラスト軸受部としてのハウジング摺動面360に支持されつつ公転する。
 仮に、旋回摺動面230とハウジング摺動面360との間に隙間が生じると、圧縮室140から背圧室350に供給された高圧の空気がその隙間を通り固定スクロール10の内側の低圧空間170に漏れることが考えられる。これに対し、本実施形態では、旋回スクロール200は背圧室350の空気の圧力により固定スクロール100側に付勢されるので、旋回摺動面230とハウジング摺動面360とが確実に接した状態で摺動する。そのため、背圧室350の高圧の空気が固定スクロール100の内側の低圧空間170に漏れることが防がれる。したがって、流体機械1は、空気の圧縮効率の低下を防ぐことができる。
 なお、ハウジング摺動面360には、自己潤滑性を有するフッ素または2硫化モリブデンを含有するコーティング3610が施されている。これにより、ハウジング摺動面360の摩擦係数を低くすることが可能である。なお、フッ素コーティングとして、ポリテトラフルオロエチレン(以下、「PTFE」という)によるコーティングが好ましい。また、ハウジング摺動面360に施されるコーティング3610は薄膜であるので、旋回スクロール200からハウジング300への伝熱を阻害することが無い。そのため、旋回摺動面230とハウジング摺動面360とがより高荷重の下で摺動する場合でも、摺動部の温度上昇が抑制される。
 図1および図2に示すように、第1ハウジング301は、ハウジング摺動面360の径方向外側に、旋回摺動面230から遠ざかるように凹む凹部370を有している。第1ハウジング301の凹部370は、旋回スクロール200の旋回摺動面230と摺動しない部位である。この凹部370の設定により、ハウジング摺動面360の径方向の幅Wが設定される。
 本実施形態では、ハウジング摺動面360の径方向の幅Wと、旋回スクロール200が公転の中心軸O1に対して偏心している距離Eとは、同等となっている。なお、旋回スクロール200が公転の中心軸O1に対して偏心している距離Eは、図1に示した、偏心部470の中心O2とシャフト44の中心軸O1との距離Eと同じである。ただし、本実施形態の構成に限らず、ハウジング摺動面360の径方向の幅Wは、旋回スクロール200が公転の中心軸O1に対して偏心している距離Eの2倍より小さくなっていればよい。これにより、旋回摺動面230とハウジング摺動面360とが間欠的に摺動する。このことについて、図3および図4を参照して説明する。
 図3および図4は、旋回スクロール200の旋回摺動面230とハウジング摺動面360を軸方向から視た状態を示している。図3および図4では、旋回スクロール20の旋回摺動面230の外周縁を符号230aで示している。また、旋回摺動面230の中の所定の摺動点Pを符号Pで示し、その摺動点Pが公転する軌跡Tを円形の破線で示している。また、ハウジング摺動面360の外周縁を符号360aで示し、ハウジング摺動面360の内周縁を符号360bで示している。図3と図4はそれぞれ、旋回スクロール200の公転の位相が180°異なる状態を示している。
 図3および図4では、ハウジング摺動面360の径方向の幅Wは、旋回スクロール200が公転の中心軸O1に対して偏心している距離E(すなわち、摺動点Pが公転する軌跡Tの半径)と同等となっている。そのため、旋回摺動面230の中の所定の摺動点Pが公転する軌跡Tのうち、半分程度がハウジング摺動面360の外側にあり、残りの半分程度がハウジング摺動面360上にある。したがって、旋回摺動面230の中の所定の摺動点Pがハウジング摺動面360と摺動する時間は、流体機械1の作動時間全体の50%程度となる。なお、以下の説明では、流体機械1の作動時間全体に対する、旋回摺動面230の中の所定の摺動点Pがハウジング摺動面360と摺動する時間の割合を、摺動比率と呼ぶこととする。
 このように、ハウジング摺動面360の径方向の幅Wを、旋回スクロール200が公転の中心軸O1に対して偏心している距離Eの2倍より小さくすることで、摺動比率を100%未満とすることが可能である。これにより、旋回摺動面230とハウジング摺動面360とが間欠的に摺動することとなり、旋回摺動面230とハウジング摺動面360との摺動による発熱量を低減することができる。
 また、本実施形態では、上述したように、第1ハウジング301と第2ハウジング302が金属により形成され、両スクロール部材100、200が樹脂により形成されている。一般に、金属の熱膨張率より、樹脂の熱膨張率は大きい。そのため、本実施形態では、流体機械1の温度が上昇したときにも、両スクロール部材100、200が互いに接触しないように構成されている。
 図1に示すように、固定スクロール100の固定歯部120の先端1210と旋回スクロール200の旋回基盤260との間には、所定の隙間CL10が設けられている。また、旋回スクロール200の旋回歯部220の先端2210と、固定スクロール100の固定基盤110との間には、所定の隙間CL20が設けられている。これにより、固定歯部12の先端1210は、旋回摺動面230およびハウジング摺動面360よりも固定基盤11側に位置することになる。これにより、旋回摺動面230とハウジング摺動面360とが確実に接した状態で摺動する。そのため、背圧室350の高圧の空気が固定スクロール10の内側の低圧空間17に漏れることが防がれる。
 なお、固定歯部120の先端1210と旋回歯部220の先端2210にはそれぞれ、チップッシール500が設けられている。このチップッシール500により、その隙間CL10、CL20を介して圧縮室140の空気がスラスト方向に漏れることが防がれている。
 ここで、固定歯部120または旋回歯部220の高さをH、流体機械1が使用される温度変化の最大値をΔT、両スクロール部材100、200の線膨張係数をα1、第1ハウジング301の線膨張係数をα2とする。このとき、固定歯部120の先端1210の隙間CL10と旋回歯部220の先端2210の隙間CL20は、それぞれ、次の式1、式2を満たすように設定される。
 CL10>H×ΔT×(α1-α2) ・・・(式1)
 CL20>H×ΔT×(α1-α2) ・・・(式2)
 このように、固定歯部120の先端1210の隙間CL10と旋回歯部220の先端2210の隙間CL20を設定することで、流体機械1の使用時の温度が高くなった場合でも、固定歯部120の先端1210と旋回基盤260との強接触が防がれる。また、旋回歯部220の先端2210と固定基盤110との強接触が防がれる。そのため、旋回摺動面230とハウジング摺動面360との間に隙間が生じることがないので、背圧室350の高圧の空気が固定スクロール100の内側の低圧空間170に漏れることを防ぐことができる。
 さらに、本実施形態では、両スクロール部材100、200は、旋回スクロール200が公転する際、固定歯部120の側面と旋回歯部220の側面とが最も近づく箇所に所定の隙間CL30が常に形成されるように構成されている。これにより、固定歯部120の側面と旋回歯部220の側面との摩耗や溶融凝着が防がれる。なお、この隙間CL30の長さは固定歯部120と旋回歯部220の高さHであり、上述した固定歯部120の先端1210の隙間CL10の周方向の長さおよび旋回歯部220の先端2210の隙間CL20の周方向の長さに比べて短い。そのため、空気の圧縮効率に対する影響は少ない。
 上述した本実施形態の構成では、モータ部400が出力するトルクにより旋回スクロール200が公転すると、旋回スクロール200の旋回摺動面230とハウジング摺動面360とが摺動する。この摺動により生じた熱は、その場所にこもることなく、金属製の第1ハウジング301および第2ハウジング302を熱拡散し、その外壁から大気に放熱される。これにより、旋回摺動面230とハウジング摺動面360の摺動による温度上昇が抑制されるので、旋回摺動面230の耐摩耗性が向上すると共に、樹脂摺動面の溶融凝着が防がれる。
 次に、本実施形態の構成の作用効果を確認するための実験を行った結果について説明する。
 図5に示すように、この実験では、テストピースとして、平板状の樹脂プレート600と、筒部材700を使用した。具体的には、樹脂プレート600として、ポリフェニレンサルファイド樹脂(以下「PPS」という)を使用した。筒部材700として、PPS、アルミニウム、および、摺動面にPTFEコーティングを施したアルミニウムの3種類を使用した。なお、以下の説明では、樹脂プレート600と筒部材700を、テストピース600、700ということがある。
 この実験は、樹脂プレート600の上に、筒部材700を配置し、その筒部材700の軸方向から所定の荷重Fを印加した状態で、筒部材70を周方向Rに一定速度で回転させた。その際、筒部材700に印加する荷重Fを、試験開始から所定時間ごとに段階的に上げて、樹脂プレート600と筒部材700との摺動面の温度変化、および筒部材700の回転に必要なトルクを測定した。なお、摺動面の温度変化は、樹脂プレート600の摺動面の下に配置した熱電対610により測定した。
 以下の説明では、筒部材700に印加する荷重Fの増加に対応した試験段階を、第1ステップS1、第2ステップS2などと呼ぶこととする。すなわち、各ステップが進むごとに、筒部材70に印加する荷重Fは増加する。
 図6のグラフは、樹脂プレート600と筒部材700を共にPPSとした場合の試験結果を示したものである。この場合、第1ステップS1から温度が上昇し、さらに第2ステップS2で温度勾配は急上昇し、トルクも急上昇した。そのため、第2ステップS2以降の試験を中止し、テストピース600、700を確認したところ、樹脂が溶けて凝着に至っていた。
 図7のグラフは、樹脂プレート600をPPSとし、筒部材700をアルミニウムとした場合の試験結果を示したものである。この場合、第1ステップS1~第2ステップS2までは温度上昇は非常に緩やかであった。しかし、第3ステップS3では温度、トルクともに急増した。この試験後のテストピース600、700の摺動面は凝着傾向であった。
 図8のグラフは、樹脂プレート600をPPSとし、筒部材700を摺動面にPTFEコーティングを施したアルミニウムとした場合の試験結果を示したものである。この場合、第1ステップS1~第4ステップS4まで温度の急上昇なく、試験後のテストピース600、700の摺動面に凝着のない状態であった。
 上述した試験により、次の(1)、(2)、(3)の結論を得た。
 (1)まず、樹脂同士の摺動の場合、樹脂の熱伝導率が低いため、摺動部が局所的に温度上昇し、軟化溶融から凝着に至ることが判った。
 (2)次に、樹脂の相手となる摺動面に熱伝導率の高いアルミニウムなどを用いれば、温度上昇も抑えられることから、温度が低減し、焼きつき防止の対策となることが判った。また、図7と図8のグラフを参照し、アルミニウムの摺動面に対するPTFEコーティングの有無を比較すると、次のことが判った。すなわち、第1ステップS1~第2ステップS2で筒部材700に印加する荷重Fが比較的低いときは、PTFEコーティング無しのアルミニウムと直接摺動する方が、樹脂の温度が低いことが判る。しかし、第3ステップS3以降、テストピース600、700に印加する荷重Fが高くなると、PTFEコーティング無しのアルミニウムと直接摺動する方は、トルクが高くなり、発熱量が多くなるため、樹脂の温度が急上昇したと考えられる。なお、温度上昇は、テストピース700としたアルミニウムの熱容量(すなわち体積)や放熱面積が影響したと考えられる。そのため、温度上昇を抑えるためには、アルミニウムの体積を増やしたり、大気に露出する表面積を増やすことがより有効と考えられる。
 (3)最後に、アルミニウムの摺動面にPTFEコーティングを施した場合、熱伝導が若干低下するので、PTFEコーティング無しのアルミニウムよりも温度は若干上がる。しかし、アルミニウムの摺動面にPTFEコーティングを施した場合、摩擦係数が小さくなり、発熱量を抑えられるので、トータルとして第1ステップS1~第4ステップS4まで正常に試験終了したと考えられる。
 以上の基礎評価より、具体的な実機への反映として、次の結論に至った。すなわち、両スクロール部材100、200を樹脂で形成し、その一方の旋回スクロール200と摺動するハウジング300を熱伝導の高い材料で形成し、且つ、そのハウジング300を大気に露出する構成とする。これにより、旋回スクロール200とハウジング300との摺動部で生じた熱をハウジング300に熱拡散し、そのハウジング30の外壁から大気への放熱を行うことで、樹脂製の旋回スクロール200の温度上昇を抑制することが可能である。
 また、両スクロール部材100、200が高荷重の下で使用される場合、ハウジング300の摺動面にPTFEコーティングなどの表面処理を施すことで、その摩擦係数を低くすることにより、発熱量自体の低減を行うことが可能である。尚、両スクロール部材100、200が一定の荷重の以下で使用される場合には、ハウジング300の摺動面にコーティングなどの表面処理を施さなくとも、旋回スクロール200の温度上昇は抑制され、溶融凝着が防がれるので、流体機械1として使用可能である。
 以上説明した本実施形態の流体機械1は、次の作用効果を奏するものである。
 (1)本実施形態では、樹脂製の旋回スクロール200に設けられた旋回摺動面230と、金属製のハウジング300に設けられたハウジング摺動面360とが摺動する構成である。そして、ハウジング300は、熱伝導率の大きい金属製であり、その外壁が大気に露出するように構成されている。
 これによれば、旋回摺動面230とハウジング摺動面360の摺動により生じた熱は、金属製のハウジング300に熱拡散し、そのハウジング300の外壁から大気に放熱される。そのため、旋回摺動面230とハウジング摺動面360の摺動による温度上昇が抑制されるので、旋回摺動面230の耐摩耗性が向上すると共に、樹脂摺動面の溶融凝着が防がれる。したがって、この流体機械1は信頼性を向上することができる。
 また、旋回スクロール200を樹脂製とすることで軽量化されるので、旋回スクロール200の公転による振動を低減することができる。また、旋回スクロール200を樹脂製とすることで、その製造上のコストを低減することができる。
 (2)本実施形態では、ハウジング摺動面360には、自己潤滑性を有するフッ素または2硫化モリブデンを含有するコーティング3610が施されている。
 これによれば、ハウジング摺動面360にコーティング3610を施すことで、ハウジング摺動面360の摩擦係数を低くすることが可能である。また、コーティング3610は薄膜であるので、旋回スクロール200からハウジング300への伝熱を阻害することが無い。そして、旋回摺動面230とハウジング摺動面360とがより高荷重の下で摺動する場合でも、温度上昇が抑制され、異常摩耗や溶融凝着が防がれることが実験により判った。したがって、流体機械1は、ハウジング摺動面360にコーティング3610を施した場合、より高圧の空気を吐き出す場合にも、旋回摺動面230の耐摩耗性が向上し、樹脂摺動面の溶融凝着が防がれるので、信頼性を向上することができる。
 (3)本実施形態では、固定スクロール100は、樹脂製である。
 これによれば、両スクロール部材100、200の熱膨張率を同等にすることが可能である。そのため、両スクロール部材100、200は、温度変化に対し、空気を圧縮する性能を安定させることができる。また、両スクロール部材100、200を樹脂製とすることで、製造上のコストをより低減することができる。
 (4)本実施形態では、両スクロール部材100、200は、旋回スクロール200が公転する際、固定歯部120の側面と旋回歯部220の側面とが最も近づく箇所に所定の隙間CL30が形成されるように構成されている。
 これによれば、両スクロール部材100、200を共に樹脂製とした場合にも、固定歯部120と旋回歯部220とが摺動しないので、その両者の温度上昇が抑制される。そのため、固定歯部120と旋回歯部220の溶融凝着が防がれる。したがって、流体機械1は信頼性を向上することができる。
 (5)本実施形態では、固定歯部120の先端1210は、旋回摺動面230およびハウジング摺動面360よりも固定基盤110側に位置している。
 これによれば、固定歯部120の先端1210が旋回基盤260に接しないので、旋回摺動面230とハウジング摺動面360とが確実に接した状態で摺動する。そのため、背圧室350の高圧の空気が固定スクロール10の内側の低圧空間170に漏れることが防がれる。したがって、この流体機械1は、空気の圧縮効率の低下を防ぐことができる。
 (6)本実施形態では、旋回スクロール200は、背圧室350の圧力により固定スクロール100側へ付勢され、旋回基盤260のうち固定スクロール100側の面に設けられる旋回摺動面230とハウジング摺動面360とが摺動するように構成されている。
 ところで、旋回スクロール200の旋回基盤260のうち固定スクロール100とは反対側の面に旋回摺動面230が設けられる構成とし、そこに摺動するハウジング摺動面360にコーティングを施す場合も考えられる。その場合、旋回スクロール200の自転を防止する図示していない自転防止機構などにもコーティングが必要になると、製造コストが高くなることが懸念される。これに対し、本実施形態では、旋回スクロール200は、旋回基盤260のうち固定スクロール100側の面に旋回摺動面230が設けられる。そのため、その旋回摺動面230と摺動するハウジング摺動面360にコーティング3610を施す場合、構成を簡素なものとして製造コストを低減することができる。
 (7)本実施形態では、ハウジング300は、ハウジング摺動面360の径方向外側に、旋回摺動面230から遠ざかるように凹むことで旋回摺動面230と摺動しない凹部370を有している。ハウジング摺動面360の径方向の幅Wは、旋回スクロール200が公転の中心軸O1に対して偏心している距離Eの2倍より小さくなっている。
 これによれば、ハウジング摺動面360に対する旋回摺動面230の摺動比率を100%未満として、旋回摺動面230とハウジング摺動面360とを間欠的に摺動させることが可能である。したがって、旋回摺動面230とハウジング摺動面360との摺動による発熱量を低減し、温度上昇を抑制することができる。
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対してハウジング300、固定スクロール100および旋回スクロール200の構成の一部を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図9および図10に示すように、第2実施形態では、ハウジング300は、第1~第3ハウジング301、302、303を含んで構成されている。本実施形態では、第1~第3ハウジング301、302、303は、例えばアルミニウムなど、熱伝導性の高い金属により形成されている。なお、ハウジング摺動面360を有していない第2ハウジング302と第3ハウジング303は、金属に限らず、樹脂などにより形成してもよい。ただし、第1~第3ハウジング301、302、303をいずれも金属により形成することで、放熱性をより向上することが可能である。なお、第1ハウジング301と第3ハウジング303は、図示しないボルトまたは接着等により固定されている。
 また、第2実施形態では、固定スクロール100は、固定歯部120のうち旋回基盤260側かつ径方向外側の部位に、径方向内側に切り欠かれるように形成された切欠部18を有している。一方、第1ハウジング301は、その固定スクロール100が有する切欠部180に入り込むように設けられるオーバハング部390を有している。そして、固定スクロール100の切欠部180の径方向外側の外壁と、オーバハング部390の径方向内側の内壁とは、圧入により固定されている。したがって、第2実施形態では、第1ハウジング301と固定スクロール100との固定箇所(すなわち嵌合部)は、固定基盤110の旋回基盤260側の面とハウジング摺動面360との中央位置Mよりも、旋回基盤260側に位置している。また、オーバハング部390の軸方向の高さhは、旋回歯部220の高さHよりも小さい。
 これにより、温度変化により固定スクロール100が熱膨張した場合でも、固定スクロール100は固定基盤110がハウジング摺動面360から遠ざかる方向へ移動する。そのため、固定歯部120の先端1210が旋回基盤260に接することなく、旋回摺動面230とハウジング摺動面360とが確実に接した状態で摺動する。そのため、背圧室350の高圧の空気が固定スクロール100の内側の低圧空間170に漏れることが防がれる。したがって、この流体機械1は、空気の圧縮効率の低下を防ぐことができる。
 また、第2実施形態では、固定スクロール100の固定基盤110と第3ハウジング303との間に、付勢部材およびシール部材としてのOリング510が設けられている。すなわち、Oリング510は、付勢部材の一例に相当する。Oリング510は、固定スクロール100を旋回スクロール200側に付勢し、固定スクロール100の切欠部180の軸方向の当接面とオーバハング部390の軸方向の当接面とを当接させている。これにより、流体機械1が作動していない場合でも、固定スクロール100の姿勢が安定する。
 また、Oリング510は、第3ハウジング303の吐出ポート340の周りを取り囲むように設けられている。すなわち、Oリング510は、固定スクロール100の吐出口160の周りを取り囲むように設けられている。これにより、流体機械1が作動すると、固定スクロール100の吐出口160からOリング510の径方向内側に形成される空間540に高圧の空気が供給される。そのため、その空間540に供給された空気の圧力により、固定基盤110が旋回スクロール200側に付勢され、固定スクロール100の切欠部180の軸方向の当接面とオーバハング部390の軸方向の当接面とが当接する。
 さらに、第2実施形態では、オーバハング部390のうち旋回摺動面230に対向する面は、ハウジング摺動面360を構成している。これにより、図10に示した第2実施形態の構成によるハウジング摺動面360の内径D1は、図2に示した第1実施形態の構成によるハウジング摺動面360の内径D2よりも小さいものとなる。そのため、図10に示した第2実施形態の構成では、そのハウジング摺動面360に摺動する旋回摺動面230を有する旋回基盤260の外径D3を、図2に示した第1実施形態の構成による旋回摺動面230の外径D4より小さくすることが可能である。したがって、第2実施形態の流体機械1は、第1実施形態の流体機械1より、径方向の体格を小型化することができる。
 その他、第2実施形態も、第1実施形態と同様の作用効果を奏することができる。
 (第3実施形態)
 第3実施形態について説明する。第3実施形態は、第1実施形態等に対して第1ハウジング301の構成の一部を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
 図11に示すように、第3実施形態では、第1ハウジング301は、ハウジング摺動面360の径方向外側に凹部370を有していない。そのため、第3実施形態では、旋回摺動面230とハウジング摺動面360とが間欠的に摺動することなく、常時摺動する。すなわち、ハウジング摺動面360に対する旋回摺動面230の摺動比率は100%である。このような構成であっても、旋回摺動面230とハウジング摺動面360の摺動により生じた熱は、金属製のハウジング300に熱拡散し、そのハウジング300の外壁から大気に放熱される。そのため、旋回摺動面230とハウジング摺動面360の摺動による温度上昇が抑制されるので、旋回摺動面230の耐摩耗性が向上すると共に、溶融凝着を防がれる。したがって、第3実施形態の流体機械1の構成においても、信頼性を向上することが可能である。
 (第4実施形態)
 第4実施形態について説明する。第4実施形態は、第1実施形態等に対して摺動箇所の構成の一部を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
 図12に示すように、第4実施形態では、第1ハウジング301と第2ハウジング302との間にスペーサ530が設けられている。具体的には、スペーサ530は、第1ハウジング301が旋回摺動面230に対向する部位と、旋回スクロール200の旋回摺動面230との間に設けられている。スペーサ530は、軸方向から視て環状に形成されている。スペーサ530は、鉄またはアルミニウムなどの金属から形成され、その旋回摺動面230と摺動する面に、自己潤滑性のコーティング5310が施されたものである。コーティング5310として、自己潤滑性を有するフッ素または2硫化モリブデンが例示される。なお、フッ素コーティングとして、PTFEによるコーティングが好ましい。
 第4実施形態では、体格の大きい第1ハウジング301または第2ハウジング302にコーティングを施すことなく、金属製のスペーサ530にコーティング5310を施すことで、そのコーティング5310を容易に行うことが可能となる。したがって、製造コストを低減することができる。
 その他、第4実施形態も、第1実施形態等と同様の作用効果を奏することができる。
 (第5実施形態)
 第5実施形態について説明する。第5実施形態は、第1実施形態等に対して摺動箇所の構成の一部を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
 図13に示すように、第5実施形態では、スペーサ530は、第2ハウジング302が旋回摺動面230に対向する部位と、旋回スクロール200の旋回摺動面230との間に設けられている。第5実施形態では、旋回スクロール200の旋回摺動面230は、旋回基盤260のうち固定スクロール100とは反対側の面に設けられている。なお、図示していないが、第5実施形態の旋回スクロール200には、図1に示した背圧導入孔250が旋回基盤260に設けられていない。そのため、旋回基盤260の固定スクロール100とは反対側の面と、第2ハウジング302の内壁との間の空間には高圧の空気が供給されない。すなわち、その空間は、背圧室350とされていない。したがって、旋回スクロール200の旋回基盤260は、圧縮室140の空気の圧力によりスペーサ530側に付勢され、旋回基盤260のうち固定スクロール100とは反対側の面に設けられた旋回摺動面230とスペーサ530とが摺動する。なお、第5実施形態でも、スペーサ530は、鉄またはアルミニウムなどの金属から環状に形成され、その旋回摺動面230と摺動する面に、自己潤滑性のコーティング5310が施されたものである。
 以上説明した第5実施形態も、第1実施形態等と同様の作用効果を奏することができる。
 (第6実施形態)
 流体機械の一例を開示する第6実施形態について図14~図15を参照しながら説明する。明細書に開示の目的を達成可能な流体機械は、流体を圧縮する機械または流体を膨張する装置を含んでいる。第6実施形態に開示する流体機械1は、作動流体として採用される液体、気体、気液混合流体等を圧縮または膨張して外部へ流出させることができる。例えば作動流体は、空気、水、各種の冷媒等である。
 流体機械1は、固定スクロール33と旋回スクロール20とを備えるスクロール型流体機械である。流体機械1は、少なくとも旋回スクロール20が樹脂製であり、さらに無給油で使用することができる。このため、流体機械1は、オイルセパレータなどの付属装置が不要である。流体機械1は、例えば医療用エアや工場用エアなど、クリーンな空気を供給する空気圧源として適用することができる。
 図14を参照して流体機械1の構成について説明する。図14に示すように、流体機械1は、ハウジング30、固定スクロール33、旋回スクロール20およびモータ部40等を備えている。ハウジング30は、第1ハウジング31と第2ハウジング32を含んで構成されている。第1ハウジング31と第2ハウジング32は、流体機械1において、可動する旋回スクロール20に対して、静止している固定側部材である。第1ハウジング31と第2ハウジング32はいずれも、例えばアルミニウムなど、熱伝導性の高い金属により形成されている。第1ハウジング31と第2ハウジング32は、ボルト締めまたは溶接等により固定されている。第1ハウジング31と第2ハウジング32はそれぞれの外壁が大気に露出するように設置されている。第1ハウジング31と第2ハウジング32は、少なくとも一部が金属により形成されていればよい。第1ハウジング31と第2ハウジング32は、少なくとも一部が大気に露出するように構成されていればよい。
 ハウジング30の内側には、固定スクロール33と旋回スクロール20が設けられている。固定スクロール33は、第1ハウジング31の一部として構成されている。つまり、固定スクロール33と第1ハウジング31は一つの部材をなしている。以下、固定スクロール33と旋回スクロール20とを合わせて、両スクロール部材ということがある。両スクロール部材は、作動流体の一例である空気を吸入し圧縮し、吐き出すための圧縮機構部を構成している。固定スクロール33は、円盤状の基盤部330と、基盤部330から突出している固定側歯部331とを備えている。固定側歯部331は、固定スクロール33に設けられた固定側ラップであり、固定スクロール33を軸方向に視て渦巻状に形成されている。基盤部330の外周縁部には、第1ハウジング31において第2ハウジング32に結合される筒状壁部332が設けられている。図14に示すように、筒状壁部332は、基盤部330の外周縁部から基盤部330を取り囲むように流体機械1の軸方向に突出している。
 第1ハウジング31の基盤部330には、両スクロール部材の間に形成される圧縮室38に空気を供給する吸入口34と、圧縮室38から空気を吐き出す吐出口35とが設けられている。旋回スクロール20は、円盤状の基盤部21と、基盤部21に設けられる旋回側歯部22とを有している。旋回側歯部22は、旋回スクロール20に設けられた旋回側ラップであり、旋回スクロール20を軸方向に視て渦巻状に形成されている。圧縮室38は、固定側ラップと旋回側ラップとの間に流体を吸入、圧縮および吐出する流体室である。圧縮室38は、軸方向に視て三日月状に形成されている。基盤部21のうち圧縮室38とは反対側には、円筒状のボス部24が設けられている。
 固定側歯部331と旋回側歯部22は、巻き角度範囲が異なる非対称の渦巻き構造をなす関係にある。固定側歯部331の巻き角度範囲と旋回側歯部22の巻き角度範囲との差は、30度以上であることが好ましい。非対称の渦巻き構造を有する場合、スクロールの内外を有効に使え、吸い込み容積に対し体格を小さくできるからである。固定側歯部331は、旋回側歯部22における径方向外側部位よりもさらに径外側に位置する渦巻き状部を有している。固定側歯部331における、この渦巻き状部は、筒状壁部332に設けられている。筒状壁部332に設けられた渦巻き状部により、さらに固定側歯部331の巻き角度範囲は、旋回側歯部22の巻き角度範囲よりも170度~190度の範囲に含まれる角度分大きくなっていることが好ましい。
 流体機械1が流体を膨張する膨張機である場合は、流体室が固定スクロール33の中心部から外端部へ向かって移動する構成を有する。この場合、吸入口34が吐出口として機能し、吐出口35が吸入口として機能することにより、流体室の容積が増大していくように変化し、中心部側から流体室に取込まれた流体が膨張するようになる。
 旋回スクロール20は、樹脂製であるため、比重が小さい為、遠心力による振動を抑制できる。
 図14および図15に示すように、流体機械1は、旋回スクロール20の自転を防止するための自転防止機構部50を備えている。自転防止機構部50は、規制部51と、規制部51の内周壁に規制されつつ規制部51の内側において旋回する突出部52と、突出部52と規制部51の間に介在するリング状の介装部材53とを備える。図15に示すように、流体機械1は、4個の自転防止機構部50を備えている。4個の自転防止機構部50は、旋回スクロール20の中心軸に周りに略等間隔に位置している。略等間隔とは、等間隔である構成と、所定の寸法公差の範囲で等間隔に対してずれている構成とを含む意味である。例えば、所定の寸法公差は±5度程度である。また、流体機械1が備える自転防止機構部50は、3個または5個以上であってもよい。
 規制部51は、円形状の内周壁によって形成された穴部、または底面を有する凹部である。規制部51は、例えば旋回スクロール20の基盤部21において、固定スクロール33とは反対側に設けられた所定の深さをもつ凹部である。規制部51は、第2ハウジング32において回転軸CL1に直交する端面に対向している。規制部51は、円形の開口端を有する内周壁と内周壁の固定スクロール33側を閉じている底部とを有した構成である。凹部を形成する内周壁と底部とは、樹脂製である基盤部21の一部である。
 突出部52は、第2ハウジング32に固定された被固定部520と、規制部51の底面に向けて突出する先端側部分としての摺動部521とを有した棒状体である。突出部52は鉄または鉄を含む合金によって形成されている。突出部52はピンとも呼ばれる。被固定部520は、第2ハウジング32に形成された円柱状凹部320に圧入された状態で固定されている。突出部52は、摺動部521の先端および介装部材53の先端と規制部51の底面とが離間した状態で第2ハウジング32に固定されている。
 突出部52には、規制部51に対して摺動する先端側部分に介装部材53が装着されている。介装部材53は、突出部52の先端側部分の外側において回転可能に設置されている。この実施形態の自転防止機構部50は、ピンに対して回転可能である介装部材53を含んでいる。摺動部521は、介装部材53を介して規制部51の内周壁に対して規制されながら摺動する。自転防止機構部50において摺動部521と介装部材53は、規制部51の内周壁に対して規制されながら摺動する摺動構造を構成する。
 介装部材53は、例えば金属によって形成されている。介装部材53は、旋回スクロール20の公転に伴い、規制部51の内周壁に規制されつつ規制部51の内側をピンに対して回転しながら旋回する。
 介装部材53の材質は、表面硬さが突出部52の表面硬さよりも低い材質である。介装部材53は、突出部52よりも摩耗しやすい材質によって形成され、かつ突出部の表面粗さは介装部材の内周部よりも小さく形成されている。この構成により、旋回スクロール20の旋回運動において、突出部52の外周部と介装部材53の内周部との摺動に伴い、突出部52よりも介装部材53の方が摩耗するようになる。介装部材53の内表面は、突出部52の外周面の小さい粗さになじむように摩耗していくので、摺動時の両者の表面抵抗が小さくなっていく。これにより、介装部材53の過度な摩耗を抑えることができる。介装部材53の表面硬さと摺動部521の表面硬さは、例えば、ビッカーズ硬さ試験方法を示したJIS Z 2244にしたがって測定することができる。
 介装部材53は、銅または錫を含む金属によって形成されていることが好ましい。銅または錫を含む金属は、固体潤滑作用を有する金属であるため、流体機械1において無給油の摺動部分の摩擦抵抗を低減する機能を発揮する。また、介装部材53は、鉄を含む金属によって形成されている構成でもよい。
 介装部材53は、多孔質体によって形成されかつ含油されていることが好ましい。無給油でも自己保持された油の潤滑効果により磨耗を低減できるからである。介装部材53を形成する多孔質体は、例えば、焼結金属、プラスチック焼結多孔質体である。焼結金属は、金属粉を溶融点前後の温度によって焼き固めた物質であり、鉄、銅、アルミニウム、マグネシウム等の金属粉を用いることができる。プラスチック焼結多孔質体は、精製したプラスチック粉末を焼結、成形して製造することができる。介装部材53は、固体潤滑剤を含んでいることが好ましい。固体潤滑剤としては、二硫化モリブデン、黒鉛、有機モリブデン化合物、フッ素化合物等を用いることができる。
 また、介装部材53は、銅または錫を含む金属によって形成され、かつ固体潤滑剤を含んでいることが好ましい。
 介装部材53の軸方向における一方端部53aと規制部51の底面51aとは、離間した位置関係にある。一方端部53aは、介装部材53において、流体室または固定スクロール33側に位置し軸方向に対して直交する端面である。摺動部521および介装部材53は、旋回スクロール20が公転する際に、規制部51の内周壁を沿うように滑りながら円形状を描いて変位する。突出部52は、両端に位置する、被固定部520と介装部材53および摺動部521とにおいて、固定側部材である第2ハウジング32と可動側部材である旋回スクロール20とによって支持されている。突出部52は、一方端側の被固定部520において固体側部材に固定され、先端である他方端側の摺動部521および介装部材53において規制部51に摺動しながら支持されている。
 第2ハウジング32には、第1ハウジング31とは反対側においてモータ部40が一体に設けられている。モータ部40は、モータケース41の内側にステータ42、ロータ43およびシャフト44等を有している。モータ部40として、ブラシ付モータまたはブラシレスモータなど、種々のモータを採用することが可能である。シャフト44は、モータケース41の内側に設けられた軸受45、軸受46により回転可能に設けられている。
 シャフト44は、モータ部40によって回転駆動される。シャフト44の端部は、第2ハウジング32の内側に挿入されている。シャフト44の端部には、偏心部47が固定されている。偏心部47の中心軸CL2は、シャフト44の回転軸CL1に対して偏心した位置に設置されている。偏心部47は、旋回スクロール20の基盤部21に設けられたボス部24の内側に軸受48を介して設けられている。
 モータ部40に通電すると、シャフト44が回転軸CL1周りに自転する。その際、モータ部40が出力するトルクは、偏心部47を介して旋回スクロール20のボス部24に伝達される。旋回スクロール20は、介装部材53を含む自転防止機構部50によって自転を規制されつつ、シャフト44の回転軸CL1の周りを公転する。公転半径は、中心軸CL2と回転軸CL1の距離と同等である。このとき、旋回スクロール20や自転防止機構部50には、遠心力が作用する。
 旋回スクロール20が公転すると、両スクロール部材の間に形成される圧縮室38は、径方向外側から径方向内側に向かって旋回移動する。吸入口34側に位置する圧縮室38は、シャフト44の回転角度が0度から360度に変化する間に、回転軸CL1または吐出口35に近づきながら、その容積が次第に縮小するように変化する。これにより、流体機械1の外部から吸入口34を通じて圧縮室38に供給された空気は圧縮され、この空気は吐出口35から流体機械1の外部に吐き出される。
 基盤部21における固定スクロール33とは反対側の面と、第2ハウジング32における回転軸CL1側の内壁である離間壁321との間には、背圧室39が設けられている。背圧室39には、圧縮室38で圧縮された空気の一部が、基盤部21を貫通する背圧導入通路25を経由して供給される。背圧導入通路25は、圧縮室38と背圧室39とを連通する通路である。これにより、旋回スクロール20は、背圧室39に供給された空気の圧力によって固定スクロール33側に付勢されている。
 第1ハウジング31のうち旋回側摺動面23に対向する部位には、旋回側摺動面23と摺動するハウジング側摺動面36が設けられている。旋回スクロール20が公転する際、背圧室39の空気の圧力により旋回スクロール20は固定スクロール33側に付勢される。このため、旋回側摺動面23とハウジング側摺動面36とは、常に接した状態で摺動する。ハウジング側摺動面36は、旋回スクロール20の軸方向の荷重を受けるためのスラスト軸受部として機能する。旋回スクロール20は、スラスト軸受部としてのハウジング側摺動面36に支持されつつ公転する。
 旋回側摺動面23とハウジング側摺動面36との間に隙間が生じた場合、圧縮室38から背圧室39に供給された高圧の空気がその隙間を通り固定スクロール33の内側の低圧空間に漏れることが考えられる。この実施形態では、旋回スクロール20は背圧室39の空気の圧力により固定スクロール33側に付勢されるので、旋回側摺動面23とハウジング側摺動面36とが確実に接した状態で摺動する。このため、背圧室39の高圧の空気が固定スクロール33の内側の低圧空間に漏れることを防ぐ効果がある。この流体機械1によれば、空気の圧縮効率の低下を防ぐことができる。
 ハウジング側摺動面36には、自己潤滑性を有するフッ素または二硫化モリブデンを含有するコーティングが設けられていることが好ましい。これにより、ハウジング側摺動面36の摩擦係数を低くすることが可能である。フッ素コーティングとしては、ポリテトラフルオロエチレンによるコーティングが好ましい。また、このコーティングは薄膜であるので、旋回スクロール20からハウジング30への伝熱を阻害にくい効果を奏する。このため、旋回側摺動面23とハウジング側摺動面36とがより高荷重の下で摺動する場合でも摺動部の温度上昇を抑制することができる。
 第1ハウジング31には、ハウジング側摺動面36よりも径方向外側に、旋回スクロール20と離間するように凹む凹部37が設けられている。凹部37は、旋回スクロール20の旋回側摺動面23と接触しない部位である。
 固定側歯部331の先端と旋回スクロール20の基盤部21との間には、隙間が設けられている。旋回側歯部22の先端と、固定スクロール33の基盤部330との間には、隙間が設けられている。これにより、固定側歯部331の先端は、旋回側摺動面23およびハウジング側摺動面36よりも基盤部330側に位置するので、旋回側摺動面23とハウジング側摺動面36とが確実に接した状態で摺動する。背圧室39の高圧の空気が固定スクロール33の内側の低圧空間に漏れることを防ぐ効果を奏する。
 モータ部40が出力するトルクにより旋回スクロール20が公転すると、旋回側摺動面23とハウジング側摺動面36とが摺動する。この摺動により生じた熱は、その場所にこもることなく、第1ハウジング31および第2ハウジング32を通じて熱拡散し、その外壁から大気に放熱される。これにより、旋回側摺動面23とハウジング側摺動面36の摺動による温度上昇が抑制されるので、旋回側摺動面23の耐摩耗性が向上するとともに、樹脂摺動面の溶融凝着を防ぐ効果を奏する。
 第6実施形態の流体機械1がもたらす作用効果について説明する。流体機械1は、固定側ラップを有した固定スクロール33と、固定側ラップとの間に流体を吸入、圧縮および吐出する流体室を形成する旋回側ラップを有した旋回スクロール20とを備える。流体機械1は、周方向に略等間隔に配置された複数の自転防止機構部50を備える。自転防止機構部50は、円形状の内周壁を有する規制部51と、規制部51の内周壁に規制されつつ規制部51の内側において旋回する突出部52と、突出部52と内周壁の間に介在して摺動するリング状の介装部材53とを備える。介装部材53は、表面硬さが突出部52の表面硬さよりも低い材質によって形成されて、かつ突出部52の表面粗さは介装部材53の内周部よりも小さく形成されている。突出部52の表面粗さの方を小さくする理由は、突出部52は外径であり、介装部材53内周部よりも加工で面粗さを小さくし易い為である。
 この流体機械1によれば、介装部材53の表面硬さは突出部52の表面硬さよりも低いため、介装部材53における内周部が突出部52における外周部よりも摩耗して、介装部材53の内周部が面粗さの小さい突出部になじむようになる。介装部材53と突出部52とについて摺動する部分がなじむようになると、介装部材53と突出部52との摺動抵抗が抑えられて、摩耗や焼き付きを抑制できる。
 流体機械1は、銅または錫を含む金属によって形成されている介装部材53を有するため、この金属の固体潤滑作用によって、無給油でも介装部材53と摺動部521との過度な摩耗を抑制し、異常摩耗や焼き付きを抑えることができる。
 流体機械1は、多孔質体によって形成されかつ含油されている介装部材53を有するため、無給油でも自己保持油の流体潤滑作用によって、介装部材53と摺動部521との過度な摩耗を抑制し、異常摩耗や焼き付きを抑えることができる。
 流体機械1は、固体潤滑剤を含んでいる介装部材53を有するため、摩擦係数の低下によって、介装部材53と摺動部521との過度な摩耗を抑制し、異常摩耗や焼き付きを抑えることができる。
 介装部材53は、内径寸法に対する外径寸法の比率が2以上になるように形成されている。この構成によれば、介装部材53について内周面摺動抵抗に対する外周面摺動抵抗の比率が大きくなるため、介装部材53と規制部51の内周壁との間の滑りが減少して介装部材53が転がりやすくなる。これにより、介装部材53と規制部51の内周壁との摩耗を抑制し、異常摩耗や焼き付きを抑えることができる。
 規制部51の内周壁は旋回スクロール20の一部である。旋回スクロール20は繊維強化樹脂によって形成されている。この構成によれば、旋回スクロール20を比較的比重の小さい樹脂製とすることにより、振動を抑えた流体機械1を提供できる。旋回スクロール20を繊維強化樹脂で形成することにより、規制部51の内周壁における塑性変形、異常摩耗、凝着等を抑えることができる。繊維強化樹脂は、例えばガラス繊維やタルク材などを含有した樹脂材料である。
 (第7実施形態)
 第7実施形態について図16および図17を参照して説明する。第7実施形態は、第6実施形態に対して、規制部151の構成が相違する。第7実施形態で特に説明しない構成、作用、効果については、第6実施形態と同様であり、以下、異なる点についてのみ説明する。
 図16および図17に示すように、規制部151を形成する凹部には、介装部材53の軸方向における一方端部53aが対向する底面51aよりもさらに流体室側に凹む部分凹部1511が設けられている。部分凹部1511は、底面51aの周縁部全周にわたって設けられて環状を呈する円環状溝部である。また、部分凹部1511は、底面51aの周縁部において部分的に設けられた円弧状の溝部であってもよい。この場合、部分凹部1511は、底面51aの周縁部において設けられた単数または複数の円弧状溝部である。
 第7実施形態によれば、規制部151は、介装部材53の軸方向における一方端部53aが対向する底面51aと、底面51aよりも介装部材53から離間する方向に部分的に凹んでいる部分凹部1511とを備えている。この構成によれば、介装部材53等から染み出た油や摩耗粉が混じったものを部分凹部1511によって蓄えることができる。これにより、介装部材53から染み出た摩耗粉等の異物によって介装部材53、旋回スクロール20または他の摺動物体が異常摩耗状態になることを抑制できる。部分凹部1511によれば、規制部151の内周壁近傍における油や異物等の回収量を向上できるので、遠心力によって内周壁側に移動する異物等の回収能力を高めることができる。
 (第8実施形態)
 第8実施形態について図18および図19を参照して説明する。第8実施形態は、第6実施形態に対して、規制部251の構成が相違する。第8実施形態で特に説明しない構成、作用、効果については、第6実施形態と同様であり、以下、異なる点についてのみ説明する。
 図18および図19に示すように、規制部251を形成する凹部には、底面51aよりもさらに流体室側に凹む部分凹部2511が設けられている。部分凹部2511は、底面51aにおける中心部から放射状に延びる溝部である。放射状の溝部は、底面51aにおける中心部から四方八方に延び出て規制部251の内周壁まで至っている。
 第8実施形態によれば、規制部251は、介装部材53の一方端部53aが対向する底面51aと、底面51aよりも介装部材53から離間する方向に部分的に凹んでいる部分凹部2511とを備えている。この構成によれば、介装部材53等から染み出た油や摩耗粉が混じったものを部分凹部2511によって蓄えることができる。第8実施形態の流体機械1は、介装部材53から染み出た摩耗粉等の異物によって介装部材53、旋回スクロール20または他の摺動物体が異常摩耗状態になることを抑制できる。部分凹部2511によれば、規制部251の中心側と内周壁近傍との両方にわたって設けられているので、底面51aにおいて広範囲にわたる異物等の回収能力を高めることができる。
 (第9実施形態)
 第9実施形態について図20および図21を参照して説明する。第9実施形態は、第6実施形態に対して、規制部351の構成が相違する。第9実施形態で特に説明しない構成、作用、効果については、第6実施形態と同様であり、以下、異なる点についてのみ説明する。
 図20および図21に示すように、規制部351を形成する凹部には、介装部材53の軸方向における一方端部53aが対向する底面51aよりもさらに流体室側に凹む部分凹部3511が設けられている。部分凹部3511は、底面51aの周縁部において間隔をあけて並ぶ複数の円柱状凹部である。部分凹部3511は、底面51aの周縁部において略等間隔に設けられていることが好ましい。
 第9実施形態によれば、規制部351は、介装部材53の一方端部53aが対向する底面51aと、底面51aよりも介装部材53から離間する方向に部分的に凹んでいる部分凹部3511とを備えている。この構成によれば、介装部材53等から染み出た油や摩耗粉が混じったものを部分凹部3511によって蓄えることができる。第9実施形態の流体機械1は、介装部材53から染み出た摩耗粉等の異物によって介装部材53、旋回スクロール20または他の摺動物体が異常摩耗状態になることを抑制できる。部分凹部3511によれば、規制部351の内周壁近傍における油や異物等の回収量を向上できるので、遠心力によって内周壁側に移動する異物等の回収能力を高めることができる。
 (第10実施形態)
 第10実施形態について図22を参照して説明する。第10実施形態は、介装部材53の一方端部53aと底面51aについて特定の位置関係がある。第10実施形態で特に説明しない構成、作用、効果については、第6実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
 図22に示すように、突出部52の外径寸法は介装部材53の内径寸法よりも大きく構成されている。介装部材53は、摺動部521に対して隙間が生じている状態で外側に嵌っている。この構成により、図22に示すように介装部材53が突出部52に対して最大限傾いた場合には、介装部材53の内周面の一部が摺動部521の外周面に接触することになる。この状態において、固定側部材の面322、介装部材53および底面51aは、介装部材53の一方端部53aと底面51aとの接触状態と、介装部材53の他方端部53bと固定側部材との接触状態との両方が生じないような位置関係に設けられている。
 第10実施形態によれば、規制部51は、介装部材53の一方端部53aが対向する底面51aを備えている。底面51aと固定側部材とは、突出部52の外側に嵌っている状態の介装部材53が突出部52に対して最大限傾いた姿勢である場合に、介装部材53が底面51aと固定側部材との両方に接触しないように、設けられている。
 これによれば、介装部材53の内径寸法が摺動部521の外径寸法よりも大きい構成において、次の作用効果を奏する。すなわち、介装部材53が突出部52に対して大きく傾いたときに、介装部材53の軸方向における端部が固定側部材や底面51aに接触したまま状態で摺動することを余抑えることができる。これにより、介装部材53、または固定側部材、底面51aにおける異常摩耗を異常摩耗や焼き付きを抑えることができる。
 (第11実施形態)
 第11実施形態について図23を参照して説明する。第11実施形態は、第6実施形態に対して、介装部材53の変位規制構造を有する点が相違する。第11実施形態で特に説明しない構成、作用、効果については、第6実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
 図23に示すように、プレート状部材54は、介装部材53の軸方向における他方端部53bと固定側部材との間に設けられている。プレート状部材54は、基盤部21における面210と第2ハウジング32における面322との間において、面210と面322の両方に対面するように設置されている。プレート状部材54は、流体機械1が有する複数の介装部材53のすべてに対して軸方向に対向するように設けられた一つの部材である。プレート状部材54は、介装部材53が軸方向に変位して規制部51から脱落することを防止する変位規制構造として機能し、例えば金属で形成されている。さらにプレート状部材54は、介装部材53や固定側部材の摩耗を抑制する耐摩耗性の板状部材として機能する。
 第11実施形態によれば、突出部52は、一方端部側において介装部材53を介して規制部51の内周壁に規制されている摺動部521と、他方端部側において固定側部材に固定されている被固定部520とを有している。流体機械1は、介装部材53の軸方向における他方端部53bと固定側部材との間に設けられたプレート状部材54をさらに備える。この構成によれば、プレート状部材54によって介装部材53と固定側部材との接触を回避できるので、介装部材53と固定側部材との摩耗を抑制することができる。
 (第12実施形態)
 第12実施形態について図24を参照して説明する。第12実施形態は、第6実施形態に対して、介装部材53の旋回運動を規制するスリーブ部材60を有する点が相違する。第12実施形態で特に説明しない構成、作用、効果については、第6実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
 図24に示すように、前述の規制部51を形成する凹部には、筒状のスリーブ部材60が収容されている。スリーブ部材60は、凹部に対して固定されている構成でもよいし回転可能な構成でもよい。さらに摺動部521および介装部材53は、旋回スクロール20の公転に伴い、スリーブ部材60の内周壁に規制されつつスリーブ部材60の内側を旋回する。またスリーブ部材60は、繊維強化樹脂または金属によって形成されていることが好ましい。
 スリーブ部材60は、例えば金属によって形成されている。これらの構成により、旋回スクロール20は介装部材53の外周と摺動する部材ではなくなる。これにより必要な耐摩耗性、表面硬さを考慮せず旋回スクロール20の材質選定が可能となる。
 第12実施形態の流体機械1は、規制部51の内周壁と介装部材53との間に設置されている筒状のスリーブ部材60をさらに備える。スリーブ部材60は繊維強化樹脂または金属によって形成されている。この構成によれば、規制部51の内周壁を繊維強化樹脂に限らず、成型精度がよい材質によって形成することが可能になる。
 (第13実施形態)
 第13実施形態について図25および図26を参照して説明する。第13実施形態は、第12実施形態に対して、スリーブ部材61の構成が相違する。第12実施形態で特に説明しない構成、作用、効果については、第13実施形態と同様であり、以下、前述の実施形態と異なる点についてのみ説明する。
 図25および図26に示すように、第13実施形態の流体機械1が備えるスリーブ部材61は、周方向に連結された一体物である。スリーブ部材61は、複数の筒部62と、その複数の筒部62同士を連結する連結部63とを有している。
 複数の筒部62は、規制部51を形成する凹部に収容されている。なお、複数の筒部62の数は、規制部51を形成する凹部の数に対応するものである。複数の筒部62と凹部の数は、図26に示した4個に限らず、3個または5個以上であってもよい。
 また、連結部63は、図25に示したように旋回スクロール20に埋め込んでもよく、或いは、旋回スクロール20から第2ハウジング32側に突出していてもよい。
 第13実施形態では、スリーブ部材61を一体物として形成することで、旋回スクロール20に対する組付けを容易に行うことができる。また、部品点数を少なくすることができる。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
 この明細書の開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品、要素の組み合わせに限定されず、種々変形して実施することが可能である。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品、要素が省略されたものを包含する。開示は、一つの実施形態と他の実施形態との間における部品、要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示される技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものと解されるべきである。
 (1)上記各実施形態では、旋回スクロール200の旋回基盤260のうち固定スクロール100側の面に旋回摺動面230を設け、第1ハウジング301のうち旋回摺動面230に向き合う部位にハウジング摺動面360を設ける構成としたが、これに限らない。旋回スクロール200の旋回基盤260のうち固定スクロール100とは反対側の面に旋回摺動面を設け、第2ハウジング302のうちその旋回摺動面に向き合う部位にハウジング摺動面を設ける構成としてもよい。
 (2)上記各実施形態では、旋回スクロール200の駆動源としてモータ部400を例に説明したが、駆動源はこれに限らず、例えばエンジン等でもよい。また、流体装置は、流体を圧縮する圧縮機構部から離れた位置に設けられた駆動源からプーリおよびベルトを介してトルクが伝達されるように構成してもよい。
 (3)上記各実施形態では、ハウジング摺動面360または金属製のスペーサ530に対しコーティング3610、5310を施した例について説明したが、これに限らず、コーティングを施さない構成としてもよい。この構成においても、両スクロール部材100、200が一定の荷重以下で使用される場合、旋回スクロール200の温度上昇を抑制し、溶融凝着を防ぐことが可能である。
 (4)上記各実施形態では、固定スクロール100は樹脂により形成されるものとして説明したが、これに限らず、固定スクロール100は例えば金属などにより形成してもよい。
 (5)前述の実施形態において突出部はピンなどの棒状体であるが、明細書の開示する目的を達成可能な突出部は、内部に空洞があるような棒状体または筒状体であってもよい。
 (6)前述の実施形態において固定スクロール33は、第1ハウジング31の一部であるが、第1ハウジング31とは別個の部材によって構成してもよい。別個の部材である固定スクロール33は第1ハウジング31に固定されることによって、第1ハウジング31と一体になる。また、固定スクロール33は、前述の実施形態においてアルミニウム等の金属によって形成されていると記載したが、樹脂材料によって形成されている構成でもよい。この場合、固定スクロール33は、第1ハウジング31の一部であってもよいし、第1ハウジング31に固定された別個の部材であってもよい。
 (7)前述の実施形態において固定側ラップと旋回側ラップは、巻き角度範囲が異なる非対称の渦巻き構造をなす関係であると説明したが、これらのラップは巻き角度範囲が同等である対称の渦巻き構造をなす関係であってもよい。
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、流体を吸入して吐き出すスクロール型の流体機械は、固定スクロール、旋回スクロール、ハウジング、旋回摺動面およびハウジング摺動面を備える。固定スクロールは、固定基盤、および、固定基盤に設けられる渦巻き状の固定歯部を有する。旋回スクロールは、樹脂製であり、固定基盤に対向して配置される旋回基盤、および、旋回基盤に設けられる渦巻き状の旋回歯部を有し、固定歯部と旋回歯部とが嵌り合い、所定の中心軸に対して公転する。ハウジングは、固定スクロールを固定すると共に固定スクロールおよび旋回スクロールを収容する。旋回摺動面は、旋回スクロールが有する旋回基盤のうち旋回歯部より径方向外側の部位に設けられている。ハウジング摺動面は、ハウジングのうち旋回摺動面に対向する部位に設けられ、旋回摺動面と摺動する。ハウジングは、ハウジング摺動面が設けられる部位が金属製であり、その外壁が大気に露出するように構成されている。
 第2の観点によれば、ハウジング摺動面には、自己潤滑性を有するフッ素または2硫化モリブデンを含有するコーティングが施されている。
 これによれば、ハウジング摺動面にコーティングを施すことで、ハウジング摺動面の摩擦係数を低くすることが可能である。また、コーティングは薄膜であるので、旋回スクロールからハウジングへの伝熱を阻害することが無い。そして、旋回摺動面とハウジング摺動面とがより高荷重の下で摺動する場合でも、温度上昇が抑制され、異常摩耗や溶融凝着が防がれることが実験により判った。したがって、流体機械は、より高圧の流体を吐き出す場合にも、旋回摺動面の耐摩耗性が向上し、樹脂摺動面の溶融凝着が防がれるので、信頼性を向上することができる。
 第3の観点によれば、固定スクロールは、樹脂製である。
 これによれば、固定スクロールと旋回スクロールの熱膨張率を同等にすることが可能である。そのため、両スクロール部材は、温度変化に対し、流体を圧縮する性能を安定させることができる。また、両スクロール部材を樹脂製とすることで、製造上のコストをより低減することができる。
 第4の観点によれば、固定スクロールと旋回スクロールは、旋回スクロールが公転する際、固定歯部の側面と旋回歯部の側面とが最も近づく箇所に所定の隙間が形成されるように構成されている。
 これによれば、固定スクロールと旋回スクロールの両方を樹脂製とした場合にも、固定歯部と旋回歯部とが摺動しないので、その両者の温度上昇が抑制される。そのため、固定歯部と旋回歯部の溶融凝着が防がれる。したがって、流体機械は信頼性を向上することができる。
 第5の観点によれば、固定歯部の先端は、旋回摺動面およびハウジング摺動面よりも固定基盤側に位置している。
 これによれば、固定歯部の先端が旋回基盤に接することなく、旋回摺動面とハウジング摺動面とが確実に接した状態で摺動する。そのため、固定スクロールと旋回スクロールの外側の空間(例えば背圧室)から、固定スクロールの内側の低圧空間に流体が漏れることが防がれる。したがって、この流体機械は、流体の圧縮効率の低下を防ぐことができる。
 第6の観点によれば、ハウジングと固定スクロールとの固定箇所は、固定基盤の旋回基盤側の面とハウジング摺動面との中央位置よりも、旋回基盤側に位置している。
 これによれば、温度変化により固定スクロールが熱膨張した場合でも、固定スクロールは固定基盤がハウジング摺動面から遠ざかる方向へ移動する。そのため、固定歯部の先端が旋回基盤に接することなく、旋回摺動面とハウジング摺動面とが確実に接した状態で摺動する。そのため、固定スクロールと旋回スクロールの外側の空間(例えば背圧室)から、固定スクロールの内側の低圧空間に流体が漏れることが防がれる。したがって、この流体機械は、流体の圧縮効率の低下を防ぐことができる。
 第7の観点によれば、固定スクロールが有する固定歯部は、径方向外側かつ旋回基盤側の部位に径方向内側に切り欠かれるように形成された切欠部を有している。ハウジングは、固定スクロールの切欠部に入り込むように設けられるオーバハング部を有している。オーバハング部のうち旋回スクロールの旋回摺動面に対向する面は、ハウジング摺動面を構成している。
 これによれば、ハウジング摺動面の内径が小さくなるので、そこに摺動する旋回摺動面の外径を小さくし、旋回基盤の外径を小さくすることが可能である。したがって、流体機械の径方向の体格を小型化することができる。
 第8の観点によれば、固定基盤とハウジングとの間に設けられ、固定基盤を旋回スクロール側に付勢し、固定スクロールの切欠部とオーバハング部とを当接させる付勢部材をさらに備える。
 これによれば、流体機械が作動していない場合でも、固定スクロールの姿勢を安定させることが可能である。
 第9の観点によれば、流体機械は、旋回基盤の固定スクロールとは反対側の面とハウジングの内壁との間に、固定スクロールと旋回スクロールにより圧縮された流体が供給される背圧室をさらに備える。そして、旋回スクロールは、背圧室の流体圧力により固定スクロール側へ付勢されることにより、旋回基盤のうち固定スクロール側の面に設けられる旋回摺動面とハウジング摺動面とが接した状態で摺動するように構成されている。
 ところで、仮に、旋回スクロールの旋回基盤のうち固定スクロールとは反対側の面に旋回摺動面が設けられる構成とし、そこに摺動するハウジング摺動面にコーティングを施す場合、図示していない自転防止機構などにもコーティングが必要となることがある。その場合、製造コストが高くなることが懸念される。これに対し、上述した第9の観点では、旋回スクロールは、旋回基盤のうち固定スクロール側の面に旋回摺動面が設けられる。そのため、その旋回摺動面と摺動するハウジング摺動面にコーティングを施す場合、構成を簡素なものとして製造コストを低減することができる。
 第10の観点によれば、ハウジングは、ハウジング摺動面の径方向外側に、旋回摺動面から遠ざかるように凹むことで旋回摺動面と摺動しない凹部を有している。ハウジング摺動面の径方向の幅は、旋回スクロールが公転の中心軸に対して偏心している距離の2倍より小さくなっている。
 これによれば、旋回摺動面とハウジング摺動面とが間欠的に摺動する。詳細には、旋回摺動面の中の所定の摺動点がハウジング摺動面と摺動する時間を、流体機械の作動時間全体の100%未満とすることが可能である。したがって、旋回摺動面とハウジング摺動面の摺動による温度上昇を抑制することができる。
 第11の観点によれば、流体を吸入して吐き出すスクロール型の流体機械は、固定スクロール、旋回スクロール、第1ハウジング、第2ハウジング、旋回摺動面およびスペーサを備える。固定スクロールは、固定基盤、および、固定基盤に設けられる渦巻き状の固定歯部を有する。旋回スクロールは、樹脂製であり、固定基盤に対向して配置される旋回基盤、および、旋回基盤に設けられる渦巻き状の旋回歯部を有し、固定歯部と旋回歯部とが嵌り合い、所定の中心軸に対して公転する。第1ハウジングおよび第2ハウジングは、固定スクロールを固定すると共に固定スクロールおよび旋回スクロールを収容する。旋回摺動面は、旋回スクロールが有する旋回基盤のうち旋回歯部より径方向外側の部位に設けられている。スペーサは、金属製であり、第1ハウジングまたは第2ハウジングが旋回摺動面に対向する部位と旋回摺動面との間に設けられ、旋回摺動面と摺動する面に自己潤滑性のコーティングが施されている。第1ハウジングおよび第2ハウジングのうち少なくともどちらかのハウジングは金属製であり、その外壁が大気に露出するように構成されている。
 これによれば、体格の大きい第1ハウジングまたは第2ハウジングにコーティングを施すことなく、金属製のスペーサにコーティングを施すことで、そのコーティングを容易に行うことが可能となるので、製造コストを低減することが可能である。また、金属製のスペーサからどちらかのハウジングに熱伝導し大気へ放熱し、第11の観点に係る開示も、上述した第1の観点に係る開示と同様の作用効果を奏することが可能である。
 第11の観点に記載した構成と、第3~第10の観点に記載した構成とは、次に示すように任意に組み合わせることが可能である。
 すなわち、第11の観点に記載した構成に加えて、固定スクロールを樹脂製としてもよい。
 第11の観点に記載した構成に加えて、固定スクロールと旋回スクロールは、旋回スクロールが公転する際、固定歯部の側面と旋回歯部の側面とが最も近づく箇所に所定の隙間が形成されるように構成してもよい。
 第11の観点に記載した構成に加えて、固定歯部の先端は、旋回摺動面よりも固定基盤側に位置してもよい。
 第11の観点に記載した構成に加えて、ハウジングと固定スクロールとの固定箇所は、固定基盤の旋回基盤側の面と金属製のスペーサとの中央位置よりも、旋回基盤側に位置してもよい。
 第11の観点に記載した構成に加えて、ハウジングは、固定スクロールの切欠部に入り込むように設けられるオーバハング部を有し、オーバハング部のうち旋回スクロールの旋回摺動面に対向する面に金属製のスペーサを配置してもよい。
 第11の観点に記載した構成に加えて、固定基盤とハウジングとの間に設けられ、固定基盤を旋回スクロール側に付勢し、固定スクロールの切欠部とオーバハング部とを当接させる付勢部材をさらに備えてもよい。
 第11の観点に記載した構成に加えて、旋回スクロールは、背圧室の流体圧力により固定スクロール側へ付勢されることにより、旋回基盤のうち固定スクロール側の面に設けられる旋回摺動面と金属製のスペーサとが接した状態で摺動するように構成してもよい。
 第11の観点に記載した構成に加えて、金属製のスペーサの径方向の幅は、旋回スクロールが公転の中心軸に対して偏心している距離の2倍より小さくしてもよい。
 第12の観点によれば、流体を吸入して吐き出すスクロール型の流体機械は、固定スクロール、旋回スクロール、および複数の自転防止機構部を備える。固定スクロールは、渦巻き状の固定側ラップを有する。旋回スクロールは、固定側ラップとの間に流体を吸入、圧縮および吐出する流体室を形成する旋回側ラップを有する。複数の自転防止機構部は、規制部、突出部、および介装部材をそれぞれ有する。規制部は、旋回スクロールの自転運動を阻止するために、円形状の内周壁を有する。突出部は、内周壁に規制されつつ規制部の内側において旋回する。リング状の介装部材は、突出部と内周壁の間に介在して突出部および内周壁に対して摺動する。そして、介装部材は、表面硬さが突出部の表面硬さよりも低い材質によって形成されて、かつ突出部の表面粗さは介装部材の内周部よりも小さく形成されている。
 また、第12の観点に記載した構成と、第1~第11の観点に記載した構成についても、任意に組み合わせることが可能である。

Claims (24)

  1.  流体を吸入して吐き出すスクロール型の流体機械であって、
     固定基盤(110)、および、前記固定基盤に設けられる渦巻き状の固定歯部(120)を有する固定スクロール(100)と、
     前記固定基盤に対向して配置される旋回基盤(260)、および、前記旋回基盤に設けられる渦巻き状の旋回歯部(220)を有し、前記固定歯部と前記旋回歯部とが嵌り合い、所定の中心軸(O1)に対して公転する樹脂製の旋回スクロール(200)と、
     前記固定スクロールを固定すると共に前記固定スクロールおよび前記旋回スクロールを収容するハウジング(300)と、
     前記旋回スクロールが有する前記旋回基盤のうち前記旋回歯部より径方向外側の部位に設けられた旋回摺動面(230)と、
     前記ハウジングのうち前記旋回摺動面に対向する部位に設けられ、前記旋回摺動面と摺動するハウジング摺動面(360)と、を備え、
     前記ハウジングは、前記ハウジング摺動面が設けられる部位(310)が金属製であり、その外壁が大気に露出するように構成されている、流体機械。
  2.  前記ハウジング摺動面には、自己潤滑性を有するフッ素または2硫化モリブデンを含有するコーティング(3610)が施されている、請求項1に記載の流体機械。
  3.  前記固定スクロールは、樹脂製である、請求項1または2に記載の流体機械。
  4.  前記固定スクロールと前記旋回スクロールは、前記旋回スクロールが公転する際、前記固定歯部の側面と前記旋回歯部の側面とが最も近づく箇所に所定の隙間(CL30)が形成されるように構成されている、請求項1ないし3のいずれか1つに記載の流体機械。
  5.  前記固定歯部の先端(1210)は、前記旋回摺動面および前記ハウジング摺動面よりも前記固定基盤側に位置している、請求項1ないし4のいずれか1つに記載の流体機械。
  6.  前記ハウジングと前記固定スクロールとの固定箇所は、前記固定基盤の前記旋回基盤側の面と前記ハウジング摺動面との中央位置(M)よりも、前記旋回基盤側に位置している、請求項1ないし5のいずれか1つに記載の流体機械。
  7.  前記固定スクロールが有する前記固定歯部は、径方向外側かつ前記旋回基盤側の部位に径方向内側に切り欠かれるように形成された切欠部(180)を有し、
     前記ハウジングは、前記固定スクロールの前記切欠部に入り込むように設けられるオーバハング部(390)を有し、
     前記オーバハング部のうち前記旋回スクロールの前記旋回摺動面に対向する面は、前記ハウジング摺動面を構成している、請求項1ないし6のいずれか1つに記載の流体機械。
  8.  前記固定基盤と前記ハウジングとの間に設けられ、前記固定基盤を前記旋回スクロール側に付勢し、前記固定スクロールの前記切欠部と前記オーバハング部とを当接させる付勢部材(510)をさらに備える、請求項7に記載の流体機械。
  9.  前記旋回基盤の前記固定スクロールとは反対側の面と前記ハウジングの内壁との間に形成され、前記固定スクロールと前記旋回スクロールにより圧縮された流体が供給される背圧室(350)をさらに備え、
     前記旋回スクロールは、前記背圧室の流体圧力により前記固定スクロール側へ付勢されることにより、前記旋回基盤のうち前記固定スクロール側の面に設けられる前記旋回摺動面と前記ハウジング摺動面とが接した状態で摺動するように構成されている、請求項1ないし8のいずれか1つに記載の流体機械。
  10.  前記ハウジングは、前記ハウジング摺動面の径方向外側に、前記旋回摺動面から遠ざかるように凹むことで前記旋回摺動面と摺動しない凹部(370)を有しており、
     前記ハウジング摺動面の径方向の幅(W)は、前記旋回スクロールが公転の中心軸に対して偏心している距離(E)の2倍より小さくなっている、請求項1ないし9のいずれか1つに記載の流体機械。
  11.  流体を吸入して吐き出すスクロール型の流体機械であって、
     固定基盤(110)、および、前記固定基盤に設けられる渦巻き状の固定歯部(120)を有する固定スクロール(100)と、
     前記固定基盤に対向して配置される旋回基盤(260)、および、前記旋回基盤に設けられる渦巻き状の旋回歯部(220)を有し、前記固定歯部と前記旋回歯部とが嵌り合い、所定の中心軸(O1)に対して公転する樹脂製の旋回スクロール(200)と、
     前記固定スクロールを固定すると共に前記固定スクロールおよび前記旋回スクロールを収容する第1ハウジング(301)および第2ハウジング(302)と、
     前記旋回スクロールが有する前記旋回基盤のうち前記旋回歯部より径方向外側の部位に設けられた旋回摺動面(230)と、
     前記第1ハウジングまたは前記第2ハウジングが前記旋回摺動面に対向する部位と前記旋回摺動面との間に設けられ、前記旋回摺動面と摺動する面に自己潤滑性のコーティング(5310)が施された金属製のスペーサ(530)と、を備え、
     前記第1ハウジングおよび前記第2ハウジングのうち少なくともどちらかのハウジングは金属製であり、その外壁が大気に露出するように構成されている、流体機械。
  12.  流体を吸入して吐き出すスクロール型の流体機械であって、
     渦巻き状の固定側ラップ(331)を有した固定スクロール(33)と、
     前記固定側ラップとの間に流体を吸入、圧縮および吐出する流体室(38)を形成する旋回側ラップ(22)を有した旋回スクロール(20)と、
     前記旋回スクロールの自転運動を阻止するために、円形状の内周壁を有する規制部(51;151;251;351)、前記内周壁に規制されつつ前記規制部の内側において旋回する突出部(52)、および前記突出部と前記内周壁の間に介在して前記突出部および前記内周壁に対して摺動するリング状の介装部材(53)をそれぞれ有する複数の自転防止機構部(50)と、
     を備え、
     前記介装部材は、表面硬さが前記突出部の表面硬さよりも低い材質によって形成されて、かつ前記突出部の表面粗さは前記介装部材の内周部よりも小さく形成されている流体機械。
  13.  前記介装部材は、銅または錫を含む金属によって形成されている請求項12に記載の流体機械。
  14.  前記介装部材は、多孔質体によって形成されかつ含油されている請求項12または請求項13に記載の流体機械。
  15.  前記規制部は、前記介装部材の軸方向における一方端部(53a)が対向する底面(51a)と、前記底面よりも前記介装部材から離間する方向に部分的に凹んでいる部分凹部(1511;2511;3511)とを備えている請求項14に記載の流体機械。
  16.  前記介装部材は、固体潤滑剤を含んでいる請求項12ないし請求項15のいずれか1つに記載の流体機械。
  17.  前記突出部は、一方端部側において前記介装部材を介して前記規制部の前記内周壁に規制されている摺動部(521)と、他方端部側において固定側部材(32)に固定されている被固定部(520)とを有しており、
     前記規制部は、前記介装部材の軸方向における一方端部(53a)が対向する底面(51a)を備え、
     前記底面と前記固定側部材とは、前記突出部の外側に嵌っている状態の前記介装部材が前記突出部に対して最大限傾いた姿勢である状態において、前記介装部材が前記底面と前記固定側部材との両方に接触しないように設けられている請求項12ないし請求項16のいずれか1つに記載の流体機械。
  18.  前記介装部材は、内径寸法に対する外径寸法の比率が2以上になるように形成されている請求項12ないし請求項17のいずれか1つに記載の流体機械。
  19.  前記突出部は、一方端部側において前記介装部材を介して前記規制部の前記内周壁に規制されている摺動部(521)と、他方端部側において固定側部材(32)に固定されている被固定部(520)とを有しており、
     前記介装部材の軸方向における他方端部(53b)と前記固定側部材との間に設けられたプレート状部材(54)をさらに備える請求項12ないし請求項18のいずれか1つに記載の流体機械。
  20.  前記規制部の前記内周壁は前記旋回スクロールの一部であり、
     前記旋回スクロールは繊維強化樹脂によって形成されている請求項12ないし請求項19のいずれか1つに記載の流体機械。
  21.  前記規制部の前記内周壁と前記介装部材との間に設置されている筒状のスリーブ部材(60)をさらに備え、
     前記スリーブ部材は繊維強化樹脂または金属によって形成されている請求項12ないし請求項20のいずれか1つに記載の流体機械。
  22.  前記固定スクロールと一体または別個に形成され、前記旋回スクロールを収容するハウジング(30)と、
     前記旋回スクロールが有する前記旋回側ラップが設けられる基盤部(21)のうち前記旋回側ラップより径方向外側の部位に設けられた旋回側摺動面(23)と、
     前記ハウジングのうち前記旋回側摺動面に対向する部位に設けられ、前記旋回側摺動面と摺動するハウジング側摺動面(36)と、をさらに備え、
     前記ハウジングは、前記ハウジング側摺動面が設けられる部位が金属製であり、その外壁が大気に露出するように構成されている請求項12ないし請求項21のいずれか1つに記載の流体機械。
  23.  前記ハウジング側摺動面には、自己潤滑性を有するフッ素または2硫化モリブデンを含有するコーティング(3610)が施されている請求項22に記載の流体機械。
  24.  前記固定スクロールと一体または別個に形成され、前記旋回スクロールを収容する第1ハウジング(31)および第2ハウジング(32)と、
     前記旋回スクロールが有する前記旋回側ラップが設けられる基盤部(21)のうち前記旋回側ラップより径方向外側の部位に設けられた旋回側摺動面(23)と、
     前記第1ハウジングまたは前記第2ハウジングが前記旋回側摺動面に対向する部位と前記旋回側摺動面との間に設けられ、前記旋回側摺動面と摺動する面に自己潤滑性のコーティング(5310)が施された金属製のスペーサ(530)と、を備え、
     前記第1ハウジングおよび前記第2ハウジングのうち少なくともどちらかのハウジングは金属製であり、その外壁が大気に露出するように構成されている請求項12ないし請求項21のいずれか1つに記載の流体機械。
PCT/JP2019/022551 2018-07-03 2019-06-06 流体機械 WO2020008798A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980043679.3A CN112352103A (zh) 2018-07-03 2019-06-06 流体机械
DE112019003353.0T DE112019003353T5 (de) 2018-07-03 2019-06-06 Fluidmaschine
US17/136,965 US20210131433A1 (en) 2018-07-03 2020-12-29 Fluid machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018126764A JP2020007912A (ja) 2018-07-03 2018-07-03 流体機械
JP2018-126764 2018-07-03
JP2018-233633 2018-12-13
JP2018233633A JP7010202B2 (ja) 2018-12-13 2018-12-13 流体機械

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/136,965 Continuation US20210131433A1 (en) 2018-07-03 2020-12-29 Fluid machine

Publications (1)

Publication Number Publication Date
WO2020008798A1 true WO2020008798A1 (ja) 2020-01-09

Family

ID=69060643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022551 WO2020008798A1 (ja) 2018-07-03 2019-06-06 流体機械

Country Status (4)

Country Link
US (1) US20210131433A1 (ja)
CN (1) CN112352103A (ja)
DE (1) DE112019003353T5 (ja)
WO (1) WO2020008798A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958188A (ja) * 1982-09-29 1984-04-03 Hitachi Ltd 無給油スクロ−ル流体機械
JPH04237889A (ja) * 1991-01-18 1992-08-26 Tokico Ltd スクロール式流体機械
JPH06264875A (ja) * 1993-03-10 1994-09-20 Toyota Autom Loom Works Ltd スクロール型圧縮機
JP2001304151A (ja) * 2000-04-25 2001-10-31 Daikin Ind Ltd スクロール圧縮機
JP2009030607A (ja) * 2007-07-25 2009-02-12 Visteon Global Technologies Inc スクロールコンプレッサのための軌道制御装置
JP2014237301A (ja) * 2013-06-10 2014-12-18 三菱重工業株式会社 流体機械の回転体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101718045B1 (ko) * 2015-09-07 2017-03-20 엘지전자 주식회사 스크롤 압축기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958188A (ja) * 1982-09-29 1984-04-03 Hitachi Ltd 無給油スクロ−ル流体機械
JPH04237889A (ja) * 1991-01-18 1992-08-26 Tokico Ltd スクロール式流体機械
JPH06264875A (ja) * 1993-03-10 1994-09-20 Toyota Autom Loom Works Ltd スクロール型圧縮機
JP2001304151A (ja) * 2000-04-25 2001-10-31 Daikin Ind Ltd スクロール圧縮機
JP2009030607A (ja) * 2007-07-25 2009-02-12 Visteon Global Technologies Inc スクロールコンプレッサのための軌道制御装置
JP2014237301A (ja) * 2013-06-10 2014-12-18 三菱重工業株式会社 流体機械の回転体の製造方法

Also Published As

Publication number Publication date
DE112019003353T5 (de) 2021-03-18
US20210131433A1 (en) 2021-05-06
CN112352103A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
JP4514493B2 (ja) スクロール型流体機械
JPH0330685B2 (ja)
KR20020087837A (ko) 올덤 커플링을 위한 클리어런스를 가진 스크롤 압축기
WO2016107601A1 (zh) 涡旋压缩机
JP2010270765A (ja) 偏心型ポンプ
WO2015025416A1 (ja) 回転機械及び冷凍サイクル機器
JP2019007382A (ja) スクロール圧縮機
US10519954B2 (en) Compressor with oil management system
JPH02248675A (ja) スクロール流体機械
WO2020008798A1 (ja) 流体機械
JP7010202B2 (ja) 流体機械
CN114174679B (zh) 涡旋泵
WO2020121809A1 (ja) 流体機械
JP2020007912A (ja) 流体機械
JP5864883B2 (ja) スクロール圧縮機
JP2004211595A (ja) スクロール型流体機械
KR100192699B1 (ko) 개량된 윤활기구를 갖는 밀폐된 스크롤형의 냉매 압축기
JPH09268983A (ja) スクロール式流体機械
KR101952374B1 (ko) 스크롤 압축기의 선회스크롤 자전 방지 장치
JP2021046806A (ja) スクロール型流体機械
JPWO2004029461A1 (ja) スクロール圧縮機
JP2008051034A (ja) スクロール圧縮機
JP2010031794A (ja) スクロール式流体機械
JP2021046805A (ja) スクロール型流体機械
JPH1047263A (ja) スクロール式流体機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830387

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19830387

Country of ref document: EP

Kind code of ref document: A1