WO2020003690A1 - 熱処理により誘電正接を低減できる全芳香族液晶ポリエステル樹脂を含む樹脂成形品および電気電子部品 - Google Patents

熱処理により誘電正接を低減できる全芳香族液晶ポリエステル樹脂を含む樹脂成形品および電気電子部品 Download PDF

Info

Publication number
WO2020003690A1
WO2020003690A1 PCT/JP2019/015305 JP2019015305W WO2020003690A1 WO 2020003690 A1 WO2020003690 A1 WO 2020003690A1 JP 2019015305 W JP2019015305 W JP 2019015305W WO 2020003690 A1 WO2020003690 A1 WO 2020003690A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polyester
wholly aromatic
polyester resin
aromatic liquid
Prior art date
Application number
PCT/JP2019/015305
Other languages
English (en)
French (fr)
Inventor
豪介 鷲野
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to EP19826049.9A priority Critical patent/EP3816213A4/en
Priority to JP2020527223A priority patent/JP7324752B2/ja
Priority to US17/253,771 priority patent/US11505647B2/en
Priority to KR1020207035031A priority patent/KR102457509B1/ko
Priority to CN201980041116.0A priority patent/CN112292421B/zh
Publication of WO2020003690A1 publication Critical patent/WO2020003690A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • H01B3/422Linear saturated polyesters derived from dicarboxylic acids and dihydroxy compounds
    • H01B3/423Linear aromatic polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a resin molded article containing a wholly aromatic liquid crystal polyester resin capable of reducing the dielectric loss tangent by heat treatment, and more particularly to a resin molded article containing a wholly aromatic liquid crystal polyester resin having a particularly low dielectric loss tangent, and the molded article
  • the present invention relates to an electric / electronic component including:
  • the transmission loss is composed of a conductor loss caused by a conductor and a dielectric loss caused by an insulating resin constituting an electric / electronic component such as a board in an electronic device or a communication device. Since the power of 0.5 and the dielectric loss are proportional to the first power of the frequency, the effect of the dielectric loss becomes very large in a high frequency band, especially in a GHz band. Further, since the dielectric loss increases in proportion to the dielectric loss tangent of the resin, a resin having a low dielectric loss tangent performance is required to prevent information deterioration.
  • Patent Document 1 discloses, as a liquid crystalline aromatic polyester having a low dielectric loss tangent in a high frequency band, two of structural units derived from p- or m-hydroxybenzoic acid and structural units derived from hydroxynaphthoic acid. Liquid crystalline aromatic polyesters containing more than one species have been proposed.
  • Patent Literature 2 proposes to improve the heat resistance by adjusting the crystallinity and density of the film by heat treatment of the film.
  • an object of the present invention is to provide a resin molded article containing a wholly aromatic liquid crystal polyester resin, which has a remarkably low dielectric loss tangent and high heat resistance even in a high frequency band.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, in a resin molded product containing a wholly aromatic liquid crystal polyester resin and subjected to heat treatment, one cycle of a temperature rising process measured by a differential scanning calorimeter was performed.
  • the transition temperature from the eyes of the crystal phase to crystal phase (hereinafter, referred to as "melting point") is the enthalpy change [Delta] H 1 and enthalpy change [Delta] H 2 in second cycle melting point of at, by satisfying the specific relationship, significantly lower
  • the present invention has been completed based on such findings.
  • a resin molded product containing a wholly aromatic liquid crystal polyester resin and subjected to a heat treatment The enthalpy change ⁇ H 1 at the melting point in the first cycle and the enthalpy change ⁇ H 2 at the melting point in the second cycle of the heating step measured by a differential scanning calorimeter satisfy ⁇ H 1 / ⁇ H 2 ⁇ 2.0,
  • a resin molded product is provided, wherein the dielectric loss tangent measured by the SPDR method at a measurement frequency of 10 GHz is 0.85 ⁇ 10 ⁇ 3 or less.
  • the enthalpy change ⁇ H 1 at the melting point in the first cycle in the temperature raising process measured by a differential scanning calorimeter is 3.5 J / g or more.
  • the wholly aromatic liquid crystal polyester resin contains three or more types of structural units.
  • the wholly aromatic liquid crystal polyester resin has 10 mol of the structural unit (I) derived from 6-hydroxy-2-naphthoic acid based on the total structural units of the wholly aromatic liquid crystal polyester resin. %.
  • the wholly aromatic liquid crystal polyester resin further includes a structural unit (II) derived from an aromatic diol compound and a structural unit (III) derived from an aromatic dicarboxylic acid.
  • the wholly aromatic liquid crystal polyester resin may further include a structural unit (IV) derived from p-hydroxybenzoic acid.
  • an electric / electronic component including the resin molded product.
  • the enthalpy change ⁇ H 1 at the melting point in the first cycle and the enthalpy change ⁇ H 2 at the melting point in the second cycle measured by a differential scanning calorimeter satisfy a specific relationship, A resin molded article containing a wholly aromatic liquid crystal polyester resin having excellent heat resistance while having an extremely low dielectric loss tangent can be realized.
  • the resin molded product according to the present invention contains the following wholly aromatic liquid crystal polyester resin and is subjected to heat treatment (annealing).
  • heat treatment annealing
  • the degree of increase in the crystallinity can be evaluated for the resin molded product by a differential scanning calorimeter (DSC). For example, the enthalpy change ⁇ H 1 at the melting point in the first cycle of the temperature raising process indicates the degree of crystallinity obtained by the heat treatment.
  • ⁇ H 1 / ⁇ H 2 by adjusting the above-mentioned ⁇ H 1 / ⁇ H 2 to a specific numerical range by heat-treating the resin molded product, it is possible to realize a remarkably low dielectric loss tangent even in a high frequency band.
  • the enthalpy change ⁇ H 1 at the melting point in the first cycle and the enthalpy change ⁇ H 2 at the melting point in the second cycle of the heating step measured by the differential scanning calorimeter were ⁇ H 1 / ⁇ H 2 ⁇ 2.0. Is satisfied, preferably ⁇ H 1 / ⁇ H 2 ⁇ 2.5, more preferably ⁇ H 1 / ⁇ H 2 ⁇ 3.0, still more preferably ⁇ H 1 / ⁇ H 2 ⁇ 4.0, and still more preferably Satisfies ⁇ H 1 / ⁇ H 2 ⁇ 5.0.
  • the resin molded article preferably has an enthalpy change ⁇ H 1 at the melting point in the first cycle of the temperature raising step measured by a differential scanning calorimeter of 3.5 J / g or more, more preferably 4 J / g or more, It is more preferably at least 5 J / g, still more preferably at least 7 J / g, particularly preferably at least 8 J / g.
  • the [Delta] H 1 is equal to or 3.5 J / g or more, say as the wholly aromatic liquid crystal polyester resin has a high degree of crystallinity as an absolute value, to achieve a reduction in the dielectric loss tangent Can be.
  • the measurement conditions of the differential scanning calorimeter include a process of raising the temperature from 30 ° C. at a temperature rising rate of 10 ° C./min from 360 ° C. to 360 ° C. in a nitrogen atmosphere, and a process of 360 ° C. The process of lowering the temperature from 380 ° C. to 30 ° C. is defined as one cycle, and two cycles are performed.
  • the enthalpy change ⁇ H 1 at the melting point described above is determined by the polymerization conditions (temperature and time) of the polymerization reaction in the method for producing a wholly aromatic liquid crystal polyester resin described in detail below, and in the method for producing a resin molded product described in detail below. It can be adjusted by changing the conditions of the heat treatment (annealing) of the molded article.
  • the lower limit of the melting point of the resin molded product is preferably 290 ° C. or higher, more preferably 295 ° C. or higher, even more preferably 300 ° C. or higher, and even more preferably It is 310 ° C. or higher, and the upper limit of the molding process is preferably 370 ° C. or lower, more preferably 360 ° C. or lower, and further preferably 350 ° C. or lower.
  • the melting point of the resin molded product according to the present invention is within the above numerical range, the heat resistance and workability are excellent, and the heat resistance and the dielectric loss tangent can be significantly improved by heat treatment.
  • the melting point of a resin molded product conforms to the test method of ISO11357 and ASTM D3418, and is measured using a differential scanning calorimeter (DSC) manufactured by Hitachi High-Tech Science Corporation.
  • DSC differential scanning calorimeter
  • the dielectric loss tangent (measurement frequency: 10 GHz) of the heat-treated resin molded product measured by the SPDR method is 0.85 ⁇ 10 ⁇ 3 or less, preferably 0.80 ⁇ 10 ⁇ 3 or less, more preferably 0 or less. 0.75 ⁇ 10 ⁇ 3 or less, more preferably 0.70 ⁇ 10 ⁇ 3 or less.
  • the dielectric loss tangent (measured frequency: 34 GHz) of the heat-treated resin molded product at 25 ° C. measured by the cylindrical cavity resonator method is 1.5 ⁇ 10 ⁇ 3 or less, preferably 1.2 ⁇ 10 ⁇ 3 or less. And more preferably 1.0 ⁇ 10 ⁇ 3 or less.
  • the dielectric loss tangent (measuring frequency: 81 GHz) of the heat-treated resin molded product at 25 ° C. measured by the cylindrical cavity resonator method is 3.0 ⁇ 10 ⁇ 3 or less, preferably 2.5 ⁇ 10 ⁇ 3 or less. And more preferably 2.0 ⁇ 10 ⁇ 3 or less.
  • the resin molded article after the heat treatment has a dielectric loss tangent (measuring frequency: 34 GHz) at 30 ° C. and 100 ° C. of preferably 2.0 ⁇ 10 ⁇ 3 or less and 3.0 ⁇ 10 ⁇ 3 or less, respectively.
  • the rate of change of the dielectric loss tangent from 30 ° C. to 100 ° C. at a measurement frequency of 34 GHz of the heat-treated resin molded product is preferably 2.5 ⁇ 10 ⁇ 5 / ° C. or less, more preferably 2.0 ⁇ 10 ⁇ 5 / ° C.
  • the temperature is 10 ⁇ 5 / ° C. or less, and more preferably 1.5 ⁇ 10 ⁇ 5 / ° C. or less.
  • the dielectric loss tangent of a wholly aromatic liquid crystal polyester resin at 10 GHz can be measured by a split post dielectric resonator method (SPDR method) using a network analyzer N5247A of Keysight Technologies, Inc. it can.
  • SPDR method split post dielectric resonator method
  • Other dielectric loss tangent measurements can be made by the cylindrical cavity resonator method.
  • the dielectric loss tangent is a value measured at 23 ° C. in an air atmosphere and at a humidity of 60%.
  • the wholly aromatic liquid crystal polyester resin used in the resin molded product of the present invention preferably contains three or more, more preferably four or more constituent units.
  • the constituent units of the wholly aromatic liquid crystal polyester resin include a constituent unit (I) derived from 6-hydroxy-2-naphthoic acid, a constituent unit (II) derived from an aromatic diol compound, and a constituent unit derived from an aromatic dicarboxylic acid. And a structural unit (III).
  • each constituent unit contained in the wholly aromatic liquid crystal polyester resin will be described.
  • the wholly aromatic liquid crystal polyester resin preferably contains a structural unit (I) derived from 6-hydroxy-2-naphthoic acid represented by the following formula (I).
  • the composition ratio (mol%) of the structural unit (I) to the total structural units of the wholly aromatic liquid crystal polyester resin is preferably 10 mol% or more, more preferably 30 mol%, from the viewpoint of reducing the dielectric loss tangent of the resin molded product. Mol% or more, more preferably 40 mol% or more, even more preferably 50 mol% or more, and the upper limit is preferably 70 mol% or less, more preferably 65 mol% or less. , More preferably 60 mol% or less.
  • Examples of the monomer that provides the structural unit (I) include 6-hydroxy-2-naphthoic acid (HNA, the following formula (1)), and acetylated products, ester derivatives, and acid halides thereof.
  • HNA 6-hydroxy-2-naphthoic acid
  • the wholly aromatic liquid crystal polyester resin preferably contains a structural unit (II) derived from an aromatic diol compound.
  • the composition ratio (mol%) of the structural unit (II) to the total structural units of the wholly aromatic liquid crystal polyester resin is preferably 15 mol from the viewpoint of decreasing the dielectric loss tangent of the wholly aromatic liquid crystal polyester resin. %, More preferably at least 17.5 mol%, even more preferably at least 20 mol%, and the upper limit is preferably at most 45 mol%, more preferably at most 35 mol%. , More preferably 30 mol% or less. When two or more structural units (II) derived from an aromatic diol compound are contained, their total molar ratio may be within the above-mentioned composition ratio.
  • the structural unit (II) is represented by the following formula (II).
  • Ar 1 is selected from the group consisting of a phenyl group optionally having a substituent, a biphenyl group, a 4,4′-isopropylidenediphenyl group, a naphthyl group, an anthryl group and a phenanthryl group. Of these, a phenyl group and a biphenyl group are more preferred.
  • the substituent include hydrogen, an alkyl group, an alkoxy group, and fluorine.
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms. Further, it may be a linear alkyl group or a branched alkyl group.
  • the alkoxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
  • Examples of the monomer giving the structural unit (II) include 4,4-dihydroxybiphenyl (BP, the following formula (2)), hydroquinone (HQ, the following formula (3)), and methylhydroquinone (MeHQ, the following formula (4)) ), 4,4′-isopropylidene diphenol (BisPA, the following formula (5)), and acylated products thereof.
  • BP 4,4-dihydroxybiphenyl
  • HQ hydroquinone
  • MeHQ methylhydroquinone
  • BisPA 4,4′-isopropylidene diphenol
  • the wholly aromatic liquid crystal polyester resin preferably contains a structural unit (III) derived from an aromatic dicarboxylic acid.
  • the composition ratio (mol%) of the structural unit (III) to the total structural units of the wholly aromatic liquid crystal polyester resin is preferably 15 mol from the viewpoint of lowering the dielectric loss tangent of the wholly aromatic liquid crystal polyester resin. %, More preferably at least 17.5 mol%, even more preferably at least 20 mol%, and the upper limit is preferably at most 45 mol%, more preferably at most 35 mol%. , More preferably 30 mol% or less.
  • their total molar ratio may be within the above-mentioned composition ratio.
  • the structural unit (III) is represented by the following formula (III).
  • Ar 2 is selected from the group consisting of a phenyl group, a biphenyl group, a naphthyl group, an anthryl group, and a phenanthryl group having a substituent, if desired. Of these, a phenyl group is more preferred.
  • substituent include hydrogen, an alkyl group, an alkoxy group, and fluorine.
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms. Further, it may be a linear alkyl group or a branched alkyl group.
  • the alkoxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
  • Examples of the monomer giving the structural unit (III) include terephthalic acid (TPA, the following formula (6)), isophthalic acid (IPA, the following formula (7)), 2,6-naphthalenedicarboxylic acid (NADA, the following formula (8)) ) And their ester derivatives, acid halides and the like.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • NADA 2,6-naphthalenedicarboxylic acid
  • the wholly aromatic liquid crystal polyester resin may further include a structural unit (IV) derived from p-hydroxybenzoic acid represented by the following formula (IV).
  • the composition ratio (mol%) of the structural unit (IV) to the total structural units of the wholly aromatic liquid crystal polyester resin is, from the viewpoint of a decrease in the dielectric loss tangent of the wholly aromatic liquid crystal polyester resin and high heat resistance, as an upper limit value: It is preferably at most 10 mol%, more preferably at most 8 mol%, even more preferably at most 5 mol%.
  • Examples of the monomer that gives the structural unit (IV) include p-hydroxybenzoic acid (HBA, the following formula (9)), and acetylated products, ester derivatives, and acid halides thereof.
  • HBA p-hydroxybenzoic acid
  • the liquid crystallinity of the wholly aromatic liquid crystal polyester resin was measured using a polarizing microscope (trade name: BH-2) manufactured by Olympus Corporation equipped with a hot stage for microscopes (trade name: FP82HT) manufactured by Mettler. It can be confirmed by observing the presence or absence of optical anisotropy after heating and melting the liquid crystal polyester resin on a microscope heating stage.
  • a polarizing microscope (trade name: BH-2) manufactured by Olympus Corporation equipped with a hot stage for microscopes (trade name: FP82HT) manufactured by Mettler.
  • the wholly aromatic liquid crystal polyester resin according to the present invention is obtained by polymerizing a monomer giving the structural units (I) to (IV) by a conventionally known method such as melt polymerization, solid phase polymerization, solution polymerization and slurry polymerization. Can be manufactured.
  • the wholly aromatic liquid crystal polyester resin according to the present invention can be produced by only melt polymerization. Alternatively, it can be produced by a two-stage polymerization in which a prepolymer is prepared by melt polymerization, and further solid-phase polymerization is performed.
  • the monomers giving the structural units (I) to (IV) may be combined in a predetermined ratio to 100 mol%, and the total amount of the monomers It is preferable to carry out the reaction under reflux of acetic acid in the presence of 1.05 to 1.15 molar equivalents of acetic anhydride with respect to the hydroxyl groups.
  • the prepolymer obtained by melt polymerization is cooled and solidified and then pulverized into a powder or a flake, followed by a known solid state polymerization method.
  • a method in which the prepolymer resin is heat-treated in a temperature range of 200 to 350 ° C. for 1 to 30 hours under an inert atmosphere such as nitrogen or under vacuum is preferably selected.
  • the solid phase polymerization may be performed with stirring, or may be performed in a state of standing without stirring.
  • by changing the polymerization conditions of the polymerization reaction temperature and time
  • a catalyst may or may not be used in the polymerization reaction.
  • the catalyst to be used those conventionally known as polyester polymerization catalysts can be used, and metals such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide can be used.
  • the amount of the catalyst used is not particularly limited, but is preferably 0.0001 to 0.1 part by weight based on 100 parts by weight of the total amount of the monomers.
  • the polymerization reactor in melt polymerization is not particularly limited, but a reactor used for a reaction of a general high-viscosity fluid is preferably used.
  • these reactors include, for example, an anchor type, a multi-stage type, a spiral band type, a spiral shaft type, or the like, or a stirred tank type polymerization reactor having a stirring device having a stirring blade of various shapes deformed from these, or , Kneaders, roll mills, Banbury mixers, and other mixing devices generally used for kneading resins.
  • the molded article according to the present invention may contain a resin other than the wholly aromatic liquid crystal polyester resin as long as the effects of the present invention are not impaired.
  • polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polyarylate and polybutylene terephthalate, polyolefin resins such as polyethylene and polypropylene, cycloolefin polymers, vinyl resins such as polyvinyl chloride, polyacrylate, polymethacrylate and polymethylmethacrylate (Meth) acrylic resin such as acrylate, polyphenylene ether resin, polyacetal resin, polyamide resin, imide resin such as polyimide and polyetherimide, polystyrene, high impact polystyrene, polystyrene resin such as AS resin and ABS resin, heat of epoxy resin etc. Cured resin, cellulose resin, polyetheretherketone resin, fluorine resin and polycarbonate resin and the like, and the molded product, These may be contained alone
  • the molded article according to the present invention may include other additives such as a coloring agent, a dispersant, a plasticizer, an antioxidant, a curing agent, a flame retardant, a heat stabilizer, and an ultraviolet absorber as long as the effects of the present invention are not impaired. , An antistatic agent and a surfactant.
  • the resin molded product according to the present invention is obtained by molding a resin composition containing the above wholly aromatic liquid crystal polyester resin and, if desired, other resins and additives by a conventionally known method, and then subjecting the resin composition to a heat treatment (annealing). Obtainable.
  • the resin composition can be obtained by melt-kneading a wholly aromatic liquid crystal polyester resin or the like using a Banbury mixer, a kneader, a single-screw or twin-screw extruder, or the like.
  • Examples of the molding method include press molding, foam molding, injection molding, extrusion molding, and punching molding.
  • the molded article manufactured as described above can be processed into various shapes depending on the application.
  • the shape of the molded product can be, for example, a plate shape or a film shape.
  • the lower limit of the temperature of the heat treatment is preferably “Tm 2 ⁇ 50 ° C.” or more, more preferably “Tm 2 ⁇ 40 ° C.” or more, and still more preferably “Tm 2 ⁇ 30 ° C. or more”. It is still more preferably “Tm 2 ⁇ 20 ° C.” or higher, and the upper limit is preferably “Tm 2 + 10 ° C.” or lower, more preferably “Tm 2 + 5 ° C.” or lower, even more preferably “Tm 2 ” or lower, and even more. It is preferably at most “Tm 2 ⁇ 5 ° C.”.
  • the heat treatment time is preferably 30 minutes or more, 1 hour or more, more preferably 2 hours or more as a lower limit, and is preferably 10 hours or less, more preferably 5 hours as an upper limit. It is as follows.
  • the atmosphere during the heating is preferably under an air atmosphere, more preferably under reduced pressure, and further preferably under a nitrogen atmosphere.
  • the temperature of the heat treatment, time, and, if the atmosphere is within the above range it is easy to adjust the enthalpy [Delta] H 1, which is an index of the crystallinity in the desired range, also blister of the molded article surface (blisters) and warp Can also be suppressed.
  • An electric / electronic component according to the present invention includes the above resin molded product.
  • Examples of electrical and electronic components include antennas used for electronic devices and communication devices such as ETC, GPS, wireless LAN and mobile phones, connectors for high-speed transmission, CPU sockets, circuit boards, flexible printed circuit boards (FPC), and laminates.
  • Millimeter-wave and quasi-millimeter-wave radars such as circuit boards and anti-collision radars, RFID tags, capacitors, inverter parts, insulating films, covering materials for cables, insulating materials for secondary batteries such as lithium ion batteries, speaker diaphragms, etc. No.
  • Test Example 1 Examination of Change in Dielectric Properties by Heat Treatment
  • changes in the dielectric properties of a resin molded article subjected to heat treatment were confirmed using a wholly aromatic liquid crystal polyester resin having various monomer compositions.
  • Example 1-1 ⁇ Production of wholly aromatic liquid crystal polyester resin>
  • HNA 6-hydroxy-2-naphthoic acid
  • BP 4,4-dihydroxybiphenyl
  • TPA terephthalic acid
  • HBA p-hydroxybenzoic acid
  • K acetate and magnesium acetate were charged as catalysts, and nitrogen replacement was performed by performing three times of vacuum-injection of nitrogen into the polymerization vessel, followed by acetic anhydride (based on hydroxyl group). (1.08 molar equivalent), and the mixture was heated to 150 ° C. and acetylated at reflux for 2 hours.
  • the temperature of the polymerization vessel in which acetic acid was distilled off was raised at a rate of 0.5 ° C./min, and when the temperature of the melt in the tank reached 307 ° C., the polymer was extracted and cooled and solidified.
  • the obtained polymer was pulverized and pulverized to a size passing through a sieve having an opening of 2.0 mm to obtain a prepolymer.
  • the prepolymer obtained above was heated from room temperature to 300 ° C. over 14 hours by a heater in an oven manufactured by Yamato Scientific Co., Ltd., and then kept at 300 ° C. for 2 hours. Solid state polymerization was performed. Thereafter, heat was naturally released at room temperature to obtain a wholly aromatic liquid crystal polyester resin.
  • a polarizing microscope (trade name: BH-2) manufactured by Olympus Corporation equipped with a hot stage for microscope (trade name: FP82HT) manufactured by METTLER, a wholly aromatic liquid crystal polyester resin sample is heated on a microscope heating stage. After melting, the liquid crystallinity was confirmed from the presence or absence of optical anisotropy.
  • Example 1-2 Whole fragrance was prepared in the same manner as in Example 1-1 except that the monomer charge was changed to 45 mol% of HNA, 27.5 mol% of BP, 19.5 mol% of TPA, and 8 mol% of 2,6-naphthalenedicarboxylic acid (NADA). A liquid crystal polyester resin was obtained. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 300 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-3 The charge of the monomer was changed to 50 mol% of HNA, 25 mol% of BP, and 25 mol% of NADA. After acetylation was carried out in the same manner as in Example 1-1, the temperature was raised to 360 ° C. in 5 hours and 30 minutes. Thereafter, when the pressure was reduced to 10 torr over 20 minutes, the polymer was extracted and solidified by cooling. The obtained polymer was pulverized and pulverized to a size passing through a sieve having an opening of 2.0 mm, and the liquid crystallinity of the wholly aromatic polyester resin obtained without performing solid-phase polymerization was confirmed.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 300 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-4 The same procedure as in Example 1-1 was performed except that the monomer charge was changed to 50 mol% of HNA, 25 mol% of BP, 22 mol% of TPA, and 3 mol% of NADA, and the final temperature of the solid-phase polymerization was 310 ° C. and the holding time was 1 hour. Thus, a wholly aromatic liquid crystal polyester resin was obtained. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 320 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-5 A wholly aromatic liquid crystal was prepared in the same manner as in Example 1-1, except that the charged monomers were changed to 50 mol% of HNA, 20 mol% of BP, 5 mol% of hydroquinone (HQ), 20.5 mol% of TPA, and 4.5 mol% of NADA. A polyester resin was obtained. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to a heat treatment at 285 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-6 A wholly aromatic liquid crystal polyester resin was obtained in the same manner as in Example 1-1, except that the charged monomers were changed to 50 mol% of HNA, 25 mol% of BP, 19 mol% of TPA, and 6 mol% of NADA. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 305 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1--7 A wholly aromatic liquid crystal polyester resin was obtained in the same manner as in Example 1-1 except that the charged monomers were changed to 50 mol% of HNA, 25 mol% of BP, 17 mol% of TPA, and 8 mol% of NADA. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 290 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-8 A wholly aromatic liquid crystal polyester resin was obtained in the same manner as in Example 1-1 except that the charged monomers were changed to 50 mol% of HNA, 25 mol% of BP, 15 mol% of TPA, 2 mol% of IPA, and 8 mol% of NADA. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to a heat treatment at 280 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-9 The monomer charge was changed to 50 mol% of HNA, 24 mol% of BP, 1 mol% of 4,4′-isopropylidene diphenol (BisPA), 20.5 mol% of TPA, and 4.5 mol% of NADA, and the final temperature of solid phase polymerization was changed.
  • a wholly aromatic liquid crystal polyester resin was obtained in the same manner as in Example 1-1, except that the holding time was set to 300 ° C. and the holding time was set to 1 hour. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 305 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-10 The procedure was carried out except that the monomer charge was changed to 50 mol% of HNA, 23 mol% of BP, 2 mol% of BisPA, 20.5 mol% of TPA, and 4.5 mol% of NADA, and the final temperature of the solid-phase polymerization was set to 300 ° C. and the holding time was set to 1 hour.
  • a wholly aromatic liquid crystal polyester resin was obtained.
  • the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 300 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-11 A wholly aromatic liquid crystal polyester resin was obtained in the same manner as in Example 1-1 except that the charged monomers were changed to 52 mol% of HNA, 24 mol% of BP, 18 mol% of TPA, 3 mol% of IPA, and 3 mol% of NADA. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 305 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-12 A wholly aromatic liquid crystal polyester resin was obtained in the same manner as in Example 1-1, except that the charged monomers were changed to 55 mol% of HNA, 22.5 mol% of BP, 18 mol% of TPA, and 4.5 mol% of NADA. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 305 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-13 Whole aromatics were prepared in the same manner as in Example 1-1 except that the monomer charge was changed to 55 mol% of HNA, 22.5 mol% of BP, 18 mol% of TPA, 2 mol% of isophthalic acid (IPA), and 2.5 mol% of NADA. A liquid crystal polyester resin was obtained. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to a heat treatment at 310 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-14 A wholly aromatic liquid crystal polyester resin was obtained in the same manner as in Example 1-1 except that the charged monomers were changed to 55 mol% of HNA, 20 mol% of BP, 20 mol% of TPA, and 5 mol% of HBA. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was heat-treated at 315 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-15 The same procedure as in Example 1-1 was carried out except that the monomer charge was changed to 60 mol% of HNA, 20 mol% of BP, 17 mol% of TPA, and 3 mol% of NADA, and the final temperature of the solid-state polymerization was set to 295 ° C. and the holding time was set to 1 hour. Thus, a wholly aromatic liquid crystal polyester resin was obtained. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was heat-treated at 315 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-16 Example 1 was repeated except that the monomer charge was changed to 60 mol% of HNA, 20 mol% of BP, 15.5 mol% of TPA, and 4.5 mol% of NADA, and the final temperature of solid-state polymerization was set to 295 ° C. and the retention time was set to 1.5 hours. In the same manner as in 1-1, a wholly aromatic liquid crystal polyester resin was obtained. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 300 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-17 Example 1 was repeated except that the monomer charge was changed to 60 mol% of HNA, 20 mol% of BP, 15.5 mol% of TPA, and 4.5 mol% of NADA, and the final temperature of the solid-phase polymerization was 310 ° C. and the holding time was 1 hour.
  • the monomer charge was changed to 60 mol% of HNA, 20 mol% of BP, 15.5 mol% of TPA, and 4.5 mol% of NADA, and the final temperature of the solid-phase polymerization was 310 ° C. and the holding time was 1 hour.
  • a wholly aromatic liquid crystal polyester resin was obtained.
  • the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 300 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-18 Example 1 was repeated except that the monomer charge was changed to 60 mol% of HNA, 20 mol% of BP, 15.5 mol% of TPA, and 4.5 mol% of NADA, and the final temperature of the solid-phase polymerization was 310 ° C. and the retention time was 4 hours.
  • the monomer charge was changed to 60 mol% of HNA, 20 mol% of BP, 15.5 mol% of TPA, and 4.5 mol% of NADA, and the final temperature of the solid-phase polymerization was 310 ° C. and the retention time was 4 hours.
  • a wholly aromatic liquid crystal polyester resin was obtained.
  • the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 300 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-19 A wholly aromatic liquid crystal polyester resin was obtained in the same manner as in Example 1-1 except that the charged monomers were changed to 60 mol% of HNA, 20 mol% of BP, 11 mol% of TPA, and 9 mol% of NADA. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 290 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-20 A wholly aromatic liquid crystal polyester resin was obtained in the same manner as in Example 1-1 except that the charged monomers were changed to 65 mol% of HNA, 17.5 mol% of BP, 8.5 mol% of TPA, and 9 mol% of NADA. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 290 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-21 The monomer charge was changed to 65 mol% of HNA, 14.5 mol% of BP, 2 mol% of methylhydroquinone (MeHQ), 16.5 mol% of TPA, and 2 mol% of HBA, the final temperature of the solid-state polymerization was 295 ° C., and the retention time was 1
  • a wholly aromatic liquid crystal polyester resin was obtained in the same manner as in Example 1-1 except that the time was changed. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 300 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-22 The same procedure as in Example 1-1 was performed except that the monomer charge was changed to 65 mol% of HNA, 15 mol% of BP, 15 mol% of TPA, and 5 mol% of HBA, and the final temperature of the solid-phase polymerization was set to 300 ° C. and the holding time was set to 1 hour. Thus, a wholly aromatic liquid crystal polyester resin was obtained. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to a heat treatment at 310 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-23 A wholly aromatic liquid crystal polyester resin was obtained in the same manner as in Example 1-1 except that the charged monomers were changed to 70 mol% of HNA, 15 mol% of BP, 12 mol% of TPA, and 3 mol% of NADA. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to a heat treatment at 310 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-24 The monomer charge was 55 mol% of HNA, 24.75 mol% of HQ (equivalently, 22.5 mol%, and used in excess considering the loss due to monomer sublimation in the reaction), 5 mol% of TPA, and 17.5 NADA. Mol%, the whole temperature was 310 ° C., and the holding time was 1 hour, in the same manner as in Example 1-1, to obtain a wholly aromatic liquid crystal polyester resin. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 300 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-1 A wholly aromatic liquid crystal polyester resin was obtained in the same manner as in Example 1-1 except that the monomer preparation was changed to 20 mol% of BP, 15 mol% of TPA, 5 mol% of IPA, and 60 mol% of HBA. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 335 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1-2 The wholly aromatic liquid crystal polyester resin was prepared in the same manner as in Example 1-1 except that the monomer preparation was changed to 27 mol% of HNA and 73 mol% of HBA, and the final temperature of the solid-state polymerization was changed to 270 ° C. and the holding time was changed to 1 hour. Got. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was heat-treated at 270 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 1 (Comparative Example 1-3) Example 1 was repeated except that the monomer charge was changed to 10 mol% of HNA, 10 mol% of BP, 15 mol% of HQ, 25 mol% of TPA, and 40 mol% of HBA, and the final temperature of the solid-phase polymerization was 280 ° C. and the retention time was 1 hour.
  • a wholly aromatic liquid crystal polyester resin was obtained.
  • the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin was confirmed in the same manner as described above.
  • a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to a heat treatment at 280 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Table 1 shows a list of monomer compositions and heat treatment conditions of the wholly aromatic liquid crystal polyester resin of the resin molded products manufactured in the above Examples and Comparative Examples.
  • Measurement conditions a process of increasing the temperature from 30 ° C. to 360 to 380 ° C. at a rate of 10 ° C./min and a process of decreasing the temperature from 360 to 380 ° C. to 30 ° C. at a rate of 10 ° C./min. Cycled.
  • the dielectric loss in the circuit board can be calculated by referring to the technical literature (Development and application of high-frequency polymer materials, CMC Technical Library 201, supervised by Baba Bunmei, page 120). According to the description, it is obtained by the following equation.
  • ⁇ D 27.3 ⁇ (f / C) ⁇ (Er) 1/2 ⁇ tan ⁇ ⁇ D : dielectric loss (dB / m) f: frequency (Hz) C: Speed of light Er: Relative dielectric constant tan ⁇ : Dielectric tangent According to this equation, it is possible to know the degree of reduction of dielectric loss for each material by comparing the value of (Er) 1/2 ⁇ tan ⁇ at a certain frequency between materials. Can be. Table 2 shows the value of the relative dielectric constant Er of each molded product.
  • Test Example 2 Examination of dielectric properties with respect to heat treatment conditions In Test Example 2, changes in dielectric properties with respect to heat treatment conditions of a resin molded product having a specific composition were confirmed. Normally, in the heat treatment of a resin molded product, warpage of the molded product due to the influence of residual stress at the time of molding and swelling (blister) of the product surface due to generation of gas may occur, which may cause a defective product. On the other hand, when the resin molded product according to the present invention is used, a good heat-treated molded product having excellent low dielectric properties can be obtained under a wide range of heat treatment conditions.
  • Example 2-1 The flat test piece obtained in Example 1-16 was heat-treated at 280 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 2-2 The flat test piece obtained in Example 1-16 was heat-treated at 325 ° C. for 4 hours to obtain a heat-treated resin molded product. Further, as a result of visually observing the surface of the obtained resin molded product, no swelling (blister) or warpage occurred.
  • Example 2-3 The plate-shaped test piece obtained in Example 1-23 was subjected to a heat treatment at 290 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 2-4 The plate-shaped test piece obtained in Example 1-23 was subjected to a heat treatment at 335 ° C. for 4 hours to obtain a heat-treated resin molded product. Further, as a result of visually observing the surface of the obtained resin molded product, no swelling (blister) or warpage occurred.
  • Comparative Example 2-1 The flat test piece obtained in Comparative Example 1-1 was heat-treated at 315 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Comparative Example 2-2 The flat test piece obtained in Comparative Example 1-1 was heat-treated at 360 ° C. for 4 hours to obtain a heat-treated resin molded product. Further, as a result of visual observation of the surface of the obtained resin molded product, blisters (blisters) were found to have occurred.
  • Comparative Example 2-3 The flat test piece obtained in Comparative Example 1-2 was heat-treated at 250 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Comparative Example 2-4 The flat test piece obtained in Comparative Example 1-2 was heat-treated at 295 ° C. for 4 hours to obtain a heat-treated resin molded product. Further, as a result of visually observing the surface of the obtained resin molded product, swelling (blister) and warpage occurred.
  • Comparative Example 2-5 The flat test piece obtained in Comparative Example 1-3 was heat-treated at 260 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Test Example 3 Examination of resin kneaded product In Test Example 3, it was confirmed that a resin kneaded product using the resin according to the present invention as a base material exhibited excellent dielectric properties as a heat-treated molded product.
  • Example 3-1 99 parts by mass of the wholly aromatic liquid crystal polyester resin obtained in Example 1-16 and 1 part by mass of the wholly aromatic liquid crystal polyester resin obtained in Comparative Example 1-2 were mixed in a powder state. Biaxial kneading was performed at 350 ° C. using Labo Plast Micro manufactured by Toyo Seiki Seisaku-Sho, Ltd. to obtain resin composition pellets. Using the obtained resin composition pellets, a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 300 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 3-2 95 parts by mass of the wholly aromatic liquid crystal polyester resin obtained in Example 1-16 and 5 parts by mass of the wholly aromatic liquid crystal polyester resin obtained in Comparative Example 1-2 were mixed in a powdery state, Biaxial kneading was performed at 350 ° C. using Labo Plast Micro manufactured by Toyo Seiki Seisaku-Sho, Ltd. to obtain resin composition pellets. Using the obtained resin composition pellets, a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 300 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • Example 3-3 A wholly aromatic liquid crystal polyester resin A was obtained in the same manner as in Example 1-1 except that the charged monomers were changed to 2 mol% of HNA, 14 mol% of HQ, 14 mol% of NADA, and 70 mol% of HBA. Subsequently, the liquid crystallinity of the obtained wholly aromatic liquid crystal polyester resin A was confirmed in the same manner as described above.
  • Example 3-4 99 parts by mass of the wholly aromatic liquid crystal polyester resin obtained in Example 1-16 and 1 part by mass of an amorphous polyacrylate resin (U powder L type, manufactured by Unitika Co., Ltd.) were mixed in a powder state, and this was mixed. Biaxial kneading was performed at 350 ° C. using Labo Plast Micro manufactured by Toyo Seiki Seisaku-Sho, Ltd. to obtain resin composition pellets. Using the obtained resin composition pellets, a flat test piece was prepared in the same manner as in Example 1-1. Subsequently, the obtained flat test piece was subjected to heat treatment at 300 ° C. for 3 hours to obtain a heat-treated resin molded product.
  • an amorphous polyacrylate resin U powder L type, manufactured by Unitika Co., Ltd.
  • Test Example 4 Examination in Film Shape In Test Example 4, it was confirmed that the heat-treated resin molded product exhibited excellent dielectric properties even in the case of a film shape.
  • Example 4-1 The wholly aromatic liquid crystal polyester resin obtained in Example 1-16 was biaxially kneaded with Labo Plast Micro manufactured by Toyo Seiki Seisaku-sho, Ltd., and pelletized at a kneading temperature of 360 ° C. to obtain resin pellets. Subsequently, using the obtained resin pellets, a molten resin is extruded from a T-die having a die width of 120 mm by a biaxial extruder (manufactured by Technovel Corporation: KZW-30MG: no vent), and after passing through a cooling roll. The film was taken up by a take-up roll to form a resin film.
  • a biaxial extruder manufactured by Technovel Corporation: KZW-30MG: no vent
  • the set temperatures at the time of production were: die temperature: 337 ° C., kneading unit temperature: 340 ° C., roll temperature: 50 ° C., and winding roll: room temperature.
  • a uniform film having a width of 90 mm and an average film thickness of about 50 ⁇ m was obtained.
  • the obtained resin film was heat-treated at 300 ° C. for 3 hours to obtain a film-shaped heat-treated resin molded product.
  • Example 4-1 a resin film was obtained in the same manner as in Example 4-1 using the obtained wholly aromatic liquid crystal polyester resin. Subsequently, the obtained resin film was subjected to a heat treatment at 250 ° C. for 3 hours to obtain a film-shaped heat-treated resin molded product.
  • Test Example 5 Evaluation of dielectric loss tangent of heat-treated molded products at 81 GHz and 34 GHz, and evaluation of temperature dependence of dielectric tangent at 34 GHz
  • the resin molded product subjected to the heat treatment according to the present invention was subjected to various frequencies. It was confirmed that the material exhibited an excellent low dielectric loss tangent.
  • the resin molded article subjected to the heat treatment according to the present invention exhibited an excellent low dielectric loss tangent in each temperature band at a specific frequency, and the rate of change of the dielectric loss tangent with respect to temperature was small and stable.
  • FIG. 1 shows the temperature dependence (change) of the dielectric loss tangent from 30 ° C. to 100 ° C. for the measurement sample after the heat treatment.
  • Table 7 shows the dielectric loss tangent at 30 ° C. and 100 ° C. and the rate of change of the dielectric loss tangent from 30 ° C. to 100 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

[課題]高周波数帯においても著しく低い誘電正接および高耐熱性を有する、全芳香族液晶ポリエステル樹脂を含む樹脂成形品の提供。 [解決手段]本発明による全芳香族液晶ポリエステル樹脂を含み、熱処理が施されてなる樹脂成形品は、示差走査熱量計で測定した昇温過程の1サイクル目の融点でのエンタルピー変化ΔHと2サイクル目の融点でのエンタルピー変化ΔHが、ΔH/ΔH≧2.0を満たし、かつ、測定周波数10GHzにおけるSPDR法で測定した誘電正接が、0.85×10-3以下であることを特徴とする。

Description

熱処理により誘電正接を低減できる全芳香族液晶ポリエステル樹脂を含む樹脂成形品および電気電子部品
 本発明は、熱処理により誘電正接を低減できる全芳香族液晶ポリエステル樹脂を含む樹脂成形品に関し、より詳細には、とりわけ低い誘電正接を有する全芳香族液晶ポリエステル樹脂を含む樹脂成形品および該成形品を備える電気電子部品に関する。
 近年、通信分野における情報通信量の増加に伴い、電子機器や通信機器等において高周波数帯の周波数を有する信号の使用が増加しており、特に、周波数が10Hz以上であるギガヘルツ(GHz)帯の周波数を有する信号の使用が盛んに行われている。例えば、自動車分野においてGHz帯の高周波数帯が使用されている。具体的には、自動車の衝突防止目的で搭載されるミリ波レーダー、準ミリ波レーダーにおいては、それぞれ76~79GHz、24GHzの高周波数が使用されており、今後更なる普及が進んでいくことが予想される。
 しかしながら、使用される信号の周波数が高くなるに伴い、情報の誤認識を招きうる出力信号の品質低下、すなわち、伝送損失が大きくなる。この伝送損失は、導体に起因する導体損失と、電子機器や通信機器における基板等の電気電子部品を構成する絶縁用の樹脂に起因する誘電損失とからなるが、導体損失は使用する周波数の0.5乗、誘電損失は周波数の1乗に比例するため、高周波数帯、とりわけGHz帯においては、この誘電損失による影響が非常に大きくなる。また、誘電損失は、樹脂の誘電正接にも比例して増大するため、情報の劣化を防ぐため低誘電正接性能を有する樹脂が求められている。
 上記課題に対し、特許文献1では、高周波数帯において低誘電正接を示す液晶性芳香族ポリエステルとして、p-又はm-ヒドロキシ安息香酸に由来する構成単位およびヒドロキシナフトエ酸に由来する構成単位の2種以上を含む液晶性芳香族ポリエステルが提案されている。
 ところで、電気電子部品を構成する樹脂には、成形時の加熱に対する高い耐熱性が要求され、また、これを用いて作成したフィルム等の樹脂成形品には、はんだ等を用いた加熱加工に対する高い耐熱性が要求される。そこで、例えば、特許文献2では、フィルムの熱処理により、フィルムの結晶化度や密度を調節して、耐熱性を向上させることが提案されている。
特開2004-250620号公報 特開2003-292638号公報
 近年、情報通信量は急速に増加し続け、使用される信号の周波数はさらに高まっており、高周波数帯において更に低い誘電正接を有する樹脂が求められている。本発明者は、特許文献1において提案されるポリエステル樹脂を用いたとしても、高周波数帯において要求される十分な低誘電正接を示さないことを見出した。また、従来、フィルムの熱処理は、特許文献2のように耐熱性向上を目的とするものであったが、本発明者は、樹脂が特定の条件を満たすことで、熱処理により誘電特性を大幅に向上できることを見出した。
 したがって、本発明の目的は、高周波数帯においても著しく低い誘電正接および高耐熱性を有する、全芳香族液晶ポリエステル樹脂を含む樹脂成形品を提供することである。
 本発明者は、上記課題を解決するために鋭意検討した結果、全芳香族液晶ポリエステル樹脂を含み、熱処理が施されてなる樹脂成形品において、示差走査熱量計で測定した昇温過程の1サイクル目の結晶相から液晶相への転移温度(以下、「融点」と言う)でのエンタルピー変化ΔHと2サイクル目の融点でのエンタルピー変化ΔHが、特定の関係を満たすことにより、著しく低い誘電正接を有する樹脂成形品が得られることを知見した。本発明は、かかる知見に基づいて完成されたものである。
 すなわち、本発明の一態様によれば、全芳香族液晶ポリエステル樹脂を含み、熱処理が施されてなる樹脂成形品であって、
 示差走査熱量計で測定した昇温工程の1サイクル目の融点でのエンタルピー変化ΔHと2サイクル目の融点でのエンタルピー変化ΔHが、ΔH/ΔH≧2.0を満たし、
 測定周波数10GHzにおけるSPDR法で測定した誘電正接が、0.85×10-3以下であることを特徴とする、樹脂成形品が提供される。
本発明の様態においては、示差走査熱量計で測定した昇温過程の1サイクル目の融点でのエンタルピー変化ΔHが3.5J/g以上であることが望ましい。
 本発明の態様においては、前記全芳香族液晶ポリエステル樹脂が、3種以上の構成単位を含むことが好ましい。
 本発明の態様においては、前記全芳香族液晶ポリエステル樹脂が、前記全芳香族液晶ポリエステル樹脂全体の構成単位に対して、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(I)を10モル%以上含むことが好ましい。
 本発明の態様においては、前記全芳香族液晶ポリエステル樹脂が、芳香族ジオール化合物に由来する構成単位(II)および芳香族ジカルボン酸に由来する構成単位(III)をさらに含むことが好ましい。
 本発明の態様においては、前記全芳香族液晶ポリエステル樹脂が、p-ヒドロキシ安息香酸に由来する構成単位(IV)をさらに含んでもよい。
 本発明の別の態様によれば、上記樹脂成形品を備える電気電子部品が提供される。
 本発明によれば、示差走査熱量計で測定した昇温過程の1サイクル目の融点でのエンタルピー変化ΔHと2サイクル目の融点でのエンタルピー変化ΔHが、特定の関係を満たすことにより、著しく低い誘電正接を有しながら、耐熱性に優れる全芳香族液晶ポリエステル樹脂を含む樹脂成形品を実現することができる。
全芳香族ポリエステル樹脂の34GHzにおける誘電正接の測定結果(30℃から100℃の温度依存性)を示した図である。
発明を実施するための態様
(樹脂成形品)
 本発明による樹脂成形品は、下記の全芳香族液晶ポリエステル樹脂を含むものであり、熱処理(アニーリング)を施されてなる。樹脂成形品を適切に熱処理することで高分子の結晶化度を上げ、それに伴い成形品の耐熱性を向上させることができる。結晶化度の上昇度合いは、樹脂成形品を示差走査熱量計(DSC)で評価できる。例えば、昇温過程の1サイクル目の融点でのエンタルピー変化ΔHは熱処理によって得られた結晶化度の程度を示す。一度融解させた後の2サイクル目の融点は樹脂の熱処理履歴を取り除いたバルク状態の相転移現象に相当するため、この点におけるエンタルピー変化ΔHに対するΔHの上昇度合いΔH/ΔHはその成形品の評価部分における結晶化度の上昇度合いの指標となる。
 本発明においては、樹脂成形品を熱処理することによって上記ΔH/ΔHを特定の数値範囲内に調節することで、意外にも高周波数帯においても著しく低い誘電正接を実現することができる。
 樹脂成形品は、示差走査熱量計で測定した昇温工程の1サイクル目の融点でのエンタルピー変化ΔHと2サイクル目の融点でのエンタルピー変化ΔHが、ΔH/ΔH≧2.0を満たし、好ましくはΔH/ΔH≧2.5を満たし、より好ましくはΔH/ΔH≧3.0を満たし、さらに好ましくはΔH/ΔH≧4.0を満たし、さらにより好ましくはΔH/ΔH≧5.0を満たす。樹脂成形品は、ΔH/ΔH≧2.0であれば、熱処理前の状態に比べ、明らかに優位な結晶化度の上昇と言え、それに伴い材料内全体での分子振動を抑制できるため誘電正接が低下する。
 樹脂成形品は、示差走査熱量計で測定した昇温工程の1サイクル目の融点でのエンタルピー変化ΔHが、好ましくは3.5J/g以上であり、より好ましくは4J/g以上であり、さらに好ましくは5J/g以上であり、さらにより好ましくは7J/g以上であり、特に好ましくは8J/g以上である。樹脂成形品は、ΔHが、3.5J/g以上であれば、全芳香族液晶ポリエステル樹脂としては絶対値として高い結晶化度を有していると言え、誘電正接の低下を実現することができる。
 なお、本明細書において、示差走査熱量計の測定条件は、窒素雰囲気下で昇温速度10℃/分で30℃から360~380℃まで昇温させる過程と、降温速度10℃/分で360~380℃から30℃まで降温させる過程とを1サイクルとして、2サイクル行う。
 上記の融点でのエンタルピー変化ΔHは、下記で詳述する全芳香族液晶ポリエステル樹脂の製造方法における重合反応の重合条件(温度や時間)や、下記で詳述する樹脂成形品の製造方法における成形品の加熱処理(アニーリング)の条件を変更することによって、調節することができる。
 樹脂成形品の融点は実使用の耐熱性の観点から、下限値としては、好ましくは290℃以上であり、より好ましくは295℃以上であり、さらに好ましくは300℃以上であり、さらにより好ましくは310℃以上であり、また、成形加工上の上限値としては、好ましくは370℃以下であり、より好ましくは360℃以下であり、さらに好ましくは350℃以下である。本発明による樹脂成形品の融点が上記数値範囲内であれば、耐熱性と加工性に優れ、さらに熱処理により耐熱性と誘電正接を優位に向上させることができる。なお、本明細書において、樹脂成形品の融点は、ISO11357、ASTM D3418の試験方法に準拠するものであり、日立ハイテクサイエンス(株)製の示差走査熱量計(DSC)等を用いて測定することができ、DSCで測定した昇温過程の2サイクル目の結晶相から液晶相への転移に伴う吸熱ピークの頂点(Tm)の温度(℃)とした。
 熱処理後の樹脂成形品のSPDR法で測定した誘電正接(測定周波数:10GHz)は、0.85×10-3以下であり、好ましくは0.80×10-3以下であり、より好ましくは0.75×10-3以下であり、さらに好ましくは0.70×10-3以下である。
 熱処理後の樹脂成形品の円筒空洞共振器法で測定した25℃での誘電正接(測定周波数:34GHz)は、1.5×10-3以下であり、好ましくは1.2×10-3以下であり、より好ましくは1.0×10-3以下である。
 熱処理後の樹脂成形品の円筒空洞共振器法で測定した25℃での誘電正接(測定周波数:81GHz)は、3.0×10-3以下であり、好ましくは2.5×10-3以下であり、より好ましくは2.0×10-3以下である。
 また、熱処理後の樹脂成形品は、30℃および100℃の誘電正接(測定周波数:34GHz)が、それぞれ、好ましくは2.0×10-3以下および3.0×10-3以下であり、より好ましくは1.5×10-3以下および2.5×10-3以下であり、さらに好ましくは1.0×10-3以下および2.0×10-3以下である。
 さらに、熱処理後の樹脂成形品について、測定周波数34GHzにおける30℃から100℃までの誘電正接の変化率は、好ましくは2.5×10-5/℃以下であり、より好ましくは2.0×10-5/℃以下であり、さらに好ましくは1.5×10-5/℃以下である。温度に依存した誘電正接の変化率が小さいことで、材料使用時に温度が変わった場合にも設計に準じた物性を安定して発現させることができる。ゆえに各環境における当該材料を使用したデバイスの動作安定性に寄与できる。
 なお、本明細書において、全芳香族液晶ポリエステル樹脂の10GHzにおける誘電正接は、キーサイト・テクノロジー社のネットワークアナライザーN5247A等を用いて、スプリットポスト誘電体共振器法(SPDR法)により測定することができる。それ以外の誘電正接測定は円筒空洞共振器法により測定することができる。また、特別に指定がない場合、誘電正接の値は、23℃、大気雰囲気下、湿度60%での測定値である。
(全芳香族液晶ポリエステル樹脂)
 本発明の樹脂成形品に用いる全芳香族液晶ポリエステル樹脂は、好ましくは3種以上、より好ましくは4種以上の構成単位を含むものである。全芳香族液晶ポリエステル樹脂の構成単位としては、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(I)、芳香族ジオール化合物に由来する構成単位(II)、および芳香族ジカルボン酸に由来する構成単位(III)が挙げられる。以下、全芳香族液晶ポリエステル樹脂に含まれる各構成単位について説明する。
(6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(I))
 全芳香族液晶ポリエステル樹脂は、下記式(I)で表される6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(I)を含むことが好ましい。全芳香族液晶ポリエステル樹脂全体の構成単位に対する構成単位(I)の組成比(モル%)は、樹脂成形品の誘電正接の低下という観点から、好ましくは10モル%以上であり、より好ましくは30モル%以上であり、さらに好ましくは40モル%以上であり、さらにより好ましくは50モル%以上であり、上限値としては、好ましくは70モル%以下であり、より好ましくは65モル%以下であり、さらに好ましくは60モル%以下である。
Figure JPOXMLDOC01-appb-C000001
 構成単位(I)を与えるモノマーとしては、6-ヒドロキシ-2-ナフトエ酸(HNA、下記式(1))、およびそのアセチル化物、エステル誘導体、酸ハロゲン化物等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
(芳香族ジオール化合物に由来する構成単位(II))
 全芳香族液晶ポリエステル樹脂は、芳香族ジオール化合物に由来する構成単位(II)を含むことが好ましい。全芳香族液晶ポリエステル樹脂全体の構成単位に対する構成単位(II)の組成比(モル%)は、全芳香族液晶ポリエステル樹脂の誘電正接の低下の観点からは、下限値としては、好ましくは15モル%以上であり、より好ましくは17.5モル%以上であり、さらに好ましくは20モル%以上であり、上限値としては、好ましくは45モル%以下であり、より好ましくは35モル%以下であり、さらに好ましくは30モル%以下である。芳香族ジオール化合物に由来する構成単位(II)が2種以上含まれる場合、それらの合計モル比が上記組成比の範囲であればよい。
 一実施態様において、構成単位(II)は下記式(II)で表される。  
Figure JPOXMLDOC01-appb-C000003
 上記式中Arは、所望により置換基を有するフェニル基、ビフェニル基、4,4’-イソプロピリデンジフェニル基、ナフチル基、アントリル基およびフェナントリル基からなる群より選択される。これらの中でもフェニル基およびビフェニル基がより好ましい。置換基としては、水素、アルキル基、アルコキシ基、ならびにフッ素等が挙げられる。アルキル基が有する炭素数は、1~10であることが好ましく、1~5であることがより好ましい。また、直鎖状のアルキル基であっても、分岐鎖状のアルキル基であってもよい。アルコキシ基が有する炭素数は、1~10であることが好ましく、1~5であることがより好ましい。
 構成単位(II)を与えるモノマーとしては、例えば、4,4-ジヒドロキシビフェニル(BP、下記式(2))、ハイドロキノン(HQ、下記式(3))、メチルハイドロキノン(MeHQ、下記式(4))、4,4’-イソプロピリデンジフェノール(BisPA、下記式(5))およびこれらのアシル化物等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(芳香族ジカルボン酸に由来する構成単位(III))
 全芳香族液晶ポリエステル樹脂は、芳香族ジカルボン酸に由来する構成単位(III)を含むことが好ましい。全芳香族液晶ポリエステル樹脂全体の構成単位に対する構成単位(III)の組成比(モル%)は、全芳香族液晶ポリエステル樹脂の誘電正接の低下の観点からは、下限値としては、好ましくは15モル%以上であり、より好ましくは17.5モル%以上であり、さらに好ましくは20モル%以上であり、上限値としては、好ましくは45モル%以下であり、より好ましくは35モル%以下であり、さらに好ましくは30モル%以下である。芳香族ジカルボン酸に由来する構成単位(III)が2種以上含まれる場合、それらの合計モル比が上記組成比の範囲内であればよい。
 一実施態様において、構成単位(III)は下記式(III)で表される。
Figure JPOXMLDOC01-appb-C000008
 上記式中Arは、所望により置換基を有するフェニル基、ビフェニル基、ナフチル基、アントリル基およびフェナントリル基からなる群より選択される。これらの中でもフェニル基がより好ましい。置換基としては、水素、アルキル基、アルコキシ基ならびにフッ素等が挙げられる。アルキル基が有する炭素数は、1~10であることが好ましく、1~5であることがより好ましい。また、直鎖状のアルキル基であっても、分岐鎖状のアルキル基であってもよい。アルコキシ基が有する炭素数は、1~10であることが好ましく、1~5であることがより好ましい
 構成単位(III)を与えるモノマーとしては、テレフタル酸(TPA、下記式(6))、イソフタル酸(IPA、下記式(7))、2,6-ナフタレンジカルボン酸(NADA、下記式(8))、およびこれらのエステル誘導体、酸ハロゲン化物等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(p-ヒドロキシ安息香酸に由来する構成単位(IV))
 全芳香族液晶ポリエステル樹脂は、下記式(IV)で表されるp-ヒドロキシ安息香酸に由来する構成単位(IV)をさらに含んでもよい。全芳香族液晶ポリエステル樹脂全体の構成単位に対する構成単位(IV)の組成比(モル%)は、全芳香族液晶ポリエステル樹脂の誘電正接の低下と高耐熱性の観点からは、上限値としては、好ましくは10モル%以下であり、より好ましくは8モル%以下であり、さらに好ましくは5モル%以下である。
Figure JPOXMLDOC01-appb-C000012
 構成単位(IV)を与えるモノマーとしては、p-ヒドロキシ安息香酸(HBA、下記式(9))、およびそのアセチル化物、エステル誘導体、酸ハロゲン化物等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 全芳香族液晶ポリエステル樹脂の液晶性は、メトラー製の顕微鏡用ホットステージ(商品名:FP82HT)を備えたオリンパス(株)製の偏光顕微鏡(商品名:BH-2)等を用い、全芳香族液晶ポリエステル樹脂を顕微鏡加熱ステージ上にて加熱溶融させた後、光学異方性の有無を観察することにより確認することができる。
(全芳香族液晶ポリエステル樹脂の製造方法)
 本発明に係る全芳香族液晶ポリエステル樹脂は、所望により構成単位(I)~(IV)を与えるモノマーを、溶融重合、固相重合、溶液重合およびスラリー重合等、従来公知の方法で重合することにより製造することができる。一実施態様において、本発明に係る全芳香族液晶ポリエステル樹脂は、溶融重合のみによって製造することができる。また、溶融重合によりプレポリマーを作製し、これをさらに固相重合する2段階重合によっても製造することができる。
 溶融重合は、本発明に係るポリエステル化合物が効率よく得られる観点から、所望により上記構成単位(I)~(IV)を与えるモノマーを、所定の配合で合わせて100モル%として、モノマーが有する全水酸基に対し、1.05~1.15モル当量の無水酢酸を存在させて酢酸還流下において行うことが好ましい。
 溶融重合とこれに続く固相重合の二段階により重合反応を行う場合は、溶融重合により得られたプレポリマーを冷却固化後に粉砕してパウダー状もしくはフレーク状にした後、公知の固相重合方法、例えば、窒素等の不活性雰囲気下、または真空下において200~350℃の温度範囲で1~30時間プレポリマー樹脂を熱処理する等の方法が好ましくは選択される。固相重合は、攪拌しながら行ってもよく、また攪拌することなく静置した状態で行ってもよい。本発明においては、重合反応の重合条件(温度や時間)を変更することによって、樹脂成形品に関する上記の結晶化度の指標となるエンタルピーΔHを調節することができる。
 重合反応において触媒は使用してもよいし、また使用しなくてもよい。使用する触媒としては、ポリエステルの重合用触媒として従来公知のものを使用することができ、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属塩触媒、N-メチルイミダゾール等の窒素含有複素環化合物等、有機化合物触媒等が挙げられる。触媒の使用量は、特に限定されるものではないが、モノマーの総量100重量部に対して、0.0001~0.1重量部であることが好ましい。
 溶融重合における重合反応装置は特に限定されるものではないが、一般の高粘度流体の反応に用いられる反応装置が好ましく使用される。これらの反応装置の例としては、例えば、錨型、多段型、螺旋帯型、螺旋軸型等、あるいはこれらを変形した各種形状の攪拌翼をもつ攪拌装置を有する攪拌槽型重合反応装置、又は、ニーダー、ロールミル、バンバリーミキサー等の、一般に樹脂の混練に使用される混合装置等が挙げられる。
(他の成分)
 本発明による成形品は、本発明の効果を損なわない範囲において、全芳香族液晶ポリエステル樹脂以外の樹脂を含んでいてもよい。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレートおよびポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、シクロオレフィンポリマー、ポリ塩化ビニル等のビニル樹脂、ポリアクリレート、ポリメタアクリレートおよびポリメチルメタアクリレート等の(メタ)アクリル樹脂、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリイミドおよびポリエーテルイミド等のイミド樹脂、ポリスチレン、高衝撃ポリスチレン、AS樹脂およびABS樹脂等のポリスチレン樹脂、エポキシ樹脂等の熱硬化樹脂、セルロース樹脂、ポリエーテルエーテルケトン樹脂、フッ素樹脂ならびにポリカーボネート樹脂等が挙げられ、成形品は、これらを1種または2種以上含んでいてもよい。
 本発明による成形品は、本発明の効果を損なわない範囲において、その他の添加剤、例えば、着色剤、分散剤、可塑剤、酸化防止剤、硬化剤、難燃剤、熱安定剤、紫外線吸収剤、帯電防止剤、界面活性剤を含んでいてもよい。
(樹脂成形品の製造方法)
 本発明による樹脂成形品は、上記の全芳香族液晶ポリエステル樹脂および所望によりその他の樹脂や添加剤等を含む樹脂組成物を、従来公知の方法で成形した後、加熱処理(アニーリング)を施して得ることができる。なお、樹脂組成物は、全芳香族液晶ポリエステル樹脂等をバンバリーミキサー、ニーダー、一軸または二軸押出機等を用いて、溶融混練することにより得ることができる。
 上記の成形方法としては、例えば、プレス成形、発泡成形、射出成形、押出成形、打ち抜き成形等が挙げられる。上記のようにして製造される成形品は、用途に応じて、様々な形状に加工することができる。成形品の形状としては、例えば、板状やフィルム状等とすることができる。
 上記の加熱処理(アニーリング)の温度は、下限値としては、好ましくは「Tm-50℃」以上、より好ましくは「Tm-40℃」以上、さらに好ましくは「Tm-30℃以上、さらにより好ましくは「Tm-20℃」以上、上限値としては、好ましくは「Tm+10℃」以下、より好ましくは「Tm+5℃」以下、さらに好ましくは「Tm」以下、さらにより好ましくは「Tm-5℃」以下である。また、例えば、熱処理の時間は、下限値としては、好ましくは30分以上、1時間以上、より好ましくは2時間以上、であり、上限値としては、好ましくは10時間以下、より好ましくは5時間以下である。加熱時の雰囲気としては、好ましくは空気雰囲気下、より好ましくは減圧下、さらに好ましくは窒素雰囲気下である。加熱処理の温度、時間、ならびに雰囲気が上記範囲内であれば、上記の結晶化度の指標となるエンタルピーΔHを所望の範囲に調節し易く、また、成形品表面の膨れ(ブリスター)や反りの発生を抑制することもできる。
(電気電子部品)
 本発明による電気電子部品は、上記の樹脂成形品を備えてなる。電気電子部品としては、例えば、ETC、GPS、無線LANおよび携帯電話等の電子機器や通信機器に使用されるアンテナ、高速伝送用コネクタ、CPUソケット、回路基板、フレキシブルプリント基板(FPC)、積層用回路基板、衝突防止用レーダーなどのミリ波および準ミリ波レーダー、RFIDタグ、コンデンサー、インバーター部品、絶縁フィルム、ケーブルの被覆材、リチウムイオン電池等の二次電池の絶縁材、スピーカー振動板等が挙げられる。
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
[試験例1]熱処理による誘電特性の変化検討
 試験例1では、様々なモノマー組成の全芳香族液晶ポリエステル樹脂を用いて、熱処理を施した樹脂成形品の誘電特性の変化を確認した。
(実施例1-1)
<全芳香族液晶ポリエステル樹脂の製造>
 攪拌翼を有する重合容器に、6-ヒドロキシ-2-ナフトエ酸(HNA)48モル%、4,4-ジヒドロキシビフェニル(BP)23.5モル%、テレフタル酸(TPA)23.5モル%、およびp-ヒドロキシ安息香酸(HBA)5モル%を加え、触媒として酢酸カリウムおよび酢酸マグネシウムを仕込み、重合容器の減圧-窒素注入を3回行って窒素置換を行った後、無水酢酸(水酸基に対して1.08モル当量)を更に添加し、150℃まで昇温し、還流状態で2時間アセチル化反応を行った。
 アセチル化終了後、酢酸留出状態にした重合容器を0.5℃/分で昇温して、槽内の溶融体温度が307℃になったところで重合物を抜き出し、冷却固化した。得られた重合物を粉砕し目開き2.0mmの篩を通過する大きさに粉砕してプレポリマーを得た。
 次に、上記で得られたプレポリマーを、ヤマト科学(株)製のオーブンでヒーターにより、温度を室温から14時間かけて300℃まで昇温した後、300℃で温度を2時間保持して固相重合を行った。その後室温で自然放熱し、全芳香族液晶ポリエステル樹脂を得た。メトラー製の顕微鏡用ホットステージ(商品名:FP82HT)を備えたオリンパス(株)製の偏光顕微鏡(商品名:BH-2)を用い、全芳香族液晶ポリエステル樹脂試料を顕微鏡加熱ステージ上にて加熱溶融させ、光学異方性の有無から液晶性を確認した。
<樹脂成形品の製造>
 上記で得られた全芳香族液晶ポリエステル樹脂を融点~融点+30℃条件で加熱溶融、射出成形し、30mm×30mm×0.4mmの平板状試験片を作製した。得られた平板状試験片にヤマト科学(株)社製イナートオーブンDN411Iを用いて30L/分の窒素フロー下において315℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-2)
 モノマー仕込みを、HNA45モル%、BP27.5モル%、TPA19.5モル%、2,6-ナフタレンジカルボン酸(NADA)8モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に300℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-3)
 モノマー仕込みをHNA50モル%、BP25モル%、NADA25モル%に変更し、実施例1-1と同様にアセチル化を行った後、5時間30分かけて360℃まで昇温した。その後、20分かけて10torrまで減圧したところで重合物を抜き出し、冷却固化した。得られた重合物を粉砕し目開き2.0mmの篩を通過する大きさに粉砕して、固相重合せずに得られた全芳香族ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に300℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-4)
 モノマー仕込みを、HNA50モル%、BP25モル%、TPA22モル%、NADA3モル%に変更し、固相重合の最終温度を310℃、保持時間を1時間にした以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に320℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-5)
 モノマー仕込みを、HNA50モル%、BP20モル%、ハイドロキノン(HQ)5モル%、TPA20.5モル%、NADA4.5モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に285℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-6)
 モノマー仕込みを、HNA50モル%、BP25モル%、TPA19モル%、NADA6モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に305℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-7)
 モノマー仕込みを、HNA50モル%、BP25モル%、TPA17モル%、NADA8モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に290℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-8)
 モノマー仕込みを、HNA50モル%、BP25モル%、TPA15モル%、IPA2モル%、NADA8モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に280℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-9)
 モノマー仕込みを、HNA50モル%、BP24モル%、4,4’-イソプロピリデンジフェノール(BisPA)1モル%、TPA20.5モル%、NADA4.5モル%に変更し、固相重合の最終温度を300℃、保持時間を1時間にした以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に305℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-10)
 モノマー仕込みを、HNA50モル%、BP23モル%、BisPA2モル%、TPA20.5モル%、NADA4.5モル%に変更し固相重合の最終温度を300℃、保持時間を1時間にした以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に300℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-11)
 モノマー仕込みを、HNA52モル%、BP24モル%、TPA18モル%、IPA3モル%、NADA3モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に305℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-12)
 モノマー仕込みを、HNA55モル%、BP22.5モル%、TPA18モル%、NADA4.5モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に305℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-13)
 モノマー仕込みを、HNA55モル%、BP22.5モル%、TPA18モル%、イソフタル酸(IPA)2モル%、NADA2.5モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に310℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-14)
 モノマー仕込みを、HNA55モル%、BP20モル%、TPA20モル%、HBA5モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に315℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-15)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA17モル%、NADA3モル%に変更し、固相重合の最終温度を295℃、保持時間を1時間にした以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に315℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-16)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA15.5モル%、NADA4.5モル%に変更し、固相重合の最終温度を295℃、保持時間を1.5時間にした以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に300℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-17)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA15.5モル%、NADA4.5モル%に変更し、固相重合の最終温度を310℃、保持時間を1時間にした以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に300℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-18)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA15.5モル%、NADA4.5モル%に変更し、固相重合の最終温度を310℃、保持時間を4時間にした以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に300℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-19)
 モノマー仕込みを、HNA60モル%、BP20モル%、TPA11モル%、NADA9モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に290℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-20)
 モノマー仕込みを、HNA65モル%、BP17.5モル%、TPA8.5モル%、NADA9モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に290℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-21)
 モノマー仕込みを、HNA65モル%、BP14.5モル%、メチルハイドロキノン(MeHQ)2モル%、TPA16.5モル%、HBA2モル%に変更し、固相重合の最終温度を295℃、保持時間を1時間にした以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に300℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-22)
 モノマー仕込みを、HNA65モル%、BP15モル%、TPA15モル%、HBA5モル%に変更し、固相重合の最終温度を300℃、保持時間を1時間にした以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に310℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-23)
 モノマー仕込みを、HNA70モル%、BP15モル%、TPA12モル%、NADA3モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に310℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例1-24)
 モノマー仕込みを、HNA55モル%、HQ24.75モル%(等量的には22.5モル%であり、反応におけるモノマー昇華によるロスを考慮して過剰に用いた)、TPA5モル%、NADA17.5モル%に変更し、固相重合の最終温度を310℃、保持時間を1時間にした以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に300℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(比較例1-1)
 モノマー仕込みを、BP20モル%、TPA15モル%、IPA5モル%、HBA60モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に335℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(比較例1-2)
 モノマー仕込みを、HNA27モル%、HBA73モル%に変更し、固相重合の最終温度を270℃、保持時間を1時間にした以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に270℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(比較例1-3)
 モノマー仕込みを、HNA10モル%、BP10モル%、HQ15モル%、TPA25モル%、HBA40モル%に変更し、固相重合の最終温度を280℃、保持時間を1時間にした以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂を得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂の液晶性を確認した。
 上記で得られた全芳香族液晶ポリエステル樹脂を用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に280℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
 上記の実施例および比較例で製造した樹脂成形品の全芳香族液晶ポリエステル樹脂のモノマー組成および熱処理条件の一覧を表1に示した。
Figure JPOXMLDOC01-appb-T000014
<性能評価>
<示差走査熱量分析(DSC)>
 上記の実施例および比較例で得られた熱処理を施した樹脂成形品について、下記の条件で示差走査熱量分析を行った。測定においては熱処理後の成形品の射出成形時の樹脂流入部と反対側の角を2mm角程度に切り出したものをサンプルとして使用した。昇温過程の1サイクル目および2サイクル目の融点でのエンタルピー変化ΔHおよびΔHを測定した。また、昇温過程の1サイクル目および2サイクル目での吸熱ピークの頂点での温度をそれぞれTmおよびTmとし、Tmを融点(℃)とした。
 測定条件:昇温速度10℃/分で30℃から360~380℃まで昇温させる過程と、降温速度10℃/分で360~380℃から30℃まで降温させる過程とを1サイクルとして、2サイクル行った。
<誘電正接測定(10GHz)>
 上記の実施例および比較例で得られた熱処理前の平板状試験片および熱処理を施した樹脂成形品についてそれぞれ、キーサイト・テクノロジー社のネットワークアナライザーN5247Aを用いて、スプリットポスト誘電体共振器法(SPDR法)により、周波数10GHzの面内方向の誘電正接を測定した。なお、各種類のサンプルをN=4ずつ測定し、4回の平均値を表2に示した。
 また、樹脂成形品を用いて回路基板を作成した場合、回路基板における誘電損失は、技術文献(高周波用高分子材料の開発と応用、CMCテクニカルライブラリー201、馬場文明監修、120頁参照)の記載によると下記式で求められる。
・α=27.3×(f/C)×(Er)1/2×tanδ
 α:誘電損失(dB/m)
 f:周波数(Hz)
 C:光速
 Er:比誘電率
 tanδ:誘電正接
 この式によると、ある周波数における(Er)1/2×tanδの値を材料間で比較することで、材料ごとの誘電損失の低減度合いを知ることができる。そのため、各成形品の比誘電率Erの値を表2に示す。
<溶融粘度測定>
 上記の実施例および比較例で得られた全芳香族液晶ポリエステル樹脂の、せん断速度1000S-1における融点+20℃での溶融粘度(Pa・s)を、キャピラリーレオメーター粘度計((株)東洋精機製作所キャピログラフ1D)と内径1mmキャピラリーを用い、JIS K7199に準拠して測定した。測定結果を表2に示した。なお、測定前に全芳香族液晶ポリエステル樹脂を150℃、4時間減圧下で乾燥した。
Figure JPOXMLDOC01-appb-T000015
[試験例2]熱処理条件に対する誘電特性の検討
 試験例2では、特定組成を有する樹脂成形品の熱処理条件に対する誘電特性の変化を確認した。
 通常、樹脂成形物の熱処理では、成形時の残留応力の影響による成形品のソリや、ガスの発生による製品表面の膨れ(ブリスター)が発生し、製品としての不良を生じうる。一方で本発明による樹脂成形品を用いれば、幅広い熱処理条件において優れた低誘電性を備えた熱処理成形品の良品を得ることができる。
<樹脂成形品の製造>
(実施例2-1)
 実施例1-16で得られた平板状試験片に280℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例2-2)
 実施例1-16で得られた平板状試験片に325℃で4時間熱処理を施して、熱処理樹脂成形品を得た。また、得られた樹脂成形品の表面を目視観察した結果、膨れ(ブリスター)や反りは発生していなかった。
(実施例2-3)
 実施例1-23で得られた平板状試験片に290℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例2-4)
 実施例1-23で得られた平板状試験片に335℃で4時間熱処理を施して、熱処理樹脂成形品を得た。また、得られた樹脂成形品の表面を目視観察した結果、膨れ(ブリスター)や反りは発生していなかった。
(比較例2-1)
 比較例1-1で得られた平板状試験片に315℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(比較例2-2)
 比較例1-1で得られた平板状試験片に360℃で4時間熱処理を施して、熱処理樹脂成形品を得た。また、得られた樹脂成形品の表面を目視観察した結果、膨れ(ブリスター)が発生していた。
(比較例2-3)
 比較例1-2で得られた平板状試験片に250℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(比較例2-4)
 比較例1-2で得られた平板状試験片に295℃で4時間熱処理を施して、熱処理樹脂成形品を得た。また、得られた樹脂成形品の表面を目視観察した結果、膨れ(ブリスター)や反りが発生していた。
(比較例2-5)
 比較例1-3で得られた平板状試験片に260℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
<性能評価>
 上記の実施例および比較例で得られた熱処理を施した樹脂成形品について、試験例1と同様にして、エンタルピーΔHおよびΔH、ならびに温度TmおよびTmを測定した。10GHzの誘電特性についても試験例1と同様に各種類のサンプルをN=4ずつ測定し、4回の平均値を表3に示した。また、実施例1-16および1-23ならびに比較例1-1~1-3の測定結果について、参考のために併記した。
Figure JPOXMLDOC01-appb-T000016
[試験例3]樹脂混錬物の検討
 試験例3では、本発明による樹脂を母材とした樹脂混錬物に対しても熱処理成形品として優れた誘電特性を示すことを確認した。
<樹脂成形品の製造>
(実施例3-1)
 実施例1-16で得られた全芳香族液晶ポリエステル樹脂99質量部と、比較例1-2で得られた全芳香族液晶ポリエステル樹脂1質量部とを粉体状態で混ぜ、これを株式会社東洋精機製作所社製ラボプラストマイクロを用いて350℃で2軸混錬して、樹脂組成物ペレットを得た。得られた樹脂組成物ペレットを用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に300℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例3-2)
 実施例1-16で得られた全芳香族液晶ポリエステル樹脂95質量部と、比較例1-2で得られた全芳香族液晶ポリエステル樹脂5質量部とを粉体状態で混ぜ、これを株式会社東洋精機製作所社製ラボプラストマイクロを用いて350℃で2軸混錬して、樹脂組成物ペレットを得た。得られた樹脂組成物ペレットを用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に300℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例3-3)
 モノマー仕込みを、HNA2モル%、HQ14モル%、NADA14モル%、HBA70モル%に変更した以外は実施例1-1と同様にして、全芳香族液晶ポリエステル樹脂Aを得た。続いて、上記と同様にして、得られた全芳香族液晶ポリエステル樹脂Aの液晶性を確認した。
 次に、実施例1-16で得られた全芳香族液晶ポリエステル樹脂90質量部と、上記で得られた全芳香族液晶ポリエステル樹脂A10質量部とを粉体状態で混ぜ、これを株式会社東洋精機製作所社製ラボプラストマイクロを用いて350℃で2軸混錬して、樹脂組成物ペレットを得た。得られた樹脂組成物ペレットを用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に300℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
(実施例3-4)
 実施例1-16で得られた全芳香族液晶ポリエステル樹脂99質量部と、非晶性ポリアクリレート樹脂(ユニチカ株式会社製、UパウダーLタイプ)1質量部とを粉体状態で混ぜ、これを株式会社東洋精機製作所社製ラボプラストマイクロを用いて350℃で2軸混錬して、樹脂組成物ペレットを得た。得られた樹脂組成物ペレットを用いて、実施例1-1と同様にして、平板状試験片を作製した。続いて、得られた平板状試験片に300℃で3時間熱処理を施して、熱処理樹脂成形品を得た。
<性能評価>
 上記の実施例で得られた熱処理を施した樹脂成形品について、試験例1と同様にして、エンタルピーΔHおよびΔH、ならびに温度TmおよびTmを測定した。10GHzの誘電特性についても試験例1と同様に各種類のサンプルをN=4ずつ測定し、4回の平均値を表4に示した。
Figure JPOXMLDOC01-appb-T000017
[試験例4]フィルム形状における検討
 試験例4では、熱処理した樹脂成形品がフィルム形状である場合にも優れた誘電特性を示すことを確認した。
<樹脂成形品の製造>
(実施例4-1)
 実施例1-16で得られた全芳香族液晶ポリエステル樹脂を(株)東洋精機製作所製ラボプラストマイクロで二軸混練し、混錬部温度360℃でペレット化して、樹脂ペレットを得た。続いて、得られた樹脂ペレットを使用し、2軸押し出し機(テクノベル社製:KZW-30MG:ベントなし)により、ダイ幅120mmのTダイから溶融樹脂を押出して、冷却ロールを通過させた後、巻取りロールで巻取って樹脂フィルムを製膜した。製造時の各設定温度は、ダイ温度:337℃、混錬部温度340℃、ロール温度50℃、巻取りロールは室温であった。スクリュー回転150rpm、巻取り速度が3m/分のとき、幅90mm、平均膜厚が50μm程度の均一なフィルムが得られた。続いて、得られた樹脂フィルムに300℃で3時間熱処理を施して、フィルム状の熱処理樹脂成形品を得た。
(比較例4-1)
 攪拌翼を有する重合容器に、HNA27モル%およびHBA73モル%を加え、触媒として酢酸カリウムを仕込み、重合容器の減圧-窒素注入を3回行って窒素置換を行った後、150℃まで昇温し、還流状態で2時間アセチル化反応を行った。その後、350℃まで5時間かけて昇温した後、20分かけて10Torr(即ち1330Pa)まで減圧して、低沸分を留出させながら溶液重合を行った。続いて、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部から全芳香族液晶ポリエステル樹脂を排出した。メトラー製の顕微鏡用ホットステージ(商品名:FP82HT)を備えたオリンパス(株)製の偏光顕微鏡(商品名:BH-2)を用い、全芳香族液晶ポリエステル樹脂試料を顕微鏡加熱ステージ上にて加熱溶融させ、光学異方性の有無から液晶性を確認した。
 次に、得られた全芳香族液晶ポリエステル樹脂を用いて、実施例4-1と同様にして、樹脂フィルムを得た。続いて、得られた樹脂フィルムに250℃で3時間熱処理を施して、フィルム状の熱処理樹脂成形品を得た。
<性能評価>
 上記の実施例および比較例で得られた熱処理を施したフィルム状の樹脂成形品について、試験例1と同様にして、エンタルピーΔHおよびΔH、ならびに温度TmおよびTmを測定した。なお、示差走査熱量分析については各種類のサンプルをN=1ずつ測定した。10GHzの誘電特性についても試験例1と同様に各種類のサンプルをN=4ずつ測定し、4回の平均値を表5に示した。
Figure JPOXMLDOC01-appb-T000018
[試験例5]熱処理成形品の81GHzと34GHzでの誘電正接評価と、34GHzにおける誘電正接の温度依存性評価
 試験例5では、本発明である熱処理を施した樹脂成形品について、様々な周波数において優れた低い誘電正接を示すことを確認した。また、本発明である熱処理を施した樹脂成形品が特定の周波数において各温度帯で優れた低い誘電正接を示し、温度に対する誘電正接の変化率も小さく安定していることを確認した。
<誘電正接測定(34および81GHz)>
 実施例1-2、実施例1-16ならびに比較例1-1および1-2により得られた全芳香族液晶ポリエステル樹脂の30mm×30mm×0.4mmの熱処理済み射出成形平板の中央から13mm角の正方形平板を切削して試験片とした。この試験片を、宇都宮大学大学院工学研究科 古神・清水研究室にて温度25℃、湿度50%の環境で100GHz用共振器と36GHz用共振器に装荷し、円筒空洞共振器法により、室温で誘電正接を測定した。100GHzと36GHz用の共振器を用いたが、実際の測定周波数は材料の共振特性により、81GHz付近と34GHz付近の測定となった。
Figure JPOXMLDOC01-appb-T000019
<34GHzにおける誘電正接測定(温度依存性)>
 実施例1-2、実施例1-16ならびに比較例1-1および1-2により得られた全芳香族液晶ポリエステル樹脂の30mm×30mm×0.4mmの熱処理済み射出成形平板の中央から13mm角の正方形平板を切削して試験片とした。この試験片を、宇都宮大学大学院工学研究科 古神・清水研究室にて36GHz用共振器を用いて円筒空洞共振器法により、下記の手順で誘電正接測定の測定を行った。具体的には、試験片をセットした該共振器を恒温槽に配置し、恒温槽の設定温度を105℃に設定後、2時間経過させた。その後、恒温槽を20℃に設定し、槽内温度を自然降下させ、この時の誘電正接を1℃間隔で測定した。熱処理後の測定サンプルについて、誘電正接の30℃から100℃の温度依存性(変化)を図1に示した。また30℃および100℃での誘電正接と30℃から100℃までの誘電正接の変化率を表7に示した。なお、36GHz用の共振器を用いたが、実際の測定周波数は材料の共振特性により、34GHz付近での測定となった。
Figure JPOXMLDOC01-appb-T000020

Claims (7)

  1.  全芳香族液晶ポリエステル樹脂を含み、熱処理が施されてなる樹脂成形品であって、
     示差走査熱量計で測定した昇温過程の1サイクル目の融点でのエンタルピー変化ΔHと2サイクル目の融点でのエンタルピー変化ΔHが、ΔH/ΔH≧2.0を満たし、
     測定周波数10GHzにおけるSPDR法で測定した誘電正接が、0.85×10-3以下であることを特徴とする、樹脂成形品。
  2.  示差走査熱量計で測定した昇温過程の1サイクル目の融点でのエンタルピー変化ΔHが3.5J/g以上である、請求項1に記載の樹脂成形品。
  3.  前記全芳香族液晶ポリエステル樹脂が、3種以上の構成単位を含む、請求項1または2に記載の樹脂成形品。
  4.  前記全芳香族液晶ポリエステル樹脂が、前記全芳香族液晶ポリエステル樹脂全体の構成単位に対して、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位(I)を10モル%以上含む、請求項3に記載の樹脂成形品。
  5.  前記全芳香族液晶ポリエステル樹脂が、芳香族ジオール化合物に由来する構成単位(II)および芳香族ジカルボン酸に由来する構成単位(III)をさらに含む、請求項4に記載の樹脂成形品。
  6.  前記全芳香族液晶ポリエステル樹脂が、p-ヒドロキシ安息香酸に由来する構成単位(IV)をさらに含む、請求項5に記載の樹脂成形品。
  7.  請求項1~6のいずれか一項に記載の樹脂成形品を備える、電気電子部品。
PCT/JP2019/015305 2018-06-26 2019-04-08 熱処理により誘電正接を低減できる全芳香族液晶ポリエステル樹脂を含む樹脂成形品および電気電子部品 WO2020003690A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19826049.9A EP3816213A4 (en) 2018-06-26 2019-04-08 MOLDED RESIN PRODUCT WITH FULLY AROMATIC LIQUID CRYSTAL POLYESTER RESIN CAPABLE OF DIELECTRIC LOSS REDUCTION BY HEAT TREATMENT AND ELECTRICAL/ELECTRONIC COMPONENT
JP2020527223A JP7324752B2 (ja) 2018-06-26 2019-04-08 熱処理により誘電正接を低減できる全芳香族液晶ポリエステル樹脂を含む樹脂成形品および電気電子部品
US17/253,771 US11505647B2 (en) 2018-06-26 2019-04-08 Resin molded article comprising wholly aromatic liquid crystalline polyester resin capable of reducing dielectric loss tangent by heat treatment and electrical and electronic component
KR1020207035031A KR102457509B1 (ko) 2018-06-26 2019-04-08 열처리에 의해 유전 정접을 저감할 수 있는 전방향족 액정 폴리에스테르 수지를 포함하는 수지 성형품 및 전기 전자 부품
CN201980041116.0A CN112292421B (zh) 2018-06-26 2019-04-08 可通过热处理来降低介质损耗角正切的含有全芳香族液晶聚酯树脂的树脂成型品和电气电子元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-121248 2018-06-26
JP2018121248 2018-06-26

Publications (1)

Publication Number Publication Date
WO2020003690A1 true WO2020003690A1 (ja) 2020-01-02

Family

ID=68987007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015305 WO2020003690A1 (ja) 2018-06-26 2019-04-08 熱処理により誘電正接を低減できる全芳香族液晶ポリエステル樹脂を含む樹脂成形品および電気電子部品

Country Status (7)

Country Link
US (1) US11505647B2 (ja)
EP (1) EP3816213A4 (ja)
JP (1) JP7324752B2 (ja)
KR (1) KR102457509B1 (ja)
CN (1) CN112292421B (ja)
TW (1) TWI765153B (ja)
WO (1) WO2020003690A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019292A1 (ja) * 2020-07-21 2022-01-27 Eneos株式会社 液晶ポリエステル樹脂、成形品、および電気電子部品
WO2022019296A1 (ja) * 2020-07-21 2022-01-27 Eneos株式会社 液晶ポリエステル樹脂、成形品、および電気電子部品

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US20210075162A1 (en) * 2019-09-10 2021-03-11 Ticona Llc Electrical Connector Formed from a Polymer Composition having a Low Dielectric Constant and Dissipation Factor
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
KR20220145385A (ko) 2020-02-26 2022-10-28 티코나 엘엘씨 회로 구조체
US11728559B2 (en) 2021-02-18 2023-08-15 Ticona Llc Polymer composition for use in an antenna system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292638A (ja) 2002-03-29 2003-10-15 Kuraray Co Ltd 高耐熱性フィルム
JP2004250620A (ja) 2003-02-21 2004-09-09 Sumitomo Chem Co Ltd 絶縁材料用液晶性芳香族ポリエステルおよびその樹脂組成物
JP2005290371A (ja) * 2004-03-10 2005-10-20 Matsushita Electric Works Ltd 低誘電正接を有する樹脂成形品およびその製造方法
JP2006137786A (ja) * 2004-11-10 2006-06-01 Kuraray Co Ltd 熱可塑性液晶ポリマーフィルムおよびこれを用いた回路基板
JP2007154169A (ja) * 2005-11-08 2007-06-21 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂組成物及び電子部品用成形品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846403A (ja) * 1994-07-26 1996-02-16 Tokin Corp 誘電体フィルタ用基板及び誘電体フィルタ
TWI289573B (en) 2000-09-22 2007-11-11 Polyplastics Co Whole aromatic polyester and polyester resin composition
JP3730150B2 (ja) * 2000-09-22 2005-12-21 ポリプラスチックス株式会社 全芳香族ポリエステル及びポリエステル樹脂組成物
JP4639756B2 (ja) * 2003-11-05 2011-02-23 住友化学株式会社 芳香族液晶ポリエステルおよびそのフィルムならびにそれらの用途
EP1730234B1 (en) * 2004-03-10 2010-07-21 Panasonic Electric Works Co., Ltd. Resin molded article with reduced dielectric loss tangent and production method therefor
JP5327116B2 (ja) * 2010-03-24 2013-10-30 東レ株式会社 液晶ポリエステル繊維およびその製造方法
JP6626358B2 (ja) * 2016-02-04 2019-12-25 Jxtgエネルギー株式会社 全芳香族液晶ポリエステル樹脂およびその製造方法
US10822453B2 (en) 2016-07-04 2020-11-03 Eneos Corporation Wholly aromatic liquid crystalline polyester resin, molded article, and electric and electronic components
JP2018035226A (ja) * 2016-08-30 2018-03-08 リンテック株式会社 粘着剤組成物、及び粘着シート
WO2018181525A1 (ja) * 2017-03-28 2018-10-04 Jxtgエネルギー株式会社 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292638A (ja) 2002-03-29 2003-10-15 Kuraray Co Ltd 高耐熱性フィルム
JP2004250620A (ja) 2003-02-21 2004-09-09 Sumitomo Chem Co Ltd 絶縁材料用液晶性芳香族ポリエステルおよびその樹脂組成物
JP2005290371A (ja) * 2004-03-10 2005-10-20 Matsushita Electric Works Ltd 低誘電正接を有する樹脂成形品およびその製造方法
JP2006137786A (ja) * 2004-11-10 2006-06-01 Kuraray Co Ltd 熱可塑性液晶ポリマーフィルムおよびこれを用いた回路基板
JP2007154169A (ja) * 2005-11-08 2007-06-21 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂組成物及び電子部品用成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3816213A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019292A1 (ja) * 2020-07-21 2022-01-27 Eneos株式会社 液晶ポリエステル樹脂、成形品、および電気電子部品
WO2022019296A1 (ja) * 2020-07-21 2022-01-27 Eneos株式会社 液晶ポリエステル樹脂、成形品、および電気電子部品
CN115916868A (zh) * 2020-07-21 2023-04-04 引能仕株式会社 液晶聚酯树脂、成型品和电气电子零件
CN115916866A (zh) * 2020-07-21 2023-04-04 引能仕株式会社 液晶聚酯树脂、成型品和电气电子零件
JP7458924B2 (ja) 2020-07-21 2024-04-01 Eneos株式会社 液晶ポリエステル樹脂、成形品、および電気電子部品

Also Published As

Publication number Publication date
KR20210008024A (ko) 2021-01-20
JPWO2020003690A1 (ja) 2021-07-08
TW202000725A (zh) 2020-01-01
KR102457509B1 (ko) 2022-10-21
US20210269588A1 (en) 2021-09-02
CN112292421B (zh) 2023-11-17
EP3816213A1 (en) 2021-05-05
CN112292421A (zh) 2021-01-29
TWI765153B (zh) 2022-05-21
US11505647B2 (en) 2022-11-22
JP7324752B2 (ja) 2023-08-10
EP3816213A4 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
JP7324752B2 (ja) 熱処理により誘電正接を低減できる全芳香族液晶ポリエステル樹脂を含む樹脂成形品および電気電子部品
JP6434195B2 (ja) 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品
CN110494471B (zh) 全芳香族液晶聚酯树脂、成型品以及电气电子部件
JP6900151B2 (ja) 全芳香族液晶ポリエステル樹脂、成形品、および電気電子部品
JP7312767B2 (ja) 樹脂組成物および該樹脂組成物からなる樹脂成形品
WO2022019292A1 (ja) 液晶ポリエステル樹脂、成形品、および電気電子部品
JP7237524B2 (ja) 融解により異方性を緩和することができる樹脂組成物および該樹脂組成物からなる樹脂成形品
WO2022019296A1 (ja) 液晶ポリエステル樹脂、成形品、および電気電子部品
WO2022019294A1 (ja) 液晶ポリエステル樹脂、成形品、および電気電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527223

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207035031

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019826049

Country of ref document: EP

Effective date: 20210126