WO2020004208A1 - 中空糸膜モジュール及びその洗浄方法 - Google Patents

中空糸膜モジュール及びその洗浄方法 Download PDF

Info

Publication number
WO2020004208A1
WO2020004208A1 PCT/JP2019/024434 JP2019024434W WO2020004208A1 WO 2020004208 A1 WO2020004208 A1 WO 2020004208A1 JP 2019024434 W JP2019024434 W JP 2019024434W WO 2020004208 A1 WO2020004208 A1 WO 2020004208A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
space
cleaning gas
outer peripheral
Prior art date
Application number
PCT/JP2019/024434
Other languages
English (en)
French (fr)
Inventor
俊光 竹下
孝治 三宅
成 手島
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201980030873.8A priority Critical patent/CN112105445B/zh
Priority to AU2019293222A priority patent/AU2019293222B2/en
Priority to JP2020527452A priority patent/JP7035189B2/ja
Priority to US17/056,530 priority patent/US20210236994A1/en
Priority to KR1020207035763A priority patent/KR102245329B1/ko
Priority to EP19826911.0A priority patent/EP3782718A4/en
Publication of WO2020004208A1 publication Critical patent/WO2020004208A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/20Operation control schemes defined by a periodically repeated sequence comprising filtration cycles combined with cleaning or gas supply, e.g. aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a hollow fiber membrane module and a method for cleaning the same.
  • a hollow fiber membrane module has been used in a filtration process for removing impurities contained in water.
  • filtered water from which impurities have been removed can be obtained by allowing the raw water (water before filtration) supplied into the housing to pass through the hollow fiber membrane.
  • the filtration treatment by the hollow fiber membrane is performed for a certain period of time, the amount of suspended pollutants (SS; Suspended @ Solids) contained in the raw water increases on the membrane surface, and the filtration capacity of the hollow fiber membrane decreases. Therefore, it is necessary to periodically clean the film surface.
  • SS suspended pollutants
  • Patent Document 1 discloses a hollow fiber membrane module including a hollow fiber membrane bundle, a housing for accommodating the hollow fiber membrane bundle, and an air diffusing member disposed below the hollow fiber membrane bundle in the housing.
  • the air diffusion member has a disk-shaped main body and a cylindrical gas receiving part provided at the center of the lower surface of the main body.
  • the cleaning gas introduced into the housing is temporarily accommodated in the gas receiving portion, and thereafter, is discharged radially outward, and then the cleaning gas is diffused through the air diffusion holes. Can be dispersed. Thereby, the surface of the hollow fiber membrane can be gas-cleaned.
  • the inlet for cleaning gas is provided at the lower part of the housing.
  • the inlet may be provided on the side of the housing.
  • the cleaning gas is introduced from the outer peripheral side of the diffusing member.
  • the diffusing member disclosed in Patent Document 1 the cleaning gas is dispersed from the diffusing holes before it reaches the entire circumferential direction, and the hollow fiber membrane is formed. It becomes difficult to uniformly gas-clean the bundle in the circumferential direction. That is, in the conventional hollow fiber membrane module, the position of the inlet for the cleaning gas is limited to the lower part of the housing in order to uniformly clean the hollow fiber membrane bundle in the circumferential direction.
  • An object of the present invention is to provide a hollow fiber membrane module that can uniformly gas-clean a hollow fiber membrane bundle in a circumferential direction even when a cleaning gas is introduced from the outer peripheral side of an air diffusion member, and a method for cleaning the same. It is.
  • the hollow fiber membrane module is of an external pressure filtration type, and is provided with a hollow fiber membrane bundle formed of a bundle of hollow fiber membranes and an inlet for cleaning gas for the hollow fiber membrane bundle.
  • a housing for accommodating the hollow fiber membrane bundle, and a receiving surface for receiving the cleaning gas introduced from the inlet, and dispersing the cleaning gas toward the hollow fiber membrane bundle in the housing.
  • a diffusing member having a diffusing hole formed in the receiving surface.
  • the air diffusion member includes a space below the receiving surface, an inner space, and an outer space surrounding the inner space and into which the cleaning gas introduced from the inlet is introduced. It has a partition part.
  • the air diffusion holes are configured to disperse at least a part of the cleaning gas that has spread to the outer peripheral space from the inner peripheral space toward the hollow fiber membrane bundle.
  • a method for cleaning a hollow fiber membrane module includes a housing provided with an inlet for cleaning gas, a hollow fiber membrane bundle housed in the housing, and the hollow fiber membrane in the housing.
  • a diffuser having a receiving surface formed with air diffusion holes for dispersing the cleaning gas toward the bundle, wherein an inner peripheral space and an outer peripheral space surrounding the inner peripheral space are formed below the receiving surface;
  • a method for cleaning the hollow fiber membrane bundle of an external pressure filtration type hollow fiber membrane module comprising a gas member.
  • the cleaning gas is caused to flow into the outer peripheral side space below the receiving surface of the diffusing member through the introduction port, and at least a part of the cleaning gas distributed to the outer peripheral side space is supplied to the inner space.
  • the gas flows into the peripheral space, and the cleaning gas is dispersed toward the hollow fiber membrane bundle through the air diffusion holes.
  • a hollow fiber membrane module capable of uniformly gas-cleaning a hollow fiber membrane bundle in a circumferential direction even when a cleaning gas is introduced from the outer peripheral side of an air diffusion member, and a method for cleaning the same. Can be.
  • FIG. 3 is a plan view of the air diffusing member according to the first embodiment of the present invention. It is a bottom view of the air diffuser in Embodiment 1 of the present invention.
  • FIG. 4 is a view showing a cross section of the air diffusing member along a line IV-IV in FIG. 2. It is a flowchart which shows the procedure of the cleaning method of the hollow fiber membrane module which concerns on Embodiment 1 of this invention.
  • FIG. 2 is a schematic diagram for explaining a water filling step in the method for cleaning a hollow fiber membrane module according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram for explaining a backwashing step in the method for cleaning a hollow fiber membrane module according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram for explaining a lower bubbling step in the method for cleaning a hollow fiber membrane module according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram for explaining an upper bubbling step in the method for cleaning a hollow fiber membrane module according to Embodiment 1 of the present invention. It is a figure which shows typically the structure of the hollow fiber membrane module which concerns on other embodiment of this invention.
  • the hollow fiber membrane module 1 is an external pressure filtration type module, and as shown in FIG. 1, a hollow fiber membrane bundle 10 composed of a bundle of hollow fiber membranes 11, a housing 20, a diffusing member 30, and a water guide pipe. And 40 mainly.
  • the “external pressure filtration method” is a filtration method in which raw water permeates the membrane wall from the outer surface to the inner surface of the hollow fiber membrane 11 to obtain filtered water from a region on the inner surface side of the hollow fiber membrane 11. .
  • each component of the hollow fiber membrane module 1 will be described.
  • the hollow fiber membrane bundle 10 has a plurality of hollow fiber membranes 11 extending in the vertical direction and a fixing member 12 for bundling the plurality of hollow fiber membranes 11.
  • the hollow fiber membrane bundle 10 has a one-end free structure in which the upper ends of the hollow fiber membranes 11 are fixed by the fixing members 12 and the lower ends of the hollow fiber membranes 11 are not fixed to each other. I have.
  • the lower end of the hollow fiber membrane 11 may be sealed with, for example, a resin, but is not particularly limited.
  • the outer peripheral surface of the fixing member 12 is in close contact with the inner surface of the housing 20.
  • PVDF Polyvinylidene Fluoride
  • an epoxy-based adhesive resin can be used, but it is not limited to this.
  • the housing 20 is a hollow cylindrical container that stores the hollow fiber membrane bundle 10, and is arranged in a vertical position along the vertical direction as shown in FIG.
  • the housing 20 has a housing body 21, an upper cap 23, a lower cap 25, an upper coupling 27, and a lower coupling 28.
  • the housing body 21, the upper cap 23, and the lower cap 25 are made of, for example, a resin such as polyvinyl chloride (PVC; Poly Vinyl Chloride).
  • the upper coupling 27 and the lower coupling 28 are ring-shaped fasteners for fixing the upper cap 23 and the lower cap 25 to the housing body 21.
  • the housing body 21 is a hollow cylindrical member extending in the vertical direction, and houses the hollow fiber membrane bundle 10.
  • the upper and lower ends of the housing main body 21 are open, and the upper end opening is closed by the fixing member 12.
  • the space inside the housing body 21 is a raw water space 21A filled with raw water (water to be filtered by the hollow fiber membrane 11).
  • the upper cap 23 is attached to the upper end of the housing body 21 by the upper coupling 27 so as to cover the upper end opening of the housing body 21.
  • the space in the upper cap 23 is a filtered water space 23B filled with the filtered water.
  • the filtered water space 23B communicates with the space on the inner surface side of each hollow fiber membrane 11 and is liquid-tightly partitioned from the raw water space 21A by the fixing member 12. Thereby, mixing of raw water and filtered water can be prevented.
  • a filtered water port 23A for taking out filtered water from the filtered water space 23B to the outside is provided on a side portion of the upper cap 23.
  • the lower cap 25 is attached to the lower end of the housing main body 21 by a lower coupling 28 so as to close the lower end opening of the housing main body 21.
  • the space in the lower cap 25 and the space in the housing body 21 communicate with each other.
  • a drain port 25A for discharging raw water in the housing 20 to the outside is provided on a side portion of the lower cap 25.
  • the drain port 25 ⁇ / b> A has a cylindrical shape extending radially outward from the side surface of the lower cap 25, and its internal space communicates with the space inside the lower cap 25.
  • the drainage pipe 22 is connected to the drainage port 25A.
  • the drain port 25A also serves as an inlet for the cleaning gas (for example, cleaning air) for the hollow fiber membrane bundle 10.
  • the cleaning gas for example, cleaning air
  • an inlet 22A for cleaning gas is provided in the drain pipe 22, and a gas pipe 24A is connected to the inlet 22A.
  • the clean cleaning gas generated by the gas generating source 24 such as an air compressor can be introduced into the lower cap 25 from the inlet 25A by sequentially passing through the gas pipe 24A and the drain pipe 22.
  • the air diffusing member 30 is a member for dispersing the cleaning gas introduced into the housing 20 from the inlet 25A toward the hollow fiber membrane bundle 10. Thereby, bubbles rising from the lower end to the upper end of the hollow fiber membrane 11 are generated, and the hollow fiber membrane 11 can be gas-cleaned.
  • the air diffusion member 30 is made of a resin such as PVC, for example, similarly to the housing 20, and is disposed below the hollow fiber membrane bundle 10. The detailed structure of the air diffusing member 30 will be described later.
  • the water guide pipe 40 is a member for introducing raw water into the housing 20, and is disposed inside the housing 20. As shown in FIG. 1, the water pipe 40 penetrates through the center of the lower surface of the lower cap 25 and the center of the air diffusion member 30, and extends vertically inside the hollow fiber membrane bundle 10.
  • the water guide pipe 40 has, for example, a hollow cylindrical shape, and has an upper end fixed to the fixing member 12 and a raw water inlet 44 provided at the lower end.
  • a plurality of water holes 41 are formed in the wall of the water pipe 40 at intervals in the length direction and the circumferential direction.
  • the raw water introduced into the water conduit 40 from the raw water inlet 44 flows from the lower end to the upper end of the water conduit 40 and is supplied to the raw water space 21A through the water hole 41.
  • a pipe partition plate 42 is provided near the upper end of the water pipe 40 to partition the space inside the pipe up and down.
  • the water holes 41 are all formed in the pipe wall below the pipe partition plate 42. Since the raw water can be blocked by the pipe partition plate 42, it is possible to prevent the raw water in the water conduit 40 from coming off from the upper end.
  • an air vent hole 43 is formed in a wall portion of the water guide pipe 40 above the pipe partition plate 42 and below the fixing member 12.
  • the air vent pipe 26 communicating with the water guide pipe 40 is connected to the upper end of the water guide pipe 40.
  • the air vent tube 26 passes through the center of the upper surface of the upper cap 23.
  • FIG. 2 is a plan view of the air diffusing member 30 (a plan view of the air diffusing member 30 as viewed from above).
  • FIG. 3 is a bottom view of the air diffusion member 30 (a plan view of the air diffusion member 30 from below).
  • FIG. 4 is a cross-sectional view of the air diffusing member 30 along a line IV-IV in FIG.
  • the diffusing member 30 has a receiving surface 37 for receiving the cleaning gas introduced from the introduction port 25A, and the diffusing holes 35 for dispersing the cleaning gas toward the hollow fiber membrane bundle 10 in the housing 20 have the receiving surface 37. It is a member formed in. As shown in FIGS. 1 to 4, the diffusing member 30 includes a disc-shaped main body 31 having a receiving surface 37 and a plurality of diffusing holes 35 formed therein, and a space below the receiving surface 37. It has a partition 32 for partitioning into a peripheral space 36A and an outer peripheral space 36B.
  • the main body 31 is a resin disk having a through hole 31 ⁇ / b> C formed in the center, and has a shape that expands in the radial direction of the hollow fiber membrane bundle 10. As shown in FIG. 1, the main body 31 is disposed below the lower end of the hollow fiber membrane 11 in a horizontal posture perpendicular to the length direction of the hollow fiber membrane 11.
  • the through hole 31 ⁇ / b> C is a portion through which the water conduit 40 is inserted, and has an inner diameter larger than the outer diameter of the water conduit 40.
  • the main body 31 is not limited to a disk, but may be of various shapes.
  • the air diffuser hole 35 is a circular hole having a smaller diameter than the through hole 31C, and penetrates the main body 31 in the thickness direction. As shown in FIG. 2, a plurality of diffuser holes 35 are formed in a region radially outside of the through hole 31 ⁇ / b> C at intervals in the radial direction and the circumferential direction. More specifically, a first virtual circle C1 concentric with the main body 31 and having a diameter larger than the through hole 31C, and a second virtual circle concentric with the main body 31 and having a larger diameter than the first virtual circle C1.
  • the diffuser hole 35 is formed around the first to third virtual circles C1 to C3. They are formed at equal intervals in the direction.
  • the diffuser holes 35 are more dense in a region radially inside the partition 32 (inner peripheral portion 31A) than in a region radially outside the partition 32 (outer peripheral portion 31B). It is formed.
  • the diffuser holes 35 formed in the inner peripheral portion 31A may be referred to as “inner diffuser holes 35A”, and the diffuser holes 35 formed in the outer peripheral portion 31B may be referred to as “outer diffuser holes 35B”.
  • the plurality of diffuser holes 35 all have the same size and shape, but are not limited thereto, and may have different sizes and shapes.
  • the receiving surface 37 is the lower surface of the main body 31, that is, the surface of the main body 31 facing the side opposite to the hollow fiber membrane bundle 10 (the surface facing the lower side of the housing 20). That is, the receiving surface 37 faces the inner bottom surface of the housing 20 in the up-down direction.
  • the receiving surface 37 extends in a horizontal direction perpendicular to the length direction of the hollow fiber membrane 11. The cleaning gas introduced into the housing 20 from the inlet 25A is received by the receiving surface 37 and then dispersed toward the hollow fiber membrane bundle 10 through the air diffusion holes 35.
  • the partition portion 32 has a cylindrical shape having a diameter larger than the through hole 31 ⁇ / b> C, and has an upper end connected to the receiving surface 37 so as to be concentric with the main body portion 31.
  • a space radially inside the partition 32 is an inner space 36A
  • a space radially outside the partition 32 is an outer space 36B. That is, the inner peripheral side space 36A is a space located below the inner peripheral part 31A of the main body part 31, and the outer peripheral side space 36B is a space located below the outer peripheral part 31B of the main body part 31.
  • a cleaning gas before being dispersed from the air diffusion holes 35 can be stored.
  • the inner peripheral space 36A is an annular space in plan view surrounding the through-hole 31C
  • the outer peripheral space 36B is an annular space in plan view surrounding the inner peripheral space 36A.
  • the partition portion 32 has an outer peripheral surface 32A facing the outer peripheral space 36B and extending vertically, and an inner peripheral surface 32B facing the inner peripheral space 36A and extending vertically. ing.
  • the partition portion 32 in the present embodiment is a cylindrical shape having a constant inner diameter from the upper end to the lower end, but is not limited thereto, and may have a shape expanding in diameter from the upper end to the lower end. The shape may be such that the diameter is reduced from to the lower end. Further, the partition portion 32 is not limited to a cylindrical shape, and various shapes such as a rectangular tube shape can be used.
  • the air diffusing member 30 further has an inner cylindrical portion 34 and a peripheral wall portion 33.
  • the inner cylindrical portion 34 has a cylindrical shape having substantially the same diameter as the through hole 31 ⁇ / b> C, and has an upper end connected to the receiving surface 37 so as to be concentric with the main body 31. .
  • a plurality of (four in the present embodiment) peripheral wall portions 33 are provided at intervals in the circumferential direction along the outer edge of the main body portion 31.
  • the peripheral wall portion 33 is connected to the receiving surface 37 at the outer edge of the main body portion 31 and extends downward from the receiving surface 37.
  • the main-body part 31, the partition part 32, the inner cylinder part 34, and the peripheral wall part 33 are each formed as a separate member, it is not limited to this, and these may be integrally formed.
  • the inlet 25A is provided on the side of the housing 20 (the lower cap 25) so that the cleaning gas can be introduced into the outer peripheral side space 36B.
  • the inlet 25A is a position facing the outer peripheral side space 36B, and a position at which the cleaning gas introduced from the inlet 25A collides with the outer peripheral surface 32A of the partition 32. It is provided in.
  • the inlet 25A is provided such that the top 25AA of the inner peripheral surface of the inlet 25A is located above the lower end of the partition 32.
  • the hollow fiber membrane module 1 has a structure in which the cleaning gas is introduced into the housing 20 from the outer peripheral side of the air diffusing member 30 toward the radial inside.
  • the air diffuser 35 is configured to disperse at least a portion of the cleaning air that has spread to the outer peripheral space 36B from the inner peripheral space 36A toward the hollow fiber membrane bundle 10. More specifically, the porosity of the diffuser holes 35 (outer diffuser holes 35B) communicating with the outer peripheral space 36B is greater than the porosity of the diffuser holes 35 (inner diffuser holes 35A) communicating with the inner peripheral space 36A. Is also getting smaller.
  • the opening ratio of the outer air diffusion holes 35B is defined as the ratio of the total area of all the outer air diffusion holes 35B to the entire area of the outer peripheral portion 31B of the main body 31.
  • the opening ratio of the inner air diffusion holes 35A is defined as a ratio of the total area of all the inner air diffusion holes 35A to the entire area of the inner peripheral portion 31A of the main body 31.
  • the cleaning gas can be spread in the entire circumferential direction so as to surround the inner circumferential space 36A in the outer circumferential space 36B (arrow F1 in FIG. 3).
  • the cleaning air that has spread over the entire outer peripheral side space 36B flows into the inner peripheral side space 36A beyond the partition portion 32 (arrow F2 in FIG. 4), and from the inner peripheral side space 36A through the inner air diffusion holes 35A.
  • the cleaning gas can be dispersed toward the hollow fiber membrane bundle 10. In this way, even when the inlet 25A is provided on the side of the housing 20 and the cleaning gas is introduced from the outer peripheral side of the air diffuser 30, the amount of dispersion of the cleaning gas by the air diffuser 30 in the circumferential direction can be improved.
  • the bias can be reduced. As a result, the hollow fiber membrane bundle 10 can be uniformly gas-cleaned in the circumferential direction.
  • the air diffusion holes 35 are such that the amount of the cleaning gas dispersed from the outer peripheral space 36B toward the hollow fiber membrane bundle 10 is smaller than the amount of the cleaning gas introduced from the inlet 25A into the outer peripheral space 36B. Is formed. Specifically, the amount of dispersion of the cleaning gas from the outer peripheral space 36B becomes smaller than the amount of the cleaning gas introduced into the outer peripheral space 36B by adjusting the opening ratio of the outer air diffusion holes 35B. I have. This allows the cleaning gas to overflow reliably in the outer peripheral space 36B, and allows the cleaning gas to reliably flow from the outer peripheral space 36B to the inner peripheral space 36A.
  • raw water sent by a pump from a raw water tank (not shown) is introduced from the raw water inlet 44 into the water pipe 40.
  • the raw water flows from the lower end to the upper end in the water pipe 40, and is introduced into the raw water space 21 ⁇ / b> A through the water passage 41.
  • the raw water space 21A is filled with the raw water.
  • the air in the raw water space 21 ⁇ / b> A flows into the space in the water pipe 40 (the space above the pipe partition plate 42) from the air vent hole 43 with the introduction of the raw water, and passes through the air vent pipe 26. It is discharged out of 20.
  • the raw water supplied into the raw water space 21A is transmitted through the membrane wall from the outer surface to the inner surface of the hollow fiber membrane 11.
  • filtered water from which impurities such as SS have been removed is obtained.
  • the filtered water flows out from the upper end of each hollow fiber membrane 11 into the filtered water space 23B, and is then taken out through the filtered water port 23A.
  • the hollow fiber membrane bundle 10 is cleaned by implementing the method for cleaning the hollow fiber membrane module according to the present embodiment described below.
  • a backwashing step (FIG. 5: S30) is performed.
  • compressed air generated by an air compressor or the like is introduced into the filtered water space 23B through the filtered water port 23A.
  • This compressed air pressurizes the filtered water in the region on the inner surface side of the hollow fiber membrane 11 and pushes the filtered water from the inner surface side of the hollow fiber membrane 11 toward the outer surface side. With this water pressure, the adhesion of the SS adhered to the outer surface of the hollow fiber membrane 11 can be reduced.
  • the water in the raw water space 21A passes through a gap between the wall surface of the through hole 31C of the air diffuser member 30 and the outer peripheral surface of the water pipe 40, and is then discharged out of the housing 20 from the drain port 25A.
  • the lower bubbling step (FIG. 5: S40) is performed as follows. First, in a state where the raw water is filled in the raw water space 21A, as shown in FIG. 9, a cleaning gas (cleaning air) is introduced into the housing 20 (the lower cap 25) from the inlet 25A. Then, the cleaning gas is caused to flow into the outer peripheral side space 36B (FIGS. 3 and 4) below the receiving surface 37 of the air diffusing member 30 through the inlet 25A.
  • a cleaning gas cleaning air
  • the cleaning gas is introduced into the housing 20 through the inlet 25A so that the cleaning gas collides with the outer peripheral surface 32A of the partition 32. This prevents the cleaning gas from being directly introduced into the inner space 36A, and ensures that the cleaning gas is introduced into the outer space 36B.
  • the cleaning gas is received on a receiving surface 37 radially outside the partition 32.
  • the cleaning gas is spread in the entire circumferential direction so as to surround the inner circumferential space 36A in the outer circumferential space 36B.
  • the reason that the cleaning gas can be spread in the entire circumferential direction in the outer peripheral space 36B is that the porosity of the outer diffuser holes 35B is small as described above, and the outer peripheral space 36B passes through the outer diffuser holes 35B. This is because the amount of dispersed cleaning gas is reduced. The cleaning gas flows throughout the entire outer peripheral side space 36B, but a small amount is dispersed through the outer air diffusion holes 35B.
  • the cleaning gas When the cleaning gas is introduced, a larger amount of the cleaning gas than the amount of the cleaning gas dispersed from the outer peripheral space 36B toward the hollow fiber membrane bundle 10 through the outer air diffusion holes 35B is supplied to the outer peripheral space 36B. Introduce. Thereby, the cleaning gas can reliably overflow from the outer peripheral side space 36B. Then, as indicated by an arrow F2 in FIG. 4, at least a part of the cleaning gas that has spread to the outer peripheral space 36B flows into the inner peripheral space 36A.
  • the cleaning gas flowing into the inner peripheral side space 36A is dispersed toward the hollow fiber membrane bundle 10 through the inner air diffusion holes 35A.
  • the cleaning gas remaining in the outer peripheral space 36B without flowing into the inner peripheral space 36A is dispersed toward the hollow fiber membrane bundle 10 through the outer air diffusion holes 35B.
  • the bubble B1 rises from the lower end to the upper end of the hollow fiber membrane 11, and the hollow fiber membrane 11 swings due to the bubble B1, so that the SS adhered to the membrane surface is peeled off. .
  • a cleaning gas (cleaning air) is introduced into the water conduit 40 from the raw water inlet 44.
  • the cleaning gas rises inside the water guide pipe 40 and collides with the pipe partition plate 42, and is supplied into the raw water space 21 ⁇ / b> A through the water passage hole 41 immediately below the pipe partition plate 42. Thereby, the vicinity of the upper end of the hollow fiber membrane 11 can be cleaned with bubbles.
  • the cleaning gas in the raw water space 21A flows into the space in the water guide pipe 40 (the space above the pipe partition plate 42) through the air vent hole 43, and is discharged out of the housing 20 through the air vent pipe 26. .
  • the raw water containing SS removed from the membrane surface is discharged from the housing 20 through the drain port 25A, and the method for cleaning the hollow fiber membrane module according to the present embodiment ends. Then, the water filling step and the filtration step described above are restarted.
  • the cleaning gas is introduced from the outer peripheral side of the diffusing member 30 by using the diffusing member 30 having the partition portion 32 in the lower bubbling step. Even in this case, it is possible to reduce the deviation in the circumferential direction of the amount of dispersion of the cleaning gas by the diffusion member 30. Therefore, the hollow fiber membrane bundle 10 can be uniformly gas-cleaned in the circumferential direction.
  • the inlet 25A is provided further below the position shown in FIG. 1 (so that the top 25AA is located below the lower end of the partition 32) so that the cleaning gas does not collide with the outer peripheral surface 32A. Is also good.
  • the cleaning gas introduced into the lower cap 25 rises by buoyancy, so that the cleaning gas can be introduced into the outer peripheral space 36B.
  • the present invention is not limited to the case where the inlet 25A is provided on the side of the housing 20.
  • a central portion may be provided below the housing 20 (the lower cap 25) so that the cleaning gas can be introduced into the outer peripheral space 36B.
  • the introduction port 25A may be provided at a position displaced radially outward from.
  • the present invention is not limited to this.
  • the outer air diffusion holes 35B may not be formed, and only the inner air diffusion holes 35A may be formed.
  • the cleaning gas can be spread over the entire outer peripheral side space 36B. Then, similarly to the first embodiment, the cleaning gas flowing from the outer peripheral side space 36B to the inner peripheral side space 36A beyond the partition 32 can be dispersed toward the hollow fiber membrane bundle 10.
  • the inlet 25A for the cleaning gas is also used as the outlet 25A for the raw water, but the present invention is not limited to this.
  • the inlet for the cleaning gas and the outlet for the raw water may be provided at different locations in the housing 20.
  • the present invention is not limited to this.
  • a portion of the water conduit 40 where the water passage hole 41 is formed is omitted, and raw water is supplied from a raw water inlet provided at a lower portion of the housing 20 (the lower cap 25). May be introduced.
  • the hollow fiber membrane bundle 10 has a free structure at one end.
  • the present invention is not limited to this, and a hollow fiber membrane bundle of both ends fixed type may be used.
  • the present invention is not limited to this, and a plurality of partition portions 32 having different diameters may be connected to the receiving surface 37.
  • the present invention is not limited to this, and the upper bubbling step may be omitted.
  • the order in which the upper bubbling step is performed after the lower bubbling step is not limited, and the lower bubbling step may be performed after the upper bubbling step.
  • air is described as an example of the cleaning gas.
  • the present invention is not limited to this, and another type of gas suitable for cleaning the hollow fiber membrane 11 may be used.
  • the hollow fiber membrane module according to the above embodiment is of an external pressure filtration type, and is provided with a hollow fiber membrane bundle formed of a bundle of hollow fiber membranes and an inlet for cleaning gas for the hollow fiber membrane bundle.
  • a housing for accommodating the hollow fiber membrane bundle, and a receiving surface for receiving the cleaning gas introduced from the inlet, and a diffuser hole for dispersing the cleaning gas toward the hollow fiber membrane bundle in the housing.
  • a diffusing member formed on the receiving surface.
  • the air diffusion member includes a space below the receiving surface, an inner space, and an outer space surrounding the inner space and into which the cleaning gas introduced from the inlet is introduced. It has a partition part.
  • the air diffusion holes are configured to disperse at least a part of the cleaning gas that has spread to the outer peripheral space from the inner peripheral space toward the hollow fiber membrane bundle.
  • the cleaning gas introduced into the housing is distributed to the outer peripheral space of the air diffuser, and the cleaning gas that has spread to the outer peripheral space is caused to flow into the inner peripheral space, and It can be dispersed from the inner peripheral space toward the hollow fiber membrane bundle.
  • the cleaning gas is introduced from the outer peripheral side of the diffuser member, the hollow fiber membrane bundle can be uniformly gas-cleaned in the circumferential direction, and the position of the cleaning gas inlet can be freely determined. The degree increases.
  • the inlet may be provided at a position facing the outer peripheral space.
  • the cleaning gas can be easily introduced from the inlet to the outer peripheral space, so that the cleaning gas can be more reliably contained in the outer peripheral space.
  • the partition may have an outer peripheral surface facing the outer peripheral space.
  • the inlet may be provided at a position where the cleaning gas introduced from the inlet collides with the outer peripheral surface.
  • the cleaning gas by causing the cleaning gas to collide with the outer peripheral surface of the partition portion, the cleaning gas is prevented from being directly introduced into the inner peripheral side space, and the cleaning gas is reliably introduced into the outer peripheral side space. be able to.
  • the porosity of the diffuser holes communicating with the outer peripheral space may be smaller than the porosity of the diffuser holes communicating with the inner peripheral space.
  • the cleaning gas can be surely spread over a wide range of the outer peripheral space.
  • the amount of the cleaning gas dispersed from the outer peripheral space toward the hollow fiber membrane bundle from the outer peripheral space is the amount of the cleaning gas introduced into the outer peripheral space from the inlet. It may be formed to be smaller than the amount.
  • the cleaning gas can reliably overflow in the outer peripheral space. Then, the cleaning gas overflowing from the outer peripheral space can flow into the inner peripheral space, and the cleaning gas can be dispersed from the inner peripheral space to the hollow fiber membrane bundle through the air diffusion holes.
  • the method for cleaning a hollow fiber membrane module includes a housing provided with an inlet for cleaning gas, a hollow fiber membrane bundle housed in the housing, and a hollow fiber membrane bundle in the housing.
  • a diffuser member having a receiving surface on which a diffuser hole for dispersing a cleaning gas is formed, wherein an inner peripheral space and an outer peripheral space surrounding the inner peripheral space are formed below the receiving surface;
  • washing the hollow fiber membrane bundle of the external pressure filtration type hollow fiber membrane module comprising:
  • the cleaning gas is caused to flow into the outer peripheral side space below the receiving surface of the diffusing member through the introduction port, and at least a part of the cleaning gas distributed to the outer peripheral side space is supplied to the inner space.
  • the gas flows into the peripheral space, and the cleaning gas is dispersed toward the hollow fiber membrane bundle through the air diffusion holes.
  • the cleaning gas that has flowed through the introduction port is distributed to the outer peripheral space of the diffuser member, and the cleaning gas that has spread to the outer peripheral space is flowed into the inner peripheral space to form the hollow fiber membrane bundle.
  • the housing may be passed through the inlet so that a cleaning gas collides with an outer peripheral surface facing the outer peripheral side space in a partition part that separates the inner peripheral side space and the outer peripheral side space.
  • a cleaning gas may be introduced therein.
  • the cleaning gas can be prevented from being directly introduced into the inner peripheral space, and the cleaning gas can be reliably introduced into the outer peripheral space.
  • a larger amount of the cleaning gas than the amount of the cleaning gas dispersed from the outer peripheral space toward the hollow fiber membrane bundle may be introduced into the outer peripheral space.
  • the cleaning gas can reliably overflow in the outer peripheral side space. Then, the cleaning gas overflowing from the outer peripheral space can flow into the inner peripheral space, and the cleaning gas can be dispersed from the inner peripheral space to the hollow fiber membrane bundle through the air diffusion holes.
  • the hollow fiber membrane module 1 described with reference to FIGS. 1 to 4 is prepared, and in a state where the housing 20 is filled with water, cleaning air is introduced into the lower cap 25 at a flow rate of 5 Nm 3 / h. did. Then, the flow rates of the cleaning air dispersed from the air diffusion holes 35 indicated by reference numerals P1 to P4 in FIG. 2 were measured.
  • the diffuser holes 35 indicated by reference numerals P1 and P3 are formed at positions closer to the inlet 25A than the diffuser holes 35 indicated by reference numerals P2 and P4.
  • the diameter of the air diffusion member 30 is 230 mm
  • the outer diameter of the partition 32 is 164 mm
  • the diameter of the through hole 31C is 90 mm
  • the diameter of the outer air diffusion holes 35B (codes P1 and P2) is 3 mm
  • the inner air diffusion holes 35A (codes P3 and P4). ) was 3.5 mm.
  • the flow rate of the cleaning air dispersed from the air diffusion holes 35 indicated by reference numerals P1 to P4 was similarly measured using the air diffusion member 30 of the hollow fiber membrane module 1 from which the partition portion 32 was omitted. .
  • the flow rate of the cleaning air dispersed from the air diffusion holes 35 of the symbol P1 is 0.15 Nm 3 / h
  • the flow rate of the cleaning air is dispersed from the air diffusion holes 35 of the symbol P2.
  • the flow rate of the cleaning air to be dispersed is 0.14 Nm 3 / h
  • the flow rate of the cleaning air dispersed from the air diffusion hole 35 of the symbol P3 is 0.08 Nm 3 / h
  • the flow rate of the cleaning air dispersed from the air diffusion hole 35 of the symbol P4. was 0.08 Nm 3 / h.
  • the flow rate of the cleaning air dispersed from the air diffusion hole 35 of the symbol P1 is 0.15 Nm 3 / h
  • the air diffusion hole 35 of the symbol P2 is used.
  • cleaning air flow rate of the cleaning air is 0.02 Nm 3 / h
  • the flow rate of the cleaning air to disperse the diffusing pores 35 of the code P3 is dispersed from 0.20 Nm 3 / h

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

中空糸膜モジュールは、中空糸膜束と、前記中空糸膜束の洗浄用気体の導入口が設けられると共に、前記中空糸膜束を収容するハウジングと、前記導入口から導入された洗浄用気体を受ける受け面を有し、前記ハウジング内において前記中空糸膜束に向けて洗浄用気体を分散させる散気孔が前記受け面に形成された散気部材と、を備えている。前記散気部材は、前記受け面の下側の空間を、内周側空間と、前記内周側空間を取り囲み且つ前記導入口から導入された洗浄用気体が導入される外周側空間と、に仕切る仕切り部を有している。前記散気孔は、前記外周側空間に行き渡った洗浄用気体の少なくとも一部を前記内周側空間から前記中空糸膜束に向けて分散させるように構成されている。

Description

中空糸膜モジュール及びその洗浄方法
 本発明は、中空糸膜モジュール及びその洗浄方法に関する。
 従来、特許文献1に開示されるように、水中に含まれる不純物を除去する濾過処理において、中空糸膜モジュールが用いられている。この中空糸膜モジュールによれば、ハウジング内に供給された原水(濾過前の水)を中空糸膜に透過させることにより、不純物が除去された濾過水を得ることができる。ここで、中空糸膜による濾過処理が一定時間行われると、原水中に含まれる浮遊汚濁物質(SS;Suspended Solids)の膜表面への付着量が増大し、中空糸膜の濾過能力が低下するため、膜表面を定期的に洗浄する必要がある。
 特許文献1には、中空糸膜束と、中空糸膜束を収容するハウジングと、ハウジング内において中空糸膜束の下側に配置された散気部材と、を備えた中空糸膜モジュールが開示されている。この散気部材は、円盤状の本体部と、本体部の下面中央に設けられた筒状の気体受け部と、を有している。この中空糸膜モジュールによれば、ハウジング内に導入された洗浄用気体を気体受け部において一時的に収容した後に径方向外側に向かって放出し、その後散気孔を通じて洗浄用気体を中空糸膜束に向けて分散させることができる。これにより、中空糸膜の表面を気体洗浄することができる。
 特許文献1に開示された中空糸膜モジュールでは、洗浄用気体の導入口がハウジングの下部に設けられているが、モジュールの仕様によっては、ハウジングの側部に導入口が設けられることもある。この場合、散気部材の外周側から洗浄用気体が導入されるが、特許文献1の散気部材では、洗浄用気体が周方向全体に行き渡る前に散気孔から分散してしまい、中空糸膜束を周方向において均一に気体洗浄するのが困難になる。つまり、従来の中空糸膜モジュールでは、中空糸膜束を周方向において均一に気体洗浄するためには、洗浄用気体の導入口の位置がハウジングの下部に制限されてしまう。
特開2016-87567号公報
 本発明の目的は、散気部材の外周側から洗浄用気体を導入する場合でも中空糸膜束を周方向において均一に気体洗浄することが可能な中空糸膜モジュール及びその洗浄方法を提供することである。
 本発明の一局面に係る中空糸膜モジュールは、外圧濾過式のものであって、束状の中空糸膜からなる中空糸膜束と、前記中空糸膜束の洗浄用気体の導入口が設けられると共に、前記中空糸膜束を収容するハウジングと、前記導入口から導入された洗浄用気体を受ける受け面を有し、前記ハウジング内において前記中空糸膜束に向けて洗浄用気体を分散させる散気孔が前記受け面に形成された散気部材と、を備えている。前記散気部材は、前記受け面の下側の空間を、内周側空間と、前記内周側空間を取り囲み且つ前記導入口から導入された洗浄用気体が導入される外周側空間と、に仕切る仕切り部を有している。前記散気孔は、前記外周側空間に行き渡った洗浄用気体の少なくとも一部を前記内周側空間から前記中空糸膜束に向けて分散させるように構成されている。
 本発明の他局面に係る中空糸膜モジュールの洗浄方法は、洗浄用気体の導入口が設けられたハウジングと、前記ハウジング内に収容された中空糸膜束と、前記ハウジング内において前記中空糸膜束に向けて洗浄用気体を分散させる散気孔が形成された受け面を有し、前記受け面の下側に内周側空間と前記内周側空間を取り囲む外周側空間とが形成された散気部材と、を備えた外圧濾過式の中空糸膜モジュールの前記中空糸膜束を洗浄する方法である。この方法においては、前記導入口を通じて洗浄用気体を前記散気部材の前記受け面の下側における前記外周側空間に流入させ、前記外周側空間に行き渡った洗浄用気体の少なくとも一部を前記内周側空間に流入させ、洗浄用気体を前記散気孔を通じて前記中空糸膜束に向けて分散させる。
 本発明によれば、散気部材の外周側から洗浄用気体を導入する場合でも中空糸膜束を周方向において均一に気体洗浄することが可能な中空糸膜モジュール及びその洗浄方法を提供することができる。
本発明の実施形態1に係る中空糸膜モジュールの構成を模式的に示す図である。 本発明の実施形態1における散気部材の平面図である。 本発明の実施形態1における散気部材の底面図である。 図2中の線分IV-IVに沿った散気部材の断面を示す図である。 本発明の実施形態1に係る中空糸膜モジュールの洗浄方法の手順を示すフローチャートである。 本発明の実施形態1に係る中空糸膜モジュールの洗浄方法における充水工程を説明するための模式図である。 本発明の実施形態1に係る中空糸膜モジュールの洗浄方法における濾過工程を説明するための模式図である。 本発明の実施形態1に係る中空糸膜モジュールの洗浄方法における逆洗工程を説明するための模式図である。 本発明の実施形態1に係る中空糸膜モジュールの洗浄方法における下側バブリング工程を説明するための模式図である。 本発明の実施形態1に係る中空糸膜モジュールの洗浄方法における上側バブリング工程を説明するための模式図である。 本発明のその他実施形態に係る中空糸膜モジュールの構成を模式的に示す図である。
 以下、図面に基づいて、本発明の実施形態に係る中空糸膜モジュール及びその洗浄方法について詳細に説明する。
 (実施形態1)
 <中空糸膜モジュール>
 まず、本発明の実施形態1に係る中空糸膜モジュール1の全体構成について、図1を参照して説明する。中空糸膜モジュール1は、外圧濾過式のモジュールであり、図1に示すように、束状の中空糸膜11からなる中空糸膜束10と、ハウジング20と、散気部材30と、導水管40と、を主に備えている。「外圧濾過式」とは、中空糸膜11の外表面から内表面に向かって原水を膜壁に透過させることにより、中空糸膜11の内表面側の領域から濾過水を得る濾過方式である。以下、中空糸膜モジュール1の各構成要素についてそれぞれ説明する。
 中空糸膜束10は、上下方向に延びる複数の中空糸膜11と、複数の中空糸膜11同士を束ねる固定部材12と、を有している。図1に示すように、中空糸膜束10は、各中空糸膜11の上端同士が固定部材12により固定され、且つ各中空糸膜11の下端同士が互いに固定されない片端フリー構造を有している。中空糸膜11の下端は、例えば樹脂などにより封止されていてもよいが、特に限定されない。また図1に示すように、固定部材12の外周面は、ハウジング20の内面に密着している。
 中空糸膜11の素材としては、種々のものを用いることができるが、例えば、親水化されたポリフッ化ビニリデン(PVDF;Poly Vinylidene DiFluoride)を用いることができる。また固定部材12としては、例えばエポキシ系の接着樹脂を用いることができるが、これに限定されない。
 ハウジング20は、中空糸膜束10を収容する中空円筒状の容器であり、図1に示すように上下方向に沿った縦置き姿勢で配置されている。ハウジング20は、ハウジング本体21と、上部キャップ23と、下部キャップ25と、上部カップリング27と、下部カップリング28と、を有している。
 ハウジング本体21、上部キャップ23及び下部キャップ25は、例えばポリ塩化ビニル(PVC;Poly Vinyl Chloride)などの樹脂からなる。上部カップリング27及び下部カップリング28は、ハウジング本体21に上部キャップ23及び下部キャップ25を固定するためのリング状の留め具である。
 ハウジング本体21は、上下方向に延びる中空円筒状の部材であり、中空糸膜束10を収容している。ハウジング本体21の上端及び下端はそれぞれ開口しており、上端開口が固定部材12により塞がれている。またハウジング本体21内の空間は、原水(中空糸膜11による濾過対象の水)が充たされる原水空間21Aとなっている。
 上部キャップ23は、ハウジング本体21の上端開口を覆うように、上部カップリング27によりハウジング本体21の上端に取り付けられている。上部キャップ23内の空間は、濾過水が充たされる濾過水空間23Bとなっている。濾過水空間23Bは、各中空糸膜11の内表面側の空間と連通し、且つ原水空間21Aに対して固定部材12により液密に仕切られている。これにより、原水と濾過水との混水を防ぐことができる。図1に示すように、上部キャップ23の側部には、濾過水空間23Bから外部へ濾過水を取り出すための濾過水口23Aが設けられている。
 下部キャップ25は、ハウジング本体21の下端開口を塞ぐように、下部カップリング28によりハウジング本体21の下端に取り付けられている。下部キャップ25内の空間とハウジング本体21内の空間は、互いに連通している。
 図1に示すように、下部キャップ25の側部には、ハウジング20内の原水を外部へ排出するための排水口25Aが設けられている。排水口25Aは、下部キャップ25の側面から径方向外向きに延びる筒形状を有し、その内部空間が下部キャップ25内の空間と連通している。また排水口25Aには、排水配管22が接続されている。
 排水口25Aは、中空糸膜束10の洗浄用気体(例えば洗浄用空気)の導入口を兼ねている。具体的には、図1に示すように、排水配管22に洗浄用気体の注入口22Aが設けられており、この注入口22Aに気体配管24Aが接続されている。そして、例えばエアーコンプレッサなどの気体発生源24で発生させた清浄な洗浄用気体を、気体配管24A及び排水配管22を順に通過させて、導入口25Aから下部キャップ25内に導入することができる。
 散気部材30は、導入口25Aからハウジング20内に導入された洗浄用気体を、中空糸膜束10に向けて分散させるための部材である。これにより、中空糸膜11の下端から上端に向かって上昇する気泡が発生し、中空糸膜11を気体洗浄することができる。散気部材30は、ハウジング20と同様に例えばPVCなどの樹脂からなり、中空糸膜束10よりも下側に配置されている。なお、散気部材30の詳細な構造については後述する。
 導水管40は、ハウジング20内に原水を導入するための部材であり、ハウジング20内に配置されている。図1に示すように、導水管40は、下部キャップ25の下面中央部及び散気部材30の中央部を貫通すると共に、中空糸膜束10の内側を上下方向に延びている。導水管40は、例えば中空円筒形状のものであり、上端が固定部材12に固定されると共に、下端に原水導入口44が設けられている。
 導水管40の壁部には、複数の通水孔41が長さ方向及び周方向に互いに間隔を空けて形成されている。原水導入口44から導水管40内に導入された原水は、導水管40の下端から上端に向かって流れると共に、通水孔41を通じて原水空間21Aに供給される。
 導水管40の上端近傍には、管内の空間を上下に仕切る管仕切り板42が設けられている。通水孔41は、全て、管仕切り板42よりも下側の管壁に形成されている。この管仕切り板42によって原水を堰き止めることができるため、導水管40内の原水が上端から抜けるのを防止することができる。
 図1に示すように、導水管40において管仕切り板42よりも上側で且つ固定部材12よりも下側の壁部には、エア抜き孔43が形成されている。導水管40の上端には、導水管40と連通するエア抜き管26が接続されている。エア抜き管26は、上部キャップ23の上面中央部を貫通している。これにより、原水空間21Aからエア抜き孔43を通じて導水管40内の空間(管仕切り板42よりも上側の空間)に流入した空気を、エア抜き管26を通じてモジュール外に排出することができる。
 次に、散気部材30の詳細な構造について、図1~図4を参照して説明する。図2は、散気部材30の平面図(散気部材30を上側から平面視した図)である。図3は、散気部材30の底面図(散気部材30を下側から平面視した図)である。図4は、図2中の線分IV-IVに沿った散気部材30の断面図である。
 散気部材30は、導入口25Aから導入された洗浄用気体を受ける受け面37を有し、ハウジング20内において中空糸膜束10に向けて洗浄用気体を分散させる散気孔35が受け面37に形成された部材である。図1~図4に示すように、散気部材30は、受け面37を有し且つ複数の散気孔35が形成された円盤状の本体部31と、受け面37の下側の空間を内周側空間36Aと外周側空間36Bとに仕切る仕切り部32と、を有している。
 図2及び図3に示すように、本体部31は、中央に貫通孔31Cが形成された樹脂製の円板であり、中空糸膜束10の径方向に広がる形状を有している。図1に示すように、本体部31は、中空糸膜11の下端よりも下側において、中空糸膜11の長さ方向に垂直な水平姿勢で配置されている。貫通孔31Cは、導水管40が挿通される部分であり、その内径が導水管40の外径よりも大きくなっている。なお、本体部31は、円板に限定されず、種々の形状のものを用いることが可能である。
 散気孔35は、貫通孔31Cよりも小径の円形孔であって、本体部31を厚さ方向に貫通している。図2に示すように、散気孔35は、貫通孔31Cよりも径方向外側の領域において、径方向及び周方向に間隔を空けて複数形成されている。より具体的には、本体部31と同心状で且つ貫通孔31Cよりも径が大きい第1仮想円C1、本体部31と同心状で且つ第1仮想円C1よりも径が大きい第2仮想円C2及び本体部31と同心状で且つ第2仮想円C2よりも径が大きい第3仮想円C3をそれぞれ定義した場合において、散気孔35は、第1~第3仮想円C1~C3上において周方向に等間隔で形成されている。
 また図2に示すように、散気孔35は、仕切り部32よりも径方向内側の領域(内周部31A)において、仕切り部32よりも径方向外側の領域(外周部31B)よりも密集して形成されている。以下の説明において、内周部31Aに形成された散気孔35を「内側散気孔35A」と称し、外周部31Bに形成された散気孔35を「外側散気孔35B」と称することがある。なお、本実施形態では、複数の散気孔35が全て同じ大きさ及び形状を有しているがこれに限定されず、互いに異なる大きさ及び形状を有していてもよい。
 受け面37は、本体部31の下面、すなわち本体部31のうち中空糸膜束10と反対側を向く面(ハウジング20の下部側を向く面)である。つまり、受け面37は、ハウジング20の内底面と上下方向に対向している。また受け面37は、中空糸膜11の長さ方向に垂直な水平方向に延びている。導入口25Aからハウジング20内に導入された洗浄用気体は、受け面37で受けられた後、散気孔35を通じて中空糸膜束10に向かって分散する。
 図3及び図4に示すように、仕切り部32は、貫通孔31Cよりも径が大きい円筒形状を有しており、本体部31と同心状になるように上端が受け面37に接続されている。受け面37の下側において、仕切り部32よりも径方向内側の空間が内周側空間36Aであり、仕切り部32よりも径方向外側の空間が外周側空間36Bである。つまり、内周側空間36Aは、本体部31の内周部31Aの下側に位置する空間であり、外周側空間36Bは、本体部31の外周部31Bの下側に位置する空間である。内周側空間36A及び外周側空間36Bのそれぞれにおいて、散気孔35から分散する前の洗浄用気体を収容することができる。
 図3に示すように、内周側空間36Aは貫通孔31Cを取り囲む平面視円環状の空間であり、外周側空間36Bは内周側空間36Aを取り囲む平面視円環状の空間である。また図4に示すように、仕切り部32は、外周側空間36Bに臨み且つ上下方向に延びる外周面32Aと、内周側空間36Aに臨み且つ上下方向に延びる内周面32Bと、を有している。
 本実施形態における仕切り部32は、上端から下端まで内径が一定の円筒形状のものであるがこれに限定されず、上端から下端に向かって拡径する形状のものであってもよいし、上端から下端に向かって縮径する形状のものであってもよい。また仕切り部32は、円筒形状のものにも限定されず、例えば角筒形状など、種々の形状のものを用いることができる。
 散気部材30は、内筒部34と、周壁部33と、をさらに有している。図3及び図4に示すように、内筒部34は、貫通孔31Cとほぼ同径の円筒形状を有し、本体部31と同心状となるように上端が受け面37に接続されている。この内筒部34を設けることにより、内周側空間36Aに収容された洗浄用気体が、貫通孔31Cから抜けるのを防ぐことができる。
 図3に示すように、周壁部33は、本体部31の外縁部に沿うように、周方向に間隔を空けて複数(本実施形態では4つ)設けられている。図4に示すように、周壁部33は、本体部31の外縁部において受け面37に接続され、受け面37から下側に延びている。なお、本実施形態では、本体部31、仕切り部32、内筒部34及び周壁部33がそれぞれ別部材として形成されているがこれに限定されず、これらが一体形成されていてもよい。
 導入口25Aは、外周側空間36Bに洗浄用気体を導入可能なように、ハウジング20(下部キャップ25)の側部に設けられている。具体的には、図1に示すように、導入口25Aは、外周側空間36Bに臨む位置であって、導入口25Aから導入された洗浄用気体が仕切り部32の外周面32Aに衝突する位置に設けられている。本実施形態では、導入口25Aの内周面の頂部25AAが仕切り部32の下端よりも上側に位置するように導入口25Aが設けられている。これにより、導入口25Aから径方向内向きにハウジング20内に導入された洗浄用気体を、仕切り部32の外周面32Aに容易に衝突させることができる。これにより、洗浄用気体が内周側空間36Aに直接導入されることを防ぎ、外周側空間36Bに洗浄用気体を確実に導入することができる。このように、中空糸膜モジュール1は、散気部材30の外周側から径方向内側に向かって洗浄用気体をハウジング20内に導入する構造となっている。
 散気孔35は、外周側空間36Bに行き渡った洗浄用空気の少なくとも一部を内周側空間36Aから中空糸膜束10に向けて分散させるように構成されている。より具体的には、外周側空間36Bと連通する散気孔35(外側散気孔35B)の開孔率が、内周側空間36Aと連通する散気孔35(内側散気孔35A)の開孔率よりも小さくなっている。
 ここで、外側散気孔35Bの開孔率は、本体部31の外周部31Bの全体面積に対する、全ての外側散気孔35Bの面積の合計の比率として定義される。また内側散気孔35Aの開孔率は、本体部31の内周部31Aの全体面積に対する、全ての内側散気孔35Aの面積の合計の比率として定義される。
 このように、外側散気孔35Bの開孔率を小さくすることにより、外周側空間36Bから外側散気孔35Bを通じて分散する洗浄用気体の量が少なくなる。これにより、洗浄用気体を、外周側空間36Bにおいて内周側空間36Aを取り囲むように周方向全体に行き渡らせることができる(図3中の矢印F1)。
 そして、外周側空間36Bの全体に行き渡った洗浄用空気を、仕切り部32を超えて内周側空間36Aに流入させ(図4中の矢印F2)、内周側空間36Aから内側散気孔35Aを通じて中空糸膜束10に向けて洗浄用気体を分散させることができる。このようにすれば、ハウジング20の側部に導入口25Aを設けて散気部材30の外周側から洗浄用気体を導入する場合でも、散気部材30による洗浄用気体の分散量の周方向における偏りを少なくすることが可能になる。その結果、中空糸膜束10を周方向において均一に気体洗浄することができる。
 また散気孔35は、外周側空間36Bから中空糸膜束10に向けて分散する洗浄用気体の量が、導入口25Aから外周側空間36Bに導入される洗浄用気体の量よりも少なくなるように形成されている。具体的には、外側散気孔35Bの開孔率を調整することにより、外周側空間36Bからの洗浄用気体の分散量が、外周側空間36Bへの洗浄用気体の導入量よりも少なくなっている。これにより、外周側空間36Bにおいて洗浄用気体を確実に溢れさせることができ、外周側空間36Bから内周側空間36Aに洗浄用気体を確実に流入させることができる。
 <中空糸膜モジュールの洗浄方法>
 次に、本発明の実施形態1に係る中空糸膜モジュールの洗浄方法について、図5に示すフローチャートに沿って説明する。はじめに、この洗浄方法の前に行われる中空糸膜モジュール1による原水の濾過処理について説明する。
 まず、充水工程(図5:S10)では、原水槽(図示しない)からポンプにより送られた原水を、原水導入口44から導水管40内に導入する。図6に示すように、原水は、導水管40内を下端から上端に向かって流れると共に、通水孔41を通じて原水空間21A内に導入される。これにより、原水空間21A内が原水で充たされる。このとき、原水空間21A内の空気は、原水の導入に伴って、エア抜き孔43から導水管40内の空間(管仕切り板42よりも上側の空間)に流入し、エア抜き管26を通じてハウジング20の外に排出される。
 次に、濾過工程(図5:S20)では、原水空間21A内に供給された原水を、中空糸膜11の外表面から内表面に向かって膜壁に透過させる。これにより、SSなどの不純物が除去された濾過水が得られる。図7に示すように、濾過水は、各中空糸膜11の上端から濾過水空間23Bに流出した後、濾過水口23Aを通じて外部に取り出される。
 ここで、濾過時間の経過に伴って原水中のSSが中空糸膜11の外表面に付着し、中空糸膜11の細孔が閉塞されることがある。この場合、原水の透過流速が低下し、中空糸膜11による濾過能力が低下する。そこで、濾過開始から一定時間が経過した後、以下に説明する本実施形態に係る中空糸膜モジュールの洗浄方法を実施することにより、中空糸膜束10を洗浄する。
 この洗浄方法においては、まず、逆洗工程(図5:S30)が実施される。この工程では、図8に示すように、エアーコンプレッサなどで発生させた圧縮空気を、濾過水口23Aを通じて濾過水空間23B内に導入する。この圧縮空気により、中空糸膜11の内表面側の領域内の濾過水が加圧され、中空糸膜11の内表面側から外表面側に向かって濾過水が押し出される。この水圧により、中空糸膜11の外表面に付着したSSの密着力を弱めることができる。また原水空間21A内の水は、散気部材30の貫通孔31Cの孔壁面と導水管40の外周面との間の隙間を通過した後、排水口25Aからハウジング20の外に排出される。
 次に、下側バブリング工程(図5:S40)が以下のようにして実施される。まず、原水空間21A内に原水が充たされた状態において、図9に示すように、洗浄用気体(洗浄用空気)を導入口25Aからハウジング20(下部キャップ25)内に導入する。そして、導入口25Aを通じて洗浄用気体を散気部材30の受け面37の下側における外周側空間36B(図3,図4)に流入させる。
 ここで、仕切り部32の外周面32Aに洗浄用気体が衝突するように、導入口25Aを通じてハウジング20内に洗浄用気体を導入する。これにより、洗浄用気体が内周側空間36Aに直接導入されることを防ぎ、外周側空間36Bに洗浄用気体を確実に導入することができる。洗浄用気体は、仕切り部32よりも径方向外側の受け面37で受けられる。
 そして、図3中の矢印F1で示すように、洗浄用気体を、外周側空間36Bにおいて内周側空間36Aを取り囲むように周方向全体に行き渡らせる。このように、洗浄用気体を外周側空間36Bにおいて周方向全体に行き渡らせることができるのは、上述のように外側散気孔35Bの開孔率が小さく、外周側空間36Bから外側散気孔35Bを通じた洗浄用気体の分散量が抑えられているためである。なお、洗浄用気体は、外周側空間36Bの全体に行き渡るように流れつつも、外側散気孔35Bを通じて少量は分散する。
 また洗浄用気体を導入する際には、外周側空間36Bから外側散気孔35Bを通じて中空糸膜束10に向かって分散する洗浄用気体の量よりも多い量の洗浄用気体を外周側空間36Bに導入する。これにより、洗浄用気体を外周側空間36Bから確実に溢れさせることができる。そして、図4中の矢印F2で示すように、外周側空間36Bに行き渡った洗浄用気体の少なくとも一部が内周側空間36Aに流入する。
 そして、内周側空間36Aに流入した洗浄用気体を、内側散気孔35Aを通じて中空糸膜束10に向けて分散させる。また、内周側空間36Aに流入せずに外周側空間36Bに残った洗浄用気体を、外側散気孔35Bを通じて中空糸膜束10に向けて分散させる。これにより、図9に示すように、中空糸膜11の下端から上端に向かって気泡B1が上昇し、気泡B1によって中空糸膜11が揺動することにより、膜表面に付着したSSが剥がれ落ちる。
 次に、上側バブリング工程(図5:S50)では、図10に示すように、原水導入口44から洗浄用気体(洗浄用空気)を導水管40内に導入する。洗浄用気体は、導水管40内を上昇して管仕切り板42に衝突し、管仕切り板42の直ぐ下側の通水孔41を通じて原水空間21A内に供給される。これにより、中空糸膜11の上端近傍を気泡により洗浄することができる。また原水空間21A内の洗浄用気体は、エア抜き孔43を通じて導水管40内の空間(管仕切り板42よりも上側の空間)に流入し、エア抜き管26を通じてハウジング20の外に排出される。
 その後、膜表面から除去されたSSを含む原水が排水口25Aからハウジング20の外に排出され、本実施形態に係る中空糸膜モジュールの洗浄方法が終了する。そして、上述した充水工程及び濾過工程が再開される。このように、本実施形態に係る中空糸膜モジュールの洗浄方法では、仕切り部32を有する散気部材30を下側バブリング工程において用いることにより、散気部材30の外周側から洗浄用気体を導入した場合でも、散気部材30による洗浄用気体の分散量の周方向における偏りを少なくすることができる。したがって、中空糸膜束10を周方向において均一に気体洗浄することが可能になる。
 (その他実施形態)
 ここで、本発明のその他実施形態について説明する。
 実施形態1では、導入口25Aから導入された洗浄用気体が仕切り部32の外周面32Aに衝突する場合について説明したが、これに限定されない。例えば、導入口25Aを図1に示す位置よりもさらに下側に設け(頂部25AAが仕切り部32の下端よりも下側に位置するように)、洗浄用気体が外周面32Aに衝突しない構成としてもよい。この場合でも、下部キャップ25内に導入された洗浄用気体が浮力によって上昇することにより、外周側空間36B内に洗浄用気体を導入することができる。
 また導入口25Aがハウジング20の側部に設けられる場合にも限定されず、例えば、ハウジング20(下部キャップ25)の下部において、外周側空間36Bに洗浄用気体を導入可能なように、中央部から径方向外側にずれた位置に導入口25Aが設けられてもよい。
 実施形態1では、内側散気孔35A及び外側散気孔35Bの両方が形成される場合について説明したが、これに限定されない。例えば、本体部31において、外側散気孔35Bが形成されず、内側散気孔35Aのみが形成されていてもよい。この場合でも、洗浄用気体を外周側空間36Bの全体に行き渡らせることが可能である。そして、実施形態1と同様に、外周側空間36Bから仕切り部32を超えて内周側空間36Aに流入した洗浄用気体を、中空糸膜束10に向けて分散させることができる。
 実施形態1では、洗浄用気体の導入口25Aが原水の排出口25Aと兼用される場合について説明したが、これに限定されない。例えば、洗浄用気体の導入口と原水の排出口とが、ハウジング20において別々の箇所に設けられていてもよい。
 実施形態1では、導水管40の通水孔41からハウジング20内に原水を供給する場合について説明したが、これに限定されない。図11に示す中空糸膜モジュール1Aのように、導水管40のうち通水孔41が形成された部位が省略され、ハウジング20(下部キャップ25)の下部に設けられた原水導入口から原水が導入されてもよい。
 実施形態1では、中空糸膜束10が片端フリー構造を有する場合について説明したがこれに限定されず、両端固定タイプの中空糸膜束が用いられてもよい。
 実施形態1では、仕切り部32を一つのみ形成する場合について説明したがこれに限定されず、互いに径が異なる複数の仕切り部32を受け面37に接続してもよい。
 実施形態1では、下側バブリング工程及び上側バブリング工程の両方を実施する場合について説明したがこれに限定されず、上側バブリング工程が省略されてもよい。また下側バブリング工程の後に上側バブリング工程が実施される順序にも限定されず、上側バブリング工程の後に下側バブリング工程を実施してもよい。
 実施形態1では、洗浄用気体の一例として空気を説明したがこれに限定されず、中空糸膜11の洗浄に適した他の種類の気体が用いられてもよい。
 なお、上記実施形態を概説すると、以下の通りである。
 上記実施形態に係る中空糸膜モジュールは、外圧濾過式のものであって、束状の中空糸膜からなる中空糸膜束と、前記中空糸膜束の洗浄用気体の導入口が設けられると共に、前記中空糸膜束を収容するハウジングと、前記導入口から導入された洗浄用気体を受ける受け面を有し、前記ハウジング内において前記中空糸膜束に向けて洗浄用気体を分散させる散気孔が前記受け面に形成された散気部材と、を備えている。前記散気部材は、前記受け面の下側の空間を、内周側空間と、前記内周側空間を取り囲み且つ前記導入口から導入された洗浄用気体が導入される外周側空間と、に仕切る仕切り部を有している。前記散気孔は、前記外周側空間に行き渡った洗浄用気体の少なくとも一部を前記内周側空間から前記中空糸膜束に向けて分散させるように構成されている。
 この中空糸膜モジュールによれば、ハウジング内に導入された洗浄用気体を散気部材の外周側空間に行き渡らせ、この外周側空間に行き渡った洗浄用気体を内周側空間に流入させると共に当該内周側空間から中空糸膜束に向けて分散させることができる。これにより、洗浄用気体の分散量の周方向における偏りを防ぐことができる。したがって、散気部材の外周側から洗浄用気体を導入する場合であっても、中空糸膜束を周方向において均一に気体洗浄することが可能であり、洗浄用気体の導入口の位置の自由度が高くなる。
 上記中空糸膜モジュールにおいて、前記導入口は、前記外周側空間に臨む位置に設けられていてもよい。
 この構成によれば、導入口から外周側空間に向けて洗浄用気体を容易に導入することができるため、洗浄用気体を外周側空間においてより確実に収容することができる。
 上記中空糸膜モジュールにおいて、前記仕切り部は、前記外周側空間に臨む外周面を有していてもよい。前記導入口は、前記導入口から導入された洗浄用気体が前記外周面に衝突する位置に設けられていてもよい。
 この構成によれば、洗浄用気体を仕切り部の外周面に衝突させることにより、洗浄用気体が内周側空間に直接導入されるのを防ぎ、外周側空間に洗浄用気体を確実に導入することができる。
 上記中空糸膜モジュールにおいて、前記外周側空間と連通する前記散気孔の開孔率は、前記内周側空間と連通する前記散気孔の開孔率よりも小さくてもよい。
 この構成によれば、外周側空間から散気孔を通じて分散する洗浄用気体の量を少なくすることにより、外周側空間の広い範囲に亘って洗浄用気体を確実に行き渡らせることができる。
 上記中空糸膜モジュールにおいて、前記散気孔は、前記外周側空間から前記中空糸膜束に向けて分散する洗浄用気体の量が、前記導入口から前記外周側空間に導入される洗浄用気体の量よりも少なくなるように形成されていてもよい。
 この構成によれば、外周側空間からの気体の分散量が外周側空間への気体の導入量よりも少なくなるため、外周側空間において洗浄用気体を確実に溢れさせることができる。そして、外周側空間から溢れた洗浄用気体を内周側空間に流入させ、内周側空間から散気孔を通じて中空糸膜束に洗浄用気体を分散させることができる。
 上記実施形態に係る中空糸膜モジュールの洗浄方法は、洗浄用気体の導入口が設けられたハウジングと、前記ハウジング内に収容された中空糸膜束と、前記ハウジング内において前記中空糸膜束に向けて洗浄用気体を分散させる散気孔が形成された受け面を有し、前記受け面の下側に内周側空間と前記内周側空間を取り囲む外周側空間とが形成された散気部材と、を備えた外圧濾過式の中空糸膜モジュールの前記中空糸膜束を洗浄する方法である。この方法においては、前記導入口を通じて洗浄用気体を前記散気部材の前記受け面の下側における前記外周側空間に流入させ、前記外周側空間に行き渡った洗浄用気体の少なくとも一部を前記内周側空間に流入させ、洗浄用気体を前記散気孔を通じて前記中空糸膜束に向けて分散させる。
 この洗浄方法によれば、導入口を通じて流入した洗浄用気体を散気部材の外周側空間に行き渡らせ、外周側空間に行き渡った洗浄用気体を内周側空間に流入させて中空糸膜束に向けて分散させることができる。これにより、散気部材の外周側から洗浄用気体を導入した場合においても、洗浄用気体の分散量の周方向における偏りを防ぐことができる。したがって、中空糸膜束を周方向において均一に気体洗浄することができる。
 上記中空糸膜モジュールの洗浄方法において、前記内周側空間と前記外周側空間とを仕切る仕切り部における前記外周側空間に臨む外周面に洗浄用気体が衝突するように、前記導入口を通じて前記ハウジング内に洗浄用気体を導入してもよい。
 これにより、洗浄用気体が内周側空間に直接導入されるのを防ぎ、外周側空間に洗浄用気体を確実に導入することができる。
 上記中空糸膜モジュールの洗浄方法において、前記外周側空間から前記中空糸膜束に向かって分散する洗浄用気体の量よりも多い量の洗浄用気体を前記外周側空間に導入してもよい。
 これにより、外周側空間において洗浄用気体を確実に溢れさせることができる。そして、外周側空間から溢れた洗浄用気体を内周側空間に流入させ、内周側空間から散気孔を通じて中空糸膜束に洗浄用気体を分散させることができる。
 (実験例)
 本発明の中空糸膜モジュール及びその洗浄方法による効果を確認するため、以下の実験を行った。
 まず、図1~図4を参照して説明した中空糸膜モジュール1を準備し、ハウジング20内に水を充たした状態において、5Nm/hの流量で洗浄用空気を下部キャップ25内に導入した。そして、図2中の符号P1~P4で示す散気孔35から分散する洗浄用空気の流量をそれぞれ測定した。符号P1,P3で示す散気孔35は、符号P2,P4で示す散気孔35よりも導入口25Aに近い位置に形成されている。散気部材30の直径を230mm、仕切り部32の外径を164mm、貫通孔31Cの径を90mm、外側散気孔35B(符号P1,P2)の径を3mm、内側散気孔35A(符号P3,P4)の径を3.5mmとした。また比較例として、上記中空糸膜モジュール1の散気部材30から仕切り部32を省略したものを用いて、同様に符号P1~P4で示す散気孔35から分散する洗浄用空気の流量を測定した。
 その結果、仕切り部32を有する中空糸膜モジュール1を用いた場合には、符号P1の散気孔35から分散する洗浄用空気の流量が0.15Nm/h、符号P2の散気孔35から分散する洗浄用空気の流量が0.14Nm/h、符号P3の散気孔35から分散する洗浄用空気の流量が0.08Nm/h、符号P4の散気孔35から分散する洗浄用空気の流量が0.08Nm/hであった。P1とP2との比較及びP3とP4との比較から明らかなように、散気部材30に仕切り部32が設けられる場合には、散気孔35からの空気分散量の周方向におけるばらつきが小さかった。
 これに対し、仕切り部32が省略された中空糸膜モジュールを用いた場合には、符号P1の散気孔35から分散する洗浄用空気の流量が0.15Nm/h、符号P2の散気孔35から分散する洗浄用空気の流量が0.02Nm/h、符号P3の散気孔35から分散する洗浄用空気の流量が0.20Nm/h、符号P4の散気孔35から分散する洗浄用空気の流量が0.03Nm/hであった。P1とP2との比較及びP3とP4との比較から明らかなように、散気部材30から仕切り部32を省略した場合には、散気孔35からの空気分散量の周方向におけるばらつきがより大きくなった。この結果より、上記実施形態に係る中空糸膜モジュール1を用いることにより、散気部材30による空気分散量の周方向における偏りが抑えられることが分かった。なお、内側散気孔35Aの径が外側散気孔35Bの径よりも大きいため、比較例においては、符号P3の散気孔35から分散する洗浄用気体の流量が符号P1の散気孔35から分散する洗浄用気体の流量よりも大きい結果となった。
 今回開示された実施形態及び実験例は、全ての点で例示であって、制限的なものではないと解されるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲により示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。

Claims (8)

  1.  外圧濾過式の中空糸膜モジュールであって、
     束状の中空糸膜からなる中空糸膜束と、
     前記中空糸膜束の洗浄用気体の導入口が設けられると共に、前記中空糸膜束を収容するハウジングと、
     前記導入口から導入された洗浄用気体を受ける受け面を有し、前記ハウジング内において前記中空糸膜束に向けて洗浄用気体を分散させる散気孔が前記受け面に形成された散気部材と、を備え、
     前記散気部材は、前記受け面の下側の空間を、内周側空間と、前記内周側空間を取り囲み且つ前記導入口から導入された洗浄用気体が導入される外周側空間と、に仕切る仕切り部を有し、
     前記散気孔は、前記外周側空間に行き渡った洗浄用気体の少なくとも一部を前記内周側空間から前記中空糸膜束に向けて分散させるように構成されている、中空糸膜モジュール。
  2.  前記導入口は、前記外周側空間に臨む位置に設けられている、請求項1に記載の中空糸膜モジュール。
  3.  前記仕切り部は、前記外周側空間に臨む外周面を有し、
     前記導入口は、前記導入口から導入された洗浄用気体が前記外周面に衝突する位置に設けられている、請求項1または2に記載の中空糸膜モジュール。
  4.  前記外周側空間と連通する前記散気孔の開孔率は、前記内周側空間と連通する前記散気孔の開孔率よりも小さい、請求項1~3のいずれか1項に記載の中空糸膜モジュール。
  5.  前記散気孔は、前記外周側空間から前記中空糸膜束に向けて分散する洗浄用気体の量が、前記導入口から前記外周側空間に導入される洗浄用気体の量よりも少なくなるように形成されている、請求項1~4のいずれか1項に記載の中空糸膜モジュール。
  6.  洗浄用気体の導入口が設けられたハウジングと、前記ハウジング内に収容された中空糸膜束と、前記ハウジング内において前記中空糸膜束に向けて洗浄用気体を分散させる散気孔が形成された受け面を有し、前記受け面の下側に内周側空間と前記内周側空間を取り囲む外周側空間とが形成された散気部材と、を備えた外圧濾過式の中空糸膜モジュールの前記中空糸膜束を洗浄する方法であって、
     前記導入口を通じて洗浄用気体を前記散気部材の前記受け面の下側における前記外周側空間に流入させ、
     前記外周側空間に行き渡った洗浄用気体の少なくとも一部を前記内周側空間に流入させ、
     洗浄用気体を前記散気孔を通じて前記中空糸膜束に向けて分散させる、中空糸膜モジュールの洗浄方法。
  7.  前記内周側空間と前記外周側空間とを仕切る仕切り部における前記外周側空間に臨む外周面に洗浄用気体が衝突するように、前記導入口を通じて前記ハウジング内に洗浄用気体を導入する、請求項6に記載の中空糸膜モジュールの洗浄方法。
  8.  前記外周側空間から前記中空糸膜束に向かって分散する洗浄用気体の量よりも多い量の洗浄用気体を前記外周側空間に導入する、請求項6または7に記載の中空糸膜モジュールの洗浄方法。
PCT/JP2019/024434 2018-06-27 2019-06-20 中空糸膜モジュール及びその洗浄方法 WO2020004208A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980030873.8A CN112105445B (zh) 2018-06-27 2019-06-20 中空纤维膜组件以及其清洗方法
AU2019293222A AU2019293222B2 (en) 2018-06-27 2019-06-20 Hollow fiber membrane module and method for cleaning the same
JP2020527452A JP7035189B2 (ja) 2018-06-27 2019-06-20 中空糸膜モジュール及びその洗浄方法
US17/056,530 US20210236994A1 (en) 2018-06-27 2019-06-20 Hollow fiber membrane module and method for cleaning the same
KR1020207035763A KR102245329B1 (ko) 2018-06-27 2019-06-20 중공사막 모듈 및 그 세정 방법
EP19826911.0A EP3782718A4 (en) 2018-06-27 2019-06-20 HOLLOW FIBER MEMBRANES MODULE AND METHOD FOR CLEANING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-122056 2018-06-27
JP2018122056 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020004208A1 true WO2020004208A1 (ja) 2020-01-02

Family

ID=68984761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024434 WO2020004208A1 (ja) 2018-06-27 2019-06-20 中空糸膜モジュール及びその洗浄方法

Country Status (8)

Country Link
US (1) US20210236994A1 (ja)
EP (1) EP3782718A4 (ja)
JP (1) JP7035189B2 (ja)
KR (1) KR102245329B1 (ja)
CN (1) CN112105445B (ja)
AU (1) AU2019293222B2 (ja)
TW (1) TWI797345B (ja)
WO (1) WO2020004208A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323953B1 (ja) 2022-01-28 2023-08-09 環水工房有限会社 膜ろ過装置及び中空糸膜の洗浄方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133367A (ja) * 1997-07-24 1999-02-09 Mitsubishi Rayon Co Ltd 中空糸膜モジュール
JP2016087567A (ja) 2014-11-07 2016-05-23 株式会社クラレ 膜モジュール
WO2017086313A1 (ja) * 2015-11-19 2017-05-26 株式会社クラレ 中空糸膜モジュール及びその洗浄方法
JP2017217580A (ja) * 2016-06-03 2017-12-14 株式会社クラレ 中空糸膜モジュール及びその洗浄方法
JP2018051429A (ja) * 2016-09-26 2018-04-05 株式会社クラレ 中空糸膜モジュール及びこれを用いた濾過方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3349015B2 (ja) * 1995-07-25 2002-11-20 株式会社日立製作所 濾過装置
FR2901488B1 (fr) * 2006-05-23 2008-08-15 Otv Sa Dispositif d'aeration pour systeme de filtration d'eau a membranes immergees, incluant un plancher pourvu de moyens d'injection d'un gaz et d'au moins un systeme d'equilibrage des pressions
JP2009285532A (ja) * 2008-05-27 2009-12-10 Kobelco Eco-Solutions Co Ltd 中空糸膜モジュール、膜分離方法及び水処理装置
CN101480581B (zh) * 2009-01-05 2011-06-15 杭州水处理技术研究开发中心有限公司 一种外压式中空纤维膜组件及使用方法
CN201399324Y (zh) * 2009-01-16 2010-02-10 苏州膜华材料科技有限公司 一种集成式中空纤维膜组件
JP5149223B2 (ja) * 2009-02-27 2013-02-20 株式会社クボタ 分離膜の洗浄装置、膜分離装置及び洗浄方法
JP2011110499A (ja) * 2009-11-26 2011-06-09 Kobelco Eco-Solutions Co Ltd 中空糸膜モジュール及び水処理方法
JPWO2012133068A1 (ja) * 2011-03-28 2014-07-28 東レ株式会社 中空糸膜モジュール
JP6700857B2 (ja) * 2016-02-29 2020-05-27 三菱日立パワーシステムズ環境ソリューション株式会社 中空糸膜モジュール及びこれを備えた水処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133367A (ja) * 1997-07-24 1999-02-09 Mitsubishi Rayon Co Ltd 中空糸膜モジュール
JP2016087567A (ja) 2014-11-07 2016-05-23 株式会社クラレ 膜モジュール
WO2017086313A1 (ja) * 2015-11-19 2017-05-26 株式会社クラレ 中空糸膜モジュール及びその洗浄方法
JP2017217580A (ja) * 2016-06-03 2017-12-14 株式会社クラレ 中空糸膜モジュール及びその洗浄方法
JP2018051429A (ja) * 2016-09-26 2018-04-05 株式会社クラレ 中空糸膜モジュール及びこれを用いた濾過方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323953B1 (ja) 2022-01-28 2023-08-09 環水工房有限会社 膜ろ過装置及び中空糸膜の洗浄方法
JP2023114465A (ja) * 2022-01-28 2023-08-18 環水工房有限会社 膜ろ過装置及び中空糸膜の洗浄方法

Also Published As

Publication number Publication date
CN112105445A (zh) 2020-12-18
KR102245329B1 (ko) 2021-04-27
EP3782718A4 (en) 2021-08-11
US20210236994A1 (en) 2021-08-05
AU2019293222B2 (en) 2022-04-21
KR20210002732A (ko) 2021-01-08
EP3782718A1 (en) 2021-02-24
JP7035189B2 (ja) 2022-03-14
TW202005708A (zh) 2020-02-01
CN112105445B (zh) 2023-01-10
TWI797345B (zh) 2023-04-01
JPWO2020004208A1 (ja) 2021-02-15
AU2019293222A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
AU2001269498B2 (en) Hollow thread film cartridge, hollow thread film module using the cartridge, and tank type filter
JP6757739B2 (ja) 中空糸膜モジュール及びその洗浄方法
JP2004008981A (ja) 膜分離装置
JP7278938B2 (ja) 中空糸膜モジュール及びその洗浄方法
WO2020004208A1 (ja) 中空糸膜モジュール及びその洗浄方法
JP6343227B2 (ja) 膜モジュール
JP2010247086A (ja) 平膜モジュールおよびそれを用いた水処理装置
JP5730377B2 (ja) 散気管及び散気管の洗浄方法
JP7131346B2 (ja) 散気装置及び膜分離活性汚泥装置
JP6740475B2 (ja) ヘッダー付散気装置及び膜分離活性汚泥装置
JP2002102661A (ja) 固液分離装置
JPH09131517A (ja) 中空糸膜モジュールおよびその使用方法
WO2018012178A1 (ja) 散気ユニット及び濾過装置
JP6068519B2 (ja) 散気管及び散気管の洗浄方法
JP2019155326A (ja) 中空糸膜モジュール
JP2018051429A (ja) 中空糸膜モジュール及びこれを用いた濾過方法
JP7131348B2 (ja) 膜分離活性汚泥装置
JP2005138103A (ja) 分離膜モジュールおよび膜分離装置
WO2021015156A1 (ja) 膜分離装置
JP2014195775A (ja) 中空糸膜モジュール
KR200318778Y1 (ko) 산기관 일체형 중공사 분리막 모듈
JP2017217581A (ja) 中空糸膜濾過装置及びその洗浄方法
JP2018183759A (ja) 中空糸膜モジュールの洗浄方法
JP2009050780A (ja) 排水処理方法
JP2001029987A (ja) 固液分離装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527452

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019293222

Country of ref document: AU

Date of ref document: 20190620

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019826911

Country of ref document: EP

Effective date: 20201119

ENP Entry into the national phase

Ref document number: 20207035763

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE