WO2020000892A1 - 感应膜的制作过程和触摸屏的制作方法 - Google Patents

感应膜的制作过程和触摸屏的制作方法 Download PDF

Info

Publication number
WO2020000892A1
WO2020000892A1 PCT/CN2018/118225 CN2018118225W WO2020000892A1 WO 2020000892 A1 WO2020000892 A1 WO 2020000892A1 CN 2018118225 W CN2018118225 W CN 2018118225W WO 2020000892 A1 WO2020000892 A1 WO 2020000892A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
photoresist layer
manufacturing process
pattern
conductive
Prior art date
Application number
PCT/CN2018/118225
Other languages
English (en)
French (fr)
Inventor
刘天保
Original Assignee
广州视源电子科技股份有限公司
广州视睿电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视源电子科技股份有限公司, 广州视睿电子科技有限公司 filed Critical 广州视源电子科技股份有限公司
Publication of WO2020000892A1 publication Critical patent/WO2020000892A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present application relates to the field of touch screens, and in particular, to a manufacturing process of a sensing film and a manufacturing method of a touch screen.
  • the flexible touch screens in the prior art mainly include: single-layer ITO film + metal bridge, double-layer nano-silver film, double-layer metal mesh (metal grid), and single-layer multi-point nano-silver film.
  • the mainstream manufacturing process is a yellow light process.
  • the manufacturing process of this process generally includes: coating a photoresist on a conductive material layer to form a photoresist layer; and covering the photoresist layer with A patterned photomask, and exposing the photoresist layer covered with the photomask; and then sequentially developing, etching, and removing the photoresist to obtain a metal grid with a predetermined pattern.
  • the pattern of the photomask is the same as or complementary to the predetermined pattern of the metal grid.
  • the existing process flow roughly includes: first, coating a photoresist on a conductive substrate to form a photoresist layer; second, covering the photoresist layer with a patterned photomask, and The photoresist layer covered with a photomask is exposed, and then a patterned substrate is obtained through development and etching in sequence; again, a conductive material is plated on the exposed surface of the substrate and the exposed surface of the photoresist; finally, the remaining photoresist is removed to obtain The metal grid of a predetermined pattern, wherein the pattern of the photomask is the same as or complementary to the predetermined pattern of the metal grid.
  • the main purpose of this application is to provide a manufacturing process of a sensing film and a manufacturing method of a touch screen, so as to solve the manufacturing cost caused by the need to separately develop a photomask with a complex pattern in the prior art for manufacturing conductive grids of different sizes and designs Higher question.
  • a manufacturing process of an induction film includes a conductive grid, and the manufacturing process includes: Step S1, setting at least one insulation having a first pattern on a substrate Step S2, providing a photoresist layer on the exposed surface of the insulating layer and the exposed surface of the substrate; step S3, patterning the photoresist layer with a photomask having a second pattern so that part of the substrate is exposed Forming the photoresist layer having the second pattern, and the portion of the first pattern overlaps the portion of the second pattern; step S4, setting a conductive material on the surface of the bare substrate to form the conductive grid; step S5. Remove the insulating layer and the patterned photoresist layer.
  • the photoresist layer is a positive photoresist layer.
  • the thickness of the photoresist layer is greater than the thickness of the insulating layer.
  • the step S3 includes: covering the photoresist layer on a surface remote from the insulating layer, the photomask including a light shielding portion and a light transmitting portion; and the photoresist layer provided with the photomask on the surface. Performing exposure; developing the photoresist layer after the exposure, so that the photoresist layer in a corresponding area below the light transmitting portion is removed to form the photoresist layer having the second pattern.
  • the conductive material is a metal
  • the substrate includes a conductive substrate
  • the insulating layer is disposed on a surface of the conductive substrate.
  • the conductive material is provided by electroplating.
  • the substrate further includes a substrate, the conductive substrate is disposed on a surface of the substrate, and the insulating layer is disposed on a surface of the conductive substrate remote from the substrate.
  • the manufacturing process further includes a step of removing the substrate.
  • the manufacturing process further includes: providing an insulating fixing layer on the conductive grid and the exposed surface of the substrate.
  • a frame lead region including a plurality of frame leads is also formed while the conductive grid is formed.
  • a method for manufacturing a touch screen including a manufacturing process of a sensing film, and the manufacturing process is any of the above-mentioned manufacturing processes.
  • 1 to 8 are schematic structural diagrams showing a manufacturing process of a sensing film including a conductive grid of the present application.
  • FIG. 9 shows a partial structure diagram of a touch screen of the present application.
  • this application proposes a manufacturing process of a sensing film and a manufacturing method of a touch screen.
  • a manufacturing process of an induction film is provided.
  • the induction film includes a conductive grid.
  • the manufacturing process includes: Step S1.
  • At least one insulation having a first pattern is provided on the substrate 10.
  • the above-mentioned insulation layer 20 includes a plurality of insulation portions 21 disposed at intervals, as shown in FIG. 2 and FIG. 3;
  • a photoresist layer 30 is provided on the exposed surface of the layer 20 and on the exposed surface of the substrate 10, as shown in FIG.
  • step S3 the photoresist layer 30 is patterned with a photomask 40 having a second pattern, so that a portion The substrate 10 is exposed to form the photoresist layer 30 having the second pattern. As shown in FIG. 4, a portion of the first pattern overlaps a portion of the second pattern.
  • step S4 the surface of the substrate 10 is exposed.
  • a conductive material is disposed thereon to form a conductive grid 50 as shown in FIG. 6; in step S5, the insulating layer 20 and the patterned photoresist layer 30 are removed to form the above-mentioned sensing film, as shown in FIG. 7.
  • At least one insulating layer having a first pattern is first provided on the substrate.
  • the conductive material will not be disposed on the surface of the substrate provided with the insulating layer.
  • Equivalent to the insulating layer can prevent the conductive material from being directly disposed on the substrate, and has the effect of cutting the area where the conductive material is disposed.
  • the finally formed conductive grid is the result of the superposition of the second pattern of the photomask and the first pattern of the insulating layer. If there are multiple insulating layers, the finally formed conductive grid is the superposition of the second pattern and the first patterns. result.
  • the first patterns corresponding to the plurality of insulating layers may correspond to different or the same patterns.
  • Those skilled in the art may A suitable number of insulating layers are provided with a suitable first pattern.
  • the first pattern of the insulating layer of the present application may also be formed by a corresponding photomask. Thus, for adjusting the first pattern, it is actually adjusting the photomask corresponding to the first pattern.
  • a large-area universal photomask can be used in the production process of this application. Different widths and / or lengths need only be adjusted by adjusting one or more insulating layers.
  • the first pattern is implemented, which is lower in cost and more efficient than re-developing a photomask that can form a conductive grid with a size at one time. Therefore, the manufacturing process greatly saves the cost of developing the photomask and improves the specification compatibility of the photomask.
  • an insulating layer can be provided in step S1.
  • the width of the conductive grid is achieved by a general photomask, and because the width of the conductive grid is generally small, the pattern of the general photomask is The size is small, and the length of the conductive grid only needs to be adjusted by the width and / or length of the first pattern (ie, the insulating part) in the insulating layer. Because the length of the conductive grid is large, the corresponding development of the photomask of the insulating layer The size of the pattern is relatively large, so it is easier to develop a photomask with an insulating layer having a first pattern than re-developing a photomask that can form a specific size and smaller conductive grid at one time. It is cheaper and more efficient.
  • an insulating layer may be provided in step S1, and a general photomask is subsequently used.
  • the width of the conductive grid corresponding to the photomask is moderate.
  • the width (that is, the width of the insulating part) is used to increase or decrease the width of the conductive grid.
  • two insulating layers can be provided in step S1, and the first patterns of the two insulating layers are different.
  • the first pattern of an insulating layer is used to adjust the conductive grid.
  • Length the other is used to adjust the width of the conductive grid.
  • two photomasks used to form two different first patterns can be re-developed. Compared with the development of a photomask that can form a specific size and a smaller conductive grid at one time, the process is simpler, the cost is lower, and the efficiency is higher.
  • the insulating layer 20 having a first pattern includes a plurality of strip-shaped insulating portions disposed at intervals.
  • the pattern of the insulating layer of the present application is not limited to the pattern shown in FIG. 1, and may be any other available pattern.
  • a person skilled in the art may select an insulating layer having a suitable first pattern to implement the corresponding sensing film according to the actual situation.
  • the second pattern of the photomask of the present application is not limited to the pattern shown in FIG. 1, and may also be other available patterns. Those skilled in the art may select a photomask having a suitable second pattern to make according to actual conditions. Corresponding sensor film.
  • the above photoresist layer may be a positive photoresist layer formed by a positive photoresist or a negative photoresist layer formed by a negative photoresist.
  • Those skilled in the art may select a suitable type of photoresist to form the present application according to the actual situation.
  • Photoresist layer For photoresist layers with different positive and negative properties, if the patterns of the photoresist layers formed by the two are the same, then the light-shielding part and the light-transmitting part of the photomask corresponding to the two are exactly opposite, for example, for forming the same conductive network In general, the conductive grid formed should correspond to the area without the photoresist layer.
  • the photoresist layer is a positive photoresist layer
  • the light-transmitting portion of the photomask corresponds to the subsequent position without the photoresist layer.
  • the photoresist layer is a negative photoresist layer
  • the light shielding portion of the photomask corresponds to a subsequent position without the photoresist layer, so the light shielding portion and the light transmitting portion of the two photomasks are opposite.
  • the photoresist layer 30 is a positive photoresist layer.
  • the thickness of the photoresist layer in the present application may be greater than the thickness of the insulation layer, or may be less than or equal to the thickness of the insulation layer. Those skilled in the art may set a photoresist layer with a certain thickness according to the actual situation.
  • the thickness of the photoresist layer 30 provided in the step S2 is greater than the thickness of the insulating layer 20.
  • an insulating layer 20 having a first pattern is disposed in the above step S1, as shown in FIG. 1.
  • the step S3 includes: covering the surface of the photoresist layer 30 away from the insulating layer 20 with the photomask 40 to form the structure shown in FIG. 1, as shown in FIG. 1.
  • the photomask 40 includes a light shielding portion 41 and a light transmitting portion 42.
  • the photoresist layer 30 covering the photomask 40 is exposed, as shown in FIG. 2, and the structure shown in FIG. 3 is obtained after exposure.
  • the photoresist layer 30 in the corresponding area of the light-transmitting portion 42 has been sexually changed and converted into a denatured photoresist 32.
  • the photomask is removed so that it is no longer covered.
  • Photoresist layer developing the photoresist layer 30 after exposure, so that the photoresist layer 30 in the corresponding area below the light transmitting portion 42 is removed, as shown in FIG. 4, forming the photoresist having the second pattern
  • the layer 30, the photoresist layer having the second pattern is actually a photoresist layer 30 including a plurality of photoresist portions 31 disposed in isolation.
  • the conductive grid of the present application may be a grid formed of any conductive material, and those skilled in the art may select a suitable conductive material to form the conductive grid of the present application according to actual conditions.
  • the conductive material is a metal
  • the substrate 10 includes a conductive substrate 12, and the insulating layer 20 is disposed on a surface of the conductive substrate 12.
  • the conductive material is provided by electroplating. Conductive materials can only be plated onto conductive materials, so a conductive substrate is a necessary condition for the plating method. Compared with other installation methods, the method of electroplating the conductive material has the advantages of better adhesion of the conductive material and better uniformity of the conductive material deposited on the conductive substrate. This method is more suitable for smaller sizes. The manufacturing of the conductive grid can ensure that the size of the manufactured conductive grid is closer to or equal to a predetermined size.
  • the method for setting a conductive material and then forming a conductive mesh in this application is not limited to the above-mentioned plating method, but may also be other methods, such as chemical vapor deposition, physical vapor deposition, or magnetron sputtering, etc. Those skilled in the art may select a suitable method to set a conductive material according to the actual situation to form a conductive grid.
  • the substrate 10 further includes a substrate 11, the conductive substrate 12 is disposed on a surface of the substrate 11, and the insulating layer 20 is disposed on a surface of the conductive substrate 12 remote from the substrate 11.
  • the above substrate may be formed of any available insulating material.
  • the material of the substrate may be selected from insulating materials such as ordinary glass, PET, PE, or PB. Those skilled in the art may select a suitable material for forming according to actual conditions. Substrate.
  • the manufacturing process further includes a step of removing the substrate 10, that is, removing the conductive substrate. Avoiding the conductive substrate from affecting the electrical performance of the touch screen when the subsequent sensing film is applied to the touch screen.
  • the above-mentioned substrate in the present application may not be removed.
  • the conductive substrate may be made into another sensing film including a conductive grid.
  • the manufacturing process further includes: providing an insulating fixing layer on the exposed surfaces of the conductive grid 50 and the substrate 10.
  • the insulating fixed layer can further fix the conductive grid, thereby further ensuring the stability of the conductive grid in the induction film.
  • an insulating fixing layer may be provided by a coating method.
  • the material of the insulating fixing layer may be selected from all available insulating materials in the prior art, such as silicon dioxide, silicon nitride, and insulating ink. Those skilled in the art may select a suitable material to form the insulating and fixing layer according to the actual situation.
  • the order of the two steps should be: firstly setting the insulating fixing layer and then removing the substrate. This facilitates the setting of the insulation fixing layer, and can further ensure the stability of the conductive grid.
  • the above-mentioned manufacturing process further includes a post-processing step, in which the sensing The film is provided on the substrate 60 to form a structure as shown in FIG. 8.
  • the other surface thereof is placed in contact with the substrate 60.
  • the material of the above substrate is an insulating material, and specifically, it can be an insulating material such as PET and has good physical properties. Those skilled in the art can select suitable materials to form the substrate of the present application according to actual conditions.
  • the conductive grid 50 is formed and a frame lead region 70 including a plurality of frame leads is also formed, such as As shown in FIG. 9, that is to say, the superposition of the first pattern of the insulating layer and the second pattern of the photomask can not only form the conductive grid of the sensing region in the sensing film, but also form the border of the frame lead region 70 in the sensing film. lead.
  • the frame lead in the induction film may not be formed at the same time as the conductive grid.
  • a silver paste may be printed in a post-process and then laser-processed. Flexible design of the area of the line and the bonding area, so that the sensing film achieves great flexibility and versatility.
  • a manufacturing method of a touch screen includes a manufacturing process of a sensing film, and the manufacturing process of the conductive grid is any of the manufacturing processes described above.
  • the manufacturing method includes the manufacturing method of the above-mentioned induction film, the cost is low and the efficiency is high.
  • the manufacturing process of the sensing film includes:
  • an insulating layer 20 having a first pattern is disposed on the substrate 10.
  • the substrate 10 includes a substrate 11 and a conductive substrate 12, and the insulating layer 20 is directly disposed on the surface of the conductive substrate 12, as shown in FIG. 1;
  • a photoresist layer 30 is provided on the exposed surface of the insulating layer 20 and the exposed surface of the conductive substrate 12.
  • the photoresist layer 30 is a positive photoresist layer, as shown in FIG. 1;
  • step S3 the photoresist layer 30 is patterned with a photomask 40 having a second pattern. Specifically, first, the photoresist layer 30 is covered on the surface of the photoresist layer 30 away from the insulating layer 20, such as As shown in FIG. 1, the photomask 40 includes a light-shielding portion 41 and a light-transmitting portion 42; and the photoresist layer 30 provided with the photomask 40 is exposed. As shown in FIG. 2, after exposure, FIG. 3 is obtained.
  • the photoresist layer 30 in the area corresponding to the light-transmitting portion 42 has been sexually changed and converted into a modified photoresist 32; the exposed photoresist layer 30 is developed so that the bottom of the light-transmitting portion 42 corresponds to The photoresist layer 30 in the region is removed, so that part of the surface of the conductive substrate 12 is exposed.
  • the photoresist layer 30 having the second pattern is formed.
  • the photoresist layer having the second pattern actually includes Photoresist layer 30 of a plurality of isolated photoresist portions 31;
  • step S4 a conductive material is provided on the surface of the above-mentioned conductive substrate 12 by electroplating. As shown in FIG. Conductive grid 50;
  • Step S5 removing the insulating layer 20 and the patterned photoresist layer 30, and forming a sensing film including a plurality of conductive grids 50 on the substrate 10, as shown in FIG. 7;
  • Step S6 coating an insulation fixing layer on the exposed surface of the sensing film, which is not shown in the figure;
  • step S7 post-processing is performed: the substrate is removed, and the induction film is disposed on the substrate 60 to form the structure shown in FIG. 8, and the surface of the induction film on which the insulating fixing layer is not provided is in contact with the substrate (not shown in FIG. 8). Shows).
  • the manufacturing process greatly saves the cost of developing the photomask, improves the specification compatibility of the photomask, and the manufactured sensing film has better performance and higher yield.
  • the manufacturing method of the present application includes the manufacturing method of the above-mentioned induction film, the cost is low and the efficiency is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本申请提供了一种感应膜的制作过程和触摸屏的制作方法。该制作过程包括:步骤S1,在基底上设置至少一个具有第一图案的绝缘层;步骤S2,在绝缘层的裸露表面上以及基底的裸露表面上设置光阻层;步骤S3,采用具有第二图案的光罩对光阻层进行图案化,使得部分基底裸露,形成具有第二图案的光阻层,第一图案的部分与第二图案的部分重叠;步骤S4,在裸露的基底的表面上设置导电材料,形成导电网格;步骤S5,去除绝缘层和图案化的光阻层。该制作过程大大节省了开发光罩的成本,提高了光罩的规格兼容性。

Description

感应膜的制作过程和触摸屏的制作方法 技术领域
本申请涉及触摸屏领域,具体而言,涉及一种感应膜的制作过程和触摸屏的制作方法。
背景技术
现有技术中的柔性触摸屏主要有:单层ITO膜+金属架桥、双层纳米银膜、双层metal mesh(金属网格)以及单层多点纳米银膜。
对于金属网格这种柔性触摸屏来说,其主流制作工艺为黄光工艺,该工艺的制作过程大致包括:在导电材料层上涂布光阻,形成光阻层;在光阻层上覆盖具有图案的光罩,并对覆盖有光罩的光阻层进行曝光;之后依次通过显影、蚀刻以及去除光阻得到预定图案的金属网格。其中,光罩的图案与金属网格的预定图案相同或者互补。
目前,针对极细的金属网格,现有的工艺流程大致包括:首先,在导电基底上涂布光阻,形成光阻层;其次,在光阻层上覆盖具有图案的光罩,并对覆盖有光罩的光阻层进行曝光,然后,依次通过显影与蚀刻得到具有图案的基底;再次,在基底的裸露表面以及光阻的裸露表面上电镀导电材料;最后,去除剩余的光阻得到预定图案的金属网格,其中,光罩的图案与金属网格的预定图案相同或者互补。
但是,上述针对极细的金属网格的工艺依然基于上述黄光工艺所进行,对于不同的尺寸的金属网格,需要开发单独的光罩,成本极高。
在背景技术部分中公开的以上信息只是用来加强对本文所描述技术的背景技术的理解,因此,背景技术中可能包含某些信息,这些信息对于本领域技术人员来说并未形成在本国已知的现有技术。
发明内容
本申请的主要目的在于提供一种感应膜的制作过程和触摸屏的制作方法,以解决现有技术中,不同尺寸和设计的导电网格的制作需要单独开发具有复杂图案的光罩导致的制作成本较高的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种感应膜的制作过程,上述感应膜包括导电网格,该制作过程包括:步骤S1,在基底上设置至少一个具有第一图案的绝缘层;步骤S2,在上述绝缘层的裸露表面上以及上述基底的裸露表面上设置光阻层;步骤S3,采用具有第二图案的光罩对上述光阻层进行图案化,使得部分上述基底裸露,形成具有上述第二图案的上述光阻层,上述第一图案的部分与上述第二图案的部分重叠;步骤S4,在裸露的上 述基底的表面上设置导电材料,形成上述导电网格;步骤S5,去除上述绝缘层和图案化的上述光阻层。
进一步地,上述光阻层为正性光阻层。
进一步地,上述光阻层的厚度大于上述绝缘层的厚度。
进一步地,上述步骤S3包括:在上述光阻层的远离上述绝缘层的表面上罩设上述光罩,上述光罩包括遮光部与透光部;对罩设有上述光罩的上述光阻层进行曝光;对曝光后的上述光阻层进行显影,使得上述透光部下方对应区域的上述光阻层被去除,形成具有上述第二图案的上述光阻层。
进一步地,上述导电材料为金属,上述基底包括导电基底,上述绝缘层设置在上述导电基底的表面上,在上述步骤S4中,采用电镀的方式设置上述导电材料。
进一步地,上述基底还包括衬底,上述导电基底设置在上述衬底的表面上,上述绝缘层设置在上述导电基底的远离上述衬底的表面上。
进一步地,在上述步骤S5之后,上述制作过程还包括:去除上述基底的步骤。
进一步地,在上述步骤S5之后,上述制作过程还包括:在上述导电网格以及上述基底的裸露表面上设置绝缘固定层。
进一步地,在上述步骤S4中,形成上述导电网格的同时还形成了包括多个边框引线的边框引线区。
根据本申请的另一方面,提供了一种触摸屏的制作方法,包括感应膜的制作过程,该制作过程为任一种上述的制作过程。
应用本申请的技术方案,该制作过程中,可以使用一个大面积的通用光罩,不同的宽度和/或长度只需要通过调整一个或多个绝缘层的第一图案来实现,这相对于重新开发一个可以一次性形成尺寸的导电网格的光罩来说,成本更低,且效率更高。因此,该制作过程大大节省了开发光罩的成本,提高了光罩的规格兼容性。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1至图8示出了本申请的包括导电网格的感应膜的制作过程的结构示意图;以及
图9示出了本申请的一种触摸屏的局部结构示意图。
其中,上述附图包括以下附图标记:
10、基底;20、绝缘层;30、光阻层;40、光罩;50、导电网格;60、基材;70、边框引线区;11、衬底;12、导电基底;21、绝缘部;31、光阻部;32、变性光阻;41、遮光部;42、透光部;500、电镀溶液。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
应该理解的是,当元件(诸如层、膜、区域、或衬底)描述为在另一元件“上”时,该元件可直接在该另一元件上,或者也可存在中间元件。而且,在说明书以及权利要求书中,当描述有元件“连接”至另一元件时,该元件可“直接连接”至该另一元件,或者通过第三元件“连接”至该另一元件。
正如背景技术所介绍的,现有技术中,不同尺寸的导电网格的制作需要单独开发具有复杂图案的光罩,这会导致感应膜的制作成本升高,对于尺寸极小(比如极细)的金属网格来说,该问题更为突出,为了解决如上的技术问题,本申请提出了一种感应膜的制作过程和触摸屏的制作方法。
本申请的一种典型的实施方式中,提供了一种感应膜的制作过程,该感应膜包括导电网格,该制作过程包括:步骤S1,在基底10上设置至少一个具有第一图案的绝缘层20,如图1所示(该图中只示出了一个绝缘层),上述绝缘层20包括多个间隔设置的绝缘部21,如图2和图3所示;步骤S2,在上述绝缘层20的裸露表面上以及上述基底10的裸露表面上设置光阻层30,如图1所示;步骤S3,采用具有第二图案的光罩40对上述光阻层30进行图案化,使得部分上述基底10裸露,形成具有上述第二图案的上述光阻层30,如图4所示,上述第一图案的部分与上述第二图案的部分重叠;步骤S4,在裸露的上述基底10的表面上设置导电材料,形成如图6所示的导电网格50;步骤S5,去除上述绝缘层20和图案化的上述光阻层30,形成上述感应膜,如图7所示。
上述的制作过程中,在设置光阻层之前,首先在基底上设置至少一个具有第一图案的绝缘层,在后续设置导电材料时,导电材料不会设置在基底上设有绝缘层的表面上,相当于绝缘层能够阻止导电材料直接设置在基底上,具有对设置导电材料的区域进行切割的效果。最终形成的导电网格是光罩的第二图案和绝缘层的第一图案的叠加结果,如果有多个绝缘层时,最终形成的导电网格是第二图案和多个第一图案的叠加结果。
需要说明的是,当在基底上设置多个绝缘层时,多个绝缘层叠置设置在基底上,且多个绝缘层对应的第一图案可以对应不同或相同,本领域技术人员可以根据实际情况设置合适数量的且具有合适的第一图案的绝缘层。另外,本申请的绝缘层的第一图案也可以由对应的光罩形成,这样对于调整第一图案来说,实际上就是调整第一图案对应的光罩。
对于不同宽度和/或不同长度的导电网格来说,本申请的制作过程中,可以使用一个大面积的通用光罩,不同的宽度和/或长度只需要通过调整一个或多个绝缘层的第一图案来实现,这相对于重新开发一个可以一次性形成尺寸的导电网格的光罩来说,成本更低,且效率更高。因此,该制作过程大大节省了开发光罩的成本,提高了光罩的规格兼容性。
对于不同长度的导电网格来说,可以在步骤S1中设置一个绝缘层,导电网格的宽度通过通用光罩实现,并且由于导电网格的宽度一般较小,所以该通用光罩的图案的尺寸较小,导电网格的长度的不同只需要调整绝缘层中的第一图案(即绝缘部)的宽度和/或长度,由于导电网格的长度较大,对应的开发绝缘层的光罩的图案的尺寸相对较大,所以,相对于重新开发一个可以一次性形成特定尺寸且尺寸较小的导电网格的光罩来说,开发形成具有第一图案的绝缘层的光罩更简单,其成本更低,且效率更高。
对于不同宽度的导电网格来说,可以在步骤S1中设置一个绝缘层,后续采用一个通用的光罩,该光罩对应形成的导电网格的宽度适中,通过调整绝缘层的第一图案的宽度(即绝缘部的宽度)来增大或者减小导电网格的宽度,由于绝缘层的第一图案的宽度和光罩的第二图案的宽度叠加得到最后的导电网格的宽度,所以,相对开发一个可以一次性形成特定尺寸且尺寸较小的导电网格的光罩来说,开发形成具有第一图案的绝缘层的光罩更简单,其成本更低,且效率更高。
对于不同宽度和长度的导电网格来说,可以在步骤S1中设置两个绝缘层,并且这两个绝缘层的第一图案不同,一个绝缘层的第一图案是用来调整导电网格的长度的,另一个是用来调整导电网格的宽度的,当待制作的导电网格的宽度和长度均不同时,可以重新开发两个用于形成两个不同第一图案的光罩,这相对于开发一个可以一次性形成特定尺寸且尺寸较小的导电网格的光罩来说,工艺更简单,成本更低,效率更高。
图1中,具有第一图案的绝缘层20包括多个间隔设置的条形绝缘部,但是本申请的绝缘层的图案并不限于图1所示的图案,还可以是其他任何可用的图案,本领域技术人员可以根据实际情况选择具有合适第一图案的绝缘层来实施对应的感应膜的制作。
同样地,本申请光罩的第二图案也并不限于图1所示的图案,还可以是其他的可用的图案,本领域技术人员可以根据实际情况选择具有合适第二图案的光罩以制作对应的感应膜。
上述的光阻层可以是正性光阻形成的正性光阻层,也可以是负性光阻形成的负性光阻层,本领域技术人员可以根据实际情况选择合适种类的光阻形成本申请的光阻层。对于正负性不同的光阻层来说,若二者形成的光阻层的图案一致,那么,二者对应的光罩的遮光部和透光部刚好相反,例如,对于形成相同的导电网格来说,形成的导电网格应该对应没有光阻层的区域,当光阻层为正性光阻层时,光罩的透光部对应后续的没有光阻层的位置,当光阻层为 负性光阻层时,光罩的遮光部对应后续的没有光阻层的位置,所以两个光罩的遮光部和透光部均相反。
为了提高制作良率,本申请的一种实施例中,上述光阻层30为正性光阻层。
本申请的上述光阻层的厚度可以大于绝缘层的厚度,也可以小于或者等于绝缘层的厚度,本领域技术人员可以根据实际情况设置一定厚度的光阻层。
为了方便后续步骤S3的操作,且进一步保证了步骤S3得到的第二图案与预定的图案相同。本申请的一种实施例中,如图1与图2所示,上述步骤S2中设置的光阻层30的厚度大于上述绝缘层20的厚度。
本申请的一种实施例中,上述步骤S1中设置一个具有第一图案的绝缘层20,如图1所示。
本申请的另一种实施例中,上述步骤S3包括:在上述光阻层30的远离上述绝缘层20的表面上罩设上述光罩40,形成图1所示的结构,如图1所示,上述光罩40包括遮光部41与透光部42;对罩设有上述光罩40的上述光阻层30进行曝光,如图2所示,经过曝光后得到图3所示的结构,该结构中,透光部42对应区域的光阻层30已经发生性变,转化为变性光阻32,正如本领域技术人员公知的,曝光后,就将光罩移开,使其不再罩设光阻层;对曝光后的上述光阻层30进行显影,使得上述透光部42下方对应区域的上述光阻层30被去除,如图4所示,形成具有上述第二图案的上述光阻层30,具有第二图案的光阻层实际上就是包括多个隔离设置的光阻部31的光阻层30。
本申请的导电网格可以是任何导电材料形成的网格,本领域技术人员可以根据实际情况选择合适的导电材料形成本申请的导电网格。
本申请的再一种实施例中,如图1所示,上述导电材料为金属,上述基底10包括导电基底12,上述绝缘层20设置在上述导电基底12的表面上,在上述步骤S4中,采用电镀的方式设置上述导电材料。导电材料只能电镀到导电材料上,所以导电基底是电镀法实施的必要条件。电镀设置导电材料这种方式相比于其他的设置方式,其优点在于导电材料的附着性较好,且沉积在导电基底上的导电材料的均匀性较好,该方法比较适用于尺寸较小的导电网格的制作,能够保证制作出的导电网格的尺寸更接近预定尺寸或者等于预定尺寸。
当然,本申请的设置导电材料,继而形成导电网格的方式并不限于上述的电镀方式,还可以是其他的方式,比如化学气相沉积法、物理气相沉积法或者磁控溅射法等等,本领域技术人员可以根据实际情况选择合适的方式设置导电材料,形成导电网格。
为了方便感应膜的制作,本申请的一种具体的实施例中,如图1所示,上述基底10还包括衬底11,上述导电基底12设置在上述衬底11的表面上,上述绝缘层20设置在上述导电基底12的远离上述衬底11的表面上。
上述的衬底可以是任何一种可用的绝缘材料形成的,具体地,衬底的材料可以选自普通玻璃,PET、PE或者PB等绝缘材料,本领域技术人员可以根据实际情况选择合适材料形成的衬底。
为了方便后续的感应膜的应用,本申请的一种实施例中,当上述基底包括导电基底时,在上述步骤S5之后,上述制作过程还包括:去除上述基底10的步骤,即去除导电基底,避免在后续感应膜应用在触摸屏时,该导电基底对触摸屏的电性能造成影响。
当然,本申请的上述基底也可以不去除,在后续的触摸屏的制作过程中,可以将导电基底制作为另一个包括导电网格的感应膜。
本申请的又一种实施例中,在上述步骤S5之后,上述制作过程还包括:在上述导电网格50以及上述基底10的裸露表面上设置绝缘固定层。绝缘固定层可以进一步固定导电网格,从而进一步保证感应膜中的导电网格的稳定性。具体地,可以通过涂布的方式设置绝缘固定层。
并且,该绝缘固定层的材料可以选自现有技术中的一切可用的绝缘材料,比如二氧化硅、氮化硅以及绝缘油墨等等。本领域技术人员可以根据实际情况选择合适的材料形成绝缘固定层。
当上述的感应膜的制作过程同时包括去除基底的步骤以及设置绝缘固定层的步骤时,这两个步骤的先后顺序应该是:先设置绝缘固定层,后去除基底。这样方便绝缘固定层的设置,并且可以进一步保证导电网格的稳定性。
在去除基底后,为了方便后续感应膜与触摸屏中其他结构层(例如另一个感应膜)结合,本申请的一种实施例中,上述制作过程还包括后加工的步骤,该步骤中,将感应膜设置在基材60上,形成如图8所示的结构。对于一个表面已经设置了绝缘固定层的感应膜来说,将其另一个表面与基材60接触设置。
上述基材的材料是绝缘材料,具体可以PET等绝缘且物理性能较好的材料。本领域技术人员可以根据实际情况选择合适的材料形成本申请的基材。
为了简化工艺步骤,提高感应膜的制作效率,本申请的一种实施例中,在上述步骤S4中,形成上述导电网格50的同时还形成了包括多个边框引线的边框引线区70,如图9所示,也就是说,绝缘层的第一图案和光罩的第二图案的叠加作用不仅可以形成感应膜中感应区的导电网格,还可以形成感应膜中的边框引线区70的边框引线。
当然,感应膜中的边框引线也可以不与导电网格同时形成,例如,也可选用后制程加印银胶的方式,再镭射加工。灵活设计出线的区域及bonding的区域,使感应膜达到极大的灵活性及通用性。
本申请的另一种典型的实施方式中,提供了一种触摸屏的制作方法,该制作方法包括感应膜的制作过程,该导电网格的制作过程为上述任一种的制作过程。
该制作方法由于包括上述的感应膜的制作方法,其成本较低,效率较高。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例来说明本申请的技术方案。
实施例
感应膜的制作过程包括:
步骤S1,在基底10上设置一个具有第一图案的绝缘层20,该基底10包括衬底11和导电基底12,绝缘层20直接设置在导电基底12的表面上,如图1所示;
步骤S2,在上述绝缘层20的裸露表面上以及上述导电基底12的裸露表面上设置光阻层30,上述光阻层30为正性光阻层,如图1所示;
步骤S3,采用具有第二图案的光罩40对上述光阻层30进行图案化,具体地,首先,在上述光阻层30的远离上述绝缘层20的表面上罩设上述光罩40,如图1所示,上述光罩40包括遮光部41与透光部42;对罩设有上述光罩40的上述光阻层30进行曝光,如图2所示,经过曝光后得到图3所示的结构,该结构中,透光部42对应区域的光阻层30已经发生性变,转化为变性光阻32;对曝光后的上述光阻层30进行显影,使得上述透光部42下方对应区域的上述光阻层30被去除,使得部分导电基底12的表面裸露,如图4所示,形成具有上述第二图案的上述光阻层30,具有第二图案的光阻层实际上就是包括多个隔离设置的光阻部31的光阻层30;
步骤S4,采用电镀的方式在裸露的上述导电基底12的表面上设置导电材料,如图5所示,电镀溶液500只能在具有导电基底12的部分形成电镀膜,进而形成图6所示的导电网格50;
步骤S5,去除上述绝缘层20和图案化的上述光阻层30,在基底10上形成包括多个导电网格50的感应膜,如图7所示;
步骤S6,在感应膜的裸露表面上涂布绝缘固定层,图中未示出;
步骤S7,进行后加工:去除基底,并将感应膜设置在基材60上,形成图8所示的结构,并且,感应膜的没有设置绝缘固定层的表面与基材接触设置(图8未示出)。
当制作具有不同长度的金属网格时,只需要调整绝缘层的第一图案,从而在不同位置处对光阻层进行切割,从而形成不同长度的金属网格。
该制作过程大大节省了开发光罩的成本,提高了光罩的规格兼容性,并且制作得到的感应膜的性能较好且良率较高。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
1)、本申请的制作过程中,可以使用一个大面积的通用光罩,不同的宽度和/或长度只需要通过调整一个或多个绝缘层的第一图案来实现,这相对于重新开发一个可以一次性形成尺寸的导电网格的光罩来说,成本更低,且效率更高。因此,该制作过程大大节省了开发光罩 的成本,提高了光罩的规格兼容性。
2)、本申请的制作方法由于包括上述的感应膜的制作方法,其成本较低,效率较高。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种感应膜的制作过程,所述感应膜包括导电网格(50),其特征在于,所述制作过程包括:
    步骤S1,在基底(10)上设置至少一个具有第一图案的绝缘层(20);
    步骤S2,在所述绝缘层(20)的裸露表面上以及所述基底(10)的裸露表面上设置光阻层(30);
    步骤S3,采用具有第二图案的光罩(40)对所述光阻层(30)进行图案化,使得部分所述基底(10)裸露,形成具有所述第二图案的所述光阻层(30),所述第一图案的部分与所述第二图案的部分重叠;
    步骤S4,在裸露的所述基底(10)的表面上设置导电材料,形成所述导电网格(50);以及
    步骤S5,去除所述绝缘层(20)和图案化的所述光阻层(30)。
  2. 根据权利要求1所述的制作过程,其特征在于,所述光阻层(30)为正性光阻层。
  3. 根据权利要求1所述的制作过程,其特征在于,所述光阻层(30)的厚度大于所述绝缘层(20)的厚度。
  4. 根据权利要求2所述的制作过程,其特征在于,所述步骤S3包括:
    在所述光阻层(30)的远离所述绝缘层(20)的表面上罩设所述光罩(40),所述光罩(40)包括遮光部(41)与透光部(42);
    对罩设有所述光罩(40)的所述光阻层(30)进行曝光;以及
    对曝光后的所述光阻层(30)进行显影,使得所述透光部(42)下方对应区域的所述光阻层(30)被去除,形成具有所述第二图案的所述光阻层(30)。
  5. 根据权利要求1所述的制作过程,其特征在于,所述导电材料为金属,所述基底(10)包括导电基底(12),所述绝缘层(20)设置在所述导电基底(12)的表面上,在所述步骤S4中,采用电镀的方式设置所述导电材料。
  6. 根据权利要求5所述的制作过程,其特征在于,所述基底(10)还包括衬底(11),所述导电基底(12)设置在所述衬底(11)的表面上,所述绝缘层(20)设置在所述导电基底(12)的远离所述衬底(11)的表面上。
  7. 根据权利要求5所述的制作过程,其特征在于,在所述步骤S5之后,所述制作过程还包括:
    去除所述基底(10)的步骤。
  8. 根据权利要求1所述的制作过程,其特征在于,在所述步骤S5之后,所述制作过程还包括:
    在所述导电网格(50)以及所述基底(10)的裸露表面上设置绝缘固定层。
  9. 根据权利要求1所述的制作过程,其特征在于,在所述步骤S4中,形成所述导电网格(50)的同时还形成了包括多个边框引线的边框引线区(70)。
  10. 一种触摸屏的制作方法,包括感应膜的制作过程,其特征在于,所述制作过程为权利要求1至9中任一项所述的制作过程。
PCT/CN2018/118225 2018-06-27 2018-11-29 感应膜的制作过程和触摸屏的制作方法 WO2020000892A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810682584.3A CN108845717B (zh) 2018-06-27 2018-06-27 感应膜的制作过程和触摸屏的制作方法
CN201810682584.3 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020000892A1 true WO2020000892A1 (zh) 2020-01-02

Family

ID=64200594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118225 WO2020000892A1 (zh) 2018-06-27 2018-11-29 感应膜的制作过程和触摸屏的制作方法

Country Status (2)

Country Link
CN (1) CN108845717B (zh)
WO (1) WO2020000892A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845717B (zh) * 2018-06-27 2021-04-02 广州视源电子科技股份有限公司 感应膜的制作过程和触摸屏的制作方法
CN109614008B (zh) * 2018-12-28 2022-04-12 业成科技(成都)有限公司 双面图案化的方法及触控面板的制造方法
CN111627595B (zh) * 2019-02-28 2022-02-22 昆山工研院新型平板显示技术中心有限公司 导线、导线的制备方法以及柔性显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102112950A (zh) * 2008-09-12 2011-06-29 奥博特瑞克斯株式会社 电容型触摸面板、显示装置及电容型触摸面板的制造方法
CN105980935A (zh) * 2014-02-13 2016-09-28 株式会社Lg化学 形成导电网格图案的方法及由其制造的网格电极和层叠体
JP2018006465A (ja) * 2016-06-29 2018-01-11 株式会社富士通ゼネラル プリント配線板の製造方法、及びスクリーン印刷用マスク
CN107943357A (zh) * 2017-12-28 2018-04-20 苏州柏特瑞新材料有限公司 一种金属网格电容式触摸屏的制备方法
CN108845717A (zh) * 2018-06-27 2018-11-20 广州视源电子科技股份有限公司 感应膜的制作过程和触摸屏的制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268326A (ja) * 1999-03-19 2000-09-29 Victor Co Of Japan Ltd 磁気抵抗効果型薄膜磁気ヘッド
JP4367531B2 (ja) * 2007-06-06 2009-11-18 ソニー株式会社 発光素子における電極構造の形成方法、及び、積層構造体の形成方法
CN102929462A (zh) * 2012-10-29 2013-02-13 烟台正海科技有限公司 一种电容式触控面板
CN106125516B (zh) * 2016-08-19 2018-12-18 京东方科技集团股份有限公司 一种曝光方法、基板及曝光装置
CN106842813A (zh) * 2016-12-29 2017-06-13 深圳市华星光电技术有限公司 一种掩膜及包含该掩膜的设备
CN106707682A (zh) * 2017-01-05 2017-05-24 京东方科技集团股份有限公司 一种掩膜板、曝光装置及其进行曝光的方法
CN108321088B (zh) * 2018-02-05 2020-06-16 京东方科技集团股份有限公司 触控基板的制造方法、触控基板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102112950A (zh) * 2008-09-12 2011-06-29 奥博特瑞克斯株式会社 电容型触摸面板、显示装置及电容型触摸面板的制造方法
CN105980935A (zh) * 2014-02-13 2016-09-28 株式会社Lg化学 形成导电网格图案的方法及由其制造的网格电极和层叠体
JP2018006465A (ja) * 2016-06-29 2018-01-11 株式会社富士通ゼネラル プリント配線板の製造方法、及びスクリーン印刷用マスク
CN107943357A (zh) * 2017-12-28 2018-04-20 苏州柏特瑞新材料有限公司 一种金属网格电容式触摸屏的制备方法
CN108845717A (zh) * 2018-06-27 2018-11-20 广州视源电子科技股份有限公司 感应膜的制作过程和触摸屏的制作方法

Also Published As

Publication number Publication date
CN108845717B (zh) 2021-04-02
CN108845717A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
WO2020000892A1 (zh) 感应膜的制作过程和触摸屏的制作方法
US9543338B2 (en) Array substrate, method for manufacturing the same, and display device
TWI355553B (en) Pixel structure and method for manufacturing the s
WO2018157814A1 (zh) 触控屏的制作方法、触控屏和显示装置
US20200312881A1 (en) Manufacturing method of display substrate, array substrate and display device
WO2014166150A1 (zh) 触摸面板及其制作方法、显示装置
WO2015085772A1 (zh) 基板的制作方法
WO2014015631A1 (zh) 阵列基板及其制备方法和显示装置
WO2015096312A1 (zh) 阵列基板及其制作方法和显示装置
WO2013026375A1 (zh) 薄膜晶体管阵列基板及其制造方法和电子器件
WO2015109738A1 (zh) 显示面板母板及其制备方法
WO2019179339A1 (zh) 阵列基板及其制造方法、显示面板、显示装置
WO2020000893A1 (zh) 感应膜的制作工艺和触摸屏的制作方法
CN104411103B (zh) 一种图形化厚膜银浆导电层的制造方法
WO2018000491A1 (zh) 黑色矩阵光罩、制备黑色矩阵的方法及其应用
WO2018006446A1 (zh) 薄膜晶体管阵列基板及其制造方法
KR20130022170A (ko) 터치패널 및 그 제조방법
TWI729328B (zh) 陣列基板及其製造方法
CN109213372B (zh) 一种触控面板及其制备方法、触控装置
WO2014153866A1 (zh) 一种掩膜板及其制造方法
JP3548711B2 (ja) 液晶用マトリクス基板の製造方法ならびにコンタクトホール形成方法
CN106684007A (zh) 一种半导体工艺空气桥的制作方法
TWI732530B (zh) 基板側面部配線形成方法
WO2015000272A1 (zh) 裸眼3d功能面板的信号基板及其制造方法以及显示设备
TW201310770A (zh) 可攜式電子裝置及其天線結構及其天線製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18924621

Country of ref document: EP

Kind code of ref document: A1