WO2020007264A1 - 立式洗衣机 - Google Patents

立式洗衣机 Download PDF

Info

Publication number
WO2020007264A1
WO2020007264A1 PCT/CN2019/094243 CN2019094243W WO2020007264A1 WO 2020007264 A1 WO2020007264 A1 WO 2020007264A1 CN 2019094243 W CN2019094243 W CN 2019094243W WO 2020007264 A1 WO2020007264 A1 WO 2020007264A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
tub
washing tub
water
laundry
Prior art date
Application number
PCT/CN2019/094243
Other languages
English (en)
French (fr)
Inventor
间宫春夫
Original Assignee
青岛海尔洗衣机有限公司
Aqua株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, Aqua株式会社 filed Critical 青岛海尔洗衣机有限公司
Priority to CN201980043814.4A priority Critical patent/CN112384652A/zh
Publication of WO2020007264A1 publication Critical patent/WO2020007264A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F23/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry 
    • D06F23/04Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry  and rotating or oscillating about a vertical axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the invention relates to a vertical washing machine.
  • the washing machine described in the following Patent Document 1 includes a washing and dehydrating bucket, and a pulsator is rotatably arranged at the bottom of the washing machine; a receiving bucket is provided to contain the washing and dehydrating bucket in a freely rotating manner; The dehydration barrel is driven by rotation; and the control unit controls the washing process, rinsing process, and the like.
  • the control unit performs the agitation process and the washing tub rotation process during the washing process, the rinsing process.
  • the control unit drives the pulsator in reverse.
  • the control unit rotates and drives the washing and dewatering tub so that the washing water between the washing and dewatering tub and the receiving tub rises, and sprinkles water from the washing and dewatering tub from above.
  • Patent Document 1 Japanese Patent No. 3972504
  • the present invention has been completed under this background, and an object thereof is to provide a vertical washing machine which can smoothly perform a process of raising water and spraying water into the washing tub through the rotation of the washing tub, thereby shortening the washing time.
  • the invention relates to a vertical washing machine, comprising: an outer tub capable of storing water; a driving unit generating a driving force; a washing tub arranged in the outer tub to receive laundry and having a function for allowing water to pass between the washing tub and the washing machine; Said through-holes between the outer tubs, said washing tub is formed with an inlet and an outlet for washing at the upper end, and a bottom wall is provided at the lower end, said washing tub is rotated by the driving force of said driving unit;
  • the washing tub is arranged on the bottom wall and rotates in response to the driving force of the driving unit; a water supply unit supplies water to the washing tub; and a control unit controls the driving unit and the water supply unit, so that The control unit performs the following processing in at least one of the washing process and the rinsing process after the washing process: agitation processing, in a state where water is stored in the washing tub by the water supply unit,
  • the driving unit rotates the rotary wing, thereby agitating the laundry in the
  • the present invention is characterized in that the vertical washing machine further includes a detection unit that detects a magnitude of a bias of the laundry in the washing tub in which water is stored during the tub rotation process.
  • the present invention is characterized in that when the detection unit detects a deviation of a predetermined size or more in the tub rotation process, the control unit causes the washing tub and the rotating wing to pass through the driving unit. At least one of the wheels is rotated to spread out the laundry in the washing tub.
  • the present invention is characterized in that, when the detection unit detects a deviation of a predetermined size or more in the tub rotation processing, the control unit stops the rotation of the washing tub and rotates the rotary wing, thereby Stir the laundry in the washing tub.
  • the vertical washing machine sequentially performs the stirring process, the spreading process, and the tub rotation process in at least one of a washing process and a rinsing process.
  • the stirring process the rotating blade is rotated while water is stored in the washing tub. Therefore, the laundry in the washing tub is washed by stirring.
  • the spreading process after the stirring process the rotating blade rotates with the water stored in the washing tub. Therefore, the laundry in the washing tub is spread to eliminate the bias of the laundry.
  • the washing tub containing water is rotated, so that the water in the outer tub rises between the outer tub and the washing tub, and drips from the inlet and outlet of the upper end of the washing tub to the laundry in the washing tub.
  • Such a sprinkler from the upper side can also reliably wash the laundry on the inlet and outlet sides.
  • the bucket rotation process is started in a state in which the bias of the laundry is eliminated in advance by the spreading process. Therefore, in the bucket rotation process, the rotation speed of the washing bucket is smoothly increased to the rotation speed at which watering is started. This enables smooth barrel rotation processing.
  • due to the spreading process performed in advance abnormal vibration of the washing tub is unlikely to occur during the rotation of the tub. Therefore, as far as possible, discontinuing the rotation of the washing tub due to abnormal vibration is not performed to eliminate the bias of the laundry in the washing tub. Just fine. This can shorten the washing time.
  • the magnitude of the bias of the laundry in the washing tub in which the water is stored is detected during the tub rotation process.
  • at least one of the washing tub and the rotating wing may be rotated, thereby spreading the laundry in the washing tub.
  • the rotation of the washing tub is stopped, but the laundry in the washing tub is agitated by the rotation of the rotary blade, thereby continuing the washing Washing.
  • the laundry can be washed to the same degree as when the washing tub is continuously rotated.
  • FIG. 1 is a schematic vertical sectional view of a vertical washing machine according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the electrical configuration of a vertical washing machine.
  • FIG. 3 is a flowchart showing a washing operation performed in the vertical washing machine.
  • FIG. 4 is a flowchart showing a bucket rotation process according to the first embodiment during a washing operation.
  • FIG. 5 is a schematic perspective view of an upper portion of a washing tub in a vertical washing machine.
  • FIG. 6 is a flowchart showing a barrel rotation process of the second embodiment.
  • FIG. 1 is a schematic vertical sectional view of a vertical washing machine 1 according to an embodiment of the present invention.
  • the up-down direction in FIG. 1 is referred to as the up-down direction Z of the vertical washing machine 1, and in the up-down direction Z, the upper side is referred to as an upper side Z1, and the lower side is referred to as a lower side Z2.
  • the vertical washing machine 1 includes a cabinet 2, an outer tub 3, a washing tub 4, a pulsator 5 as an example of a rotary wing, a motor 6 as an example of a drive unit, and a clutch 7 as an example of a switching unit.
  • the case 2 is made of metal, for example, and is formed in a box shape.
  • An opening 2B is formed in the upper surface 2A of the case 2 to communicate the inside and outside of the case 2.
  • a door 10 that opens and closes the opening 2B is provided on the upper surface 2A.
  • a display operation section 11 including a liquid crystal operation panel and the like is provided around the opening 2B in the upper surface 2A.
  • the user of the vertical washing machine 1 can select the operating conditions of the washing operation performed in the vertical washing machine 1 by operating the display operation unit 11, or instruct the vertical washing machine 1 to start and stop the washing operation.
  • the display operation unit 11 displays information for the user.
  • the outer tub 3 is made of resin, for example, and is formed in a bottomed cylindrical shape.
  • the outer tub 3 has a generally cylindrical peripheral wall 3A arranged along the vertical direction Z; a bottom wall 3B that blocks the hollow portion of the peripheral wall 3A from the lower side Z2; and a ring-shaped annular wall 3C along the peripheral wall 3A The upper end edge of is projected toward the center side of the circumferential wall 3A.
  • an entrance 3D is formed which communicates with the hollow portion of the circumferential wall 3A from the upper side Z1.
  • the entrance 3D is in a state of communicating with the opening 2B from the opening 2B of the case 2 from the lower side Z2.
  • the annular wall 3C is provided with a door 12 for opening and closing the entrance 3D.
  • a guide surface 3E is provided which covers the entrance and exit 3D and is inclined obliquely to the lower side.
  • the bottom wall 3B is formed in a circular plate shape that extends substantially horizontally, and a through hole 3F penetrating the bottom wall 3B is formed at a center position of the bottom wall 3B.
  • a water supply path 13 connected to a tap of tap water is connected to the annular wall 3C of the outer tub 3 from the upper side Z1.
  • a water supply valve 14 is provided in the water supply path 13 as an example of a water supply unit.
  • the water supply valve 14 includes, for example, a solenoid valve.
  • a drainage channel 15 is connected to the bottom wall 3B of the outer tub 3 from the lower side Z2.
  • a drain valve 16 as an example of a drain unit is provided in the middle of the drain path 15.
  • the drain valve 16 is opened and closed by a torque motor (not shown), for example.
  • the washing tub 4 is made of metal, for example, and has a bottomed cylindrical shape that is one circle smaller than the outer tub 3, and can hold laundry Q inside.
  • the washing tub 4 is coaxially arranged in the outer tub 3.
  • the washing tub 4 in a state accommodated in the outer tub 3 can be rotated around an axis J constituting a central axis thereof and extending in the vertical direction Z as a center.
  • the washing tub 4 has a generally cylindrical peripheral wall 4A arranged along the vertical direction Z; a bottom wall 4B blocking the hollow portion of the peripheral wall 4A from the lower side Z2; and a ring-shaped annular wall 4C along the peripheral wall 4A The upper end edge of the protrusion protrudes to the axis J side.
  • the inner peripheral surface of the peripheral wall 4A is the inner peripheral surface of the washing tub 4.
  • the peripheral wall 4A is in a state surrounded by the peripheral wall 3A of the outer tub 3.
  • the bottom wall 4B is provided at the lower end of the washing tub 4.
  • the annular wall 4C faces the annular wall 3C of the outer tub 3 from the lower side Z2.
  • An entrance 4D is formed inside the annular wall 4C.
  • the entrance / exit 4D is located at the upper end of the washing tub 4, and the hollow portion of the circumferential wall 4A is exposed to the upper side Z1.
  • the entrance / exit 4D faces the entrance / exit 3D of the outer tub 3 from the lower side Z2 and communicates with the entrance / exit 3D.
  • the user takes the laundry Q from the upper side Z1 to the washing tub 4 through the open opening 2B, the entrance 3D, and the entrance 4D.
  • a plurality of through holes 4E are formed in the circumferential wall 4A and the bottom wall 4B of the washing tub 4. Water in the outer tub 3 flows between the outer tub 3 and the washing tub 4 through the through holes 4E, and is also stored in the washing tub 4. Therefore, the water level in the outer tub 3 is consistent with the water level in the washing tub 4. It should be noted that the through hole 4E may not be provided on the peripheral wall 4A, and may be provided only on the bottom wall 4B.
  • the bottom wall 4B of the washing tub 4 is formed in a disc shape, and extends on the upper side Z1 and the bottom wall 3B of the outer tub 3 at substantially parallel intervals.
  • a through hole 4F penetrating the bottom wall 4B is formed at a center position of the bottom wall 4B that coincides with the axis J.
  • a tubular support shaft 17 is provided on the bottom wall 4B, and the support shaft 17 surrounds the through hole 4F and protrudes to the lower side Z2 along the axis J.
  • the support shaft 17 is inserted into the through hole 3F of the bottom wall 3B of the outer tub 3, and the lower end portion of the support shaft 17 is located on the lower side Z2 of the bottom wall 3B.
  • the pulsator 5 is formed in a disc shape with the axis J as the center, and is arranged on the bottom wall 4B in the washing tub 4.
  • a plurality of blades 5A arranged radially are provided on the upper surface of the entrance 4D facing the washing tub 4.
  • the pulsator 5 is provided with a rotation shaft 18 extending from the center of the pulsator 5 along the axis J to the lower side Z2.
  • the rotation shaft 18 is inserted into a hollow portion of the support shaft 17, and the lower end portion of the rotation shaft 18 is located on the lower side Z2 of the bottom wall 3B of the outer tub 3.
  • the motor 6 is an electric motor such as an inverter motor.
  • the motor 6 is arranged inside the casing 2 on the lower side Z2 of the outer tub 3.
  • the motor 6 includes an output shaft 19 that rotates around the axis J, and outputs the generated driving force from the output shaft 19.
  • the clutch 7 is interposed between the lower end portions of the support shaft 17 and the rotation shaft 18 and the upper end portion of the output shaft 19 protruding from the motor 6 to the upper side Z1.
  • the clutch 7 selectively transmits the driving force output from the output shaft 19 of the motor 6 to one or both of the support shaft 17 and the rotation shaft 18.
  • the washing tub 4 receives the driving force of the motor 6 and rotates about the axis J.
  • the pulsator 5 receives the driving force from the motor 6 and rotates about the axis J.
  • the clutch 7 a known transmission mechanism is used.
  • the clutch 7 may be operated by the torque motor (not shown).
  • FIG. 2 is a block diagram showing the electrical configuration of the vertical washing machine 1.
  • the vertical washing machine 1 includes a water supply unit and a microcomputer 21 as an example of a control unit and a detection unit.
  • the microcomputer 21 includes, for example, a CPU 22, a memory 23 such as a ROM or a RAM, and a timer 24 for timing, and is built in the case 2 (see FIG. 1).
  • the motor 6, the clutch 7, the water supply valve 14, and the drain valve 16 are each electrically connected to the microcomputer 21 via a drive circuit 25, and the display operation unit 11 is also electrically connected to the microcomputer 21.
  • the microcomputer 21 energizes the motor 6 to drive it, or shuts down the power when it is powered off.
  • the microcomputer 21 can also control the rotation direction of the motor 6. Thereby, the motor 6 can rotate forward or reverse.
  • the microcomputer 21 controls the clutch 7 to switch the transmission target of the driving force of the motor 6 to one or both of the washing tub 4 and the pulsator 5.
  • the microcomputer 21 controls opening and closing of the water supply valve 14 and the drain valve 16. When the user operates the display operation unit 11 to select an operation condition or the like, the microcomputer 21 receives the selection.
  • the microcomputer 21 controls the display contents of the display operation section 11.
  • the vertical washing machine 1 further includes a buzzer 26 electrically connected to the microcomputer 21, a rotation speed reading device 27, and a water level detection unit 28.
  • the microcomputer 21 generates a predetermined sound by the buzzer 26, thereby notifying the user of the start, end, and the like of the washing operation.
  • the rotation speed reading device 27 functions as an example of the detection means.
  • the rotation speed reading device 27 is a device that reads the rotation speed of the motor 6, and strictly speaking, reads the rotation speed of the output shaft 19 of the motor 6, and includes, for example, a Hall IC.
  • the rotation speed read by the rotation speed reading device 27 is input to the microcomputer 21 in real time.
  • the microcomputer 21 controls the duty ratio of the voltage applied to the motor 6 based on the input rotational speed, and thereby controls the motor 6 to rotate at a desired rotational speed.
  • each of the washing tub 4 and the pulsator 5 may be the same as the rotation speed of the motor 6, or may be a value obtained by multiplying a predetermined constant such as a reduction ratio in the clutch 7 by the rotation speed of the motor 6.
  • the water level detection unit 28 is a water level sensor that detects the water level in the outer tub 3, that is, the water level in the washing tub 4.
  • a pressure type water level sensor that detects the water level in the washing tub 4 based on the pressure in the outer tub 3 can be used.
  • the microcomputer 21 performs the washing operation by controlling the operations of the motor 6, the clutch 7, the water supply valve 14, and the drain valve 16.
  • the washing operation includes a washing process for washing the laundry Q, a washing process for rinsing the laundry Q after the washing process, and a dehydration process for rotating the washing tub 4 after the washing process to dehydrate the laundry Q.
  • the vertical washing machine 1 may also be an all-in-one washing machine that performs a drying process of drying the laundry Q after the dehydration process.
  • two rinsing processes are performed, the first rinsing process is referred to as a first rinsing process, and the second rinsing process is referred to as a second rinsing process.
  • the microcomputer 21 When the user puts the laundry Q into the washing tub 4 to indicate the start of the washing operation, the microcomputer 21 starts the washing operation. It should be noted that the user may put the detergent in the washing tub 4 before and after the laundry Q is put.
  • the microcomputer 21 detects the amount of laundry Q in the washing tub 4, that is, the load amount (step S1). As an example of the load amount detection, the microcomputer 21 detects the load amount based on a fluctuation in the rotation speed of the motor 6 when the washing tub 4 is stably rotated at a low speed.
  • the microcomputer 21 determines the water level W of the water stored in the washing tub 4 to supply water thereafter based on the load amount just detected (see FIG. 1). The relationship between the water level W and the load is obtained in advance through experiments or the like and stored in the memory 23.
  • the microcomputer 21 continuously opens the water supply valve 14 to supply water into the washing tub 4 (step S2). Since the drain valve 16 is closed, the water level in the washing tub 4 rises. When the water level in the washing tub 4 rises to the water level W just determined, the microcomputer 21 closes the water supply valve 14 to stop the water supply. This completes the water supply process.
  • the microcomputer 21 performs a stirring process. Specifically, the microcomputer 21 switches the clutch 7 as necessary to transmit the driving force of the motor 6 to the pulsator 5 and then drives the motor 6 to rotate the pulsator 5 (step S3).
  • the pulsator 5 can continue to rotate in the same direction.
  • the intermittent rotation of the motor 6 causes the pulsator 5 to rotate in the reverse direction in such a manner that it alternates between forward rotation and reverse rotation every 1 to 2 seconds.
  • the stirring process the laundry Q in the washing tub 4 is stirred and washed by the pulsator 5 rotating in the reverse direction.
  • the pulsator 5 can also be rotated in the water supply process in step S2, and thus, the detergent is easily dissolved in water.
  • the dirt of the laundry Q is decomposed by a water-soluble detergent.
  • the microcomputer 21 After the stirring process, the microcomputer 21 then performs the spreading process in a state where water is stored in the washing tub 4 (step S4).
  • the microcomputer 21 intermittently drives the motor 6 under conditions different from the stirring process so that the pulsator 5 rotates in the reverse direction.
  • the pulsator 5 rotates in the reverse direction alternately at a rotation speed higher than that in the stirring process by alternately performing forward rotation and reverse rotation every 0.5 seconds shorter than in the stirring process.
  • the laundry Q immersed in the washing tub 4 is spread out by the pulsator 5 rotating in the reverse direction. Therefore, the bias of the laundry Q is eliminated.
  • the bias of the laundry Q refers to the bias of the laundry Q in the washing tub 4, and is also called an imbalance.
  • the microcomputer 21 executes a bucket rotation process (step S5). Specifically, referring to the flowchart of FIG. 4, first, the microcomputer 21 switches the clutch 7 so that the driving force of the motor 6 is transmitted to the washing tub 4 (step S51). Then, the microcomputer 21 confirms whether the water level in the washing tub 4 has reached a predetermined drum rotation water level (step S52).
  • the rotating water level of the bucket refers to a water level to the extent that the water in the outer tub 3 does not overflow from the inlet and outlet 3D when the washing tub 4 is rotated thereafter, and specifically, it is higher than half the internal height of the washing tub 4.
  • the microcomputer 21 opens the drain valve 16 to drain the washing tub 4. (Step S53).
  • step S52 When the water level in the washing tub 4 reaches the drum rotation water level (YES in step S52), the microcomputer 21 turns on the motor 6 to rotate (step S54). As a result, the washing tub 4 that has stored water to the drum rotation water level rotates at a high speed, for example, at 200 rpm. In this way, a vortex is generated in the outer tub 3, and the water surface S is bent into a U-shape such that the central portion on the axis J side becomes lower and the outer peripheral portion becomes higher (see the two-dot chain line in FIG. 1). Thereby, the water in the outer tub 3 rises between the peripheral wall 3A of the outer tub 3 and the peripheral wall 4A of the washing tub 4.
  • the rising water passes between the ribs 3G arranged on the lower surface of the annular wall 3C of the outer tub 3, spirally rotates and falls, and drops from the entrance 4D of the washing tub 4 into the washing tub 4 (see FIG. 1). And the thick two-dot chain line in Figure 5). It should be noted that the guide surface 3E of the annular wall 3C of the outer tub 3 guides water passing through between the ribs 3G downward toward the entrance 4D (see FIG. 1).
  • the barrel rotation process may be performed only when the amount of the laundry Q is large-capacity washing with a predetermined amount or more.
  • the drum rotation process is started, and therefore, in the drum rotation process, the rotation speed of the washing tub 4 is smoothly increased to the rotation speed at which watering is started.
  • This enables smooth barrel rotation processing.
  • the spreading process is performed in advance, abnormal vibration of the washing tub 4 is unlikely to occur during the barrel rotation process. Therefore, the rotation of the washing tub 4 should not be stopped due to abnormal vibration to eliminate the laundry in the washing tub 4 as much as possible.
  • the treatment of Q's bias is sufficient. This can shorten the washing time.
  • the microcomputer 21 detects the magnitude of the bias of the laundry Q in the washing tub 4, which is a so-called eccentric load, while the water is continuously stored in the washing tub 4 (step S55). Specifically, when the bias of the laundry Q becomes large, the fluctuation of the rotation speed of the motor 6 becomes large. Therefore, the microcomputer 21 reads the rotation speed fluctuation of the motor 6 through the rotation speed reading device 27, thereby detecting the bias of the laundry Q in the washing tub 4. In this case, compared with the case where the magnitude of the bias of the laundry Q is detected after the washing tub 4 is temporarily drained, the time can be shortened. It should be noted that the magnitude of the bias of the laundry Q may be detected by other known methods. When the bias of the laundry Q is greater than or equal to a predetermined size, the smooth rotation of the washing tub 4 may be affected.
  • step S55 when a deviation of a predetermined size or more is not detected (NO in step S55), when a predetermined barrel rotation time has elapsed from the rotation of the motor 6 in step S54 (YES in step S56), the micro The computer 21 ends the barrel rotation processing by stopping the motor 6 (step S57).
  • the microcomputer 21 confirms whether the detected bias is the bias detected for the first time in the barrel rotation process (Ste S58). The number of biases detected in this barrel rotation process is temporarily stored in the memory 23.
  • step S58 the microcomputer 21 stops the motor 6 to suspend the rotation of the washing tub 4 (step S59). Then, the microcomputer 21 switches the clutch 7 so that the driving force of the motor 6 is transmitted to the pulsator 5 and, for example, rotates the pulsator 5 in the reverse condition under the same conditions as the spreading process in step S4, thereby rotating the washing tub 4
  • the inside laundry Q is spread out (step S60). At this time, water is already stored in the washing tub 4 and the laundry Q is immersed in the water to spread out easily. Therefore, it is not necessary to supply water to spread the laundry Q.
  • the microcomputer 21 may rotate the washing tub 4 without rotating the pulsator 5, or may rotate both the washing tub 4 and the pulsator 5.
  • the washing tub 4 and the pulsator 5 may be rotated in the same direction, or may be rotated in the opposite direction as described above.
  • the microcomputer 21 switches the clutch 7 so that the driving force of the motor 6 is transmitted to the washing tub 4 and restarts the rotation of the washing tub 4 (step S54). That is, in the case where the bias is detected for the first time in the barrel rotation process, the rotation of the washing tub 4 is restarted on the basis of eliminating the bias by spreading. Accordingly, the bucket rotation process can be continued even after the bucket rotation process is suspended and the bias of the laundry Q is eliminated without re-performing the bucket rotation process. Therefore, the washing time can be further shortened. On the other hand, if the bias detected in the barrel rotation process is greater than or equal to the second time (NO in step S58), the microcomputer 21 stops the motor 6 to stop the barrel rotation process (step S57).
  • the washing process is ended.
  • the microcomputer 21 rotates the washing tub 4 at a high speed with the drain valve 16 opened (step S6).
  • the centrifugal force generated by the high-speed rotation causes the laundry in the washing tub 4 to be dehydrated.
  • the water seeping from the laundry by dehydration is discharged from the drain 15 to the outside of the machine.
  • the microcomputer 21 switches the clutch 7 to stop the motor 6, so that the driving force of the motor 6 is not transmitted to the washing tub 4, and therefore, the washing tub 4 rotates by inertia.
  • the microcomputer 21 closes the drain valve 16.
  • the microcomputer 21 performs a shower rinsing (step S7). Specifically, the microcomputer 21 intermittently opens the water supply valve 14 in a state where the drain valve 16 is closed, thereby spraying water into the washing tub 4. In this state, the microcomputer 21 rotates the washing tub 4 at a low speed of, for example, 30 rpm, so that the shower is spread all over the corners of the laundry Q. Thereby, the laundry Q in the washing tub 4 is rinsed in all directions. After that, the microcomputer 21 executes the same intermediate dehydration process as step S6 (step S8). It should be noted that each intermediate dehydration process can be regarded as a part of the processing in the subsequent rinsing process.
  • the microcomputer 21 performs a second rinsing process.
  • the content of the second rinsing process is the same as the washing process, except that there is no detergent.
  • the microcomputer 21 supplies water in the same manner as in step S2 (step S9)
  • the microcomputer 21 stirs and rinses the laundry Q in the same manner as in step S3 (step S10), and spreads out the laundry Q in the same manner as in step S4 ( In step S11), bucket rotation processing is performed in the same manner as in step S5 (step S12).
  • the microcomputer 21 executes the same final dehydration process as the intermediate dehydration process (step S13).
  • the rotation condition of the washing tub 4 may be different from the intermediate dehydration process and the final dehydration process.
  • the highest rotation speed of the washing tub 4 in the final dehydration process is higher than the highest rotation speed of the washing tub 4 in the intermediate dehydration process.
  • the washing operation ends.
  • FIG. 6 is a flowchart showing a barrel rotation process of the second embodiment. It should be noted that in FIG. 6, the same processing steps as those in FIG. 4 are assigned the same processing steps as those in FIG. 4, and detailed descriptions of the processing steps are omitted.
  • the microcomputer 21 when a deviation of a predetermined size or more is detected in the tub rotation processing (YES in step S55), the microcomputer 21 quickly stops the motor 6 to suspend the rotation of the washing tub 4 (step S61). In this case, the microcomputer 21 rotates the pulsator 5 after switching the clutch 7 so that the driving force of the motor 6 is transmitted to the pulsator 5 to stir the laundry Q in the washing tub 4 (step S62). In this way, the washing method is changed from the rotation of the washing tub 4 to the stirring of the pulsator 5 to continue washing the laundry Q. Therefore, the laundry Q can be washed to the same degree as when the rotation of the washing tub 4 is continued during the drum rotation process.
  • step S63 When the laundry Q is spread for a predetermined time, the microcomputer 21 stops the motor 6 and ends the tub rotation process (step S57). By spreading out in step S63, it is possible to prevent abnormal vibration of the washing tub 4 during high-speed rotation in the subsequent dehydration process and the like.
  • the stirring process, the spreading process, and the barrel rotation process are performed in both the washing process and the second rinsing process in the above embodiment, they may be performed only in one of the washing process and the second rinsing process, or may be performed Performed during the first rinse.
  • the barrel rotation processing (step S5) in the washing process and the barrel rotation processing (step S12) in the second rinsing process the contents may be the same as described above or different.
  • the content of the barrel rotation processing (step S5) in the washing process may be one of the first and second embodiments
  • the content of the barrel rotation processing (step S12) in the second rinsing process may be The content is the other of the first embodiment and the second embodiment.
  • step S57 when a deviation of a predetermined size or more is detected twice or more (NO in step S58), the microcomputer 21 immediately stops the barrel rotation processing (step S57).
  • the microcomputer 21 may stop the motor 6 (step S61), switch the clutch 7, and then rotate the pulsator 5 in the reverse direction to stir or spread the laundry Q in the washing tub 4 (step S62) (step S63). , Stop the barrel rotation processing (step S57). That is, a part of the second embodiment can be combined with the first embodiment.
  • the axis J of the washing tub 4 in the vertical washing machine 1 is arranged so as to extend vertically in the vertical direction Z in the above-mentioned embodiment (see FIG. 1), but also includes that the center axis J of the vertical washing machine 1 is slightly relative to the vertical direction Z A structure arranged obliquely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

一种立式洗衣机(1),其能顺利地实施通过洗涤桶(4)的旋转而使水上升并向洗涤桶(4)内洒水的处理,能实现洗涤时间的缩短。立式洗衣机(1)包括:外桶(3)、马达(6)、配置于外桶(3)内的洗涤桶(4)、配置于洗涤桶(4)内的波轮(5)、以及微型计算机(21)。洗涤桶(4)和波轮(5)接受马达(6)的驱动力进行旋转。微型计算机(21)在洗涤过程和漂洗过程中的至少任一方中执行如下处理:搅拌处理,在洗涤桶(4)内蓄有水的状态下使波轮(5)旋转而搅拌洗涤桶(4)内的洗涤物(Q);摊开处理,在搅拌处理之后,在洗涤桶(4)内蓄有水的状态下使波轮(5)旋转而将洗涤物(Q)摊开;以及桶旋转处理,在摊开处理之后,使蓄有水的洗涤桶(4)旋转而使外桶(3)内的水在外桶(3)与洗涤桶(4)之间上升,淋至洗涤桶(4)内的洗涤物(Q)。

Description

立式洗衣机 技术领域
本发明涉及一种立式洗衣机。
背景技术
下述专利文献1所述的洗衣机包括:洗涤兼脱水桶,在其内底部自由旋转地配设有波轮;承接桶,自由旋转地内包洗涤兼脱水桶;驱动单元,对波轮或洗涤兼脱水桶进行旋转驱动;以及控制单元,控制洗涤过程、漂洗过程等。控制单元在洗涤过程、漂洗过程中执行搅拌过程和洗涤桶旋转过程。在搅拌过程中,控制单元反转驱动波轮。在洗涤桶旋转过程中,控制单元对洗涤兼脱水桶进行旋转驱动而使洗涤兼脱水桶与承接桶之间的洗涤水上升,从上方向洗涤兼脱水桶内洒水。
在专利文献1所述的洗衣机中执行的洗涤桶旋转过程中,为了使洗涤水上升而向洗涤兼脱水桶内洒水,需要使洗涤兼脱水桶以一定以上的旋转速度高速旋转。但是,当洗涤兼脱水桶内的洗涤物的偏倚大到规定以上时,洗涤兼脱水桶的旋转速度无法顺利上升,洗涤兼脱水桶发生异常振动,因此,难以持续进行洗涤桶旋转过程。而且,当发生异常振动时,为了消除洗涤物的偏倚,一般会进行如下处理:向洗涤兼脱水桶供水,将洗涤物浸渍于水中后使波轮旋转而将洗涤物摊开,然后排水,但是该处理会使得洗涤时间变长。
现有技术文献
专利文献
专利文献1:日本专利第3972504号公报
发明内容
发明所要解决的问题
本发明是在该背景下完成的,其目的在于,提供一种立式洗衣机,其能顺利地实施通过洗涤桶的旋转而使水上升并向洗涤桶内洒水的处理,实现洗涤时间的缩短。
用于解决问题的方案
本发明是一种立式洗衣机,包括:外桶,能蓄水;驱动单元,产生驱动力;洗涤桶,配置于所述外桶内,收容洗涤物,且具有用于使水在其与所述外桶之间往来的贯通孔,所述洗涤桶在上端形成有洗涤物的出入口,在下端设置有底壁,所述洗涤桶接受所述驱动单元的驱动力而旋转;旋转翼,在所述洗涤桶内配置于所述底壁上,接受所述驱动单元的驱动力而旋转;供水单元,向所述洗涤桶内供水;以及控制单元,控制所述驱动单元和所述供水单元,所述控制单元在洗涤过程和所述洗涤过程之后的漂洗过程中的至少任一过程中,执行如下处理:搅拌处理,在通过所述供水单元使得所述洗涤桶内蓄有水的状态下,通过所述驱动单元使所述旋转翼旋转,由此搅拌所述洗涤桶内的洗涤物;摊开处理,在所述搅拌处理之后,在所述洗涤桶内蓄有水的状态下通过所述驱动单元使所述旋转翼旋转,由此将所述洗涤桶内的洗涤物摊开;以及桶旋转处理,在所述摊开处理之后,通过所述驱动单元使蓄有水的所述洗涤桶旋转,由此使所述外桶内的水在所述外桶与所述洗涤桶之间上升而从所述出入口淋至所述洗涤桶内的洗涤物。
此外,本发明的特征在于,所述立式洗衣机还包括检测单元,所述检测单元在所述桶旋转处理中检测蓄有水的所述洗涤桶内的洗涤物的偏倚的大小。
此外,本发明的特征在于,当所述检测单元在所述桶旋转处理中检测到规定以上大小的偏倚时,所述控制单元通过所述驱动单元使所述洗涤桶和所述旋转翼中的至少一方旋转,由此将所述洗涤桶内的洗涤物摊开。
此外,本发明的特征在于,当所述检测单元在所述桶旋转处理中检测到规定以上大小的偏倚时,所述控制单元中止所述洗涤桶的旋转并使所述旋转翼旋转,由此搅拌所述洗涤桶内的洗涤物。
发明效果
根据本发明,立式洗衣机在洗涤过程和漂洗过程中的至少任一过程中按顺序执行搅拌处理、摊开处理以及桶旋转处理。搅拌处理中,旋转翼在洗涤桶内蓄有水的状态下旋转,因此,洗涤桶内的洗涤物通过搅拌而被清洗。搅拌处理后的摊开处理中,旋转翼在洗涤桶内蓄有水的状态下旋转,因此,通过摊开洗涤桶内的洗涤物从而消除洗涤物的偏倚。摊开处理后的桶旋转处理中,通过蓄有水的洗涤桶旋转,使得外桶内的水在外桶与洗涤桶之间上升而从洗涤桶的上端的出入口淋至洗涤桶内的洗涤物。通过这样的来自上侧的洒水,还能可靠地洗涤出入口侧的洗涤物。在通过摊开处理事先消除了洗涤物的偏倚的状态下开始桶旋转处理,因此,在桶旋转处理中,洗涤桶的旋转速度顺利上升至开始洒水的旋转速度。由此,能顺利地实施桶旋转处理。此外,通过事先进行的摊开处理使得桶旋转处理中不容易发生洗涤桶的异常振动,因此,尽可能不实施因异常振动而中止洗涤桶的旋转来消除洗涤桶内的洗涤物的偏倚的处理即可。由此,能实现洗涤时间的缩短。
此外,根据本发明,在桶旋转处理中检测蓄有水的洗涤桶内的洗涤物的偏倚的大小。这种情况下,可以是,当检测到规定以上大小的偏倚时,洗涤桶和旋转翼中的至少一方旋转,由此将洗涤桶内的洗涤物摊开。由此,即使在暂停桶旋转处理将洗涤物的偏倚消除之后不重新进行桶旋转处理,也能继续桶旋转处理,因此,能进一步实现洗涤时间的缩短。
此外,根据本发明,可以是,当在桶旋转处理中检测到规定以上大小的偏倚时,虽然中止洗涤桶的旋转,但是通过旋转翼旋转对洗涤桶内的洗涤物进行搅拌,由此继续清洗洗涤物。这种情况下,能与继续旋转洗涤桶时相同程度地清洗洗涤物。
附图说明
图1是本发明的一实施方式的立式洗衣机的示意性纵剖图。
图2是表示立式洗衣机的电气结构的框图。
图3是表示立式洗衣机中执行的洗涤运转的流程图。
图4是表示洗涤运转中的第一实施例的桶旋转处理的流程图。
图5是关于立式洗衣机中的洗涤桶的上部的示意性立体图。
图6是表示第二实施例的桶旋转处理的流程图。
附图标记说明
1:立式洗衣机;3:外桶;4:洗涤桶;4B:底壁;4D:出入口;4E:贯通孔;5:波轮;6:马达;14:供水阀;21:微型计算机;27:转速读取装置;Q:洗涤物。
具体实施方式
以下,参照附图,对本发明的实施方式进行具体说明。图1是本发明的一实施方式的立式洗衣机1的示意性纵剖图。将图1中的上下方向称为立式洗衣机1的上下方向Z,上下方向Z中,将上侧称为上侧Z1,将下侧称为下侧Z2。立式洗衣机1包括:箱体2、外桶3、洗涤桶4、作为旋转翼的一例的波轮5、作为驱动单元的一例的马达6、以及作为切换单元的一例的离合器7。
箱体2例如为金属制,形成为箱状。在箱体2的上表面2A形成有连通箱体2的内外的开口2B。在上表面2A设置有开闭开口2B的门10。在上表面2A中的开口2B的周围,设置有包括液晶操作面板等的显示操作部11。立式洗衣机1的使用者能通过操作显示操作部11来选择立式洗衣机1中执行的洗涤运转的运转条件,或者对立式洗衣机1指示洗涤运转的开始、停止等。显示操作部11为使用者显示信息。
外桶3例如为树脂制,形成为有底圆筒状。外桶3具有:大致圆筒状的圆周壁3A,沿上下方向Z配置;底壁3B,从下侧Z2堵住圆周壁3A的中空部分;以及环状的环状壁3C,沿圆周壁3A的上端缘向圆周壁3A的圆心侧突出。在环状壁3C的内侧,形成有从上侧Z1与圆周壁3A的中空部分连通的出入口3D。出入口3D处于从下侧Z2与箱体2的开口2B而与开口2B连通的状态。在环状壁3C设置有开闭出入口3D的门12。在环状壁3C的下表面,设置有将出入口3D包边并且向斜下侧倾斜的引导面3E。底壁3B形成为大致水平延伸的圆板状,在底壁3B的圆心位置形成有贯通底壁3B的贯通孔3F。
在外桶3的环状壁3C,从上侧Z1连接有与自来水的水龙头连接的供水路13。在供水路13的中途设置有作为供水单元的一例的供水阀14。供水阀14例如包括电磁阀。在外桶3的底壁3B,从下侧Z2连接有排水路15。在排水路15的中途设置有作为排水单元的一例的排水阀16。排水阀16例如由转矩马达(未图示)开闭。当在关闭排水阀16的状态下打开供水阀14时,通过从供水路13向外桶3内供水,水蓄于外桶3内。当关闭供水阀14时,停止供水。当打开排水阀16时,外桶3内的水从排水路15排出到机外。
洗涤桶4例如为金属制,形成为比外桶3小一圈的有底圆筒状,内部能收容洗涤物Q。洗涤桶4同轴状地配置于外桶3内。收容于外桶3内的状态的洗涤桶4能以构成其中心轴且沿上下方向Z延伸的轴线J为中心进行旋转。洗涤桶4具有:大致圆筒状的圆周壁4A,沿上下方向Z配置;底壁4B,从下侧Z2堵住圆周壁4A的中空部分;以及环状的环状壁4C,沿圆周壁4A的上端缘向轴线J侧突出。
圆周壁4A的内周面为洗涤桶4的内周面。圆周壁4A处于由外桶3的圆周壁3A包围的状态。底壁4B设置于洗涤桶4的下端。环状壁4C处于从下侧Z2与外桶3的环状壁3C对置的状态。在环状壁4C的内侧形成有出入口4D。出入口4D位于洗涤桶4的上端,使圆周壁4A的中空部分向上侧Z1露出。出入口4D处于从下侧Z2与外桶3的出入口3D对置而与出入口3D连通的状态。使用者经由敞开的开口2B、出入口3D以及出入口4D,从上侧Z1向洗涤桶4投取洗涤物Q。
在洗涤桶4的圆周壁4A和底壁4B,形成有多个贯通孔4E,外桶3内的水经由贯通孔4E在外桶3与洗涤桶4之间往来,也蓄于洗涤桶4内。因此,外桶3内的水位与洗涤桶4内的水位一致。需要说明的是,贯通孔4E可以不设置于圆周壁4A,只设置于底壁4B。
洗涤桶4的底壁4B形成为圆板状,在上侧Z1与外桶3的底壁3B隔开间隔地大致平行延伸。在底壁4B的与轴线J一致的圆心位置,形成有贯通底壁4B的贯通孔4F。在底壁4B设置有管状的支承轴17,支承轴17包围贯通孔4F并沿着轴线J向下侧Z2伸出。支承轴17插通于外桶3的底壁3B的贯通孔3F,支承轴17的下端部位于底壁3B的下侧Z2。
波轮5形成为以轴线J为圆心的圆盘状,在洗涤桶4内配置于底壁4B上。在波轮5中,在朝向洗涤桶4的出入口4D的上表面设置有放射状配置的多个叶片5A。在波轮5设置有从其圆心沿着轴线J向下侧Z2延伸的旋转轴18。旋转轴18插通于支承轴17的中空部分,旋转轴18的下端部位于外桶3的底壁3B的下侧Z2。
马达6为变频马达(inverter motor)等电动马达。马达6在箱体2内配置于外桶3的下侧Z2。马达6具有以轴线J为中心进行旋转的输出轴19,将产生的驱动力从输出轴19输出。
离合器7介于支承轴17和旋转轴18各自的下端部与从马达6向上侧Z1突出的输出轴19的上端部之间。离合器7将马达6从输出轴19输出的驱动力选择性地传递给支承轴17和旋转轴18中的一方或双方。当来自马达6的驱动力传递至支承轴17时,洗涤桶4接受马达6的驱动力而绕轴线J进行旋转。当来自马达6的驱动力传递至旋转轴18时,波轮5接受马达6的驱动力而绕轴线J进行旋转。使用公知的传递机构作为离合器7。也可以通过上述转矩马达(未图示)使离合器7工作。
图2是表示立式洗衣机1的电气结构的框图。立式洗衣机1包括供水单元和作为控制单元及检测单元的一例的微型计算机21。微型计算机21例如包括CPU22、ROM或RAM等存储器23、以及计时用的计时器24,内置于箱体2内(参照图1)。
上述马达6、离合器7、供水阀14以及排水阀16分别经由例如驱动电路25与微型计算机21电连接,上述显示操作部11也与微型计算机21电连接。微型计算机21使马达6通电而对其进行驱动,或断电而使其停止。微型计算机21也能控制马达6的旋转方向。由此,马达6能正转或反转。微型计算机21通过控制离合器7,将马达6的驱动力的传递目标切换为洗涤桶4和波轮5中的一方或双方。微型计算机21控制供水阀14和排水阀16的开闭。当使用者操作显示操作部11来选择运转条件等时,微型计算机21接收该选择。微型计算机21控制显示操作部11的显示内容。
立式洗衣机1还包括:与微型计算机21电连接的蜂鸣器26、转速读取装置27以及水位检测部28。微型计算机21通过蜂鸣器26产生规定的声音,由此向 使用者通知洗涤运转的开始、结束等。
转速读取装置27作为检测单元的一例发挥作用。转速读取装置27是读取马达6的转速,严格来说读取马达6的输出轴19的转速的装置,例如包括霍尔IC。由转速读取装置27读取的转速被实时输入至微型计算机21。微型计算机21基于输入的转速来控制施加给马达6的电压的占空比,由此控制马达6使其以期望的转速进行旋转。需要说明的是,洗涤桶4和波轮5各自的转速既可以与马达6的转速相同,也可以是将离合器7中的减速比等规定的常数与马达6的转速相乘所得的值。
水位检测部28是检测外桶3内的水位也就是洗涤桶4内的水位的水位传感器。作为水位检测部28的一例,能采用根据外桶3内的压力检测洗涤桶4内的水位的压力式水位传感器。
微型计算机21通过控制马达6、离合器7、供水阀14以及排水阀16的工作来执行洗涤运转。洗涤运转具有:清洗洗涤物Q的洗涤过程、洗涤过程之后漂洗洗涤物Q的漂洗过程、以及漂洗过程之后使洗涤桶4旋转将洗涤物Q脱水的脱水过程。需要说明的是,立式洗衣机1也可以是在脱水过程之后还执行烘干洗涤物Q的烘干过程的洗干一体机。本实施方式中,执行两次漂洗过程,将第一次漂洗过程称为第一漂洗过程,将第二次漂洗过程称为第二漂洗过程。
当使用者将洗涤物Q投入洗涤桶4内指示洗涤运转开始时,微型计算机21开始洗涤运转。需要说明的是,使用者也可以在投入洗涤物Q的前后将洗涤剂投入洗涤桶4内。参照图3的流程图,首先,微型计算机21检测洗涤桶4内的洗涤物Q的量也就是负荷量(步骤S1)。作为负荷量检测的一例,微型计算机21根据使洗涤桶4以低速稳定旋转时的马达6的转速的波动检测负荷量。微型计算机21基于刚才检测出的负荷量,决定此后要进行供水而蓄于洗涤桶4内的水的水位W(参照图1)。水位W与负荷量的关系通过实验等预先求出并存储于存储器23。
然后,作为洗涤过程的一环的供水处理,微型计算机21持续地打开供水阀14,向洗涤桶4内供水(步骤S2)。排水阀16处于关闭状态,因此,洗涤桶4内的水位上升。当洗涤桶4内的水位上升至刚才决定的水位W时,微型计算机21关闭供水阀14从而停止供水。由此,供水处理结束。
接着,在洗涤桶4内蓄有水的状态下,微型计算机21执行搅拌处理。具体而言,微型计算机21在根据需要来切换离合器7而使得马达6的驱动力传递至波轮5之后,通过驱动马达6使得波轮5旋转(步骤S3)。波轮5可以向相同方向持续旋转,但是本实施方式中,通过马达6的间歇驱动,波轮5以反复地每隔1秒~2秒交替进行正转和反转的方式反向旋转。搅拌处理中,洗涤桶4内的洗涤物Q通过反向旋转的波轮5被搅拌清洗。需要说明的是,波轮5还可以在步骤S2中的供水处理中旋转,由此,洗涤剂容易溶于水。洗涤物Q的污垢通过溶于水的洗涤剂被分解。当经过规定的搅拌时间时,微型计算机21结束搅拌处理。
搅拌处理后,微型计算机21接着在洗涤桶4内蓄有水的状态下执行摊开处理(步骤S4)。在摊开处理中,微型计算机21以不同于搅拌处理的条件间歇驱动马达6而使得波轮5反向旋转。在本实施方式中,作为一例,波轮5以反复地每隔比搅拌处理时短的0.5秒交替进行正转和反转的方式,以比搅拌处理时高的转速反向旋转。由此,在洗涤桶4内浸渍于水中的洗涤物Q被反向旋转的波轮5摊开。因此,消除了洗涤物Q的偏倚。洗涤物Q的偏倚是指洗涤桶4内的洗涤物Q的偏置,也被称为不平衡。当经过规定的摊开时间时,微型计算机21结束摊开处理。
摊开处理后,微型计算机21执行桶旋转处理(步骤S5)。具体而言,参照图4的流程图,首先,微型计算机21切换离合器7使得马达6的驱动力传递至洗涤桶4(步骤S51)。然后,微型计算机21确认是否处于洗涤桶4内的水位达到了规定的桶旋转水位的状态(步骤S52)。桶旋转水位是指此后洗涤桶4旋转时外桶3内的水不会从出入口3D溢出的程度的水位,具体而言,高于洗涤桶4的内部高度的一半。当洗涤桶4内的水位不处于桶旋转水位时(步骤S52中为“否”),洗涤桶4内的水位高于桶旋转水位,因此,微型计算机21打开排水阀16进行洗涤桶4的排水(步骤S53)。
当处于洗涤桶4内的水位达到了桶旋转水位的状态时(步骤S52中为“是”),微型计算机21接通马达6使其旋转(步骤S54)。由此,蓄水至桶旋转水位的洗涤桶4例如以200rpm高速旋转。这样一来,在外桶3内产生漩涡,水面S以轴线J侧的中央部变低而外周部变高的方式弯曲成U字状(参照图1的双点划线)。 由此,外桶3内的水在外桶3的圆周壁3A与洗涤桶4的圆周壁4A之间上升。上升的水穿过排列设置于外桶3的环状壁3C的下表面的肋3G之间,螺旋状地回转的同时落下,从洗涤桶4的出入口4D淋至洗涤桶4内(参照图1以及图5的粗双点划线)。需要说明的是,外桶3的环状壁3C的引导面3E将穿过肋3G之间的水朝向出入口4D向下引导(参照图1)。
即使在供水处理后的状态下洗涤物Q的量多到要露出水面时,通过洗涤桶4的旋转所产生的来自上侧Z1的洒水,也能可靠地清洗出入口4D侧的洗涤物Q。而且,如果是由洒水进行的洗涤的话,能降低洗涤物Q的损伤。需要说明的是,也可以只在洗涤物Q的量为规定量以上的大容量洗涤的情况下,才执行桶旋转处理。
在通过步骤S4的摊开处理而事先消除了洗涤物Q的偏倚的状态下,开始桶旋转处理,因此,在桶旋转处理中,洗涤桶4的转速顺利上升至开始洒水的转速。由此,能顺利地实施桶旋转处理。此外,通过事先进行的摊开处理,使得桶旋转处理中不容易发生洗涤桶4的异常振动,因此,尽可能不实施因异常振动而中止洗涤桶4的旋转来消除洗涤桶4内的洗涤物Q的偏倚的处理即可。由此,能实现洗涤时间的缩短。
在桶旋转处理中,在继续蓄水至洗涤桶4的状态下,微型计算机21检测洗涤桶4内的洗涤物Q的偏倚的大小即所谓的偏心载荷(步骤S55)。具体而言,当洗涤物Q的偏倚变大时,马达6的转速波动变大。因此,微型计算机21通过转速读取装置27读取马达6的转速波动,由此检测洗涤桶4内的洗涤物Q的偏倚。这种情况下,与将洗涤桶4暂时排水后检测洗涤物Q的偏倚的大小的情况相比,能实现时间的缩短。需要说明的是,也可以通过其他公知的方法检测洗涤物Q的偏倚的大小。当洗涤物Q的偏倚为规定以上大小时,可能会对洗涤桶4的顺利旋转产生影响。
在未检测到规定以上大小的偏倚的情况下(步骤S55中为“否”),当从步骤S54中的马达6开始旋转经过规定的桶旋转时间时(步骤S56中为“是”),微型计算机21通过停止马达6来结束桶旋转处理(步骤S57)。
当在桶旋转处理中检测到规定以上大小的偏倚时(步骤S55中为“是”),微型计算机21确认此次检测到的偏倚是否为此次桶旋转处理中第一次检测到的 偏倚(步骤S58)。此次桶旋转处理中检测到的偏倚次数暂时存储在存储器23中。
当此次检测到的偏倚是第一次时(步骤S58中为“是”),微型计算机21停止马达6从而暂停洗涤桶4的旋转(步骤S59)。然后,微型计算机21在切换离合器7使得马达6的驱动力传递至波轮5的基础上,例如以与步骤S4的摊开处理相同的条件使波轮5反向旋转,由此将洗涤桶4内的洗涤物Q摊开(步骤S60)。此时处于洗涤桶4内已经蓄有水而洗涤物Q浸渍在水中容易摊开的状态,因此,无需为了摊开洗涤物Q而供水。需要说明的是,为了摊开洗涤物Q,微型计算机21既可以不使波轮5旋转而使洗涤桶4旋转,也可以使洗涤桶4和波轮5双方旋转。此外,洗涤桶4和波轮5既可以同向旋转,也可以如上所述反向旋转。
在将洗涤物Q摊开规定时间之后,微型计算机21在切换离合器7使得马达6的驱动力传递至洗涤桶4的基础上,再次开始洗涤桶4的旋转(步骤S54)。也就是在桶旋转处理中第一次检测到偏倚的情况下,在通过摊开消除了偏倚的基础上,再次开始洗涤桶4的旋转。由此,即使在暂停桶旋转处理,将洗涤物Q的偏倚消除之后不重新进行桶旋转处理,也能继续进行桶旋转处理,因此,能进一步实现洗涤时间的缩短。另一方面,如果此次桶旋转处理中检测到的偏倚是第二次以上的话(步骤S58中为“否”),微型计算机21停止马达6从而中止桶旋转处理(步骤S57)。
当桶旋转处理如上所述结束或中止时,洗涤过程结束。然后,参照图3,作为洗涤过程后的脱水过程也就是中间脱水过程,微型计算机21在打开排水阀16的状态下使洗涤桶4高速旋转(步骤S6)。通过由该高速旋转而产生的离心力,洗涤桶4内的洗涤物被脱水。通过脱水而从洗涤物渗出的水从排水路15排出至机外。在中间脱水过程的最后阶段,微型计算机21切换离合器7而停止马达6,使得马达6的驱动力不会传递至洗涤桶4,因此,洗涤桶4惯性旋转。在中间脱水过程的最后,微型计算机21关闭排水阀16。
接着,作为第一漂洗过程,微型计算机21执行喷淋漂洗(步骤S7)。具体而言,微型计算机21在关闭排水阀16的状态下间歇地打开供水阀14,由此向洗涤桶4内喷淋供水。这种状态下,微型计算机21使洗涤桶4例如以30rpm低速旋转而使得喷淋遍布洗涤物Q的所有角落。由此,洗涤桶4内的洗涤物Q被 全方位地漂洗。之后,微型计算机21执行与步骤S6相同的中间脱水过程(步骤S8)。需要说明的是,可以将各个中间脱水过程视作是紧接着进行的漂洗过程中的一部分处理。
接着,微型计算机21执行第二漂洗过程。第二漂洗过程的内容除了没有洗涤剂之外,与洗涤过程相同。具体而言,微型计算机21在与步骤S2同样地进行供水之后(步骤S9),与步骤S3同样地将洗涤物Q搅拌漂洗(步骤S10),与步骤S4同样地将洗涤物Q摊开之后(步骤S11),与步骤S5同样地执行桶旋转处理(步骤S12)。
最后,微型计算机21执行与中间脱水过程相同的最终脱水过程(步骤S13)。其中,洗涤桶4的旋转条件可以不同于中间脱水过程和最终脱水过程,特别是,最终脱水过程中的洗涤桶4的最高转速比中间脱水过程中的洗涤桶4的最高转速高。随着最终脱水过程结束,洗涤运转结束。
关于桶旋转处理,除了上述说明的第一实施例之外,可以例举出第二实施例。图6是表示第二实施例的桶旋转处理的流程图。需要说明的是,图6中,对与图4的处理步骤相同的处理步骤赋予与图4相同的步骤序号并省略对该处理步骤的详细说明。
在第二实施例中,当在桶旋转处理中检测到规定以上大小的偏倚时(步骤S55中为“是”),微型计算机21迅速停止马达6从而中止洗涤桶4的旋转(步骤S61)。这种情况下,微型计算机21在切换离合器7而使得马达6的驱动力传递至波轮5的基础上使波轮5旋转,从而搅拌洗涤桶4内的洗涤物Q(步骤S62)。如此一来,洗涤方法由洗涤桶4的旋转变更为波轮5的搅拌,继续清洗洗涤物Q,因此,能与桶旋转处理中继续洗涤桶4的旋转时相同程度地清洗洗涤物Q。
然后,当洗涤物Q被搅拌规定时间时,微型计算机21通过变更马达6的驱动条件,以例如与步骤S4的摊开处理相同的条件,通过波轮5将洗涤桶4内的洗涤物Q摊开(步骤S63)。当洗涤物Q被摊开了规定时间时,微型计算机21停止马达6从而结束桶旋转处理(步骤S57)。通过步骤S63的摊开,能防止在此后的脱水过程等中,洗涤桶4在高速旋转时发生异常振动。
本发明不局限于以上说明的实施方式,可以在技术方案所述的范围内进行 各种变更。
例如,虽然搅拌处理、摊开处理以及桶旋转处理在上述实施方式中在洗涤过程和第二漂洗过程两者中执行,但是既可以只在洗涤过程和第二漂洗过程中的一方执行,也可以在第一漂洗过程中执行。在洗涤过程中的桶旋转处理(步骤S5)和第二漂洗过程中的桶旋转处理(步骤S12)中,内容既可以如上所述相同,也可以不同。内容不同的情况下,可以是,洗涤过程中的桶旋转处理(步骤S5)的内容为第一实施例和第二实施例中的一方,第二漂洗过程中的桶旋转处理(步骤S12)的内容为第一实施例和第二实施例中的另一方。
第一实施例的桶旋转处理中,在检测到两次以上规定以上大小的偏倚情况下(步骤S58中为“否”),微型计算机21立刻中止桶旋转处理(步骤S57)。取而代之,也可以在微型计算机21停止马达6(步骤S61),切换离合器7之后,使波轮5反向旋转而搅拌或摊开洗涤桶4内的洗涤物Q(步骤S62)之后(步骤S63),中止桶旋转处理(步骤S57)。也就是说,可以将第二实施例的一部分与第一实施例组合。
立式洗衣机1中的洗涤桶4的轴线J在上述实施方式中以沿着上下方向Z垂直延伸的方式配置(参照图1),但是也包括立式洗衣机1中轴线J相对于上下方向Z稍微倾斜地配置的结构。

Claims (4)

  1. 一种立式洗衣机,其特征在于,包括:
    外桶,能蓄水;
    驱动单元,产生驱动力;
    洗涤桶,配置于所述外桶内,收容洗涤物,且具有用于使水在其与所述外桶之间往来的贯通孔,所述洗涤桶在上端形成有洗涤物的出入口,在下端设置有底壁,所述洗涤桶接受所述驱动单元的驱动力而旋转;
    旋转翼,在所述洗涤桶内配置于所述底壁上,接受所述驱动单元的驱动力而旋转;
    供水单元,向所述洗涤桶内供水;以及
    控制单元,控制所述驱动单元和所述供水单元,
    所述控制单元在洗涤过程和所述洗涤过程之后的漂洗过程中的至少任一方中执行如下处理:
    搅拌处理,在通过所述供水单元使得所述洗涤桶内蓄有水的状态下,通过所述驱动单元使所述旋转翼旋转,由此搅拌所述洗涤桶内的洗涤物;
    摊开处理,在所述搅拌处理之后,在所述洗涤桶内蓄有水的状态下通过所述驱动单元使所述旋转翼旋转,由此将所述洗涤桶内的洗涤物摊开;以及
    桶旋转处理,在所述摊开处理之后,通过所述驱动单元使蓄有水的所述洗涤桶旋转,由此使所述外桶内的水在所述外桶与所述洗涤桶之间上升而从所述出入口淋至所述洗涤桶内的洗涤物。
  2. 根据权利要求1所述的立式洗衣机,其特征在于,
    还包括检测单元,所述检测单元在所述桶旋转处理中检测蓄有水的所述洗涤桶内的洗涤物的偏倚的大小。
  3. 根据权利要求2所述的立式洗衣机,其特征在于,
    当所述检测单元在所述桶旋转处理中检测到规定以上大小的偏倚时,所述 控制单元通过所述驱动单元使所述洗涤桶和所述旋转翼中的至少一方旋转,由此将所述洗涤桶内的洗涤物摊开。
  4. 根据权利要求2所述的立式洗衣机,其特征在于,
    当所述检测单元在所述桶旋转处理中检测到规定以上大小的偏倚时,所述控制单元中止所述洗涤桶的旋转并使所述旋转翼旋转,由此搅拌所述洗涤桶内的洗涤物。
PCT/CN2019/094243 2018-07-05 2019-07-01 立式洗衣机 WO2020007264A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980043814.4A CN112384652A (zh) 2018-07-05 2019-07-01 立式洗衣机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018128321A JP7164107B2 (ja) 2018-07-05 2018-07-05 縦型洗濯機
JP2018-128321 2018-07-05

Publications (1)

Publication Number Publication Date
WO2020007264A1 true WO2020007264A1 (zh) 2020-01-09

Family

ID=69060075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094243 WO2020007264A1 (zh) 2018-07-05 2019-07-01 立式洗衣机

Country Status (3)

Country Link
JP (1) JP7164107B2 (zh)
CN (1) CN112384652A (zh)
WO (1) WO2020007264A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237489A (ja) * 1999-02-19 2000-09-05 Matsushita Electric Ind Co Ltd 洗濯機
JP2011139742A (ja) * 2010-01-06 2011-07-21 Panasonic Corp 洗濯機
CN102162183A (zh) * 2011-01-30 2011-08-24 海尔集团公司 滚筒洗衣机控制方法
CN104911864A (zh) * 2014-03-10 2015-09-16 Lg电子株式会社 洗衣机及洗衣机的控制方法
CN105839336A (zh) * 2015-02-02 2016-08-10 Lg电子株式会社 洗衣机的控制方法
CN106854801A (zh) * 2015-12-09 2017-06-16 无锡小天鹅股份有限公司 洗衣机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130756B2 (ja) * 1995-03-08 2001-01-31 シャープ株式会社 洗濯機
JP3022490B2 (ja) * 1998-06-05 2000-03-21 松下電器産業株式会社 洗濯機
JP2002011291A (ja) 2000-06-29 2002-01-15 Hitachi Ltd 電気洗濯機
KR100413465B1 (ko) 2001-11-23 2004-01-03 엘지전자 주식회사 세탁기의 세탁제어방법
JP2013244031A (ja) 2012-05-23 2013-12-09 Toshiba Corp 洗濯機
KR102214657B1 (ko) 2014-03-10 2021-02-09 엘지전자 주식회사 세탁기 및 세탁기의 제어방법
KR102196182B1 (ko) 2014-10-27 2020-12-29 엘지전자 주식회사 세탁기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237489A (ja) * 1999-02-19 2000-09-05 Matsushita Electric Ind Co Ltd 洗濯機
JP2011139742A (ja) * 2010-01-06 2011-07-21 Panasonic Corp 洗濯機
CN102162183A (zh) * 2011-01-30 2011-08-24 海尔集团公司 滚筒洗衣机控制方法
CN104911864A (zh) * 2014-03-10 2015-09-16 Lg电子株式会社 洗衣机及洗衣机的控制方法
CN105839336A (zh) * 2015-02-02 2016-08-10 Lg电子株式会社 洗衣机的控制方法
CN106854801A (zh) * 2015-12-09 2017-06-16 无锡小天鹅股份有限公司 洗衣机

Also Published As

Publication number Publication date
CN112384652A (zh) 2021-02-19
JP7164107B2 (ja) 2022-11-01
JP2020005794A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
US7735344B2 (en) Drum type washing machine
US20150337476A1 (en) Washing machine and method for controlling the same
KR20180057710A (ko) 세탁기
JP3296791B2 (ja) 洗濯機
WO2020007264A1 (zh) 立式洗衣机
WO2019128733A1 (zh) 洗衣机
WO2020207141A1 (zh) 立式洗衣机
WO2023284711A1 (zh) 立式洗衣机
JPH10192585A (ja) 洗濯機
WO2018113770A1 (zh) 洗衣机
WO2022227960A1 (zh) 洗衣机
JP3629413B2 (ja) 電気洗濯機
WO2022227950A1 (zh) 洗衣机
JPH0956972A (ja) 洗濯機
JP2023153764A (ja) 縦型洗濯機
JP3311673B2 (ja) 洗濯機の運転方法
JPH08103593A (ja) 洗濯機
JP7141054B2 (ja) 縦型洗濯機
CN115151691A (zh) 洗衣机
JP2023180575A (ja) 縦型洗濯機用の外槽及び縦型洗濯機
JPH119880A (ja) 洗濯機
JP3179637B2 (ja) 洗濯機
JP2019150383A (ja) 洗濯機
JPH10146495A (ja) 洗濯機
JP2002282574A (ja) 洗濯機

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830419

Country of ref document: EP

Kind code of ref document: A1