WO2020004607A1 - アプタマー製剤 - Google Patents

アプタマー製剤 Download PDF

Info

Publication number
WO2020004607A1
WO2020004607A1 PCT/JP2019/025766 JP2019025766W WO2020004607A1 WO 2020004607 A1 WO2020004607 A1 WO 2020004607A1 JP 2019025766 W JP2019025766 W JP 2019025766W WO 2020004607 A1 WO2020004607 A1 WO 2020004607A1
Authority
WO
WIPO (PCT)
Prior art keywords
aptamer
liquid preparation
aqueous liquid
group
fgf2
Prior art date
Application number
PCT/JP2019/025766
Other languages
English (en)
French (fr)
Inventor
義一 中村
一雅 秋田
ユスフ アリ
Original Assignee
株式会社リボミック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP19825285.0A priority Critical patent/EP3815715A4/en
Priority to AU2019292134A priority patent/AU2019292134A1/en
Priority to SG11202012933QA priority patent/SG11202012933QA/en
Priority to KR1020217002648A priority patent/KR20210025083A/ko
Priority to CA3105002A priority patent/CA3105002A1/en
Priority to US17/256,368 priority patent/US20210269802A1/en
Application filed by 株式会社リボミック filed Critical 株式会社リボミック
Priority to MX2020014124A priority patent/MX2020014124A/es
Priority to CN201980043745.7A priority patent/CN112384246A/zh
Priority to BR112020026634-5A priority patent/BR112020026634A2/pt
Priority to JP2020527674A priority patent/JP7340264B2/ja
Publication of WO2020004607A1 publication Critical patent/WO2020004607A1/ja
Priority to IL279595A priority patent/IL279595A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/344Position-specific modifications, e.g. on every purine, at the 3'-end
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3515Lipophilic moiety, e.g. cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity

Definitions

  • the present invention relates to an aptamer preparation, particularly an aptamer preparation containing an aptamer for basic fibroblast growth factor (FGF2) as an active ingredient.
  • FGF2 basic fibroblast growth factor
  • RNA aptamers have entered the clinical stage or practical stage.
  • Macugen® gene: pegaptanib sodium
  • the aptamer is composed of a synthetic oligonucleotide consisting of 28 nucleic acid molecules, and a polyethylene glycol (PEG) derivative is bound to the 5 'end.
  • Macugen® dosage form is a prefilled syringe injection, injected intravitreally. It is a clear aqueous injection solution that is colorless to slightly colored, and contains sodium hydrogen phosphate, sodium dihydrogen phosphate, an isotonicity agent, and a pH adjuster. It has been shown that this formulation stably exists for 6 months in an accelerated test at 25 ⁇ 2 ° C. and for 36 months in a long-term storage test at 5 ⁇ 3 ° C. (Non-Patent Document 1).
  • the applicant is developing a drug that uses an aptamer against FGF2 as an active ingredient and is indicated for age-related macular degeneration, achondroplasia, and cancer pain (Patent Documents 1 and 2).
  • the present inventors have found that the formulation of the FGF2 aptamer is almost the same as that of Macugen (registered trademark) or the formulation using phosphate buffered saline (PBS) as a medium. Cannot be maintained.
  • an object of the present invention is to provide a pharmaceutical formulation capable of stably maintaining the activity of an aptamer, particularly an aptamer against FGF2, for a long period of time, and thereby provide a pharmaceutical formulation containing an aptamer, particularly an FGF2 aptamer as an active ingredient. is there.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have succeeded in finding optimal formulation conditions for the FGF2 aptamer, and have completed the present invention.
  • an aqueous liquid preparation comprising an aptamer or a salt thereof which binds to FGF2 and a non-electrolyte osmotic agent, wherein the aptamer or a salt thereof is stable for a long period of time.
  • the aqueous liquid preparation according to [1] which does not substantially contain an electrolyte other than the aptamer or a salt thereof.
  • the aptamer has the following formula (1): N 1 GGAN 2 ACUAGGGCN 3 UUAAN 4 GUN 5 ACCAGUGUN 6 (1) (Where N 1 and N 6 each independently represent any number from zero to several bases, and N 2 , N 3 , N 4 and N 5 independently represent any one base) (Where uracil may be thymine), comprising the following (a) or (b): (A) in the nucleotide contained in the aptamer, (I) the 2 'position of ribose of each pyrimidine nucleotide is a fluorine atom, and (ii) the 2' position of ribose of each purine nucleotide is a hydroxy group; (B) in the aptamer of (a), (I) the 2'-position fluorine atom of ribose of each pyrimidine nucleotide is independently unsubstituted or substituted with an atom or group selected from the group consisting of a
  • the aptamer has the following formula (3): N 1 GGAUACUAGGGCAUUAAUGUUUACCAGGUGUAGUCN 62 (3) (Where N 1 and N 62 each independently represent any zero to several bases)
  • the aqueous liquid preparation according to [1] or [2], wherein the aptamer comprises any one of the nucleotide sequences represented by SEQ ID NOs: 3, 8, 9, 10 or 12.
  • [6] The aqueous liquid preparation according to any one of [1] to [5], wherein the concentration of the aptamer is 1 to 60 mg / mL.
  • [7] The aqueous liquid preparation according to any one of [1] to [6], wherein a mixing ratio of the osmotic pressure adjusting agent is 2 to 7.5% (w / v) of the whole aqueous liquid preparation.
  • [8] The aqueous liquid preparation according to any one of [1] to [7], wherein the osmotic pressure adjusting agent is mannitol.
  • the aqueous liquid preparation according to any one of [1] to [12] which is used for prevention or treatment of a disease associated with angiogenesis, bone / cartilage disease or pain.
  • a method for preventing or treating a disease associated with angiogenesis, a bone / cartilage disease or pain comprising administering to a subject the aqueous liquid preparation according to any one of [1] to [12].
  • the aqueous solution according to any one of [1] to [12] for use in prevention or treatment of a disease associated with angiogenesis, bone / cartilage disease or pain.
  • an aptamer for FGF2 as an active ingredient or a salt thereof can be stably stored in the form of an aqueous solution for a long period of time, so that an aptamer preparation which is easy to handle can be provided.
  • the present invention provides a pharmaceutical preparation (hereinafter, also referred to as “the aptamer preparation of the present invention”) in which an aptamer for FGF2 or a salt thereof is used as an active ingredient, and the aptamer or a salt thereof is stably retained for a long period of time.
  • “stable for a long period of time” means that the ratio of the monomer aptamer after enclosing the preparation in a glass bottle and storing at 4 ° C for 3 months is 70% or more.
  • the ratio of the monomer aptamer was determined by separating and detecting the monomer and the multimer under the following conditions using size exclusion chromatography, and (peak area of monomer) / (peak of monomer and multimer).
  • the aptamer preparation of the present invention contains an aptamer for FGF2 or a salt thereof as an active ingredient, and an osmotic pressure regulator as a non-electrolyte.
  • Aptamer refers to a nucleic acid molecule having binding activity to a predetermined target molecule. Aptamers can inhibit the activity of a given target molecule by binding to the target molecule.
  • the aptamer as an active ingredient of the aptamer preparation of the present invention is an aptamer having a binding activity to FGF2.
  • the aptamer is an aptamer capable of binding to FGF2 and inhibiting the binding of FGF2 to an FGF receptor. That is, the aptamer has an inhibitory activity on FGF2.
  • the aptamer used in the present invention is an aptamer that binds to FGF2, and more preferably an aptamer that binds to FGF2 and can inhibit the binding between FGF2 and the FGF receptor. Whether or not the aptamer used in the present invention inhibits the binding between FGF2 and FGF receptor can be evaluated, for example, by a test using the surface plasmon resonance method as in Example 1.
  • the aptamer for FGF2 is not particularly limited.
  • the aptamer described in WO 2015/147017 specifically, the following formula (1): N 1 GGAN 2 ACUAGGGCN 3 UUAAN 4 GUN 5 ACCAGUGUN 6 (1) (Where uracil may be thymine), comprising the following (a) or (b): (A) in the nucleotide contained in the aptamer, (I) the 2 'position of ribose of each pyrimidine nucleotide is a fluorine atom, and (ii) the 2' position of ribose of each purine nucleotide is a hydroxy group; (B) in the aptamer of (a), (I) the 2'-position fluorine atom of ribose of each pyrimidine nucleotide is independently unsubstituted or substituted with an atom or group selected from the group consisting of a hydrogen atom, a hydroxy group and a meth
  • N 1 and N 6 each independently represent any number from 0 to several bases
  • N 2 , N 3 , N 4 and N 5 independently represent any one base
  • base means any of adenine (A), guanine (G), cytosine (C), uracil (U), and thymine (T) that constitute a nucleic acid.
  • Base number of N 1 is not particularly limited as long as the aptamer comprising a nucleotide sequence represented by the formula (1) binds to FGF2, for example, 0 to about 10, 0 to 9, 0 to 8, 0 ⁇
  • the number may be 7, 0 to 6, 0 to 5, 0 to 4, 0 to 3, 0 to 2, and preferably 0 to 2.
  • the number of bases of N 6 is not particularly limited as in N 1 , for example, 0 to about 10, 0 to 9, 0 to 8, 0 to 7, 0 to 6, 0 to 5,
  • the number may be 0 to 4, 0 to 3, and preferably 0 to 10, 3 to 9, or 5 to 8.
  • N 1 is G, GG, AG, C or a gap
  • N 2 is A or U
  • N 3 is G, C or A
  • N 4 is G, C or U
  • N 5 is G or U
  • N 6 is UUCN 61 or AGUCN 62 (wherein N 61 and N 62 are each independently any zero to several bases).
  • N 1 is the "gap", that no N 1 is present in the formula (1), i.e. N 1 is meant to be a 0 bases.
  • Base number of N 61 is not particularly limited, for example, 0 to about 10, 0 to 7, 0-6, 0-5, may the like 0-4, preferably 0-5 , 1-5, or 2-4.
  • the number of bases N 62 for example, 0 to about 10, 0 to 7, 0-5, 0-4, may the like 0-3, preferably 0-5 , 0-4, or 0-3.
  • N 1 is G, GG, AG or a gap
  • N 2 is A or U
  • N 3 is G or A
  • N 4 is C or U
  • N 5 is G or U
  • N 6 is UUCN 61 or AGUCN 62 (wherein N 61 and N 62 are as defined above).
  • the aptamer used in the present invention has the following formula (2) or (3): GGGAAACUAGGGGGUUAACGUGACCAGUGUUCN 61 (2) N 1 GGAUACUAGGGCAUUAAAUGUUACCAGGUGUAGUCN 62 (3) (Wherein, N 1 , N 61 and N 62 are as defined above) And more preferably a nucleotide sequence represented by the formula (3).
  • the aptamer used in the present invention comprises the nucleotide sequence represented by any of SEQ ID NOs: 1-12.
  • the nucleotide sequences represented by SEQ ID NOS: 1 to 12 (wherein uracil may be thymine) are shown below (hereinafter, A, G, C and U are those in which the nucleotide bases are adenine, guanine and cytosine, respectively) And uracil).
  • the aptamer used in the present invention comprises the nucleotide sequence represented by SEQ ID NO: 2 or 7 (included in the above formula (2)). In yet another preferred embodiment, the aptamer used in the present invention comprises the nucleotide sequence represented by SEQ ID NO: 1, 3, 4, 5, 6, or 8 (included in formula (3) above).
  • the aptamer used in the present invention comprises a nucleotide sequence in which one or several nucleotides are substituted, deleted, inserted or added in any of the nucleotide sequences described above, as long as they still bind to FGF2.
  • the number of nucleotides to be substituted, deleted, inserted or added is not particularly limited as long as it still binds to FGF2 after the substitution, deletion, insertion or addition, and for example, 1 to about 10, preferably 1 to It may be 6, more preferably 1 to 5, more preferably 1 to 4, even more preferably 1 to 3, and most preferably 1 or 2.
  • the site at which the nucleotide is substituted, deleted, inserted or added is not particularly limited as long as it still binds to FGF2 after the substitution, deletion, insertion or addition, but in the above formulas (1), (2) and (3)
  • the nucleotide is substituted at one to three, preferably one or two, more preferably one, Deletions, insertions or additions.
  • equation (1), (2) and (3) the site that can take a plurality of kinds of nucleotides (i.e., N 1, N 2, N 3, N 4, N 5, N 6, N 61 or N 62 )), Substitution, deletion, insertion or addition of more nucleotides (for example, 1 to about 10, preferably 1 to 6, more preferably 1 to 5, and still more preferably 1 to 4). It can be acceptable.
  • SEQ ID NO: 3 is the original sequence
  • SEQ ID NO: 1 corresponds to SEQ ID NO: 3 in which the CC at the 3 ′ end is replaced with UCGA
  • SEQ ID NO: 4 corresponds to SEQ ID NO: 3
  • SEQ ID NO: 5 is obtained by adding G to the 5 ′ end of SEQ ID NO: 3 and C is added to the 3 ′ end
  • SEQ ID NO: 6 is obtained by deleting SEQ ID NO:
  • SEQ ID NO: 8 is obtained by substituting A at the 5 ′ end of SEQ ID NO: 3, and replacing G at the 5 ′ end with C and G at the 3 ′ end of SEQ ID NO: 3, respectively.
  • SEQ ID NO: 9 is obtained by substituting GG at the 5 ′ end of the SEQ ID NO: 3 with CC and GG at the 3 ′ end with GG, and SEQ ID NO: 10 is that the 14th A of SEQ ID NO: 3 is replaced with G, The U-th is replaced by C, and SEQ ID NO: 12 is SEQ ID NO: 17th A of is obtained by replacing the U.
  • the length of the aptamer used in the present invention is not particularly limited, and may be generally about 10 to about 200 nucleotides, for example, about 20 nucleotides or more (eg, 25 nucleotides or more, 30 nucleotides or more, 31 nucleotides or more, 32 nucleotides or more). Nucleotides or more, 33 nucleotides or more), preferably 25 nucleotides or more, more preferably 30 nucleotides or more, and even more preferably 33 nucleotides or more.
  • nucleotides or less usually about 80 nucleotides or less, preferably about 70 nucleotides or less, more preferably about 60 nucleotides or less, further preferably about 50 nucleotides or less, even more preferably about 45 nucleotides or less (eg, 44 nucleotides or less)
  • 43 nucleotides or less, 42 nucleotides or less, 41 nucleotides or less, 40 nucleotides or less If the total number of nucleotides is small, chemical synthesis and mass production are easier and the merit in cost is great. Further, it is considered that chemical modification is easy, stability in vivo is high, and toxicity is low.
  • the length of the aptamer used in the present invention can be generally about 10 to about 200 nucleotides, preferably 20 to 80 nucleotides, more preferably 25 to 60 nucleotides, and still more preferably 25 to 50 nucleotides. And most preferably 30 to 45 nucleotides.
  • the aptamer used in the present invention also includes a plurality of conjugates of an aptamer (aptamer (A)) containing the nucleotide sequence represented by the above formula (1), and one or several aptamers in the nucleotide sequence represented by the above formula (1).
  • Aptamers (Aptamers (B)) comprising nucleotide sequences in which nucleotides have been substituted, deleted, inserted or added, and one or more aptamers (A) and one or more aptamers (B) And a linked substance selected from the group consisting of:
  • These conjugates can also bind to FGF2.
  • the connection can be performed by tandem connection.
  • a linker may be used for ligation.
  • linker examples include a nucleotide chain (eg, 1 to about 20 nucleotides), a non-nucleotide chain (eg,-(CH 2 ) n -linker,-(CH 2 CH 2 O) n -linker, hexaethylene glycol linker, TEG linker , A linker containing a peptide, a linker containing a —SS— bond, a linker containing a —CONH— bond, and a linker containing a —OPO 3 — bond.
  • the plurality in the plurality of connected objects is not particularly limited as long as it is two or more, but may be, for example, two, three, or four.
  • Each nucleotide contained in the aptamer used in the present invention is the same or different, and is a nucleotide containing a hydroxy group at the 2′-position of ribose (eg, ribose of pyrimidine nucleotide, ribose of purine nucleotide) (ie, natural ribonucleotide) Or a nucleotide in which the hydroxy group is substituted (modified) with an arbitrary atom or group at the 2′-position of ribose (in this specification, sometimes referred to as “modified nucleotide”). obtain.
  • ribose eg, ribose of pyrimidine nucleotide, ribose of purine nucleotide
  • modified nucleotide in which the hydroxy group is substituted (modified) with an arbitrary atom or group at the 2′-position of ribose
  • Examples of such an arbitrary atom or group include a hydrogen atom, a fluorine atom or an —O-alkyl group (eg, —O-Me group), a —O-acyl group (eg, —O-CHO group), an amino Nucleotide substituted with a group (eg, —NH 2 group).
  • the aptamers used in the present invention may also include at least one (eg, 1, 2, 3, or 4) nucleotides at the 2 'position of ribose, a hydroxy group, or any atom or group described above, for example, hydrogen. It may be a modified nucleotide containing at least two (eg, 2, 3 or 4) groups selected from the group consisting of an atom, a fluorine atom, a hydroxy group and a —O—Me group.
  • all pyrimidine nucleotides are nucleotides in which the 2'-position of ribose is a fluorine atom, or the fluorine atom is the same or different and is unsubstituted, as described above. It may be a nucleotide substituted with any atom or group, preferably an atom or group selected from the group consisting of a hydrogen atom, a hydroxy group and a methoxy group.
  • an aptamer in which the ribose 2 ′ position of all pyrimidine nucleotides is fluorinated can be obtained.
  • An aptamer in which a fluorine atom is substituted with another atom or group described above can be produced by a method described later.
  • all purine nucleotides are nucleotides in which the 2'-position of ribose is a hydroxy group, or the hydroxy group is the same or different and is unsubstituted, It may be a nucleotide substituted with any atom or group, preferably an atom or group selected from the group consisting of a hydrogen atom, a methoxy group and a fluorine atom. Aptamers in which the hydroxy group is substituted with the other atoms or groups described above can be produced by the method described below.
  • all the pyrimidine nucleotides are also those wherein the fluorine atom at the 2'-position of ribose is any of the above-mentioned atoms or groups, for example, a group consisting of a hydrogen atom, a hydroxy group and a -O-Me group. It may be a nucleotide substituted with the same selected atom or group.
  • all the purine nucleotides are those in which the hydroxyl group at the 2′-position of ribose is any atom or group described above, for example, a group consisting of a hydrogen atom, a fluorine atom and a —O—Me group. It may be a nucleotide substituted with the same selected atom or group.
  • each of the pyrimidine nucleotides contained in the aptamer used in the present invention is a nucleotide containing a fluorine atom at the 2'-position of ribose, and each of the purine nucleotides has a hydroxy at the 2'-position of ribose.
  • a nucleotide containing a group is a nucleotide containing a fluorine atom at the 2'-position of ribose, and each of the purine nucleotides has a hydroxy at the 2'-position of ribose.
  • the 2'-position fluorine atom of ribose of each pyrimidine nucleotide may be independently substituted with an atom or group selected from the group consisting of a hydrogen atom, a hydroxy group and a methoxy group
  • the hydroxy group at the 2'-position of ribose of each purine nucleotide may be independently substituted with an atom or group selected from the group consisting of a hydrogen atom, a methoxy group and a fluorine atom.
  • the nucleotide constituting the aptamer is assumed to be RNA (that is, the sugar group is assumed to be ribose), and a mode of modification to the sugar group in the nucleotide will be described.
  • DNA is excluded from the nucleotides constituting the above, and is appropriately read as a modification to DNA.
  • the nucleotide constituting the aptamer is DNA
  • replacement of the hydroxyl group at the 2'-position of ribose with X is read as replacement of the hydrogen atom at the 2'-position of deoxyribose with X.
  • aptamer used in the present invention by replacing uracil with thymine, binding to FGF2, binding inhibitory activity between FGF2 and FGF receptor, aptamer stability, drug delivery, stability in blood, and the like are improved. It is possible to increase.
  • one or several nucleotides of the phosphodiester bond in the nucleotide are also optional substituents. May be modified or substituted.
  • the phosphodiester bond may be substituted with a phosphorothioate bond, a phosphorodithioate bond, an alkylphosphonate bond, a phosphoramidate bond, or the like.
  • ⁇ the nucleotide is substituted with a phosphorothioate bond '' means that the phosphate group at the binding site between adjacent nucleotides is sulfurized, that is, the phosphodiester bond is modified to a phosphorothioate bond. It indicates that.
  • aptamer used in the present invention, one or several, for example, one to two, one to three, one to four, and one to five aptamers are used for the purpose of stabilizing the aptamer and improving its activity.
  • the nucleotide may be replaced with a bridged nucleic acid Bridged Nucleic Acid (BNA) or Locked Nucleic Acid (LNA).
  • BNA Bridged Nucleic Acid
  • LNA Locked Nucleic Acid
  • cross-linked nucleic acid refers to a nucleic acid having a structure that enhances the binding affinity to a complementary sequence and acquires nuclease resistance by restricting the freedom of the nucleic acid by intramolecular cross-linking.
  • 4'-BNA (LNA) 2'-O, 4'-C-ethylene-bridged ⁇ Nucleic ⁇ Acid (ENA) and the like, but are not limited thereto.
  • the aptamer used in the present invention may be one in which the sugar residue (eg, ribose) of each nucleotide is modified in order to enhance the binding, stability, drug delivery, and the like to FGF2.
  • the site modified in the sugar residue include those in which the oxygen atom at the 2′-position, 3′-position and / or 4′-position of the sugar residue is replaced with another atom.
  • the type of modification include fluorination, O-alkylation (eg, O-methylation, O-ethylation), O-allylation, S-alkylation (eg, S-methylation, S-ethylation) ), S-allylation, amination (eg, —NH 2 ).
  • LNA Locked Nucleic Acid
  • 4'-oxygen is replaced with sulfur by replacing 4'-oxygen with sulfur
  • 2'- and 4'-positions are bridged via methylene, and 3'-hydroxyl group is converted to amino group.
  • the substituted 3′-N-phosphoramidate nucleic acid can be mentioned as an example.
  • the aptamer used in the present invention may be produced with a certain modification of the oxygen atom at the ribose 2 ′ position of the pyrimidine nucleotide from the production method.
  • aptamers in which the ribose 2 ′ position of all the pyrimidine nucleotides is fluorinated are preferably produced. Therefore, by subsequently modifying such a sugar residue to the obtained aptamer, it is possible to produce aptamers of various variations having the same base sequence but enhanced activity.
  • the aptamer used in the present invention may preferably be an aptamer in which a sugar residue of at least one nucleotide is modified.
  • modification of a sugar residue can be performed by a method known per se (for example, Sproat et al., (1991), Nucl. Acid. Res.
  • the hydroxyl group at ribose 2′-position of all pyrimidine nucleotides is substituted with a fluoro group
  • the hydroxyl group at ribose 2′-position is selected from the group consisting of hydrogen atom, hydroxyl group and methoxy group. Aptamers substituted with atoms or groups can be produced.
  • the aptamer used in the present invention is also modified (eg, chemically substituted) with a nucleobase (eg, purine, pyrimidine) in order to enhance the binding to FGF2, prevention of multimerization, stability, drug delivery, and the like. May be used.
  • a nucleobase eg, purine, pyrimidine
  • modifications include, for example, pyrimidine modification at position 5, modification of purines at position 6 and / or 8, modification with exocyclic amine, substitution with 4-thiouridine, substitution with 5-bromo or 5-iodo-uracil.
  • the phosphate group contained in the aptamer used in the present invention may be modified so as to be resistant to nuclease and hydrolysis.
  • P (O) O group is P (O) S (thioate), P (S) S (dithioate), P (O) N (R) R '(amidate), P (O) R, P ( O) may be substituted by OR, CO or CH 2 (formacetal) or 3′-amine (—NH—CH 2 —CH 2 —) wherein each R or R ′ is independently H Or a substituted or unsubstituted alkyl (eg, methyl, ethyl)].
  • the linking group include -O-, -N- and -S-, and the linking group can be bonded to an adjacent nucleotide. Modifications may also include 3 'and 5' modifications, such as capping.
  • Modifications can further include polyethylene glycol (PEG), amino acids, peptides, inverted @ dT, nucleic acids, nucleosides, Myristoyyl, Lithocolic-oleyl, Docosanyl, Lauroyl, Stearoyl, Palmitoyl, Oleoyl, Linoleyl, steroids, lipids, other lipids , A dye, a fluorescent substance, an anticancer agent, a toxin, an enzyme, a radioactive substance, biotin, and the like. See, for example, U.S. Patent Nos. 5,660,985 and 5,756,703 for such modifications.
  • the molecular weight of PEG is not particularly limited, but is preferably 1,000 to 100,000, more preferably 30,000 to 90,000.
  • the PEG may be linear or branched into two or more chains (multi-arm PEG).
  • the terminal addition of PEG is useful for preventing aptamer multimerization described below.
  • Such PEG is not particularly limited, and those skilled in the art can appropriately select and use a commercially available or known PEG (for example, http://www.peg-drug.com/peg_product/branched.html).
  • preferred examples of the PEG applied to the aptamer used in the present invention include a 2-branched GS-type PEG having a molecular weight of 40,000 (SUNBRIGHT GL2-400GS manufactured by NOF Corporation) and a 2-branched TS having a molecular weight of 40,000 Type PEG (manufactured by SUNBRIGHT GL2-400TS NOF), 4-branched TS type PEG having a molecular weight of 40,000 (manufactured by SUNBRIGHT GL4-400TS NOF), two-branch TS type PEG having a molecular weight of 80,000 (manufactured by SUNBRIGHT GL2-800TS NOF), or molecular weight 8000 4 branched TS type PEG (manufactured by SUNBRIGHT GL4-800TS date oil) and the like.
  • SUNBRIGHT GL2-400GS manufactured by NOF Corporation 2-branched TS having a molecular weight of 40,000
  • Type PEG manufactured by SUNBRIGHT
  • PEG may be directly added to the terminal, but a linker having a group capable of binding to PEG is added to the terminal, and PEG is added to the present invention via the linker. More preferably, it is added to the aptamer used.
  • the linker between PEG and the aptamer used in the present invention is not particularly limited, and the number of carbon chains, the functional group, and the like can be appropriately selected according to the binding site, the type of PEG, and the like.
  • Examples of such a linker include a linker having an amino group.
  • SAFC ssH Linker
  • DMS O
  • MT-AMINO-MODIFIER GLENRESEARCH
  • TFA ⁇ Amino ⁇ C-6 ⁇ lcaa ⁇ CPG (ChemGenes) and the like are exemplified.
  • an active group of, for example, N-hydroxysuccinimide is added to PEG, and the PEG is reacted with an amino group on the linker side, whereby the aptamer used in the present invention and PEG are linked via the linker. Can be combined.
  • PEG and linker can be preferably used. Moreover, those skilled in the art can appropriately set reaction conditions and the like relating to the binding of the PEG, the linker, and the aptamer used in the present invention.
  • aptamer ID1 comprising the nucleotide sequence represented by SEQ ID NO: 3 GL2-400TS-C6-G (M) G (M) G (M) A (M) U (M) A (M) C (M) U (F) A (M) G (M) G (M) GC (M) A (M) U (M) U (F) A (M) A (M) U (M) G (M) U (F) U (M) A (M) C (M) C ( M) A (M) GU (F) GU (F) A (M) G (M) U (M) C (M) C (M) C (M) -idT;
  • Aptamer ID2 comprising the nucleotide sequence represented by SEQ ID NO: 8: GL2-400TS-C6-C (M) G (M) G (M) A (M) U (M) A (M) C (M) U (M) -idT;
  • Aptamer ID2
  • the aptamer used in the present invention may be a free form or a pharmaceutically acceptable salt thereof.
  • Such salts include metal salts, ammonium salts, organic amine addition salts, amino acid addition salts, and the like.
  • the metal salt include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt, zinc salt and the like.
  • the ammonium salt include salts such as ammonium and tetramethylammonium.
  • the organic amine addition salt include salts such as trishydroxyaminomethane.
  • Amino acid addition salts include salts of lysine, arginine, histidine, tryptophan, ornithine and the like.
  • the concentration of the aptamer to FGF2 used in the present invention is not particularly limited, and may be any amount as long as the aptamer preparation of the present invention exhibits the intended efficacy.
  • the term “aptamer concentration” refers to the ratio (mg / mL) of the weight of the nucleic acid portion linked by 5 ′ ⁇ 3 ′ phosphate bond constituting the aptamer molecule to the volume of the entire preparation. .
  • the concentration of the aptamer is, for example, 1 to 60 mg / mL.
  • the concentration of the aptamer to FGF2 exceeds 20 mg / mL, multimers of the aptamer tend to be easily formed even at a normal storage temperature of 4 to 5 ° C.
  • the aptamer for FGF2 binds to FGF2 when present as a monomer, inhibits the function of FGF2 and exerts its drug effect, but when multimerized, binding to FGF2 is recognized in an assay using Biacore. Therefore, it is considered that the function of FGF2 is not inhibited (see Example 4).
  • the upper limit of the FGF2 aptamer concentration in the aptamer preparation of the present invention is desirably a concentration not exceeding 20 mg / mL.
  • the lower limit of the FGF2 aptamer concentration in the aptamer preparation of the present invention is not particularly limited as long as the effect as an injection can be obtained, but is preferably, for example, 1 mg / mL or more.
  • the dosage form of the aptamer preparation of the present invention is not particularly limited as long as it is an aqueous liquid preparation, but is preferably an injection preparation. Since the aptamer preparation of the present invention is an aqueous solution, the aptamer for FGF2 as an active ingredient is present in the form of a solution in a solvent.
  • Macugen® the only aptamer drug currently on the market, also includes sodium hydrogen phosphate, sodium dihydrogen phosphate, isotonic agents and pH adjusters. In this state, Macugen is shown to be stably present for 6 months in an accelerated test at 25 ⁇ 2 ° C. and for 36 months in a long-term storage test at 5 ⁇ 3 ° C. From these facts, those skilled in the art should consider that an inorganic salt (electrolyte) is necessary in order to stably exist in an injection while maintaining the higher-order structure of the aptamer.
  • an inorganic salt electrolyte
  • the aptamer for FGF2 which is an active ingredient in the present invention, loses stability due to the influence of inorganic salts which are strong electrolytes when PBS or physiological saline is used as a solvent, and the And, as a result, it was found that the binding activity to FGF2 was lost.
  • the present inventors used water containing no inorganic salt (electrolyte) as a solvent, and unexpectedly suppressed multimerization of the FGF2 aptamer, increasing the proportion of the FGF2 aptamer present as a monomer. (See Example 3).
  • the Tm value of the FGF2 aptamer cannot be measured as shown in Example 1, and the NMR is shown in Example 2. Since no proton shift was observed in FGF2, it is assumed that the FGF2 aptamer dissolved in water was present in a state of being fully extended with a monomer. That is, the use of water containing no inorganic salt as a solvent destroys the higher-order structure of the aptamer, which is considered necessary for the activity construction, and denatures the aptamer to exist in a single-stranded state, thereby inactivating (multimerizing) ) Can be prevented.
  • the solvent used in the aptamer preparation of the present invention is preferably an aqueous solvent containing no inorganic salt (electrolyte), and particularly preferably water.
  • the aptamer preparation of the present invention has a low osmotic pressure because it uses a solvent containing no inorganic salt (electrolyte) as described above, and cannot be used as an injection as it is. Therefore, the aptamer preparation of the present invention is characterized by containing a non-electrolyte osmotic pressure adjusting agent (osmolyte) for the purpose of adjusting the osmotic pressure ratio to the plasma osmotic pressure to 1 or more, preferably 1 to 3.
  • osmolyte non-electrolyte osmotic pressure adjusting agent
  • the osmotic pressure adjusting agent used in the aptamer preparation of the present invention is not particularly limited as long as it is a non-electrolyte, and may be any osmotic pressure adjusting agent generally used except for inorganic ions (such as potassium ion and chloride ion). Anything may be used.
  • osmotic pressure adjusting agents examples include polyhydric alcohols (glycerol, mannitol, trehalose, glucose, sucrose, sorbitol, inositol, etc.), amino acids (alanine, glycine, glutamic acid, proline, GABA, taurine, ectoine, etc.), methyl Examples include ammoniums (TMAO, choline, acetylcholine, glycine betaine, GPC, DMSP, etc.), ureas, etc., preferably polyhydric alcohols, and more preferably mannitol.
  • polyhydric alcohols glycerol, mannitol, trehalose, glucose, sucrose, sorbitol, inositol, etc.
  • amino acids alanine, glycine, glutamic acid, proline, GABA, taurine, ectoine, etc.
  • methyl Examples include ammoniums (TMAO, choline,
  • the amount of the osmotic pressure adjusting agent is not particularly limited, and is appropriately changed by those skilled in the art according to the amount of the FGF2 aptamer contained in the preparation, the type (molecular weight) of the osmotic pressure adjusting agent to be used, and the intended osmotic pressure. can do.
  • the blending ratio of the osmotic pressure adjusting agent in the whole injection is 2 to 7.5% (w / v).
  • the osmotic pressure ratio with respect to physiological saline is 1, if the concentration of the FGF2 aptamer is 2 mg / ml, the mixing ratio of mannitol is 4.9%, and the concentration of the FGF2 aptamer is 20 mg / ml. If it is ml, the blending ratio of mannitol is 3.6%.
  • the aptamer preparation of the present invention does not substantially contain an electrolyte other than the aptamer for FGF2 as an active ingredient or a salt thereof.
  • substantially not contained means that a small amount of electrolyte may be contained within a range where the FGF2 aptamer in the preparation can be stably stored for a long period of time. More preferably, the aptamer preparation of the present invention does not contain an electrolyte other than the aptamer for FGF2 as an active ingredient or a salt thereof.
  • the aptamer preparation of the present invention can further contain a pharmaceutically acceptable additive, if necessary.
  • a pharmaceutically acceptable additive include, for example, stabilizers, preservatives, solubilizers, buffers, pH adjusters, soothing agents, and the like.
  • Pharmaceutical additives that are electrolytes can be preferably used.
  • the pH of the aptamer preparation of the present invention is not particularly limited, but when it is used as an injection, it is desirable to have a pH near neutrality, for example, it is appropriately selected within the range of pH 5 to 9, preferably 6 to 8. Can be.
  • a pH near neutrality for example, it is appropriately selected within the range of pH 5 to 9, preferably 6 to 8.
  • the pH of the solution is within the above range. Therefore, it is not necessary to intentionally add a pH adjuster or a buffer as an electrolyte to the aptamer preparation of the present invention. Absent.
  • the aptamer preparation of the present invention may contain other active ingredients as long as the activity and stability of the FGF2 aptamer are not adversely affected.
  • active ingredients include VGEF inhibitors such as MacGen (registered trademark), Lucentis (registered trademark), Eylea (registered trademark), and Avastin (registered trademark) as therapeutic agents for diseases associated with angiogenesis, steroids, and the like.
  • VGEF inhibitors such as MacGen (registered trademark), Lucentis (registered trademark), Eylea (registered trademark), and Avastin (registered trademark) as therapeutic agents for diseases associated with angiogenesis, steroids, and the like.
  • anti-inflammatory agents human growth hormone preparations such as Norditropin (registered trademark) and Genotropin (registered trademark) as therapeutic agents for bone diseases, and analgesics and sedatives such as morphine.
  • Pharmaceutical compounds for treating or preventing pain associated with angiogenesis such as age-related macular degeneration, osteoporos
  • the aptamer preparation of the present invention is stable at 4 ° C. for 3 months or more due to the above constitution.
  • “stable” means that the ratio of the monomeric aptamer present in the preparation after enclosing the preparation in a glass bottle and storing at 4 ° C is 70% or more, as described above. I do.
  • the proportion of the monomer aptamer in the preparation after storage at 4 ° C. for 3 months is 80% or more.
  • the aptamer preparation of the present invention is stable even when exposed to a white fluorescent lamp or a near ultraviolet fluorescent lamp.
  • the aptamer preparation of the present invention is stably stored in the form of an aqueous solution as it is, preferably in the form of an injection such as a filled syringe or cartridge, by refrigerated storage at 5 ° C. or lower. And it is extremely easy to handle.
  • the aptamer preparation of the present invention is, for example, a medicament for treating or preventing diseases associated with angiogenesis such as age-related macular degeneration, osteoporosis, rheumatoid arthritis, osteoarthritis, bone and cartilage diseases such as fractures, and pain. It can be preferably used.
  • the aptamer preparation of the present invention can be administered parenterally (for example, intravenous administration, subcutaneous administration, intramuscular administration, topical administration, intraperitoneal administration, nasal administration, pulmonary administration, ophthalmic administration, etc.).
  • the dose of the aptamer preparation of the present invention varies depending on the type and activity of the FGF2 aptamer, the severity of the disease, the animal species to be administered, the drug receptivity of the administration subject, body weight, age and the like.
  • Per active ingredient (oligonucleotide portion of the aptamer) can be from about 0.0001 to about 100 mg / kg, such as from about 0.0001 to about 10 mg / kg, preferably from about 0.005 to about 1 mg / kg.
  • Example 1 (Structural analysis of FGF2 aptamer in solvent: determination of Tm value) The structure of the aptamer represented by aptamer ID1 is shown below. Uppercase letters indicate RNA, lowercase letters indicate DNA, and idT indicates inverted dT. Parentheses in each nucleotide indicate modification at the 2 ′ position, F indicates a fluorine atom, and M indicates an O-methyl group. C6 is-(CH 2 ) 6 -linker, and PEG40TS2 is a 2-branched TS-type polyethylene glycol having a molecular weight of 40,000 (SUNBRIGHT GL2-400TS manufactured by NOF Corporation).
  • the aptamer represented by aptamer ID1 was dissolved in water to a concentration of 0.1 mg / mL and in PBS or physiological saline to a concentration of 0.06 mg / mL.
  • the obtained solution was heated at 95 ° C. for 5 minutes, cooled to room temperature, and filled in a quartz glass cuvette.
  • the Tm value was determined by measuring UV absorption with a spectrophotometer while changing the temperature from 20 ° C. to 90 ° C. As a result, the temperature was 60.1 ° C. in PBS and 69.6 ° C. in physiological saline. On the other hand, no specific Tm value was observed in water.
  • aptamer represented by aptamer ID1 would form a higher-order structure by intermolecular interaction in PBS or physiological saline, which can be usually used as a solvent for an injection. It was also assumed that the aptamer represented by aptamer ID1 did not form intermolecular or intramolecular base pairs in water containing no electrolyte and did not form a higher-order structure.
  • Example 2 (Structural analysis of FGF2 aptamer in heavy water: NMR spectrum measurement) A glass vial was filled with 20 mg of the aptamer represented by aptamer ID1, and dissolved in about 1 mL of heavy water to obtain a measurement sample. The measurement was performed using a Bruker Avance 600 MHz NMR spectrometer. As a result, no imino proton signal derived from base pair formation, which should be observed in a magnetic field lower than 8 ppm, was not observed. From this, it was assumed that the aptamer represented by aptamer ID1 did not form a base pair between molecules or in a molecule in water containing no electrolyte, and did not form a higher-order structure.
  • Example 3 Structure analysis of FGF2 aptamer in solution containing electrolyte: SEC-MALS measurement
  • the aptamer represented by aptamer ID1 was dissolved in physiological saline to a concentration of 20 mg / mL, and incubated at 37 ° C. for 2 weeks to prepare an FGF2 aptamer formulation that artificially forms a higher-order structure.
  • This and a sample which had been frozen and stored immediately after preparation to minimize the formation of higher-order structures were each diluted with physiological saline to a concentration of 0.2 mg / mL, and then subjected to analysis.
  • the monomer and the multimer were separated by size exclusion chromatography, and their molecular weights were measured with a MALS (Multi Angle Light Scattering) detector manufactured by Wyatt Technology. Size exclusion chromatography was performed on a Waters ACQUITY UPLC using a BEH200 SEC column. As a result, the molecular weight of the peak considered to be a monomer was measured to be about 64000, and the molecular weight of the peak thought to be a higher-order structure composed of a multimer was measured to be about 122,000. From this result, it was found that the higher-order structure formed in the water containing the electrolyte by the aptamer represented by aptamer ID1 was a dimer.
  • MALS Multi Angle Light Scattering
  • Example 4 (Correlation between aptamer monomer content and binding activity)
  • the aptamer represented by aptamer ID1 was dissolved in PBS, physiological saline, or a 3.3% mannitol aqueous solution to a concentration of 20 mg / mL or 2 mg / mL, and various monomers were stored under the storage conditions shown in Table 1.
  • An FGF2 aptamer formulation having a reduced content was prepared.
  • the monomer content of each prepared FGF2 aptamer preparation was determined by size exclusion chromatography.
  • the results are also shown in Table 1.
  • the binding activity of each prepared FGF2 aptamer preparation to FGF2 protein was measured by surface plasmon resonance (SPR) using Biacore T200 manufactured by GE.
  • SPR surface plasmon resonance
  • CM4 which reacts with amino groups, was used as the sensor chip.
  • Human FGF2 was dissolved in an immobilization solution (10 mM sodium acetate, pH 6) to give 10 ⁇ g / mL.
  • Ethyl-3-carbodiimide hydrochloride and N-hydroxysuccinimide were used for the reaction between the amino group on the protein side and the carboxyl group on the chip side. After the reaction, blocking by ethanolamine was performed. The amount of FGF2 immobilized was about 1000 RU. Aptamers for analytes were prepared at 5 ⁇ M.
  • FGF2 was immobilized on the flow cell FC2 or FC4, and the final sensorgram was obtained by subtracting the result of FC1 or FC3. The activity was evaluated as a relative value to an FGF2 aptamer preparation standard having a very low multimer content prepared in a solution containing no electrolyte.
  • Table 1 shows the preparation method of each FGF2 aptamer preparation, the monomer content, and the measurement results of the binding activity to FGF2 protein. This result revealed that the monomer content of the FGF2 aptamer preparation and the binding activity to the FGF2 protein were correlated.
  • Example 5 (stability test of FGF2 aptamer preparation)
  • the aptamer represented by aptamer ID1 was dissolved in a 3.3%, 3.6%, or 4.9% mannitol solution to a concentration of 20 mg / mL or 2 mg / mL, and was dissolved at various temperature conditions shown in Table 2. After storage for months, the monomer content and the binding activity were measured by size exclusion chromatography and SPR method. Table 2 shows the results. These results revealed that the FGF2 aptamer preparation prepared with an aqueous mannitol solution containing no electrolyte was stable.
  • Example 6 Results with other FGF2 aptamer formulations
  • Aptamers represented by aptamer IDs 2 to 6 are dissolved in water (an aqueous solution of mannitol), physiological saline or PBS to an appropriate concentration to prepare an FGF2 aptamer preparation. After each obtained FGF2 aptamer preparation is stored for several months under various temperature conditions and storage temperatures, the monomer content and the binding activity are measured by size exclusion chromatography and SPR method.
  • Aptamer ID 2 GL2-400TS-C6-C (M) G (M) G (M) A (M) U (M) A (M) C (M) U (F) A (M) G (M) G (M) GC (M) A (M) U (M) U (F) A (M) A (M) U (M) G (M) U (F) U (M) A (M) C (M) C ( M) A (M) GU (F) GU (F) A (M) G (M) U (M) C (M) C (M) G (M) -idT; Aptamer ID3: GL2-400TS-C6-C (M) C (M) G (M) A (M) U (M) A (M) C (M) U (M) G (M) GC (M) A (M) U (M) U (F) A (M) U (M) G (M) U (F) U (F) U (F) U (F) U
  • Comparative Example 1 (stability test of FGF2 aptamer preparation)
  • the aptamer represented by aptamer ID1 was dissolved in physiological saline or PBS to a concentration of 20 mg / mL to prepare an FGF2 aptamer preparation.
  • Each of the obtained FGF2 aptamer preparations was stored under various temperature conditions shown in Table 3 for 3 months, and then the monomer content was measured by size exclusion chromatography. Table 3 shows the results. From this result, it became clear that the FGF2 aptamer preparation prepared with physiological saline containing electrolyte and PBS was unstable.
  • the aptamer preparation of the present invention can stably store the aptamer for FGF2 or a salt thereof in the form of an aqueous solution such as an injection for a long period of time even by refrigerated storage.
  • Formulation excellent in handling as a therapeutic or prophylactic agent for acquired diseases eg, diseases involving angiogenesis such as age-related macular degeneration, osteoporosis, rheumatoid arthritis, osteoarthritis, bone and cartilage diseases such as fractures, pain
  • diseases involving angiogenesis such as age-related macular degeneration, osteoporosis, rheumatoid arthritis, osteoarthritis, bone and cartilage diseases such as fractures, pain
  • This application is based on a patent application No. 2018-124390 filed in Japan (filing date: June 29, 2018), the contents of which are incorporated in full herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Biochemistry (AREA)
  • Rheumatology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Immunology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Cardiology (AREA)

Abstract

本発明は、アプタマー、特にFGF2に対するアプタマーの活性を長期間にわたって安定に保持し得る製剤処方を提供し、以てアプタマー、特にFGF2アプタマーを有効成分とする医薬製剤を提供する。

Description

アプタマー製剤
 本発明は、アプタマー製剤、特に塩基性線維芽細胞増殖因子(FGF2)に対するアプタマーを有効成分とするアプタマー製剤に関する。
 近年、RNAアプタマーの治療薬、診断薬、試薬への応用が注目されており、いくつかのRNAアプタマーが臨床段階あるいは実用化段階に入っている。2004年12月には、世界初のRNAアプタマー医薬であるMacugen(登録商標)(一般名:ペガプタニブナトリウム)が加齢性黄斑変性症の治療薬として米国で承認され、本邦でも2008年7月に承認された。Macugen(登録商標)は、VEGFに対するアプタマーを活性本体とする。該アプタマーは28個の核酸分子からなる合成オリゴヌクレオチドで構成され、その5’末端にポリエチレングリコール(PEG)誘導体が結合している。
 Macugen(登録商標)の剤形はプレフィルドシリンジ注射剤で、硝子体内に注射する。無色からわずかに着色した澄明な水性注射液であり、リン酸水素ナトリウム、リン酸二水素ナトリウム、等張化剤及びpH調整剤が添加されている。この製剤処方で25±2℃の加速試験において6か月間、5±3℃の長期保存試験においても36か月間にわたって、安定に存在することが示されている(非特許文献1)。
 一方、本願の出願時点において、Macugen(登録商標)以外にアプタマーを有効成分とする医薬品は存在せず、アプタマー製剤にどのような製剤処方が適切なのかは全く知られていない。
 出願人は、FGF2に対するアプタマーを有効成分とし、加齢黄斑変性症や軟骨無形成症、また癌性疼痛を適応症とする医薬品を開発中である(特許文献1及び2)。本発明者らは、FGF2アプタマー製剤の開発を進める過程で、Macugen(登録商標)とおよそ同じと考えられる製剤処方や、リン酸緩衝生理食塩水(PBS)を媒体とした製剤処方では、FGF2アプタマーの活性を維持できないという結果を得た。
国際公開第2011/099576号 国際公開第2015/147017号
医薬品インタビューフォーム 加齢黄斑変性症治療剤 マクジェン(登録商標)硝子体内注射用キット0.3mg 2015年3月(改訂第5版)
 従って、本発明の目的は、アプタマー、特にFGF2に対するアプタマーの活性を長期間にわたって安定に保持し得る製剤処方を提供し、以てアプタマー、特にFGF2アプタマーを有効成分とする医薬製剤を提供することである。
 本発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、FGF2アプタマーにおける最適な製剤条件を見出すことに成功し、本発明を完成するに至った。
 即ち、本発明は以下のものを提供する。
[1]FGF2に結合するアプタマー又はその塩と、非電解質である浸透圧調整剤とを含有してなる、該アプタマー又はその塩が長期間安定である水性液剤。
[2]前記アプタマー又はその塩以外に、実質的に電解質を含有しない、[1]に記載の水性液剤。
[3]前記アプタマーが、下式(1):
GGANACUAGGGCNUUAANGUNACCAGUGUN (1)
(ここで、N及びNは、それぞれ独立して任意の0から数個の塩基を表し、N、N、N及びNは、独立して任意の一個の塩基を表す)
で表わされるヌクレオチド配列(但し、ウラシルはチミンであってもよい)を含むアプタマーであって、以下の(a)又は(b):
(a)該アプタマーに含まれるヌクレオチドにおいて、
 (i)各ピリミジンヌクレオチドのリボースの2’位がフッ素原子であり
 (ii)各プリンヌクレオチドのリボースの2’位がヒドロキシ基である;
(b)該(a)のアプタマーにおいて、
 (i)各ピリミジンヌクレオチドのリボースの2’位のフッ素原子が、それぞれ独立して、無置換であるか、水素原子、ヒドロキシ基及びメトキシ基からなる群より選ばれる原子又は基で置換されており
 (ii)各プリンヌクレオチドのリボースの2’位のヒドロキシ基が、それぞれ独立して、無置換であるか、水素原子、メトキシ基及びフッ素原子からなる群より選ばれる原子又は基で置換されている;
のいずれかである、[1]又は[2]に記載の水性液剤。
[4]前記アプタマーが、下式(3):
GGAUACUAGGGCAUUAAUGUUACCAGUGUAGUCN62 (3)
(ここで、N及びN62は、それぞれ独立して任意の0から数個の塩基を表す)
で表わされるヌクレオチド配列を含む、[1]又は[2]に記載の水性液剤。
[5]前記アプタマーが、配列番号3、8、9、10又は12で表わされるいずれかのヌクレオチド配列を含む、[1]又は[2]に記載の水性液剤。
[6]アプタマーの濃度が1~60mg/mLである、[1]~[5]のいずれかに記載の水性液剤。
[7]浸透圧調整剤の配合割合が、水性液剤全体の2~7.5%(w/v)である、[1]~[6]のいずれかに記載の水性液剤。
[8]浸透圧調整剤がマンニトールである、[1]~[7]のいずれかに記載の水性液剤。
[9]アプタマー1mgに対して、マンニトールを1~50mgの割合で含有する、[8]に記載の水性液剤。
[10]5℃以下で保存される、[1]~[9]のいずれかに記載の水性液剤。
[11]4℃で3か月保存後の単量体アプタマーの割合が80%以上である、[1]~[10]のいずれかに記載の水性液剤。
[12]注射剤である、[1]~[11]のいずれかに記載の水性液剤。
[13]血管新生を伴う疾患、骨・軟骨疾患又は疼痛の予防又は治療用である、[1]~[12]のいずれかに記載の水性液剤。
[14][1]~[12]のいずれかに記載の水性液剤を対象に投与することを含む、血管新生を伴う疾患、骨・軟骨疾患又は疼痛の予防又は治療方法。
[15]、血管新生を伴う疾患、骨・軟骨疾患又は疼痛の予防又は治療における使用のための、[1]~[12]のいずれかに記載の水性液剤。
 本発明によれば、有効成分であるFGF2に対するアプタマー又はその塩を、水性液剤の形態で長期間安定に保存することができるので、取扱いが容易なアプタマー製剤を提供することができる。
 本発明は、FGF2に対するアプタマー又はその塩を有効成分とし、該アプタマー又はその塩が長期間安定に保持される医薬製剤(以下、「本発明のアプタマー製剤」ともいう)を提供する。ここで「長期間安定」であるとは、ガラス瓶中に当該製剤を封入し4℃で3か月間保存した後の単量体アプタマーの割合が70%以上であることを意味する。単量体アプタマーの割合は、サイズ排除クロマトグラフィーを用いて、以下の条件により単量体と多量体を分離・検出し、(単量体のピーク面積)/(単量体及び多量体のピーク面積の和)×100(%)を算出した値である。
 装置:Waters社製 ACQUITY UPLC H-Class Bio
 検出器:Waters社製 TUV検出器
 カラム:Waters社製 ACQUITY UPLC BEH200 SECカラム
 サンプル濃度:0.2mg/mL
 注入量:5μL
 溶離液:10%アセトニトリル/PBS
 流速:0.3mL/分
 カラム温度:25℃
 本発明のアプタマー製剤は、有効成分としてのFGF2に対するアプタマー又はその塩と、非電解質である浸透圧調整剤とを含有する。
 アプタマーとは、所定の標的分子に対する結合活性を有する核酸分子をいう。アプタマーは、所定の標的分子に対して結合することにより、該標的分子の活性を阻害し得る。本発明のアプタマー製剤の有効成分であるアプタマーは、FGF2に対して結合活性を有するアプタマーである。好ましい実施態様において、該アプタマーは、FGF2に結合してFGF2とFGF受容体との結合を阻害することができるアプタマーである。すなわち、該アプタマーは、FGF2に対する阻害活性を有する。
 本発明に用いられるアプタマーはFGF2に結合するアプタマーであり、さらに好ましくはFGF2に結合してFGF2とFGF受容体との結合を阻害することができるアプタマーである。FGF2とFGF受容体との結合を本発明に用いられるアプタマーが阻害するか否かは、例えば実施例1等の表面プラズモン共鳴法を利用した試験により評価することができる。
 FGF2に対するアプタマーは特に制限されないが、例えば、国際公開第2015/147017号に記載されたアプタマー、具体的には、下式(1):
GGANACUAGGGCNUUAANGUNACCAGUGUN (1)
で表わされるヌクレオチド配列(但し、ウラシルはチミンであってもよい)を含むアプタマーであって、以下の(a)又は(b):
(a)該アプタマーに含まれるヌクレオチドにおいて、
 (i)各ピリミジンヌクレオチドのリボースの2’位がフッ素原子であり
 (ii)各プリンヌクレオチドのリボースの2’位がヒドロキシ基である;
(b)該(a)のアプタマーにおいて、
 (i)各ピリミジンヌクレオチドのリボースの2’位のフッ素原子が、それぞれ独立して、無置換であるか、水素原子、ヒドロキシ基及びメトキシ基からなる群より選ばれる原子又は基で置換されており
 (ii)各プリンヌクレオチドのリボースの2’位のヒドロキシ基が、それぞれ独立して、無置換であるか、水素原子、メトキシ基及びフッ素原子からなる群より選ばれる原子又は基で置換されている;
のいずれかである、アプタマーである。
 上記式(1)中、N及びNは、それぞれ独立して任意の0から数個の塩基を表し、N、N、N及びNは、独立して任意の一個の塩基を表す。本明細書において「塩基」とは、核酸を構成するアデニン(A)、グアニン(G)、シトシン(C)、ウラシル(U)又はチミン(T)のいずれかを意味する。
 Nの塩基数は、式(1)で表わされるヌクレオチド配列を含むアプタマーがFGF2に結合する限り特に限定されないが、例えば、0~約10個、0~9個、0~8個、0~7個、0~6個、0~5個、0~4個、0~3個、0~2個などであってよく、好ましくは0~2個であり得る。
 Nの塩基数についてもNと同様に特に限定されないが、例えば、0~約10個、0~9個、0~8個、0~7個、0~6個、0~5個、0~4個、0~3個などであってよく、好ましくは0~10個、3~9個、又は5~8個である。
 好ましい実施態様において、上記式(1)中、
は、G、GG、AG、C又はギャップであり、
は、A又はUであり、
は、G、C又はAであり、
は、G、C又はUであり、
は、G又はUであり、
は、UUCN61又はAGUCN62(式中、N61及びN62は、それぞれ独立して任意の0から数個の塩基である)である。ここで、Nが「ギャップ」であるとは、式(1)中にNが存在しないこと、すなわちNが0個の塩基であることを意味する。
 N61の塩基数は特に限定されないが、例えば、0~約10個、0~7個、0~6個、0~5個、0~4個などであってよく、好ましくは0~5個、1~5個、又は2~4個であり得る。
 N62の塩基数についても特に限定されないが、例えば、0~約10個、0~7個、0~5個、0~4個、0~3個などであってよく、好ましくは0~5個、0~4個、又は0~3個であり得る。
 別の好ましい実施態様において、上記式(1)中、
は、G、GG、AG又はギャップであり、
は、A又はUであり、
は、G又はAであり、
は、C又はUであり、
は、G又はUであり、
は、UUCN61又はAGUCN62(式中、N61及びN62は上記と同義である)である。
 好ましい実施態様において、本発明に用いられるアプタマーは、下式(2)又は(3):
GGGAAACUAGGGCGUUAACGUGACCAGUGUUUCN61 (2)
GGAUACUAGGGCAUUAAUGUUACCAGUGUAGUCN62 (3)
(式中、N、N61及びN62は前記と同義である)
で表されるヌクレオチド配列、より好ましくは、式(3)で表されるヌクレオチド配列を含む。
 好ましい実施態様において、本発明に用いられるアプタマーは、配列番号1~12のいずれかで表わされるヌクレオチド配列を含む。以下に、配列番号1~12で表わされるヌクレオチド配列(但し、ウラシルはチミンであってもよい)を示す(以下、A、G、C及びUは、それぞれ、ヌクレオチドの塩基がアデニン、グアニン、シトシン及びウラシルであることを示す)。
配列番号1:
 GGGAUACUAGGGCAUUAAUGUUACCAGUGUAGUCUCGA
配列番号2:
 GGGAAACUAGGGCGUUAACGUGACCAGUGUUUCUCGA
配列番号3:
 GGGAUACUAGGGCAUUAAUGUUACCAGUGUAGUCCC
配列番号4:
 GGAUACUAGGGCAUUAAUGUUACCAGUGUAGUCC
配列番号5:
 GGGGAUACUAGGGCAUUAAUGUUACCAGUGUAGUCCCC
配列番号6:
 AGGGAUACUAGGGCAUUAAUGUUACCAGUGUAGUCCC
配列番号7:
 GGGAAACUAGGGCGUUAACGUGACCAGUGUUUCCC
配列番号8:
 CGGAUACUAGGGCAUUAAUGUUACCAGUGUAGUCCG
配列番号9:
 CCGAUACUAGGGCAUUAAUGUUACCAGUGUAGUCGG
配列番号10:
 GGGAUACUAGGGCGUUAACGUUACCAGUGUAGUCCC
配列番号11:
 GGGAUACUAGGGCCUUAAGGUUACCAGUGUAGUCCC
配列番号12:
 GGGAUACUAGGGCAUUUAUGUUACCAGUGUAGUCCC
 好ましい一実施態様において、本発明に用いられるアプタマーは、配列番号1、3、4、5、6、8、9、10又は12、より好ましくは、配列番号3、8、9、10又は12で表わされるヌクレオチド配列を含む。
 別の好ましい実施態様において、本発明に用いられるアプタマーは、配列番号2又は7で表わされるヌクレオチド配列(上記式(2)に包含される)を含む。
 さらに別の好ましい実施態様において、本発明に用いられるアプタマーは、配列番号1、3、4、5、6又は8で表わされるヌクレオチド配列(上記式(3)に包含される)を含む。
 一実施態様において、本発明に用いられるアプタマーは、上記したいずれかのヌクレオチド配列において、依然としてFGF2に結合する限り、1又は数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列を含んでよく、
(a)該アプタマーに含まれるヌクレオチドにおいて、
 (i)各ピリミジンヌクレオチドのリボースの2’位がフッ素原子であり、
 (ii)各プリンヌクレオチドのリボースの2’位がヒドロキシ基である、アプタマー;
(b)該(a)のアプタマーにおいて、
 (i)各ピリミジンヌクレオチドのリボースの2’位のフッ素原子が、それぞれ独立して、無置換であるか、水素原子、ヒドロキシ基及びメトキシ基からなる群より選ばれる原子又は基で置換されており、
 (ii)各プリンヌクレオチドのリボースの2’位のヒドロキシ基が、それぞれ独立して、無置換であるか、水素原子、メトキシ基及びフッ素原子からなる群より選ばれる原子又は基で置換されている、アプタマー
であってよい。
 ここで、上記置換、欠失、挿入又は付加されるヌクレオチド数は、置換、欠失、挿入又は付加後も依然としてFGF2に結合する限り特に限定されないが、例えば1~約10個、好ましくは1~6個、より好ましくは1~5個、さらに好ましくは1~4個、さらに好ましくは1~3個、最も好ましくは1個又は2個であり得る。ヌクレオチドが置換、欠失、挿入又は付加される部位も、置換、欠失、挿入又は付加後も依然としてFGF2に結合する限り特に限定されないが、上記式(1)、(2)及び(3)中、1種のヌクレオチド(即ち、A、G、C又はU)で特定されている部位においては、1~3か所、好ましくは1又は2か所、より好ましくは1か所においてヌクレオチドが置換、欠失、挿入又は付加される。一方、式(1)、(2)及び(3)中、複数種のヌクレオチドをとり得る部位(即ち、N、N、N、N、N、N、N61又はN62)においては、より多くのヌクレオチド(例えば、1~約10個、好ましくは1~6個、より好ましくは1~5個、さらに好ましくは1~4個)の置換、欠失、挿入又は付加も許容され得る。例えば、配列番号3で表されるヌクレオチド配列を元の配列とすると、配列番号1は、配列番号3の3’末端のCCがUCGAに置換されたものであり、配列番号4は、配列番号3の両末端がそれぞれ1ヌクレオチドずつ欠失したものであり、配列番号5は、配列番号3の5’末端にG、3’末端にCをそれぞれ付加したものであり、配列番号6は、配列番号3の5’末端にAを付加したものであり、配列番号8は、配列番号3の5’末端のGをCに、3’末端のCをGに、それぞれ置換したものであり、配列番号9は、配列番号3の5’末端のGGをCCに、3’末端のCCをGGに、それぞれ置換したものであり、配列番号10は、配列番号3の14番目のAがGに、19番目のUがCに、それぞれ置換したものであり、配列番号12は、配列番号3の17番目のAがUに置換したものである。
 本発明に用いられるアプタマーの長さは特に限定されず、通常、約10~約200ヌクレオチドであり得るが、例えば、約20ヌクレオチド以上(例、25ヌクレオチド以上、30ヌクレオチド以上、31ヌクレオチド以上、32ヌクレオチド以上、33ヌクレオチド以上)であり、好ましくは25ヌクレオチド以上であり、より好ましくは30ヌクレオチド以上であり、さらに好ましくは33ヌクレオチド以上であり得る。また、例えば、約100ヌクレオチド以下、通常約80ヌクレオチド以下、好ましくは約70ヌクレオチド以下、より好ましくは約60ヌクレオチド以下、さらに好ましくは約50ヌクレオチド以下、さらに好ましくは約45ヌクレオチド以下(例、44ヌクレオチド以下、43ヌクレオチド以下、42ヌクレオチド以下、41ヌクレオチド以下、40ヌクレオチド以下)であり得る。総ヌクレオチド数が少なければ、化学合成及び大量生産がより容易であり、かつコスト面でのメリットも大きい。また、化学修飾も容易であり、生体内安定性も高く、毒性も低いと考えられる。
 よって本発明に用いられるアプタマーの長さとしては、通常約10~約200ヌクレオチドであり得、好ましくは20~80ヌクレオチドであり、より好ましくは25~60ヌクレオチドであり、さらに好ましくは25~50ヌクレオチドであり、最も好ましくは30~45ヌクレオチドである。
 本発明に用いられるアプタマーはまた、上記式(1)で表わされるヌクレオチド配列を含むアプタマー(アプタマー(A))の複数の連結物、上記式(1)で表わされるヌクレオチド配列において、1又は数個のヌクレオチドが置換、欠失、挿入又は付加されたヌクレオチド配列を含むアプタマー(アプタマー(B))の複数の連結物、並びに1又は複数のアプタマー(A)と1又は複数のアプタマー(B)との連結物、からなる群より選ばれる連結物であり得る。これらの連結物も、FGF2に結合し得る。
 ここで連結はタンデム結合にて行われ得る。また、連結に際し、リンカーを利用してもよい。リンカーとしては、ヌクレオチド鎖(例、1~約20ヌクレオチド)、非ヌクレオチド鎖(例、-(CH-リンカー、-(CHCHO)-リンカー、ヘキサエチレングリコールリンカー、TEGリンカー、ペプチドを含むリンカー、-S-S-結合を含むリンカー、-CONH-結合を含むリンカー、-OPO-結合を含むリンカー)が挙げられる。上記複数の連結物における複数とは、2以上であれば特に限定されないが、例えば2個、3個又は4個であり得る。
 本発明に用いられるアプタマーに含まれる各ヌクレオチドはそれぞれ、同一又は異なって、リボース(例、ピリミジンヌクレオチドのリボース、プリンヌクレオチドのリボース)の2’位においてヒドロキシ基を含むヌクレオチド(即ち、天然のリボヌクレオチド)であるか、あるいはリボースの2’位において、ヒドロキシ基が、任意の原子又は基で置換(修飾)されているヌクレオチド(本明細書において、「修飾ヌクレオチド」と記載する場合がある)であり得る。
 このような任意の原子又は基としては、例えば、水素原子、フッ素原子又は-O-アルキル基(例、-O-Me基)、-O-アシル基(例、-O-CHO基)、アミノ基(例、-NH基)で置換されているヌクレオチドが挙げられる。本発明に用いられるアプタマーはまた、少なくとも1種(例、1、2、3又は4種)のヌクレオチドが、リボースの2’位において、ヒドロキシ基、又は上述した任意の原子又は基、例えば、水素原子、フッ素原子、ヒドロキシ基及び-O-Me基からなる群より選ばれる少なくとも2種(例、2、3又は4種)の基を含む修飾ヌクレオチドであり得る。
 本発明に用いられるアプタマーにおいてはまた、全てのピリミジンヌクレオチドが、リボースの2’位がフッ素原子であるヌクレオチドであるか、あるいは該フッ素原子が、同一又は異なって、無置換であるか、上述した任意の原子又は基、好ましくは、水素原子、ヒドロキシ基及びメトキシ基からなる群より選ばれる原子又は基で置換されているヌクレオチドであり得る。特に本発明に用いられるアプタマーの製造方法として、DuraScribeTM T7 Transcription Kit(Epicentre社製)を用いた製造方法を適用した場合、全てのピリミジンヌクレオチドのリボース2’位がフルオロ化したアプタマーが得られる。フッ素原子がその他の上記原子又は基で置換されているアプタマーは、後述の方法で製造することができる。
 本発明に用いられるアプタマーにおいてはまた、全てのプリンヌクレオチドが、リボースの2’位がヒドロキシ基であるヌクレオチドであるか、あるいは該ヒドロキシ基が、同一又は異なって、無置換であるか、上述した任意の原子又は基、好ましくは、水素原子、メトキシ基及びフッ素原子からなる群より選ばれる原子又は基で置換されるヌクレオチドであり得る。ヒドロキシ基がその他の上記原子又は基で置換されているアプタマーは、後述の方法で製造することができる。
 本発明に用いられるアプタマーにおいてはまた、全てのピリミジンヌクレオチドが、リボースの2’位のフッ素原子が上述した任意の原子又は基、例えば、水素原子、ヒドロキシ基及び-O-Me基からなる群より選ばれる同一の原子又は基で置換されているヌクレオチドであり得る。
 本発明に用いられるアプタマーにおいてはまた、全てのプリンヌクレオチドが、リボースの2’位のヒドロキシ基が上述した任意の原子又は基、例えば、水素原子、フッ素原子及び-O-Me基からなる群より選ばれる同一の原子又は基で置換されているヌクレオチドであり得る。
 好ましい実施態様において、本発明に用いられるアプタマーに含まれる各ピリミジンヌクレオチドはいずれも、リボースの2’位においてフッ素原子を含むヌクレオチドであり、かつ各プリンヌクレオチドはいずれも、リボースの2’位においてヒドロキシ基を含むヌクレオチドである。別の実施態様において、上記各ピリミジンヌクレオチドのリボースの2’位のフッ素原子は、それぞれ独立して水素原子、ヒドロキシ基及びメトキシ基からなる群より選ばれる原子又は基で置換されていてもよく、かつ上記各プリンヌクレオチドのリボースの2’位のヒドロキシ基は、それぞれ独立して水素原子、メトキシ基及びフッ素原子からなる群より選ばれる原子又は基で置換されていてもよい。
 尚、本明細書においては、アプタマーを構成するヌクレオチドをRNAと仮定して(すなわち糖基をリボースと仮定して)、ヌクレオチド中の糖基への修飾の態様を説明するが、これは、アプタマーを構成するヌクレオチドからDNAが除外されることを意味するものではなく、適宜DNAへの修飾として読み替えられる。例えば、アプタマーを構成するヌクレオチドがDNAである場合、リボースの2’位のヒドロキシル基のXへの置き換えは、デオキシリボースの2’位の水素原子のXへの置き換えとして読み替えられる。
 本発明に用いられるアプタマーにおいて、ウラシルをチミンに置換することによって、FGF2に対する結合性、FGF2とFGF受容体との結合阻害活性、アプタマーの安定性、薬物送達性、血液中での安定性等を高めることが可能である。
 本発明に用いられるアプタマーにおいてはまた、ヌクレオチドにおけるリン酸ジエステル結合の1又は数個、例えば、1~2個、1~3個、1~4個、1~5個のヌクレオチドが任意の置換基で修飾もしくは置換されていてもよい。例えば、リン酸ジエステル結合がホスホロチオエート結合、ホスホロジチオエート結合、アルキルホスホネート結合、ホスホロアミデート結合等に置換されていてもよい。ここで、例えば「ヌクレオチドがホスホロチオエート結合に置換されている」とは、隣接するヌクレオチド間の結合部位にあるリン酸基が硫黄化されている、すなわち、ホスホジエステル結合がホスホロチオエート結合に改変されていることを示す。
 本発明に用いられるアプタマーにおいてはまた、アプタマーを安定化し、その活性を向上させる目的で、1又は数個、例えば、1~2個、1~3個、1~4個、1~5個のヌクレオチドが架橋化核酸Bridged Nucleic Acid(BNA)又はLocked Nucleic Acid(LNA)で置換されていてもよい。ここで、「架橋化核酸」とは、核酸の自由度を分子内架橋で拘束することにより、相補配列に対する結合親和性を高め、かつヌクレアーゼ耐性を獲得する構造を持つものをいい、例えば、2’,4’-BNA(LNA)、2’-O,4’-C-ethylene-bridged Nucleic Acid(ENA)などが挙げられるがこれらに限定されない。
 本発明に用いられるアプタマーは、FGF2に対する結合性、安定性、薬物送達性等を高めるため、各ヌクレオチドの糖残基(例、リボース)が修飾されたものであってもよい。糖残基において修飾される部位としては、例えば、糖残基の2’位、3’位及び/又は4’位の酸素原子を他の原子に置き換えたものなどが挙げられる。修飾の種類としては、例えば、フルオロ化、O-アルキル化(例、O-メチル化、O-エチル化)、O-アリル化、S-アルキル化(例、S-メチル化、S-エチル化)、S-アリル化、アミノ化(例、-NH)が挙げられる。他にも、4’位の酸素を硫黄に置き換えた4’-SRNA、2’位と4’位とをメチレンを介して架橋したLNA(Locked Nucleic Acid)、3’位の水酸基をアミノ基に置き換えた3’-N-ホスホロアミデート核酸などを例として挙げることができる。本発明に用いられるアプタマーは、その製造方法からピリミジンヌクレオチドのリボース2’位の酸素原子が一定の修飾をもって製造される場合があり、例えば、DuraScribeTM T7 Transcription Kit(Epicentre社製)を用いた製造方法を適用した場合、好ましくは全てのピリミジンヌクレオチドのリボース2’位がフルオロ化したアプタマーが製造される。したがって、得られたアプタマーに対しその後このような糖残基の改変を加えることで、塩基配列は同じであるが活性が高められた様々なバリエーションのアプタマーを製造することが可能である。以上のことから、本発明に用いられるアプタマーは、好ましくは少なくとも一つのヌクレオチドの糖残基が修飾されたアプタマーであり得る。このような糖残基の改変は、自体公知の方法により行うことができる(例えば、Sproat et al.,(1991),Nucl.Acid.Res.19,733-738;Cotton et al.,(1991),Nucl.Acid.Res.19,2629-2635;Hobbs et al.,(1973),Biochemistry 12,5138-5145参照)。具体的には、全てのピリミジンヌクレオチドのリボース2’位の水酸基がフルオロ基に置換されたアプタマーをベースに、リボース2’位における水酸基を、水素原子、ヒドロキシル基及びメトキシ基からなる群より選ばれる原子又は基で置換したアプタマーを製造することができる。
 本発明に用いられるアプタマーはまた、FGF2に対する結合性、多量体化の防止、安定性、薬物送達性等を高めるため、核酸塩基(例、プリン、ピリミジン)が改変(例、化学的置換)されたものであってもよい。このような改変としては、例えば、5位ピリミジン改変、6及び/又は8位プリン改変、環外アミンでの改変、4-チオウリジンでの置換、5-ブロモ又は5-ヨード-ウラシルでの置換が挙げられる。また、ヌクレアーゼ及び加水分解に対して耐性であるように、本発明に用いられるアプタマーに含まれるリン酸基が改変されていてもよい。例えば、P(O)O基が、P(O)S(チオエート)、P(S)S(ジチオエート)、P(O)N(R)R’(アミデート)、P(O)R、P(O)OR、CO又はCH(ホルムアセタール)又は3’-アミン(-NH-CH-CH-)で置換されていてもよい〔ここで各々のR又はR’は独立して、Hであるか、あるいは置換されているか、又は置換されていないアルキル(例、メチル、エチル)である〕。
 連結基としては、-O-、-N-又は-S-が例示され、これらの連結基を通じて隣接するヌクレオチドに結合し得る。
 改変はまた、キャッピングのような3’及び5’の改変を含んでもよい。
 改変はさらに、ポリエチレングリコール(PEG)、アミノ酸、ペプチド、inverted dT、核酸、ヌクレオシド、Myristoyl、Lithocolic-oleyl、Docosanyl、Lauroyl、Stearoyl、Palmitoyl、Oleoyl、Linoleoyl、その他脂質、ステロイド、コレステロール、カフェイン、ビタミン、色素、蛍光物質、抗癌剤、毒素、酵素、放射性物質、ビオチンなどを末端に付加することにより行われ得る。このような改変については、例えば、米国特許第5,660,985号、同第5,756,703号を参照のこと。
 特に、改変がPEGの末端付加によって行われる場合、PEGの分子量は特に限定されないが、好ましくは1000~100000、より好ましくは30000~90000である。PEGは、直鎖状であってもよいし、二つ以上の鎖に分岐したもの(マルチアームPEG)であってもよい。PEGの末端付加は後述するアプタマーの多量体化の防止に有用である。
 このようなPEGとしては特に限定されず、当業者であれば市販あるいは公知のPEGを適宜選択して用いることができる(例えば、http://www.peg-drug.com/peg_product/branched.htmlを参照のこと)が、本発明に用いられるアプタマーに適用するPEGの好適例として具体的には、分子量40000の2分岐GS型PEG(SUNBRIGHT GL2-400GS 日油製)、分子量40000の2分岐TS型PEG(SUNBRIGHT GL2-400TS 日油製)、分子量40000の4分岐TS型PEG(SUNBRIGHT GL4-400TS 日油製)、分子量80000の2分岐TS型PEG(SUNBRIGHT GL2-800TS 日油製)、又は分子量80000の4分岐TS型PEG(SUNBRIGHT GL4-800TS 日油製)などが挙げられる。
 この場合、本発明に用いられるアプタマーは、PEGが末端に直接付加されていてもよいが、その末端にPEGと結合可能な基を有するリンカーなどが付加され、それを介してPEGを本発明に用いられるアプタマーに付加することがより好ましい。
 PEGと本発明に用いられるアプタマーのリンカーとしては特に限定されず、炭素鎖数や官能基などを結合部位やPEGの種類などに応じて適宜選択することができる。このようなリンカーとしては、例えばアミノ基を有するリンカーが挙げられ、具体的には、5’末端に付加する場合は、ssH Linker(SAFC)又はDMS(O)MT-AMINO-MODIFIER(GLENRESEARCH)が、3’末端に付加する場合は、TFA Amino C-6 lcaa CPG(ChemGenes)などが例示される。このリンカーを選択した場合、PEGには、例えばN-hydroxysuccinimideの活性基を付加した上で、これをリンカー側のアミノ基と反応させることで、本発明に用いられるアプタマーとPEGとをリンカーを介して結合することができる。
 なおPEGやリンカーとしては、市販のものを好ましく用いることができる。またPEG、リンカー及び本発明に用いられるアプタマーの結合に関する反応条件などは、当業者であれば適宜設定することが可能である。
 本発明に用いられるアプタマーのより好ましい実施態様として、配列番号3で表されるヌクレオチド配列を含むアプタマーID1:
GL2-400TS-C6-G(M)G(M)G(M)A(M)U(M)A(M)C(M)U(F)A(M)G(M)G(M)GC(M)A(M)U(M)U(F)A(M)A(M)U(M)G(M)U(F)U(M)A(M)C(M)C(M)A(M)GU(F)GU(F)A(M)G(M)U(M)C(M)C(M)C(M)-idT;
 配列番号8で表されるヌクレオチド配列を含むアプタマーID2:
GL2-400TS-C6-C(M)G(M)G(M)A(M)U(M)A(M)C(M)U(F)A(M)G(M)G(M)GC(M)A(M)U(M)U(F)A(M)A(M)U(M)G(M)U(F)U(M)A(M)C(M)C(M)A(M)GU(F)GU(F)A(M)G(M)U(M)C(M)C(M)G(M)-idT;
 配列番号9で表されるヌクレオチド配列を含むアプタマーID3:
GL2-400TS-C6-C(M)C(M)G(M)A(M)U(M)A(M)C(M)U(F)A(M)G(M)G(M)GC(M)A(M)U(M)U(F)A(M)A(M)U(M)G(M)U(F)U(M)A(M)C(M)C(M)A(M)GU(F)GU(F)A(M)G(M)U(M)C(M)G(M)G(M)-idT;
 配列番号10で表されるヌクレオチド配列を含むアプタマーID4:
GL2-400TS-C6-G(M)G(M)G(M)A(M)U(M)A(M)C(M)U(F)A(M)G(M)G(M)GC(M)G(M)U(M)U(F)A(M)A(M)C(M)G(M)U(F)U(M)A(M)C(M)C(M)A(M)GU(F)GU(F)A(M)G(M)U(M)C(M)C(M)C(M)-idT;
 配列番号12で表されるヌクレオチド配列を含むアプタマーID5:
GL2-400TS-C6-G(M)G(M)G(M)A(M)U(M)A(M)C(M)U(F)A(M)G(M)G(M)GC(M)A(M)U(M)U(F)U(M)A(M)U(M)G(M)U(F)U(M)A(M)C(M)C(M)A(M)GU(F)GU(F)A(M)G(M)U(M)C(M)C(M)C(M)-idT;及び
 配列番号3で表されるヌクレオチド配列を含むアプタマーID6:
idT-G(M)G(M)G(M)A(M)U(M)A(M)C(M)U(F)A(M)G(M)G(M)GC(M)A(M)U(M)U(F)A(M)A(M)U(M)G(M)U(F)U(M)A(M)C(M)C(M)A(M)GU(F)GU(F)A(M)G(M)U(M)C(M)C(M)C(M)-C6-GL2-400TS
(上記各式中、各ヌクレオチドにおける括弧はリボースの2’位の修飾を示し、Fはフッ素原子、Mはメトキシ基を示す。)
 これらのアプタマーは、いずれを用いたとしても本発明のアプタマー製剤の構成において安定に存在することができるため、本発明のアプタマー製剤の有効成分として適切である。
 本発明に用いられるアプタマーは、フリー体であってもよいし、医薬上許容されるその塩であってもよい。そのような塩としては、金属塩、アンモニウム塩、有機アミン付加塩、アミノ酸付加塩等が挙げられる。金属塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩、アルミニウム塩、亜鉛塩等が挙げられる。アンモニウム塩としては、アンモニウム、テトラメチルアンモニウム等の塩が挙げられる。有機アミン付加塩としては、トリスヒドロキシアミノメタン等の塩が挙げられる。アミノ酸付加塩としては、リジン、アルギニン、ヒスチジン、トリプトファン、オルニチン等の塩が挙げられる。
 本発明に用いられるFGF2に対するアプタマーの濃度は特に限定されず、本発明のアプタマー製剤が目的の効能効果を奏する限りどれだけ含まれていても良い。本明細書において「アプタマーの濃度」とは、アプタマー分子を構成する5’→3’リン酸結合で連結される核酸部分の重量の、製剤全体の体積に占める割合(mg/mL)を意味する。該アプタマーの濃度として、例えば、1~60mg/mLが挙げられる。
 FGF2に対するアプタマーの濃度が20mg/mLを超えると、通常の保存温度である4~5℃においても当該アプタマーの多量体が生じやすくなる傾向にある。FGF2に対するアプタマーは、単量体で存在する場合にFGF2に結合し、FGF2の機能を阻害するとともにその薬効を発揮するが、多量体化しているとビアコアを用いたアッセイにおいてFGF2への結合は認められず、FGF2の機能を阻害しないと考えられる(実施例4参照)。アプタマーの濃度が低い場合は分子間距離が遠く多量体化する傾向は低いが、アプタマー濃度が20mg/mLを超えると、通常の保存温度である4~5℃においても多量体化し、結果としてFGF2への結合活性が全体として低下する傾向にある(実施例5参照)。そのため、本発明のアプタマー製剤におけるFGF2アプタマー濃度の上限は、20mg/mLを超えない濃度であることが望ましい。また、本発明のアプタマー製剤のアプタマー濃度が低い場合、注射剤としての効果が得られない場合がある。そのため、本発明のアプタマー製剤におけるFGF2アプタマー濃度の下限は、注射剤としての効果が得られる濃度であれば特に限定されないものの、例えば1mg/mL以上の濃度であることが望ましい。
 本発明のアプタマー製剤の剤形は、水性液剤である限り特に限定されないが、好ましくは注射剤である。本発明のアプタマー製剤は水性液剤であるので、有効成分であるFGF2に対するアプタマーは、溶媒中に溶解して存在している。
 通常、アプタマーはその高次構造の維持に、強電解質である無機塩を必要とすることが良く知られている。現在上市されている唯一のアプタマー医薬品であるMacugen(登録商標)においても、リン酸水素ナトリウム、リン酸二水素ナトリウム、等張化剤及びpH調整剤が添加されている。この状態でMacugenは25±2℃の加速試験において6か月間、5±3℃の長期保存試験においても36か月間にわたって安定に存在することが示されている。これらのことから、当業者であればアプタマーの高次構造を保ったまま安定に注射剤中で存在させるためには、無機塩(電解質)が必要であると考えるはずである。
 しかしながら、後述する実施例で示すとおり、本発明における有効成分である上記FGF2に対するアプタマーは、溶媒としてPBSや生理食塩水を使用すると、強電解質である無機塩の影響で安定性を失い、多量体を形成する傾向にあり、その結果として、FGF2への結合活性を失うことが分かった。そこで、本発明者らは、溶媒として無機塩(電解質)を含まない水を用いたところ、予想外にもFGF2アプタマーの多量体化が抑制され、FGF2アプタマーが単量体で存在する割合が増大することを見出した(実施例3参照)。
 いかなる理論に拘束されることを望むものではないが、FGF2アプタマーを水中に溶解した場合、実施例1に示されるとおりFGF2アプタマーのTm値が測定できず、また、実施例2に示されるとおりNMRにおけるプロトンシフトが観測できないことから、水中に溶解したFGF2アプタマーは、単量体で伸び切った状態で存在すると想定される。即ち、溶媒として無機塩を含まない水を用いることで、活性構築に必要と思われるアプタマーの高次構造が破壊され、変性して一本鎖状態で存在し、それにより失活(多量体化)を防ぐことができると考えられる。しかも、実施例4及び5に示されるとおり、電解質を含む溶液中に溶解して表面プラズモン共鳴(SPR)アッセイを実施すると、FGF2アプタマーはFGF2に対する結合活性を保持していたことから、水中に溶解したFGF2アプタマーを体内に投与すれば、体液中に存在する電解質の作用によりアプタマー活性に必要な高次構造が再構築され、活性を発揮できることが実証された。
 このように、電解質を含まない溶媒中に溶解することで、あえてFGF2アプタマーの高次構造を崩壊させて伸び切った状態にすることにより、長期保存中も多量体化を防止し、投与後は生理的な塩濃度にさらされることで、高次構造が再構築されて薬効を発揮する製剤処方が、結果的にはFGF2アプタマーの活性を長期間維持できることが明らかとなった。本発明はこのような溶液中におけるアプタマーの存在様式を詳細に検証することによって完成したものであり、たとえ当業者であっても容易に想到し得ないものである。
 以上より、本発明のアプタマー製剤に用いられる溶媒としては、無機塩(電解質)を含まない水性溶媒が好ましく、特に好ましくは水である。
 本発明のアプタマー製剤は、上記したとおり無機塩(電解質)を含まない溶媒を用いるので浸透圧が低く、そのままでは注射剤として使用できない。そのため、本発明のアプタマー製剤は、血漿浸透圧に対する浸透圧比を1以上、好ましくは1~3に調整する目的で、非電解質である浸透圧調整剤(オスモライト)を含むことを特徴とする。
 本発明のアプタマー製剤に用いられる浸透圧調整剤としては、非電解質であれば特に限定されず、無機イオン類(カリウムイオン、塩化物イオンなど)を除き一般的に用いられる浸透圧調整剤であれば何を用いてもよい。このような浸透圧調整剤としては、多価アルコール(グリセロール、マンニトール、トレハロース、グルコース、スクロース、ソルビトール、イノシトールなど)、アミノ酸類(アラニン、グリシン、グルタミン酸、プロリン、GABA、タウリン、エクトインなど)、メチルアンモニウム類(TMAO、コリン、アセチルコリン、グリシンベタイン、GPC、DMSPなど)、尿素類などが挙げられるが、好ましくは多価アルコールが用いられ、より好ましくはマンニトールが用いられる。
 浸透圧調整剤の量は特に限定されず、製剤中に含まれるFGF2アプタマーの量、使用する浸透圧調整剤の種類(分子量)、目的とする浸透圧に応じて、当業者であれば適宜変更することができる。例えば浸透圧調整剤としてマンニトールを使用し、生理食塩水に対する浸透圧比を約1とする場合、浸透圧調整剤の注射剤全体における配合割合は2~7.5%(w/v)となる。より具体的には、生理食塩水に対する浸透圧比を1とする場合、上記FGF2アプタマーの濃度が2mg/mlであれば、マンニトールの配合割合は4.9%となり、上記FGF2アプタマーの濃度が20mg/mlであれば、マンニトールの配合割合は3.6%となる。
 本発明のアプタマー製剤は、有効成分であるFGF2に対するアプタマー又はその塩以外に、実質的に電解質を含有しないことが好ましい。ここで「実質的に含有しない」とは、製剤中のFGF2アプタマーを長期間安定に保存し得る範囲で、少量の電解質を含有してもよいことを意味する。より好ましくは、本発明のアプタマー製剤は、有効成分であるFGF2に対するアプタマー又はその塩以外に電解質を含有しない。
 本発明のアプタマー製剤には、必要に応じて、医薬上許容される添加剤をさらに含有させることができる。そのような添加剤としては、例えば、安定化剤、保存剤、溶解補助剤、緩衝剤、pH調整剤、無痛化剤等が挙げられ、従来より注射剤用の添加剤として周知慣用の、非電解質である医薬添加物が好ましく用いられ得る。
 本発明のアプタマー製剤のpHは特に制限されないが、注射剤として使用される場合、中性付近のpHであることが望ましく、例えばpH5~9、好ましくは6~8の範囲内で適宜選択することができる。有効成分であるFGF2に対するアプタマー又はその塩を水に溶解すると、溶液のpHは上記範囲内となるので、本発明のアプタマー製剤には、電解質であるpH調整剤、緩衝剤を敢えて添加する必要はない。
 本発明のアプタマー製剤には、FGF2アプタマーの活性や安定性に悪影響を及ぼさない限り、他の活性成分を配合してもよい。そのような活性成分としては、血管新生を伴う疾患等の治療薬としてのマクジェン(登録商標)、ルセンティス(登録商標)、アイリーア(登録商標)、アバスチン(登録商標)などのVGEF阻害剤、ステロイドなどの抗炎症剤、骨疾患治療薬等としてのノルディトロピン(登録商標)、ジェノトロピン(登録商標)などのヒト成長ホルモン製剤、モルヒネなどの鎮痛・鎮静剤が含まれていても良い。加齢黄斑変性症などの血管新生を伴う疾患、骨粗鬆症、関節リウマチ、変形性関節症、骨折などの骨・軟骨疾患、疼痛の治療用又は予防用の医薬化合物が挙げられる。
 本発明のアプタマー製剤は、上記の構成をとることにより、4℃においても3か月以上安定である。ここで「安定である」とは、上述のとおり、ガラス瓶中に当該製剤を封入し4℃で保管した後の、製剤中に存在する単量体アプタマーの割合が70%以上であることを意味する。好ましくは、本発明のアプタマー製剤は、4℃において3か月保存後の製剤中の単量体アプタマーの割合が80%以上である。また、本発明のアプタマー製剤は、白色蛍光灯や近紫外蛍光灯に晒された状態でも安定である。
 従って、本発明のアプタマー製剤は、そのままの水性液剤の形態で、好ましくは、充填済みシリンジ剤やカートリッジ剤等の注射剤の剤形で、5℃以下での冷蔵保存により長期間安定に保存することができ、取扱いが極めて容易である。
 本発明のアプタマー製剤は、例えば、加齢黄斑変性症などの血管新生を伴う疾患、骨粗鬆症、関節リウマチ、変形性関節症、骨折などの骨・軟骨疾患、疼痛の治療用又は予防用の医薬として好ましく用いることができる。
 本発明のアプタマー製剤は、非経口的に(例えば、静脈内投与、皮下投与、筋肉内投与、局所投与、腹腔内投与、経鼻投与、経肺投与、点眼投与など)投与することができる。本発明のアプタマー製剤の投与量は、FGF2アプタマーの種類・活性、病気の重篤度、投与対象となる動物種、投与対象の薬物受容性、体重、年齢等によって異なるが、通常、成人1日あたり有効成分(アプタマーのオリゴヌクレオチド部分)量として約0.0001~約100mg/kg、例えば約0.0001~約10mg/kg、好ましくは約0.005~約1mg/kgであり得る。
 以下に、実施例を示してより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1(溶媒中でのFGF2アプタマーの構造解析:Tm値の決定)
 アプタマーID1で表されるアプタマーの構造を以下に示す。大文字はRNA、小文字はDNA、idTはinverted dTを示す。なお、各ヌクレオチドにおける括弧は、その2’位の修飾を示し、Fはフッ素原子、MはO-メチル基を示す。C6は-(CH-リンカー、PEG40TS2は分子量40000の2分岐TS型ポリエチレングリコール(SUNBRIGHT GL2-400TS 日油製)である。
アプタマーID1:
GL2-400TS-C6-G(M)G(M)G(M)A(M)U(M)A(M)C(M)U(F)A(M)G(M)G(M)GC(M)A(M)U(M)U(F)A(M)A(M)U(M)G(M)U(F)U(M)A(M)C(M)C(M)A(M)GU(F)GU(F)A(M)G(M)U(M)C(M)C(M)C(M)-idT
 アプタマーID1で表されるアプタマーを0.1mg/mLとなるように水で、0.06mg/mLとなるようにPBS又は生理食塩水で溶解させた。得られた溶液を95℃で5分間加熱したのち室温まで冷却し、石英ガラス製のキュベットに充填した。温度を20℃から90℃まで変化させながら分光光度計でUV吸収を測定してTm値を決定した。
 その結果、PBS中では60.1℃、生理食塩水中では69.6℃であった。一方水中では特定のTm値は観測されなかった。このことからアプタマーID1で表されるアプタマーは通常注射剤の溶媒となり得るPBSや生理食塩水では分子間相互作用により高次構造を形成することが想定された。またアプタマーID1で表されるアプタマーは電解質を含まない水中では分子間、分子内で塩基対を形成せず、高次構造を作らないことが想定された。
実施例2(重水中でのFGF2アプタマーの構造解析:NMRスペクトルの測定)
 20mgのアプタマーID1で表されるアプタマーをガラス製バイアルに充填し、約1mLの重水に溶解させて測定サンプルとした。Bruker Avance 600 MHz NMR spectrometerを用いて測定した。その結果、8ppmよりも低磁場に観測されるべき塩基対形成に由来するイミノプロトンシグナルが観測されなかった。
 このことからアプタマーID1で表されるアプタマーは電解質を含まない水中では分子間、分子内で塩基対を形成せず、高次構造を作らないことが想定された。
実施例3(電解質を含む溶液中でのFGF2アプタマーの構造解析:SEC-MALS測定)
 アプタマーID1で表されるアプタマーを20mg/mLとなるように生理食塩水で溶解し、37℃で2週間インキュベートして人工的に高次構造を形成するFGF2アプタマー製剤を調製した。これと調製後ただちに冷凍保存して高次構造の形成を最小限にしたサンプルとを0.2mg/mLとなるように生理食塩水でそれぞれ希釈して分析に供した。
 サイズ排除クロマトグラフィーにより単量体と多量体を分離しそれぞれの分子量をWyatt Technology社のMALS(Multi Angle Light Scattering)検出器にて測定した。サイズ排除クロマトグラフィーはWaters社製ACQUITY UPLCにてBEH200 SECカラムを用いて実施した。
 その結果、単量体と思われるピークの分子量は約64000、多量体からなる高次構造と思われるピークの分子量は約122000と測定された。この結果からアプタマーID1で表されるアプタマーが電解質を含む水中で形成する高次構造は二量体であることが分かった。
実施例4(アプタマーの単量体含有率と結合活性との相関)
 アプタマーID1で表されるアプタマーを20mg/mL又は2mg/mLとなるようにPBS、生理食塩水又は3.3%のマンニトール水溶液で溶解し、表1に示される保存条件下において様々な単量体含有率をしめすFGF2アプタマー製剤を調製した。ここで、調製した各FGF2アプタマー製剤の単量体含有量はサイズ排除クロマトグラフィーにて決定した。その結果も表1に示す。
 調製した各FGF2アプタマー製剤のFGF2タンパク質への結合活性はGE社製のBiacore T200を用いて表面プラズモン共鳴(SPR)により測定した。センサーチップはアミノ基と反応するCM4を用いた。ヒトFGF2は固定化溶液(10mM酢酸ナトリウム、pH6)に溶解し10μg/mLとした。タンパク質側のアミノ基とチップ側のカルボキシル基の反応にはEthyl-3-carbodiimide hydrochlorideとN-hydroxysuccinimideを用いた。反応後、ethanolamineによるブロッキングを行った。FGF2の固定化量は約1000RUとした。アナライト用のアプタマーは5μMに調製した。ランニングバッファーには295mM塩化ナトリウム、5.4mM塩化カリウム、0.8mM塩化マグネシウム、1.8mM塩化カルシウム、20mM Tris、0.05% Tween20,pH7.6)、再生用液として2M塩化ナトリウムを用いた。FGF2はフローセルFC2、又はFC4に固定化し、FC1又はFC3の結果を引くことで最終的なセンサーグラムとした。活性は電解質を含まない溶液にて用事調製した多量体含有量が極めて低いFGF2アプタマー製剤スタンダードに対する相対値として評価した。
 各FGF2アプタマー製剤の調製方法、単量体含有率及びFGF2タンパク質への結合活性の測定結果を表1に示す。この結果からFGF2アプタマー製剤の単量体の含有量とFGF2タンパク質への結合活性は相関していることが明らかとなった。
Figure JPOXMLDOC01-appb-T000001
実施例5(FGF2アプタマー製剤の安定性試験)
 アプタマーID1で表されるアプタマーを20mg/mL又は2mg/mLとなるように3.3%又は3.6%又は4.9%のマンニトール溶液に溶解して表2に示す様々な温度条件で3カ月間保存したのちサイズ排除クロマトグラフィー及びSPR法により単量体含有率と結合活性を測定した。結果を表2に示す。
 この結果から電解質を含まないマンニトール水溶液により調製されたFGF2アプタマー製剤は安定であることが明らかとなった。
Figure JPOXMLDOC01-appb-T000002
実施例6(他のFGF2アプタマー製剤における結果)
 アプタマーID2~6で表されるアプタマーを、水(マンニトール水溶液)、生理食塩水又はPBSで適切な濃度に溶解してFGF2アプタマー製剤を調製する。得られる各FGF2アプタマー製剤を様々な温度条件や保存温度で数か月間保存したのち、サイズ排除クロマトグラフィー及びSPR法により単量体含有率と結合活性を測定する。
アプタマーID2:
GL2-400TS-C6-C(M)G(M)G(M)A(M)U(M)A(M)C(M)U(F)A(M)G(M)G(M)GC(M)A(M)U(M)U(F)A(M)A(M)U(M)G(M)U(F)U(M)A(M)C(M)C(M)A(M)GU(F)GU(F)A(M)G(M)U(M)C(M)C(M)G(M)-idT;
アプタマーID3:
GL2-400TS-C6-C(M)C(M)G(M)A(M)U(M)A(M)C(M)U(F)A(M)G(M)G(M)GC(M)A(M)U(M)U(F)A(M)A(M)U(M)G(M)U(F)U(M)A(M)C(M)C(M)A(M)GU(F)GU(F)A(M)G(M)U(M)C(M)G(M)G(M)-idT;
アプタマーID4:
GL2-400TS-C6-G(M)G(M)G(M)A(M)U(M)A(M)C(M)U(F)A(M)G(M)G(M)GC(M)G(M)U(M)U(F)A(M)A(M)C(M)G(M)U(F)U(M)A(M)C(M)C(M)A(M)GU(F)GU(F)A(M)G(M)U(M)C(M)C(M)C(M)idT-;
アプタマーID5:
GL2-400TS-C6-G(M)G(M)G(M)A(M)U(M)A(M)C(M)U(F)A(M)G(M)G(M)GC(M)A(M)U(M)U(F)U(M)A(M)U(M)G(M)U(F)U(M)A(M)C(M)C(M)A(M)GU(F)GU(F)A(M)G(M)U(M)C(M)C(M)C(M)idT-;及び
アプタマーID6:
idT-G(M)G(M)G(M)A(M)U(M)A(M)C(M)U(F)A(M)G(M)G(M)GC(M)A(M)U(M)U(F)A(M)A(M)U(M)G(M)U(F)U(M)A(M)C(M)C(M)A(M)GU(F)GU(F)A(M)G(M)U(M)C(M)C(M)C(M)-C6-GL2-400TS
 これらの結果から、その他のFGF2アプタマーにおいても電解質を含まないマンニトール水溶液により調製されたFGF2アプタマー製剤は安定であることが明らかとなる。
比較例1(FGF2アプタマー製剤の安定性試験)
 アプタマーID1で表されるアプタマーを生理食塩水又はPBS で20mg/mLとなるように溶解してFGF2アプタマー製剤を調製した。得られた各FGF2アプタマー製剤を表3に示す様々な温度条件で3カ月間保存したのちサイズ排除クロマトグラフィーにより単量体含有率を測定した。結果を表3に示す。この結果から電解質を含む生理食塩水やPBSにより調製されたFGF2アプタマー製剤は不安定であることが明らかとなった。
Figure JPOXMLDOC01-appb-T000003
 本発明のアプタマー製剤は、FGF2に対するアプタマー又はその塩を、注射剤等の水性液剤の形態で、冷蔵保存によっても長期間安定に保存することができるので、FGF2を阻害することで薬効を発揮し得る疾患(例、加齢黄斑変性症などの血管新生を伴う疾患、骨粗鬆症、関節リウマチ、変形性関節症、骨折などの骨・軟骨疾患、疼痛)に対する治療又は予防剤として、取扱いに優れた製剤を提供できる点で極めて有用である。
 本出願は、日本で出願された特願2018-124390(出願日:平成30年6月29日)を基礎としており、その内容はすべて本明細書に包含されるものとする。

Claims (15)

  1.  FGF2に結合するアプタマー又はその塩と、非電解質である浸透圧調整剤とを含有してなる、該アプタマー又はその塩が長期間安定である水性液剤。
  2.  前記アプタマー又はその塩以外に、実質的に電解質を含有しない、請求項1に記載の水性液剤。
  3.  前記アプタマーが、下式(1):
    GGANACUAGGGCNUUAANGUNACCAGUGUN (1)
    (ここで、N及びNは、それぞれ独立して任意の0から数個の塩基を表し、N、N、N及びNは、独立して任意の一個の塩基を表す)
    で表わされるヌクレオチド配列(但し、ウラシルはチミンであってもよい)を含むアプタマーであって、以下の(a)又は(b):
    (a)該アプタマーに含まれるヌクレオチドにおいて、
     (i)各ピリミジンヌクレオチドのリボースの2’位がフッ素原子であり
     (ii)各プリンヌクレオチドのリボースの2’位がヒドロキシ基である;
    (b)該(a)のアプタマーにおいて、
     (i)各ピリミジンヌクレオチドのリボースの2’位のフッ素原子が、それぞれ独立して、無置換であるか、水素原子、ヒドロキシ基及びメトキシ基からなる群より選ばれる原子又は基で置換されており
     (ii)各プリンヌクレオチドのリボースの2’位のヒドロキシ基が、それぞれ独立して、無置換であるか、水素原子、メトキシ基及びフッ素原子からなる群より選ばれる原子又は基で置換されている;
    のいずれかである、請求項1又は2に記載の水性液剤。
  4.  前記アプタマーが、下式(3):
    GGAUACUAGGGCAUUAAUGUUACCAGUGUAGUCN62 (3)
    (ここで、N及びN62は、それぞれ独立して任意の0から数個の塩基を表す)
    で表わされるヌクレオチド配列を含む、請求項1又は2に記載の水性液剤。
  5.  前記アプタマーが、配列番号3、8、9、10又は12で表わされるいずれかのヌクレオチド配列を含む、請求項1又は2に記載の水性液剤。
  6.  アプタマーの濃度が1~60mg/mLである、請求項1~5のいずれか一項に記載の水性液剤。
  7.  浸透圧調整剤の配合割合が、水性液剤全体の2~7.5%(w/v)である、請求項1~6のいずれか一項に記載の水性液剤。
  8.  浸透圧調整剤がマンニトールである、請求項1~7のいずれか一項に記載の水性液剤。
  9.  アプタマー1mgに対して、マンニトールを1~50mgの割合で含有する、請求項8に記載の水性液剤。
  10.  5℃以下で保存される、請求項1~9のいずれか一項に記載の水性液剤。
  11.  4℃で3か月保存後の単量体アプタマーの割合が80%以上である、請求項1~10のいずれか一項に記載の水性液剤。
  12.  注射剤である、請求項1~11のいずれか一項に記載の水性液剤。
  13.  血管新生を伴う疾患、骨・軟骨疾患又は疼痛の予防又は治療用である、請求項1~12のいずれか一項に記載の水性液剤。
  14.  請求項1~12のいずれか一項に記載の水性液剤を対象に投与することを含む、血管新生を伴う疾患、骨・軟骨疾患又は疼痛の予防又は治療方法。
  15.  血管新生を伴う疾患、骨・軟骨疾患又は疼痛の予防又は治療における使用のための、請求項1~12のいずれか一項に記載の水性液剤。
PCT/JP2019/025766 2018-06-29 2019-06-28 アプタマー製剤 WO2020004607A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU2019292134A AU2019292134A1 (en) 2018-06-29 2019-06-28 Aptamer preparation
SG11202012933QA SG11202012933QA (en) 2018-06-29 2019-06-28 Aptamer preparation
KR1020217002648A KR20210025083A (ko) 2018-06-29 2019-06-28 압타머 제제
CA3105002A CA3105002A1 (en) 2018-06-29 2019-06-28 Aptamer preparation
US17/256,368 US20210269802A1 (en) 2018-06-29 2019-06-28 Aptamer preparation
EP19825285.0A EP3815715A4 (en) 2018-06-29 2019-06-28 APTAMER PREPARATION
MX2020014124A MX2020014124A (es) 2018-06-29 2019-06-28 Preparacion de aptameros.
CN201980043745.7A CN112384246A (zh) 2018-06-29 2019-06-28 适体制剂
BR112020026634-5A BR112020026634A2 (pt) 2018-06-29 2019-06-28 Preparação de aptâmero
JP2020527674A JP7340264B2 (ja) 2018-06-29 2019-06-28 アプタマー製剤
IL279595A IL279595A (en) 2018-06-29 2020-12-20 Aqueous liquid aptamer preparations bind to FGF2 and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018124390 2018-06-29
JP2018-124390 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020004607A1 true WO2020004607A1 (ja) 2020-01-02

Family

ID=68986754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025766 WO2020004607A1 (ja) 2018-06-29 2019-06-28 アプタマー製剤

Country Status (12)

Country Link
US (1) US20210269802A1 (ja)
EP (1) EP3815715A4 (ja)
JP (1) JP7340264B2 (ja)
KR (1) KR20210025083A (ja)
CN (1) CN112384246A (ja)
AU (1) AU2019292134A1 (ja)
BR (1) BR112020026634A2 (ja)
CA (1) CA3105002A1 (ja)
IL (1) IL279595A (ja)
MX (1) MX2020014124A (ja)
SG (1) SG11202012933QA (ja)
WO (1) WO2020004607A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157681A1 (ja) 2020-02-06 2021-08-12 株式会社リボミック 網膜下高反射病巣または網膜下高反射病巣を伴う網膜疾患の治療剤

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660985A (en) 1990-06-11 1997-08-26 Nexstar Pharmaceuticals, Inc. High affinity nucleic acid ligands containing modified nucleotides
CN101317820A (zh) * 2007-04-19 2008-12-10 中国人民解放军军事医学科学院毒物药物研究所 生物亲和性配体分子介导的靶向脂质体,其制备及其应用
US20110053795A1 (en) * 2009-08-27 2011-03-03 Fisher Mark T Osmolyte Mixture for Protein Stabilization
WO2011099576A1 (ja) 2010-02-12 2011-08-18 国立大学法人 東京大学 Fgf2に対するアプタマー及びその使用
WO2015147017A1 (ja) 2014-03-24 2015-10-01 株式会社リボミック Fgf2に対するアプタマー及びその使用
JP2018124390A (ja) 2017-01-31 2018-08-09 株式会社沖データ 画像形成装置及び定着制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515685A (ja) * 2008-03-26 2011-05-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 基質結合ビーズを長期間保存する方法
WO2014116789A1 (en) * 2013-01-25 2014-07-31 Thymon, Llc Immunogenic and prophylactic compositions, methods of making same, and method for treating and preventing tnf-mediated disease and hiv-1 infection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660985A (en) 1990-06-11 1997-08-26 Nexstar Pharmaceuticals, Inc. High affinity nucleic acid ligands containing modified nucleotides
CN101317820A (zh) * 2007-04-19 2008-12-10 中国人民解放军军事医学科学院毒物药物研究所 生物亲和性配体分子介导的靶向脂质体,其制备及其应用
US20110053795A1 (en) * 2009-08-27 2011-03-03 Fisher Mark T Osmolyte Mixture for Protein Stabilization
WO2011099576A1 (ja) 2010-02-12 2011-08-18 国立大学法人 東京大学 Fgf2に対するアプタマー及びその使用
WO2015147017A1 (ja) 2014-03-24 2015-10-01 株式会社リボミック Fgf2に対するアプタマー及びその使用
JP2018124390A (ja) 2017-01-31 2018-08-09 株式会社沖データ 画像形成装置及び定着制御方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COTTON ET AL., NUCL. ACID. RES., vol. 19, 1991, pages 2629 - 2635
HOBBS ET AL., BIOCHEMISTRY, vol. 12, 1973, pages 5138 - 5145
PATEL, K. A. ET AL.: "Challenges with osmolytes as inhibitors of protein aggregation: Can nucleic acid aptamers provide an answer?", INT J BIOL MACROMOL., vol. 100, 2017, pages 75 - 88, XP085031809, ISSN: 0141-8130, DOI: 10.1016/j.ijbiomac.2016.05.014 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157681A1 (ja) 2020-02-06 2021-08-12 株式会社リボミック 網膜下高反射病巣または網膜下高反射病巣を伴う網膜疾患の治療剤

Also Published As

Publication number Publication date
TW202012625A (zh) 2020-04-01
JPWO2020004607A1 (ja) 2021-07-15
IL279595A (en) 2021-03-01
EP3815715A4 (en) 2022-03-16
CA3105002A1 (en) 2020-01-02
MX2020014124A (es) 2021-05-31
SG11202012933QA (en) 2021-01-28
US20210269802A1 (en) 2021-09-02
AU2019292134A1 (en) 2021-02-11
KR20210025083A (ko) 2021-03-08
JP7340264B2 (ja) 2023-09-07
CN112384246A (zh) 2021-02-19
BR112020026634A2 (pt) 2021-04-06
EP3815715A1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
TWI823866B (zh) 用於抑制類血管生成素蛋白-3(ANGPTL3)表現的RNAi藥劑及組合物及使用方法
JP7488254B2 (ja) 17β-HSD13型(HSD17B13)の発現を阻害するためのRNAi剤、その組成物、および使用方法
AU2017213455B2 (en) Novel rig-i ligands and methods for producing them
US11987796B2 (en) Interferon production using short RNA duplexes
JP2008512097A (ja) アプタマー医薬品化学
TWI769177B (zh) 經修飾之寡核苷酸及使用方法
US20230078200A1 (en) RNAi CONSTRUCTS AND METHODS FOR INHIBITING LPA EXPRESSION
KR20210102313A (ko) 화학적으로 변형된 RNAi 작제물 및 이의 용도
WO2013186857A1 (ja) Fgf2に対するアプタマー及びその使用
CN114222820A (zh) 用于治疗α-1抗胰蛋白酶缺乏症(AATD)的方法
JP2023158192A (ja) アルファ-ENaCの発現を阻害するためのRNAi剤、および使用方法
JP2022551269A (ja) 最小フッ素含有量を用いた低分子干渉rnaの化学修飾
CN115397436A (zh) 用于抑制PNPLA3表达的RNAi剂、其药物组合物和使用方法
ES2553787T3 (es) Ácidos ribonucleicos de doble cadena con estructura fisicoquímica robusta y actividad biológica muy específica
JP7340264B2 (ja) アプタマー製剤
WO2022140535A1 (en) Compositions comprising exon skipping oligonucleotide conjugates for treating muscular dystrophy
CN117015604A (zh) 靶向肌营养不良蛋白基因的外显子51的反义寡核苷酸
JP2023501246A (ja) ベータENaCの発現を阻害するRNAi剤、その組成物および使用方法
JPWO2015147017A1 (ja) Fgf2に対するアプタマー及びその使用
KR20070044813A (ko) 이뮤노글로불린 e에 대한 핵산 리간드 및 아토피성 질환치료제로서의 이의 용도
EP4122471A1 (en) Therapeutic agent for subretinal hyperreflective material or retinal disorders accompanying subretinal hyperreflective material
RU2802836C2 (ru) Модифицированные олигонуклеотиды и способы их применения
WO2023177808A1 (en) Modified gapmer oligomers and methods of use thereof
JP2024520522A (ja) ムチン5AC(MUC5AC)の発現を阻害するためのRNAi剤、その組成物、及び使用方法
KR20230067648A (ko) Z-aat 단백질 수준을 감소시키기 위한 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527674

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3105002

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020026634

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217002648

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019825285

Country of ref document: EP

Effective date: 20210129

ENP Entry into the national phase

Ref document number: 2019292134

Country of ref document: AU

Date of ref document: 20190628

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020026634

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201223