WO2021131662A1 - 軸受装置、スピンドル装置、軸受、および間座 - Google Patents

軸受装置、スピンドル装置、軸受、および間座 Download PDF

Info

Publication number
WO2021131662A1
WO2021131662A1 PCT/JP2020/045593 JP2020045593W WO2021131662A1 WO 2021131662 A1 WO2021131662 A1 WO 2021131662A1 JP 2020045593 W JP2020045593 W JP 2020045593W WO 2021131662 A1 WO2021131662 A1 WO 2021131662A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
load sensor
sensor element
bearing
outer ring
Prior art date
Application number
PCT/JP2020/045593
Other languages
English (en)
French (fr)
Inventor
小池 孝誌
靖之 福島
勇介 澁谷
大地 近藤
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP20904819.8A priority Critical patent/EP4083456A4/en
Priority to CN202080089172.4A priority patent/CN114867998A/zh
Priority to US17/787,047 priority patent/US20230027711A1/en
Publication of WO2021131662A1 publication Critical patent/WO2021131662A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/008Identification means, e.g. markings, RFID-tags; Data transfer means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0019Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/08Rigid support of bearing units; Housings, e.g. caps, covers for spindles
    • F16C35/12Rigid support of bearing units; Housings, e.g. caps, covers for spindles with ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Definitions

  • the present invention relates to a bearing device, a spindle device, a bearing, and a spacer, which include a preload sensor for detecting a preload of a bearing used for a spindle spindle of a machine tool or the like.
  • bearing preload management is required to improve machining accuracy and efficiency, and therefore there is a demand to detect bearing preload (load). There is also a demand to detect a sign of an abnormality in the bearing before it occurs and prevent the abnormality in the bearing.
  • Patent Document 1 in a bearing device in which a spacer is interposed between a plurality of rolling bearings arranged in the axial direction, a part of the spacer is made of a magnetic strain material and the spacer is formed. Of these, at least a part of the remaining portion of the portion made of the magnetic strain material is made of a non-magnetic material, and the preload of the bearing is detected from the change in the magnetic characteristics of the portion of the magnetic strain material.
  • Patent Document 1 a magnetostrictive material is sandwiched between a pair of spacer members in which the outer ring spacer is divided into two. Therefore, the structure is complicated, and it is necessary to put the pair of spacer members in a housing while holding them so as not to separate them, which makes it difficult to assemble the bearing device.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a bearing device, a spindle device, a bearing, and a bearing device including a preload sensor capable of measuring the preload of a bearing with a simple configuration. It is to provide a bearing.
  • the bearing device has a rolling element and a raceway surface, and has at least one bearing that supports the shaft, and a member and a member that are arranged on a path through which a pressing force that generates a preload is transmitted between the rolling element and the raceway surface. It is provided with at least one load sensor element which is fixed to and can measure the pressing force. At least one load sensor element includes a thin film pattern whose resistance changes according to a pressing force, and a protective layer that insulates and protects the thin film pattern.
  • the pressing force is applied by a load in the direction along the axis.
  • At least one load sensor element is a plurality of load sensor elements arranged at equal intervals on the same circumference in a plane intersecting in a direction along an axis.
  • At least one bearing is a plurality of bearings.
  • the member is a non-rotating side spacer inserted between two of the plurality of bearings.
  • At least one load sensor element is fixed to the end face of the spacer and abuts on the fixing ring of one of the two bearings to transmit the pressing force.
  • the member is a fixed ring of at least one bearing
  • the at least one load sensor element is fixed to the end face of the fixed ring and abuts against the end face of a spacer arranged adjacent to the fixed ring to exert a pressing force.
  • the member is one of the first spacers in which the spacers arranged adjacent to at least one bearing are divided into a first spacer and a second spacer.
  • At least one load sensor element is fixed to the end face of the first spacer and abuts on the end face of the second spacer to transmit the pressing force.
  • the bearing device is arranged in the vicinity of at least one load sensor element and further includes a processing unit that processes the output of at least one load sensor element.
  • the processing unit includes an amplification unit that detects and amplifies a resistance change of at least one load sensor element.
  • the bearing device is arranged in the vicinity of at least one load sensor element and further includes a processing unit that processes the output of at least one load sensor element.
  • At least one load sensor element is a plurality of load sensor elements.
  • the processing unit includes a plurality of amplification units that process the outputs of the plurality of load sensor elements, a calculation unit, and a storage unit.
  • the calculation unit stores the sensor output representative value including at least one of the addition value, the average value, the maximum value, the minimum value, and the difference between the maximum value and the minimum value of the output values obtained by the plurality of amplification units, and the storage unit in advance.
  • the load is calculated from the relationship between the stored load and the representative value of the sensor output, or its approximate expression.
  • the member is either the first outer ring spacer or the second outer ring spacer in which the spacer arranged adjacent to at least one bearing is divided into two.
  • the first outer ring spacer and the second outer ring spacer sandwich at least one load sensor element.
  • the first outer ring spacer and the second outer ring spacer are fastened with screws, and a pressing force due to the fastening force of the screws is applied to at least one load sensor element in advance.
  • the member is either the first outer ring spacer or the second outer ring spacer in which the spacer arranged adjacent to at least one bearing is divided into two.
  • the first outer ring spacer and the second outer ring spacer sandwich at least one load sensor element.
  • the holding surface that holds at least one load sensor element of the first outer ring spacer and the second outer ring spacer is a flat surface without protrusions.
  • the bearing device further includes an oil seal member arranged between the first outer ring spacer and the second outer ring spacer of the spacer.
  • the member is either a first spacer or a second spacer in which the spacers arranged adjacent to at least one bearing are divided into two.
  • the first and second spacers sandwich at least one load sensor element, and a convex portion that regulates the position of the second spacer is formed in the first spacer, and a concave portion that fits with the convex portion is formed. It is formed in the second spacer.
  • the present disclosure relates to, in other aspects, a spindle device comprising the bearing device according to any of the above.
  • the bearing is arranged on the end face of the rolling element, the inner ring, the outer ring, and the fixed ring of the inner ring and the outer ring, and at least one load capable of measuring the pressing force that generates a preload between the rolling element and the raceway surface. It is equipped with a sensor element. At least one load sensor element includes a thin film pattern whose resistance changes according to a pressing force, and a protective layer that insulates and protects the thin film pattern.
  • the bearing further comprises a processing unit that processes the output of at least one load sensor element.
  • the processing unit is integrally mounted on the fixed wheel.
  • the present disclosure relates to, in yet another aspect, a spacer placed adjacent to a bearing having a rolling element and a raceway surface.
  • the spacer includes a member for which a pressing force for generating a preload is transmitted between the rolling element and the raceway surface, and at least one load sensor element fixed to the member and capable of measuring the pressing force.
  • At least one load sensor element includes a thin film pattern whose resistance changes according to a pressing force, and a protective layer that insulates and protects the thin film pattern.
  • the spacer is integrally mounted on the member and further comprises a processing unit that processes the output of at least one load sensor element.
  • the member is the first seat, which is one of the seats divided into the first seat and the second seat.
  • At least one load sensor element is fixed to the end face of the first spacer and abuts on the end face of the second spacer to transmit the pressing force.
  • the first and second spacers sandwich at least one load sensor element.
  • the first and second spacers are fastened with screws. A pressing force due to the fastening force of the screw is previously applied to at least one load sensor element.
  • the spacer further comprises an oil seal member arranged between the first and second spacers.
  • a stepped portion that enables the alignment of the first and second spacers is formed on the inner diameter side of the first and second spacers. ..
  • the member is either the first spacer or the second spacer in which the spacer arranged adjacent to the bearing is divided into two.
  • the first and second spacers sandwich at least one load sensor element, and a convex portion that regulates the position of the second spacer is formed in the first spacer, and a concave portion that fits with the convex portion is the first. It is formed in two interstitial seats.
  • a bearing device it is possible to realize a bearing device, a spindle device, a bearing, and a spacer having a preload sensor capable of measuring the preload of the bearing with a simple configuration, and maintenance and management of the bearing can be facilitated. Can be done.
  • FIG. 1 It is a figure which shows the 2nd improvement example of the structure of a load sensor element. It is a figure which shows the 3rd improvement example of the structure of the load sensor element which is the improvement example of FIG. It is a figure which shows the example which arranged the processing part which electrically processes the output of a load sensor element in the outer ring spacer. It is a circuit block diagram which shows the structure of the amplification part which detects the resistance change of a load sensor element. It is a figure which shows the structure which calculates the preload (load) applied to a bearing from the output of a load sensor element. It is a figure which shows the modification which fixed the mounting position of the load sensor element to the end face of the non-rotating wheel of a bearing.
  • FIG. 1 It is a figure which shows the modification which changed the fixed position of a load sensor element. It is a side view of the modification which changed the fixing method of a load sensor element. It is an arrow view of the cross section of XVII-XVII of FIG. It is sectional drawing of the outer ring spacer which is an improvement example of FIG. It is sectional drawing of the outer ring spacer which is an improvement example of FIG. It is sectional drawing of the outer ring spacer which is an improvement example of FIG.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the spindle device of the present embodiment.
  • FIG. 2 is an enlarged view of the main part on the left side of FIG. FIG. 2 mainly shows the bearing device 30.
  • the spindle device 1 shown in FIG. 1 is used, for example, as a built-in motor type spindle device for a machine tool.
  • the motor 40 is incorporated in one end side of the spindle 4 supported by the spindle device 1 for the machine tool spindle, and a cutting tool such as an end mill (not shown) is connected to the other end side.
  • the spindle device 1 includes bearings 5a and 5b, a spacer 6 arranged adjacent to the bearings 5a and 5b, a motor 40, and a bearing 16 arranged behind the motor.
  • the spindle 4 is rotatably supported by a plurality of bearings 5a and 5b provided in the housing 3 embedded in the inner diameter portion of the outer cylinder 2.
  • the bearing 5a includes an inner ring 5ia, an outer ring 5ga, a rolling element Ta, and a cage Rta.
  • the bearing 5b includes an inner ring 5ib, an outer ring 5gb, a rolling element Tb, and a cage Rtb.
  • the spacer 6 includes an inner ring spacer 6i and an outer ring spacer 6g.
  • a load sensor element (pressure sensor element) 50 is fixed to one end surface 6ga of the outer ring spacer 6g by adhesion or the like.
  • adhesion it is desirable to use an adhesive having excellent oil resistance and heat resistance.
  • the inner ring 5ia of the bearing 5a and the inner ring 5ib of the bearing 5b separated in the axial direction are fitted to the spindle 4 in a tightly fitted state (press-fitting state).
  • An inner ring spacer 6i is arranged between the inner rings 5ia and 5ib, and an outer ring spacer 6g is arranged between the outer rings 5ga and 5gb.
  • the bearing 5a is a rolling bearing in which a plurality of rolling elements Ta are arranged between the inner ring 5ia and the outer ring 5ga. These rolling elements Ta are spaced by a cage Rta.
  • the bearing 5b is a rolling bearing in which a plurality of rolling elements Tb are arranged between the inner ring 5ib and the outer ring 5gb. The distance between these rolling elements Tb is maintained by the cage Rtb.
  • the bearings 5a and 5b are bearings capable of applying a preload by an axial force, and an angular contact ball bearing, a deep groove ball bearing, a tapered roller bearing, or the like can be used.
  • An angular contact ball bearing is used in the bearing device 30 shown in FIG. 2, and two bearings 5a and 5b are installed in a back combination (DB combination).
  • the single row rolling bearing 16 is a cylindrical roller bearing.
  • the bearings 5a and 5b which are angular contact ball bearings, support the radial load and the axial load acting on the spindle device 1.
  • the single-row bearing 16 which is a cylindrical roller bearing supports a load in the radial direction acting on the spindle device 1 for the machine tool spindle.
  • a cooling medium flow path G is formed in the housing 3.
  • the bearings 5a and 5b can be cooled by flowing a cooling medium between the housing 3 and the outer cylinder 2.
  • a lubricating oil supply path is not required, but when lubrication of air oil or the like is required, a lubricating oil supply path is provided in the outer ring spacer 6 g.
  • the lubricating oil supply path is not shown here.
  • the bearing 5a, the spacer 6, the bearing 5b, and the spacer 9 are first inserted into the spindle 4 in this order, and the initial preload is given by tightening the nut 10.
  • the spindle 4 to which the bearings 5a and 5b are attached is inserted into the housing 3 until the right side of the outer ring 5gb of the bearing 5b in FIG. 2 hits the stepped portion 3a provided on the housing 3.
  • the front lid 12 pushes the outer ring 5ga of the left bearing 5a to fix the spindle 4 to the housing 3.
  • a force acts on the end surface of the inner ring 5ib of the bearing 5b via the spacer 9, and the inner ring 5ib is pushed toward the inner ring spacer 6i.
  • This force is transmitted to the inner ring 5ib, the rolling element Tb, and the outer ring 5gb to apply a preload between the raceway surface of the inner ring 5ib and the outer ring 5gb and the rolling element Tb, and is also transmitted from the outer ring 5gb to the outer ring spacer 6g.
  • a pushing force acts on the outer ring spacer 6 g from the outer ring 5 gb on the right side, and the force is also transmitted to the load sensor element 50.
  • This force is transmitted to the outer ring 5ga, the rolling element Ta, and the inner ring 5ia in the bearing 5a, and also applies a preload between the raceway surface of the inner ring 5ia and the outer ring 5ga of the left bearing 5a and the rolling element Ta.
  • the preload applied to the bearings 5a and 5b is determined by, for example, the amount of movement limited by the dimensional difference in width between the outer ring spacer 6g and the inner ring spacer 6i.
  • the inner ring 16a is positioned in the axial direction by the tubular member 15 fitted to the outer circumference of the main shaft 4 and the inner ring retainer 19.
  • the inner ring retainer 19 is prevented from coming off by a nut 20 screwed to the spindle 4.
  • the outer ring 16b of the bearing 16 is sandwiched between the positioning member 21 fixed to the tubular member 15 and the positioning member 18 fixed to the inner ring retainer 19, and is integrally end with the inner ring 16a according to the expansion and contraction of the spindle 4. It is designed to slide with respect to the member 17.
  • a motor 40 for driving the spindle 4 is arranged at an intermediate position in the axial direction sandwiched between the bearings 5a and 5b and the single row bearing 16 in the space 22 formed between the spindle 4 and the outer cylinder 2. ing.
  • the rotor 14 of the motor 40 is fixed to a tubular member 15 fitted to the outer circumference of the main shaft 4, and the stator 13 of the motor 40 is fixed to the inner peripheral portion of the outer cylinder 2.
  • the cooling medium flow path for cooling the motor 40 is not shown here.
  • the load sensor element 50 for measuring the preload (load) of the bearings 5 (5a, 5b) is mounted on the preload path of the spindle device 1. As shown in FIG. 2, the load sensor element 50 is fixed to the end face 6ga of the outer ring spacer 6g by adhesion or the like, comes into contact with the end face of the outer ring 5ga of the bearing 5a, and preloads the bearing 5 (5a, 5b). Measure the load.
  • the load sensor element 50 is, for example, a pressure-sensitive sensor composed of a thin film pattern (thin film resistor) that measures a load (preload) from a change in electrical resistance, and is arranged on a path through which a pressing force that generates a preload is transmitted. ..
  • FIG. 3 is a diagram showing a first arrangement example of the load sensor element in the III-III cross section of FIG.
  • FIG. 4 is a diagram showing a second arrangement example of the load sensor element in the III-III cross section of FIG.
  • FIGS. 3 and 4 parts unnecessary for explanation are omitted.
  • FIG. 3 shows an arrangement example of the load sensor element 50 mounted on the end face 6ga of the outer ring spacer 6g.
  • the load sensor elements 50a, 50b, 50c, and 50d are arranged at equal intervals of 90 degrees in the circumferential direction of the outer ring spacer 6g.
  • the load sensor elements 50a, 50b, and 50c are arranged at equal intervals of 120 degrees in the circumferential direction of the outer ring spacer 6g.
  • the number of the load sensor elements 50 is preferably 3 or more as long as the end faces of the outer ring 5ga can be pressed evenly and in a well-balanced manner via the load sensor elements 50. Further, it is preferable to arrange them at equal intervals on substantially the same circumference.
  • FIG. 5 is a cross-sectional view of the load sensor element 50 in the XX cross section of FIG.
  • FIG. 6 is a front view of the load sensor element 50 of FIG.
  • the load sensor element 50 includes, for example, an insulating substrate 51, a thin film pattern (thin film resistor) 52 arranged on the substrate 51 whose resistance changes with a change in surface pressure, and an electrode 53 connected to the thin film pattern 52. It includes a protective layer 54 having an insulating property that protects the thin film pattern 52. Since the protective layer 54 is not formed on the electrode 53, wiring can be directly connected to the electrode 53.
  • the substrate 51 for example , a ceramic material containing zirconia (ZrO 2 ) or alumina (Al 2 O 3 ) as a main component is used.
  • the ceramic material has high rigidity and high insulating properties, and the surface flatness of the substrate 51 can be processed with high accuracy, which is convenient.
  • the thickness of the substrate 51 is preferably, for example, 0.3 mm or more and 5 mm or less from the viewpoint of reducing the thickness of the load sensor element 50 and ensuring the strength in the compression direction.
  • the thin film pattern 52 is made of, for example, nickel chromium (NiCr) or chromium (Cr) -based material, and is formed by vapor deposition, sputtering, or the like.
  • the thickness of the thin film pattern is, for example, 1 ⁇ m or less.
  • the protective layer 54 is made of an insulating material, and for example, a thin film of alumina (Al 2 O 3 ) or silicon dioxide (SiO 2 ) is formed by sputtering or the like.
  • the film thickness of the protective layer 54 is, for example, about 2 ⁇ m.
  • the surface of the electrode 53 may be coated with a material such as copper, silver, or gold to facilitate soldering to the wiring.
  • the upper surface of the substrate 51 on which the thin film pattern 52 is formed may be polished so that its flatness is 1 ⁇ m or less. Further, it is preferable that the parallelism between the upper surface and the lower surface of the substrate 51 is 1 ⁇ m or less.
  • the load sensor element 50 on which the thin film pattern 52 is formed is fixed to the outer ring spacer 6g by adhesion or the like in this way, it is easier to manufacture than directly forming the thin film pattern on the outer ring spacer 6g.
  • the load applied to the outer ring spacer 6g is divided by the contact area of the load sensor element 50 that comes into contact with the end face of the outer ring 5ga of the bearing 5a.
  • the shape of the load sensor element 50 is set in consideration of each material property value of the load sensor element 50. Further, here, the shape of the load sensor element 50 is a square shape, but the shape is not limited to this.
  • FIG. 7 is a diagram showing a modified example of the shape of the thin film pattern.
  • the thin film pattern 52 has a U-shape in the example of FIG. 6, it may be a continuous rectangular pattern as shown in FIG. 7, and the shape of the thin film pattern 52 is not limited to these.
  • the pressure-sensitive area becomes wide and the load can be detected stably.
  • FIG. 8 is a diagram showing a first improved example of the structure of the load sensor element.
  • the protective layer 54 was a thin film such as vapor deposition or sputtering made of an insulating material, but in the load sensor element 50A shown in FIG. 8, for example, zirconia (ZrO 2 ) or alumina (Al 2 O 3 ) is mainly used.
  • ZrO 2 zirconia
  • Al 2 O 3 alumina
  • a plate material made of a ceramic material as a component is used as the protective layer 54A.
  • the protective layer 54A is adhesively fixed so as to cover the thin film pattern 52 formed on the surface of the substrate 51 via the adhesive layer 55 made of an adhesive.
  • the plate thickness of the protective layer 54A is, for example, about 0.3 mm to 5 mm, which is the same as the plate thickness of the substrate 51.
  • the production becomes easier than the film formation of the protective layer 54 by sputtering or the like. Further, the insulating property between the thin film pattern 52 and the outer ring 5ga can be made higher, and the load can be detected stably. Further, since the thin film pattern 52 is pushed through the adhesive layer 55, the adhesive layer 55 serves as a cushion layer and can uniformly push the thin film pattern 52, so that the load detection accuracy is improved.
  • FIG. 9 is a diagram showing a second improved example of the structure of the load sensor element.
  • an insulating material is used as the substrate 51, but in the load sensor element 50B shown in FIG. 9, a metal material is used as the substrate 51A, and an insulating layer 58 is formed on the surface thereof.
  • the insulating layer 58 is made of an insulating material, and for example, a thin film of alumina (Al 2 O 3 ) or silicon dioxide (SiO 2 ) is formed by sputtering or the like.
  • the film thickness of the insulating layer 58 is, for example, about 2 ⁇ m.
  • the metal material of the substrate 51A for example, the same material as the outer ring spacer 6 g, for example, bearing steel (SUJ2) is used. Other than bearing steel, carbon steel (S45C or the like) is used. These metal materials are cut to a certain size and then heat-treated, and then the surface requiring processing accuracy is polished and wrapped to finish the target flatness and surface roughness. For example, the flatness is 1 ⁇ m or less, and the surface roughness is Ra 0.1 or less.
  • a thin film pattern (thin film resistor) 52 whose resistance changes with a change in surface pressure and an electrode 53 connected to the thin film pattern (thin film resistor) 52 are formed as in FIG. Further, a protective layer 54 having an insulating property that protects the thin film pattern 52 is formed. Since the protective layer 54 is not formed on the electrode 53, wiring can be directly connected to the electrode 53.
  • a thin film of alumina (Al 2 O 3 ) or silicon dioxide (SiO 2 ) is formed on the protective layer 54 by, for example, sputtering. These film thicknesses are, for example, about 2 ⁇ m.
  • the material of the substrate 51A is a metal material, the substrate 51A will not be cracked by the load and the reliability will be improved. Further, it is easier to manufacture the thin film pattern 52 on the substrate 51A made of small metal pieces than to directly form the thin film pattern 52 on the end face of the outer ring spacer 6g, and the manufacturing cost can be suppressed.
  • FIG. 10 is a diagram showing a third improved example of the structure of the load sensor element, which is an improved example of FIG. 9.
  • the protective layer 54 was a thin film such as vapor deposition or sputtering made of an insulating material, but in the load sensor element 50C shown in FIG. 10, for example, zirconia (ZrO 2 ) or alumina (Al 2 O 3 ) is mainly used.
  • ZrO 2 zirconia
  • Al 2 O 3 alumina
  • a plate material made of a ceramic material as a component is used as the protective layer 54A.
  • the protective layer 54A is adhesively fixed so as to cover the thin film pattern 52 formed on the surface of the substrate 51 via the adhesive layer 55 made of an adhesive.
  • the plate thickness of the protective layer 54A is, for example, about 0.3 mm to 5 mm, which is the same as the plate thickness of the substrate 51.
  • the protective layer 54A If a plate material made of an insulating material is used as the protective layer 54A, the production becomes easier than the film formation by sputtering or the like. Further, the insulation property with the thin film pattern 52 can be made higher, and the load can be detected stably. Further, since the thin film pattern 52 is pushed through the adhesive layer 55, the adhesive layer 55 serves as a cushion layer and can uniformly push the thin film pattern 52, so that the load detection accuracy is improved.
  • an insulating film made of an insulating material may be formed on a plate material made of a metal material, and the side on which the insulating film is formed may face the thin film pattern 52 side. In this case, cracking of the protective layer 54A can be prevented.
  • FIG. 11 is a diagram showing an example in which a processing unit that electrically processes the output of the load sensor element is arranged in the outer ring spacer.
  • a load sensor element 50 (50a, 50b, 50c, 50d) fixed at equal intervals in the circumferential direction thereof and a processing unit 70 of the load sensor element 50 are fixed to one end surface 6ga of the outer ring spacer 6g.
  • the processing unit 70 has a shape that does not interfere with the load sensor element 50, for example, and is manufactured to be thinner than the load sensor element 50 to prevent contact with the outer ring 5ga.
  • the output of the load sensor element 50 is connected to the processing unit 70 by the wiring 71.
  • the processing unit 70 is equipped with an amplification unit 72 (72a, 72b, 72c, 72d) that detects and amplifies the resistance change of the load sensor element 50 (50a, 50b, 50c, 50d), and has an output value corresponding to the resistance change.
  • the calculation unit 73 may be arranged in the processing unit 70. The calculation unit 73 may process the resistance change amounts of the plurality of load sensor elements 50, convert them into the load applied to the outer ring spacer 6g, and then output the load to the outside.
  • FIG. 12 is a circuit configuration diagram showing the configuration of the amplification unit that detects the resistance change of the load sensor element.
  • the amplification unit 72 shown in FIG. 12 includes resistors R1 to R3 connected to the DC power supply VSDC, a load sensor element 50, and a differential amplifier AMP.
  • the resistors R1 to R3 and the load sensor element 50 form a bridge circuit.
  • a resistor R1 and a resistor R2 are connected in series between the positive electrode and the negative electrode of the DC power supply VSDC.
  • the load sensor element 50 and the resistor R3 are connected in series between the positive electrode and the negative electrode of the DC power supply VSDC.
  • One input node of the differential amplifier AMP is connected to the connection node of the resistor R1 and the resistor R2.
  • the other input node of the differential amplifier AMP is connected to the connection node between the load sensor element 50 and the resistor R3.
  • the resistance change of the load sensor element 50 when the load changes can be detected by the differential amplifier AMP.
  • the amplification unit 72 By arranging the amplification unit 72 as shown in FIG. 11, electrical processing is performed in the vicinity of the load sensor element 50, so that electrical noise can be reduced. Further, the number of wirings to be pulled out to the outside can be reduced, and the bearing device 30 and the spindle device 1 can be easily assembled.
  • FIG. 13 is a diagram showing a configuration in which a preload (load) applied to the bearing is calculated from the output of the load sensor element.
  • a preload (load) applied to the bearing is calculated from the output of the load sensor element.
  • the calculation unit 73 that calculates the output values (Sa, Sb, Sc, Sd) of the load sensor elements 50 (50a, 50b, 50c, 50d) and the load sensor element 50 are fixed in advance.
  • a storage unit 74 for storing the relationship between the output value and the load measured using the outer ring spacer 6 g or the approximate expression is provided.
  • the calculation unit 73 calculates the load from the sensor output representative value and the data of the storage unit 74.
  • the calculation unit 73 and the storage unit 74 may be provided outside the bearing device 30 or inside the processing unit 70.
  • the preload applied to the outer ring spacer 6g is not uniform in the circumferential direction, and the output value may differ depending on the detection location depending on the dimensional accuracy of the outer ring spacer 6g, the housing 3, the front lid 12, the bearing 5, etc. is assumed. Further, when the spindle 4 rotates, it is assumed that the circumferential load distribution fluctuates due to the influence of the moment load applied to the spindle 4 and the movement of the rolling elements Ta and Tb of the bearing 5.
  • the maximum value, the minimum value, the difference between the maximum value and the minimum value, etc. Is set and the preload (load) is calculated.
  • the output of the obtained preload (load) may be passed through a low-pass filter to reduce output fluctuations due to passage of rolling elements Ta and Tb and noise.
  • the bearing device 30 When assembling the bearing device 30, it is possible to adjust the tightening of the preload adjusting component, for example, the nut 10 or the attachment of the fixing screw of the front lid 12 while observing the preload.
  • the preload adjusting component for example, the nut 10 or the attachment of the fixing screw of the front lid 12
  • the bearing device 30 when the bearing device 30 is mounted on the spindle device 1 and the spindle 4 is rotated at high speed by the motor 40, the bearing 5 generates heat due to the damage of the bearing 5, the preload is excessive, and the bearing 5 is burnt. However, if the preload is calculated from the load sensor element 50 and monitored, a workaround can be taken so that the bearing 5 does not burn out.
  • the preload measured by the load sensor element 50 exceeds a preset reference value, it is determined that the bearing 5 is abnormal, the rotation speed of the spindle 4 is reduced, the circulation amount of the cooling medium is increased, and processing is performed. It is possible to prevent the bearing 5 from burning by taking measures such as reducing the load.
  • the load sensor element 50 is fixed to the outer ring spacer 6 g on the transmission path of the force that generates the preload, when assembling the spindle device 1, the bearing 5 (5a, 5a, from the output of the load sensor element 50 is used.
  • the initial preload of 5b) can be grasped, and the tightening amount of the nut 10 can be adjusted while observing the preload amount.
  • the calculation unit 73 may calculate the moment load applied to the spindle 4 from the difference in the outputs of the load sensor elements 50 facing each other by 180 degrees.
  • the magnitude and direction of the moment load in the vertical direction of the spindle 4 can be calculated from the difference between the load sensor elements 50a and 50b. it can. It is also possible to calculate the magnitude and direction of the moment load in the left-right direction of the spindle 4 from the difference between the load sensor elements 50c and 50d. The magnitude and direction of the moment load can be calculated even if the number of load sensor elements is not four.
  • the load applied to the cutting tool and the load direction can be grasped from the moment load. It is also possible to detect that the cutting tool has collided with the metal work from the moment load.
  • FIG. 14 is a diagram showing a modified example in which the mounting position of the load sensor element is fixed to the end face of the non-rotating wheel of the bearing.
  • the load sensor element 50 is fixed to, for example, the end face of the outer ring 5ga of the bearing 5a by adhesion or the like.
  • the processing portion 70 may be provided on the end surface of the outer ring 5ga. In this case, it is preferable that the processing unit 70 is integrally mounted on the fixed ring (outer ring 5ga).
  • the load detection unit can be mounted compactly.
  • FIG. 15 is a diagram showing a modified example in which the fixed position of the load sensor element is changed.
  • the load sensor element 50 is fixed to the end surface 6g1a of one outer ring spacer 6g1 obtained by dividing the outer ring spacer 6g into two in the axial direction, and the end surface 6g2a of the other outer ring spacer 6g2 abuts on the load sensor element 50. ..
  • the end face 6g1a of the outer ring spacer 6g1 for fixing the load sensor element 50 and the end face 6g2a of the outer ring spacer 6g2 for pressing the load sensor element 50 are based on the flatness and surface roughness and the parallelism of these end faces 6g1a and 6g2a. Although it is necessary to process the outer ring spacers to be less than or equal to the value, it is possible to process the outer ring spacers 6g1 and 6g2 individually with high accuracy.
  • the end surface 6g2a of the outer ring spacer 6g2 may be provided with a convex surface (not shown) so that the convex surface and the load sensor element 50 come into contact with each other. Further, the end surface 6g1a of the outer ring spacer 6g1 may be provided with a convex surface (not shown), and the load sensor element 50 may be fixed to the convex surface.
  • outer ring spacers 6g1 and 6g2 divided into two may be aligned with pins (not shown) so as not to separate.
  • an intermediate layer (cushion layer) (not shown) may be inserted between the load sensor element 50 and the end surface 6g2a of the outer ring spacer 6g2 to press the load sensor element 50.
  • the material of the intermediate layer is, for example, a metal material (for example, aluminum, copper, metal alloy) having a lower rigidity (longitudinal elastic modulus) than the material of the outer ring spacer 6 g, or a coating thin film of a resin material (for example, a fluororesin). Can be used.
  • a metal material for example, aluminum, copper, metal alloy
  • a resin material for example, a fluororesin
  • the intermediate layer By pressing through the intermediate layer having a rigidity lower than that of the outer ring spacer 6 g, the intermediate layer is deformed and the load sensor element 50 can be pressed uniformly and stably.
  • the processing accuracy (surface roughness, flatness, etc.) of the end face of the outer ring spacer 6 g can be lowered as compared with the case where the intermediate layer is not used. And easy to process.
  • the load sensor element 50 and the processing unit 70 or a part of the processing unit 70 may be integrally mounted.
  • FIG. 16 is a side view of a modified example in which the method of fixing the load sensor element is changed.
  • FIG. 17 is an arrow view of a cross section of XVII-XVII of FIG.
  • a load sensor element 50 is arranged between the outer ring spacers 6g1 and 6g2 divided into two, and a preload is applied to the load sensor element 50 by fastening the outer ring spacers 6g1 and 6g2 with screws B.
  • the load sensor element 50 can be fixed without applying an adhesive to the contact surface between the outer ring spacers 6g1 and 6g2 and the load sensor element 50, but an adhesive may be used in combination.
  • the end faces 6g1a and 6g2a of the outer ring spacers 6g1 and 6g2 with which the load sensor element 50 abuts are not provided with protrusions on the end faces 6g1a and 6g2a so that the surface roughness and flatness can be processed with good accuracy.
  • the structure is such that it is easy to obtain.
  • a flattening portion 6 gb is provided on the outer diameter surface of the outer ring spacer 6 g, it can be used as a mark of the arrangement position of the load sensor element 50.
  • FIG. 18 is a cross-sectional view of the outer ring spacer, which is an improved example of FIG.
  • a nozzle for air oil is processed in the outer ring spacer 6 g, and air oil is injected from the nozzle toward the bearing 5. It is preferable to arrange the oil seal member 6gh between the outer ring spacers 6g1 and 6g2 so that the air oil does not leak to the wiring 71 side from the gap of the outer ring spacer 6g divided.
  • the oil seal member 6gh may be made of a metal material, but it is preferable that the oil seal member 6gh is made of a resin material and can be pressed and deformed by the outer ring spacers 6g1 and 6g2 so that no gap is formed.
  • a jig (not shown) may be used. For example, if the outer ring spacer 6 g is inserted into the inner diameter of the cylindrical jig and assembled, centering is easy.
  • FIG. 19 is a cross-sectional view of the outer ring spacer, which is an improved example of FIG. As shown in FIG. 19, steps 6g1m and 6g2m are provided on the inner diameters of the outer ring spacers 6g1 and 6g2, and the oil seal member 6gk is arranged so as to fit into the steps.
  • the oil seal member 6gk enables centering of the outer ring spacers 6g1 and 6g2, and the jig can be omitted.
  • FIG. 20 is a cross-sectional view of the outer ring spacer, which is an improved example of FIG.
  • a flange portion 6g1n is provided on the inner diameter side of the outer ring spacer 6g1
  • a step portion 6g2n into which the flange portion 6g1n fits is provided on the inner diameter surface of the other outer ring spacer 6g2.
  • 6g2n is fitted. This makes it possible to align the outer ring spacers 6g1 and 6g2. Further, it is possible to suppress the leakage of air oil and have a sealing function.
  • This structure eliminates the need for oil seal members, reduces the number of parts, and improves assemblability.
  • Pressure-sensitive sensor element is arranged.
  • a load sensor element 50 pressure sensor element having a thin film resistor capable of measuring a load is fixed to the load sensor element 50 in the circumferential direction of the outer ring spacer 6 g by adhesion or the like. It is a structure that presses through a member that comes into contact with it. Therefore, manufacturing can be simplified as compared with directly forming a thin film sensor for detecting a load on a metal component such as an outer ring spacer.
  • the bearing device 30 has a rolling element and a raceway surface, and is a member arranged on at least one bearing 5 that supports the spindle 4 and a path through which a pressing force that generates a preload is transmitted between the rolling element and the raceway surface. (6 or 5 ga) and at least one load sensor element 50 fixed to the member (6 or 5 ga) and capable of measuring the pressing force.
  • At least one load sensor element 50 is a chip component including a thin film pattern 52 whose resistance changes according to a pressing force and a protective layer 54 that insulates and protects the thin film pattern 52.
  • the load sensor element 50 is small and can be stably manufactured in plurality at one time. For this reason, manufacturing can be simplified as compared with directly forming a thin film sensor for detecting a load on a metal component such as an outer ring spacer. Therefore, improvement in reliability and reduction in manufacturing cost can be expected.
  • the pressing force is applied by a load in the direction along the spindle 4.
  • at least one load sensor element 50 is a plurality of load sensor elements 50a, 50b, 50c arranged at equal intervals on the same circumference in a plane intersecting in a direction along the spindle 4. , 50d.
  • the bearing device further includes a calculation unit 73 configured to calculate the magnitude and direction of the moment load in the direction orthogonal to the spindle 4 using the outputs of the plurality of load sensor elements 50a to 50d. ..
  • At least one bearing 5 is a plurality of bearings 5a and 5b.
  • the member to which the load sensor element 50 is fixed is the outer ring spacer 6g on the non-rotating side inserted between the two bearings 5a and 5b among the plurality of bearings.
  • At least one load sensor element 50 is fixed to the end face 6ga of the spacer and abuts on the fixed ring (outer ring 5ga) of one of the two bearings 5a and 5b to transmit the pressing force.
  • Such a structure in which a spacer is arranged between a plurality of bearings is common in spindle devices. Therefore, it is easy to apply the bearing device of this embodiment to the spindle device.
  • the member to which the load sensor element 50 is fixed is a fixed ring (outer ring 5 ga) of at least one bearing. At least one load sensor element 50 is fixed to the end face of the fixed ring (outer ring 5 ga) and abuts on the end face of the spacer 6 arranged adjacent to the fixed ring (outer ring 5 ga) to transmit the pressing force.
  • the load sensor element may be fixed to the bearing side instead of the spacer. Since the load sensor element 50 is fixed to the end face of the bearing 5, the load detection unit can be compactly mounted.
  • the member to which the load sensor element 50 is fixed is the first spacer 6g1 which divides the spacer 6 adjacent to at least one bearing into the first spacer 6g1 and the second spacer 6g2. .. At least one load sensor element 50 is fixed to the end face of the first spacer 6g1 and comes into contact with the end face of the second spacer 6g2 to transmit the pressing force.
  • the bearing device 30 further includes a processing unit 70 that processes the output of at least one load sensor element 50, which is arranged in the vicinity of at least one load sensor element 50.
  • the processing unit 70 includes an amplification unit 72 that detects and amplifies a resistance change of at least one load sensor element 50.
  • the bearing device 30 further includes a processing unit 70 that processes the output of at least one load sensor element 50, which is arranged in the vicinity of at least one load sensor element.
  • at least one load sensor element 50 is a plurality of load sensor elements 50a to 50d.
  • the processing unit 70 includes a plurality of amplification units 72a to 72d for processing the outputs of the plurality of load sensor elements 50a to 50d, a calculation unit 73, and a storage unit 74.
  • the calculation unit 73 includes a sensor output representative value including at least one of the added value, the average value, the maximum value, the minimum value, and the difference between the maximum value and the minimum value of the output values obtained by the plurality of amplification units 72a to 72d.
  • the load is calculated from the relationship between the load stored in advance in the storage unit 74 and the representative value of the sensor output, or an approximate expression thereof.
  • the member to which the load sensor element 50 is fixed includes the first outer ring spacer 6g1 and the second outer ring in which the spacers arranged adjacent to at least one bearing are divided into two.
  • the first outer ring spacer 6g1 and the second outer ring spacer 6g2 sandwich at least one load sensor element 50.
  • the first outer ring spacer 6g1 and the second outer ring spacer 6g2 are fastened with a screw B, and a pressing force due to the fastening force of the screw B is applied to at least one load sensor element 50 in advance.
  • the member to which the load sensor element 50 is fixed includes the first outer ring spacer 6g1 and the second outer ring in which the spacers arranged adjacent to at least one bearing are divided into two.
  • the first outer ring spacer 6g1 and the second outer ring spacer 6g2 sandwich at least one load sensor element 50.
  • the end faces 6g1a and 6g2a, which are holding surfaces for holding at least one load sensor element 50 of the first outer ring spacer 6g1 and the second outer ring spacer 6g2, are flat surfaces without protrusions.
  • the end surface is a flat surface without protrusions in this way, surface accuracy can be easily obtained by plan grinding, and surface roughness accuracy and flatness accuracy are good with respect to the installation surface and contact surface of the load sensor element 50. Can be processed.
  • the bearing device 30 further includes oil seal members 6gh and 6gk arranged between the first outer ring spacer 6g1 and the second outer ring spacer 6g2 of the spacer. ..
  • the member to which the load sensor element 50 is fixed is either the first spacer 6g1 or the second spacer 6g2 in which the spacers arranged adjacent to at least one bearing are divided into two.
  • the first spacer 6g1 and the second spacer 6g2 sandwich at least one load sensor element 50.
  • a flange portion 6g1n which is a convex portion in which the position of the second spacer 6g2 is restricted, is formed on the first spacer 6g1.
  • the flange portion 6g1n regulates the position of the second spacer 6g2 by being fitted into the stepped portion 6g2n which is a recess of the second spacer 6g2.
  • This structure eliminates the need for an oil seal member, reduces the number of parts, and improves assemblability.
  • the present disclosure relates to a spindle device 1 comprising the bearing device 30 described in any of the above, in other aspects.
  • the bearing 5a is arranged on the end face of the rolling element Ta, the inner ring 5ia, the outer ring 5ga, and the fixed ring (outer ring 5ga) of the inner ring 5ia and the outer ring 5ga, and the rolling element Ta and the fixed ring. It is provided with at least one load sensor element 50 capable of measuring a pressing force that generates a preload between the raceway surface and the raceway surface. As shown in FIG. 6 and the like, at least one load sensor element 50 is a chip component including a thin film pattern 52 whose resistance changes according to a pressing force and a protective layer 54 that insulates and protects the thin film pattern 52.
  • the bearing 5a further comprises a processing unit 70 that processes the output of at least one load sensor element.
  • the processing unit 70 is integrally mounted on the fixed ring (outer ring 5 ga).
  • the present disclosure relates to a spacer 6 arranged adjacent to a bearing 5 having a rolling element and a raceway surface in still another aspect.
  • the spacer 6 is fixed to an outer ring spacer 6 g, which is a member for transmitting a pressing force that generates a preload between the rolling element and the raceway surface, and an outer ring spacer 6 g, and at least one load capable of measuring the pressing force.
  • It includes a sensor element 50.
  • at least one load sensor element 50 is a chip component including a thin film pattern 52 whose resistance changes according to a pressing force and a protective layer 54 that insulates and protects the thin film pattern 52. ..
  • the spacer 6 is integrally mounted on a member to which a pressing force that generates a preload is transmitted, and further includes a processing unit 70 that processes the output of at least one load sensor element 50. ..
  • the member to which the load sensor element 50 is fixed is the first spacer 6g1 which is one of the outer ring spacers 6g divided into the first spacer 6g1 and the second spacer 6g2. At least one load sensor element 50 is fixed to the end surface 6g1a of the first spacer 6g1 and comes into contact with the end surface 6g2a of the second spacer 6g2 to transmit the pressing force.
  • the first spacer 6g1 and the second spacer 6g2 sandwich at least one load sensor element 50.
  • the first spacer 6g1 and the second spacer 6g2 are fastened with screws B.
  • a pressing force due to the fastening force of the screw B is previously applied to at least one load sensor element 50.
  • the outer ring spacer 6g further includes oil seal members 6gh and 6gk arranged between the first spacer 6g1 and the second spacer 6g2.
  • the stepped portion that enables the alignment of the first spacer 6g1 and the second spacer 6g2 by fitting with the oil seal member 6gk is the first spacer 6g1 and the first 2 Spatula 6g2 is formed on the inner diameter side.
  • the oil seal member 6gk enables the alignment of the outer ring spacers 6g1,6g2, and the jig for alignment of the outer ring spacers 6g1,6g2 can be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Support Of The Bearing (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

軸受装置(30)は、転動体と軌道面を有し、主軸(4)を支持する少なくとも1つの軸受(5)と、転動体と軌道面の間に予圧を発生する押圧力が伝達する経路上に配置される部材(6または5ga)と、部材(6または5ga)に固定され、押圧力を測定可能な少なくとも1つの荷重センサ素子(50)とを備える。少なくとも1つの荷重センサ素子(50)は、押圧力に応じて抵抗が変わる薄膜パターン(52)と、薄膜パターン(52)を絶縁保護する保護層(54)とを含むチップ部品である。

Description

軸受装置、スピンドル装置、軸受、および間座
 この発明は、工作機械の主軸スピンドルなどに使用される軸受の予圧を検出する予圧センサを備える軸受装置、スピンドル装置、軸受、および間座に関する。
 工作機械等のスピンドル装置では、加工精度および効率の向上のため、軸受の予圧管理が求められており、そのため軸受の予圧(荷重)を検出する要求がある。また、軸受に異常が起こる前にその予兆を検出して、軸受の異常を未然に防ぐ要求もある。
 特開2008-286219号公報(特許文献1)では、軸方向に並ぶ複数の転がり軸受の間に間座を介在させた軸受装置において、間座の一部分を磁歪材料で構成すると共に、間座のうち、磁歪材料からなる部分の残りの部分の少なくとも一部を非磁性材料で構成し、磁歪材料の部分の磁気特性の変化から軸受の予圧を検出する。
特開2008-286219号公報
 特開2008-286219号公報(特許文献1)に開示された軸受装置では、外輪間座が2分割された一対の間座部材の間に磁歪材を挟み込んでいる。このため、構造が複雑で、一対の間座部材が分離しないよう保持した状態でハウジングに入れる必要があり、軸受装置の組立が困難である。
 また、磁歪材を用いた予圧検出では、磁歪材料の選定の他、出力信号の温度ドリフトやヒステリシスなどの低減が課題になる。
 この発明は、上記の課題を解決するためになされたものであって、その目的は、簡単な構成で軸受の予圧を測定することが可能な予圧センサを備える軸受装置、スピンドル装置、軸受、および間座を提供することである。
 本開示は、軸受装置に関する。軸受装置は、転動体と軌道面を有し、軸を支持する少なくとも1つの軸受と、転動体と軌道面の間に予圧を発生する押圧力が伝達する経路上に配置される部材と、部材に固定され、押圧力を測定可能な少なくとも1つの荷重センサ素子とを備える。少なくとも1つの荷重センサ素子は、押圧力に応じて抵抗が変わる薄膜パターンと、薄膜パターンを絶縁保護する保護層とを含む。
 好ましくは、押圧力は、軸に沿う方向の荷重によって印加される。少なくとも1つの荷重センサ素子は、軸に沿う方向に交差する平面における同一円周上に等間隔に配置された複数の荷重センサ素子である。
 好ましくは、少なくとも1つの軸受は、複数の軸受である。部材は、複数の軸受のうち2個の軸受の間に挿入される非回転側の間座である。少なくとも1つの荷重センサ素子は、間座の端面に固定され、2個の軸受のうちの一方の軸受の固定輪と当接して押圧力を伝達する。
 好ましくは、部材は、少なくとも1つの軸受の固定輪であり、少なくとも1つの荷重センサ素子は、固定輪の端面に固定され、固定輪に隣接配置される間座の端面と当接して押圧力を伝達する。
 好ましくは、部材は、少なくとも1つの軸受に隣接配置される間座を第1間座と第2間座に分割した一方の第1間座である。少なくとも1つの荷重センサ素子は、第1間座の端面に固定され、第2間座の端面と当接して押圧力を伝達する。
 好ましくは、軸受装置は、少なくとも1つの荷重センサ素子の近傍に配置され、少なくとも1つの荷重センサ素子の出力を処理する処理部をさらに備える。処理部は、少なくとも1つの荷重センサ素子の抵抗変化を検出して増幅する増幅部を含む。
 好ましくは、軸受装置は、少なくとも1つの荷重センサ素子の近傍に配置され、少なくとも1つの荷重センサ素子の出力を処理する処理部をさらに備える。少なくとも1つの荷重センサ素子は、複数の荷重センサ素子である。処理部は、複数の荷重センサ素子の出力をそれぞれ処理する複数の増幅部と、演算部と、記憶部とを含む。演算部は、複数の増幅部で得られた出力値の加算値、平均値、最大値、最小値、最大値と最小値の差の少なくとも1つを含むセンサ出力代表値と、記憶部に予め保存した荷重とセンサ出力代表値との関係、またはその近似式から荷重を算出する。
 好ましくは、部材は、少なくとも1つの軸受に隣接配置される間座が2分割された第1外輪間座および第2外輪間座のいずれか一方である。第1外輪間座および第2外輪間座は、少なくとも1つの荷重センサ素子を挟持する。第1外輪間座および第2外輪間座は、ねじで締結され、少なくとも1つの荷重センサ素子には、ねじの締結力による押圧力が予め与えられている。
 好ましくは、部材は、少なくとも1つの軸受に隣接配置される間座が2分割された第1外輪間座および第2外輪間座のいずれか一方である。第1外輪間座および第2外輪間座は、少なくとも1つの荷重センサ素子を挟持する。第1外輪間座および第2外輪間座の少なくとも1つの荷重センサ素子を挟持する挟持面は、突起が無い平面である。
 より好ましくは、軸受装置は、間座の第1外輪間座および第2外輪間座の間に配置されるオイルシール部材をさらに備える。
 好ましくは、部材は、少なくとも1つの軸受に隣接配置される間座が2分割された第1間座および第2間座のいずれか一方である。第1間座および第2間座は、少なくとも1つの荷重センサ素子を挟持し、第2間座の位置が規制される凸部が第1間座に形成され、凸部と嵌合する凹部が第2間座に形成される。
 本開示は、他の局面では、上記のいずれかに記載の軸受装置を備える、スピンドル装置に関する。
 本開示は、さらに他の局面では、軸受に関する。軸受は、転動体と、内輪と、外輪と、内輪および外輪のうちの固定輪の端面に配置され、転動体と軌道面との間に予圧を発生する押圧力を測定可能な少なくとも1つの荷重センサ素子とを備える。少なくとも1つの荷重センサ素子は、押圧力に応じて抵抗が変わる薄膜パターンと、薄膜パターンを絶縁保護する保護層とを含む。
 好ましくは、軸受は、少なくとも1つの荷重センサ素子の出力を処理する処理部をさらに備える。処理部は、固定輪に対して一体に実装される。
 本開示は、さらに他の局面では、転動体と軌道面を有する軸受に隣接配置される間座に関する。間座は、転動体と軌道面との間に予圧を発生する押圧力が伝達される部材と、部材に固定され、押圧力を測定可能な少なくとも1つの荷重センサ素子とを備える。少なくとも1つの荷重センサ素子は、押圧力に応じて抵抗が変わる薄膜パターンと、薄膜パターンを絶縁保護する保護層とを含む。
 好ましくは、間座は、部材に一体に実装され、少なくとも1つの荷重センサ素子の出力を処理する処理部をさらに備える。
 好ましくは、部材は、間座を第1間座と第2間座に分割した一方の第1間座である。少なくとも1つの荷重センサ素子は、第1間座の端面に固定され、第2間座の端面と当接して押圧力を伝達する。
 好ましくは、第1間座および第2間座は、少なくとも1つの荷重センサ素子を挟持する。第1間座および第2間座は、ねじで締結される。少なくとも1つの荷重センサ素子には、ねじの締結力による押圧力が予め与えられている。
 より好ましくは、間座は、第1間座および第2間座の間に配置されるオイルシール部材をさらに備える。
 さらに好ましくは、オイルシール部材と嵌合することによって、第1間座と第2間座の芯合わせが可能となる段差部が第1間座と第2間座の内径部側に形成される。
 好ましくは、部材は、軸受に隣接配置される間座が2分割された第1間座および第2間座のいずれか一方である。第1間座および第2間座は、少なくとも1つの荷重センサ素子を挟み、第2間座の位置が規制される凸部が第1間座に形成され、凸部と嵌合する凹部が第2間座に形成される。
 本発明によれば、簡単な構成で軸受の予圧を測定することが可能な予圧センサを備える軸受装置、スピンドル装置、軸受、および間座を実現することができ、軸受の保守、管理を容易に行なうことができる。
本実施の形態のスピンドル装置の概略構成を示す断面図である。 図1の左側主要部の拡大図である。 図2のIII-III断面における荷重センサ素子の第1配置例を示す図である。 図2のIII-III断面における荷重センサ素子の第2配置例を示す図である。 図3のX-X断面における荷重センサ素子50の断面図である。 図5の荷重センサ素子50の正面図である。 薄膜パターンの形状の変形例を示す図である。 荷重センサ素子の構造の第1改良例を示す図である。 荷重センサ素子の構造の第2改良例を示す図である。 図9の改良例である荷重センサ素子の構造の第3改良例を示す図である。 荷重センサ素子の出力を電気的に処理する処理部を外輪間座に配置した例を示す図である。 荷重センサ素子の抵抗変化を検出する増幅部の構成を示す回路構成図である。 荷重センサ素子の出力から軸受に印加する予圧(荷重)を算出する構成を示す図である。 荷重センサ素子の実装位置を軸受の非回転輪の端面に固定した変形例を示す図である。 荷重センサ素子の固定位置を変更した変形例を示す図である。 荷重センサ素子の固定方法を変更した変形例の側面図である。 図16のXVII-XVII断面の矢視図である。 図16の改良例である外輪間座の断面図である。 図18の改良例である外輪間座の断面図である。 図19の改良例である外輪間座の断面図である。
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 図1は、本実施の形態のスピンドル装置の概略構成を示す断面図である。図2は、図1の左側主要部の拡大図である。図2には主として軸受装置30が示される。
 図1に示すスピンドル装置1は、たとえば、工作機械のビルトインモータ方式のスピンドル装置として使用される。この場合、工作機械主軸用のスピンドル装置1で支持されている主軸4の一端側にはモータ40が組み込まれ、他端側には図示しないエンドミル等の切削工具が接続される。
 図1、図2を参照して、スピンドル装置1は、軸受5a,5bと、軸受5a,5bに隣接して配置される間座6と、モータ40と、モータ後方に配置される軸受16とを備える。主軸4は、外筒2の内径部に埋設されたハウジング3に設けた複数の軸受5a,5bによって回転自在に支持される。軸受5aは、内輪5iaと、外輪5gaと、転動体Taと、保持器Rtaとを含む。軸受5bは、内輪5ibと、外輪5gbと、転動体Tbと、保持器Rtbとを含む。間座6は、内輪間座6iと、外輪間座6gとを含む。
 外輪間座6gの一方の端面6gaには、荷重センサ素子(感圧センサ素子)50が接着等により固定される。接着により固定する場合には、耐油性や耐熱性に優れた接着剤を使用するのが望ましい。
 主軸4には、軸方向に離隔した軸受5aの内輪5iaおよび軸受5bの内輪5ibが締まり嵌め状態(圧入状態)で嵌合されている。内輪5ia-5ib間には内輪間座6iが配置され、外輪5ga-5gb間には外輪間座6gが配置される。
 軸受5aは、内輪5iaと外輪5gaの間に複数の転動体Taを配置した転がり軸受である。これら転動体Taは、保持器Rtaによって間隔が保持されている。軸受5bは、内輪5ibと外輪5gbの間に複数の転動体Tbを配置した転がり軸受である。これら転動体Tbは、保持器Rtbによって間隔が保持されている。
 軸受5a,5bは、軸方向の力で予圧を付与することが可能な軸受であり、アンギュラ玉軸受、深溝玉軸受、またはテーパころ軸受等を用いることができる。図2に示す軸受装置30にはアンギュラ玉軸受が用いられ、2個の軸受5a,5bが背面組み合わせ(DB組み合わせ)で設置されている。
 ここでは、3つの軸受5a,5b、16で主軸4を支持する構造を例示して説明するが、3つ以上の軸受で主軸4を支持する構造であってもよい。
 単列の転がり軸受16は、円筒ころ軸受である。アンギュラ玉軸受である軸受5a,5bにより、スピンドル装置1に作用するラジアル方向の荷重およびアキシアル方向の荷重が支持される。円筒ころ軸受である単列の軸受16により、工作機械主軸用のスピンドル装置1に作用するラジアル方向の荷重が支持される。
 ハウジング3には冷却媒体流路Gが形成される。ハウジング3と外筒2との間に冷却媒体を流すことにより、軸受5a,5bを冷却することができる。
 軸受5a,5bとしてグリース潤滑の軸受を用いた場合には潤滑油供給路は不要であるが、エアーオイル等の潤滑が必要な場合には、外輪間座6gに潤滑油供給路が設けられる。なお、ここでは潤滑油供給路は図示しない。
 組立時には、初めに主軸4に対して軸受5a、間座6、軸受5b、間座9が順に挿入され、ナット10を締めることによって初期予圧が与えられる。その後、図2における軸受5bの外輪5gbの右側がハウジング3に設けた段差部3aに当たるまで、軸受5a,5bが取り付けられた主軸4が、ハウジング3に挿入される。最後に、前蓋12によって、左側の軸受5aの外輪5gaを押すことで主軸4がハウジング3に固定される。
 ナット10を締め付けることにより間座9を介して軸受5bの内輪5ibの端面に力が作用し、内輪5ibが内輪間座6iに向けて押される。この力は、内輪5ib、転動体Tb、外輪5gbと伝わり内輪5ibおよび外輪5gbの軌道面と転動体Tbの間に予圧を与えるとともに、外輪5gbから外輪間座6gにも伝わる。右側の外輪5gbから外輪間座6gに押す力が作用し、荷重センサ素子50にも力が伝わる。
 この力は、軸受5aにおいて、外輪5ga、転動体Ta、内輪5iaへと伝わり、左側の軸受5aの内輪5iaおよび外輪5gaの軌道面と転動体Taの間にも予圧を与える。軸受5a,5bに付与される予圧は、たとえば外輪間座6gと内輪間座6iの幅の寸法差によって制限される移動量によって定まる。
 また、図1に示す単列の軸受16については、内輪16aを、主軸4の外周に嵌合した筒状部材15と内輪押さえ19とにより軸方向に位置決めされている。内輪押さえ19は、主軸4に螺着したナット20により抜け止めされている。軸受16の外輪16bは、筒状部材15に固定された位置決め部材21と、内輪押さえ19に固定された位置決め部材18とに挟まれて、主軸4の伸縮に応じて内輪16aと一体的に端部材17に対して摺動するようになっている。
 主軸4と外筒2との間に形成される空間部22における軸受5a,5bと単列の軸受16とで挟まれた軸方向の中間位置には、主軸4を駆動するモータ40が配置されている。モータ40のロータ14は主軸4の外周に嵌合した筒状部材15に固定され、モータ40のステータ13は外筒2の内周部に固定されている。
 なお、モータ40を冷却するための冷却媒体流路は、ここでは図示しない。
 軸受5(5a、5b)の予圧(荷重)を測定する荷重センサ素子50は、スピンドル装置1の予圧経路に実装される。図2に示すように、荷重センサ素子50は、外輪間座6gの端面6gaに接着等で固定され、軸受5aの外輪5gaの端面と当接し、軸受5(5a、5b)に印加される予圧荷重を測定する。
 スピンドル装置1の組立時に荷重センサ素子50の出力を観測すれば、予め設定した予圧になっているかを確認でき、組立工数を削減できる。また、工作機械の運転時に荷重センサ素子50の出力を観測すれば、運転時の発熱による熱膨張で増加した予圧量を知ることができる。運転時の予圧変化を観測することによって、切削性能の低下や軸受5の焼き付きを事前に防止することができる。
 荷重センサ素子50は、たとえば電気抵抗の変化から荷重(予圧)を測定する薄膜パターン(薄膜抵抗体)からなる感圧センサであり、予圧を発生させる押圧力が伝達される経路上に配置される。
 図3は、図2のIII-III断面における荷重センサ素子の第1配置例を示す図である。図4は、図2のIII-III断面における荷重センサ素子の第2配置例を示す図である。なお、図3、図4において、説明に不要な部品は省略した。
 図3には、外輪間座6gの端面6gaに実装された荷重センサ素子50の配置例が示される。この場合、外輪間座6gの周方向に90度の等間隔で荷重センサ素子50a、50b、50c、50dが配置される。
 図4の例では、外輪間座6gの周方向に120度の等間隔で荷重センサ素子50a、50b、50cが配置される。
 荷重センサ素子50の数は、荷重センサ素子50を介して外輪5gaの端面を均等にバランス良く押すことができればよく、3個以上が好ましい。また、ほぼ同一円周上に等間隔に配置するのが好ましい。
 次に、図5、図6を用いて、荷重センサ素子の構造を説明する。図5は、図3のX-X断面における荷重センサ素子50の断面図である。また、図6は、図5の荷重センサ素子50の正面図である。
 荷重センサ素子50は、たとえば絶縁性を有する基板51と、基板51上に配置され、面圧の変化で抵抗が変化する薄膜パターン(薄膜抵抗体)52と、薄膜パターン52につながる電極53と、薄膜パターン52を保護する絶縁性を有する保護層54とを含む。保護層54は、電極53上には形成しないため、電極53に直接、配線を接続できる。
 基板51には、たとえばジルコニア(ZrO)またはアルミナ(Al)を主成分にしたセラミック材料を使用する。セラミック材料は高剛性で絶縁性が高く、基板51の表面平坦度を精度良く加工することができ、好都合である。基板51の厚さは、荷重センサ素子50の薄型化と圧縮方向の強度を確保する観点から、たとえば0.3mm以上、5mm以下とするのが好ましい。
 薄膜パターン52は、たとえばニッケルクロム(NiCr)、クロム(Cr)系材料からなり、蒸着またはスパッタリング等で成膜される。薄膜パターンの厚さは、たとえば1μm以下である。また、保護層54は、絶縁性材料からなり、たとえば、スパッタリング等でアルミナ(Al)または二酸化珪素(SiO)の薄膜が形成される。保護層54の膜厚は、たとえば2μm程度とされる。
 なお、電極53の表面を、たとえば、銅、銀、金などの材料で被膜して、配線との半田付けを容易としてもよい。
 薄膜パターン52を形成する基板51の上面は、その平坦度が1μm以下になるように研磨するとよい。また、基板51の上面と下面との平行度を1μm以下にするのが好ましい。
 このように、薄膜パターン52を形成した荷重センサ素子50を、外輪間座6gに接着等で固定するため、外輪間座6gに直接薄膜パターンを形成するよりも製造が容易になる。
 外輪間座6gに印加される荷重は、軸受5aの外輪5gaの端面と当接する荷重センサ素子50の接触面積で分圧される。前述の例では、各荷重センサ素子50の保護層54と当接する面積の合計で印加荷重が分圧されるため、保護層54との接触面積を小さくすれば荷重検出の感度が高くなる。ただし、荷重センサ素子50の形状は、荷重センサ素子50の各材料物性値を考慮して設定される。また、ここでは、荷重センサ素子50の形状を四角としたが、形状はこれに限定されない。
 図7は、薄膜パターンの形状の変形例を示す図である。薄膜パターン52は、図6の例ではU字形状としたが、図7に示すように連続する矩形パターンにしてもよく、薄膜パターン52の形状はこれらに限定されない。基板51上に連続する矩形パターンを形成することで、感圧面積が広くなり、荷重を安定して検出することができる。
 図8は、荷重センサ素子の構造の第1改良例を示す図である。図5では、保護層54は、絶縁材料からなる蒸着またはスパッタリング等の薄膜であったが、図8に示す荷重センサ素子50Aでは、たとえばジルコニア(ZrO)またはアルミナ(Al)を主成分にしたセラミック材料からなる板材を保護層54Aとして用いる。保護層54Aは、接着剤からなる接着層55を介して基板51の表面に成膜された薄膜パターン52を覆うように接着固定される。保護層54Aの板厚は、たとえば基板51の板厚と同じ0.3mmから5mm程度とされる。
 保護層54Aとして絶縁材料からなる板材を使用すれば、スパッタリング等による保護層54の成膜に比べて製造が容易になる。また、薄膜パターン52と外輪5gaとの間の絶縁性をより高くすることができ、安定して荷重検出することができる。また、接着層55を介して薄膜パターン52を押すため、接着層55がクッション層になって薄膜パターン52を均一に押すことができるため、荷重検出精度が向上する。
 図9は、荷重センサ素子の構造の第2改良例を示す図である。図5、図8では、基板51として絶縁材料を用いたが、図9に示す荷重センサ素子50Bでは、基板51Aとして金属材料を用い、その表面に絶縁層58が形成される。絶縁層58は、絶縁性材料からなり、たとえば、スパッタリング等でアルミナ(Al)または二酸化珪素(SiO)の薄膜が形成される。絶縁層58の膜厚は、たとえば2μm程度とされる。
 基板51Aの金属材料としては、たとえば外輪間座6gと同じ材料、たとえば軸受鋼(SUJ2)を用いる。軸受鋼以外では、炭素鋼(S45Cなど)を用いる。これら金属材料を一定の大きさに切削加工後に熱処理し、その後、加工精度が必要な面について研磨、ラッピング加工を行ない、目標の平坦度、面粗さに仕上げる。たとえば、平坦度は1μm以下、面粗さはRa0.1以下にする。
 その後、基板51Aの一方の面に絶縁層58を成膜後、図5と同様に、面圧の変化で抵抗が変化する薄膜パターン(薄膜抵抗体)52と、それにつながる電極53とを形成し、さらに、薄膜パターン52を保護する絶縁性を有する保護層54が形成される。保護層54は、電極53上には形成しないため、電極53に直接、配線を接続できる。
 保護層54は、たとえばスパッタリング等でアルミナ(Al)または二酸化珪素(SiO)の薄膜が形成される。これらの膜厚は、たとえば2μm程度とされる。
 基板51Aの材質が金属材料であれば、荷重により基板51Aが割れることもなく信頼性が向上する。また、外輪間座6gの端面に直接、薄膜パターン52を形成するよりも、金属小片からなる基板51Aに薄膜パターン52を形成する方が製造は容易であり、製造コストを抑えることができる。
 図10は、図9の改良例である荷重センサ素子の構造の第3改良例を示す図である。図9では、保護層54は、絶縁材料からなる蒸着またはスパッタリング等の薄膜であったが、図10に示す荷重センサ素子50Cでは、たとえばジルコニア(ZrO)またはアルミナ(Al)を主成分にしたセラミック材料からなる板材を保護層54Aとして用いる。保護層54Aは、接着剤からなる接着層55を介して基板51の表面に成膜された薄膜パターン52を覆うように接着固定される。保護層54Aの板厚は、たとえば基板51の板厚と同じ0.3mmから5mm程度とされる。
 保護層54Aとして絶縁材料からなる板材を使用すれば、スパッタリング等による成膜に比べて製造が容易になる。また、薄膜パターン52との絶縁性をより高くすることができ、安定して荷重検出することができる。また、接着層55を介して薄膜パターン52を押すため、接着層55がクッション層になって薄膜パターン52を均一に押すことができるため、荷重検出精度が向上する。
 なお、保護層54Aとして、金属材料からなる板材に絶縁材料からなる絶縁膜を形成し、絶縁膜が成膜された側を薄膜パターン52側に対向させてもよい。この場合、保護層54Aの割れを防止することができる。
 図11は、荷重センサ素子の出力を電気的に処理する処理部を外輪間座に配置した例を示す図である。外輪間座6gの一方の端面6gaには、その周方向に等間隔で固定した荷重センサ素子50(50a、50b、50c、50d)と、荷重センサ素子50の処理部70が固定される。処理部70は、たとえば荷重センサ素子50と干渉しない形状とし、荷重センサ素子50よりも厚さが薄くなるよう製作して、外輪5gaとの接触を防止する。
 荷重センサ素子50の出力は、配線71により処理部70に接続される。処理部70は、荷重センサ素子50(50a、50b、50c、50d)の抵抗変化を検出して増幅する増幅部72(72a、72b、72c、72d)が実装され、抵抗変化に相当する出力値を得る。また、処理部70に演算部73を配置してもよい。演算部73では、複数の荷重センサ素子50の抵抗変化量を処理して、外輪間座6gに印加される荷重に変換してから外部に出力してもよい。
 図12は、荷重センサ素子の抵抗変化を検出する増幅部の構成を示す回路構成図である。
 図12に示す増幅部72は、DC電源VSDCに接続される抵抗R1~R3および荷重センサ素子50と、差動アンプAMPとを含む。抵抗R1~R3と荷重センサ素子50とはブリッジ回路を構成する。DC電源VSDCの正極と負極との間には、抵抗R1と抵抗R2とが直列に接続される。また、DC電源VSDCの正極と負極との間には、荷重センサ素子50と抵抗R3とが直列に接続される。抵抗R1と抵抗R2との接続ノードには、差動アンプAMPの一方の入力ノードが接続される。荷重センサ素子50と抵抗R3との接続ノードには、差動アンプAMPの他方の入力ノードが接続される。
 図12に示すようなブリッジ回路構成することによって、荷重が変化した際の荷重センサ素子50の抵抗変化を差動アンプAMPで検出することができる。
 図11に示すように増幅部72を配置することによって、荷重センサ素子50の近傍で電気的処理を行なうため、電気ノイズの低減を図ることができる。また、外部に引き出す配線本数を削減することができ、軸受装置30、スピンドル装置1の組立が容易になる。
 図13は、荷重センサ素子の出力から軸受に印加する予圧(荷重)を算出する構成を示す図である。ここでは、4つの荷重センサ素子を用いた例で説明する。
 図13に示す算出回路は、荷重センサ素子50(50a、50b、50c、50d)の出力値(Sa、Sb、Sc、Sd)を演算処理する演算部73と、予め荷重センサ素子50を固定した外輪間座6gを用いて測定した出力値と荷重の関係、あるいは近似式を保存する記憶部74を備える。演算部73は、センサ出力代表値と記憶部74のデータから荷重を算出する。演算部73と記憶部74は、軸受装置30の外部に設けてもよいし、処理部70の内部に設けてもよい。
 外輪間座6gに印加される予圧荷重は周方向に均一ではなく、外輪間座6g、ハウジング3、前蓋12、軸受5等の寸法精度によって、検出場所による出力値の違いが発生することも想定される。また、主軸4が回転した際には、主軸4に負荷されるモーメント荷重の影響や、軸受5の転動体Ta、Tbの移動に伴って周方向荷重分布が変動することも想定される。
 そのため、センサ出力代表値としては、各荷重センサ素子50(50a、50b、50c、50d)の出力値の加算値、または平均値の他、最大値や最小値、最大値と最小値の差などを設定し、予圧(荷重)を算出する。
 なお、得られた予圧(荷重)の出力をローパスフィルタに通し、転動体Ta,Tbの通過やノイズによる出力変動を削減してもよい。
 軸受装置30の組立時には、予圧荷重を見ながら予圧調整部品、たとえばナット10の締め付け、あるいは前蓋12の固定ねじの取り付けを調節することもできる。
 また、スピンドル装置1に軸受装置30を実装し、モータ40で主軸4を高速回転している場合、軸受5の損傷によって軸受5が発熱し、予圧荷重が過大になって軸受5が焼損することが想定されるが、荷重センサ素子50から予圧荷重を算出して監視すれば、軸受5が焼損しないよう回避策を取ることができる。
 たとえば、荷重センサ素子50により測定した予圧荷重が、予め設定した基準値を超えた場合には、軸受5の異常と判定し、主軸4の回転速度を下げる、冷却媒体の循環量を増やす、加工負荷を低減するなどの処置を施し、軸受5の焼損を防止することができる。
 また、荷重センサ素子50は、予圧を発生させる力の伝達経路上にある外輪間座6gに固定されるため、スピンドル装置1を組み立てる際には、荷重センサ素子50の出力から軸受5(5a、5b)の初期予圧を把握でき、予圧量を見ながらナット10の締め付け量を調整することができる。
 なお、演算部73では、180度対向した荷重センサ素子50の出力の差分から主軸4に印加されるモーメント荷重を算出してもよい。たとえば、図11に示す荷重センサ素子50(50a、50b、50c、50d)の配置では、荷重センサ素子50a、50bの差分から主軸4の上下方向のモーメント荷重の大きさと向きとを算出することができる。また、荷重センサ素子50c、50dの差分から主軸4の左右方向のモーメント荷重の大きさと向きとを算出することも可能である。なお、荷重センサ素子の数は、4つでなくてもモーメント荷重の大きさと向きは算出可能である。
 たとえば、スピンドル装置1の他端側に固定したエンドミル等の切削工具で金属ワークを切削加工している際に、切削工具にかかる負荷および負荷方向をモーメント荷重から把握することができる。また、モーメント荷重から切削工具が金属ワークに衝突したことを検出することも可能である。
 予圧(荷重)の増加にともなう異常診断の信頼性を高めるため、他のセンサ、たとえば温度センサ、熱流束センサ、加速度センサの出力をさらに考慮して総合的に判断することもできる。たとえば、熱流束センサを軸受5の近傍の非回転部材(たとえば外輪間座6g)に固定し、回転部材(たとえば主軸4)に対向して配置すれば、軸受5の焼付きによる温度上昇の予兆を早期に検出することができる。
 図14は、荷重センサ素子の実装位置を軸受の非回転輪の端面に固定した変形例を示す図である。
 荷重センサ素子50は、たとえば軸受5aの外輪5gaの端面に接着等で固定される。複数の荷重センサ素子50を固定する場合、その高さが均一になるよう、図示しない接着治具等を用いて固定するのが望ましい。この構造であっても、外輪5gaの端面に処理部70を設けてもよい。この場合は、処理部70は、固定輪(外輪5ga)に対して一体に実装されることが好ましい。
 軸受5の端面に荷重センサ素子50を固定するため、荷重検出部をコンパクトに実装することができる。
 図15は、荷重センサ素子の固定位置を変更した変形例を示す図である。図15では、外輪間座6gを軸方向に2分割した一方の外輪間座6g1の端面6g1aに荷重センサ素子50を固定し、他方の外輪間座6g2の端面6g2aは荷重センサ素子50に当接する。
 なお、荷重センサ素子50を実装した側面図は、図3、図4または図11と同じため、説明を省略する。
 荷重センサ素子50を固定する外輪間座6g1の端面6g1a、および荷重センサ素子50を押圧する外輪間座6g2の端面6g2aは、平坦度と面粗さ、およびこれら端面6g1a,6g2aの平行度を基準値以下になるよう加工する必要があるが、外輪間座6g1,6g2をそれぞれ単体で精度良く加工することが可能である。
 外輪間座6g2の端面6g2aは、図示しない凸面を設け、凸面と荷重センサ素子50とが当接するようにしてもよい。また、外輪間座6g1の端面6g1aを図示しない凸面を設け、凸面に荷重センサ素子50を固定してもよい。
 さらに、2分割した外輪間座6g1,6g2が分離しないように、図示しないピンで位置合わせしてもよい。
 この場合、機械加工精度が求められる面積を小さくできるため、加工が容易になるとともに、加工時間の短縮が可能になる。
 また、荷重センサ素子50と外輪間座6g2の端面6g2aとの間に、図示しない中間層(クッション層)を挿入して、荷重センサ素子50を押圧する構造であってもよい。
 中間層の材料としては、たとえば外輪間座6gの材料よりも剛性(縦弾性係数)の低い金属材料(たとえばアルミニウム、銅、金属合金)、あるいは樹脂材料(たとえばフッ素系樹脂など)のコーティング薄膜などが使用できる。
 外輪間座6gより剛性が低い中間層を介して押圧することで、中間層が変形し、荷重センサ素子50を均一に安定して押圧することができる。
 また、中間層を介して荷重センサ素子50を押圧する構成であれば、中間層を用いない場合に比べて、外輪間座6gの端面の加工精度(面粗さ、平坦度など)を下げることができ、加工が容易になる。
 なお、荷重センサ素子50と処理部70または処理部70の一部とを一体的に実装してもよい。
 図16は、荷重センサ素子の固定方法を変更した変形例の側面図である。図17は、図16のXVII-XVII断面の矢視図である。
 2分割した外輪間座6g1,6g2の間に荷重センサ素子50を配置し、外輪間座6g1,6g2をねじBで締結することで荷重センサ素子50に予圧を印加する。なお、外輪間座6g1,6g2と荷重センサ素子50との当接面に接着剤を塗らなくても荷重センサ素子50は固定できるが、接着剤を併用してもよい。
 荷重センサ素子50が当接する外輪間座6g1,6g2の端面6g1a,6g2aは、表面粗さや平坦度の精度が良い加工ができるよう、端面6g1a,6g2aには突起を設けず、平研削で面精度が得られ易い構造とした。
 なお、外輪間座6gの外径面に平面取り部6gbを設ければ、荷重センサ素子50の配置位置の目印として使うことができる。
 荷重センサ素子50に予圧を印加することで、荷重センサ素子50の出力に不感帯がなくなるとともに、ヒステリシスの低減と直線性の改善が期待できる。
 図18は、図16の改良例である外輪間座の断面図である。
 エアーオイル潤滑の軸受5を使用する場合、外輪間座6gにはエアーオイル用のノズルが加工され、ノズルから軸受5に向けてエアーオイルが噴射される。エアーオイルが分割した外輪間座6gの隙間から配線71側に漏れないように、外輪間座6g1,6g2の間にオイルシール部材6ghを配置するとよい。オイルシール部材6ghは金属材料でも良いが、樹脂材料とし、外輪間座6g1,6g2で押圧変形して隙間が空かないようにできるものが好ましい。
 なお、2分割した外輪間座6g1,6g2に荷重センサ素子50を挟んでねじBで締結する際、外輪間座6g1,6g2の芯合わせが難しい場合には、図示しない治具を用いるとよい。たとえば、円筒状の治具内径部に外輪間座6gを挿入して組み立てを行なえば、芯出しは容易である。
 図19は、図18の改良例である外輪間座の断面図である。
 図19に示すように、外輪間座6g1,6g2の内径部に段差6g1m,6g2mを設け、段差部に嵌合するようにオイルシール部材6gkを配置する。
 オイルシール部材6gkにより外輪間座6g1,6g2の芯合わせが可能となり、治具を省略できる。
 図20は、図19の改良例である外輪間座の断面図である。
 図20に示すように、外輪間座6g1の内径側にフランジ部6g1nを設け、他方の外輪間座6g2の内径面にフランジ部6g1nが嵌合する段差部6g2nを設け、フランジ部6g1nと段差部6g2nを嵌合させる。これによって、外輪間座6g1,6g2の芯合わせが可能になる。また、エアーオイルの漏れを抑えて、シール機能を有することができる。
 この構造では、オイルシール部材が不要になり、部品点数が削減できるとともに、組立性が向上する。
 以上の実施の形態で説明したように、本実施の形態に係る軸受装置は、軸受に予圧(荷重)が印加される荷重経路上の外輪間座6g、または軸受5の端面に荷重センサ素子50(感圧センサ素子)を配置する。荷重センサ素子50は、荷重を測定することが可能な薄膜抵抗体を形成した荷重センサ素子50(感圧センサ素子)を外輪間座6gの周方向に接着等で固定し、荷重センサ素子50に当接する部材を介して押圧する構造である。このため、荷重を検出する薄膜センサを直接、外輪間座などの金属部品に成膜するよりも製造が簡略化できる。
 (まとめ)
 最後に、本実施の形態について、再び図面を参照して総括する。
 本開示は、軸受装置30に関する。軸受装置30は、転動体と軌道面を有し、主軸4を支持する少なくとも1つの軸受5と、転動体と軌道面の間に予圧を発生する押圧力が伝達する経路上に配置される部材(6または5ga)と、部材(6または5ga)に固定され、押圧力を測定可能な少なくとも1つの荷重センサ素子50とを備える。少なくとも1つの荷重センサ素子50は、押圧力に応じて抵抗が変わる薄膜パターン52と、薄膜パターン52を絶縁保護する保護層54とを含むチップ部品である。
 荷重センサ素子50は小型で、一度に安定して複数個製造することができる。このために、荷重を検出する薄膜センサを直接、外輪間座などの金属部品に成膜するよりも製造が簡略化できる。したがって、信頼性の向上と製造コストの低減が期待できる。
 好ましくは、押圧力は、主軸4に沿う方向の荷重によって印加される。図3または図4に示すように、少なくとも1つの荷重センサ素子50は、主軸4に沿う方向に交差する平面における同一円周上に等間隔に配置された複数の荷重センサ素子50a,50b,50c,50dである。
 このように、複数の荷重センサ素子50a,50b,50c,50dを分散配置することにより、荷重センサ素子としてチップ部品を採用しやすい。
 より好ましくは、軸受装置は、複数の荷重センサ素子50a~50dの出力を用いて、主軸4に直交する方向のモーメント荷重の大きさと向きとを算出するように構成される演算部73をさらに備える。
 このような構成とすることによって、たとえば、エンドミル等の切削工具でワークを加工中における切削工具にかかる負荷の大きさおよび方向を把握することができる。
 好ましくは、図1、図2に示すように、少なくとも1つの軸受5は、複数の軸受5a,5bである。荷重センサ素子50が固定される部材は、複数の軸受のうち2個の軸受5a,5bの間に挿入される非回転側の外輪間座6gである。少なくとも1つの荷重センサ素子50は、間座の端面6gaに固定され、2個の軸受5a,5bのうちの一方の軸受の固定輪(外輪5ga)と当接して押圧力を伝達する。
 このような複数の軸受の間に間座が配置される構造は、スピンドル装置に一般的である。したがって、スピンドル装置に本実施の形態の軸受装置を適用しやすい。
 好ましくは、図14に示すように、荷重センサ素子50が固定される部材は、少なくとも1つの軸受の固定輪(外輪5ga)である。少なくとも1つの荷重センサ素子50は、固定輪(外輪5ga)の端面に固定され、固定輪(外輪5ga)に隣接配置される間座6の端面と当接して押圧力を伝達する。
 このように、間座ではなく軸受側に荷重センサ素子を固定するようにしても良い。軸受5の端面に荷重センサ素子50を固定するため、荷重検出部をコンパクトに実装することができる。
 好ましくは、荷重センサ素子50が固定される部材は、少なくとも1つの軸受に隣接配置される間座6を第1間座6g1と第2間座6g2に分割した一方の第1間座6g1である。少なくとも1つの荷重センサ素子50は、第1間座6g1の端面に固定され、第2間座6g2の端面と当接して押圧力を伝達する。
 このように、間座を2分割し、その間に荷重センサ素子50を挟むようにすれば、製造段階で荷重センサ素子50を間座にセットした状態で間座を持ち運ぶことも可能である。
 好ましくは、図11に示すように、軸受装置30は、少なくとも1つの荷重センサ素子50の近傍に配置される、少なくとも1つの荷重センサ素子50の出力を処理する処理部70をさらに備える。処理部70は、少なくとも1つの荷重センサ素子50の抵抗変化を検出して増幅する増幅部72を含む。
 好ましくは、軸受装置30は、少なくとも1つの荷重センサ素子の近傍に配置される、少なくとも1つの荷重センサ素子50の出力を処理する処理部70をさらに備える。図13に示すように、少なくとも1つの荷重センサ素子50は、複数の荷重センサ素子50a~50dである。処理部70は、複数の荷重センサ素子50a~50dの出力をそれぞれ処理する複数の増幅部72a~72dと、演算部73と、記憶部74とを含む。演算部73は、複数の増幅部72a~72dで得られた出力値の加算値、平均値、最大値、最小値、最大値と最小値の差の少なくとも1つを含むセンサ出力代表値と、記憶部74に予め保存した荷重とセンサ出力代表値との関係、またはその近似式から荷重を算出する。
 好ましくは、図16、図17に示すように、荷重センサ素子50が固定される部材は、少なくとも1つの軸受に隣接配置される間座が2分割された第1外輪間座6g1および第2外輪間座6g2のいずれか一方である。第1外輪間座6g1および第2外輪間座6g2は、少なくとも1つの荷重センサ素子50を挟む。第1外輪間座6g1および第2外輪間座6g2は、ねじBで締結され、少なくとも1つの荷重センサ素子50には、ねじBの締結力による押圧力が予め与えられている。
 荷重センサ素子50に予圧を印加することで、荷重センサ素子50の出力に不感帯がなくなるとともに、ヒステリシスの低減と直線性の改善が期待できる。
 好ましくは、図16、図17に示すように、荷重センサ素子50が固定される部材は、少なくとも1つの軸受に隣接配置される間座が2分割された第1外輪間座6g1および第2外輪間座6g2のいずれか一方である。第1外輪間座6g1および第2外輪間座6g2は、少なくとも1つの荷重センサ素子50を挟持する。第1外輪間座6g1および第2外輪間座6g2の少なくとも1つの荷重センサ素子50を挟持する挟持面である端面6g1a,6g2aは、突起が無い平面である。
 このように端面を突起が無い平面とするので、平研削で面精度が得られ易く、荷重センサ素子50の設置面および当接面に対して、表面粗さの精度および平坦度の精度が良い加工ができる。
 より好ましくは、図18、図19に示すように、軸受装置30は、間座の第1外輪間座6g1および第2外輪間座6g2の間に配置されるオイルシール部材6gh,6gkをさらに備える。
 好ましくは、図20に示すように、荷重センサ素子50が固定される部材は、少なくとも1つの軸受に隣接配置される間座が2分割された第1間座6g1および第2間座6g2のいずれか一方である。第1間座6g1および第2間座6g2は、少なくとも1つの荷重センサ素子50を挟持する。第2間座6g2の位置が規制される凸部であるフランジ部6g1nが第1間座6g1に形成される。フランジ部6g1nは、第2間座6g2の凹部である段差部6g2nに嵌め込まれることにより、第2間座6g2の位置を規制する。
 これによって、外輪間座6g1,6g2の芯合わせが可能になる。また、エアーオイルの漏れを抑えて、シール機能を有することができる。この構造では、オイルシール部材が不要になり、部品点数が削減できるとともに、組立性が向上する。
 本開示は、他の局面では、上記のいずれかに記載の軸受装置30を備える、スピンドル装置1に関する。
 本開示は、さらに他の局面では、軸受5aに関する。図14に示すように、軸受5aは、転動体Taと、内輪5iaと、外輪5gaと、内輪5iaおよび外輪5gaのうちの固定輪(外輪5ga)の端面に配置され、転動体Taと固定輪の軌道面のと間に予圧を発生する押圧力を測定可能な少なくとも1つの荷重センサ素子50とを備える。図6等に示すように、少なくとも1つの荷重センサ素子50は、押圧力に応じて抵抗が変わる薄膜パターン52と、薄膜パターン52を絶縁保護する保護層54とを含むチップ部品である。
 好ましくは、軸受5aは、少なくとも1つの荷重センサ素子の出力を処理する処理部70をさらに備える。処理部70は、固定輪(外輪5ga)に対して一体に実装される。
 本開示は、さらに他の局面では、転動体と軌道面を有する軸受5に隣接配置される間座6に関する。間座6は、転動体と軌道面の間に予圧を発生する押圧力が伝達される部材である外輪間座6gと、外輪間座6gに固定され、押圧力を測定可能な少なくとも1つの荷重センサ素子50とを備える。図5~図10に示されるように、少なくとも1つの荷重センサ素子50は、押圧力に応じて抵抗が変わる薄膜パターン52と、薄膜パターン52を絶縁保護する保護層54とを含むチップ部品である。
 好ましくは、図11に示すように、間座6は、予圧を発生する押圧力が伝達される部材に一体に実装され、少なくとも1つの荷重センサ素子50の出力を処理する処理部70をさらに備える。
 好ましくは、図15に示すように、荷重センサ素子50が固定される部材は、外輪間座6gを第1間座6g1と第2間座6g2に分割した一方の第1間座6g1である。少なくとも1つの荷重センサ素子50は、第1間座6g1の端面6g1aに固定され、第2間座6g2の端面6g2aと当接して押圧力を伝達する。
 好ましくは、図16、図17に示すように、第1間座6g1および第2間座6g2は、少なくとも1つの荷重センサ素子50を挟む。第1間座6g1および第2間座6g2は、ねじBで締結される。少なくとも1つの荷重センサ素子50には、ねじBの締結力による押圧力が予め与えられている。
 より好ましくは、図18、図19に示すように、外輪間座6gは、第1間座6g1および第2間座6g2の間に配置されるオイルシール部材6gh,6gkをさらに備える。
 さらに好ましくは、図19に示すように、オイルシール部材6gkと嵌合することによって、第1間座6g1と第2間座6g2の芯合わせが可能となる段差部が第1間座6g1と第2間座6g2の内径部側に形成される。
 このような構成とすることによって、オイルシール部材6gkにより外輪間座6g1,6g2の芯合わせが可能となり、外輪間座6g1,6g2の芯合わせの治具を省略できる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 スピンドル装置、2 外筒、3 ハウジング、3a,6g2n 段差部、4 主軸、5,5a,5b,16 軸受、5ga,5gb,16b 外輪、5ia,5ib,16a 内輪、6,9 間座、6g,6g1,6g2 外輪間座、6g1a,6g2a,6ga 端面、6g1m,6g2m 段差、6g1n フランジ部、6gb 平面取り部、6gh,6gk オイルシール部材、6i 内輪間座、10,20 ナット、12 前蓋、13 ステータ、14 ロータ、15 筒状部材、17 端部材、18,21 位置決め部材、19 内輪押さえ、22 空間部、27,73 演算部、28,74 記憶部、30 軸受装置、40 モータ、50,50A,50B,50a,50b,50c,50d 荷重センサ素子、51,51A 基板、52 薄膜パターン、53 電極、54,54A 保護層、55 接着層、58 絶縁層、70 処理部、71 配線、72,72a,72d 増幅部、AMP 差動アンプ、B ねじ、G 冷却媒体流路、R1,R2,R3 抵抗、Rta,Rtb 保持器、Ta,Tb 転動体、VSDC 電源。

Claims (15)

  1.  軸受装置であって、
     転動体と軌道面を有し、軸を支持する少なくとも1つの軸受と、
     前記転動体と前記軌道面の間に予圧を発生する押圧力が伝達する経路上に配置される部材と、
     前記部材に固定され、前記押圧力を測定可能な少なくとも1つの荷重センサ素子とを備え、
     前記少なくとも1つの荷重センサ素子は、前記押圧力に応じて抵抗が変わる薄膜パターンと、前記薄膜パターンを絶縁保護する保護層とを含む、軸受装置。
  2.  前記押圧力は、前記軸に沿う方向の荷重によって印加され、
     前記少なくとも1つの荷重センサ素子は、前記軸に沿う方向に交差する平面における同一円周上に等間隔に配置された複数の荷重センサ素子である、請求項1に記載の軸受装置。
  3.  前記複数の荷重センサ素子の出力を用いて、前記軸に直交する方向のモーメント荷重の大きさと向きとを算出するように構成される演算部をさらに備える、請求項2に記載の軸受装置。
  4.  前記少なくとも1つの軸受は、複数の軸受であり、
     前記部材は、前記複数の軸受のうち2個の軸受の間に挿入される非回転側の間座であり、
     前記少なくとも1つの荷重センサ素子は、前記間座の端面に固定され、前記2個の軸受のうちの一方の軸受の固定輪と当接して前記押圧力を伝達する、請求項1または2に記載の軸受装置。
  5.  前記部材は、前記少なくとも1つの軸受の固定輪であり、
     前記少なくとも1つの荷重センサ素子は、前記固定輪の端面に固定され、前記固定輪に隣接配置される間座の端面と当接して前記押圧力を伝達する、請求項1または2に記載の軸受装置。
  6.  前記部材は、前記少なくとも1つの軸受に隣接配置される間座を第1間座と第2間座に分割した一方の前記第1間座であり、
     前記少なくとも1つの荷重センサ素子は、前記第1間座の端面に固定され、前記第2間座の端面と当接して前記押圧力を伝達する、請求項1または2に記載の軸受装置。
  7.  前記少なくとも1つの荷重センサ素子の近傍に配置され、前記少なくとも1つの荷重センサ素子の出力を処理する処理部をさらに備え、
     前記処理部は、前記少なくとも1つの荷重センサ素子の抵抗変化を検出して増幅する増幅部を含む、請求項1または2に記載の軸受装置。
  8.  前記少なくとも1つの荷重センサ素子の近傍に配置され、前記少なくとも1つの荷重センサ素子の出力を処理する処理部をさらに備え、
     前記少なくとも1つの荷重センサ素子は、複数の荷重センサ素子であり、
     前記処理部は、
     前記複数の荷重センサ素子の出力をそれぞれ処理する複数の増幅部と、
     演算部と、
     記憶部とを含み、
     前記演算部は、前記複数の増幅部で得られた出力値の加算値、平均値、最大値、最小値、最大値と最小値の差の少なくとも1つを含むセンサ出力代表値と、前記記憶部に予め保存した荷重と前記センサ出力代表値との関係、またはその近似式から荷重を算出する、請求項1に記載の軸受装置。
  9.  前記部材は、前記少なくとも1つの軸受に隣接配置される間座が2分割された第1外輪間座および第2外輪間座のいずれか一方であり、
     前記第1外輪間座および前記第2外輪間座は、前記少なくとも1つの荷重センサ素子を挟持し、
     前記第1外輪間座および前記第2外輪間座は、ねじで締結され、
     前記少なくとも1つの荷重センサ素子には、前記ねじの締結力による押圧力が予め与えられている、請求項1に記載の軸受装置。
  10.  前記部材は、前記少なくとも1つの軸受に隣接配置される間座が2分割された第1間座および第2間座のいずれか一方であり、
     前記第1間座および前記第2間座は、前記少なくとも1つの荷重センサ素子を挟持し、
     前記第2間座の位置が規制される凸部が前記第1間座に形成される、請求項1に記載の軸受装置。
  11.  請求項1~10のいずれか1項に記載の軸受装置を備える、スピンドル装置。
  12.  転動体と、
     内輪と、
     外輪と、
     前記内輪および前記外輪のうちの固定輪の端面に配置され、前記転動体と前記固定輪の軌道面のと間に予圧を発生する押圧力を測定可能な少なくとも1つの荷重センサ素子とを備え、
     前記少なくとも1つの荷重センサ素子は、前記押圧力に応じて抵抗が変わる薄膜パターンと、前記薄膜パターンを絶縁保護する保護層とを含む、軸受。
  13.  前記少なくとも1つの荷重センサ素子の出力を処理する処理部をさらに備え、
     前記処理部は、前記固定輪に対して一体に実装される、請求項12に記載の軸受。
  14.  転動体と軌道面を有する軸受に隣接配置される間座であって、
     前記転動体と前記軌道面の間に予圧を発生する押圧力が伝達される部材と、
     前記部材に固定され、前記押圧力を測定可能な少なくとも1つの荷重センサ素子とを備え、
     前記少なくとも1つの荷重センサ素子は、前記押圧力に応じて抵抗が変わる薄膜パターンと、前記薄膜パターンを絶縁保護する保護層とを含む、間座。
  15.  前記部材に一体に実装され、前記少なくとも1つの荷重センサ素子の出力を処理する処理部をさらに備える、請求項14に記載の間座。
PCT/JP2020/045593 2019-12-23 2020-12-08 軸受装置、スピンドル装置、軸受、および間座 WO2021131662A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20904819.8A EP4083456A4 (en) 2019-12-23 2020-12-08 BEARING DEVICE, SPINDLE DEVICE, BEARING AND SPACER
CN202080089172.4A CN114867998A (zh) 2019-12-23 2020-12-08 轴承装置、主轴装置、轴承和间隔件
US17/787,047 US20230027711A1 (en) 2019-12-23 2020-12-08 Bearing device, spindle device, bearing and spacer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019231814A JP7411405B2 (ja) 2019-12-23 2019-12-23 軸受装置、スピンドル装置、軸受、および間座
JP2019-231814 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021131662A1 true WO2021131662A1 (ja) 2021-07-01

Family

ID=76541060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045593 WO2021131662A1 (ja) 2019-12-23 2020-12-08 軸受装置、スピンドル装置、軸受、および間座

Country Status (5)

Country Link
US (1) US20230027711A1 (ja)
EP (1) EP4083456A4 (ja)
JP (1) JP7411405B2 (ja)
CN (1) CN114867998A (ja)
WO (1) WO2021131662A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022153711A (ja) * 2021-03-30 2022-10-13 Ntn株式会社 軸受装置、スピンドル装置および間座

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229059A (ja) * 1996-02-26 1997-09-02 Nippon Seiko Kk 複列転がり軸受ユニット用外輪間座
US20030164050A1 (en) * 2002-03-04 2003-09-04 Chinitz Steven M. Vehicle wheel bearing and method for controllig a vehicle
JP2005265175A (ja) * 2004-02-18 2005-09-29 Ntn Corp 車輪用軸受装置
JP2007271005A (ja) * 2006-03-31 2007-10-18 Jtekt Corp センサ付き転がり軸受装置
JP2008286219A (ja) 2007-05-15 2008-11-27 Ntn Corp 軸受装置および軸受予圧検出装置
JP2009115284A (ja) * 2007-11-09 2009-05-28 Ntn Corp 軸受装置
JP2010180982A (ja) * 2009-02-06 2010-08-19 Nippon Soken Inc 回転軸支持構造、および、機関の制御装置
JP2012108025A (ja) * 2010-11-18 2012-06-07 Nsk Ltd 荷重センサ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227140A (ja) * 1984-04-25 1985-11-12 Yamato Scale Co Ltd ロ−ドセル
US7628540B2 (en) * 2004-02-18 2009-12-08 Ntn Corporation Bearing device for wheel
JP2007032705A (ja) 2005-07-27 2007-02-08 Jtekt Corp センサ付き転がり軸受装置及び歪みセンサ
JP5140853B2 (ja) 2007-05-31 2013-02-13 本田技研工業株式会社 軸荷重計測装置
DE112008002878T5 (de) * 2007-11-09 2010-12-09 Ntn Corp. Lageranordnung
DE102009005888A1 (de) 2009-01-23 2010-07-29 Robert Bosch Gmbh Vorrichtung zum Erfassen einer auf ein Bauteil einwirkenden Kraft
WO2010139350A1 (en) 2009-06-05 2010-12-09 Skf Bv Load-measuring bearing unit
JP2011167799A (ja) * 2010-02-18 2011-09-01 Ntn Corp 主軸装置
DE102015217139B4 (de) 2015-09-08 2017-03-30 Schaeffler Technologies AG & Co. KG Wälzlageranordnung
TWM552594U (zh) 2017-07-04 2017-12-01 Buffalo Machinery Company Ltd 軸承監測裝置
JP7165021B2 (ja) * 2018-10-09 2022-11-02 Ntn株式会社 軸受装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229059A (ja) * 1996-02-26 1997-09-02 Nippon Seiko Kk 複列転がり軸受ユニット用外輪間座
US20030164050A1 (en) * 2002-03-04 2003-09-04 Chinitz Steven M. Vehicle wheel bearing and method for controllig a vehicle
JP2005265175A (ja) * 2004-02-18 2005-09-29 Ntn Corp 車輪用軸受装置
JP2007271005A (ja) * 2006-03-31 2007-10-18 Jtekt Corp センサ付き転がり軸受装置
JP2008286219A (ja) 2007-05-15 2008-11-27 Ntn Corp 軸受装置および軸受予圧検出装置
JP2009115284A (ja) * 2007-11-09 2009-05-28 Ntn Corp 軸受装置
JP2010180982A (ja) * 2009-02-06 2010-08-19 Nippon Soken Inc 回転軸支持構造、および、機関の制御装置
JP2012108025A (ja) * 2010-11-18 2012-06-07 Nsk Ltd 荷重センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083456A4

Also Published As

Publication number Publication date
US20230027711A1 (en) 2023-01-26
JP2021099282A (ja) 2021-07-01
JP7411405B2 (ja) 2024-01-11
EP4083456A4 (en) 2024-03-27
CN114867998A (zh) 2022-08-05
EP4083456A1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
JP7206315B2 (ja) 軸受装置およびスピンドル装置
US8845197B2 (en) Dental machining unit with tool spindle
US20180264614A1 (en) Linear guiding device for a feed axis of a machine tool
WO2022065199A1 (ja) 軸受装置
WO2020004430A1 (ja) 予圧センサ、軸受装置、軸受、および間座
US20160017914A1 (en) Method of setting bearing preload
WO2021131662A1 (ja) 軸受装置、スピンドル装置、軸受、および間座
KR20100016484A (ko) 베어링 장치 및 베어링 예압 검출 장치
WO2005078292A1 (ja) 車輪用軸受装置
WO2022210720A1 (ja) 軸受装置、スピンドル装置および間座
CN112823271B (zh) 轴承装置和预压传感器
KR20100075578A (ko) 베어링 장치
KR20210125012A (ko) 베어링 장치 및 스핀들 장치
WO2022210722A1 (ja) 軸受装置およびスピンドル装置
JP6881133B2 (ja) 真空用軸受の振動測定装置
WO2020166542A1 (ja) 軸受装置およびスピンドル装置
JP2009156399A (ja) 車輪用軸受装置
JP2005133891A (ja) 軸受の予圧測定方法および予圧測定装置
JP4146065B2 (ja) 静圧磁気複合軸受スピンドル装置
JP2023047505A (ja) 軸受装置およびスピンドル装置
JP2009115284A (ja) 軸受装置
WO2024101268A1 (ja) センサ付き軸受装置および工作機械用スピンドル装置
JP2024039154A (ja) 軸受装置およびスピンドル装置
JP2009036313A (ja) 軸受装置
JP2022156275A (ja) 軸受装置、スピンドル装置、および電動垂直離着陸機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020904819

Country of ref document: EP

Effective date: 20220725