Beschreibung:
„Vorrichtung und Verfahren zur Herstellung eines aus einem amorphen oder teilamorphen Metall gebildeten Gussteils sowie Gussteil“
Die Erfindung betrifft eine Vorrichtung zur Herstellung eines aus einem amorphen oder teilamorphen Metall gebildeten Gussteils, die eine Gussteilform mit mindestens einer Einfüllöffnung zum Einbringen eines das Gussteil bildenden Gussmaterials sowie eine Einrichtung zum Schmelzen eines Gussmaterials umfasst. Ferner betrifft die Erfindung ein Verfahren zur Herstellung des Gussteils sowie ein Gussteil aus einem amorphen oder teilamorphen Metall.
Amorphe Metalle sind metallische Werkstoffe, die nicht kristallin erstarren. Sie werden auch als metallische Gläser bezeichnet und weisen aufgrund ihrer amorphen oder teilamorphen Struktur ausgezeichnete mechanische Eigenschaften auf.
Aus dem Stand der Technik sind Vorrichtungen sowie Verfahren zur Herstellung von
Gussteilen aus amorphen Metallen bekannt. Dazu wird ein Gussmaterial in einem Tiegel induktiv erhitzt und im Druckgussverfahren mittels eines Gießkolbens durch eine
Einfüllöffnung hindurch in eine Dauerform hineingepresst.
Nachteilig ist, dass durch die Verwendung eines Schmelztiegels Verunreinigungen in die Schmelze eingebracht werden können, die bei der Erstarrung eine Kristallisation bewirken können. Vorteilhafte mechanische Eigenschaften gehen dadurch verloren. Ferner kann durch eine induktive Erhitzung des Gussmaterials im sogenannten Kalttiegelverfahren lediglich eine geringe Überhitzung von circa 50 bis 60°C oberhalb der Schmelztemperatur der Gussmaterials erreicht werden. Um eine amorphe Erstarrung sicherzustellen, muss das Gussmaterial vorzugsweise auf eine Temperatur erhitzt werden, die weit oberhalb seiner Schmelztemperatur liegt, insbesondere zwischen 75 und 1300°C darüber.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Herstellung eines aus einem amorphen oder teilamorphen Metall gebildeten Gussteils zu schaffen, die eine besonders hohe Überhitzung des Gussmaterials sowie eine einfache Verarbeitbarkeit ermöglicht.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass die Schmelzeinrichtung mindestens einen Bereich aufweist, der zum Schmelzen des Gussmaterials vorgesehen ist.
In dem Schmelzbereich der Vorrichtung kann das Gussmaterial geschmolzen und bis zu 1300°C überhitzt werden. Eine hierzu erforderliche Energie kann sehr gezielt in das
Gussmaterial, das beispielsweise in Pelletform vorliegen kann, eingebracht werden.
Umliegende Bereiche oder benachbarte Bauteile der Vorrichtung werden vorteilhaft thermisch nicht belastet. Außerdem kann das Gussmaterial erst unmittelbar vor einer Einbringung in die Gussform geschmolzen werden. Eine Förderung aus einem Ofen, bei der die Temperatur der Schmelze stark absinken kann, ist nicht erforderlich. Durch die mit der erfindungsgemäßen Vorrichtung mögliche hohe Überhitzung wird außerdem sichergestellt, dass ein herzustellendes Gussteil amorph oder teilamorph, insbesondere überwiegend amorph, erstarren kann.
Zweckmäßigerweise weist die Schmelzeinrichtung ein Mittel zur Ausbildung mindestens eines Lichtbogens in dem mindestens einen Schmelzbereich auf, das insbesondere mindestens zwei in Abstand voneinander angeordnete Elektroden umfasst, zwischen denen der mindestens eine Lichtbogen ausgebildet werden kann. Der Lichtbogen kann sich von einer Elektrode zu dem insbesondere als Pellet vorliegenden und zu schmelzenden
Gussmaterial hin erstrecken und/oder über die Oberfläche des Gussmaterials geführt sein. Vorteilhaft wird ein zum Schmelzen erforderlicher Energieeintrag gezielt in das Pellet eingebracht und umliegende Bereiche werden thermisch nicht belastet. Sind mehrere Bereiche vorgesehen, in denen ein Gussmaterial geschmolzen werden soll, können mehrere Elektroden vorgesehen sein, von denen aus sich jeweils mindestens ein Lichtbogen zu dem zu schmelzenden Gussmaterial hin erstreckt. Denkbar ist auch, dass zum Schmelzen eines einzigen vorzugsweise pelletförmigen Gussmaterials mehrere Lichtbögen ausgebildet werden. Eine besonders hohe Überhitzung und ein schnelleres Schmelzen des
Gussmaterials sind möglich.
Außerdem ist denkbar, dass das Gussmaterial durch einen Laser und/oder einen
Elektronenstrahl geschmolzen wird.
In einer Ausgestaltung der Erfindung ist eine der mindestens zwei Elektroden zumindest teilweise von dem Gussmaterial gebildet. Vorteilhaft muss das Gussmaterial nicht gesondert elektrisch kontaktiert werden. Dadurch ist der Herstellungsprozess einfacher handzuhaben.
In einer weiteren Ausgestaltung der Erfindung ist der mindestens eine Schmelzbereich in die Gussteilform eingebracht. Dazu ist der Schmelzbereich vorzugsweise fluidisch mit einer Einfüllöffnung der Gussteilform verbunden. Dadurch, dass vorzugsweise ein Lichtbogen, ein Laserstrahl und/oder ein Elektronenstrahl zum Schmelzen des Gussmaterials genutzt wird bzw. werden, ist ein Energieeintrag lokal auf das Gussmaterial begrenzt. Eine thermische Beschädigung der Gussteilform ist ausgeschlossen. Vorteilhaft kann das Gussmaterial geschmolzen und unverzüglich durch die Einfüllöffnung in die Form eingebracht werden. Ein Transportweg von einem entfernten Schmelzbereich zur Gussteilform entfällt.
Sind mehrere Schmelzbereiche vorgesehen, können beispielsweise mit einer einzigen Gussteilform mehrere Gussteile gleichzeitig hergestellt werden.
Denkbar ist auch, dass mehrere Schmelzbereiche vorgesehen sind, um einen einzigen Formhohlraum durch mehrere Einfüllöffnungen zu befüllen. Vorteilhaft sind größere Gussteile herstellbar.
Zweckmäßigerweise umfasst der mindestens eine Schmelzbereich eine insbesondere muldenartige Vertiefung und/oder eine sockelartige Erhöhung zur Aufnahme des
Gussmaterials, und ist vorzugsweise zumindest teilweise um die mindestens eine
Einfüllöffnung herum angeordnet. Das Gussmaterial kann auf dem Sockel gelegt oder in die Vertiefung eingebracht und geschmolzen werden. Denkbar ist auch, dass eine Vertiefung vorgesehen ist, die einen Aufnahmesockel aufweist.
Dadurch, dass die Einfüllöffnung fluidisch mit dem Sockel und/oder der Vertiefung verbunden ist bzw. sind, kann das geschmolzene Gussmaterial unmittelbar durch diese hindurch in einen Formhohlraum der Gussteilform eingebracht werden.
Das Gussmaterial kann beispielsweise als Pellet auf die Einfüllöffnung gelegt werden, so dass diese überdeckt ist. Aufgrund der hohen Viskosität und/oder der hohen
Oberflächenspannung einer geschmolzenen, amorph oder teilamorph erstarrenden
Metalllegierung behält das Pellet im geschmolzenen Zustand seine Form bei und überdeckt bis zum Einpressen mittels eines Gießkolbens die Einfüllöffnung.
In einer Ausgestaltung der Erfindung ist der mindestens eine Schmelzbereich von einer Stirnseite eines insbesondere zylinderförmigen Gießkolbens, der zur Einbringung von geschmolzenem Gussmaterial in einen Formhohlraum der Gussteilform vorgesehen ist, und einer Innenwand eines Führungsmittels, in dem der Gießkolben geführt gelagert ist,
begrenzt, wobei das Führungsmittel vorzugsweise eine zylinderförmige Hülse umfasst. Die Innenwand und eine Stirnseite des Gießkolbens bilden einen Tiegel, in den das Gussmaterial unmittelbar vor der Einbringung in die Gussteilform geschmolzen werden kann. Eine
Befüllung einer Gussteilform entgegen einer Wirkrichtung der Schwerkraft („von unten“) ist vorteilhaft möglich. Wird eine Bewegung des Gießkolbens gesteuert, kann eine
Formfüllgeschwindigkeit oder ein Geschwindigkeitsprofil festgelegt werden. Hierzu kann eine Steuereinrichtung vorgesehen sein, die insbesondere zur gleichzeitigen Bewegung des Gießkolbens und der Hülse in Richtung einer Einfüllöffnung der Gussteilform vorgesehen ist.
Dadurch, dass das geschmolzene Gussmaterial vor einer Einbringung in die Gussteilform nur sehr kurz in dem gebildeten Tiegel verweilt, ist eine Verunreinigung vorteilhaft aus geschlossen.
In einer weiteren Ausgestaltung der Erfindung ist mindestens ein insbesondere
zylinderförmiger Gießkolben, der zur Einbringung von geschmolzenem Gussmaterial in einen Formhohlraum der Gussteilform vorgesehen ist, relativ zu einem Führungsmittel, in dem der Gießkolben geführt gelagert ist, bewegbar, insbesondere entgegen einer
Wirkrichtung einer Rückstellkraft eines Rückstellmittels. Das Rückstellmittel kann
beispielsweise eine Feder umfassen. Wandabschnitte des Führungsmittels, das beispiels weise als Hülse ausgebildet ist, stehen über eine Grundfläche des Gießkolbens, mit der dieser Kontakt zu einem geschmolzenen Gussmaterial hat, vor. Dadurch kann bei einem Andocken der Hülse an die Gussteilform ein Raum gebildet werden, der von Innenwänden der Hülse, der Stirnfläche des Gießkolbens sowie einem die Einfüllöffnung aufweisenden Gussteilformabschnitt begrenzt wird. Durch die Relativbewegung des Gießkolbens zu dem Führungsmittel wird der Raum verkleinert und das in dem Raum angeordnete,
geschmolzene Gussmaterial in die Form hineingepresst. Ist die Gussmaterialeinbringung abgeschlossen, werden der Gießkolben und die Hülse gemeinsam in eine Anfangsposition von der Gussteilform weg geführt. Dabei bewirkt die Rückstellkraft eine Bewegung des Gießkolbens in seine Ausgangsposition, in der der Raum ein maximales Volumen aufweist und ein neuer Gießvorgang durchgeführt werden kann.
In einer Ausgestaltung der Erfindung ist der mindestens eine Schmelzbereich zur Aufnahme des Führungsmittels vorgesehen und weist insbesondere eine vorzugsweise ringförmige Nut auf. Die ringförmige Nut ist insbesondere in die Gussteilform eingebracht. Dadurch kann das Führungsmittel zur Bildung eines Raumes, der das Gussmaterial vor dessen Einbringung in
die Gussteilform aufnimmt, dicht mit einem die Einfüllöffnung aufweisenden
Gussteilformabschnitt verbunden werden. Dadurch wird das Gussmaterial beim Einpressen ausschließlich in die Gussteilform eingebracht.
Zweckmäßigerweise ist eine Temperatur der Gussteilform veränderbar. Vorzugsweise ist die Temperatur durch eine Regelungseinrichtung einstellbar. Die Gussteilform kann
beispielsweise luft-, wasser- und/oder ölgekühlt sein. Ferner kann die Temperatur der Gussteilform bei einer kontinuierlichen Prozessführung konstant gehalten werden. Dadurch wird die Prozessstabilität verbessert.
In einer weiteren Ausgestaltung der Erfindung umfasst die Vorrichtung eine Einrichtung zur Entlüftung und/oder zum Einsaugen von geschmolzenem Gussmaterial in die Gussteilform, die vorzugsweise beim Einbringen des Gussmaterials in die Form aktivierbar ist. Dadurch kann zusätzlich zu der Druckkraft eines Gießkolbens eine Saugkraft aufgebracht werden, die das geschmolzene Gussmaterial in die Gussteilform hineinsaugt. Dies ist insbesondere beim Gießen von geschmolzenen, hochviskosen Legierungen vorteilhaft. Durch eine Entlüftung, das heißt eine Absaugung eines Formgases, das beispielsweise ein Spülgas wie Argon sein kann, können ferner keine Gaseinschlüsse in dem Gussteil gebildet werden. Vorteilhaft ist eine sehr gute Gussteilqualität möglich.
Zweckmäßigerweise ist die Gussteilform mindestens zweiteilig und vorzugsweise aus einem besonders wärmeleitenden Material, vorzugsweise Kupfer oder einer Kupferlegierung, gebildet. Um eine unerwünschte Kristallisation einer amorph oder teilamorph erstarrenden Metalllegierung zu verhindern, ist eine hohe Abkühlrate erforderlich. Besonders geeignet sind Gussteilformen aus Kupfer oder Kupferlegierungen. Ist die Gussteilform mindestens zweiteilig ausgebildet, kann die Form geöffnet und verschlossen und insbesondere als Dauerform mehrfach verwendet werden.
In einer weiteren Ausgestaltung der Erfindung weist die Vorrichtung ein insbesondere gasdichtes Gehäuse auf, in das zumindest die Gussteilform sowie der mindestens eine Schmelzbereich eingebracht sind. Vorteilhaft kann das Gehäuse evakuiert und/oder mit einem Schutzgas, beispielsweise Argon oder einem anderen Edelgas, befüllt werden, so dass kein Sauerstoff mehr in einem Gehäuseinnern vorhanden ist. Dadurch ist weder beim
Schmelzen noch beim Einbringen des Materials in die Gussteilform eine Oxidation des Gussmaterials möglich. Vorteilhaft können Gussteile höchster Qualität hergestellt werden.
In einer Ausgestaltung der Erfindung ist eine Zuführeinrichtung vorgesehen, die dazu eingerichtet ist, das feste Gussmaterial in den mindestens einen Schmelzbereich
einzubringen. Diese kann beispielsweise ein Pelletmagazin sein, das nach jedem
Gießvorgang ein neues Pellet in den Schmelzbereich einbringt. Vorteilhaft ist eine
Automatisierung des erfindungsgemäßen Herstellungsverfahrens möglich.
Zweckmäßigerweise ist ein Mittel zur Bestimmung einer Temperatur des Gussmaterials, des geschmolzenen Gussmaterials und/oder der Gussteilform vorgesehen, vorzugsweise ein Pyrometer. Vorteilhaft kann eine Temperatur zu jedem Zeitpunkt überwacht werden, insbesondere eine Überhitzungstemperatur, die zwischen 75 und 1300°C oberhalb der Schmelztemperatur des Gussmaterials ist, vorzugsweise bis zu 800 °C.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und der beigefügten, sich auf die Ausführungsbeispiele beziehenden Zeichnungen, näher erläutert. Es zeigen:
Fig. la-e eine schematische Darstellung einer erfindungsgemäßen Vorrichtung,
Fig. 2 eine schematische Darstellung einer weiteren Ausführungsform einer
erfindungsgemäßen Vorrichtung,
Fig. 3 ein Detail einer erfindungsgemäßen Vorrichtung,
Fig. 4 eine schematische Darstellung einer weiteren Ausführungsform einer
erfindungsgemäßen Vorrichtung,
Fig. 5 eine schematische Darstellung einer besonderen Ausführungsform einer erfindungsgemäßen Vorrichtung,
Fig. 6 Details einer weiteren besonderen Ausführungsform einer erfindungsgemäßen
Vorrichtung.
Eine in Fig. la-e schematisch im Querschnitt gezeigte Vorrichtung (1) umfasst ein Gehäuse (2), in das eine zweiteilige, wassergekühlte Gussteilform (3) aus Kupfer eingebracht ist. Jeder der beiden Teile (4,5) der Gussteilform (3) ist mittels einer Stange (6,7) mit jeweils
einem außerhalb des Gehäuses angebrachten Motor (8,9) zur Bewegung der Stangen (6,7) verbunden. Durch eine Bewegung der Stangen (6, 7) kann die Gussteilform (3) für eine Entnahme eines Gussteils in Richtung der Doppelpfeile (10, 11) geöffnet und zur Herstellung eines weiteren Gussteils geschlossen werden.
An einer Oberseite (12) der Gussteilform (3) ist ein Schmelzbereich (13) eingebracht, der einen Sockel (14) aufweist, der von beiden Teilen (4,5) der Gussteilform (3) gebildet und auf den ein Gussmaterialpellet (15) aufgelegt ist. Eine Einfüllöffnung (16), durch die ein Form hohlraum (17) mit dem Gussmaterial befüllt werden kann, ist vollständig von dem Pellet (15) überdeckt. Um den Sockel (14) herum ist eine Nut (18) angeordnet, die zur Aufnahme einer zylinderförmigen Hülse (19) vorgesehen ist. Die Hülse (19) ist zur Führung eines
zylinderförmigen Gießkolbens (20) eingerichtet und umgibt diesen. Der Gießkolben (20) und die Hülse (19) sind durch einen Motor (24) gemeinsam in Richtung des Doppelpfeils (21) bewegbar und der Gießkolben (20) ist relativ zu der Hülse (19) in deren axialer Richtung mit oder entgegen einer Rückstellkraft einer Feder (22) verschiebbar angeordnet. Zum
Einbringen eines geschmolzenen Gussmaterials (15), das bis zu 1300°C, vorzugsweise bis zu 800 °C, überhitzt sein kann, werden der Gießkolben (20) und die Hülse (19) gemeinsam in Richtung der Gussteilform (3) bewegt bis ein unterer Abschnitt (23) der Hülse (19) in die Nut (18) eingreift. Eine weitere Bewegung des Gießkolbens (20) in Richtung der
Gussteilform (3) erfolgt entgegen einer Rückstellkraft der Feder (22). Ein von einer
Stirnfläche (25) des Gießkolbens (20) sowie einer Innenwand (26) der Hülse und der Oberseite (12) der Gussteilform (3) gebildeter, in Fig. lc gezeigter Raum (27) wird dadurch verkleinert, so dass das geschmolzene Gussmaterial (15) in vertikaler Richtung in den Formhohlraum (17) hineinpresst wird.
Ferner umfasst die Vorrichtung ein Pyrometer (28), welches eine Temperatur des Pellets (15) während des Schmelzens erfasst, sowie eine Zuführeinrichtung (29), die als Pelletmagazin ausgebildet ist. Dadurch kann nach jeder Gussteilherstellung automatisiert ein neues Pellet (15) auf den Sockel (14) des Schmelzbereichs (13) gelegt werden.
Eine Erhitzung des Gussmaterialpellets (15) erfolgt durch einen in Fig. lb gezeigten
Lichtbogen (30), der zwischen einer mit einer Spitze (31) versehenen Wolframelektrode (32) und dem Pellet (15) gebildet wird. Das Gehäuse (2) sowie die Gussteilform (3) und das Pellet (15) sind dazu elektrisch leitend miteinander verbunden und bilden eine
Gegenelektrode zu der Wolframelektrode (32). Die Wolframelektrode (32) ist in dem
Gehäuse (2) bewegbar angeordnet und kann mittels eines Motors (33) in Richtung des Doppelpfeils (34) zu dem Schmelzbereich (13) hin und nach dem Schmelzen von dem Schmelzbereich (13) weg bewegt werden.
Denkbar ist ferner, dass eine in Fig. 1 nicht gezeigte Einrichtung zur Ausbildung eines Laserstrahls und/oder eines Elektronenstrahls vorgesehen ist, die zur Erhitzung des
Gussmaterialpellets (15) in dem Schmelzbereich (13) eingerichtet ist.
Außerdem sind eine nicht gezeigte Vakuumpumpe vorgesehen, mit der das Gehäuse (2) evakuiert werden kann, sowie ein ebenfalls nicht gezeigtes Mittel zum Einbringen eines Schutzgases wie Argon. Zusätzlich befindet sich im Innern des Gehäuses (2) ein
sogenannter Getter (35), der als Titanplatte ausgebildet ist, und der vor einem Schmelzen des Gussmaterials (15) erhitzt wird. Aufgrund der sehr hohen Affinität des Titans zu
Sauerstoff sowie der sehr hohen Löslichkeit von Sauerstoff in Titan werden Sauerstoffreste aus der mit dem Schutzgas versehenen Gehäuseatmosphäre entfernt. Dies bewirkt eine zusätzliche Atmosphärenreinigung.
Ein Gussteil (36) kann durch eine in Fig. la-e schematisch gezeigte Schleuse (37) entnommen werden. Dadurch muss nicht vor jedem Gießvorgang erneut das gesamte Gehäuse (2) evakuiert werden.
Eine Herstellung des Gussteils (36) umfasst folgende Verfahrensschritte , insbesondere in der nachfolgend aufgelisteten Reihenfolge :
- Bewegung der Wolframelektrode (32) aus einer in Fig. la gezeigten Ausgangsposition in eine in Fig. lb gezeigte Endposition über einem zu schmelzenden Gussmaterialpellet (15),
- Evakuierung des Gehäuses (2) sowie Einbringung eines Schutzgases, vorzugsweise Argon,
- Erhitzung eines vorzugsweise aus Titan gebildeten Getiers (35) auf eine Temperatur größer 600 °C,
- Ausbildung eines Lichtbogens (30) zwischen der Spitze (31) der Wolframelektrode (32) und dem Pellet (15) zum Schmelzen des Pellets (15) und dessen Überhitzung auf eine
Temperatur zwischen 75 und 1300°C oberhalb seiner Schmelztemperatur,
- Ausschalten des Lichtbogens und Bewegung der Wolframelektrode (32) zurück in die in Fig. la gezeigte Anfangsposition,
- Bewegung des Gießkolbens (20) und der Hülse (19) in Richtung des Schmelzbereichs (13) bis der untere Abschnitt (23) der Hülse (19) in die Nut (18) eingreift, so dass ein in Fig. lc gezeigter, das geschmolzene Pellet (15) umschließender Raum (27) zwischen dem
Gießkolben (20) und der Einfüllöffnung (16) gebildet wird,
- Eine Relativbewegung des Gießkolbens (20) zur Hülse (19) entgegen einer Federkraft der Feder (22) zur Verkleinerung des Raums (27), wodurch das geschmolzene Gussmaterial (15) durch die Einfüllöffnung (16) in den Formhohlraum (17) der Gussteilform (3) zur Bildung des Gussteils (36) hineingepresst wird. Diese Bewegung ist eine Bewegung des
Gießkolbens (20) aus einer in Fig. lc gezeigten anfänglichen Füllposition in eine in Fig. Id gezeigte Endposition, in der der Formhohlraum (17) mit dem Gussmaterial (15) befüllt ist,
- Wegbewegung des Gießkolbens (20) und der Hülse (19) in eine in Fig. la gezeigte Ausgangsposition oberhalb des Schmelzbereichs (13),
- Auseinanderbewegung der beiden Teile (4,5) der Gussteilform (3) in eine in Fig. le gezeigte Gussteilentnahmeposition sowie Entnahme des Gussteils (36) durch die Schleuse (37) hindurch in Richtung des Pfeils (38),
- Schließen der Gussteilform (3) sowie Zufuhr eines neuen Pellets (15) aus dem
Pelletmagazin (29) in den Schmelzbereich (13).
Denkbar ist ein zusätzlicher Verfahrensschritt, bei dem eine zum Beginn eines Einpressens des Gussmaterials aktivierbare, in Fig. la-e nicht gezeigte Saugeinrichtung einen Unterdrück bewirkt, durch den die Gussteilform (3) entlüftet und das geschmolzene Gussmaterial (15) zusätzlich in die Gussteilform (3) hineingesaugt wird.
Ferner ist denkbar, dass das Gussmaterial (15) durch einen Laserstrahl und/oder einen Elektronenstrahl geschmolzen wird.
Es wird nun auf Fig. 2 Bezug genommen, wo gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in Fig. la-e bezeichnet sind und der betreffenden Bezugszahl jeweils der Buchstabe a beigefügt ist.
Eine in Fig. 2 gezeigte Vorrichtung (la) unterscheidet sich durch diejenige in Fig. la-e gezeigte dadurch, dass zwei Elektroden (32a, 38) vorgesehen sind, die durch Ausbildung von zwei Lichtbögen (30a, 39) zum Schmelzen eines Gussmaterialpellets (15a) eingerichtet sind. Vorteilhaft sind eine schnellere Erhitzung, eine höhere Überhitzung sowie eine
Verarbeitung von großen Gussmaterialpellets (15a) möglich.
Es wird nun auf Fig. 3 Bezug genommen, wo gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in Fig. la-e und 2 bezeichnet sind und der betreffenden Bezugszahl jeweils der Buchstabe b beigefügt ist.
Eine in Fig. 3 in der Draufsicht gezeigte Gussteilform (3b) einer erfindungsgemäßen
Vorrichtung (lb) unterscheidet sich durch die in Fig. 1 und 2 gezeigte dadurch, dass zwei Schmelzbereiche (13b, 40) mit einem Sockel vorgesehen sind, auf denen zwei Pellets (15b) liegen, die zwei gestrichelt dargestellte Einfüllöffnungen (16b, 41) überdecken. Es versteht sich, dass zum Schmelzen in jedem Schmelzbereich (13b, 40) jeweils mindestens ein Lichtbogen sowie ein in Fig. 3 nicht gezeigter Gießkolben mit Hülse erforderlich sind. Die beiden Pellets (15b) werden insbesondere synchron geschmolzen und ein geschmolzenes Gussmaterialpellet (15b) wird durch eine vorzugsweise synchronisierte Bewegung der beiden Gießkolben und Hülsen in die Gussteilform (3b) hineingepresst.
Dabei kann entweder ein einziger Formhohlraum befüllt werden oder gleichzeitig mehrere Formhohlräume. Dadurch können mit der erfindungsgemäßen Vorrichtung entweder sehr große Gussteile oder mehrere Gussteile gleichzeitig mit einer einzigen Gussteilform hergestellt werden.
Es wird nun auf Fig. 4 Bezug genommen, wo gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in Fig. la-e, 2 und 3 bezeichnet sind und der betreffenden Bezugszahl jeweils der Buchstabe c beigefügt ist.
Eine in Fig. 4 gezeigte Vorrichtung (lc) unterscheidet sich von derjenigen in Fig. 1 gezeigten dadurch, dass ein Gießkolben (20c) sowie eine Hülse (19c) dazu vorgesehen sind, ein Gussmaterial (15c) von einer Unterseite (42) einer Gussteilform (3c) in diese einzubringen. Vorteilhaft kann eine besonders laminare Füllung bewirkt werden. Aus Gründen der
Übersichtlichkeit ist in Fig. 4 weder eine Zuführeinrichtung für die Pellets noch ein Pyrometer gezeigt.
Ein tiegelförmiger Schmelzbereich (13c), in dem ein Pellet (15c) liegt, ist von einer Stirnseite (25c) des Gießkolbens (20c) sowie einer Innenwand (26c) der Hülse (19c) gebildet. Der Gießkolben (20c) und das Pellet (15c) bilden eine Gegenelektrode zu einer
Wolframelektrode (32c), zwischen der und dem Pellet (15c) ein in Fig. 4 nicht gezeigter Lichtbogen zum Schmelzen des Pellets (15c) ausgebildet werden kann.
Es wird nun auf Fig. 5 Bezug genommen, wo gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in Fig. la-e, 2, 3 und 4 bezeichnet sind und der betreffenden Bezugszahl jeweils der Buchstabe d beigefügt ist.
io
Eine in Fig. 5 gezeigte Vorrichtung (ld) unterscheidet sich durch die in Fig. 1 bis 4 gezeigte dadurch, dass eine Saugeinrichtung (43) vorgesehen ist, die durch einen Saugkanal (44) mit einem Gussteilformkanal (45) fluidisch verbunden ist. Die Saugeinrichtung (43) ist aktivierbar und saugt bei einer Bewegung eines Gießkolbens (20d), durch den ein geschmolzenes Gussmaterial (15d) in eine Gussteilform (3d) hineingepresst wird, von einer vorzugsweise dem Gießkolben (20d) abgewandten Seite ein geschmolzenes Gussmaterial zusätzlich in die Gussteilform (3d) ein. Vorteilhaft kann durch diese zusätzliche Saugkraft eine bessere Gussteilformfüllung bewirkt werden.
Es versteht sich, dass die Saugeinrichtung (43) auch außerhalb des Gehäuses (2d) angeordnet sein kann. Ferner versteht sich, dass ein Übergangsbereich von dem Saugkanal (44) zu dem Gussteilformkanal (43) derart ausgebildet ist, dass eine Öffnung einer mehrteiligen Gussteilform weiterhin möglich ist.
Es wird nun auf Fig. 6 Bezug genommen, wo gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in Fig. la-e, 2, 3, 4 und 5 bezeichnet sind und der betreffenden Bezugszahl jeweils der Buchstabe e beigefügt ist.
Eine in Fig. 6 gezeigte, zweiteilige Gussteilform (3e) unterscheidet sich von den in Fig. 1 bis 5 gezeigten Gussteilformen (3; 3a; 3b; 3c; 3d) dadurch, dass eine horizontale Befüllung eines Formhohlraumes (17e) möglich ist. Ein Schmelzbereich (13e) umfasst eine Vertiefung (14e) in einem Teil (5e) der Gussteilform (3e), in der sich ein in Fig. 6a gezeigtes, geschmolzenes Gussmaterialpellet (15e) befindet.
Eine Hülse (19e) weist in einem unteren Hülsenabschnitt (23e) eine Öffnung (46) auf, durch die hindurch das geschmolzene Gussmaterial (15e) in den Formhohlraum (17e) der
Gussteilform (3e) eingebracht werden kann. Ferner ist eine Stirnfläche (25e) eines
Gießkolbens (20e) schräg ausgebildet. Eine Normale auf diese Fläche weist in Richtung einer Einfüllöffnung (16e). Bei einer Bewegung des Gießkolbens (20e) zur Füllung des Formhohlraums (17e) wird vorteilhaft sichergestellt, dass das geschmolzene Gussmaterial pellet (15e) durch die Einfüllöffnung (16e) in den Formhohlraum (17e) geführt wird. Dazu bilden ferner eine Außenseite einer Hülse (19e) und eine Außenseite der Gussteilform (3e) sowie eine Stirnfläche der Hülse (19e) und eine Oberseite der Gussteilform (3e) eine in Fig. 6b gezeigte Dichtfläche. Eine in Fig. 6b gezeigte Gießkolbenstellung entspricht derjenigen in Fig. lc gezeigten.
Es ist denkbar, dass zwischen einer Elektrode und einem einzigen insbesondere pelletförmigen Gussmaterial (15; 15a; 15b; 15c; 15d; 15e) mehrere Lichtbögen (30; 30a, 39) ausgebildet werden.
Es ist ferner denkbar, dass eine Gussteilform (3; 3a; 3b; 3c; 3d; 3e) mit mehreren
Einfüllöffnungen (16; 16a; 16b, 41; 16c; 16d; 16e) versehen ist, die unterschiedlich groß sind. Dazu ist vorteilhaft, wenn eine Größe eines Gießkolbens (20; 20a; 20b; 20c; 20d; 20e) auf eine Größe der Einfüllöffnungen (16; 16a; 16b, 41; 16c; 16d; 16e) und/oder eine Größe der Gussteilpellets (15; 15a; 15b; 15c; 15d; 16e) angepasst ist. In einer Vorrichtung (1; la; lb; lc; ld; le) können hierzu verschieden große Gießkolben (20; 20a; 20b; 20c; 20d; 20e) vorgesehen sein, die beispielsweise voneinander verschiedene Durchmesser aufweisen.