WO2020004430A1 - 予圧センサ、軸受装置、軸受、および間座 - Google Patents

予圧センサ、軸受装置、軸受、および間座 Download PDF

Info

Publication number
WO2020004430A1
WO2020004430A1 PCT/JP2019/025272 JP2019025272W WO2020004430A1 WO 2020004430 A1 WO2020004430 A1 WO 2020004430A1 JP 2019025272 W JP2019025272 W JP 2019025272W WO 2020004430 A1 WO2020004430 A1 WO 2020004430A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
spacer
preload
sensor
pressure
Prior art date
Application number
PCT/JP2019/025272
Other languages
English (en)
French (fr)
Inventor
小池 孝誌
靖之 福島
勇介 澁谷
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to KR1020217000145A priority Critical patent/KR20210025588A/ko
Priority to DE112019003279.8T priority patent/DE112019003279T5/de
Priority to CN201980043665.1A priority patent/CN112334747A/zh
Publication of WO2020004430A1 publication Critical patent/WO2020004430A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0019Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Definitions

  • the present invention relates to a preload sensor for detecting a preload of a bearing used for a spindle of a machine tool or the like, a bearing device including the preload sensor, a bearing, and a spacer.
  • bearing preload management is required to improve machining accuracy and efficiency, and therefore, there is a need to detect bearing preload.
  • Patent Literature 1 discloses a bearing device in which a spacer is interposed between a plurality of rolling bearings arranged in the axial direction. At least a part of the remaining portion made of the magnetostrictive material is made of a non-magnetic material, and the preload of the bearing is detected from a change in magnetic characteristics of the portion of the magnetostrictive material.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-286219
  • Patent Document 1 has a complicated structure because the outer ring spacer has a magnetostrictive material sandwiched between a pair of spacer members divided into two. It is necessary to insert the spacer member into the housing while holding it so as not to be separated, which makes assembly difficult.
  • the present invention has been made to solve the above-described problems, and has as its object to provide a preload sensor capable of measuring a preload of a bearing with a simple configuration, a bearing device including the preload sensor, a bearing, and Is to provide a room.
  • the preload sensor is a preload sensor that detects a preload of a bearing including an inner ring, an outer ring, and a rolling element.
  • the preload sensor includes a film-shaped pressure-sensitive member having a first main surface and a second main surface, and first and second electrodes electrically connected to the pressure-sensitive member.
  • the pressure-sensitive member is configured such that the DC resistance between the first electrode and the second electrode changes according to the pressure acting between the first main surface and the second main surface.
  • the first main surface of the pressure-sensitive member is disposed toward an end surface of the bearing, and the second main surface is disposed toward an opposing surface of a member that preloads the bearing facing the end surface.
  • the pressure-sensitive member is a thin film including an insulating film, a thin film pattern formed on the insulating film, the resistance of which changes with a change in surface pressure, and a protective film formed on the thin film pattern and protecting the thin film pattern. It is a sensor.
  • the pressure-sensitive member is connected to the first insulating layer, the first electrode layer to which the first electrode is connected, the pressure-sensitive layer formed of pressure-sensitive ink or rubber, and the second electrode.
  • a second electrode layer and a second insulating layer are included.
  • a first insulating layer, a first electrode layer, a pressure-sensitive layer, a second electrode layer, and a second insulating layer are sequentially arranged between the first main surface and the second main surface.
  • a bearing device includes the above-described preload sensor, a bearing, and a spacer disposed adjacent to the bearing.
  • a member that applies a preload to the bearing is a spacer.
  • the preload sensor is arranged such that the first main surface is in contact with the end surface and the second main surface is in contact with the opposing surface.
  • the bearing is a first bearing
  • the bearing device further includes a second bearing.
  • the spacer is disposed between the first bearing and the second bearing, and the first bearing and the second bearing are disposed in a back-to-back combination, and an outer ring end surface of the first bearing and an outer ring spacer end surface of the spacer.
  • a preload sensor is arranged between them.
  • the bearing is a first bearing
  • the bearing device further includes a second bearing.
  • the spacer is disposed between the first bearing and the second bearing.
  • the first bearing and the second bearing are arranged so as to form a front combination.
  • a preload sensor is arranged between the inner ring end face of the first bearing and the inner ring spacer end face of the spacer.
  • the spacer includes an inner ring spacer and an outer ring spacer.
  • the bearing device is disposed on the outer peripheral surface of the inner race spacer, a sensor signal transmitter including a power receiving unit, a sensor signal transmitting unit, and a sensor signal processing unit, and disposed on the inner peripheral surface of the outer race spacer.
  • the sensor signal receiver further includes a supply power transmitting unit that supplies power to the unit in a non-contact manner and a sensor signal receiving unit that receives a sensor signal from the sensor signal transmitting unit in a non-contact manner.
  • the sensor signal transmitting unit is supplied with power from the power receiving unit, and transmits the output of the preload sensor to the sensor signal receiver side in a non-contact manner.
  • a protrusion is provided on the end face of the spacer arranged on the path where the preload is applied to the bearing, and the pressure-sensitive member is disposed on the protrusion surface of the protrusion.
  • the spacer includes an inner ring spacer and an outer ring spacer.
  • the outer ring spacer or the inner ring spacer includes a first member including a convex portion, and a second member having a concave portion into which the first member is fitted.
  • the bearing device further includes an intermediate spacer disposed between the pressure-sensitive member disposed on the projection and the end surface of the bearing.
  • the preload sensor is formed on the inner ring or the outer ring such that the first main surface is in contact with the end surface.
  • the above-described preload sensor is formed on the inner ring spacer or the outer ring spacer so that the second main surface is in contact with the facing surface.
  • the preload sensor which can measure the preload of a bearing with a simple structure
  • the bearing apparatus provided with a preload sensor, a bearing, and a spacer can be implement
  • FIG. 2 is a cross-sectional view illustrating a configuration of the bearing device according to the first embodiment. It is sectional drawing which expanded and showed the arrangement part of the preload sensor.
  • FIG. 3 is a diagram illustrating a configuration example of a pressure-sensitive sheet 13.
  • FIG. 5 is a diagram illustrating a relationship between a preload and a resistance of a preload sensor formed by a pressure-sensitive sheet. It is a figure which shows the structure which formed the thin film sensor in the end surface of the outer ring spacer.
  • FIG. 4 is a diagram showing a relationship between a preload and a resistance of a preload sensor formed by a thin film sensor.
  • FIG. 4 is a diagram illustrating a circuit for detecting a resistance change when a thin film sensor is used.
  • FIG. 9 is a diagram illustrating a configuration of a preload sensor used in the bearing device according to the second embodiment.
  • FIG. 9 is a diagram showing a part of the outer ring spacer as viewed from the direction of arrow B in FIG. 8.
  • FIG. 9 is a diagram illustrating a modification of the configuration illustrated in FIG. 8. It is a figure which shows a part of outer ring spacer seen from arrow B2 direction of FIG.
  • FIG. 14 is a cross-sectional view illustrating a configuration of a modified example of the bearing device according to the second embodiment.
  • FIG. 13 is a cross-sectional view illustrating a configuration of a bearing device according to a third embodiment.
  • FIG. 3 is a diagram showing a configuration of a signal transmitter 24 and a signal receiver 25 and a connection state of a preload sensor 61.
  • FIG. 14 is a diagram illustrating a configuration of a preload sensor used in a bearing device according to a fourth embodiment.
  • FIG. 16 is a diagram showing a part of the inner ring spacer as viewed from the direction of arrow C in FIG. 15.
  • FIG. 16 is a diagram illustrating a modification of the configuration illustrated in FIG. 15.
  • FIG. 18 is a diagram showing a part of the inner ring spacer as viewed from the direction of arrow C2 in FIG. 17.
  • FIG. 1 is a cross-sectional view illustrating a configuration of the bearing device according to the first embodiment.
  • the bearing device 1 is applied to, for example, a spindle device of a built-in motor type of a machine tool.
  • a motor (not shown) is incorporated at one end of the main shaft 4 supported by the bearing device 1, and a cutting tool such as an end mill is connected to the other end.
  • the structure of the bearing device 1 shown in FIG. 1 is vertically symmetrical about the rotation center axis OO, but the portion below the rotation center axis OO is not shown.
  • the bearing device 1 includes a bearing 5, a spacer 6 disposed adjacent to the bearing 5, and a preload sensor 11.
  • the main shaft 4 is rotatably supported by a plurality of bearings 5 in a housing 3 embedded in the inner diameter of the outer cylinder 2.
  • Each bearing 5 includes an inner ring 5i, an outer ring 5g, a rolling element T, and a retainer Rt.
  • the spacer 6 includes an inner ring spacer 6i and an outer ring spacer 6g.
  • a plurality of bearings 5 spaced apart in the axial direction are fitted to the main shaft 4 in an interference fit state (press-fit state).
  • An inner ring spacer 6i is disposed between the inner rings 5i-5i, and an outer ring spacer 6g is disposed between the outer rings 5g-5g.
  • the bearing 5 is a rolling bearing in which a plurality of rolling elements T are arranged between the inner ring 5i and the outer ring 5g, and the rolling elements T are held at an interval by a retainer Rt.
  • the bearing 5 is a bearing capable of applying a preload in the axial direction, and may be an angular ball bearing, a deep groove ball bearing, a tapered roller bearing, or the like.
  • An angular contact ball bearing is used in the bearing device 1 shown in FIG. 1, and two bearings 5 are installed in a back combination (DB combination).
  • a cooling medium flow path G is formed in the housing 3. By flowing a cooling medium between the housing 3 and the outer cylinder 2, the bearing device 1 can be cooled.
  • the bearing 5, the spacer 6, the bearing 5, and the spacer 9 are first inserted into the main shaft 4 in this order, tightened with the nut 10 and given an initial preload, and the outer ring 5 g of the right bearing 5 in FIG. Of the left bearing 5 is pressed by the front lid 12 and fixed to the housing 3 by pushing the outer ring 5g of the left bearing 5 with the front lid 12.
  • the movement amount of the inner ring 5i is determined by, for example, a dimensional difference between the width of the outer ring spacer 6g and the width of the inner ring spacer 6i.
  • a preload is applied to the bearing 5 according to the moving amount.
  • the preload sensor 11 shown in FIGS. 1 and 2 is disposed between the outer ring 5g and the outer ring spacer 6g, any other location may be used as long as it is a transmission path of a force for generating a preload.
  • preload sensor 11 may be arranged between spacer 9 and inner ring 5i.
  • FIG. 2 is an enlarged cross-sectional view showing the arrangement of the preload sensor.
  • at least one of the end faces 7 connecting the inner peripheral surface and the outer peripheral surface of the outer ring spacer 6 g (the left side in FIG. 1) is provided with a preload sensor 11 at a position in contact with the end surface of the outer ring 5 g. Is done. The relationship between the load applied to the preload sensor 11 and the output of the preload sensor 11 is measured and grasped in advance.
  • a design gap is provided in advance between the inner race 5i and the inner race spacer 6i in a state where the outer race 5g and the outer race spacer 6g are in contact with each other.
  • the preload amount can be grasped from the output of the preload sensor 11. Therefore, by observing the output of the preload sensor 11 when assembling the bearing device 1, it is possible to confirm whether or not the preload amount is set in advance, and the number of assembly steps can be reduced. Further, by observing the output of the preload sensor 11 during operation of the machine tool, it is possible to know the preload increased by thermal expansion due to heat generation during operation. By observing the change in preload during operation, it is possible to prevent cutting performance deterioration and bearing seizure in advance.
  • FIG. 3 is a diagram illustrating a configuration example of the pressure-sensitive sheet 13.
  • the pressure-sensitive sheet 13 has a resin film as a substrate 14F, 14B, and a resistor 16 such as a pressure-sensitive ink or a pressure-sensitive rubber disposed between electrodes 15F, 15B formed on each surface of the substrate 14F, 14B. It is. Since the electric resistance between the electrodes of the pressure-sensitive sheet 13 changes according to the load, the load can be detected if the relationship between the electric resistance and the load is grasped in advance.
  • the preload sensor 11 is formed by forming the pressure-sensitive sheet 13 in a ring shape. The preload sensor 11 is arranged between an end face 7 connecting the inner peripheral surface and the outer peripheral surface of the outer ring spacer 6g and an end surface connecting the inner peripheral surface and the outer peripheral surface of the outer ring 5g.
  • preload sensor 11 includes a film-shaped pressure-sensitive member (resistor 16) having first main surface SF and second main surface SB, and a first main surface of the pressure-sensitive member.
  • the first electrode 15F is electrically connected to the SF side
  • the second electrode 15B is electrically connected to the second main surface SB side of the pressure-sensitive member.
  • the pressure-sensitive member is configured such that the DC resistance between the first electrode 15F and the second electrode 15B changes according to the pressure acting between the first main surface SF and the second main surface SB.
  • the first main surface SF is arranged toward an end surface connecting the inner peripheral surface and the outer peripheral surface of the bearing 5.
  • the second main surface SB is arranged toward an end surface 7 of a member (in FIG. 2, an outer ring spacer 6 g) that preloads the bearing 5 facing the end surface of the bearing 5.
  • FIG. 4 is a diagram showing the relationship between the preload and the resistance of the preload sensor constituted by the pressure-sensitive sheet.
  • the horizontal axis shows the preload (load)
  • the vertical axis shows the resistance.
  • the preload sensor 11 may be a thin film sensor 17 formed directly on the end face 7 of the outer ring spacer 6g.
  • FIG. 5 is a diagram showing a structure in which a thin film sensor is formed on an end surface of the outer ring spacer. After forming the insulating film 18 on the end face 7 of the outer ring spacer 6g, the thin film sensor 17 forms a thin film pattern 19 whose resistance changes with a change in surface pressure, and a protective film 20 is formed thereon.
  • the insulating film 18, the thin film pattern 19, and the protective film 20 are formed by sputtering or the like. Two electrodes are connected to the thin film pattern 19. By measuring the resistance between the two electrodes, a change in the resistance value of the thin film pattern 19 can be detected.
  • the structure of the outer ring spacer is not complicated, and the space required for mounting the pressure sensor is reduced. As a result, the size of the bearing device can be reduced. Further, since the resin member used as the base material as in the pressure-sensitive sheet 13 is not interposed, the rigidity is high, so that the preload (the load applied in the axial direction of the bearing 5) can be detected without reducing the rigidity of the outer ring spacer 6g. it can. Therefore, even if the preload sensor is interposed between the outer ring spacer 6g and the outer ring 5g, it is possible to prevent the processing accuracy of the machine tool from being affected.
  • the insulating film 18 and the protective film 20 are made of, for example, silicon dioxide, and the thin film pattern 19 is made of, for example, a metal alloy (an alloy composed of a plurality of metals such as a copper nickel alloy and a nickel chromium alloy) used for a strain gauge.
  • a metal alloy an alloy composed of a plurality of metals such as a copper nickel alloy and a nickel chromium alloy
  • a thin film sensor described in JP-A-2014-071085 may be used as the thin film sensor.
  • FIG. 6 is a diagram showing the relationship between the preload and the resistance of the preload sensor constituted by the thin film sensor.
  • the horizontal axis represents the preload (load), and the vertical axis represents the resistance.
  • the resistance value of the thin film sensor also tends to increase.
  • FIG. 7 is a diagram showing a circuit for detecting a change in resistance when a thin film sensor is used.
  • the sensor signal processing unit 28 shown in FIG. 7 includes resistors R1 to R3 connected to the DC power supply VSDC, the thin film sensor 17, and a differential amplifier AMP.
  • the resistors R1 to R3 and the thin film sensor 17 form a bridge circuit.
  • a resistor R1 and a resistor R2 are connected in series between a positive electrode and a negative electrode of the DC power supply VSDC.
  • a thin film sensor 17 and a resistor R3 are connected in series between the positive electrode and the negative electrode of the DC power supply VSDC.
  • One input node of the amplifier AMP is connected to a connection node between the resistors R1 and R2.
  • the other input node of the amplifier AMP is connected to a connection node between the thin film sensor 17 and the resistor R3.
  • FIG. 8 is a diagram illustrating a configuration of a preload sensor used in the bearing device according to the second embodiment.
  • FIG. 9 is a diagram showing a part of the outer ring spacer as viewed from the direction of arrow B in FIG.
  • FIG. 9 shows a side view of the outer ring spacer 6gA used in the second embodiment. At least three or more projections 7b are provided at equal intervals on the end surface 7a of the outer ring spacer 6gA.
  • the preload sensor 11 is disposed on the end face 7c of the projection 7b.
  • a pressure-sensitive sheet 13 or a thin film sensor 17 can be used as the preload sensor 11. In this case, since the end face of the outer ring spacer 6g and the end face of the outer ring 5g of the bearing 5 abut only on the area of the convex portion 7b via the preload sensor 11, the surface pressure applied to the preload sensor 11 is increased. The measurement accuracy of the preload sensor 11 can be improved.
  • protrusions 7b are provided on the outer ring spacer 6g to stably press the end face of the outer ring 5g of the bearing 5.
  • FIG. 10 is a diagram showing a modification of the configuration shown in FIG.
  • FIG. 11 is a diagram showing a part of the outer ring spacer as viewed from the direction of arrow B2 in FIG.
  • the convex portion 7b is provided directly on the end face 7 of the outer ring spacer 6g.
  • the configurations shown in FIGS. 10 and 11 are different from the configurations shown in FIGS. 8 and 9 in that the preload sensor 11 is disposed on the end face 21 c of the convex portion 21 b provided on the small piece 21.
  • the small piece 21 is embedded in a concave portion 7d provided in the end face 7a of the outer ring spacer 6gB, and is fixed to the outer ring spacer 6gB with a bolt 22. Since the size of the small piece 21 is smaller than the outer ring spacer 6 gA, it is advantageous because it can be easily inserted into a processing apparatus when a thin film sensor is formed by sputtering or the like. Preferably, three or more protrusions 21b are provided on the outer ring spacer 6gB in order to stably press the end face of the outer ring 5g of the bearing 5.
  • FIG. 12 is a cross-sectional view showing a configuration of a modified example of the bearing device of the second embodiment.
  • the end surface of the outer ring 5g of the bearing 5 is in contact with the outer ring spacers 6gA, 6gB via the preload sensor 11, The contact is made only by 21b.
  • a ring-shaped intermediate spacer 23 is inserted between the outer ring 5g and the outer ring spacer 6g as in a bearing device 1A shown in FIG.
  • the preload sensor 11 may be attached to 23.
  • the preload sensor 11 can be mounted on the spindle device of the machine tool.
  • the bearing preload state during the operation of the machine tool can be detected, it is easy to determine the state of the bearing, and before the abnormality (for example, seizure) occurs in the bearing 5, a sign of the abnormality is detected and the bearing abnormality is detected. Can be prevented beforehand.
  • the bearing preload exceeds the threshold, or if the preload rise change rate exceeds the threshold, it is determined that there is a high possibility that seizure will occur, and cutting work is stopped or the rotation speed is reduced. Measures can be taken to prevent bearing seizure.
  • the thin film sensor 17 is formed on the metal surface of the outer ring spacers 6g and 6gA.
  • the thin film sensor 17 may be formed on the end surface of the outer ring 5g of the bearing 5. Good.
  • FIG. 13 is a cross-sectional view illustrating the configuration of the bearing device according to the third embodiment.
  • the structure of the bearing device 1B shown in FIG. 13 is vertically symmetrical about the rotation center axis OO, but the portion below the rotation center axis OO is not shown.
  • the bearing device 1 ⁇ / b> B includes a bearing 55, a spacer 56 disposed adjacent to the bearing 55, and a preload sensor 61.
  • the main shaft 4 is rotatably supported by a plurality of bearings 55 in the housing 3 embedded in the inner diameter of the outer cylinder 2.
  • Each bearing 55 includes an inner ring 55i, an outer ring 55g, a rolling element T, and a retainer Rt.
  • the spacer 56 includes an inner ring spacer 56i and an outer ring spacer 56g.
  • the preload is given by the tightening force of the nut 10.
  • the preload is given by tightening the front lid 12 with a bolt (not shown) or the like.
  • the front cover 12 is tightened with a bolt or the like (not shown)
  • the outer bearing 55g, the raceway surface of the outer ring 55g, the rolling element T, the raceway surface of the inner ring 55i, the inner ring 55i, and the inner ring spacer 56i are provided on the left bearing 55 in FIG.
  • a preload is applied in the path.
  • a preload is applied to the outer ring on the right side in FIG.
  • the preload sensor 61 is provided on an end surface of the inner race spacer 56i or an end surface of the inner race 55i, which is a portion where the inner race spacer 56i and the inner race 55i abut.
  • the position of the preload sensor 61 may be another position as long as it is on a path through which a force for applying a preload is transmitted.
  • the preload sensor 61 is provided on the inner ring spacer 56i or the inner ring 55i, they rotate together with the main shaft 4, so that a device is required to transmit the output of the preload sensor 61 to the external device via the cable CB.
  • the signal transmitter 24 is arranged on the outer peripheral surface of the inner ring spacer 56i.
  • a signal receiver 25 is disposed at a position facing the signal transmitter 24 on the inner diameter surface of the outer ring spacer 56g. Non-contact power supply and non-contact communication are performed between the signal transmitter 24 and the signal receiver 25.
  • FIG. 14 is a diagram showing a configuration of the signal transmitter 24 and the signal receiver 25 and a connection state of the preload sensor 61.
  • the signal transmitter 24 includes a power receiving unit 26, a sensor signal transmitting unit 27, a sensor signal processing unit 28, and a wiring board 31 on which these are mounted.
  • the wiring board 31 is preferably configured to be bendable along the outer peripheral surface of the inner ring spacer 56i.
  • the signal transmitter 24 supplies the power obtained by the power receiving unit 26 to the preload sensor 61 mounted on the inner race spacer 56i.
  • the signal of the preload detected by the preload sensor 61 is converted into a signal capable of contactless communication by the sensor signal processing unit 28, and transmitted to the signal receiver 25 by the sensor signal transmission unit 27.
  • the signal receiver 25 includes a power supply power transmission unit 29, a sensor signal reception unit 30, and a wiring board 32 on which these are mounted.
  • the wiring board 32 is preferably configured to be bendable along the inner peripheral surface of the outer ring spacer 56g.
  • the signal receiver 25 converts the signal including the preload information of the preload sensor 61 received by the sensor signal receiving unit 30 into a signal that can be easily transmitted by the cable CB, and sends the signal to the external device 100 via the cable CB.
  • power is supplied from the external device 100 to the signal receiver 25.
  • a part of this power is transmitted from the power supply power transmission unit 29 to the power reception unit 26 in a non-contact manner.
  • the transmission of electric power may be performed wirelessly, by light waves, infrared rays, ultrasonic waves, or by magnetic coupling, and the system is not limited.
  • FIG. 15 is a diagram illustrating a configuration of a preload sensor used in the bearing device according to the fourth embodiment.
  • FIG. 16 is a diagram showing a part of the inner ring spacer as viewed from the direction of arrow C in FIG. As shown in FIGS. 15 and 16, a protrusion may be provided on the end face of the inner ring spacer 56 iA, and the preload sensor 61 may be disposed on the end face.
  • FIG. 17 is a diagram showing a modification of the configuration shown in FIG.
  • FIG. 18 is a diagram showing a part of the inner ring spacer as viewed from the direction of arrow C2 in FIG.
  • the configuration shown in FIGS. 17 and 18 differs from the configuration shown in FIGS. 15 and 16 in that the preload sensor 61 is arranged on the end surface 71c of the projection 71b provided on the small piece 71.
  • the small piece 71 is embedded in a concave portion 56d provided in the end surface 56a of the inner ring spacer 56iB, and is fixed to the inner ring spacer 56iB with a bolt 72.
  • an intermediate spacer similar to the intermediate spacer 23 in FIG. 12 may be inserted between the inner ring spacer 56i and the inner ring 5i.
  • the preload sensor that measures the surface pressure at the position where the outer ring end face of the bearing contacts the outer ring spacer or the position where the inner ring end face of the bearing contacts the inner ring spacer. And by directly measuring the surface pressure, the preload amount of the bearing can be measured from the relationship between the surface pressure and the load measured in advance.
  • the preload is measured without providing a strain-generating portion with reduced rigidity in the spacer, the preload can be measured without reducing the rigidity of the bearing device. For this reason, it is possible to prevent the measurement of the preload from affecting the processing accuracy of the machine tool.
  • the preload sensor uses a pressure-sensitive sheet or a thin-film sensor with a pressure sensor formed directly on a metal surface, the structure of the outer ring spacer is not complicated, and the space required for mounting the preload sensor is reduced. This contributes to downsizing of the bearing device and the bearing preload detection device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Support Of The Bearing (AREA)

Abstract

予圧センサ(11)は、第1主面(SF)と第2主面(SB)とを有する膜状の抵抗体(16)と、抵抗体(16)に接続される第1電極(15F)、第2電極(15B)とを備える。抵抗体(16)は、第1主面(SF)と第2主面(SB)との間に作用する圧力に応じて第1電極(15F)と第2電極(15B)との間の直流抵抗が変化するように構成される。第1主面(SF)は、軸受(5)の端面に向けて配置される。第2主面(SB)は、軸受(5)の端面に対向する軸受(5)に予圧を与える部材の端面(7)に向けて配置される。このような構成とすることによって、簡単な構成で軸受の予圧を測定することが可能な予圧センサを提供することができる。

Description

予圧センサ、軸受装置、軸受、および間座
 この発明は、工作機械の主軸スピンドルなどに使用される軸受の予圧を検出する予圧センサ並びに予圧センサを備える軸受装置、軸受、および間座に関する。
 工作機械のスピンドル装置では、加工精度および効率の向上のため、軸受の予圧管理が求められており、そのため軸受の予圧を検出する要求がある。また、軸受に異常が起こる前にその予兆を検出して、軸受の異常を未然に防ぐ要求もある。
 特開2008-286219号公報(特許文献1)では、軸方向に並ぶ複数の転がり軸受の間に間座を介在させた軸受装置において、間座の一部分を磁歪材料で構成すると共に、間座のうち、磁歪材料からなる部分の残りの部分の少なくとも一部を非磁性材料で構成し、磁歪材料の部分の磁気特性の変化から軸受の予圧を検出する。
特開2008-286219号公報 特開2014-071085号公報
 特開2008-286219号公報(特許文献1)に開示された軸受装置では、外輪間座が2分割した一対の間座部材の間に磁歪材を挟み込んだ構造のため、構造が複雑で、一対の間座部材が分離しないよう保持した状態でハウジングに入れる必要があり、組立が困難である。
 また、磁歪材を用いた予圧検出では、磁歪材料の選定の他、出力信号の温度ドリフトやヒステリシスなどの低減が課題になる。
 この発明は、上記の課題を解決するためになされたものであって、その目的は、簡単な構成で軸受の予圧を測定することが可能な予圧センサ並びに予圧センサを備える軸受装置、軸受、および間座を提供することである。
 本開示の予圧センサは、内輪、外輪、転動体を含む軸受の予圧を検出する予圧センサである。予圧センサは、第1主面と第2主面とを有する膜状の感圧部材と、感圧部材に電気的に接続される第1電極および第2電極とを備える。感圧部材は、第1主面と第2主面との間に作用する圧力に応じて第1電極と第2電極との間の直流抵抗が変化するように構成される。感圧部材の第1主面は軸受の端面に向けて配置され、第2主面は端面に対向する軸受に予圧を与える部材の対向面に向けて配置される。
 好ましくは、感圧部材は、絶縁膜と、絶縁膜上に形成され、面圧の変化で抵抗が変化する薄膜パターンと、薄膜パターン上に形成され、薄膜パターンを保護する保護膜とを含む薄膜センサである。
 好ましくは、感圧部材は、第1絶縁層と、第1電極が接続される第1電極層と、感圧インクまたは感圧ゴムで形成される感圧層と、第2電極が接続される第2電極層と、第2絶縁層とを含む。第1主面と第2主面との間に、第1絶縁層、第1電極層、感圧層、第2電極層、第2絶縁層が、順に配置される。
 本開示の他の局面である軸受装置は、上記の予圧センサと、軸受と、軸受に隣接して配置される間座とを備える。軸受に予圧を与える部材は、間座である。第1主面が端面に接し、第2主面が対向面に接するように予圧センサが配置される。
 好ましくは、軸受は、第1軸受であり、軸受装置は、第2軸受をさらに備える。間座は、第1軸受と第2軸受との間に配置され、第1軸受と第2軸受とは背面組み合わせとなるように配置され、第1軸受の外輪端面と間座の外輪間座端面との間に予圧センサが配置される。
 好ましくは、軸受は、第1軸受であり、軸受装置は、第2軸受をさらに備える。間座は、第1軸受と第2軸受との間に配置される。第1軸受と第2軸受とは正面組み合わせとなるように配置される。第1軸受の内輪端面と間座の内輪間座端面との間に予圧センサが配置される。
 好ましくは、間座は、内輪間座と外輪間座とを含む。軸受装置は、内輪間座の外周面に配置され、電力受信部とセンサ信号送信部とセンサ信号処理部とを内蔵したセンサ信号送信機と、外輪間座の内周面に配置され、電力受信部に非接触で給電する供給電力送信部とセンサ信号送信部から非接触でセンサ信号を受信するセンサ信号受信部とを内蔵したセンサ信号受信機とをさらに備える。センサ信号送信部は、電力受信部から電力が供給され、予圧センサの出力を非接触でセンサ信号受信機側に送信する。
 好ましくは、軸受に予圧が印加される経路上に配置された間座の端面には凸部が設けられ、凸部の突出面に感圧部材が配置される。
 より好ましくは、間座は、内輪間座と外輪間座とを含む。外輪間座または内輪間座は、凸部を含む第1部材と、第1部材がはめ込まれる凹部が形成された第2部材とを含む。
 より好ましくは、軸受装置は、凸部に配置された感圧部材と、軸受の端面との間に配置される中間間座をさらに備える。
 本開示のさらに他の局面である軸受は、第1主面が端面に接するように上記の予圧センサが内輪または外輪に形成される。
 本開示のさらに他の局面である間座は、第2主面が対向面に接するように上記の予圧センサが内輪間座または外輪間座に形成される。
 本発明によれば、簡単な構成で軸受の予圧を測定することが可能な予圧センサ並びに予圧センサを備える軸受装置、軸受、および間座を実現することができ、軸受の保守、管理を容易に行なうことができる。
実施の形態1の軸受装置の構成を示す断面図である。 予圧センサの配置部分を拡大して示した断面図である。 感圧シート13の構造例を示す図である。 感圧シートによって構成した予圧センサの予圧と抵抗の関係を示す図である。 外輪間座の端面に薄膜センサを形成した構造を示す図である。 薄膜センサによって構成した予圧センサの予圧と抵抗との関係を示す図である。 薄膜センサを使用した場合の抵抗変化を検出する回路を示す図である。 実施の形態2の軸受装置に用いられる予圧センサの構成を示す図である。 図8の矢印B方向から見た外輪間座の一部を示す図である。 図8に示した構成の変形例を示す図である。 図10の矢印B2方向から見た外輪間座の一部を示す図である。 実施の形態2の軸受装置の変形例の構成を示す断面図である。 実施の形態3の軸受装置の構成を示す断面図である。 信号送信機24と信号受信機25の構成と、予圧センサ61との接続状態を示す図である。 実施の形態4の軸受装置に用いられる予圧センサの構成を示す図である。 図15の矢印C方向から見た内輪間座の一部を示す図である。 図15に示した構成の変形例を示す図である。 図17の矢印C2方向から見た内輪間座の一部を示す図である。
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 [実施の形態1]
 図1は、実施の形態1の軸受装置の構成を示す断面図である。軸受装置1は、たとえば、工作機械のビルトインモータ方式のスピンドル装置に応用される。この場合、軸受装置1で支持されている主軸4の一方端側には図示しないモータが組み込まれ、他方端にはエンドミル等の切削工具が接続される。なお、図1に示す軸受装置1の構造は、回転中心軸O-Oを中心として上下対称であるが、回転中心軸O-Oより下の部分は図示を省略している。
 軸受装置1は、軸受5と、軸受5に隣接して配置される間座6と、予圧センサ11とを備える。主軸4は、外筒2の内径部に埋設されたハウジング3に複数の軸受5によって回転自在に支持される。各軸受5は、内輪5iと、外輪5gと、転動体Tと、保持器Rtとを含む。間座6は、内輪間座6iと、外輪間座6gとを含む。
 主軸4には、軸方向に離隔した複数の軸受5が締まり嵌め状態(圧入状態)で嵌合されている。内輪5i-5i間には内輪間座6iが配置され、外輪5g-5g間には外輪間座6gが配置される。
 軸受5は、内輪5iと外輪5gの間に複数の転動体Tを配置した転がり軸受であり、これら転動体Tは保持器Rtで間隔が保持されている。軸受5は、軸方向の予圧を付与することが可能な軸受であり、アンギュラ玉軸受、深溝玉軸受、またはテーパころ軸受等を用いることができる。図1に示す軸受装置1にはアンギュラ玉軸受が用いられ、2個の軸受5が背面組み合わせ(DB組み合わせ)で設置されている。
 ハウジング3には冷却媒体流路Gが形成される。ハウジング3と外筒2との間に冷却媒体を流すことにより、軸受装置1を冷却することができる。
 組立時には、初めに主軸4に軸受5、間座6、軸受5、間座9の順に挿入し、ナット10で締めて初期予圧が与えられたものを、図1における右側の軸受5の外輪5gの右側がハウジング3に設けた段差部3aに押し当たるまで挿入し、その後、前蓋12によって、左側の軸受5の外輪5gを押すことでハウジング3に固定される。
 ナット10を締め付けることにより右側の軸受5の内輪5iの端面に力が作用し、間座9を介して内輪5iが内輪間座6iに向けて移動する。この力は、内輪5i、転動体T、外輪5gと伝わり右の軸受5に予圧を与えるとともに、外輪5gから外輪間座6gにも伝わる。外輪間座6gから右側の外輪5gには、押す力が作用し、この力は、左側の軸受5において、外輪5g、転動体T、内輪5iへと伝わり、左側の軸受5にも予圧を与える。内輪5iの移動量は、例えば外輪間座6gと内輪間座6iの幅の寸法差によって定まる。この移動量に応じて軸受5に予圧が付与される。図1、図2に示す予圧センサ11は、外輪5gと外輪間座6gとの間に配置されているが、予圧を発生させる力の伝達経路であれば、他の場所であっても良い。たとえば、予圧センサ11は、間座9と内輪5iの間に配置されても良い。
 図2は、予圧センサの配置部分を拡大して示した断面図である。図2に示すように外輪間座6gの内周面と外周面とをつなぐ端面7のうちの少なくとも一方(図1の左側)には、外輪5gの端面と接触する位置に予圧センサ11が配置される。予圧センサ11に印加される荷重と予圧センサ11の出力との関係は、予め測定され把握されている。軸受装置1を組み立てる際には、外輪5gと外輪間座6gとが当接した状態において内輪5iと内輪間座6iとの間に予め設計上の隙間が設けられている。ナット10を締め付けることにより、この隙間が無くなるとともに外輪間座6gと間座9とによって軸受5に予圧が付与される。ナット10を締め付けると、右側の軸受5に間座9、内輪5iの軌動面、転動体T、外輪5gの軌動面、外輪間座6gの経路で予圧が印加される。また、左側の軸受5には、外輪間座6g、外輪5gの軌動面、転動体T、内輪5iの軌動面の経路で予圧が印加される。
 予圧センサ11の出力から予圧量を把握することができる。このため、軸受装置1の組立時に予圧センサ11の出力を観測すれば、予め設定した予圧量になっているかを確認でき、組立工数を削減できる。また、工作機械の運転時に予圧センサ11の出力を観測すれば、運転時の発熱による熱膨張で増加した予圧を知ることができる。運転時の予圧変化を観測することによって、切削性能の低下や軸受の焼き付きを事前に防止することができる。
 予圧センサ11としては、たとえば電気抵抗の変化から面圧を測定する感圧シート13が用いられる。図3は、感圧シート13の構造例を示す図である。
 感圧シート13は、樹脂フィルムを基材14F,14Bとし、基材14F,14Bの各表面に形成した電極15F,15Bの間に感圧インクや感圧ゴムなどの抵抗体16を配置したものである。感圧シート13は、荷重に応じて電極間の電気抵抗が変化するので、電気抵抗と荷重の関係を予め把握しておけば、荷重を検出することができる。感圧シート13をリング状に形成して予圧センサ11とする。この予圧センサ11は、外輪間座6gの内周面と外周面とをつなぐ端面7と外輪5gの内周面と外周面とをつなぐ端面との間に配置される。
 図2、図3を参照して、予圧センサ11は、第1主面SFと第2主面SBとを有する膜状の感圧部材(抵抗体16)と、感圧部材の第1主面SF側に電気的に接続される第1電極15Fと、感圧部材の第2主面SB側に電気的に接続される第2電極15Bとを備える。感圧部材は、第1主面SFと第2主面SBとの間に作用する圧力に応じて第1電極15Fと第2電極15Bとの間の直流抵抗が変化するように構成される。第1主面SFは軸受5の内周面と外周面とをつなぐ端面に向けて配置される。第2主面SBは、軸受5の端面に対向する軸受5に予圧を与える部材(図2では外輪間座6g)の端面7に向けて配置される。
 図4は、感圧シートによって構成した予圧センサの予圧と抵抗との関係を示す図である。図4には横軸に予圧(荷重)が示され、縦軸には抵抗が示されている。図4に示すように予圧が増加すると、感圧シートの厚みが減少し、感圧シートの抵抗値は低下する傾向にある。
 あるいは、予圧センサ11は、外輪間座6gの端面7に直接成形した薄膜センサ17であってもよい。図5は、外輪間座の端面に薄膜センサを形成した構造を示す図である。薄膜センサ17は、外輪間座6gの端面7に絶縁膜18を形成後、面圧の変化で抵抗が変化する薄膜パターン19を形成し、その上から保護膜20が形成される。絶縁膜18、薄膜パターン19、保護膜20はスパッタリングなどによって成膜される。薄膜パターン19には、2つの電極が接続される。2つの電極間の抵抗を測定することによって薄膜パターン19の抵抗値の変化を検出することができる。
 図5に示したように、外輪間座6gの端面7に直接、薄膜センサ17を形成すれば、外輪間座の構造を複雑にすることなく、また、圧力センサの実装に必要なスペースも低減でき、軸受装置を小型化できる。また感圧シート13のようにベース基材として使われる樹脂部材が介在しないため剛性が高いので、外輪間座6gの剛性を落とすことなく予圧(軸受5の軸方向に印加される荷重)を検出できる。したがって、予圧センサを外輪間座6gと外輪5gとの間に介在させても、工作機械としての加工精度に影響が生じることを避けることができる。
 絶縁膜18や保護膜20は、たとえば二酸化珪素が用いられ、薄膜パターン19は、たとえばひずみゲージで使われる金属合金(銅ニッケッル合金、ニッケルクロム合金など複数の金属からなる合金)が用いられる。たとえば、薄膜センサとして、特開2014-071085号公報に記載された薄膜センサを用いても良い。
 図6は、薄膜センサによって構成した予圧センサの予圧と抵抗の関係を示す図である。図6には横軸に予圧(荷重)が示され、縦軸には抵抗が示されている。図6に示すように予圧が増加すると、薄膜センサの抵抗値も増加する傾向にある。
 図7は、薄膜センサを使用した場合の抵抗変化を検出する回路を示す図である。図7に示すセンサ信号処理部28は、DC電源VSDCに接続される抵抗R1~R3と薄膜センサ17と、差動アンプAMPとを含む。抵抗R1~R3と薄膜センサ17とはブリッジ回路を構成する。DC電源VSDCの正極と負極との間には、抵抗R1と抵抗R2とが直列に接続される。また、DC電源VSDCの正極と負極との間には、薄膜センサ17と抵抗R3とが直列に接続される。抵抗R1と抵抗R2との接続ノードには、アンプAMPの一方の入力ノードが接続される。薄膜センサ17と抵抗R3との接続ノードには、アンプAMPの他方の入力ノードが接続される。
 図7に示すようなブリッジ回路構成することによって、予圧が変化した際の薄膜センサ17の抵抗値の変化をアンプAMPで検出することができる。
 [実施の形態2]
 図8は、実施の形態2の軸受装置に用いられる予圧センサの構成を示す図である。図9は、図8の矢印B方向から見た外輪間座の一部を示す図である。
 図9には実施の形態2で用いられる外輪間座6gAの側面図が示されている。外輪間座6gAの端面7aには少なくとも3個以上の凸部7bが等間隔で設けられる。凸部7bの端面7cには予圧センサ11が配置される。予圧センサ11としては、感圧シート13、または薄膜センサ17を使用することができる。この場合、外輪間座6gの端面と軸受5の外輪5gの端面とは、予圧センサ11を介して凸部7bの面積だけで当接するため、予圧センサ11に印加される面圧が高められ、予圧センサ11の測定精度を向上させることができる。
 なお、凸部7bは、軸受5の外輪5gの端面を安定的に押すために外輪間座6gに3個以上設けることが好ましい。
 図10は、図8に示した構成の変形例を示す図である。図11は、図10の矢印B2方向から見た外輪間座の一部を示す図である。図8,図9に示した構成では外輪間座6gの端面7に直接凸部7bを設けた。これに対し、図10、図11に示す構成は、小片21に設けた凸部21bの端面21cに予圧センサ11が配置される点が図8,図9に示した構成と異なる。小片21は、外輪間座6gBの端面7aに設けた凹部7dに埋設され、ボルト22で外輪間座6gBに固定されている。小片21であればサイズが外輪間座6gAよりも小さいので、スパッタ等で薄膜センサを形成する場合に処理装置に入れやすいので有利である。なお、凸部21bは、軸受5の外輪5gの端面を安定的に押すために外輪間座6gBに3個以上設けることが好ましい。
 図12は、実施の形態2の軸受装置の変形例の構成を示す断面図である。図8または図10に示すように、凸部7b、21bに予圧センサ11を設けた場合、軸受5の外輪5g端面は、外輪間座6gA、6gBとは予圧センサ11を介して凸部7b、21bのみで当接することになる。この場合、軸受5の変形が懸念される場合には、図12に示す軸受装置1Aのように、外輪5gと外輪間座6gとの間にリング状の中間間座23を入れ、中間間座23に予圧センサ11を取り付けてもよい。
 以上説明したように、工作機械のスピンドル装置に前述の予圧センサ11を実装することができる。この場合には、工作機械運転中の軸受予圧状態を検出可能なため、軸受の状態の判断が容易となり、軸受5に異常(たとえば焼付き)が起こる前にその予兆を検出して軸受の異常を未然に防ぐことができる。
 たとえば、軸受予圧が閾値を超えた場合、あるいは予圧上昇変化率が閾値を超えた場合に焼き付きが生じる可能性が高い状態と判定し、切削加工を中止したり、回転速度を下げたりするなどの対策を行ない、軸受の焼き付きを防止することができる。
 なお、実施の形態1,2では、予圧センサ11の内、薄膜センサ17を外輪間座6g、6gAの金属表面に形成したが、軸受5の外輪5gの端面に薄膜センサ17を形成してもよい。
 [実施の形態3]
 実施の形態1,2では、2個の軸受5を背面組み合わせ(DB組み合わせ)としたが、実施の形態3では、2個の軸受5を正面組み合わせ(DF組み合わせ)とした例を示す。
 図13は、実施の形態3の軸受装置の構成を示す断面図である。なお、図13に示す軸受装置1Bの構造は、回転中心軸O-Oを中心として上下対称であるが、回転中心軸O-Oより下の部分は図示を省略している。
 軸受装置1Bは、軸受55と、軸受55に隣接して配置される間座56と、予圧センサ61とを備える。主軸4は、外筒2の内径部に埋設されたハウジング3に複数の軸受55によって回転自在に支持される。各軸受55は、内輪55iと、外輪55gと、転動体Tと、保持器Rtとを含む。間座56は、内輪間座56iと、外輪間座56gとを含む。
 実施の形態1,2では、ナット10の締め付け力によって予圧が与えられたが、軸受55を正面組み合わせにした場合、前蓋12を図示しないボルト等で締め付けることによって予圧が与えられる。前蓋12を図示しないボルト等で締め付けると、図13の左側の軸受55には、外輪55g、外輪55gの軌動面、転動体T、内輪55iの軌動面、内輪55i、内輪間座56iの経路で予圧が印加される。また、図13の右側の外輪には、内輪間座56i、内輪55i、内輪55iの軌動面、転動体T、外輪55gの軌動面、外輪55gの経路で予圧が印加される。このため、予圧センサ61は内輪間座56iと内輪55iとが当接する部分である、内輪間座56iの端面または内輪55iの端面に設けられる。なお、予圧センサ61の位置は、予圧を与える力が伝わる経路上であれば他の位置であっても良い。
 しかし、予圧センサ61を内輪間座56iまたは内輪55iに設けると、これらは主軸4とともに回転するため、予圧センサ61の出力をケーブルCBで外部機器に送信するためには工夫が必要である。このため、実施の形態3では、内輪間座56iの外周面に信号送信機24が配置される。また、外輪間座56gの内径面には、信号送信機24と対向する位置に信号受信機25が配置される。信号送信機24と信号受信機25との間で、非接触給電と非接触通信が行なわれる。
 図14は、信号送信機24と信号受信機25の構成と、予圧センサ61との接続状態を示す図である。
 信号送信機24は、電力受信部26と、センサ信号送信部27と、センサ信号処理部28と、これらを搭載する配線基板31とを含む。配線基板31は、好ましくは、内輪間座56iの外周面に沿うように曲げることが可能に構成される。信号送信機24は、内輪間座56iに実装した予圧センサ61に電力受信部26で得た電力を供給する。予圧センサ61で検出された予圧の信号は、センサ信号処理部28によって非接触通信可能な信号に変換され、センサ信号送信部27によって信号受信機25に送信される。
 信号受信機25は、給電電力送信部29と、センサ信号受信部30と、これらを搭載する配線基板32とを含む。配線基板32は、好ましくは、外輪間座56gの内周面に沿うように曲げることが可能に構成される。信号受信機25は、センサ信号受信部30が受信した予圧センサ61の予圧情報を含む信号をケーブルCBで送信しやすい信号に変換して、ケーブルCBを介して外部機器100に送る。
 また、外部機器100からは、信号受信機25に電源が供給される。この電力の一部は、給電電力送信部29から電力受信部26に向けて非接触で送電される。電力の送電は、無線によるものであっても、また光波、赤外線、超音波によるもの、あるいは磁気結合により行なうものであっても良く、方式は限定されない。
 [実施の形態4]
 図15は、実施の形態4の軸受装置に用いられる予圧センサの構成を示す図である。図16は、図15の矢印C方向から見た内輪間座の一部を示す図である。図15、図16に示すように、内輪間座56iAの端面に凸部を設けて、その端面に予圧センサ61を配置してもよい。
 図17は、図15に示した構成の変形例を示す図である。図18は、図17の矢印C2方向から見た内輪間座の一部を示す図である。図17、図18に示す構成は、小片71に設けた凸部71bの端面71cに予圧センサ61が配置される点が図15,図16に示した構成と異なる。小片71は、内輪間座56iBの端面56aに設けた凹部56dに埋設され、ボルト72で内輪間座56iBに固定されている。
 また、実施の形態4においても、図12の中間間座23と同様な中間間座を内輪間座56iと内輪5iとの間に挿入してもよい。
 以上説明したように、実施の形態1~4では、軸受の外輪端面と外輪間座とが当接する位置、または軸受の内輪端面と内輪間座とが当接する位置に面圧を測定する予圧センサを配置し、直接、面圧を測定することで、事前に測定した面圧と荷重の関係から軸受予圧量を測定することができる。
 また、間座に剛性を低くした起歪部を設けることなく予圧を測定するため、軸受装置の剛性を低下させることがなく予圧を測定できる。このため、予圧の測定が工作機械としての加工精度に影響することを避けることができる。
 さらに、予圧センサとして、感圧シート、あるいは金属面に圧力センサを直接形成した薄膜センサを用いるので、外輪間座の構造を複雑にすることなく、また、予圧センサの実装に必要なスペースも削減でき、軸受装置、および軸受予圧検出装置の小型化に貢献する。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1A,1B 軸受装置、2 外筒、3 ハウジング、3a 段差部、4 主軸、5,55 軸受、5g,55g 外輪、5i,55i 内輪、6,9,56 間座、6g,6gA,6gB,56g,66g 外輪間座、6i,56i,56iA,56iB 内輪間座、7,7a,7c,21c,56a,71c 端面、7b,21b,71b 凸部、7d,56d 凹部、10 ナット、11,61 予圧センサ、12 前蓋、13 感圧シート、14B,14F 基材、15B,15F 電極、16 抵抗体、17 薄膜センサ、18 絶縁膜、19 薄膜パターン、20 保護膜、21,71 小片、22,72 ボルト、23 中間間座、24 信号送信機、25 信号受信機、26 電力受信部、27 センサ信号送信部、28 センサ信号処理部、29 給電電力送信部、30 センサ信号受信部、31,32 配線基板、100 外部機器、AMP アンプ、CB ケーブル、R1,R2,R3 抵抗、Rt 保持器、SB 第2主面、SF 第1主面、T 転動体、VSDC 電源。

Claims (12)

  1.  内輪、外輪、転動体を含む軸受の予圧を検出する予圧センサであって、
     第1主面と第2主面とを有する膜状の感圧部材と、
     前記感圧部材に電気的に接続される第1電極および第2電極とを備え、
     前記感圧部材は、前記第1主面と前記第2主面との間に作用する圧力に応じて前記第1電極と前記第2電極との間の直流抵抗が変化するように構成され、
     前記第1主面は前記軸受の端面に向けて配置され、前記第2主面は前記端面に対向する前記軸受に予圧を与える部材の対向面に向けて配置される、予圧センサ。
  2.  前記感圧部材は、
     絶縁膜と、
     前記絶縁膜上に形成され、面圧の変化で抵抗が変化する薄膜パターンと、
     前記薄膜パターン上に形成され、前記薄膜パターンを保護する保護膜とを含む薄膜センサである、請求項1に記載の予圧センサ。
  3.  前記感圧部材は、
     第1絶縁層と、
     前記第1電極が接続される第1電極層と、
     感圧インクまたは感圧ゴムで形成される感圧層と、
     前記第2電極が接続される第2電極層と、
     第2絶縁層とを含み、
     前記第1主面と前記第2主面との間に、前記第1絶縁層、前記第1電極層、前記感圧層、前記第2電極層、前記第2絶縁層が、順に配置される、請求項1に記載の予圧センサ。
  4.  請求項1~3のいずれか1項に記載の予圧センサと、
     前記軸受と、
     前記軸受に隣接して配置される間座とを備え、
     前記軸受に予圧を与える部材は、前記間座であり、
     前記第1主面が前記端面に接し、前記第2主面が前記対向面に接するように前記予圧センサが配置される、軸受装置。
  5.  前記軸受は、第1軸受であり、
     前記軸受装置は、第2軸受をさらに備え、
     前記間座は、前記第1軸受と前記第2軸受との間に配置され、
     前記第1軸受と前記第2軸受とは背面組み合わせとなるように配置され、
     前記第1軸受の外輪端面と前記間座の外輪間座端面との間に前記予圧センサが配置される、請求項4に記載の軸受装置。
  6.  前記軸受は、第1軸受であり、
     前記軸受装置は、第2軸受をさらに備え、
     前記間座は、前記第1軸受と前記第2軸受との間に配置され、
     前記第1軸受と前記第2軸受とは正面組み合わせとなるように配置され、
     前記第1軸受の内輪端面と前記間座の内輪間座端面との間に前記予圧センサが配置される、請求項4に記載の軸受装置。
  7.  前記間座は、内輪間座と外輪間座とを含み、
     前記軸受装置は、
     前記内輪間座の外周面に配置され、電力受信部とセンサ信号送信部とセンサ信号処理部とを内蔵したセンサ信号送信機と、
     前記外輪間座の内周面に配置され、前記電力受信部に非接触で給電する供給電力送信部と前記センサ信号送信部から非接触でセンサ信号を受信するセンサ信号受信部とを内蔵したセンサ信号受信機とをさらに備え、
     前記センサ信号送信部は、前記電力受信部から電力が供給され、前記予圧センサの出力を非接触で前記センサ信号受信機側に送信する、請求項4~6のいずれか1項に記載の軸受装置。
  8.  前記軸受に予圧が印加される経路上に配置された前記間座の端面には凸部が設けられ、
     前記凸部の突出面に前記感圧部材が配置される、請求項4~7のいずれか1項に記載の軸受装置。
  9.  前記間座は、内輪間座と外輪間座とを含み、
     前記外輪間座または前記内輪間座は、前記凸部を含む第1部材と、前記第1部材がはめ込まれる凹部が形成された第2部材とを含む、請求項8に記載の軸受装置。
  10.  前記凸部に配置された前記感圧部材と、前記軸受の端面との間に配置される中間間座をさらに備える、請求項8または請求項9に記載の軸受装置。
  11.  内輪、外輪、転動体を含む軸受であって、
     前記第1主面が前記端面に接するように、請求項1に記載の予圧センサが前記内輪または前記外輪に形成される、軸受。
  12.  内輪間座と外輪間座とを含む間座であって、
     前記第2主面が前記対向面に接するように、請求項1に記載の予圧センサが前記内輪間座または前記外輪間座に形成される、間座。
PCT/JP2019/025272 2018-06-29 2019-06-26 予圧センサ、軸受装置、軸受、および間座 WO2020004430A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217000145A KR20210025588A (ko) 2018-06-29 2019-06-26 예압 센서, 베어링 장치, 베어링 및 스페이서
DE112019003279.8T DE112019003279T5 (de) 2018-06-29 2019-06-26 Vorspannungssensor, Lagervorrichtung, Lager und Distanzstück
CN201980043665.1A CN112334747A (zh) 2018-06-29 2019-06-26 预压传感器、轴承装置、轴承以及衬垫

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018124255A JP7138494B2 (ja) 2018-06-29 2018-06-29 予圧センサ、軸受装置、軸受、および間座
JP2018-124255 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020004430A1 true WO2020004430A1 (ja) 2020-01-02

Family

ID=68986209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025272 WO2020004430A1 (ja) 2018-06-29 2019-06-26 予圧センサ、軸受装置、軸受、および間座

Country Status (5)

Country Link
JP (1) JP7138494B2 (ja)
KR (1) KR20210025588A (ja)
CN (1) CN112334747A (ja)
DE (1) DE112019003279T5 (ja)
WO (1) WO2020004430A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114689165A (zh) * 2020-12-28 2022-07-01 财团法人工业技术研究院 具预压元件的感测装置
WO2022210722A1 (ja) * 2021-03-31 2022-10-06 Ntn株式会社 軸受装置およびスピンドル装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022053084A (ja) * 2020-09-24 2022-04-05 Ntn株式会社 軸受装置
JP7206315B2 (ja) * 2021-03-31 2023-01-17 Ntn株式会社 軸受装置およびスピンドル装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254742A (ja) * 2000-03-08 2001-09-21 Ntn Corp 軸受装置
US20020076127A1 (en) * 2000-12-15 2002-06-20 Tung-Chuan Wu Active piezoelectric spindle bearing preload adjustment mechanism
GB2376988A (en) * 2001-05-31 2002-12-31 Aea Technology Plc Force amplification mechanism
US6508592B1 (en) * 2000-03-15 2003-01-21 Umbra Cuscinetti Spa Device for measuring and adjusting preloading on bearings
JP2005265446A (ja) * 2004-03-16 2005-09-29 Koichi Niihara 圧電センサ
JP2006170626A (ja) * 2004-12-10 2006-06-29 Ntn Corp 回転センサ付き軸受
JP2007271005A (ja) * 2006-03-31 2007-10-18 Jtekt Corp センサ付き転がり軸受装置
JP2012088091A (ja) * 2010-10-15 2012-05-10 Nitto Seiko Co Ltd ワッシャ型ロードセルおよびスラスト荷重検出機構
JP2014071085A (ja) * 2012-10-02 2014-04-21 Honda Motor Co Ltd 薄膜センサ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024854A (ja) * 1998-07-13 2000-01-25 Nippon Seiko Kk 軸受装置
JP2008286219A (ja) 2007-05-15 2008-11-27 Ntn Corp 軸受装置および軸受予圧検出装置
DE112008002878T5 (de) * 2007-11-09 2010-12-09 Ntn Corp. Lageranordnung
JP5821178B2 (ja) * 2010-11-26 2015-11-24 日本精工株式会社 軸受用スペーサ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254742A (ja) * 2000-03-08 2001-09-21 Ntn Corp 軸受装置
US6508592B1 (en) * 2000-03-15 2003-01-21 Umbra Cuscinetti Spa Device for measuring and adjusting preloading on bearings
US20020076127A1 (en) * 2000-12-15 2002-06-20 Tung-Chuan Wu Active piezoelectric spindle bearing preload adjustment mechanism
GB2376988A (en) * 2001-05-31 2002-12-31 Aea Technology Plc Force amplification mechanism
JP2005265446A (ja) * 2004-03-16 2005-09-29 Koichi Niihara 圧電センサ
JP2006170626A (ja) * 2004-12-10 2006-06-29 Ntn Corp 回転センサ付き軸受
JP2007271005A (ja) * 2006-03-31 2007-10-18 Jtekt Corp センサ付き転がり軸受装置
JP2012088091A (ja) * 2010-10-15 2012-05-10 Nitto Seiko Co Ltd ワッシャ型ロードセルおよびスラスト荷重検出機構
JP2014071085A (ja) * 2012-10-02 2014-04-21 Honda Motor Co Ltd 薄膜センサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114689165A (zh) * 2020-12-28 2022-07-01 财团法人工业技术研究院 具预压元件的感测装置
WO2022210722A1 (ja) * 2021-03-31 2022-10-06 Ntn株式会社 軸受装置およびスピンドル装置

Also Published As

Publication number Publication date
JP7138494B2 (ja) 2022-09-16
CN112334747A (zh) 2021-02-05
KR20210025588A (ko) 2021-03-09
JP2020003385A (ja) 2020-01-09
DE112019003279T5 (de) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2020004430A1 (ja) 予圧センサ、軸受装置、軸受、および間座
US9903414B2 (en) Bearing device including a clamping ring
US8313240B2 (en) Sensorized bearing unit
JP7206315B2 (ja) 軸受装置およびスピンドル装置
WO2022065199A1 (ja) 軸受装置
JP7165021B2 (ja) 軸受装置
WO2019163566A1 (ja) 軸受
KR20210125012A (ko) 베어링 장치 및 스핀들 장치
JP2009191898A (ja) センサ付き軸受及びその製造方法
WO2021131662A1 (ja) 軸受装置、スピンドル装置、軸受、および間座
WO2022210720A1 (ja) 軸受装置、スピンドル装置および間座
JP2020060227A (ja) 軸受装置
KR20100075578A (ko) 베어링 장치
WO2020166542A1 (ja) 軸受装置およびスピンドル装置
WO2022210722A1 (ja) 軸受装置およびスピンドル装置
JP2020003027A (ja) 軸受装置
WO2024101268A1 (ja) センサ付き軸受装置および工作機械用スピンドル装置
JP7480256B1 (ja) ひずみセンサ付き軸受装置および工作機械用スピンドル装置
JP4066145B2 (ja) センサ付き転がり軸受
JP2024067958A (ja) ひずみセンサ付き軸受装置および工作機械用スピンドル装置
US20230250850A1 (en) Bearing apparatus
JP7149155B2 (ja) 軸受装置
JP2023047505A (ja) 軸受装置およびスピンドル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826584

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19826584

Country of ref document: EP

Kind code of ref document: A1