EP3814034B1 - Vorrichtung und verfahren zur herstellung eines aus einem amorphen oder teilamorphen metall gebildeten gussteils sowie gussteil - Google Patents

Vorrichtung und verfahren zur herstellung eines aus einem amorphen oder teilamorphen metall gebildeten gussteils sowie gussteil Download PDF

Info

Publication number
EP3814034B1
EP3814034B1 EP19735505.0A EP19735505A EP3814034B1 EP 3814034 B1 EP3814034 B1 EP 3814034B1 EP 19735505 A EP19735505 A EP 19735505A EP 3814034 B1 EP3814034 B1 EP 3814034B1
Authority
EP
European Patent Office
Prior art keywords
casting
mold
casting material
plunger
melted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19735505.0A
Other languages
English (en)
French (fr)
Other versions
EP3814034A1 (de
Inventor
Ralf Busch
Benedikt BOCHTLER
Oliver Gross
Simon HECHLER
Alexander KUBALL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amorphous Metal Solutions GmbH
Original Assignee
Amorphous Metal Solutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amorphous Metal Solutions GmbH filed Critical Amorphous Metal Solutions GmbH
Priority to PL19735505T priority Critical patent/PL3814034T3/pl
Publication of EP3814034A1 publication Critical patent/EP3814034A1/de
Application granted granted Critical
Publication of EP3814034B1 publication Critical patent/EP3814034B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/12Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with vertical press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2023Nozzles or shot sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/28Melting pots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys

Definitions

  • the invention relates to a device for producing a casting formed from an amorphous or partially amorphous metal, which comprises a casting mold with at least one filling opening for introducing a casting material forming the casting and a device for melting a casting material, which comprises a means for forming at least one arc in at least has a melting range.
  • the invention also relates to a method for producing the cast part and a cast part made from an amorphous or partially amorphous metal.
  • Amorphous metals are metallic materials that do not solidify in crystalline form. They are also referred to as metallic glasses and have excellent mechanical properties due to their amorphous or partially amorphous structure.
  • U.S. 2007/0215306 A1 describes a device for producing a shaped body from an amorphous metal, in which a casting material to form an amorphous shaped body is melted by a laser beam or inductively and then introduced into a casting mold.
  • the end JP 2000 326065 A a device is known in which a melting area has a trough-like depression. An amorphous starting material is inductively melted before it is placed in a casting mold.
  • a gravity casting apparatus which allows a titanium alloy to be melted by an electric arc and then flow into a casting mold. Gravity casting does not require pressing in with a plunger. DE 4116 071 A1 does not describe a casting plunger.
  • U.S. 4,919,191A describes a casting device for titanium or other reactive metal, in which a metal pellet 41, which is placed on a casting mold 51 and covers its filling opening (furnace aperture) 32, is melted by an electric arc and the melt can flow into the casting mold by gravity. Shows a casting plunger U.S. 4,919,191A not, however, since those are also off U.S. 4,919,191A known device for gravity casting is provided.
  • Known suction casting device 10 for producing a cast part 39 formed from an amorphous metal comprises an arc melting device and a casting plunger which can be pulled out of a casting mold and which can be pulled out of the casting mold to generate a negative pressure, through which molten casting material is sucked into the mold cavity by an arc.
  • a plunger for injecting a melt is disclosed U.S. 5,740,854A not.
  • U.S. 4,842,038 A and U.S. 2,839,800 A die casting machines are known in which molten casting material can be pressed into a casting mold by a casting plunger.
  • An arc melting device only shows U.S. 4,842,038 A .
  • U.S. 4,842,038 A known die-casting machine not suitable for the production of an at least partially amorphous cast part, since a melting process takes place in ambient air.
  • Amorphous metals must be in a vacuum or in an inert gas atmosphere, e.g. As argon, melted and processed. Impurities such as oxides lead to nucleation, so that the casting would solidify completely crystalline and no longer amorphous or partially amorphous.
  • a cast material is placed in a crucible inductively heated and pressed into a permanent mold in the die-casting process by means of a casting plunger through a filling opening.
  • the disadvantage is that the use of a crucible can introduce impurities into the melt, which can cause crystallization during solidification. Advantageous mechanical properties are lost as a result. Furthermore, by inductively heating the casting material in the so-called cold crucible process, only slight overheating of around 50 to 60°C above the melting point of the casting material can be achieved. In order to ensure an amorphous solidification, the cast material must preferably be heated to a temperature well above its melting temperature, in particular between 75 and 1300°C above.
  • the present invention is based on the object of creating a device for producing a cast part formed from an amorphous or partially amorphous metal, which enables processability.
  • the object is achieved in that the device comprises a casting piston which is set up for pressing molten casting material into a mold cavity of the casting mold.
  • the casting material can be melted and superheated up to 1300°C.
  • the energy required for this can be introduced in a very targeted manner into the cast material, which can be in the form of pellets, for example. Surrounding areas or adjacent components of the device are advantageously not thermally stressed.
  • the casting material can only be melted immediately before it is introduced into the casting mold. Funding from a furnace, where the temperature of the melt can drop sharply, is not required.
  • the high overheating that is possible with the device according to the invention also ensures that a cast part to be produced can solidify amorphously or partially amorphously, in particular predominantly amorphously.
  • the means for forming the at least one arc expediently comprises at least two electrodes which are arranged at a distance from one another and between which the at least one arc can be formed.
  • the arc can extend from an electrode to the casting material, which is in particular in the form of pellets and is to be melted, and/or can be guided over the surface of the casting material.
  • the energy input required for melting is specifically introduced into the pellet and surrounding areas are not thermally stressed. If several areas are provided in which a casting material is to be melted, several electrodes can be provided, from each of which at least one arc extends to the casting material to be melted. It is also conceivable that a plurality of arcs are formed to melt a single, preferably pellet-shaped casting material. Particularly high overheating and faster melting of the casting material are possible.
  • the cast material is melted by a laser and/or an electron beam.
  • one of the at least two electrodes is at least partially formed by the cast material.
  • the casting material does not have to be electrically contacted separately. This makes the manufacturing process easier to manage.
  • the at least one melting area is introduced into the casting mold.
  • the melting area is preferably fluidly connected to a filling opening of the casting mold. Due to the fact that an arc, a laser beam and/or an electron beam is/are preferably used to melt the cast material, an energy input is limited locally to the cast material. Thermal damage to the casting mold is impossible.
  • the casting material can be melted and immediately introduced into the mold through the filling opening. A transport route from a distant melting area to the casting mold is no longer necessary.
  • the at least one melting area expediently comprises a trough-like indentation and/or a base-like elevation for receiving the casting material, and is preferably arranged at least partially around the at least one filling opening.
  • the casting material can be placed on the base or placed in the recess and be melted. It is also conceivable that a depression is provided which has a receiving base.
  • the filling opening is fluidly connected to the base and/or the depression, the molten casting material can be introduced directly through them into a mold cavity of the casting mold.
  • the casting material can, for example, be placed in the form of pellets on the filling opening so that it is covered. Due to the high viscosity and/or the high surface tension of a molten, amorphously or partially amorphously solidifying metal alloy, the pellet retains its shape in the molten state and covers the filling opening until it is pressed in using a casting plunger.
  • the at least one melting area is delimited by an end face of the in particular cylindrical plunger and an inner wall of a guide means in which the plunger is guided, the guide means preferably comprising a cylindrical sleeve.
  • the inner wall and an end face of the plunger form a crucible in which the casting material can be melted immediately before it is introduced into the casting mold. It is advantageously possible to fill a casting mold against the direction in which gravity acts (“from below”). If a movement of the plunger is controlled, a mold filling speed or a speed profile can be defined.
  • a control device can be provided, which is provided in particular for the simultaneous movement of the casting plunger and the sleeve in the direction of a filling opening of the casting mold.
  • the at least one in particular cylindrical casting plunger is movable relative to a guide means in which the casting plunger is guided, in particular counter to an effective direction of a restoring force of a restoring means.
  • the restoring means can comprise a spring, for example.
  • Wall sections of the guide means which is designed as a sleeve, for example, protrude beyond a base surface of the casting plunger, with which it is in contact with a molten casting material.
  • the space is reduced and the molten casting material arranged in the space is pressed into the mold.
  • the plunger and sleeve are moved together to an initial position away from the casting mold. The restoring force causes the casting plunger to move into its starting position, in which the space has a maximum volume and a new casting process can be carried out.
  • the at least one melting area is provided for receiving the guide means and in particular has a preferably ring-shaped groove.
  • the annular groove is in particular introduced into the casting mold. This allows the guide means to form a space that the casting material before it is introduced into accommodating the casting mold can be tightly connected to a casting mold section having the filling opening. As a result, the casting material is only introduced into the casting mold when it is pressed in.
  • a temperature of the casting mold is expediently changeable.
  • the temperature can preferably be adjusted by a control device.
  • the casting mold can be air-, water- and/or oil-cooled, for example. Furthermore, the temperature of the casting mold can be kept constant in a continuous process. This improves the process stability.
  • the device comprises a device for venting and/or sucking molten casting material into the casting mold, which can preferably be activated when the casting material is introduced into the mold.
  • a suction force can be applied, which sucks the molten casting material into the casting mold.
  • no gas inclusions can be formed in the cast part by venting, ie sucking off a mold gas, which can be, for example, a flushing gas such as argon. A very good casting quality is advantageously possible.
  • the casting mold is expediently made of at least two parts and preferably made of a particularly heat-conducting material, preferably copper or a copper alloy. In order to prevent undesired crystallization of a metal alloy that solidifies amorphously or partially amorphously, a high cooling rate is required. Casting molds made of copper or copper alloys are particularly suitable. If the casting mold is designed in at least two parts, the mold can be opened and closed and, in particular, used several times as a permanent mold.
  • the device has an in particular gas-tight housing, in which at least the casting mold and the at least one melting area are introduced.
  • the housing can advantageously be evacuated and/or filled with an inert gas, for example argon or another noble gas, so that there is no longer any oxygen in the interior of the housing. As a result, neither is If the material is still melting when it is being introduced into the casting mold, oxidation of the casting material is possible. Castings of the highest quality can advantageously be produced.
  • a feed device which is set up to introduce the solid casting material into the at least one melting area.
  • This can be a pellet magazine, for example, which introduces a new pellet into the melting area after each casting process. Automation of the manufacturing method according to the invention is advantageously possible.
  • a means for determining a temperature of the casting material, the molten casting material and/or the casting mold is expediently provided, preferably a pyrometer.
  • a temperature can be monitored at any time, in particular an overheating temperature which is between 75 and 1300°C above the melting temperature of the casting material, preferably up to 800°C.
  • the device (1) shown schematically in cross section comprises a housing (2) into which a two-part, water-cooled casting mold (3) made of copper is introduced.
  • Each of the two parts (4.5) of the casting mold (3) is by means of a rod (6.7) with each a motor (8,9) mounted outside the housing for moving the rods (6,7).
  • the casting mold (3) can be opened in the direction of the double arrows (10, 11) to remove a casting and closed to produce another casting.
  • a melting area (13) is introduced on an upper side (12) of the casting mold (3), which has a base (14) which is formed by both parts (4, 5) of the casting mold (3) and on which a casting material pellet (15) is on the hook.
  • a filling opening (16), through which a mold cavity (17) can be filled with the casting material, is completely covered by the pellet (15).
  • a groove (18) is arranged around the base (14) and is intended to receive a cylindrical sleeve (19).
  • the sleeve (19) is designed to guide and surrounds a cylindrical casting plunger (20).
  • the casting plunger (20) and the sleeve (19) can be moved together by a motor (24) in the direction of the double arrow (21) and the casting plunger (20) is relative to the sleeve (19) in its axial direction with or against a restoring force a spring (22) slidably arranged.
  • a molten casting material (15) which can be superheated up to 1300 ° C, preferably up to 800 ° C
  • the plunger (20) and the sleeve (19) are moved together in the direction of the casting mold (3) to a lower section (23) of the sleeve (19) engages in the groove (18).
  • a further movement of the casting plunger (20) in the direction of the casting mold (3) takes place against a restoring force of the spring (22).
  • An in 1c The space (27) shown is thereby reduced, so that the molten casting material (15) is pressed into the mold cavity (17) in the vertical direction.
  • the device also includes a pyrometer (28) which records the temperature of the pellet (15) during melting, and a feed device (29) which is designed as a pellet magazine.
  • a new pellet (15) can be automatically placed on the base (14) of the melting area (13) after each cast part production.
  • the casting material pellets (15) are heated by an in Fig. 1b arc (30) shown formed between a tipped (31) tungsten electrode (32) and the pellet (15).
  • the housing (2) and the casting mold (3) and the pellet (15) are connected to one another in an electrically conductive manner and form a counter-electrode to the tungsten electrode (32).
  • the tungsten electrode (32) is movably arranged in the housing (2) and can be moved by means of a motor (33) in the direction of the double arrow (34) towards the melting area (13) and, after melting, away from the melting area (13).
  • an in 1 means, not shown, for forming a laser beam and/or an electron beam is provided, which is set up for heating the casting material pellets (15) in the melting region (13).
  • a vacuum pump (not shown) is provided, with which the housing (2) can be evacuated, as well as a means (also not shown) for introducing an inert gas such as argon.
  • a so-called getter (35), which is designed as a titanium plate and which is heated before the cast material (15) is melted. Due to the very high affinity of titanium for oxygen and the very high solubility of oxygen in titanium, residual oxygen is removed from the housing atmosphere provided with the inert gas. This causes an additional cleaning of the atmosphere.
  • a casting (36) can be replaced by an in Fig. 1a-e lock (37) shown schematically can be removed. As a result, the entire housing (2) does not have to be evacuated again before each casting process.
  • the cast material (15) is melted by a laser beam and/or an electron beam.
  • the device (1a) shown differs from that in FIG Fig. 1a-e shown in that two electrodes (32a, 38) are provided, which are adapted to melt a pellet of cast material (15a) by forming two arcs (30a, 39). Faster heating, higher overheating and the processing of large casting material pellets (15a) are advantageously possible.
  • the casting mold (3b) shown in the plan view of a device (1b) according to the invention differs in that in 1 and 2 shown in that two melting areas (13b, 40) are provided with a base on which two pellets (15b) lie, which cover two filling openings (16b, 41) shown in dashed lines. It goes without saying that at least one arc and one in 3 not shown casting plunger with sleeve are required.
  • the two pellets (15b) are in particular melted synchronously and a molten casting material pellet (15b) is pressed into the casting mold (3b) by a preferably synchronized movement of the two plungers and sleeves.
  • Either a single mold cavity can be filled or several mold cavities at the same time.
  • either very large castings or several castings can be produced simultaneously with a single casting mold with the device according to the invention.
  • the device shown (1c) differs from that in 1 shown in that a casting plunger (20c) and a sleeve (19c) are provided to introduce a casting material (15c) from an underside (42) of a casting mold (3c) into this.
  • a particularly laminar filling can advantageously be effected.
  • neither a feeder for the pellets nor a pyrometer is shown.
  • the casting piston (20c) and the pellet (15c) form a counter-electrode to a tungsten electrode (32c), between which and the pellet (15c) an in 4 not shown arc for melting the pellet (15c) can be formed.
  • the device (1d) shown differs in that in Figures 1 to 4 shown in that a suction device (43) is provided which is fluidically connected to a casting mold channel (45) by a suction channel (44).
  • the suction device (43) can be activated and, when a casting plunger (20d) moves, through which a molten casting material (15d) is pressed into a casting mold (3d), additionally sucks in a molten casting material from a side preferably facing away from the casting plunger (20d). the casting mold (3d).
  • This additional suction force can advantageously bring about better casting mold filling.
  • suction device (43) can also be arranged outside the housing (2d). Furthermore, it goes without saying that a transition region from the suction channel (44) to the cast part mold channel (43) is designed in such a way that an opening of a multi-part cast part mold is still possible.
  • the two-part casting mold shown (3e) differs from that in Figures 1 to 5 shown casting molds (3; 3a; 3b; 3c; 3d) in that a horizontal filling of a mold cavity (17e) is possible.
  • a melting area (13e) comprises a depression (14e) in a part (5e) of the casting mold (3e), in which an in Figure 6a shown molten casting material pellet (15e).
  • a sleeve (19e) has an opening (46) in a lower sleeve section (23e) through which the molten casting material (15e) can be introduced into the mold cavity (17e) of the casting mold (3e). Furthermore, an end face (25e) of a casting plunger (20e) is formed obliquely. A normal to this surface points in the direction of a filling opening (16e). When the casting plunger (20e) moves to fill the mold cavity (17e), it is advantageously ensured that the molten casting material pellet (15e) is guided through the filling opening (16e) into the mold cavity (17e).
  • a casting mold (3; 3a; 3b; 3c; 3d; 3e) is provided with a plurality of filling openings (16; 16a; 16b, 41; 16c; 16d; 16e) which are of different sizes. It is advantageous if the size of a casting piston (20; 20a; 20b; 20c; 20d; 20e) is related to the size of the filling openings (16; 16a; 16b, 41; 16c; 16d; 16e) and/or the size of the casting pellets ( 15; 15a; 15b; 15c; 15d; 16e). In a device (1; 1a; 1b; 1c; 1d; 1e), different sized casting pistons (20; 20a; 20b; 20c; 20d; 20e) can be provided for this purpose, which have different diameters, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dental Prosthetics (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur Herstellung eines aus einem amorphen oder teilamorphen Metall gebildeten Gussteils, die eine Gussteilform mit mindestens einer Einfüllöffnung zum Einbringen eines das Gussteil bildenden Gussmaterials sowie eine Einrichtung zum Schmelzen eines Gussmaterials umfasst, die ein Mittel zur Ausbildung mindestens eines Lichtbogens in mindestens einem Schmelzbereich aufweist. Ferner betrifft die Erfindung ein Verfahren zur Herstellung des Gussteils sowie ein Gussteil aus einem amorphen oder teilamorphen Metall.
  • Amorphe Metalle sind metallische Werkstoffe, die nicht kristallin erstarren. Sie werden auch als metallische Gläser bezeichnet und weisen aufgrund ihrer amorphen oder teilamorphen Struktur ausgezeichnete mechanische Eigenschaften auf.
  • Aus US 2015/0096967 A1 ist eine Vorrichtung zur Herstellung eines Formkörpers aus einem amorphen Metall bekannt, bei der ein Gussmaterial durch eine Widerstandsheizung geschmolzen wird.
  • US 2007/0215306 A1 beschreibt eine Vorrichtung zur Herstellung eines Formkörpers aus einem amorphen Metall, bei der ein Gussmaterial zur Bildung eines amorphen Formkörpers durch einen Laserstrahl oder induktiv geschmolzen und danach in eine Gießform eingebracht wird.
  • Aus JP 2000 326065 A ist eine Vorrichtung bekannt, bei der ein Schmelzbereich eine muldenartige Vertiefung aufweist. Ein amorphes Ausgangsmaterial wird vor Einbringung in eine Gießform induktiv geschmolzen.
  • Bei einer aus US 2016/0271689 A1 bekannten Vorrichtung wird ein Ausgangsmaterial durch eine induktive oder eine Widerstandsheizung geschmolzen und danach in eine Form gegossen.
  • Aus DE 4116 071 A1 ist eine Schwerkraftgießvorrichtung bekannt, mit der eine Titanlegerung durch eine Lichtbogen geschmolzen werden kann und danach in eine Gießform einströmen kann. Ein Einpressen durch einen Gießkolben ist beim Schwerkraftguss nicht erforderlich. DE 4116 071 A1 beschreibt keinen Gießkolben.
  • US 4 919 191 A beschreibt eine Gießvorrichtung für Titan oder andere reaktive Metall, bei der ein Metallpellet 41, welches auf eine Gießform 51 aufgelegt wird und deren Einfüllöffnung (furnace aperture) 32 abdeckt, durch einen elektrischen Lichtbogen geschmolzen wird und die Schmelze durch Schwerkraft in die Gießform hineinströmen kann. Einen Gießkolben zeigt US 4 919 191 A hingegen nicht, da auch die aus US 4 919 191 A bekannte Vorrichtung zum Schwerkraftgießen vorgesehen ist.
  • Eine aus US 5 740 854 A bekannte Sauggussvorrichtung 10 zur Herstellung eines aus einem amorphen Metall gebildeten Gussteils 39 umfasst eine Lichtbogenschmelzeinrichtung sowie einen aus einer Gießform herausziehbaren Gießkolben, durch dessen Herausziehen aus der Gießform ein Unterdruck erzeugt wird, durch den durch einen Lichtbogen geschmolzenes Gussmaterial in den Formhohlraum eingesaugt wird. Einen Gießkolben zum Einpressen einer Schmelze offenbart US 5 740 854 A nicht.
  • Aus US 4 842 038 A und US 2 839 800 A sind jeweils Druckgussmaschinen bekannt, bei denen geschmolzenes Gussmaterial durch einen Gießkolben in eine Gießform gepresst werden kann. Eine Lichtbogenschmelzeinrichtung zeigt nur US 4 842 038 A . Jedoch ist die aus US 4 842 038 A bekannte Druckgussmaschine nicht zur Herstellung eines wenigstens teilamorphen Gussteils geeignet, da ein Schmelzvorgang an Umgebungsluft stattfindet. Amorphe Metalle müssen in Vakuum oder in einer Schutzgasatmosphäre, z. B. Argon, geschmolzen und verarbeitet werden. Verunreinigungen wie Oxide führen zu Keimbildung, so dass das Gussstück vollständig kristallin und nicht mehr amorph oder teilamorph erstarren würde.
  • Aus dem Stand der Technik sind außerdem Vorrichtungen sowie Verfahren zur Herstellung von Gussteilen aus amorphen Metallen bekannt. Dazu wird ein Gussmaterial in einem Tiegel induktiv erhitzt und im Druckgussverfahren mittels eines Gießkolbens durch eine Einfüllöffnung hindurch in eine Dauerform hineingepresst.
  • Nachteilig ist, dass durch die Verwendung eines Schmelztiegels Verunreinigungen in die Schmelze eingebracht werden können, die bei der Erstarrung eine Kristallisation bewirken können. Vorteilhafte mechanische Eigenschaften gehen dadurch verloren. Ferner kann durch eine induktive Erhitzung des Gussmaterials im sogenannten Kalttiegelverfahren lediglich eine geringe Überhitzung von circa 50 bis 60°C oberhalb der Schmelztemperatur der Gussmaterials erreicht werden. Um eine amorphe Erstarrung sicherzustellen, muss das Gussmaterial vorzugsweise auf eine Temperatur erhitzt werden, die weit oberhalb seiner Schmelztemperatur liegt, insbesondere zwischen 75 und 1300°C darüber.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Herstellung eines aus einem amorphen oder teilamorphen Metall gebildeten Gussteils zu schaffen, die eine Verarbeitbarkeit ermöglicht.
  • Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass die Vorrichtung einen Gießkolben umfasst, der zum Einpressen von geschmolzenem Gussmaterial in einen Formhohlraum der Gussteilform eingerichtet ist.
  • In dem Schmelzbereich der Vorrichtung kann das Gussmaterial geschmolzen und bis zu 1300°C überhitzt werden. Eine hierzu erforderliche Energie kann sehr gezielt in das Gussmaterial, das beispielsweise in Pelletform vorliegen kann, eingebracht werden. Umliegende Bereiche oder benachbarte Bauteile der Vorrichtung werden vorteilhaft thermisch nicht belastet. Außerdem kann das Gussmaterial erst unmittelbar vor einer Einbringung in die Gussform geschmolzen werden. Eine Förderung aus einem Ofen, bei der die Temperatur der Schmelze stark absinken kann, ist nicht erforderlich. Durch die mit der erfindungsgemäßen Vorrichtung mögliche hohe Überhitzung wird außerdem sichergestellt, dass ein herzustellendes Gussteil amorph oder teilamorph, insbesondere überwiegend amorph, erstarren kann.
  • Zweckmäßigerweise umfasst das Mittel zur Ausbildung des mindestens einen Lichtbogens mindestens zwei in Abstand voneinander angeordnete Elektroden, zwischen denen der mindestens eine Lichtbogen ausgebildet werden kann. Der Lichtbogen kann sich von einer Elektrode zu dem insbesondere als Pellet vorliegenden und zu schmelzenden Gussmaterial hin erstrecken und/oder über die Oberfläche des Gussmaterials geführt sein. Vorteilhaft wird ein zum Schmelzen erforderlicher Energieeintrag gezielt in das Pellet eingebracht und umliegende Bereiche werden thermisch nicht belastet. Sind mehrere Bereiche vorgesehen, in denen ein Gussmaterial geschmolzen werden soll, können mehrere Elektroden vorgesehen sein, von denen aus sich jeweils mindestens ein Lichtbogen zu dem zu schmelzenden Gussmaterial hin erstreckt. Denkbar ist auch, dass zum Schmelzen eines einzigen vorzugsweise pelletförmigen Gussmaterials mehrere Lichtbögen ausgebildet werden. Eine besonders hohe Überhitzung und ein schnelleres Schmelzen des Gussmaterials sind möglich.
  • Außerdem ist denkbar, dass das Gussmaterial durch einen Laser und/oder einen Elektronenstrahl geschmolzen wird.
  • In einer Ausgestaltung der Erfindung ist eine der mindestens zwei Elektroden zumindest teilweise von dem Gussmaterial gebildet. Vorteilhaft muss das Gussmaterial nicht gesondert elektrisch kontaktiert werden. Dadurch ist der Herstellungsprozess einfacher handzuhaben.
  • In einer weiteren Ausgestaltung der Erfindung ist der mindestens eine Schmelzbereich in die Gussteilform eingebracht. Dazu ist der Schmelzbereich vorzugsweise fluidisch mit einer Einfüllöffnung der Gussteilform verbunden. Dadurch, dass vorzugsweise ein Lichtbogen, ein Laserstrahl und/oder ein Elektronenstrahl zum Schmelzen des Gussmaterials genutzt wird bzw. werden, ist ein Energieeintrag lokal auf das Gussmaterial begrenzt. Eine thermische Beschädigung der Gussteilform ist ausgeschlossen. Vorteilhaft kann das Gussmaterial geschmolzen und unverzüglich durch die Einfüllöffnung in die Form eingebracht werden. Ein Transportweg von einem entfernten Schmelzbereich zur Gussteilform entfällt.
  • Sind mehrere Schmelzbereiche vorgesehen, können beispielsweise mit einer einzigen Gussteilform mehrere Gussteile gleichzeitig hergestellt werden.
  • Denkbar ist auch, dass mehrere Schmelzbereiche vorgesehen sind, um einen einzigen Formhohlraum durch mehrere Einfüllöffnungen zu befüllen. Vorteilhaft sind größere Gussteile herstellbar.
  • Zweckmäßigerweise umfasst der mindestens eine Schmelzbereich eine insbesondere muldenartige Vertiefung und/oder eine sockelartige Erhöhung zur Aufnahme des Gussmaterials, und ist vorzugsweise zumindest teilweise um die mindestens eine Einfüllöffnung herum angeordnet. Das Gussmaterial kann auf dem Sockel gelegt oder in die Vertiefung eingebracht und geschmolzen werden. Denkbar ist auch, dass eine Vertiefung vorgesehen ist, die einen Aufnahmesockel aufweist.
  • Dadurch, dass die Einfüllöffnung fluidisch mit dem Sockel und/oder der Vertiefung verbunden ist bzw. sind, kann das geschmolzene Gussmaterial unmittelbar durch diese hindurch in einen Formhohlraum der Gussteilform eingebracht werden.
  • Das Gussmaterial kann beispielsweise als Pellet auf die Einfüllöffnung gelegt werden, so dass diese überdeckt ist. Aufgrund der hohen Viskosität und/oder der hohen Oberflächenspannung einer geschmolzenen, amorph oder teilamorph erstarrenden Metalllegierung behält das Pellet im geschmolzenen Zustand seine Form bei und überdeckt bis zum Einpressen mittels eines Gießkolbens die Einfüllöffnung.
  • In einer Ausgestaltung der Erfindung ist der mindestens eine Schmelzbereich von einer Stirnseite des insbesondere zylinderförmigen Gießkolbens und einer Innenwand eines Führungsmittels, in dem der Gießkolben geführt gelagert ist, begrenzt, wobei das Führungsmittel vorzugsweise eine zylinderförmige Hülse umfasst. Die Innenwand und eine Stirnseite des Gießkolbens bilden einen Tiegel, in den das Gussmaterial unmittelbar vor der Einbringung in die Gussteilform geschmolzen werden kann. Eine Befüllung einer Gussteilform entgegen einer Wirkrichtung der Schwerkraft ("von unten") ist vorteilhaft möglich. Wird eine Bewegung des Gießkolbens gesteuert, kann eine Formfüllgeschwindigkeit oder ein Geschwindigkeitsprofil festgelegt werden. Hierzu kann eine Steuereinrichtung vorgesehen sein, die insbesondere zur gleichzeitigen Bewegung des Gießkolbens und der Hülse in Richtung einer Einfüllöffnung der Gussteilform vorgesehen ist.
  • Dadurch, dass das geschmolzene Gussmaterial vor einer Einbringung in die Gussteilform nur sehr kurz in dem gebildeten Tiegel verweilt, ist eine Verunreinigung vorteilhaft ausgeschlossen.
  • In einer weiteren Ausgestaltung der Erfindung ist der mindestens eine insbesondere zylinderförmige Gießkolben relativ zu einem Führungsmittel, in dem der Gießkolben geführt gelagert ist, bewegbar, insbesondere entgegen einer Wirkrichtung einer Rückstellkraft eines Rückstellmittels. Das Rückstellmittel kann beispielsweise eine Feder umfassen. Wandabschnitte des Führungsmittels, das beispielsweise als Hülse ausgebildet ist, stehen über eine Grundfläche des Gießkolbens, mit der dieser Kontakt zu einem geschmolzenen Gussmaterial hat, vor. Dadurch kann bei einem Andocken der Hülse an die Gussteilform ein Raum gebildet werden, der von Innenwänden der Hülse, der Stirnfläche des Gießkolbens sowie einem die Einfüllöffnung aufweisenden Gussteilformabschnitt begrenzt wird. Durch die Relativbewegung des Gießkolbens zu dem Führungsmittel wird der Raum verkleinert und das in dem Raum angeordnete, geschmolzene Gussmaterial in die Form hineingepresst. Ist die Gussmaterialeinbringung abgeschlossen, werden der Gießkolben und die Hülse gemeinsam in eine Anfangsposition von der Gussteilform weg geführt. Dabei bewirkt die Rückstellkraft eine Bewegung des Gießkolbens in seine Ausgangsposition, in der der Raum ein maximales Volumen aufweist und ein neuer Gießvorgang durchgeführt werden kann.
  • In einer Ausgestaltung der Erfindung ist der mindestens eine Schmelzbereich zur Aufnahme des Führungsmittels vorgesehen und weist insbesondere eine vorzugsweise ringförmige Nut auf. Die ringförmige Nut ist insbesondere in die Gussteilform eingebracht. Dadurch kann das Führungsmittel zur Bildung eines Raumes, der das Gussmaterial vor dessen Einbringung in die Gussteilform aufnimmt, dicht mit einem die Einfüllöffnung aufweisenden Gussteilformabschnitt verbunden werden. Dadurch wird das Gussmaterial beim Einpressen ausschließlich in die Gussteilform eingebracht.
  • Zweckmäßigerweise ist eine Temperatur der Gussteilform veränderbar. Vorzugsweise ist die Temperatur durch eine Regelungseinrichtung einstellbar. Die Gussteilform kann beispielsweise luft-, wasser- und/oder ölgekühlt sein. Ferner kann die Temperatur der Gussteilform bei einer kontinuierlichen Prozessführung konstant gehalten werden. Dadurch wird die Prozessstabilität verbessert.
  • In einer weiteren Ausgestaltung der Erfindung umfasst die Vorrichtung eine Einrichtung zur Entlüftung und/oder zum Einsaugen von geschmolzenem Gussmaterial in die Gussteilform, die vorzugsweise beim Einbringen des Gussmaterials in die Form aktivierbar ist. Dadurch kann zusätzlich zu der Druckkraft eines Gießkolbens eine Saugkraft aufgebracht werden, die das geschmolzene Gussmaterial in die Gussteilform hineinsaugt. Dies ist insbesondere beim Gießen von geschmolzenen, hochviskosen Legierungen vorteilhaft. Durch eine Entlüftung, das heißt eine Absaugung eines Formgases, das beispielsweise ein Spülgas wie Argon sein kann, können ferner keine Gaseinschlüsse in dem Gussteil gebildet werden. Vorteilhaft ist eine sehr gute Gussteilqualität möglich.
  • Zweckmäßigerweise ist die Gussteilform mindestens zweiteilig und vorzugsweise aus einem besonders wärmeleitenden Material, vorzugsweise Kupfer oder einer Kupferlegierung, gebildet. Um eine unerwünschte Kristallisation einer amorph oder teilamorph erstarrenden Metalllegierung zu verhindern, ist eine hohe Abkühlrate erforderlich. Besonders geeignet sind Gussteilformen aus Kupfer oder Kupferlegierungen. Ist die Gussteilform mindestens zweiteilig ausgebildet, kann die Form geöffnet und verschlossen und insbesondere als Dauerform mehrfach verwendet werden.
  • In einer weiteren Ausgestaltung der Erfindung weist die Vorrichtung ein insbesondere gasdichtes Gehäuse auf, in das zumindest die Gussteilform sowie der mindestens eine Schmelzbereich eingebracht sind. Vorteilhaft kann das Gehäuse evakuiert und/oder mit einem Schutzgas, beispielsweise Argon oder einem anderen Edelgas, befüllt werden, so dass kein Sauerstoff mehr in einem Gehäuseinnern vorhanden ist. Dadurch ist weder beim Schmelzen noch beim Einbringen des Materials in die Gussteilform eine Oxidation des Gussmaterials möglich. Vorteilhaft können Gussteile höchster Qualität hergestellt werden.
  • In einer Ausgestaltung der Erfindung ist eine Zuführeinrichtung vorgesehen, die dazu eingerichtet ist, das feste Gussmaterial in den mindestens einen Schmelzbereich einzubringen. Diese kann beispielsweise ein Pelletmagazin sein, das nach jedem Gießvorgang ein neues Pellet in den Schmelzbereich einbringt. Vorteilhaft ist eine Automatisierung des erfindungsgemäßen Herstellungsverfahrens möglich.
  • Zweckmäßigerweise ist ein Mittel zur Bestimmung einer Temperatur des Gussmaterials, des geschmolzenen Gussmaterials und/oder der Gussteilform vorgesehen, vorzugsweise ein Pyrometer. Vorteilhaft kann eine Temperatur zu jedem Zeitpunkt überwacht werden, insbesondere eine Überhitzungstemperatur, die zwischen 75 und 1300°C oberhalb der Schmelztemperatur des Gussmaterials ist, vorzugsweise bis zu 800 °C.
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und der beigefügten, sich auf die Ausführungsbeispiele beziehenden Zeichnungen, näher erläutert. Es zeigen:
  • Fig. 1a-e
    eine schematische Darstellung einer erfindungsgemäßen Vorrichtung,
    Fig. 2
    eine schematische Darstellung einer weiteren Ausführungsform einer erfindungsgemäßen Vorrichtung,
    Fig. 3
    ein Detail einer erfindungsgemäßen Vorrichtung,
    Fig. 4
    eine schematische Darstellung einer weiteren Ausführungsform einer erfindungsgemäßen Vorrichtung,
    Fig. 5
    eine schematische Darstellung einer besonderen Ausführungsform einer erfindungsgemäßen Vorrichtung,
    Fig. 6
    Details einer weiteren besonderen Ausführungsform einer erfindungsgemäßen Vorrichtung.
  • Eine in Fig. 1a-e schematisch im Querschnitt gezeigte Vorrichtung (1) umfasst ein Gehäuse (2), in das eine zweiteilige, wassergekühlte Gussteilform (3) aus Kupfer eingebracht ist. Jeder der beiden Teile (4,5) der Gussteilform (3) ist mittels einer Stange (6,7) mit jeweils einem außerhalb des Gehäuses angebrachten Motor (8,9) zur Bewegung der Stangen (6,7) verbunden. Durch eine Bewegung der Stangen (6, 7) kann die Gussteilform (3) für eine Entnahme eines Gussteils in Richtung der Doppelpfeile (10, 11) geöffnet und zur Herstellung eines weiteren Gussteils geschlossen werden.
  • An einer Oberseite (12) der Gussteilform (3) ist ein Schmelzbereich (13) eingebracht, der einen Sockel (14) aufweist, der von beiden Teilen (4,5) der Gussteilform (3) gebildet und auf den ein Gussmaterialpellet (15) aufgelegt ist. Eine Einfüllöffnung (16), durch die ein Formhohlraum (17) mit dem Gussmaterial befüllt werden kann, ist vollständig von dem Pellet (15) überdeckt. Um den Sockel (14) herum ist eine Nut (18) angeordnet, die zur Aufnahme einer zylinderförmigen Hülse (19) vorgesehen ist. Die Hülse (19) ist zur Führung eines zylinderförmigen Gießkolbens (20) eingerichtet und umgibt diesen. Der Gießkolben (20) und die Hülse (19) sind durch einen Motor (24) gemeinsam in Richtung des Doppelpfeils (21) bewegbar und der Gießkolben (20) ist relativ zu der Hülse (19) in deren axialer Richtung mit oder entgegen einer Rückstellkraft einer Feder (22) verschiebbar angeordnet. Zum Einbringen eines geschmolzenen Gussmaterials (15), das bis zu 1300°C, vorzugsweise bis zu 800 °C, überhitzt sein kann, werden der Gießkolben (20) und die Hülse (19) gemeinsam in Richtung der Gussteilform (3) bewegt bis ein unterer Abschnitt (23) der Hülse (19) in die Nut (18) eingreift. Eine weitere Bewegung des Gießkolbens (20) in Richtung der Gussteilform (3) erfolgt entgegen einer Rückstellkraft der Feder (22). Ein von einer Stirnfläche (25) des Gießkolbens (20) sowie einer Innenwand (26) der Hülse und der Oberseite (12) der Gussteilform (3) gebildeter, in Fig. 1c gezeigter Raum (27) wird dadurch verkleinert, so dass das geschmolzene Gussmaterial (15) in vertikaler Richtung in den Formhohlraum (17) hineinpresst wird.
  • Ferner umfasst die Vorrichtung ein Pyrometer (28), welches eine Temperatur des Pellets (15) während des Schmelzens erfasst, sowie eine Zuführeinrichtung (29), die als Pelletmagazin ausgebildet ist. Dadurch kann nach jeder Gussteilherstellung automatisiert ein neues Pellet (15) auf den Sockel (14) des Schmelzbereichs (13) gelegt werden.
  • Eine Erhitzung des Gussmaterialpellets (15) erfolgt durch einen in Fig. 1b gezeigten Lichtbogen (30), der zwischen einer mit einer Spitze (31) versehenen Wolframelektrode (32) und dem Pellet (15) gebildet wird. Das Gehäuse (2) sowie die Gussteilform (3) und das Pellet (15) sind dazu elektrisch leitend miteinander verbunden und bilden eine Gegenelektrode zu der Wolframelektrode (32). Die Wolframelektrode (32) ist in dem Gehäuse (2) bewegbar angeordnet und kann mittels eines Motors (33) in Richtung des Doppelpfeils (34) zu dem Schmelzbereich (13) hin und nach dem Schmelzen von dem Schmelzbereich (13) weg bewegt werden.
  • Denkbar ist ferner, dass eine in Fig. 1 nicht gezeigte Einrichtung zur Ausbildung eines Laserstrahls und/oder eines Elektronenstrahls vorgesehen ist, die zur Erhitzung des Gussmaterialpellets (15) in dem Schmelzbereich (13) eingerichtet ist.
  • Außerdem sind eine nicht gezeigte Vakuumpumpe vorgesehen, mit der das Gehäuse (2) evakuiert werden kann, sowie ein ebenfalls nicht gezeigtes Mittel zum Einbringen eines Schutzgases wie Argon. Zusätzlich befindet sich im Innern des Gehäuses (2) ein sogenannter Getter (35), der als Titanplatte ausgebildet ist, und der vor einem Schmelzen des Gussmaterials (15) erhitzt wird. Aufgrund der sehr hohen Affinität des Titans zu Sauerstoff sowie der sehr hohen Löslichkeit von Sauerstoff in Titan werden Sauerstoffreste aus der mit dem Schutzgas versehenen Gehäuseatmosphäre entfernt. Dies bewirkt eine zusätzliche Atmosphärenreinigung.
  • Ein Gussteil (36) kann durch eine in Fig. 1a-e schematisch gezeigte Schleuse (37) entnommen werden. Dadurch muss nicht vor jedem Gießvorgang erneut das gesamte Gehäuse (2) evakuiert werden.
  • Eine Herstellung des Gussteils (36) umfasst folgende Verfahrensschritte , insbesondere in der nachfolgend aufgelisteten Reihenfolge :
    • Bewegung der Wolframelektrode (32) aus einer in Fig. 1a gezeigten Ausgangsposition in eine in Fig. 1b gezeigte Endposition über einem zu schmelzenden Gussmaterialpellet (15),
    • Evakuierung des Gehäuses (2) sowie Einbringung eines Schutzgases, vorzugsweise Argon,
    • Erhitzung eines vorzugsweise aus Titan gebildeten Getters (35) auf eine Temperatur größer 600 °C,
    • Ausbildung eines Lichtbogens (30) zwischen der Spitze (31) der Wolframelektrode (32) und dem Pellet (15) zum Schmelzen des Pellets (15) und dessen Überhitzung auf eine Temperatur zwischen 75 und 1300°C oberhalb seiner Schmelztemperatur,
    • Ausschalten des Lichtbogens und Bewegung der Wolframelektrode (32) zurück in die in Fig. 1a gezeigte Anfangsposition,
    • Bewegung des Gießkolbens (20) und der Hülse (19) in Richtung des Schmelzbereichs (13) bis der untere Abschnitt (23) der Hülse (19) in die Nut (18) eingreift, so dass ein in Fig. 1c gezeigter, das geschmolzene Pellet (15) umschließender Raum (27) zwischen dem Gießkolben (20) und der Einfüllöffnung (16) gebildet wird,
    • Eine Relativbewegung des Gießkolbens (20) zur Hülse (19) entgegen einer Federkraft der Feder (22) zur Verkleinerung des Raums (27), wodurch das geschmolzene Gussmaterial (15) durch die Einfüllöffnung (16) in den Formhohlraum (17) der Gussteilform (3) zur Bildung des Gussteils (36) hineingepresst wird. Diese Bewegung ist eine Bewegung des Gießkolbens (20) aus einer in Fig. 1c gezeigten anfänglichen Füllposition in eine in Fig. 1d gezeigte Endposition, in der der Formhohlraum (17) mit dem Gussmaterial (15) befüllt ist,
    • Wegbewegung des Gießkolbens (20) und der Hülse (19) in eine in Fig. 1a gezeigte Ausgangsposition oberhalb des Schmelzbereichs (13),
    • Auseinanderbewegung der beiden Teile (4,5) der Gussteilform (3) in eine in Fig. 1e gezeigte Gussteilentnahmeposition sowie Entnahme des Gussteils (36) durch die Schleuse (37) hindurch in Richtung des Pfeils (38),
    • Schließen der Gussteilform (3) sowie Zufuhr eines neuen Pellets (15) aus dem Pelletmagazin (29) in den Schmelzbereich (13).
  • Denkbar ist ein zusätzlicher Verfahrensschritt, bei dem eine zum Beginn eines Einpressens des Gussmaterials aktivierbare, in Fig. 1a-e nicht gezeigte Saugeinrichtung einen Unterdruck bewirkt, durch den die Gussteilform (3) entlüftet und das geschmolzene Gussmaterial (15) zusätzlich in die Gussteilform (3) hineingesaugt wird.
  • Ferner ist denkbar, dass das Gussmaterial (15) durch einen Laserstrahl und/oder einen Elektronenstrahl geschmolzen wird.
  • Es wird nun auf Fig. 2 Bezug genommen, wo gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in Fig. 1a-e bezeichnet sind und der betreffenden Bezugszahl jeweils der Buchstabe a beigefügt ist.
  • Eine in Fig. 2 gezeigte Vorrichtung (1a) unterscheidet sich durch diejenige in Fig. 1a-e gezeigte dadurch, dass zwei Elektroden (32a, 38) vorgesehen sind, die durch Ausbildung von zwei Lichtbögen (30a, 39) zum Schmelzen eines Gussmaterialpellets (15a) eingerichtet sind. Vorteilhaft sind eine schnellere Erhitzung, eine höhere Überhitzung sowie eine Verarbeitung von großen Gussmaterialpellets (15a) möglich.
  • Es wird nun auf Fig. 3 Bezug genommen, wo gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in Fig. 1a-e und 2 bezeichnet sind und der betreffenden Bezugszahl jeweils der Buchstabe b beigefügt ist.
  • Eine in Fig. 3 in der Draufsicht gezeigte Gussteilform (3b) einer erfindungsgemäßen Vorrichtung (1b) unterscheidet sich durch die in Fig. 1 und 2 gezeigte dadurch, dass zwei Schmelzbereiche (13b, 40) mit einem Sockel vorgesehen sind, auf denen zwei Pellets (15b) liegen, die zwei gestrichelt dargestellte Einfüllöffnungen (16b, 41) überdecken. Es versteht sich, dass zum Schmelzen in jedem Schmelzbereich (13b, 40) jeweils mindestens ein Lichtbogen sowie ein in Fig. 3 nicht gezeigter Gießkolben mit Hülse erforderlich sind. Die beiden Pellets (15b) werden insbesondere synchron geschmolzen und ein geschmolzenes Gussmaterialpellet (15b) wird durch eine vorzugsweise synchronisierte Bewegung der beiden Gießkolben und Hülsen in die Gussteilform (3b) hineingepresst.
  • Dabei kann entweder ein einziger Formhohlraum befüllt werden oder gleichzeitig mehrere Formhohlräume. Dadurch können mit der erfindungsgemäßen Vorrichtung entweder sehr große Gussteile oder mehrere Gussteile gleichzeitig mit einer einzigen Gussteilform hergestellt werden.
  • Es wird nun auf Fig. 4 Bezug genommen, wo gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in Fig. 1a-e, 2 und 3 bezeichnet sind und der betreffenden Bezugszahl jeweils der Buchstabe c beigefügt ist.
  • Eine in Fig. 4 gezeigte Vorrichtung (1c) unterscheidet sich von derjenigen in Fig. 1 gezeigten dadurch, dass ein Gießkolben (20c) sowie eine Hülse (19c) dazu vorgesehen sind, ein Gussmaterial (15c) von einer Unterseite (42) einer Gussteilform (3c) in diese einzubringen. Vorteilhaft kann eine besonders laminare Füllung bewirkt werden. Aus Gründen der Übersichtlichkeit ist in Fig. 4 weder eine Zuführeinrichtung für die Pellets noch ein Pyrometer gezeigt.
  • Ein tiegelförmiger Schmelzbereich (13c), in dem ein Pellet (15c) liegt, ist von einer Stirnseite (25c) des Gießkolbens (20c) sowie einer Innenwand (26c) der Hülse (19c) gebildet. Der Gießkolben (20c) und das Pellet (15c) bilden eine Gegenelektrode zu einer Wolframelektrode (32c), zwischen der und dem Pellet (15c) ein in Fig. 4 nicht gezeigter Lichtbogen zum Schmelzen des Pellets (15c) ausgebildet werden kann.
  • Es wird nun auf Fig. 5 Bezug genommen, wo gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in Fig. 1a-e, 2, 3 und 4 bezeichnet sind und der betreffenden Bezugszahl jeweils der Buchstabe d beigefügt ist.
  • Eine in Fig. 5 gezeigte Vorrichtung (1d) unterscheidet sich durch die in Fig. 1 bis 4 gezeigte dadurch, dass eine Saugeinrichtung (43) vorgesehen ist, die durch einen Saugkanal (44) mit einem Gussteilformkanal (45) fluidisch verbunden ist. Die Saugeinrichtung (43) ist aktivierbar und saugt bei einer Bewegung eines Gießkolbens (20d), durch den ein geschmolzenes Gussmaterial (15d) in eine Gussteilform (3d) hineingepresst wird, von einer vorzugsweise dem Gießkolben (20d) abgewandten Seite ein geschmolzenes Gussmaterial zusätzlich in die Gussteilform (3d) ein. Vorteilhaft kann durch diese zusätzliche Saugkraft eine bessere Gussteilformfüllung bewirkt werden.
  • Es versteht sich, dass die Saugeinrichtung (43) auch außerhalb des Gehäuses (2d) angeordnet sein kann. Ferner versteht sich, dass ein Übergangsbereich von dem Saugkanal (44) zu dem Gussteilformkanal (43) derart ausgebildet ist, dass eine Öffnung einer mehrteiligen Gussteilform weiterhin möglich ist.
  • Es wird nun auf Fig. 6 Bezug genommen, wo gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in Fig. 1a-e, 2, 3, 4 und 5 bezeichnet sind und der betreffenden Bezugszahl jeweils der Buchstabe e beigefügt ist.
  • Eine in Fig. 6 gezeigte, zweiteilige Gussteilform (3e) unterscheidet sich von den in Fig. 1 bis 5 gezeigten Gussteilformen (3; 3a; 3b; 3c; 3d) dadurch, dass eine horizontale Befüllung eines Formhohlraumes (17e) möglich ist. Ein Schmelzbereich (13e) umfasst eine Vertiefung (14e) in einem Teil (5e) der Gussteilform (3e), in der sich ein in Fig. 6a gezeigtes, geschmolzenes Gussmaterialpellet (15e) befindet.
  • Eine Hülse (19e) weist in einem unteren Hülsenabschnitt (23e) eine Öffnung (46) auf, durch die hindurch das geschmolzene Gussmaterial (15e) in den Formhohlraum (17e) der Gussteilform (3e) eingebracht werden kann. Ferner ist eine Stirnfläche (25e) eines Gießkolbens (20e) schräg ausgebildet. Eine Normale auf diese Fläche weist in Richtung einer Einfüllöffnung (16e). Bei einer Bewegung des Gießkolbens (20e) zur Füllung des Formhohlraums (17e) wird vorteilhaft sichergestellt, dass das geschmolzene Gussmaterialpellet (15e) durch die Einfüllöffnung (16e) in den Formhohlraum (17e) geführt wird. Dazu bilden ferner eine Außenseite einer Hülse (19e) und eine Außenseite der Gussteilform (3e) sowie eine Stirnfläche der Hülse (19e) und eine Oberseite der Gussteilform (3e) eine in Fig. 6b gezeigte Dichtfläche. Eine in Fig. 6b gezeigte Gießkolbenstellung entspricht derjenigen in Fig. 1c gezeigten.
  • Es ist denkbar, dass zwischen einer Elektrode und einem einzigen insbesondere pelletförmigen Gussmaterial (15; 15a; 15b; 15c; 15d; 15e) mehrere Lichtbögen (30; 30a, 39) ausgebildet werden.
  • Es ist ferner denkbar, dass eine Gussteilform (3; 3a; 3b; 3c; 3d; 3e) mit mehreren Einfüllöffnungen (16; 16a; 16b, 41; 16c; 16d; 16e) versehen ist, die unterschiedlich groß sind. Dazu ist vorteilhaft, wenn eine Größe eines Gießkolbens (20; 20a; 20b; 20c; 20d; 20e) auf eine Größe der Einfüllöffnungen (16; 16a; 16b, 41; 16c; 16d; 16e) und/oder eine Größe der Gussteilpellets (15; 15a; 15b; 15c; 15d; 16e) angepasst ist. In einer Vorrichtung (1; 1a; 1b; 1c; 1d; 1e) können hierzu verschieden große Gießkolben (20; 20a; 20b; 20c; 20d; 20e) vorgesehen sein, die beispielsweise voneinander verschiedene Durchmesser aufweisen.

Claims (15)

  1. Vorrichtung (1; 1a; 1b; 1c; 1d; 1e) zur Herstellung eines aus einem amorphen oder teilamorphen Metall gebildeten Gussteils (36), die eine Gussteilform (3; 3a; 3b; 3c; 3d; 3e) mit mindestens einer Einfüllöffnung (16; 16a; 16b, 41; 16c; 16d; 16e) zum Einbringen eines das Gussteil (36) bildenden Gussmaterials (15; 15a; 15b; 15c; 15d; 15e) sowie eine Einrichtung zum Schmelzen des Gussmaterials (15; 15a; 15b; 15c; 15d; 15e) umfasst, die ein Mittel zur Ausbildung mindestens eines Lichtbogens (30; 30a, 39) in mindestens einem Schmelzbereich (13; 13; 13b; 40, 13c; 13d;13e) aufweist,
    dadurch gekennzeichnet,
    dass die Vorrichtung einen Gießkolben (20; 20a; 20b; 20c; 20d; 20e) umfasst, der zum Einpressen von geschmolzenem Gussmaterial (15; 15a; 15b; 15c; 15d; 25e) in einen Formhohlraum (17; 17a; 17c; 17d; 17e) der Gussteilform (3; 3a; 3b; 3c; 3d; 3e) eingerichtet ist.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Mittel zur Ausbildung des mindestens einen Lichtbogens (30; 30a, 39) mindestens zwei in Abstand voneinander angeordnete Elektroden (32; 32a, 38; 32b; 32c) umfasst, zwischen denen der mindestens eine Lichtbogen (30; 30a, 39) ausgebildet werden kann.
  3. Vorrichtung nach Anspruch 2,
    dadurch gekennzeichnet,
    dass eine der mindestens zwei Elektroden (32; 32a, 38; 32b; 32c) zumindest teilweise von dem Gussmaterial (15; 15a; 15b; 15c; 15d; 15e) gebildet ist.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass der mindestens eine Schmelzbereich (13; 13; 13b; 40, 13c; 13d; 13e) in die Gussteilform (3; 3a; 3b; 3c; 3d; 3e) eingebracht ist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass der mindestens eine Schmelzbereich (13; 13; 13b; 40, 13c; 13d; 13e) eine insbesondere muldenartige Vertiefung (14e) und/oder eine sockelartige Erhöhung (14; 14a; 14c; 14d) zur Aufnahme des Gussmaterials (15; 15a; 15b; 15c; 15d; 15e) umfasst, und vorzugsweise zumindest teilweise um die mindestens eine Einfüllöffnung (16; 16a; 16b, 41; 16c; 16d; 16e) herum angeordnet ist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass der mindestens eine Schmelzbereich (13; 13; 13b; 40, 13c; 13d; 14e) von einer Stirnseite (25; 25a; 25c; 25d; 25e) des insbesondere zylinderförmigen Gießkolbens (20; 20a; 20b; 20c; 20d; 20e), und einer Innenwand (26; 26a; 26c, 26d) eines Führungsmittels, in dem der Gießkolben (20; 20a; 20b; 20c; 20d; 20e) geführt gelagert ist, begrenzt ist, wobei das Führungsmittel vorzugsweise eine zylinderförmige Hülse (19; 19a, 19c; 19d; 19e) umfasst.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass der insbesondere zylinderförmige Gießkolben (20; 20a; 20b; 20c; 20d; 20e) relativ zu einem Führungsmittel (19; 19a; 19c; 19d; 19e), in dem der Gießkolben (20; 20a; 20b; 20c; 20d; 20e) geführt gelagert ist, bewegbar ist, insbesondere entgegen einer Wirkrichtung einer Rückstellkraft eines Rückstellmittels (22).
  8. Vorrichtung nach Anspruch 6 oder 7,
    dadurch gekennzeichnet,
    dass der mindestens eine Schmelzbereich (13; 13; 13b; 40, 13c; 13d; 13e) zur Aufnahme des Führungsmittels vorgesehen ist und insbesondere eine vorzugsweise ringförmige Nut (18; 18a; 18c; 18d) aufweist.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass eine Temperatur der Gussteilform (3; 3a; 3b; 3c; 3d; 3e) veränderbar ist.
  10. Vorrichtung nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass die Vorrichtung (1; 1a; 1b; 1c; 1d) eine Einrichtung (43) zur Entlüftung und/oder zum Einsaugen von geschmolzenem Gussmaterial (15; 15a; 15b; 15c; 15d; 15e) in die Gussteilform (3; 3a; 3b; 3c; 3d; 3e) umfasst, die vorzugsweise beim Einbringen des Gussmaterials (15; 15a; 15b; 15c; 15d; 15e) in die Gussteilform (3; 3a; 3b; 3c; 3d; 3e) aktivierbar ist.
  11. Verfahren zur Herstellung eines aus einem teilamorphen oder amorphen Metall gebildeten Gussteils (36), das folgende Verfahrensschritte aufweist:
    - Einbringung eines Gussmaterials (15; 15a; 15b; 15c; 15d; 15e) in einen Schmelzbereich (13; 13; 13b; 40, 13c; 13d; 13e), in dem das Gussmaterial (15; 15a; 15b; 15c; 15d; 15e) durch einen Lichtbogen (30; 30a, 39)und/oder einen Elektronenstrahl auf eine Temperatur oberhalb seiner Schmelztemperatur erhitzt wird,
    - Einpressen des geschmolzenen Gussmaterials (15; 15a; 15b; 15c; 15d; 15e) in einen Formhohlraum (17; 17a; 17c; 17d; 17e) einer Gussteilform (3; 3a; 3b; 3c; 3d; 3e) durch einen Gießkolben (20; 20a; 20b; 20c; 20d; 20e),
    - Entnahme des Gussteils (36) aus der Form (3; 3a; 3b; 3c; 3d; 3e).
  12. Verfahren nach Anspruch 11,
    dadurch gekennzeichnet,
    dass das Gussmaterial (15; 15a; 15b; 15c; 15d; 15e) auf eine Temperatur erhitzt wird, die bis zu 1300°C oberhalb seiner Schmelztemperatur ist, mindestens 75°C, insbesondere 150°C, vorzugsweise 200 bis 400°C, besonders bevorzugt bis zu 800 °C.
  13. Verfahren nach Anspruch 11 oder 12,
    dadurch gekennzeichnet,
    dass das Gussmaterial (15; 15a; 15b; 15c; 15d; 15e) in dem mindestens einen Schmelzbereich (13; 13; 13b; 40, 13c; 13d; 13e) angeordnet wird und insbesondere eine Einfüllöffnung (16; 16a; 16b, 41; 16c; 16d; 16e), durch die hindurch die Gussteilform (3; 3a; 3b; 3c; 3d) befüllbar ist, zumindest teilweise überdeckt.
  14. Verfahren nach einem der Ansprüche 11 bis 13,
    dadurch gekennzeichnet,
    dass der Formhohlraum (17; 17a; 17c; 17d; 17e) vor dem Einpressen des geschmolzenen Gussmaterials (15; 15a; 15b; 15c; 15d; 15e) entlüftet wird.
  15. Verfahren nach einem der Ansprüche 11 bis 14,
    dadurch gekennzeichnet,
    dass zur Einbringung des geschmolzenen Gussmaterials (15; 15a; 15b; 15c; 15d; 15e) in den Formhohlraum (17; 17a; 17c; 17d; 17e) der Gussteilform (3; 3a; 3b; 3c; 3d; 3e) eine Relativbewegung des Gießkolbens (20; 20a; 20b; 20c; 20d; 20e) zu einem den Gießkolben führenden Führungsmittel (19; 19a; 19c; 19d; 19e) entgegen einer Rückstellkraft eines Rückstellmittels (22) erfolgt, wodurch ein das geschmolzene Gussmaterial (15; 15a; 15b; 15c; 15d; 15e) aufnehmender Raum (27; 27e) verkleinert wird und das geschmolzene Gussmaterial (15; 15a; 15b; 15c; 15d; 15e) durch die Einfüllöffnung (16; 16a; 16b, 41; 16c; 16d; 16e) hindurch in den Formhohlraum (17; 17a; 17c; 17d; 17e) der Gussteilform (3; 3a; 3b; 3c; 3d; 3e) zur Bildung des Gussteils (36) hineingepresst wird.
EP19735505.0A 2018-06-29 2019-06-25 Vorrichtung und verfahren zur herstellung eines aus einem amorphen oder teilamorphen metall gebildeten gussteils sowie gussteil Active EP3814034B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL19735505T PL3814034T3 (pl) 2018-06-29 2019-06-25 Przyrząd i sposób wytwarzania odlewu wykonanego z amorficznego lub częściowo amorficznego metalu oraz odlew

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018115815.7A DE102018115815A1 (de) 2018-06-29 2018-06-29 Vorrichtung und Verfahren zur Herstellung eines aus einem amorphen oder teilamorphen Metall gebildeten Gussteils sowie Gussteil
PCT/EP2019/066761 WO2020002291A1 (de) 2018-06-29 2019-06-25 Vorrichtung und verfahren zur herstellung eines aus einem amorphen oder teilamorphen metall gebildeten gussteils sowie gussteil

Publications (2)

Publication Number Publication Date
EP3814034A1 EP3814034A1 (de) 2021-05-05
EP3814034B1 true EP3814034B1 (de) 2022-03-23

Family

ID=67145771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19735505.0A Active EP3814034B1 (de) 2018-06-29 2019-06-25 Vorrichtung und verfahren zur herstellung eines aus einem amorphen oder teilamorphen metall gebildeten gussteils sowie gussteil

Country Status (8)

Country Link
US (1) US11602783B2 (de)
EP (1) EP3814034B1 (de)
JP (1) JP7126022B2 (de)
KR (1) KR102580272B1 (de)
CN (1) CN112334250B (de)
DE (1) DE102018115815A1 (de)
PL (1) PL3814034T3 (de)
WO (1) WO2020002291A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046742A1 (de) 2022-08-29 2024-03-07 Universität des Saarlandes Legierung zur herstellung metallischer massivgläser sowie formkörper daraus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4282557A1 (de) 2022-05-25 2023-11-29 Patek Philippe SA Genève Gerät zur herstellung eines werkstücks aus amorphem metall und verfahren zur herstellung eines solchen werkstücks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2839800A (en) * 1954-09-27 1958-06-24 Hodler Fritz Method of and apparatus for damping shocks in die-casting machines
US4842038A (en) * 1985-11-26 1989-06-27 Ube Industries, Inc. Injection method of die casting machine
US4919191A (en) * 1988-05-17 1990-04-24 Jeneric/Pentron Incorporated Molten-metal forming method and apparatus which are bottom-loading, bottom-pouring and bottom-unloading
DE4116071A1 (de) * 1990-05-18 1991-11-21 G C Dental Ind Corp Verfahren zum vergiessen von dentalmetallen
US5740854A (en) * 1994-10-14 1998-04-21 Akihisa Inoue Production methods of metallic glasses by a suction casting method

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1476589A (en) * 1974-08-07 1977-06-16 Allied Chem Amorphous metal alloys
JPH0684548B2 (ja) * 1986-09-19 1994-10-26 吉田工業株式会社 高耐食アモルファス表面層を有する被覆金属体およびその作製法
JPH03267355A (ja) * 1990-03-15 1991-11-28 Sumitomo Electric Ind Ltd アルミニウム―クロミウム系合金およびその製法
JP3424259B2 (ja) * 1993-04-15 2003-07-07 石川島播磨重工業株式会社 直流アーク炉
US5860468A (en) * 1993-07-28 1999-01-19 Cook; Arnold J. Vacuum die casting
DE4420496A1 (de) * 1994-06-13 1995-12-14 Woka Schweistechnik Gmbh Verfahren und Vorrichtung zur schmelzmetallurgischen Herstellung von Hartstoffen
JP3808167B2 (ja) * 1997-05-01 2006-08-09 Ykk株式会社 金型で加圧鋳造成形された非晶質合金成形品の製造方法及び装置
JP3011904B2 (ja) * 1997-06-10 2000-02-21 明久 井上 金属ガラスの製造方法および装置
JP3017498B2 (ja) * 1998-06-11 2000-03-06 住友ゴム工業株式会社 非晶質合金製造装置及び非晶質合金の製法
JP3852810B2 (ja) * 1998-12-03 2006-12-06 独立行政法人科学技術振興機構 高延性ナノ粒子分散金属ガラスおよびその製造方法
JP2000254765A (ja) 1999-03-10 2000-09-19 Akihisa Inoue 溶解鍛造方法と該鍛造方法を実施するための金型並びに該金型を利用する溶解鍛造装置
JP3784578B2 (ja) 1999-05-19 2006-06-14 Ykk株式会社 金型で加圧鋳造成形された非晶質合金成形品の製造方法及び装置
US6258185B1 (en) * 1999-05-25 2001-07-10 Bechtel Bwxt Idaho, Llc Methods of forming steel
US7017645B2 (en) * 2002-02-01 2006-03-28 Liquidmetal Technologies Thermoplastic casting of amorphous alloys
JP4688145B2 (ja) 2005-06-09 2011-05-25 日本碍子株式会社 ダイキャスト装置及びダイキャスト方法
JP2009068101A (ja) * 2007-09-18 2009-04-02 Tohoku Univ 大型バルク金属ガラスおよび大型バルク金属ガラスの製造方法
JP5330051B2 (ja) * 2009-03-26 2013-10-30 オリンパス株式会社 成形装置及び非晶質合金の成形方法
DE102010027802A1 (de) * 2010-04-15 2012-05-16 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Verfahren zur Herstellung von Bauteilen aus metallischen Gläsern mittels Laserstrahlschmelzen
CN103443321B (zh) * 2011-02-16 2015-09-30 加利福尼亚技术学院 通过快速电容器放电进行的金属玻璃的注射成型
WO2013039513A1 (en) * 2011-09-16 2013-03-21 Crucible Intellectual Property Llc Molding and separating of bulk-solidifying amorphous alloys and composite containing amorphous alloy
EP2597166B1 (de) * 2011-11-24 2014-10-15 Universität des Saarlandes Massives metallisches Glas bildende Legierung
CN102527982B (zh) * 2011-12-15 2015-05-13 比亚迪股份有限公司 非晶合金压铸设备及非晶合金压铸工艺
JP2014039936A (ja) 2012-08-21 2014-03-06 Dia Shinku Kk ハース部材、及び該ハース部材を用いた冷却凝固金属作製装置
US8813817B2 (en) * 2012-09-28 2014-08-26 Apple Inc. Cold chamber die casting of amorphous alloys using cold crucible induction melting techniques
US10197335B2 (en) * 2012-10-15 2019-02-05 Apple Inc. Inline melt control via RF power
CN104630661B (zh) * 2013-10-03 2017-04-26 格拉斯金属技术股份有限公司 用于金属玻璃的快速放电形成的涂覆有绝缘膜的进料桶
CN104668503B (zh) 2013-11-30 2017-05-31 中国科学院金属研究所 一种非晶合金构件铸造成型设备和工艺
EP2944401B1 (de) * 2014-05-15 2019-03-13 Heraeus Deutschland GmbH & Co. KG Verfahren zur Herstellung eines Bauteils aus einer Metalllegierung mit amorpher Phase
EP2974812B1 (de) * 2014-07-15 2019-09-04 Heraeus Holding GmbH Verfahren zur Herstellung eines Bauteils aus einer Metalllegierung mit amorpher Phase
US20160067766A1 (en) * 2014-09-08 2016-03-10 Apple Inc. 3d printed investment molds for casting of amorphous alloys and method of using same
DE102015220766B4 (de) * 2014-10-23 2019-05-23 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Verfahren zur Herstellung eines umgeformten Körpers aus vollkristallinen, metastabilen Materialien
DE102016008074A1 (de) * 2016-06-30 2018-01-04 Universität des Saarlandes Massivglasbildende Weißgoldlegierung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2839800A (en) * 1954-09-27 1958-06-24 Hodler Fritz Method of and apparatus for damping shocks in die-casting machines
US4842038A (en) * 1985-11-26 1989-06-27 Ube Industries, Inc. Injection method of die casting machine
US4919191A (en) * 1988-05-17 1990-04-24 Jeneric/Pentron Incorporated Molten-metal forming method and apparatus which are bottom-loading, bottom-pouring and bottom-unloading
DE4116071A1 (de) * 1990-05-18 1991-11-21 G C Dental Ind Corp Verfahren zum vergiessen von dentalmetallen
US5740854A (en) * 1994-10-14 1998-04-21 Akihisa Inoue Production methods of metallic glasses by a suction casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046742A1 (de) 2022-08-29 2024-03-07 Universität des Saarlandes Legierung zur herstellung metallischer massivgläser sowie formkörper daraus

Also Published As

Publication number Publication date
WO2020002291A1 (de) 2020-01-02
DE102018115815A1 (de) 2020-01-02
US11602783B2 (en) 2023-03-14
JP2021528257A (ja) 2021-10-21
CN112334250A (zh) 2021-02-05
JP7126022B2 (ja) 2022-08-25
PL3814034T3 (pl) 2022-06-27
EP3814034A1 (de) 2021-05-05
US20210276079A1 (en) 2021-09-09
CN112334250B (zh) 2022-03-15
KR102580272B1 (ko) 2023-09-20
KR20210021010A (ko) 2021-02-24

Similar Documents

Publication Publication Date Title
DE69816543T2 (de) Hochvakuum-Druckguss
DE3000486C2 (de) Druckgießmaschine
EP3814034B1 (de) Vorrichtung und verfahren zur herstellung eines aus einem amorphen oder teilamorphen metall gebildeten gussteils sowie gussteil
EP0971805A1 (de) Verfahren und giesseinrichtung für feinguss
EP0461306B1 (de) Induktionsschmelzofen
AT503391B1 (de) Verfahren zum feingiessen von metallischen formteilen und vorrichtung hierfür
EP0631832A1 (de) Verfahren zum gerichteten Erstarren einer Metallschmelze und Giessvorrichtung zu seiner Durchführung
EP1919645A1 (de) Verfahren zur herstellung metallhaltiger gusskörper und vorrichtung dafür
DE3300701A1 (de) Druckguss-verfahren und vorrichtung zu seiner durchfuehrung
DE60224674T2 (de) Gussbehältnis und giessverfahren
DE3207170A1 (de) Verfahren zum giessen von reinem titan oder titanlegierungen
WO2022112611A1 (de) KOKILLE, VORRICHTUNG UND VERFAHREN ZUM NIEDERDRUCKGIEßEN
DE4440933C1 (de) Horizontale Kaltkammer-Druckgießmaschine und Gießverfahren
WO1999046072A1 (de) Giessvorrichtung und giessverfahren mit nachverdichtung
EP0733422B1 (de) Verfahren zur Herstellung von Formteilen aus Metall
EP1222044B1 (de) Giessvorrichtung mit nachverdichtung
WO2018192619A1 (de) TRENNSCHIEBERSYSTEM, GIEßANLAGE UND GIEßVERFAHREN
EP0999001A1 (de) Verfahren und Vorrichtung zum Herstellen eines Rotors für elektrische Maschinen
AT515969A1 (de) Vorrichtung und Verfahren zur Erstellung zumindest eines metallischen Bauteils
DE102021131241A1 (de) Kokille, Vorrichtung und Verfahren zum Niederdruckgießen
EP0392068A1 (de) Vakuuminduktionsofen
DE1147044B (de) Verfahren zum Schmelzen von Metallen unter Inertgas oder im Vakuum und Licht-bogenschmelzofen zur Durchfuehrung dieses Verfahrens
AT401132B (de) Formkörper und verfahren zu seiner herstellung
DE1169617B (de) Elektrisch beheizte Vakuumanlage zum Schmelzen oder Giessen und Verfahren zum Betrieb eines Vakuumlichtbogenofens mit Abschmelzelektrode
WO2019170593A1 (de) Verfahren zur herstellung eines permanentmagnets oder eines hartmagnetischen materials

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211115

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20220131

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003813

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1477095

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220723

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003813

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

26N No opposition filed

Effective date: 20230102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220625

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230301

Year of fee payment: 5

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230620

Year of fee payment: 5

Ref country code: FR

Payment date: 20230427

Year of fee payment: 5

Ref country code: DE

Payment date: 20230630

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230630

Year of fee payment: 5

Ref country code: GB

Payment date: 20230427

Year of fee payment: 5

Ref country code: CH

Payment date: 20230702

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190625