WO2020008535A1 - 障害物検知装置 - Google Patents

障害物検知装置 Download PDF

Info

Publication number
WO2020008535A1
WO2020008535A1 PCT/JP2018/025255 JP2018025255W WO2020008535A1 WO 2020008535 A1 WO2020008535 A1 WO 2020008535A1 JP 2018025255 W JP2018025255 W JP 2018025255W WO 2020008535 A1 WO2020008535 A1 WO 2020008535A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
feature amount
vehicle
unit
detection device
Prior art date
Application number
PCT/JP2018/025255
Other languages
English (en)
French (fr)
Inventor
井上 悟
侑己 浦川
裕 小野寺
亘 辻田
努 朝比奈
元気 山下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/025255 priority Critical patent/WO2020008535A1/ja
Publication of WO2020008535A1 publication Critical patent/WO2020008535A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the present invention relates to an obstacle detection device.
  • Patent Document 1 when the height of the obstacle is low, the vehicle approaches the obstacle and the obstacle moves out of the detection area of the distance measurement sensor (that is, the peak value of the reflected wave decreases). ) Is used to determine the height of the obstacle. For this reason, the prior art described in Patent Literature 1 has a problem in that it is not possible to determine the height of a distant obstacle. Further, the conventional technique described in Patent Document 1 has a problem that when the distance between the vehicle and the obstacle is constant, the height of the obstacle cannot be determined.
  • Patent Document 2 determines the relative height of an obstacle with respect to a predetermined height by comparing the peak value of a reflected wave with a reference value. This utilizes the fact that the peak value differs depending on the height of the obstacle.
  • Patent Literature 1 when an obstacle is located far away, the difference in peak value according to the height of the obstacle becomes small. For this reason, the prior art described in Patent Literature 2 has a problem in that the accuracy of determining the height of a distant obstacle is low.
  • Patent Document 2 when an obstacle has a height approximately equal to a predetermined height, an error in determining the height of the obstacle relative to the predetermined height is likely to occur. There was a problem.
  • the present invention has been made to solve the above-described problem, and has as its object to accurately determine the height of an obstacle using a distance measurement sensor.
  • An obstacle detection device includes a feature amount extraction unit that extracts a feature amount related to a plurality of reflected waves when a distance measurement sensor provided in the vehicle receives a plurality of reflected waves due to an obstacle; An obstacle determining unit that determines that the height of the obstacle is higher when the amount of variance is larger than when the amount of variance is smaller, the first parameter value indicating the size of the feature amount, and the size of the amount of variance An obstacle determining unit that determines whether or not the obstacle is a traveling obstacle based on the result of the clustering of the second parameter value indicating the magnitude of the second parameter value. It is characterized by being a ratio.
  • the configuration is as described above, it is possible to accurately determine the height of the obstacle using the distance measuring sensor.
  • FIG. 2 is a block diagram illustrating a main part of the obstacle detection device according to the first embodiment.
  • FIG. 3 is a block diagram illustrating a main part of an obstacle detection unit in the obstacle detection device according to the first embodiment.
  • FIG. 3A is an explanatory diagram illustrating a hardware configuration of the obstacle detection device according to the first embodiment.
  • FIG. 3B is an explanatory diagram illustrating another hardware configuration of the obstacle detection device according to the first embodiment.
  • 5 is a flowchart illustrating an operation of the obstacle detection device according to the first embodiment.
  • FIG. 5A is an explanatory diagram illustrating an example of a propagation path of a reflected wave by a traveling obstacle.
  • FIG. 5B is an explanatory diagram illustrating an example of a waveform of a transmission signal.
  • FIG. 5A is an explanatory diagram illustrating an example of a propagation path of a reflected wave by a traveling obstacle.
  • FIG. 5B is an explanatory diagram illustrating an example of a waveform
  • FIG. 5C is an explanatory diagram illustrating an example of a waveform of a reception signal corresponding to a reflected wave due to a traveling obstacle.
  • FIG. 5D is an explanatory diagram illustrating another example of the waveform of the received signal corresponding to the reflected wave from the traveling obstacle.
  • FIG. 6A is an explanatory diagram illustrating an example of a propagation path of a reflected wave due to a road obstacle or a road surface obstacle.
  • FIG. 6B is an explanatory diagram illustrating an example of a waveform of a transmission signal.
  • FIG. 6C is an explanatory diagram illustrating an example of a waveform of a received signal corresponding to a reflected wave from a road obstacle.
  • FIG. 6D is an explanatory diagram showing another example of the waveform of the received signal corresponding to the reflected wave from the road obstacle.
  • FIG. 6E is an explanatory diagram illustrating an example of a waveform of a reception signal corresponding to a reflected wave from a road surface obstacle.
  • FIG. 6F is an explanatory diagram illustrating another example of the waveform of the received signal corresponding to the reflected wave due to the road surface obstacle.
  • FIG. 7A is an explanatory diagram illustrating an example of actually measured first parameter values and second parameter values before manufacturing the obstacle detection device according to Embodiment 1.
  • FIG. 7B is an explanatory diagram illustrating an example of the first parameter value and the second parameter value calculated after shipping of the vehicle including the obstacle detection device according to Embodiment 1.
  • FIG. 8A is an explanatory diagram illustrating an example of a wave height, a wave width, and a wave area of a reflected wave.
  • FIG. 8B is an explanatory diagram illustrating an example of a response time of a reflected wave.
  • FIG. 9 is a block diagram showing a main part of a driving support device according to Embodiment 2. 9 is a flowchart showing the operation of the driving support device according to Embodiment 2.
  • FIG. 11A is an explanatory diagram illustrating an example of an installation position of a distance measurement sensor in a vehicle, and is an explanatory diagram illustrating a state viewed from above the vehicle.
  • FIG. 11B is an explanatory diagram illustrating an example of an installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle.
  • FIG. 12A is an explanatory diagram showing an example of an installation position of a distance measuring sensor in a vehicle, and is an explanatory diagram showing a state viewed from above the vehicle.
  • FIG. 12B is an explanatory diagram illustrating an example of an installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle. It is explanatory drawing which shows the example of a facing angle.
  • FIG. 14A is an explanatory diagram illustrating an example of a traveling route when the vehicle approaches an obstacle.
  • FIG. 14A is an explanatory diagram illustrating an example of a traveling route when the vehicle approaches an obstacle.
  • FIG. 14B is an explanatory diagram showing an example of a temporal change of the facing angle at this time.
  • FIG. 14C is an explanatory diagram illustrating an example of data indicating the feature amount at this time.
  • FIG. 13 is a block diagram illustrating a main part of another driving support device according to Embodiment 2.
  • 9 is a flowchart showing an operation of another driving support device according to Embodiment 2.
  • FIG. 17A is an explanatory diagram illustrating an example of a detection section.
  • FIG. 17B is an explanatory diagram illustrating another example of the detection section.
  • 9 is a flowchart illustrating another operation of the driving support device according to the second embodiment.
  • FIG. 19A is an explanatory diagram showing another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram showing a state viewed from above the vehicle.
  • FIG. 19B is an explanatory diagram illustrating another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle.
  • FIG. 20A is an explanatory diagram illustrating another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from above the vehicle.
  • FIG. 20B is an explanatory diagram illustrating another example of the installation position of the distance measurement sensor in the vehicle, and is an explanatory diagram illustrating a state viewed from a side of the vehicle.
  • FIG. 1 is a block diagram illustrating a main part of the obstacle detection device according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a main part of an obstacle detection unit in the obstacle detection device according to the first embodiment.
  • an obstacle detection device 100 according to the first embodiment will be described.
  • the obstacle detection device 100 is connected to a computer network (for example, CAN (Controller Area Network)) in the vehicle 1.
  • the obstacle detection device 100 can appropriately acquire various signals from the computer network. These signals include, for example, a signal indicating the traveling speed of the vehicle 1 and a signal indicating the yaw rate or the steering angle of the vehicle 1.
  • the vehicle 1 has a distance measuring sensor 2.
  • the distance measuring sensor 2 includes N distance measuring sensors 2 1 to 2 N (N is an arbitrary integer of 2 or more).
  • the N distance measuring sensors 2 1 to 2 N have different installation positions in the vehicle 1 and have the same installation direction in the vehicle 1.
  • Each of the N distance measuring sensors 2 1 to 2 N is constituted by, for example, a sonar or a millimeter-wave radar.
  • ultrasonic waves or radio waves transmitted and received by the distance measuring sensor 2 are collectively referred to as “search waves”.
  • search waves When the search wave is reflected by an obstacle outside the vehicle 1, the reflected search wave is referred to as a "reflected wave”.
  • the search wave and the reflected wave are referred to as “direct waves”.
  • the search wave and the reflected wave are referred to as “indirect waves”.
  • the ratio between the direct wave and the indirect wave is called “direct ratio”
  • the ratio between the direct wave and other direct waves is called “direct / direct ratio”
  • the ratio between the indirect wave and other indirect waves is called “direct ratio”. It is called "inter-ratio".
  • the traveling obstacle is, for example, a wall or another parked vehicle (hereinafter, referred to as “parked vehicle”).
  • parked vehicle obstacles having a height low enough not to contact the bumper portion of the vehicle 1 and having a height high enough not to be able to get over the vehicle 1
  • road obstacles obstacles having a height low enough not to contact the bumper portion of the vehicle 1 and having a height high enough not to be able to get over the vehicle 1
  • the road obstacle is, for example, a curb or a wheelchair.
  • an obstacle having a height low enough not to contact the bumper portion of the vehicle 1 and having a height low enough to allow the vehicle 1 to get over is referred to as “road obstacle”. That.
  • the road surface obstacle is, for example, a step. That is, the traveling obstacle has a height higher than the road obstacle, and the road obstacle has a height higher than the road obstacle.
  • the obstacle detection unit 11 detects an obstacle around the vehicle 1 by causing the distance measurement sensor 2 to transmit a search wave. More specifically, the obstacle detection unit 11 determines the position of the obstacle with respect to the vehicle 1 by measuring the distance between the vehicle 1 and the obstacle.
  • the obstacle detection unit 11 includes a transmission signal output unit 21, a reception signal acquisition unit 22, a distance value calculation unit 23, a reflection point position calculation unit 24, a grouping unit 25, a vehicle position calculation unit 26, and a sensor position calculation unit 27. It is configured.
  • the transmission signal output section 21 outputs a transmission signal to the distance measurement sensor 2 so that the distance measurement sensor 2 transmits a search wave.
  • the reception signal acquisition unit 22 acquires a reception signal from the distance measurement sensor 2 from the distance measurement sensor 2.
  • the distance value calculation unit 23 determines whether or not the reflected wave is received by the distance measuring sensor 2 by comparing the intensity of the signal received by the distance measuring sensor 2 with a predetermined threshold value.
  • the distance value calculator 23 calculates a distance value by TOF when a reflected wave is received by the distance measuring sensor 2. Since a method of calculating a distance value by TOF is known, detailed description is omitted.
  • the reflection point position calculation unit 24 calculates the position of the point where the search wave is reflected (hereinafter referred to as “reflection point”) using the distance value calculated by the distance value calculation unit 23.
  • the position of the reflection point is determined by, for example, a first axis (hereinafter referred to as “X axis”) corresponding to the front-rear direction of the vehicle 1 and a second axis (hereinafter referred to as “Y axis”) corresponding to the left / right direction of the vehicle 1. It is represented by coordinate values in a coordinate system in meters (hereinafter referred to as “XY coordinate system”).
  • the reflection point position calculation unit 24 has a start point corresponding to the position of the distance measurement sensor 2 at the transmission timing of the direct wave (or the reception timing of the direct wave), and also measures the distance in the vehicle 1.
  • the coordinate value of the reflection point in the XY coordinate system is calculated. I do.
  • This vector is a vector in a virtual plane (hereinafter, referred to as “XY plane”) along the X axis and the Y axis.
  • the reflection point position calculation unit 24 calculates the position of the reflection point by a so-called “two-circle intersection” using a plurality of distance values corresponding to mutually different direct waves. That is, the reflection point position calculation unit 24 calculates the coordinate value of the reflection point in the XY coordinate system by executing the two-circle intersection processing on the XY plane.
  • the information indicating the position of the distance measuring sensor 2 at the transmission timing of the search wave (or the reception timing of the reflected wave) is output by the sensor position calculation unit 27.
  • Other information (for example, information indicating the installation direction of the distance measurement sensor 2 in the vehicle 1) is stored in the reflection point position calculation unit 24 in advance.
  • the grouping unit 25 groups the plurality of reflection points to correspond to one or more obstacles in principle one-to-one.
  • One or more reflection point groups (hereinafter, referred to as “groups”) are set. In this grouping, for example, when the distance between two adjacent reflection points is less than a predetermined distance, the two reflection points are included in the same group.
  • the own vehicle position calculating unit 26 calculates the position of the vehicle 1 at the transmission timing of the search wave (or the reception timing of the reflected wave) (hereinafter, referred to as “own vehicle position”).
  • the sensor position calculator 27 calculates the position of the distance measuring sensor 2 at the timing (hereinafter, referred to as “sensor position”). These positions are represented by coordinate values in an XY coordinate system, for example.
  • the sensor position calculator 27 outputs information indicating the sensor position to the reflection point position calculator 24.
  • the information indicating the sensor position is used by the reflection point position calculation unit 24 to calculate the position of the reflection point.
  • Various known methods can be used to calculate the vehicle position (for example, autonomous navigation), and a detailed description of these methods will be omitted.
  • Signals used for autonomous navigation for example, a signal indicating the traveling speed of the vehicle 1 and a signal indicating the yaw rate or the steering angle of the vehicle 1.
  • Information used for calculating the sensor position for example, information indicating the installation position of the distance measurement sensor 2 in the vehicle 1. is stored in the sensor position calculation unit 27 in advance.
  • an indirect wave may be used instead of or in addition to the direct wave.
  • the number of reflection points obtained by transmitting the search wave each time can be increased as compared with the case where only the direct wave is used. As a result, the number of reflection points included in each group can be increased.
  • Each group includes a plurality of reflection points, and the plurality of reflection points correspond to a plurality of reflected waves.
  • the feature amount extraction unit 12 acquires from the obstacle detection unit 11 information indicating the waveform of the received signal corresponding to the plurality of reflected waves.
  • the feature value extraction unit 12 extracts a feature value of the plurality of reflected waves using the acquired information. Details of the feature amount will be described later.
  • the obstacle determining unit 13 determines, for each group, a value indicating the magnitude of the feature amount extracted by the feature amount extracting unit 12 (hereinafter referred to as a “first parameter value”. For example, an average value of these feature amounts is used. Is calculated). In addition, the obstacle determining unit 13 determines, for each group, a value indicating the magnitude of the variance of the feature amount extracted by the feature amount extracting unit 12 (hereinafter, referred to as a “second parameter value”. Is the variance of the amount.) The obstacle determining unit 13 determines the type of the obstacle corresponding to each group using the calculated first parameter value and the calculated second parameter value. More specifically, the obstacle determining unit 13 determines whether the obstacle corresponding to each group is a road surface obstacle, a road obstacle, or a running obstacle.
  • the road surface obstacle, the road obstacle, and the traveling obstacle have different heights from each other. Therefore, it is determined whether the obstacle corresponding to each group is a road surface obstacle, a road obstacle, or a running obstacle. It is a judgment as to which height it has. That is, the obstacle determining unit 13 determines the height of the obstacle corresponding to each group by determining the type of the obstacle corresponding to each group. The details of the method of determining the type of the obstacle by the obstacle determination unit 13, that is, the method of determining the height of the obstacle will be described later.
  • the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle discrimination unit 13 constitute a main part of the obstacle detection device 100.
  • the obstacle detection device 100 is constituted by a computer, and the computer has a processor 31 and a memory 32.
  • the memory 32 stores a program for causing the computer to function as the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13.
  • the functions of the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13 are realized by the processor 31 reading and executing the program stored in the memory 32.
  • the obstacle detection device 100 may be configured by a processing circuit 33.
  • the functions of the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13 may be realized by the processing circuit 33.
  • the obstacle detection device 100 may include a processor 31, a memory 32, and a processing circuit 33 (not shown).
  • some of the functions of the obstacle detection unit 11, the feature amount extraction unit 12, and the obstacle determination unit 13 are realized by the processor 31 and the memory 32, and the remaining functions are realized by the processing circuit 33. It may be something.
  • the processor 31 uses, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 32 uses a semiconductor memory or a magnetic disk, for example. More specifically, the memory 32 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Memory Only), and an EEPROM (Electrical Memory). State @ Drive) or HDD (Hard @ Disk @ Drive) or the like.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Memory Only)
  • EEPROM Electrical Memory
  • State @ Drive or HDD (Hard @ Disk @ Drive) or the like.
  • the processing circuit 33 includes, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), and a SoC (Sig-Lig- Is used.
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • SoC SoC
  • step ST1 the obstacle detecting unit 11 detects an obstacle around the vehicle 1 by causing the distance measuring sensor 2 to transmit a search wave. More specifically, the obstacle detection unit 11 determines the position of the obstacle with respect to the vehicle 1 by measuring the distance between the vehicle 1 and the obstacle.
  • step ST1 By the process of step ST1, one or more groups corresponding to one or more obstacles in principle one-to-one are set. Each group includes a plurality of reflection points, and the plurality of reflection points correspond to a plurality of reflected waves.
  • step ST ⁇ b> 2 the feature amount extraction unit 12 acquires from the obstacle detection unit 11 information indicating the waveform of the received signal corresponding to the plurality of reflected waves. The feature amount extraction unit 12 extracts feature amounts related to the plurality of reflected waves using the acquired information. Details of the feature amount will be described later.
  • the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amount extracted by the feature amount extracting unit 12.
  • the obstacle determining unit 13 determines the type of the obstacle corresponding to each group by using the calculated first parameter value and the second parameter value, thereby obtaining the height of the obstacle corresponding to each group.
  • Judge. The details of the method of determining the type of the obstacle by the obstacle determination unit 13, that is, the method of determining the height of the obstacle will be described later.
  • FIG. 5A shows an example of the propagation path of the reflected wave RW due to a traveling obstacle (more specifically, a wall).
  • FIG. 5B shows an example of the waveform of the transmission signal TS.
  • FIG. 5C shows an example of the waveform of the reception signal RS corresponding to the reflected wave RW due to the traveling obstacle.
  • FIG. 5D illustrates another example of the waveform of the reception signal RS corresponding to the reflected wave RW due to the traveling obstacle.
  • FIG. 6A shows an example of a propagation path of the reflected wave RW due to an obstacle on the road (more specifically, a curb) or an obstacle on the road (more specifically, a step).
  • FIG. 6B shows an example of the waveform of the transmission signal TS.
  • FIG. 6C shows an example of the waveform of the reception signal RS corresponding to the reflected wave RW due to the obstacle on the road.
  • FIG. 6D shows another example of the waveform of the received signal RS corresponding to the reflected wave RW due to the obstacle on the road.
  • FIG. 6E shows an example of the waveform of the reception signal RS corresponding to the reflected wave RW due to the road surface obstacle.
  • FIG. 6F shows another example of the waveform of the received signal RS corresponding to the reflected wave RW due to the road surface obstacle.
  • the transmission signal output unit 21 outputs the transmission signal TS to the distance measurement sensor 2 so that the distance measurement sensor 2 transmits the search wave SW.
  • the search wave SW propagates in the air while gradually spreading, the propagation path (so-called “path”) from the transmission of the search wave SW by the distance measuring sensor 2 to the reception of the reflected wave RW by the distance measurement sensor 2.
  • path there are a plurality. For example, there is a path that is reflected once by the obstacle O and returns to the distance measurement sensor 2. There is also a path that is reflected once by the road R and then reflected once by the obstacle O and returns to the distance measurement sensor 2. These paths include paths having different path lengths.
  • the reflected wave RW becomes a composite wave RW due to interference of a plurality of waves rw corresponding to these paths.
  • the reception signal RS is a composite signal of a plurality of signals rs corresponding to the plurality of waves rw, that is, a reception signal RS.
  • the path changes according to the uneven shape of the road R, the unevenness of the surface of the vehicle 1 that reflects the vibration of the vehicle 1 and the search wave SW on the obstacle O (hereinafter referred to as “reflective surface”), etc.
  • the waveform changes, and the waveform of the received signal RS also changes.
  • the waveforms of the plurality of reflected waves RW have variations, and the plurality of reflected waves RW Also has a variation in the waveform of the received signal RS corresponding to.
  • the area of the reflection surface is larger than when the obstacle O is a road obstacle or a road surface obstacle (see FIG. 6A).
  • the reception strength of the reflected wave RW (that is, the strength of the reception signal RS) increases.
  • the variation in the waveform of the reflected wave RW increases, and the variation in the waveform of the reception signal RS also increases.
  • the area of the reflecting surface portion is smaller than when the obstacle O is an obstacle on the road (see FIGS. 6E and 6F). Since it is large, the reception strength of the reflected wave RW (that is, the strength of the reception signal RS) increases. In addition, since the total number of paths increases and the difference in path length between paths also increases, the variation in the waveform of the reflected wave RW increases, and the variation in the waveform of the reception signal RS also increases.
  • the distance measurement sensor 2 when a plurality of reflected waves RW due to the same obstacle O are received by the distance measurement sensor 2, when a feature amount based on the magnitude of these reflected waves RW is extracted, the extracted features are extracted.
  • the amount of dispersion of the amount has a correlation with the height of the obstacle O. For this reason, it is possible to determine the height of the obstacle O based on the amount of dispersion, such as determining that the height of the obstacle O is higher when the amount of dispersion is larger than when the amount of dispersion is smaller.
  • the determination of the height of the obstacle O by the obstacle determination unit 13 is based on this principle.
  • the characteristic amount extraction unit 12 characterizes the ratio of the magnitude of the plurality of reflected waves RW corresponding to the plurality of reflected points included in each group to the plurality of reflected waves RW. Extract as quantity. More specifically, when the plurality of reflected waves RW include one or more direct waves and one or more indirect waves, the feature amount extraction unit 12 determines a direct ratio between the direct waves and the indirect waves. Is extracted as a feature value. Alternatively, when the plurality of reflected waves RW include a plurality of direct waves, the feature amount extraction unit 12 extracts, as a feature amount, a direct-to-direct ratio due to these direct waves.
  • the feature amount extraction unit 12 extracts a ratio between the indirect waves as a feature amount. These features are extracted from information indicating the waveform of the received signal RS corresponding to the plurality of reflected waves RW.
  • the first parameter value and the second parameter value enable clustering according to the height of the obstacle O, that is, clustering according to the type of the obstacle O.
  • FIG. 7 shows an example of the range A1 including the first parameter value and the second parameter value when the obstacle O is a road surface obstacle, and the first parameter value and the second parameter value when the obstacle O is a road obstacle.
  • An example of a range A2 including a parameter value and an example of a range A3 including a first parameter value and a second parameter value when the obstacle O is a traveling obstacle are shown.
  • a dividing line PL1 between the ranges A1 and A2 corresponds to a determination threshold Th1 for determining whether the obstacle O is a road surface obstacle.
  • the dividing line PL2 between the ranges A2 and A3 corresponds to a threshold value Th2 for determining whether or not the obstacle O is a traveling obstacle.
  • Each circle in FIG. 7A is an actual measurement value of the first parameter value and the second parameter value before the manufacture of the obstacle detection device 100, and is an example of the actual measurement value when the obstacle O is a road surface obstacle. Yes, it is.
  • Each square mark in FIG. 7A is an actual measurement value of the first parameter value and the second parameter value before manufacturing the obstacle detection device 100, and is an example of the actual measurement value when the obstacle O is an on-road obstacle. Yes, it is.
  • Each triangle mark in FIG. 7A is an actual measurement value of the first parameter value and the second parameter value before manufacturing the obstacle detection device 100, and is an example of the actual measurement value when the obstacle O is a traveling obstacle. Yes, it is.
  • the information indicating the ranges A1 to A3 set by the clustering of these actually measured values more specifically, the information indicating the discrimination thresholds Th1 and Th2 is stored in the obstacle discrimination unit 13 in advance.
  • a machine learning technique such as linear discrimination or pattern recognition is used.
  • the obstacle determining unit 13 compares the first parameter value and the second parameter value calculated after the manufacture of the vehicle 1 (more specifically, after shipment) with the determination thresholds Th1 and Th2, thereby obtaining the first parameter. It identifies which of the ranges A1 to A3 the value and the second parameter value fall within. Thereby, it is determined whether the obstacle O around the vehicle 1 is a road surface obstacle, a road obstacle, or a traveling obstacle.
  • the crosses in FIG. 7B correspond to examples of the first parameter value and the second parameter value calculated after the shipment of the vehicle 1. In this case, since the first parameter value and the second parameter value are included in the range A3, the obstacle O is determined to be a traveling obstacle.
  • the feature value extraction unit 12 extracts the ratio of the magnitude in the plurality of reflected waves RW as the feature value.
  • the feature amount extraction unit 12 specifies the size of each of the plurality of reflected waves RW. That is, the specified size is used for extracting the feature amount.
  • FIG. 8 shows an example of the waveform of the reception signal RS corresponding to one of the plurality of reflected waves RW.
  • the feature quantity extraction unit 12 calculates the peak of the reflected wave RW based on the peak value PV of the received signal RS (see FIG. 8A).
  • the feature amount extraction unit 12 specifies the magnitude of the reflected wave RW based on the calculated wave height.
  • the feature quantity extraction unit 12 calculates the time width of a portion of the received signal RS exceeding the threshold Th, that is, the width of the reflected wave RW (see FIG. 8A).
  • the feature amount extraction unit 12 specifies the size of the reflected wave RW based on the calculated wave width.
  • the threshold Th is a threshold used for determining whether or not the reflected wave RW has been received.
  • the feature amount extraction unit 12 calculates the entire time width of the received signal RS (not shown).
  • the feature amount extraction unit 12 specifies the size of the reflected wave RW based on the calculated time width.
  • the feature quantity extraction unit 12 calculates the half width of the received signal RS, that is, the half width of the reflected wave RW (not shown).
  • the feature amount extraction unit 12 specifies the size of the reflected wave RW based on the calculated half width.
  • the feature quantity extraction unit 12 calculates the waveform area of the portion of the received signal RS that exceeds the threshold Th, that is, the waveform area of the reflected wave RW (see FIG. 8A).
  • the feature amount extraction unit 12 specifies the size of the reflected wave RW based on the calculated waveform area.
  • the feature quantity extraction unit 12 calculates the entire waveform area of the received signal RS (not shown).
  • the feature amount extraction unit 12 specifies the size of the reflected wave RW based on the calculated waveform area.
  • the feature quantity extraction unit 12 calculates the time from when the received signal RS exceeds the peak value PV to when the received signal RS falls below the threshold Th, that is, the response time of the reflected wave RW (see FIG. 8B).
  • the feature amount extraction unit 12 specifies the size of the reflected wave RW based on the calculated response time.
  • the feature amount extraction unit 12 calculates a falling slope in the waveform of the received signal RS, that is, a falling slope in the waveform of the reflected wave RW (not shown).
  • the feature amount extraction unit 12 specifies the magnitude of the reflected wave RW based on the calculated inclination.
  • the feature quantity extraction unit 12 extracts a time constant in the waveform of the received signal RS, that is, a time constant in the waveform of the reflected wave RW (not shown). More specifically, for example, the feature quantity extraction unit 12 extracts a time constant from the rise of the reflected wave RW to the time when the amplitude decreases to 90% or 70% of the peak value. The feature amount extraction unit 12 specifies the magnitude of the reflected wave RW based on the calculated time constant.
  • the vehicle position calculating unit 26 may calculate the vehicle position by satellite navigation instead of or in addition to autonomous navigation.
  • the obstacle detection device 100 may acquire a GNSS signal from a GNSS (Global Navigation Satellite Network) receiver provided in the vehicle 1.
  • GNSS Global Navigation Satellite Network
  • the second parameter value may be any value that indicates the magnitude of the variance of the feature value, and is not limited to the variance value of the feature value.
  • the second parameter value may be a difference value between the maximum value and the minimum value of the feature value, a difference value between the maximum value and the average value of the feature value, or the average value and the minimum value of the feature value. It may be a value difference value.
  • the obstacle determining unit 13 may determine whether an obstacle corresponding to each group is a traveling obstacle. That is, when it is determined that the obstacle is not a traveling obstacle, the obstacle determination unit 13 may not determine whether the obstacle is a road surface obstacle or a road obstacle.
  • the obstacle determination unit 13 may store information indicating the determination threshold Th2, but may not store information indicating the determination threshold Th1.
  • the obstacle detection device 100 uses the feature amount relating to a plurality of reflected waves when the distance measurement sensor 2 provided in the vehicle 1 receives the plurality of reflected waves due to the obstacle.
  • An obstacle determining unit 13 that determines whether at least the obstacle is a traveling obstacle based on the result of clustering of the first parameter value indicating the degree of dispersion and the second parameter value indicating the magnitude of the variance.
  • the characteristic amount is a ratio of magnitudes in a plurality of reflected waves.
  • the type of the obstacle can be accurately determined, and the height of the obstacle can be accurately determined. Further, it is possible to determine the height of an obstacle located far from the vehicle 1 (more specifically, at a distance of 5 meters or more).
  • the ratio of the magnitudes of the plurality of reflected waves as the feature value, it is possible to eliminate the need for correcting the change in the reflectance of the search wave due to the obstacle. Further, it is not necessary to correct the change in the outside temperature. Further, it is not necessary to correct the attenuation amount according to the propagation distance of the search wave.
  • FIG. 9 is a block diagram illustrating a main part of the driving support device according to the second embodiment.
  • a driving support device 200a according to the second embodiment will be described.
  • the same blocks as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the distance measuring sensor 2 is composed of four distance measuring sensors 2 1 to 2 4.
  • Four distance measuring sensors 2 1 to 2 4 the front end of the vehicle 1 is provided on (more specifically, the front bumper unit), and are directed to the front of the vehicle 1.
  • the obstacle detection unit 11 detects an obstacle in front of the vehicle 1 by causing the distance measurement sensor 2 to transmit a search wave at least once when the vehicle 1 is moving forward.
  • the internal configuration of the obstacle detection unit 11 is the same as that described in Embodiment 1 with reference to FIG.
  • the facing determination unit 14 determines whether or not the distance measuring sensor 2 faces the obstacle. Details of the determination method by the facing determination unit 14 will be described later.
  • the obstacle determining unit 13 calculates the first parameter value and the second parameter value using the feature amount in a state in which the distance measurement sensor 2 faces the obstacle (hereinafter, referred to as “facing state”). Has become. More specifically, when the number of accumulated data indicating the feature amount in the directly facing state exceeds a predetermined number, the obstacle determination unit 13 uses the feature amount indicated by these data to determine the first parameter value and the second parameter value. The parameter value is calculated. The obstacle determining unit 13 determines the type of the obstacle using the calculated first parameter value and the calculated second parameter value. That is, the obstacle determining unit 13 determines the type of the obstacle using the feature amount in the directly facing state.
  • the driving support control unit 15a controls the vehicle according to the determination result of the position of the obstacle by the obstacle detection unit 11 and the determination result of the type of the obstacle by the obstacle determination unit 13 (that is, the determination result of the height of the obstacle). This is to execute control for avoiding a collision between the vehicle 1 and an obstacle.
  • the support control unit 15a executes control to stop the vehicle 1 by operating the brake of the vehicle 1.
  • the driving support control unit 15a cancels the execution of the control.
  • the driving support control unit 15a executes the control, and determines that the obstacle is a road obstacle. When it is determined, the driving support control unit 15a may cancel the execution of the control.
  • the driving support control unit 15a may vary the stop position of the vehicle 1 depending on whether the obstacle in front of the vehicle 1 is a traveling obstacle or a road obstacle. More specifically, the driving support control unit 15a stops the vehicle 1 at a position on the near side when the obstacle is a traveling obstacle compared to when the obstacle is a road obstacle. It may be. That is, when the obstacle is a road obstacle, the driving support control unit 15a positions the front bumper of the vehicle 1 above the obstacle and causes the front tire of the vehicle 1 to substantially contact the obstacle. The vehicle 1 may be stopped at the position.
  • driving support control the control in accordance with the determination result of the position of the obstacle by the obstacle detection unit 11 and the determination result of the type of the obstacle by the obstacle determination unit 13 (that is, the determination result of the height of the obstacle) is referred to as “driving support control”.
  • the obstacle detection unit 11, the feature amount extraction unit 12, the obstacle determination unit 13, and the facing determination unit 14 constitute a main part of the obstacle detection device 100a.
  • the obstacle detection device 100a and the driving support control unit 15a constitute a main part of the driving support device 200a.
  • each function of the obstacle detection unit 11, the feature amount extraction unit 12, the obstacle determination unit 13, the facing determination unit 14, and the driving support control unit 15a is realized by the processor 31 and the memory 32. Or may be realized by the processing circuit 33.
  • step ST11 the obstacle detection unit 11 determines whether the vehicle 1 is moving forward using a signal indicating the traveling speed of the vehicle 1, a signal indicating the shift position of the vehicle 1, and the like. These signals are appropriately obtained from a computer network in the vehicle 1.
  • the obstacle detection unit 11 causes the distance measurement sensor 2 to transmit the search wave at least once in step ST12, so that the obstacle detection unit 11 is in front of the vehicle 1. Detect obstacles.
  • step ST12 one or more groups corresponding to one or more obstacles in principle one-to-one are set.
  • Each group includes a plurality of reflection points, and the plurality of reflection points correspond to a plurality of reflected waves.
  • step ST ⁇ b> 13 the feature amount extraction unit 12 acquires from the obstacle detection unit 11 information indicating the waveform of the reception signal corresponding to the plurality of reflected waves.
  • the feature amount extraction unit 12 extracts feature amounts related to the plurality of reflected waves using the acquired information.
  • the feature amount extraction unit 12 outputs data indicating the extracted feature amount to the obstacle determination unit 13.
  • step ST14 the facing determination unit 14 determines whether or not the distance measuring sensor 2 faces the obstacle. Details of the determination method by the facing determination unit 14 will be described later.
  • step ST15 the obstacle determination unit 13 determines whether the number of accumulated data indicating the feature amount in the directly facing state has exceeded a predetermined number.
  • the process of the driving support device 200a returns to step ST12, and the search wave is transmitted again.
  • the process of the driving support device 200a proceeds to step ST16.
  • step ST16 the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amount in the directly facing state.
  • the obstacle determining unit 13 determines the type of the obstacle corresponding to each group by using the calculated first parameter value and the second parameter value, thereby obtaining the height of the obstacle corresponding to each group.
  • step ST17 the driving support control unit 15a determines the position of the obstacle by the obstacle detection unit 11 and the determination result of the type of the obstacle by the obstacle determination unit 13 (that is, the determination of the height of the obstacle). According to the result, the control for avoiding the collision between the vehicle 1 and the obstacle is executed. That is, the driving support control unit 15a executes the driving support control.
  • FIG. 11 and FIG. 12 show examples of the installation positions of the four distance measurement sensors 2 1 to 24 in the vehicle 1. 11 and as shown in FIG. 12, 2, which are arranged more inside the four distance measuring sensors 2 1 to 2 measuring sensor 2 1 two more are located outside of the four, 2 4 number of the distance measuring sensor 2 2, and 2 3, the installation position with respect to the vertical direction of the vehicle 1 (that is, the height direction) may be different from each other.
  • FIG. 11 shows propagation paths PP 1 to PP of direct waves transmitted and received by the four distance measurement sensors 2 1 to 24 when the obstacle O is a traveling obstacle (more specifically, a wall). 4, an example of reflection points RP 1 to RP 4 corresponding to these direct waves, and an example of a group G corresponding to the obstacle O are shown.
  • FIG. 12 shows transmission / reception by the four distance measurement sensors 2 1 to 24 when the obstacle O is a road obstacle (more specifically, a curb) or a road surface obstacle (more specifically, a step).
  • 3 shows examples of direct wave propagation paths PP 1 to PP 4 , examples of reflection points RP 1 to RP 4 corresponding to these direct waves, and an example of a group G corresponding to an obstacle O.
  • These distances D 1 and D 4 correspond to the distance values calculated by the distance value calculation unit 23 or the coordinate values (more specifically, the X coordinate values) calculated by the reflection point position calculation unit 24.
  • the facing-facing determining unit 14 calculates the facing angle ⁇ of the obstacle O with respect to the distance measuring sensor 2 by the following equation (1).
  • FIG. 13 shows an example of the sensor pitch SP, the distances D 1 and D 4, and the directly-facing angle ⁇ .
  • the facing determining unit 14 determines that the distance measurement sensor 2 faces the obstacle O.
  • the facing angle ⁇ is larger than the predetermined angle ⁇ th, the facing determining unit 14 determines that the distance measurement sensor 2 is not directly facing the obstacle O.
  • the calculation of the confronting angle theta it is preferred to use a distance measuring sensor 2 1, 2 4, which is spaced apart from one another via the other of the distance measuring sensor 2 2, 2 3.
  • a distance measuring sensor 2 1, 2 4 which is spaced apart from one another via the other of the distance measuring sensor 2 2, 2 3.
  • the facing determination unit 14 may calculate the average value of the facing angles ⁇ in a predetermined section. When the calculated average value is equal to or smaller than the predetermined angle ⁇ th, the facing determination unit 14 may determine that the distance measurement sensor 2 faces the obstacle O. Thus, the robustness of the discrimination by the facing discrimination unit 14 can be improved.
  • the predetermined section may be a time section or a distance section. That is, this average value may be an average value of the facing angle ⁇ calculated while the vehicle 1 moves for a predetermined time, or the average value of the facing angle ⁇ calculated while the vehicle 1 moves for a predetermined distance. The average value may be used.
  • FIG. 14A shows an example of the traveling route TR when the vehicle 1 approaches the obstacle O.
  • FIG. 14B shows an example of a temporal change of the facing angle ⁇ at this time.
  • FIG. 14C shows an example of data indicating the feature amount at this time. That is, each circle in FIG. 14C corresponds to data indicating a feature amount.
  • the facing angle ⁇ gradually decreases as shown in FIG. 14B.
  • the facing angle ⁇ becomes equal to or smaller than the predetermined angle ⁇ th, and at time t3, the number of accumulated data indicating the feature amount in the facing state exceeds the predetermined number.
  • the obstacle determination unit 13 calculates the first parameter value and the second parameter value using the feature amount in the time section ⁇ t2 from time t2 to t3.
  • the obstacle determining unit 13 determines the type of the obstacle using the feature amount in the directly facing state, and also determines whether the distance measuring sensor 2 is not directly facing the obstacle O (hereinafter referred to as “non-facing”).
  • the type of the obstacle may be determined using the feature amount in “state”). That is, the obstacle determination unit 13 calculates the first parameter value and the second parameter value using the feature amount in the time section ⁇ t2 between the times t2 and t3, and also calculates the feature in the time section ⁇ t1 between the times t1 and t2.
  • the first parameter value and the second parameter value may be calculated using the amounts.
  • the obstacle determination unit 13 may notify the driving support control unit 15a that the reliability of the determination result is low. good.
  • the driving support control unit 15a may vary the content of the driving support control according to the degree of reliability notified by the obstacle determination unit 13.
  • the obstacle detection device 100a may not include the facing determination unit 14.
  • the obstacle determination unit 13 calculates the first parameter value and the second parameter value using the feature amount in a predetermined section (hereinafter, referred to as a “detection section”) ⁇ . More specifically, when data indicating the feature amount in the detection section ⁇ is accumulated, the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amount indicated by the data. .
  • FIG. 16 shows a flowchart in this case.
  • the obstacle determining unit 13 determines whether or not data indicating the feature amount in the detection section ⁇ illustrated in FIG. 17 has been accumulated, for example.
  • the process of the driving support device 200a returns to step ST12, and the search wave is transmitted again.
  • the process of the driving support device 200a proceeds to step ST16.
  • the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amounts indicated by these data.
  • step ST18 A specific example of the determination method in step ST18 is as follows.
  • the obstacle determining unit 13 acquires from the obstacle detecting unit 11 information indicating the distance value calculated by the distance value calculating unit 23 or information indicating the coordinate value calculated by the reflection point position calculating unit 24.
  • the obstacle determining unit 13 calculates the amount of change in the distance between the vehicle 1 and the obstacle using the acquired information.
  • the obstacle determining unit 13 determines whether or not the vehicle 1 has traveled in the detection section ⁇ based on the calculated change amount, so that the data indicating the feature amount in the detection section ⁇ has been accumulated. It is determined whether or not.
  • the connection lines between the obstacle detection unit 11 and the obstacle determination unit 13 are not shown.
  • the obstacle determining unit 13 acquires information indicating the own vehicle position calculated by the own vehicle position calculating unit 26 from the obstacle detecting unit 11.
  • the obstacle determining unit 13 calculates the moving amount of the vehicle 1 using the obtained information.
  • the obstacle determination unit 13 determines whether or not the vehicle 1 has traveled in the detection section ⁇ based on the calculated movement amount, so that data indicating the feature amount in the detection section ⁇ has been accumulated. It is determined whether or not.
  • the connection lines between the obstacle detection unit 11 and the obstacle determination unit 13 are not shown.
  • the obstacle determining unit 13 calculates the accumulation time of the data indicating the feature amount.
  • the threshold value corresponding to the predicted value of the accumulation time of the data indicating the feature amount in the detection section ⁇ is stored in the obstacle determining unit 13 in advance.
  • the obstacle determination unit 13 compares the calculated accumulation time with the previously stored threshold to determine whether or not the data indicating the feature amount in the detection section ⁇ has been accumulated.
  • the obstacle determining unit 13 calculates the number of stored data indicating the feature amount.
  • the threshold value corresponding to the predicted value of the number of accumulated data indicating the feature amount in the detection section ⁇ is stored in the obstacle determining unit 13 in advance.
  • the obstacle determination unit 13 determines whether or not the data indicating the feature amount in the detection section ⁇ has been stored by comparing the calculated storage number with the threshold value stored in advance.
  • the obstacle determining unit 13 determines whether or not the data indicating the feature amount in the detection section ⁇ has been accumulated by each of two or more of the above four methods. .
  • the obstacle determining unit 13 calculates the logical product of the determination results obtained by these methods. That is, the obstacle determination unit 13 determines the determination result when the determination result indicating that the data indicating the feature amount in the detection section ⁇ has been accumulated by all of these methods.
  • the detection section ⁇ may be updated at any time in accordance with the movement of the vehicle 1.
  • the obstacle determination unit 13 may determine the type of the obstacle using the data indicating the feature amount in the latest detection section ⁇ in which the vehicle 1 has traveled.
  • the obstacle determination unit 13 determines the type of the obstacle using the feature amount indicated by the data, and then determines the type of the obstacle.
  • the type of the obstacle is determined using the feature amount indicated by the data, and finally, the data indicating the feature amount in the n-th detection section ⁇ n is obtained.
  • the type of the obstacle may be determined using the feature amount indicated by the data.
  • the detection intervals ⁇ 1 to ⁇ n may gradually increase as the vehicle 1 moves forward.
  • each of the detection sections ⁇ 1 to ⁇ n may have a fixed size.
  • the obstacle determination unit 13 calculates the first parameter value and the second parameter value using the feature amount in the predetermined detection section ⁇ . It may be something to do. That is, when the number of accumulated data indicating the feature amount in the facing state exceeds the predetermined number and the data indicating the feature amount in the detection section ⁇ has been accumulated, the obstacle determination unit 13 May be used to calculate the first parameter value and the second parameter value using the characteristic amount indicated by.
  • FIG. 18 shows a flowchart in this case. If the number of accumulated data indicating the feature amount in the facing state exceeds a predetermined number (“YES” in step ST15), in step ST18, the obstacle determination unit 13 determines that the data indicating the feature amount in the detection section ⁇ It is determined whether or not the data has been stored. When the data indicating the feature amount in the detection section ⁇ has not been accumulated (“NO” in step ST18), the process of the driving support device 200a returns to step ST12, and the search wave is transmitted again. On the other hand, when the data indicating the feature amount in the detection section ⁇ has been accumulated (“YES” in step ST18), the process of the driving support device 200a proceeds to step ST16. In step ST16, the obstacle determining unit 13 calculates a first parameter value and a second parameter value using the feature amounts indicated by these data.
  • FIG. 19 and FIG. 20 show another example of the installation positions of the four distance measurement sensors 2 1 to 24 in the vehicle 1.
  • the installation position may be those equivalent to each other with respect to the vertical direction of the vehicle 1 (i.e. a height direction).
  • FIG. 19 is transmitting, the obstacle O is traveling obstacle when it is (more specifically the wall), propagation path PP 11 of the direct wave to be transmitted and received by the distance measurement sensor 2 1, the distance measuring sensor 2 1 has been measuring sensor 2 of the indirect waves received by two propagation paths PP 21, the propagation path of the indirect waves received by the distance measurement sensor 2 3 is transmitted by the measuring sensor 2 1 PP 31 and distance measuring sensor 2 1 shows an example of a propagation path PP 41 of the indirect waves received by the distance measurement sensor 2 4 is transmitted by.
  • FIG. 19 shows an example of reflection points RP 11 , RP 21 , RP 31 , RP 41 corresponding to these direct waves and indirect waves, and an example of a group G corresponding to the obstacle O.
  • FIG. 20 (more specifically a curb) obstacle O is road obstacle or road obstacle when it is (more specifically, the step), the direct wave transmitted and received by the distance measurement sensor 2 1 propagation path PP 11, the distance measurement sensor 2 1 indirect wave propagation paths PP 21 which is received by the distance measurement sensor 2 2 is transmitted by the propagation path PP 33 and ranging of the direct wave transmitted and received by the distance measurement sensor 2 3 sensor 2 3 is transmitted by shows an example of a propagation path PP 43 of the indirect waves received by the distance measuring sensor 2 4.
  • FIG. 20 shows an example of reflection points RP 11 , RP 21 , RP 33 , RP 43 corresponding to these direct waves and indirect waves, and an example of a group G corresponding to the obstacle O.
  • the distance value calculation unit 23 calculates the distance value and the reflection point position calculation unit 24 calculates the coordinate value using the indirect wave instead of or in addition to the direct wave. It may be something.
  • the indirect wave in addition to the direct wave, the number of reflection points obtained by transmitting the search wave each time can be increased as compared with the case where only the direct wave is used.
  • the number of reflection points included in each group can be increased.
  • the magnitude of the direct wave received by the distance measurement sensor 2 X (e.g. wave height based on the peak value) as "P_XX”. Further, it is transmitted by the measuring sensor 2 X, the magnitude of the indirect wave received by the other measuring sensor 2 Y (e.g. wave height based on the peak value) as "P_YX”.
  • P_YX the magnitude of the indirect wave received by the other measuring sensor 2 Y
  • the feature amount extraction unit 12 calculates the twelve direct ratios and extracts the calculated direct ratio as a feature value.
  • the obstacle determining unit 13 calculates, for example, an average value P_ave of these direct ratios as a first parameter value.
  • the obstacle determining unit 13 calculates, for example, a variance value P_var of these direct ratios as a second parameter value.
  • the driving support control by the driving support control unit 15a may be a control for avoiding a collision between the vehicle 1 and an obstacle, and is not limited to a control for operating the brake of the vehicle 1.
  • the driving support control by the driving support control unit 15a determines whether there is a possibility that the vehicle 1 will collide with an obstacle, and if it is determined that there is a possibility, the driver 1 of the vehicle 1 is notified of the possibility.
  • the control may be a warning.
  • the driver of the vehicle 1 may stop the vehicle 1 by operating the brake pedal of the vehicle 1 in response to the warning.
  • the installation positions of the four distance measurement sensors 2 1 to 24 in the vehicle 1 are not limited to the above example.
  • the four distance measuring sensors 2 1 to 2 more two distance measuring sensors are disposed outside 2 1, 2 4 two distance measuring sensors that are disposed more to the inside and 2 2 of the 4 , and 2 3, the installation position with respect to the longitudinal direction (i.e. the depth direction) of the vehicle 1 may be different from each other.
  • Both ends measuring sensor 2 1 disposed in portions, 2 4 of the four distance measuring sensors 2 1 to 2 4 may be one which is directed obliquely forward of the vehicle 1.
  • the distance measurement sensor 2 1 may be those which are directed to the left oblique front of the vehicle 1
  • the distance measuring sensor 2 4 may be one which is directed to the right oblique front of the vehicle 1.
  • the distance measuring sensor 2 may be provided at a rear end portion (more specifically, a rear bumper portion) of the vehicle 1 and may be directed to the rear of the vehicle 1.
  • the obstacle detection unit 11 detects an obstacle behind the vehicle 1 by causing the distance measurement sensor 2 to transmit the search wave at least once when the vehicle 1 is moving backward. Is also good.
  • Both ends measuring sensor 2 1 disposed in portions, 2 4 of the four distance measuring sensors 2 1 to 2 4 may be one which is directed obliquely rearward of the vehicle 1.
  • the number of the distance measuring sensors 2 may be two or more, and is not limited to four. That is, the distance measuring sensor 2 may be one that is constituted by four instead of distance measuring sensor 2 1 ⁇ 2 4 N pieces of distance measuring sensors 2 1 ⁇ 2 N.
  • the obstacle detection device 100a illustrated in FIG. 9 and the like can employ various modifications similar to those described in the first embodiment, that is, various modifications similar to the obstacle detection device 100. .
  • the driving support device 200a includes the obstacle detection device 100a and the driving support control unit that performs the driving support control according to the result of the determination of the height of the obstacle by the obstacle determination unit 13. 15a.
  • the obstacle detection device 100a By using the obstacle detection device 100a, the accuracy of the driving support control can be improved.
  • ⁇ ⁇ Driving support control is control related to collision avoidance.
  • the obstacle detection device 100a it is possible to determine the height of an obstacle located far from the vehicle 1 (more specifically, 5 meters or more).
  • the necessity of executing the control for operating the brake of the vehicle 1 can be determined at an early stage, so that the time for braking can be secured and the occurrence of sudden braking can be suppressed.
  • an obstacle in front of or behind the vehicle 1 is a road surface obstacle, occurrence of a false alarm can be suppressed.
  • the design of the vehicle 1 can be improved, and the degree of freedom in design can be improved. Can be.
  • the obstacle detection device 100a includes a facing determination unit 14 that determines whether or not the distance measuring sensor 2 is directly facing an obstacle.
  • the type of the obstacle is determined using the feature amount in the facing state. Thereby, the accuracy of determining the type of the obstacle can be further improved.
  • the obstacle determining unit 13 calculates the second parameter value using the feature amount in the predetermined detection section ⁇ . Thereby, the reliability of the determination using the second parameter value can be improved.
  • any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of any component in each embodiment is possible within the scope of the invention. .
  • the obstacle detection device of the present invention can be applied to, for example, control related to collision avoidance or parking assistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

障害物検知装置(100)は、車両(1)に設けられている測距センサ(2)が障害物による複数の反射波を受信した場合における複数の反射波に係る特徴量を抽出する特徴量抽出部(12)と、特徴量の分散量が大きいときは分散量が小さいときに比して障害物の高さが高いと判断する障害物判別部(13)であって、特徴量の大きさを示す第1パラメータ値及び分散量の大きさを示す第2パラメータ値のクラスタリングの結果に基づき、少なくとも障害物が走行障害物であるか否かを判別する障害物判別部(13)と、を備え、特徴量は、複数の反射波における大きさの比率である。

Description

障害物検知装置
 本発明は、障害物検知装置に関する。
 従来、車両に設けられているTOF(Time of Flight)方式の測距センサを用いて、車両の周囲にある障害物の高さを判断する技術が開発されている(例えば、特許文献1及び特許文献2参照。)。
特開2010-197351号公報 特開2016-80650号公報
 特許文献1記載の従来技術は、障害物の高さが低いときは車両が障害物に接近することにより障害物が測距センサの検知エリアから外れること(すなわち反射波のピーク値が低下すること)を利用して障害物の高さを判断するものである。このため、特許文献1記載の従来技術は、遠方に位置する障害物の高さを判断することができないという問題があった。また、特許文献1記載の従来技術は、車両と障害物間の距離が一定である場合、障害物の高さを判断することができないという問題があった。
 特許文献2記載の従来技術は、反射波の波高値を基準値と比較することにより、所定の高さに対する障害物の相対的な高さを判断するものである。これは、障害物の高さに応じて波高値が異なることを利用したものである。しかしながら、特許文献1に記載されているように、障害物が遠方に位置している場合、障害物の高さに応じた波高値の差は小さくなる。このため、特許文献2記載の従来技術は、遠方に位置する障害物の高さの判断精度が低いという問題があった。また、特許文献2記載の従来技術は、障害物が所定の高さと同程度の高さを有するものである場合、所定の高さに対する障害物の高さの高低の判断誤りが発生しやすいという問題があった。
 本発明は、上記のような課題を解決するためになされたものであり、測距センサを用いて障害物の高さを精度良く判断することを目的とする。
 本発明の障害物検知装置は、車両に設けられている測距センサが障害物による複数の反射波を受信した場合における複数の反射波に係る特徴量を抽出する特徴量抽出部と、特徴量の分散量が大きいときは分散量が小さいときに比して障害物の高さが高いと判断する障害物判別部であって、特徴量の大きさを示す第1パラメータ値及び分散量の大きさを示す第2パラメータ値のクラスタリングの結果に基づき、少なくとも障害物が走行障害物であるか否かを判別する障害物判別部と、を備え、特徴量は、複数の反射波における大きさの比率であることを特徴とするものである。
 本発明によれば、上記のように構成したので、測距センサを用いて障害物の高さを精度良く判断することができる。
実施の形態1に係る障害物検知装置の要部を示すブロック図である。 実施の形態1に係る障害物検知装置における障害物検知部の要部を示すブロック図である。 図3Aは、実施の形態1に係る障害物検知装置のハードウェア構成を示す説明図である。図3Bは、実施の形態1に係る障害物検知装置の他のハードウェア構成を示す説明図である。 実施の形態1に係る障害物検知装置の動作を示すフローチャートである。 図5Aは、走行障害物による反射波の伝搬経路の例を示す説明図である。図5Bは、送信信号の波形の例を示す説明図である。図5Cは、走行障害物による反射波に対応する受信信号の波形の例を示す説明図である。図5Dは、走行障害物による反射波に対応する受信信号の波形の他の例を示す説明図である。 図6Aは、路上障害物又は路面障害物による反射波の伝搬経路の例を示す説明図である。図6Bは、送信信号の波形の例を示す説明図である。図6Cは、路上障害物による反射波に対応する受信信号の波形の例を示す説明図である。図6Dは、路上障害物による反射波に対応する受信信号の波形の他の例を示す説明図である。図6Eは、路面障害物による反射波に対応する受信信号の波形の例を示す説明図である。図6Fは、路面障害物による反射波に対応する受信信号の波形の他の例を示す説明図である。 図7Aは、実施の形態1に係る障害物検知装置の製造前における第1パラメータ値及び第2パラメータ値の実測値の例を示す説明図である。図7Bは、実施の形態1に係る障害物検知装置を有する車両の出荷後に算出された第1パラメータ値及び第2パラメータ値の例を示す説明図である。 図8Aは、反射波の波高、波幅及び波形面積の例を示す説明図である。図8Bは、反射波の応答時間の例を示す説明図である。 実施の形態2に係る運転支援装置の要部を示すブロック図である。 実施の形態2に係る運転支援装置の動作を示すフローチャートである。 図11Aは、車両における測距センサの設置位置の例を示す説明図であって、車両の上方から見た状態を示す説明図である。図11Bは、車両における測距センサの設置位置の例を示す説明図であって、車両の側方から見た状態を示す説明図である。 図12Aは、車両における測距センサの設置位置の例を示す説明図であって、車両の上方から見た状態を示す説明図である。図12Bは、車両における測距センサの設置位置の例を示す説明図であって、車両の側方から見た状態を示す説明図である。 正対角度の例を示す説明図である。 図14Aは、車両が障害物に接近したときの走行経路の例を示す説明図である。図14Bは、このときの正対角度の時間変化の例を示す説明図である。図14Cは、このときの特徴量を示すデータの例を示す説明図である。 実施の形態2に係る他の運転支援装置の要部を示すブロック図である。 実施の形態2に係る他の運転支援装置の動作を示すフローチャートである。 図17Aは、検知区間の例を示す説明図である。図17Bは、検知区間の他の例を示す説明図である。 実施の形態2に係る運転支援装置の他の動作を示すフローチャートである。 図19Aは、車両における測距センサの設置位置の他の例を示す説明図であって、車両の上方から見た状態を示す説明図である。図19Bは、車両における測距センサの設置位置の他の例を示す説明図であって、車両の側方から見た状態を示す説明図である。 図20Aは、車両における測距センサの設置位置の他の例を示す説明図であって、車両の上方から見た状態を示す説明図である。図20Bは、車両における測距センサの設置位置の他の例を示す説明図であって、車両の側方から見た状態を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る障害物検知装置の要部を示すブロック図である。図2は、実施の形態1に係る障害物検知装置における障害物検知部の要部を示すブロック図である。図1及び図2を参照して、実施の形態1の障害物検知装置100について説明する。
 なお、障害物検知装置100は車両1内のコンピュータネットワーク(例えばCAN(Controller Area Network))に接続されている。障害物検知装置100は、当該コンピュータネットワークから種々の信号を適宜取得可能である。これらの信号は、例えば、車両1の走行速度を示す信号及び車両1のヨーレート又は操舵角を示す信号を含むものである。
 車両1は測距センサ2を有している。図1に示す例において、測距センサ2はN個の測距センサ2~2により構成されている(Nは2以上の任意の整数)。N個の測距センサ2~2は、車両1における設置位置が互いに異なるものであり、かつ、車両1における設置方向が互いに同等なものである。N個の測距センサ2~2の各々は、例えば、ソナー又はミリ波レーダにより構成されている。
 以下、測距センサ2により送受信される超音波又は電波などを「探索波」と総称する。また、車両1外の障害物により探索波が反射された場合、当該反射された探索波を「反射波」という。また、いずれかの測距センサ2が探索波を送信して、この測距センサ2が反射波を受信した場合における当該探索波及び当該反射波を「直接波」という。また、いずれかの測距センサ2が探索波を送信して、他の測距センサ2が反射波を受信した場合における当該探索波及び当該反射波を「間接波」という。また、直接波と間接波との比率を「直間比率」といい、直接波と他の直接波との比率を「直直比率」といい、間接波と他の間接波との比率を「間間比率」という。
 また、車両1外の障害物のうち、車両1のバンパー部に接触する程度に高い高さを有する障害物を「走行障害物」という。走行障害物は、例えば、壁又は駐車中の他車両(以下「駐車車両」という。)である。また、車両1外の障害物のうち、車両1のバンパー部に接触しない程度に低い高さを有し、かつ、車両1が乗り越えられない程度に高い高さを有する障害物を「路上障害物」という。路上障害物は、例えば、縁石又は車留めである。また、車両1外の障害物のうち、車両1のバンパー部に接触しない程度に低い高さを有し、かつ、車両1が乗り越えられる程度に低い高さを有する障害物を「路面障害物」という。路面障害物は、例えば、段差である。すなわち、走行障害物は路上障害物よりも高い高さを有するものであり、路上障害物は路面障害物よりも高い高さを有するものである。
 障害物検知部11は、測距センサ2に探索波を送信させることにより、車両1の周囲にある障害物を検知するものである。より具体的には、障害物検知部11は、車両1と障害物間の距離を計測することにより、車両1に対する障害物の位置を判定するものである。障害物検知部11は、送信信号出力部21、受信信号取得部22、距離値算出部23、反射点位置算出部24、グループ化部25、自車位置算出部26及びセンサ位置算出部27により構成されている。
 送信信号出力部21は、測距センサ2に送信信号を出力することにより、測距センサ2に探索波を送信させるものである。受信信号取得部22は、測距センサ2による受信信号を測距センサ2から取得するものである。
 距離値算出部23は、測距センサ2による受信信号の強度を所定の閾値と比較することにより、測距センサ2による反射波の受信の有無を判定するものである。距離値算出部23は、測距センサ2により反射波が受信されたとき、TOFによる距離値を算出するものである。TOFによる距離値の算出方法は公知であるため、詳細な説明は省略する。
 反射点位置算出部24は、距離値算出部23により算出された距離値を用いて、探索波が反射された地点(以下「反射点」という。)の位置を算出するものである。反射点の位置は、例えば、車両1の前後方向に対応する第1軸(以下「X軸」という。)及び車両1の左右方向に対応する第2軸(以下「Y軸」という。)によるメートル単位の座標系(以下「XY座標系」という。)における座標値により表されるものである。
 具体的には、例えば、反射点位置算出部24は、直接波の送信タイミング(又は直接波の受信タイミング)における測距センサ2の位置に対応する始点を有し、かつ、車両1における測距センサ2の設置方向に対応する向きを有し、かつ、距離値算出部23により算出された距離値に対応する大きさを有するベクトルを求めることにより、XY座標系における反射点の座標値を算出する。このベクトルは、X軸及びY軸に沿う仮想的な平面(以下「XY平面」という。)におけるベクトルである。
 または、例えば、反射点位置算出部24は、互いに異なる直接波に対応する複数個の距離値を用いて、いわゆる「2円交点」による反射点の位置を算出する。すなわち、反射点位置算出部24は、XY平面における2円交点処理を実行することにより、XY座標系における反射点の座標値を算出する。
 反射点の位置の算出に用いられる情報のうち、探索波の送信タイミング(又は反射波の受信タイミング)における測距センサ2の位置を示す情報は、センサ位置算出部27により出力される。そのほかの情報(例えば車両1における測距センサ2の設置方向を示す情報)は、反射点位置算出部24に予め記憶されている。
 グループ化部25は、反射点位置算出部24により複数個の反射点の位置が算出された後、当該複数個の反射点をグルーピングすることにより、1個以上の障害物と原則一対一に対応する1個以上の反射点群(以下「グループ」という。)を設定するものである。このグルーピングは、例えば、互いに隣接する2個の反射点間の距離が所定距離未満である場合、当該2個の反射点を互いに同一のグループに含めるものである。このグルーピング処理をすることにより、自車幅以外の衝突に関与しない部分からの反射波を除去することにより判定の信頼性を向上させる効果もある。
 自車位置算出部26は、探索波の送信タイミング(又は反射波の受信タイミング)における車両1の位置(以下「自車位置」という。)を算出するものである。センサ位置算出部27は、当該タイミングにおける測距センサ2の位置(以下「センサ位置」という。)を算出するものである。これらの位置は、例えば、XY座標系における座標値により表されるものである。センサ位置算出部27は、センサ位置を示す情報を反射点位置算出部24に出力するものである。センサ位置を示す情報は、反射点位置算出部24において反射点の位置の算出に用いられるものである。
 自車位置の算出には公知の種々の方法を用いることができるものであり(例えば自律航法)、これらの方法についての詳細な説明は省略する。自律航法に用いられる信号(例えば車両1の走行速度を示す信号及び車両1のヨーレート又は操舵角を示す信号)は、車両1内のコンピュータネットワークから適宜取得される。センサ位置の算出に用いられる情報(例えば車両1における測距センサ2の設置位置を示す情報)は、センサ位置算出部27に予め記憶されている。
 なお、距離値算出部23による距離値の算出及び反射点位置算出部24による座標値の算出には、直接波に代えて又は加えて間接波が用いられるものであっても良い。直接波に加えて間接波を用いることにより、直接波のみを用いる場合に比して、各回の探索波の送信により得られる反射点の個数を増やすことができる。この結果、個々のグループに含まれる反射点の個数を増やすことができる。
 個々のグループは複数個の反射点を含むものであり、当該複数個の反射点は複数個の反射波に対応するものである。特徴量抽出部12は、当該複数個の反射波に対応する受信信号の波形を示す情報を障害物検知部11から取得するものである。特徴量抽出部12は、当該取得された情報を用いて、当該複数個の反射波に係る特徴量を抽出するものである。特徴量の詳細については後述する。
 障害物判別部13は、個々のグループ毎に、特徴量抽出部12により抽出された特徴量の大きさを示す値(以下「第1パラメータ値」という。例えば、これらの特徴量の平均値である。)を算出するものである。また、障害物判別部13は、個々のグループ毎に、特徴量抽出部12により抽出された特徴量の分散量の大きさを示す値(以下「第2パラメータ値」という。例えば、これらの特徴量の分散値である。)を算出するものである。障害物判別部13は、当該算出された第1パラメータ値及び第2パラメータ値を用いて、個々のグループに対応する障害物の種別を判別するものである。より具体的には、障害物判別部13は、個々のグループに対応する障害物が路面障害物、路上障害物又は走行障害物のうちのいずれであるかを判別するものである。
 ここで、路面障害物、路上障害物及び走行障害物は互いに異なる高さを有するものである。したがって、個々のグループに対応する障害物が路面障害物、路上障害物又は走行障害物のうちのいずれであるかの判別は、個々のグループに対応する障害物が3段階の高さのうちのいずれの高さを有するものであるかの判断である。すなわち、障害物判別部13は、個々のグループに対応する障害物の種別を判別することにより、個々のグループに対応する障害物の高さを判断するものである。障害物判別部13による障害物の種別の判別方法、すなわち障害物の高さの判断方法の詳細については後述する。
 障害物検知部11、特徴量抽出部12及び障害物判別部13により、障害物検知装置100の要部が構成されている。
 次に、図3を参照して、障害物検知装置100の要部のハードウェア構成について説明する。
 図3Aに示す如く、障害物検知装置100はコンピュータにより構成されており、当該コンピュータはプロセッサ31及びメモリ32を有している。メモリ32には、当該コンピュータを障害物検知部11、特徴量抽出部12及び障害物判別部13として機能させるためのプログラムが記憶されている。メモリ32に記憶されているプログラムをプロセッサ31が読み出して実行することにより、障害物検知部11、特徴量抽出部12及び障害物判別部13の機能が実現される。
 または、図3Bに示す如く、障害物検知装置100は処理回路33により構成されているものであっても良い。この場合、障害物検知部11、特徴量抽出部12及び障害物判別部13の機能が処理回路33により実現されるものであっても良い。
 または、障害物検知装置100はプロセッサ31、メモリ32及び処理回路33により構成されているものであっても良い(不図示)。この場合、障害物検知部11、特徴量抽出部12及び障害物判別部13の機能のうちの一部の機能がプロセッサ31及びメモリ32により実現されて、残余の機能が処理回路33により実現されるものであっても良い。
 プロセッサ31は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。
 メモリ32は、例えば、半導体メモリ又は磁気ディスクを用いたものである。より具体的には、メモリ32は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD(Solid State Drive)又はHDD(Hard Disk Drive)などを用いたものである。
 処理回路33は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)を用いたものである。
 次に、図4のフローチャートを参照して、障害物検知装置100の動作について説明する。
 まず、ステップST1にて、障害物検知部11は、測距センサ2に探索波を送信させることにより、車両1の周囲にある障害物を検知する。より具体的には、障害物検知部11は、車両1と障害物間の距離を計測することにより、車両1に対する障害物の位置を判定する。
 ステップST1の処理により、1個以上の障害物と原則一対一に対応する1個以上のグループが設定される。個々のグループは複数個の反射点を含むものであり、当該複数個の反射点は複数個の反射波に対応するものである。次いで、ステップST2にて、特徴量抽出部12は、当該複数個の反射波に対応する受信信号の波形を示す情報を障害物検知部11から取得する。特徴量抽出部12は、当該取得された情報を用いて、当該複数個の反射波に係る特徴量を抽出する。特徴量の詳細については後述する。
 次いで、ステップST3にて、障害物判別部13は、特徴量抽出部12により抽出された特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。障害物判別部13は、当該算出された第1パラメータ値及び第2パラメータ値を用いて、個々のグループに対応する障害物の種別を判別することにより、個々のグループに対応する障害物の高さを判断する。障害物判別部13による障害物の種別の判別方法、すなわち障害物の高さの判断方法の詳細については後述する。
 次に、図5~図7を参照して、障害物判別部13による障害物の種別の判別方法、すなわち障害物の高さの判断方法の詳細について説明する。また、特徴量の詳細について説明する。
 図5Aは、走行障害物(より具体的には壁)による反射波RWの伝搬経路の例を示している。図5Bは、送信信号TSの波形の例を示している。図5Cは、走行障害物による反射波RWに対応する受信信号RSの波形の例を示している。図5Dは、走行障害物による反射波RWに対応する受信信号RSの波形の他の例を示している。
 図6Aは、路上障害物(より具体的には縁石)又は路面障害物(より具体的には段差)による反射波RWの伝搬経路の例を示している。図6Bは、送信信号TSの波形の例を示している。図6Cは、路上障害物による反射波RWに対応する受信信号RSの波形の例を示している。図6Dは、路上障害物による反射波RWに対応する受信信号RSの波形の他の例を示している。図6Eは、路面障害物による反射波RWに対応する受信信号RSの波形の例を示している。図6Fは、路面障害物による反射波RWに対応する受信信号RSの波形の他の例を示している。
 送信信号出力部21が測距センサ2に送信信号TSを出力することにより、測距センサ2が探索波SWを送信したものとする。通常、探索波SWは空気中を次第に広がりながら伝搬するため、測距センサ2が探索波SWを送信してから測距センサ2が反射波RWを受信するまでの伝搬経路(いわゆる「パス」)は複数存在する。例えば、障害物Oにより1回反射されて測距センサ2に戻るパスが存在する。また、道路Rにより1回反射された後、障害物Oにより1回反射されて測距センサ2に戻るパスも存在する。これらのパスは、経路長が互いに異なるパスを含むものである。反射波RWは、これらのパスに対応する複数個の波rwの干渉による合成波RWとなる。受信信号RSは、当該複数個の波rwに対応する複数個の信号rsによる合成信号、すなわち受信信号RSとなる。
 また、道路Rの凹凸形状、車両1の振動及び障害物Oにおける探索波SWを反射する面部(以下「反射面部」という。)の凹凸形状などに応じてパスが変化するため、反射波RWの波形が変化して、受信信号RSの波形も変化する。このため、互いに同一の障害物Oによる複数個の反射波RWが測距センサ2により受信された場合、当該複数個の反射波RWの波形はバラツキを有するものとなり、当該複数個の反射波RWに対応する受信信号RSの波形もバラツキを有するものとなる。
 ここで、障害物Oが走行障害物である場合(図5A参照)は、障害物Oが路上障害物又は路面障害物である場合(図6A参照)に比して反射面部の面積が大きいため、反射波RWの受信強度(すなわち受信信号RSの強度)が大きくなる。また、パスの総数が多くなり、パス間の経路長の差も大きくなるため、反射波RWの波形のバラツキが大きくなり、受信信号RSの波形のバラツキも大きくなる。
 同様に、障害物Oが路上障害物である場合(図6C及び図6D参照)は、障害物Oが路面障害物である場合(図6E及び図6F参照)に比して反射面部の面積が大きいため、反射波RWの受信強度(すなわち受信信号RSの強度)が大きくなる。また、パスの総数が多くなり、パス間の経路長の差も大きくなるため、反射波RWの波形のバラツキが大きくなり、受信信号RSの波形のバラツキも大きくなる。
 したがって、互いに同一の障害物Oによる複数個の反射波RWが測距センサ2により受信された場合において、これらの反射波RWの大きさに基づく特徴量が抽出されたとき、当該抽出された特徴量の分散量は障害物Oの高さに対する相関関係を有するものとなる。このため、分散量が大きいときは分散量が小さいときに比して障害物Oの高さが高いと判断するというように、分散量に基づく障害物Oの高さの判断が可能となる。障害物判別部13による障害物Oの高さの判断は、この原理に基づくものである。
 以上の内容を踏まえて、特徴量抽出部12は、個々のグループに含まれる複数個の反射点に対応する複数個の反射波RWについて、当該複数個の反射波RWにおける大きさの比率を特徴量として抽出する。より具体的には、特徴量抽出部12は、当該複数個の反射波RWが1個以上の直接波及び1個以上の間接波を含む場合における、これらの直接波及び間接波による直間比率を特徴量として抽出する。または、特徴量抽出部12は、当該複数個の反射波RWが複数個の直接波を含む場合における、これらの直接波による直直比率を特徴量として抽出する。または、特徴量抽出部12は、当該複数個の反射波RWが複数個の間接波を含む場合における、これらの間接波による間間比率を特徴量として抽出する。これらの特徴量は、当該複数個の反射波RWに対応する受信信号RSの波形を示す情報から抽出される。
 この結果、これらの特徴量の平均値(すなわち第1パラメータ値)が障害物Oの高さに対する相関関係を有するものとなるのはもちろんのこと、これらの特徴量の分散値(すなわち第2パラメータ値)も障害物Oの高さに対する相関関係を有するものとなる。したがって、第1パラメータ値及び第2パラメータ値は、障害物Oの高さに応じたクラスタリング、すなわち障害物Oの種別に応じたクラスタリングが可能となる。
 図7は、障害物Oが路面障害物である場合の第1パラメータ値及び第2パラメータ値が含まれる範囲A1の例、障害物Oが路上障害物である場合の第1パラメータ値及び第2パラメータ値が含まれる範囲A2の例、並びに障害物Oが走行障害物である場合の第1パラメータ値及び第2パラメータ値が含まれる範囲A3の例を示している。図中、範囲A1,A2間の分割線PL1は、障害物Oが路面障害物であるか否かの判別閾値Th1に対応するものである。また、範囲A2,A3間の分割線PL2は、障害物Oが走行障害物であるか否かの判別閾値Th2に対応するものである。
 図7Aにおける個々の丸印は、障害物検知装置100の製造前における第1パラメータ値及び第2パラメータ値の実測値であって、障害物Oが路面障害物である場合の実測値の例に対応している。図7Aにおける個々の四角印は、障害物検知装置100の製造前における第1パラメータ値及び第2パラメータ値の実測値であって、障害物Oが路上障害物である場合の実測値の例に対応している。図7Aにおける個々の三角印は、障害物検知装置100の製造前における第1パラメータ値及び第2パラメータ値の実測値であって、障害物Oが走行障害物である場合の実測値の例に対応している。障害物判別部13には、これらの実測値のクラスタリングにより設定された範囲A1~A3を示す情報、より具体的には判別閾値Th1,Th2を示す情報が予め記憶されている。このクラスタリング及び分割線PL1,PL2の設定(すなわち判別閾値Th1,Th2の設定)には、線形判別又はパターン認識などの機械学習の技術が用いられる。
 障害物判別部13は、車両1の製造後(より具体的には出荷後)に算出された第1パラメータ値及び第2パラメータ値を判別閾値Th1,Th2と比較することにより、この第1パラメータ値及び第2パラメータ値が範囲A1~A3のうちのいずれの範囲に含まれるかを識別する。これにより、車両1の周囲にある障害物Oが路面障害物、路上障害物又は走行障害物のうちのいずれであるかが判別される。図7Bにおけるバツ印は、車両1の出荷後に算出された第1パラメータ値及び第2パラメータ値の例に対応している。この場合、第1パラメータ値及び第2パラメータ値が範囲A3に含まれるため、障害物Oは走行障害物であると判別される。
 次に、図8を参照して、複数個の反射波RWの各々の大きさの特定方法について説明する。
 上記のとおり、特徴量抽出部12は、複数個の反射波RWにおける大きさの比率を特徴量として抽出する。これよりも先に、特徴量抽出部12は、当該複数個の反射波RWの各々の大きさを特定する。すなわち、当該特定された大きさが特徴量の抽出に用いられる。図8は、当該複数個の反射波RWのうちの1個の反射波RWに対応する受信信号RSの波形の例を示している。
 例えば、特徴量抽出部12は、受信信号RSのピーク値PVに基づき反射波RWの波高を算出する(図8A参照)。特徴量抽出部12は、当該算出された波高に基づき反射波RWの大きさを特定する。
 または、例えば、特徴量抽出部12は、受信信号RSのうちの閾値Thを超えている部分の時間幅、すなわち反射波RWの波幅を算出する(図8A参照)。特徴量抽出部12は、当該算出された波幅に基づき反射波RWの大きさを特定する。この閾値Thは、反射波RWの受信の有無の判定に用いられる閾値である。
 または、例えば、特徴量抽出部12は、受信信号RSの全体の時間幅を算出する(不図示)。特徴量抽出部12は、当該算出された時間幅に基づき反射波RWの大きさを特定する。
 または、例えば、特徴量抽出部12は、受信信号RSの半値幅、すなわち反射波RWの半値幅を算出する(不図示)。特徴量抽出部12は、当該算出された半値幅に基づき反射波RWの大きさを特定する。
 または、例えば、特徴量抽出部12は、受信信号RSのうちの閾値Thを超えている部位の波形面積、すなわち反射波RWの波形面積を算出する(図8A参照)。特徴量抽出部12は、当該算出された波形面積に基づき反射波RWの大きさを特定する。
 または、例えば、特徴量抽出部12は、受信信号RSの全体の波形面積を算出する(不図示)。特徴量抽出部12は、当該算出された波形面積に基づき反射波RWの大きさを特定する。
 または、例えば、特徴量抽出部12は、受信信号RSがピーク値PVを超えてから受信信号RSが閾値Thを下回るまでの時間、すなわち反射波RWの応答時間を算出する(図8B参照)。特徴量抽出部12は、当該算出された応答時間に基づき反射波RWの大きさを特定する。
 または、例えば、特徴量抽出部12は、受信信号RSの波形における立下りの傾き、すなわち反射波RWの波形における立下りの傾きを算出する(不図示)。特徴量抽出部12は、当該算出された傾きに基づき反射波RWの大きさを特定する。
 または、例えば、特徴量抽出部12は、受信信号RSの波形における時定数、すなわち反射波RWの波形における時定数を抽出する(不図示)。より具体的には、例えば、特徴量抽出部12は、反射波RWの立ち上がりから振幅がピーク値の90%又は70%に低下した時までの時定数を抽出する。特徴量抽出部12は、当該算出された時定数に基づき反射波RWの大きさを特定する。
 次に、障害物検知装置100の変形例について説明する。
 まず、自車位置算出部26は、自律航法に代えて又は加えて衛星航法により自車位置を算出するものであっても良い。この場合、障害物検知装置100は、車両1に設けられているGNSS(Global Navigation Satellite System)受信機からGNSS信号を取得するものであっても良い。
 また、第2パラメータ値は特徴量の分散量の大きさを示す値であれば良く、特徴量の分散値に限定されるものではない。例えば、第2パラメータ値は、特徴量の最大値と最小値の差分値であっても良く、特徴量の最大値と平均値の差分値であっても良く、又は特徴量の平均値と最小値の差分値であっても良い。
 また、障害物判別部13は、個々のグループに対応する障害物が走行障害物であるか否かを判別するものであっても良い。すなわち、障害物判別部13は、当該障害物が走行障害物でないと判別された場合、当該障害物が路面障害物であるか路上障害物であるかを判別しないものであっても良い。障害物判別部13には、判別閾値Th2を示す情報が記憶されている一方、判別閾値Th1を示す情報が記憶されていないものであっても良い。
 以上のように、実施の形態1の障害物検知装置100は、車両1に設けられている測距センサ2が障害物による複数の反射波を受信した場合における複数の反射波に係る特徴量を抽出する特徴量抽出部12と、特徴量の分散量が大きいときは分散量が小さいときに比して障害物の高さが高いと判断する障害物判別部13であって、特徴量の大きさを示す第1パラメータ値及び分散量の大きさを示す第2パラメータ値のクラスタリングの結果に基づき、少なくとも障害物が走行障害物であるか否かを判別する障害物判別部13と、を備え、特徴量は、複数の反射波における大きさの比率である。第1パラメータ値に加えて第2パラメータ値を用いることにより、障害物の種別を精度良く判別することができ、障害物の高さを精度良く判断することができる。また、車両1の遠方(より具体的には5メートル以上遠方)に位置する障害物の高さを判断することができる。複数個の反射波における大きさの比率を特徴量に用いることにより、障害物による探索波の反射率の変化に対する補正を不要とすることができる。また、車外温度の変化に対する補正を不要とすることができる。また、探索波の伝搬距離に応じた減衰量に対する補正を不要とすることができる。
実施の形態2.
 図9は、実施の形態2に係る運転支援装置の要部を示すブロック図である。図9を参照して、実施の形態2の運転支援装置200aについて説明する。なお、図9において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
 図9に示す例において、測距センサ2は4個の測距センサ2~2により構成されている。4個の測距センサ2~2は、車両1の前端部(より具体的にはフロントバンパー部)に設けられており、かつ、車両1の前方に向けられている。
 障害物検知部11は、車両1が前進しているとき、測距センサ2に探索波を1回以上送信させることにより、車両1の前方にある障害物を検知するものである。障害物検知部11の内部構成は、実施の形態1にて図2を参照して説明したものと同様であるため、図示及び説明を省略する。
 正対判別部14は、測距センサ2が障害物と正対しているか否かを判別するものである。正対判別部14による判別方法の詳細については後述する。
 障害物判別部13は、測距センサ2が障害物と正対している状態(以下「正対状態」という。)における特徴量を用いて第1パラメータ値及び第2パラメータ値を算出するようになっている。より具体的には、障害物判別部13は、正対状態における特徴量を示すデータの蓄積数が所定数を超えたとき、これらのデータが示す特徴量を用いて第1パラメータ値及び第2パラメータ値を算出するようになっている。障害物判別部13は、当該算出された第1パラメータ値及び第2パラメータ値を用いて障害物の種別を判別するものである。すなわち、障害物判別部13は、正対状態における特徴量を用いて障害物の種別を判別するものである。
 運転支援制御部15aは、障害物検知部11による障害物の位置の判定結果及び障害物判別部13による障害物の種別の判別結果(すなわち障害物の高さの判断結果)に応じて、車両1と障害物の衝突を回避するための制御を実行するものである。
 具体的には、例えば、障害物検知部11により車両1の前方にある障害物が検知された場合において、障害物判別部13により当該障害物が走行障害物であると判別されたとき、運転支援制御部15aは車両1のブレーキを作動させることにより車両1を停止させる制御を実行する。他方、この場合において、障害物判別部13により当該障害物が路上障害物又は路面障害物であると判別されたとき、運転支援制御部15aは当該制御の実行をキャンセルする。
 または、例えば、この場合において、当該障害物が走行障害物又は路上障害物であると判別されたときは運転支援制御部15aが当該制御を実行する一方、当該障害物が路面障害物であると判別されたときは運転支援制御部15aが当該制御の実行をキャンセルするものであっても良い。ここで、運転支援制御部15aは、車両1の前方にある障害物が走行障害物であるか路上障害物であるかに応じて車両1の停止位置を異ならしめるものであっても良い。より具体的には、運転支援制御部15aは、当該障害物が走行障害物である場合、当該障害物が路上障害物である場合に比して手前側の位置にて車両1を停止させるものであっても良い。すなわち、運転支援制御部15aは、当該障害物が路上障害物である場合、車両1のフロントバンパー部が当該障害物の上方に位置し、かつ、車両1のフロントタイヤが当該障害物に略当接する位置にて車両1を停止させるものであっても良い。
 以下、障害物検知部11による障害物の位置の判定結果及び障害物判別部13による障害物の種別の判別結果(すなわち障害物の高さの判断結果)に応じた制御を「運転支援制御」と総称する。
 障害物検知部11、特徴量抽出部12、障害物判別部13及び正対判別部14により、障害物検知装置100aの要部が構成されている。障害物検知装置100a及び運転支援制御部15aにより、運転支援装置200aの要部が構成されている。
 運転支援装置200aの要部のハードウェア構成は、実施の形態1にて図3を参照して説明したものと同様であるため、図示及び説明を省略する。すなわち、障害物検知部11、特徴量抽出部12、障害物判別部13、正対判別部14及び運転支援制御部15aの各々の機能は、プロセッサ31及びメモリ32により実現されるものであっても良く、又は処理回路33により実現されるものであっても良い。
 次に、図10のフローチャートを参照して、運転支援装置200aの動作について説明する。
 まず、ステップST11にて、障害物検知部11は、車両1の走行速度を示す信号及び車両1のシフトポジションを示す信号などを用いて、車両1が前進中であるか否かを判定する。これらの信号は、車両1内のコンピュータネットワークから適宜取得される。
 車両1が前進中である場合(ステップST11“YES”)、ステップST12にて、障害物検知部11は、測距センサ2に探索波を1回以上送信させることにより、車両1の前方にある障害物を検知する。
 ステップST12の処理により、1個以上の障害物と原則一対一に対応する1個以上のグループが設定される。個々のグループは複数個の反射点を含むものであり、当該複数個の反射点は複数個の反射波に対応するものである。次いで、ステップST13にて、特徴量抽出部12は、当該複数個の反射波に対応する受信信号の波形を示す情報を障害物検知部11から取得する。特徴量抽出部12は、当該取得された情報を用いて、当該複数個の反射波に係る特徴量を抽出する。特徴量抽出部12は、当該抽出された特徴量を示すデータを障害物判別部13に出力する。
 次いで、ステップST14にて、正対判別部14は、測距センサ2が障害物と正対しているか否かを判別する。正対判別部14による判別方法の詳細については後述する。
 次いで、ステップST15にて、障害物判別部13は、正対状態における特徴量を示すデータの蓄積数が所定数を超えたか否かを判定する。正対状態における特徴量を示すデータの蓄積数が所定数以下である場合(ステップST15“NO”)、運転支援装置200aの処理はステップST12に戻り、再び探索波が送信される。他方、正対状態における特徴量を示すデータの蓄積数が所定数を超えている場合(ステップST15“YES”)、運転支援装置200aの処理はステップST16に進む。
 次いで、ステップST16にて、障害物判別部13は、正対状態における特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。障害物判別部13は、当該算出された第1パラメータ値及び第2パラメータ値を用いて、個々のグループに対応する障害物の種別を判別することにより、個々のグループに対応する障害物の高さを判断する。
 次いで、ステップST17にて、運転支援制御部15aは、障害物検知部11による障害物の位置の判定結果及び障害物判別部13による障害物の種別の判別結果(すなわち障害物の高さの判断結果)に応じて、車両1と障害物の衝突を回避するための制御を実行する。すなわち、運転支援制御部15aは運転支援制御を実行する。
 次に、図11~図13を参照して、正対判別部14による判別方法の詳細について説明する。
 図11及び図12は、車両1における4個の測距センサ2~2の設置位置の例を示している。図11及び図12に示す如く、4個の測距センサ2~2のうちのより外側に配置されている2個の測距センサ2,2とより内側に配置されている2個の測距センサ2,2とは、車両1の上下方向(すなわち高さ方向)に対する設置位置が互いに異なるものであっても良い。
 また、図11は、障害物Oが走行障害物(より具体的には壁)である場合における、4個の測距センサ2~2により送受信される直接波の伝搬経路PP~PPの例、これらの直接波に対応する反射点RP~RPの例、及び障害物Oに対応するグループGの例を示している。図12は、障害物Oが路上障害物(より具体的には縁石)又は路面障害物(より具体的には段差)である場合における、4個の測距センサ2~2により送受信される直接波の伝搬経路PP~PPの例、これらの直接波に対応する反射点RP~RPの例、及び障害物Oに対応するグループGの例を示している。
 正対判別部14には、車両1における2個の測距センサ2,2の設置間隔(以下「センサピッチ」という。)SPを示す情報が予め記憶されている。正対判別部14は、測距センサ2と反射点RP間の距離Dを示す情報及び測距センサ2と反射点RP間の距離Dを示す情報を障害物検知部11から取得する。これらの距離D,Dは、距離値算出部23により算出された距離値又は反射点位置算出部24により算出された座標値(より具体的にはX座標値)に対応するものである。正対判別部14は、以下の式(1)により、測距センサ2に対する障害物Oの正対角度θを算出する。
 θ=tan-1{(D-D)/SP} (1)
 図13は、センサピッチSP、距離D,D及び正対角度θの例を示している。正対角度θが所定角度θth以下である場合、正対判別部14は測距センサ2が障害物Oと正対していると判別する。他方、正対角度θが所定角度θthよりも大きい場合、正対判別部14は測距センサ2が障害物Oと正対していないと判別する。
 なお、正対角度θの算出には、他の測距センサ2,2を介して互いに離隔配置されている測距センサ2,2を用いるのが好適である。これにより、互いに隣接配置されている測距センサ2,2を用いる場合に比して、正対角度θの算出精度を向上することができる。
 また、正対判別部14は、所定区間における正対角度θの平均値を算出するものであっても良い。正対判別部14は、当該算出された平均値が所定角度θth以下である場合、測距センサ2が障害物Oと正対していると判別するものであっても良い。これにより、正対判別部14による判別のロバスト性を向上することができる。
 また、この所定区間は時間的な区間であっても良く、又は距離的な区間であっても良い。すなわち、この平均値は、車両1が所定時間移動する間に算出された正対角度θの平均値であっても良く、又は車両1が所定距離移動する間に算出された正対角度θの平均値であっても良い。
 次に、図14を参照して、第1パラメータ値及び第2パラメータ値の算出に用いられる特徴量の具体例について説明する。
 図14Aは、車両1が障害物Oに接近したときの走行経路TRの例を示している。図14Bは、このときの正対角度θの時間変化の例を示している。図14Cは、このときの特徴量を示すデータの例を示している。すなわち、図14Cにおける個々の丸印が特徴量を示すデータに対応している。
 図14Aに示す如く車両1が障害物Oに接近することにより、図14Bに示す如く正対角度θが次第に小さくなる。時刻t2にて正対角度θが所定角度θth以下になり、時刻t3にて正対状態における特徴量を示すデータの蓄積数が所定数を超えたものとする。この場合、障害物判別部13は、時刻t2~t3の時間区間Δt2における特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。
 なお、障害物判別部13は、正対状態における特徴量を用いて障害物の種別を判別するのに加えて、測距センサ2が障害物Oと正対してない状態(以下「非正対状態」という。)における特徴量を用いて障害物の種別を判別するものであっても良い。すなわち、障害物判別部13は、時刻t2~t3の時間区間Δt2における特徴量を用いて第1パラメータ値及び第2パラメータ値を算出するのに加えて、時刻t1~t2の時間区間Δt1における特徴量を用いて第1パラメータ値及び第2パラメータ値を算出するものであっても良い。
 また、障害物判別部13は、非正対状態における特徴量を用いて障害物の種別を判別した場合、判別結果の信頼度が低いことを運転支援制御部15aに通知するものであっても良い。運転支援制御部15aは、障害物判別部13により通知された信頼度の高低に応じて、運転支援制御の内容を異ならしめるものであっても良い。
 次に、図15~図17を参照して、第1パラメータ値及び第2パラメータ値の算出に用いられる特徴量の他の例について説明する。
 図15に示す如く、障害物検知装置100aは正対判別部14を有しないものであっても良い。この場合、障害物判別部13は、所定の区間(以下「検知区間」という。)Δにおける特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。より具体的には、障害物判別部13は、検知区間Δにおける特徴量を示すデータが蓄積されたとき、これらのデータが示す特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。
 図16は、この場合のフローチャートを示している。ステップST13に次いで、ステップST18にて、障害物判別部13は、例えば図17に示す検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。検知区間Δにおける特徴量を示すデータが未蓄積である場合(ステップST18“NO”)、運転支援装置200aの処理はステップST12に戻り、再び探索波が送信される。他方、検知区間Δにおける特徴量を示すデータが蓄積済みである場合(ステップST18“YES”)、運転支援装置200aの処理はステップST16に進む。ステップST16にて、障害物判別部13は、これらのデータが示す特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。
 ステップST18における判定方法の具体例は以下のとおりである。
 例えば、障害物判別部13は、距離値算出部23により算出された距離値を示す情報又は反射点位置算出部24により算出された座標値を示す情報を障害物検知部11から取得する。障害物判別部13は、当該取得された情報を用いて、車両1と障害物間の距離の変化量を算出する。障害物判別部13は、当該算出された変化量に基づき、車両1が検知区間Δを走行済みであるか否かを判定することにより、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。なお、図15において、障害物検知部11と障害物判別部13間の接続線は図示を省略している。
 または、例えば、障害物判別部13は、自車位置算出部26により算出された自車位置を示す情報を障害物検知部11から取得する。障害物判別部13は、当該取得された情報を用いて、車両1の移動量を算出する。障害物判別部13は、当該算出された移動量に基づき、車両1が検知区間Δを走行済みであるか否かを判定することにより、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。なお、図15において、障害物検知部11と障害物判別部13間の接続線は図示を省略している。
 または、例えば、障害物判別部13は、特徴量を示すデータの蓄積時間を算出する。障害物判別部13には、検知区間Δにおける特徴量を示すデータの蓄積時間の予測値に対応する閾値が予め記憶されている。障害物判別部13は、当該算出された蓄積時間を当該予め記憶されている閾値と比較することにより、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。
 または、例えば、障害物判別部13は、特徴量を示すデータの蓄積数を算出する。障害物判別部13には、検知区間Δにおける特徴量を示すデータの蓄積数の予測値に対応する閾値が予め記憶されている。障害物判別部13は、当該算出された蓄積数を当該予め記憶されている閾値と比較することにより、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。
 または、例えば、障害物判別部13は、上記4個の方法のうちのいずれか2個以上の方法の各々により、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。障害物判別部13は、これらの方法による判定結果の論理積を取る。すなわち、障害物判別部13は、これらの方法の全てにより検知区間Δにおける特徴量を示すデータが蓄積済みである旨の判定結果が得られた場合、当該判定結果を確定する。
 なお、図17に示す如く、車両1の移動に応じて検知区間Δが随時更新されるものであっても良い。この場合、障害物判別部13は、車両1が走行済みの最新の検知区間Δにおける特徴量を示すデータを用いて障害物の種別を判別するものであっても良い。または、障害物判別部13は、第1の検知区間Δ1における特徴量を示すデータが蓄積されたとき、これらのデータが示す特徴量を用いて障害物の種別を判別し、その後、第2の検知区間Δ2における特徴量を示すデータが蓄積されたとき、これらのデータが示す特徴量を用いて障害物の種別を判別し、最終的に、第nの検知区間Δnにおける特徴量を示すデータが蓄積されたとき、これらのデータが示す特徴量を用いて障害物の種別を判別するものであっても良い。
 また、図17Aに示す如く、検知区間Δ1~Δnは車両1が前進するにつれて次第に大きくなるものであっても良い。または、図17Bに示す如く、検知区間Δ1~Δnの各々が一定の大きさを有するものであっても良い。
 次に、図18を参照して、第1パラメータ値及び第2パラメータ値の算出に用いられる特徴量の他の例について説明する。
 障害物判別部13は、障害物検知装置100aが正対判別部14を有する構成において(図9参照)、所定の検知区間Δにおける特徴量を用いて第1パラメータ値及び第2パラメータ値を算出するものであっても良い。すなわち、障害物判別部13は、正対状態における特徴量を示すデータの蓄積数が所定数を超えており、かつ、検知区間Δにおける特徴量を示すデータが蓄積済みである場合、これらのデータが示す特徴量を用いて第1パラメータ値及び第2パラメータ値を算出するものであっても良い。
 図18は、この場合のフローチャートを示している。正対状態における特徴量を示すデータの蓄積数が所定数を超えている場合(ステップST15“YES”)、ステップST18にて、障害物判別部13は、検知区間Δにおける特徴量を示すデータが蓄積済みであるか否かを判定する。検知区間Δにおける特徴量を示すデータが未蓄積である場合(ステップST18“NO”)、運転支援装置200aの処理はステップST12に戻り、再び探索波が送信される。他方、検知区間Δにおける特徴量を示すデータが蓄積済みである場合(ステップST18“YES”)、運転支援装置200aの処理はステップST16に進む。ステップST16にて、障害物判別部13は、これらのデータが示す特徴量を用いて第1パラメータ値及び第2パラメータ値を算出する。
 次に、図19及び図20を参照して、車両1における4個の測距センサ2~2の設置位置の他の例について説明する。
 図19及び図20は、車両1における4個の測距センサ2~2の設置位置の他の例を示している。図19に及び図20に示す如く、4個の測距センサ2~2は、車両1の上下方向(すなわち高さ方向)に対する設置位置が互いに同等なものであっても良い。
 また、図19は、障害物Oが走行障害物(より具体的には壁)である場合における、測距センサ2により送受信される直接波の伝搬経路PP11、測距センサ2により送信されて測距センサ2により受信される間接波の伝搬経路PP21、測距センサ2により送信されて測距センサ2により受信される間接波の伝搬経路PP31及び測距センサ2により送信されて測距センサ2により受信される間接波の伝搬経路PP41の例を示している。また、図19は、これらの直接波及び間接波に対応する反射点RP11,RP21,RP31,RP41の例、並びに障害物Oに対応するグループGの例を示している。
 また、図20は、障害物Oが路上障害物(より具体的には縁石)又は路面障害物(より具体的には段差)である場合における、測距センサ2により送受信される直接波の伝搬経路PP11、測距センサ2により送信されて測距センサ2により受信される間接波の伝搬経路PP21、測距センサ2により送受信される直接波の伝搬経路PP33及び測距センサ2により送信されて測距センサ2により受信される間接波の伝搬経路PP43の例を示している。また、図20は、これらの直接波及び間接波に対応する反射点RP11,RP21,RP33,RP43の例、並びに障害物Oに対応するグループGの例を示している。
 すなわち、実施の形態1にて説明したとおり、距離値算出部23による距離値の算出及び反射点位置算出部24による座標値の算出には、直接波に代えて又は加えて間接波が用いられるものであっても良い。直接波に加えて間接波を用いることにより、直接波のみを用いる場合に比して、各回の探索波の送信により得られる反射点の個数を増やすことができる。これにより、個々のグループに含まれる反射点の個数を増やすことができる。この結果、障害物検知部11による障害物の位置の判定精度を向上することができるのはもちろんのこと、障害物判別部13による障害物の種別の判別精度、すなわち障害物の高さの判断精度を向上することができる。
 次に、特徴量が直間比率である場合の第1パラメータ値及び第2パラメータ値の算出方法の具体例について説明する。
 以下、いずれかの測距センサ2により送信されて、この測距センサ2により受信された直接波の大きさ(例えばピーク値に基づく波高)を「P_XX」と記載する。また、この測距センサ2により送信されて、他の測距センサ2により受信された間接波の大きさ(例えばピーク値に基づく波高)を「P_YX」と記載する。4個の測距センサ2~2を用いることにより、次段落に示す12個の直間比率(P_YX/P_XX)が算出される。
 P_21/P_11
 P_31/P_11
 P_41/P_11
 P_12/P_22
 P_32/P_22
 P_42/P_22
 P_13/P_33
 P_23/P_33
 P_43/P_33
 P_14/P_44
 P_24/P_44
 P_34/P_44
 特徴量抽出部12は、上記12個の直間比率を算出して、当該算出された直間比率を特徴量として抽出する。障害物判別部13は、例えば、これらの直間比率の平均値P_aveを第1パラメータ値として算出する。障害物判別部13は、例えば、これらの直間比率の分散値P_varを第2パラメータ値として算出する。
 次に、運転支援装置200aのそのほかの変形例について説明する。
 まず、運転支援制御部15aによる運転支援制御は、車両1と障害物の衝突を回避するための制御であれば良く、車両1のブレーキを作動させる制御に限定されるものではない。例えば、運転支援制御部15aによる運転支援制御は、車両1が障害物に衝突する可能性の有無を判定して、当該可能性があると判定された場合、その旨を車両1の運転者に警告する制御であっても良い。車両1の運転者は、当該警告に応じて、車両1のブレーキペダルを操作することにより車両1を停止させるものであっても良い。
 また、車両1における4個の測距センサ2~2の設置位置は上記の例に限定されるものではない。例えば、4個の測距センサ2~2のうちのより外側に配置されている2個の測距センサ2,2とより内側に配置されている2個の測距センサ2,2とは、車両1の前後方向(すなわち奥行方向)に対する設置位置が互いに異なるものであっても良い。
 また、4個の測距センサ2~2のうちの両端部に配置されている測距センサ2,2は、車両1の斜め前方に向けられているものであっても良い。例えば、測距センサ2は車両1の左斜め前方に向けられているものであっても良く、測距センサ2は車両1の右斜め前方に向けられているものであっても良い。
 また、測距センサ2は、車両1の後端部(より具体的にはリアバンパー部)に設けられており、かつ、車両1の後方に向けられているものであっても良い。この場合、障害物検知部11は、車両1が後退しているとき、測距センサ2に探索波を1回以上送信させることにより、車両1の後方にある障害物を検知するものであっても良い。また、4個の測距センサ2~2のうちの両端部に配置されている測距センサ2,2は、車両1の斜め後方に向けられているものであっても良い。
 また、測距センサ2の個数は2個以上であれば良く、4個に限定されるものではない。すなわち、測距センサ2は、4個の測距センサ2~2に代えてN個の測距センサ2~2により構成されているものであっても良い。
 また、図9等に示す障害物検知装置100aは、実施の形態1にて説明したものと同様の種々の変形例、すなわち障害物検知装置100と同様の種々の変形例を採用することができる。
 以上のように、実施の形態2の運転支援装置200aは、障害物検知装置100aと、障害物判別部13による障害物の高さの判断結果に応じた運転支援制御を実行する運転支援制御部15aと、を備える。障害物検知装置100aを用いることにより、運転支援制御の精度を向上することができる。
 また、運転支援制御は、衝突回避に係る制御である。障害物検知装置100aを用いることにより、車両1の遠方(より具体的には5メートル以上遠方)に位置する障害物の高さを判断することができる。この結果、車両1のブレーキを作動させる制御の実行要否を早期に決定することができるため、制動にかける時間を確保することができ、急ブレーキの発生を抑制することができる。また、車両1の前方又は後方にある障害物が路面障害物であるとき、誤警報の発生を抑制することができる。また、車両1の上下方向(すなわち高さ方向)に対する測距センサ2の設置位置の制約をなくすことができるため、車両1の意匠性を向上することができ、設計の自由度を向上することができる。
 また、障害物検知装置100aは、測距センサ2が障害物と正対しているか否かを判別する正対判別部14を備え、障害物判別部13は、測距センサ2が障害物と正対している状態における特徴量を用いて障害物の種別を判別する。これにより、障害物の種別の判別精度を更に向上することができる。
 また、障害物判別部13は、所定の検知区間Δにおける特徴量を用いて第2パラメータ値を算出する。これにより、第2パラメータ値を用いた判別の信頼度を向上することができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本発明の障害物検知装置は、例えば、衝突回避又は駐車支援に係る制御に応用することができる。
 1 車両、2 測距センサ、11 障害物検知部、12 特徴量抽出部、13 障害物判別部、14 正対判別部、15a 運転支援制御部、21 送信信号出力部、22 受信信号取得部、23 距離値算出部、24 反射点位置算出部、25 グループ化部、26 自車位置算出部、27 センサ位置算出部、31 プロセッサ、32 メモリ、33 処理回路、100,100a 障害物検知装置、200a 運転支援装置。

Claims (11)

  1.  車両に設けられている測距センサが障害物による複数の反射波を受信した場合における複数の前記反射波に係る特徴量を抽出する特徴量抽出部と、
     前記特徴量の分散量が大きいときは前記分散量が小さいときに比して前記障害物の高さが高いと判断する障害物判別部であって、前記特徴量の大きさを示す第1パラメータ値及び前記分散量の大きさを示す第2パラメータ値のクラスタリングの結果に基づき、少なくとも前記障害物が走行障害物であるか否かを判別する前記障害物判別部と、を備え、
     前記特徴量は、複数の前記反射波における大きさの比率である
     ことを特徴とする障害物検知装置。
  2.  複数の前記反射波は、直接波及び間接波を含むものであり、
     前記比率は、複数の前記反射波における直間比率である
     ことを特徴とする請求項1記載の障害物検知装置。
  3.  複数の前記反射波は、設置位置が互いに異なる複数の前記測距センサにより受信された直接波又は間接波を含むものであり、
     前記比率は、複数の前記反射波における直直比率又は間間比率である
     ことを特徴とする請求項1記載の障害物検知装置。
  4.  前記測距センサが前記障害物と正対しているか否かを判別する正対判別部を備え、
     前記障害物判別部は、前記測距センサが前記障害物と正対している状態における前記特徴量を用いて前記障害物の種別を判別する
     ことを特徴とする請求項1記載の障害物検知装置。
  5.  前記正対判別部は、前記測距センサに対する前記障害物の正対角度を算出して、前記正対角度が所定角度以下であるとき前記測距センサが前記障害物と正対していると判別することを特徴とする請求項4記載の障害物検知装置。
  6.  前記正対判別部は、複数の前記測距センサのうち、他の前記測距センサを介して互いに離隔配置されている前記測距センサを用いて前記正対角度を算出することを特徴とする請求項5記載の障害物検知装置。
  7.  前記特徴量抽出部は、複数の前記反射波の各々の波高、波幅、波形面積又は応答時間に基づき複数の前記反射波の各々の大きさを特定して、当該特定された大きさを用いて前記特徴量を抽出することを特徴とする請求項1記載の障害物検知装置。
  8.  前記障害物判別部は、所定の検知区間における前記特徴量を用いて前記第2パラメータ値を算出することを特徴とする請求項1記載の障害物検知装置。
  9.  前記検知区間は、前記測距センサと前記障害物間の距離の変化量、前記車両の移動量、前記特徴量を示すデータの蓄積時間又は前記特徴量を示すデータの蓄積数のうちの少なくとも一つに基づくものであることを特徴とする請求項8記載の障害物検知装置。
  10.  前記障害物判別部は、前記測距センサが前記障害物と正対している状態における前記特徴量を示すデータの蓄積数が所定数を超えたとき、前記データが示す前記特徴量を用いて前記障害物の種別を判別することを特徴とする請求項4記載の障害物検知装置。
  11.  前記正対角度は、時間的又は距離的な所定区間における平均値を用いることを特徴とする請求項6記載の障害物検知装置。
PCT/JP2018/025255 2018-07-03 2018-07-03 障害物検知装置 WO2020008535A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025255 WO2020008535A1 (ja) 2018-07-03 2018-07-03 障害物検知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025255 WO2020008535A1 (ja) 2018-07-03 2018-07-03 障害物検知装置

Publications (1)

Publication Number Publication Date
WO2020008535A1 true WO2020008535A1 (ja) 2020-01-09

Family

ID=69059553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025255 WO2020008535A1 (ja) 2018-07-03 2018-07-03 障害物検知装置

Country Status (1)

Country Link
WO (1) WO2020008535A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191876A (ja) * 1999-10-26 2001-07-17 Honda Motor Co Ltd 物体検知装置および車両の走行安全装置
JP2009041981A (ja) * 2007-08-07 2009-02-26 Nissan Motor Co Ltd 物体検出装置および方法、ならびに物体検出装置を備えた車両
JP2014074665A (ja) * 2012-10-04 2014-04-24 Nippon Soken Inc 物体検知装置
JP2016128769A (ja) * 2015-01-09 2016-07-14 三菱電機株式会社 障害物検出装置および障害物検出方法
US20180038950A1 (en) * 2016-08-02 2018-02-08 Thales Method for measuring the height of a target relative to the ground using a moving radar, and radar implementing such a method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001191876A (ja) * 1999-10-26 2001-07-17 Honda Motor Co Ltd 物体検知装置および車両の走行安全装置
JP2009041981A (ja) * 2007-08-07 2009-02-26 Nissan Motor Co Ltd 物体検出装置および方法、ならびに物体検出装置を備えた車両
JP2014074665A (ja) * 2012-10-04 2014-04-24 Nippon Soken Inc 物体検知装置
JP2016128769A (ja) * 2015-01-09 2016-07-14 三菱電機株式会社 障害物検出装置および障害物検出方法
US20180038950A1 (en) * 2016-08-02 2018-02-08 Thales Method for measuring the height of a target relative to the ground using a moving radar, and radar implementing such a method

Similar Documents

Publication Publication Date Title
US10247825B2 (en) Object detection device
US20180045811A1 (en) Radar-installation-angle calculating device, radar apparatus, and radar-installation-angle calculating method
JP6430778B2 (ja) 物体検知装置
JP4992367B2 (ja) 物体検出装置、物体検出方法、およびコンピュータが実行するためのプログラム
JPWO2017060975A1 (ja) 駐車形態判定装置
JP4387304B2 (ja) 自動車のセンサ配置,および間隔制御方法
JP6577767B2 (ja) 物体検知装置及び物体検知方法
JP2008507706A (ja) 車両における対象検出方法および対象検出装置
JP2010266225A (ja) 物体検出装置
JP2010091317A (ja) レーダ装置
JP6811913B2 (ja) 障害物検知装置
JP7199436B2 (ja) 障害物検知装置及び運転支援装置
JP7127969B2 (ja) レーダ装置及び信号処理方法
JP6599075B2 (ja) 障害物検出装置
JP6942254B2 (ja) 障害物検知装置又は運転支援装置
US11142187B2 (en) Parking assistance device
WO2020008536A1 (ja) 障害物検知装置
CN113228133B (zh) 驾驶辅助装置
WO2020008535A1 (ja) 障害物検知装置
JP7167871B2 (ja) 物標検出装置
WO2020049650A1 (ja) 運転支援装置
JP3475745B2 (ja) 車間距離警報装置
CN116209914A (zh) 基于雷达传感器的测量并通过识别干扰探测来识别车辆环境中的道路使用者的方法以及运算设备
JP6890744B2 (ja) 駐車形態判定装置
JP6808113B2 (ja) 障害物検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP