WO2019244879A1 - エポキシ樹脂組成物、プリプレグおよび成形体 - Google Patents

エポキシ樹脂組成物、プリプレグおよび成形体 Download PDF

Info

Publication number
WO2019244879A1
WO2019244879A1 PCT/JP2019/024067 JP2019024067W WO2019244879A1 WO 2019244879 A1 WO2019244879 A1 WO 2019244879A1 JP 2019024067 W JP2019024067 W JP 2019024067W WO 2019244879 A1 WO2019244879 A1 WO 2019244879A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
component
resin composition
mass
parts
Prior art date
Application number
PCT/JP2019/024067
Other languages
English (en)
French (fr)
Inventor
雄作 小日向
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201980029355.4A priority Critical patent/CN112105669A/zh
Priority to US17/251,956 priority patent/US11530323B2/en
Priority to EP19822909.8A priority patent/EP3812412A4/en
Publication of WO2019244879A1 publication Critical patent/WO2019244879A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3227Compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming

Definitions

  • the present invention relates to an epoxy resin composition, a prepreg, and a molded article.
  • Priority is claimed on Japanese Patent Application No. 2018-117258, filed on June 20, 2018, the content of which is incorporated herein by reference.
  • Fiber reinforced plastics (sometimes abbreviated as FRP) using reinforced fibers such as carbon fibers are used as materials for structures such as aircraft because of their high specific strength and specific elastic modulus.
  • FRP forming material contains an epoxy resin and a curing agent.
  • epoxy resins have high heat resistance and the cured product has a high modulus of elasticity, but have the problem of low impact resistance (toughness) of epoxy resins.
  • Patent Document 1 discloses an epoxy resin composition for a fiber-reinforced composite material having both heat resistance and toughness.
  • the epoxy resin composition of Patent Document 1 comprises 20 to 40% by weight of an epoxy resin having a biphenyl skeleton, 20 to 40% by weight of an epoxy resin having at least three epoxy groups in one molecule and being liquid at 25 ° C., and bisphenol 20 to 40 parts by weight of a thermoplastic resin and a curing agent are contained with respect to 100 parts by weight of an epoxy resin component composed of 30 to 50% by weight of an A-type epoxy resin.
  • molded articles obtained from this type of epoxy resin composition do not always have sufficient impact resistance, mechanical properties, and solvent resistance.
  • the present invention has been made in view of such circumstances, and provides an epoxy resin composition, a prepreg, and a molded article capable of obtaining a molded article having high impact resistance, mechanical properties, and solvent resistance. With the goal.
  • the present inventors have found that if the epoxy resin composition contains the aromatic polysulfone resin of the following embodiment, the mechanical properties and solvent resistance of the obtained molded article are also improved, and the present invention is completed. Reached.
  • One embodiment of the present invention is an epoxy resin composition, which includes the following components (A), (B), (C), and (D), and the content of the component (A) is as follows: 60 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the total content of the epoxy resin contained in the product, and the content of the component (B) is the total content of the epoxy resin contained in the epoxy resin composition. 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass, the glass transition temperature of the cured product of the epoxy resin composition is 200 ° C. or more, and the components (A), (B), and (C) And an epoxy resin composition having a viscosity at 100 ° C.
  • the component (A) may have an epoxy equivalent of 125 g / eq or less.
  • the content of the phenolic hydroxyl group in the component (C) may be 100 ⁇ mol / g to 350 ⁇ mol / g with respect to the total mass of the component (C).
  • the component (D) may be diaminodiphenyl sulfone or a derivative thereof.
  • the component (D) may include the following component (D-1).
  • the component (D) further includes the following component (D-2), and the mass content ratio of the component (D-1) to the component (D-2) (D-2) / ( D-1) may be less than 1.
  • the content of the trimer in the component (A) may be 3% by mass or less based on the total mass of the component (A).
  • One embodiment of the present invention provides a prepreg in which a reinforcing fiber is impregnated with the above-described epoxy resin composition.
  • the reinforcing fibers may be carbon fibers.
  • One embodiment of the present invention provides a molded article using a cured product of the above prepreg as a forming material.
  • An epoxy resin composition Including the following components (A), (B), (C) and (D);
  • the content of the component (A) is 60 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the total content of the epoxy resin contained in the epoxy resin composition;
  • the content of the component (B) is 10 parts by mass or more and 40 parts by mass or less based on 100 parts by mass of the total epoxy resin contained in the epoxy resin composition;
  • the epoxy resin composition has a property that when cured to a cured product, the cured product has a glass transition temperature of 200 ° C. or higher; The viscosity at 100 ° C.
  • Epoxy resin composition an aromatic epoxy resin having at least three glycidyl groups in one molecule
  • B an aromatic epoxy resin having two glycidyl groups in one molecule
  • C a reduced viscosity of 0.18 dl / g to 0.30 dl / g or less
  • aromatic polysulfone resin aromatic amine compound [2]
  • the component (D) further includes the following component (D-2), The epoxy resin composition according to [5], wherein a mass content ratio (D-2) / (D-1) of the component (D-1) to the component (D-2) is less than 1.
  • Epoxy resin composition is any one of [1] to [6]
  • an epoxy resin composition capable of obtaining a molded article having high impact resistance, mechanical properties, and solvent resistance.
  • the epoxy resin composition of the present embodiment contains at least the following components (A), (B), (C) and (D).
  • D aromatic amine compound
  • the epoxy resin composition of the present embodiment is used as a material for forming a molded body described later.
  • the component (A) is an aromatic epoxy resin having at least three glycidyl groups in one molecule, such as a glycidylamine type epoxy resin, a phenol novolak type epoxy resin, and a cresol novolak.
  • Type epoxy resin and glycidyl ether type epoxy resin are particularly preferable, and examples thereof include a resin containing a monomer such as tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, and triglycidylaminocresol, and a resin containing a polymer thereof. These may be used alone or in combination of two or more.
  • a resin containing tetraglycidyldiaminodiphenylmethane and its polymer is preferred.
  • the epoxy equivalent of the component (A) is preferably 125 g / eq or less, more preferably 120 g / eq or less, and even more preferably 118 g / eq or less.
  • the epoxy equivalent of the component (A) may be 95 g / eq or more.
  • the epoxy equivalent of the component (A) is preferably from 95 g / eq to 125 g / eq, more preferably from 95 g / eq to 120 g / eq, and more preferably from 95 g / eq to 118 g / eq. It is more preferred that:
  • the epoxy equivalent of the component (A) is 125 g / eq or less
  • the cross-linking density of a molded body described later tends to be sufficiently high
  • the elastic modulus of the molded body tends to be high.
  • the epoxy equivalent of the component (A) is 125 g / eq or less
  • the viscosity of the epoxy resin composition is easily suppressed to be low, and the handling becomes easy.
  • epoxy equivalent of the component (A) a value measured by a hydrochloric acid-dioxane method according to JIS K7236 is employed.
  • the component (A) may include a trimer of the above monomer, and the content of the trimer contained in the component (A) is 3% by mass based on the total mass of the component (A).
  • the content of the trimer in the component (A) may be 0% by mass or more based on the total mass of the component (A).
  • the content of the trimer in the component (A) is preferably 0% by mass or more and 3% by mass or less based on the total mass of the component (A).
  • the content of the trimer of the component (A) is 3% by mass or less, the viscosity of the component (A) decreases, and the handling becomes easy.
  • the content of the trimer contained in the component (A) is calculated based on the measurement result of liquid chromatography (may be abbreviated as LC) analysis under the following conditions. Specifically, in the LC analysis, the sum of the peak areas detected during a retention time of 30 minutes to 35 minutes is defined as the trimer content. The ratio of the sum of the peak areas detected during the retention time of 30 to 35 minutes to the sum of the peak areas detected during the retention time of 0 to 35 minutes is adopted as the content of the trimer in the component (A). I do.
  • LC liquid chromatography
  • Sample 5 ⁇ L of a solution in which 1 mg of a sample is dissolved in 1 ml of acetonitrile
  • Equipment Liquid chromatograph Nexera XR manufactured by Shimadzu Corporation
  • the component (B) is an aromatic epoxy resin having two glycidyl groups in one molecule, for example, diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F and Examples include a bisphenol-type epoxy resin containing a monomer such as diglycidyl ether of bisphenol S and a polymer thereof. Among these, a resin containing the diglycidyl ether of bisphenol A and a polymer thereof is preferably used. These may be used alone or in combination of two or more.
  • the aromatic polysulfone resin as the component (C) according to the present embodiment typically has two divalent aromatic groups (from an aromatic compound, two hydrogen atoms bonded to the aromatic ring thereof). This is a resin having a repeating unit containing a residue (excluding residues), a sulfonyl group (—SO 2 —) and an oxygen atom.
  • the aromatic polysulfone resin preferably has a repeating unit represented by the following formula (1) from the viewpoint of heat resistance and chemical resistance of the aromatic polysulfone resin. Further, the aromatic polysulfone resin may have one or more kinds of other repeating units such as a repeating unit represented by the following formula (2) and a repeating unit represented by the following formula (3).
  • the repeating unit represented by the following formula (1) may be referred to as “the repeating unit (1)”.
  • the repeating unit represented by the following formula (2) may be referred to as “the repeating unit (2)”.
  • the repeating unit represented by the following formula (3) may be referred to as “the repeating unit (3)”.
  • Ph 1 and Ph 2 each independently represent a phenylene group.
  • the hydrogen atoms in the phenylene group may be each independently substituted with an alkyl group, an aryl group, or a halogen atom.
  • Ph 3 and Ph 4 each independently represent a phenylene group.
  • the hydrogen atoms in the phenylene group may be each independently substituted with an alkyl group, an aryl group, or a halogen atom.
  • R represents an alkylidene group, an oxygen atom or a sulfur atom.
  • Ph 5 represents a phenylene group.
  • the hydrogen atoms in the phenylene group may be each independently substituted with an alkyl group, an aryl group, or a halogen atom.
  • n represents an integer of 1 to 3. When n is 2 or more, a plurality of Ph 5 may be the same or different.
  • the phenylene group represented by any of Ph 1 to Ph 5 may be a p-phenylene group, an m-phenylene group, or an o-phenylene group. -Preferably a phenylene group.
  • the alkyl group which may be substituted for a hydrogen atom in the phenylene group is preferably an alkyl group having 1 to 10 carbon atoms, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Isobutyl, s-butyl, t-butyl, n-hexyl, 2-ethylhexyl, n-octyl and n-decyl groups.
  • the aryl group which may be substituted with a hydrogen atom in the phenylene group is preferably an aryl group having 6 to 20 carbon atoms, for example, phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, Examples include a 1-naphthyl group and a 2-naphthyl group.
  • the number is independently 2 or less, for example, preferably 1 for each phenylene group.
  • an alkylidene group having 1 to 5 carbon atoms is preferable, and examples thereof include a methylene group, an ethylidene group, an isopropylidene group and a 1-butylidene group.
  • the aromatic polysulfone resin preferably has the repeating unit (1) in an amount of 50 mol% or more and 100 mol% or less, and preferably 80 mol% or more and 100 mol%, based on the total number of moles of all the repeating units constituting the aromatic polysulfone resin. % Or less, more preferably substantially only repeating unit (1) as the repeating unit.
  • the aromatic polysulfone resin may have two or more types of repeating units (1) to (3) each independently.
  • Aromatic polysulfone produced by the method described below has a halogen atom or a phenolic hydroxyl group at its terminal.
  • the content of the phenolic hydroxyl group in the aromatic polysulfone resin is preferably from 100 ⁇ mol / g to 350 ⁇ mol / g with respect to the mass of the aromatic polysulfone resin.
  • the content of phenolic hydroxyl groups in the aromatic polysulfone resin may be from 100 ⁇ mol / g to 200 ⁇ mol / g.
  • the content of the phenolic hydroxyl group in the aromatic polysulfone resin is 100 ⁇ mol / g or more
  • the glycidyl group contained in the component (A) or the component (B) or the phenolic hydroxyl group which reacts with the curing agent during curing of the epoxy resin composition Will be large enough. As a result, the impact resistance and solvent resistance of the molded body described later are likely to be increased.
  • the content of the phenolic hydroxyl group in the aromatic polysulfone resin adopts a value determined as follows. First, a predetermined amount of an aromatic polysulfone resin is dissolved in dimethylformamide, and then an excess amount of p-toluenesulfonic acid is added. Next, using a potentiometric titrator, titration is performed with a 0.05 mol / l potassium methoxide / toluene / methanol solution to neutralize residual p-toluenesulfonic acid, and then neutralize phenolic hydroxyl groups.
  • the aromatic polysulfone resin can be produced by polycondensing a dihalogenosulfone compound and a dihydroxy compound corresponding to the repeating unit constituting the resin.
  • a resin having a repeating unit (1) is produced by using a compound represented by the following formula (4) as a dihalogenosulfone compound and using a compound represented by the following formula (5) as a dihydroxy compound.
  • the “compound represented by the following formula (4)” may be referred to as “compound (4)”.
  • the “compound represented by the following formula (5)” may be referred to as “compound (5)”.
  • a resin having a repeating unit (1) and a repeating unit (2) is produced by using the compound (4) as a dihalogenosulfone compound and using a compound represented by the following formula (6) as a dihydroxy compound. can do.
  • the “compound represented by the following formula (6)” may be referred to as “compound (6)”.
  • the resin having the repeating unit (1) and the repeating unit (3) is produced by using the compound (4) as a dihalogenosulfone compound and the compound represented by the following formula (7) as a dihydroxy compound. can do.
  • the “compound represented by the following formula (7)” may be referred to as “compound (7)”.
  • X 1 and X 2 each independently represent a halogen atom.
  • Ph 1 and Ph 2 are as defined above.
  • Ph 1 and Ph 2 are as defined above.
  • Ph 3 , Ph 4 and R are as defined above.
  • halogen atoms for X 1 and X 2 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Ph 5 and n are as defined above.
  • the polycondensation is preferably performed in a solvent using an alkali metal salt of carbonic acid.
  • the alkali metal salt of carbonic acid may be a normal salt of alkali carbonate, an acidic salt of alkali bicarbonate (also referred to as alkali hydrogen carbonate), or a mixture of both.
  • alkali carbonate sodium carbonate and potassium carbonate are preferably used.
  • alkali bicarbonate sodium bicarbonate and potassium bicarbonate are preferably used.
  • the solvent examples include dimethyl sulfoxide, 1-methyl-2-pyrrolidone, sulfolane (also referred to as 1,1-dioxothilan), 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone, Organic polar solvents such as dimethyl sulfone, diethyl sulfone, diisopropyl sulfone and diphenyl sulfone are preferably used.
  • the reduced viscosity of the aromatic polysulfone resin is from 0.18 dl / g to 0.30 dL / g, and preferably from 0.20 dl / g to 0.28 dL / g.
  • the reduced viscosity of the aromatic polysulfone resin may be from 0.20 dl / g to 0.27 dL / g.
  • the reduced viscosity of the aromatic polysulfone resin is 0.18 dl / g or more, depending on other components contained in the epoxy resin composition, heat resistance and impact resistance of a molded article obtained from the epoxy resin composition may be reduced. Easy to improve.
  • the reduced viscosity of the aromatic polysulfone resin is 0.30 dL / g or less, the viscosity of the epoxy resin composition does not become too high depending on other components contained in the epoxy resin composition, and the viscosity required for molding processing is reduced. Temperature is not too high.
  • the reduced viscosity is 100% even though the resin composition comprising the components (A), (B), (C) and (D) has the same viscosity at 100 ° C.
  • a resin composition using an aromatic polysulfone resin having a range of .18 dl / g or more and 0.30 dL / g or less has a reduced viscosity outside the range of 0.18 dl / g or more and 0.30 dL / g or less. It was found that the number of voids in the molded article was smaller than that of the resin composition using the polysulfone resin. It is known that the smaller the number of voids in a formed body, the higher the mechanical properties of the formed body.
  • mechanical properties means strength and elastic modulus.
  • the strength and the elastic modulus can be measured by a tensile tester, a bending tester or the like.
  • the value determined as follows is adopted as the reduced viscosity of the aromatic polysulfone resin.
  • 1 g of the aromatic polysulfone resin is dissolved in N, N-dimethylformamide to make the volume 1 dl, and the viscosity ( ⁇ ) of this solution is measured at 25 ° C. using an Ostwald type viscosity tube.
  • the viscosity ( ⁇ 0 ) of N, N-dimethylformamide as a solvent is measured at 25 ° C. using an Ostwald viscometer. Since the concentration of the solution is 1 g / dl, the value of the specific viscosity (( ⁇ 0 ) / ⁇ 0 ) is the value of the reduced viscosity in unit dl / g.
  • the degree of polymerization of the obtained aromatic polysulfone resin is easily increased, and the reduced viscosity is increased. Easy to be.
  • the conditions in which the degree of polymerization of the aromatic polysulfone resin is easily increased and the reduced viscosity is easily increased include conditions in which the amount of the alkali metal carbonate used is larger, conditions in which the polycondensation temperature is higher, and conditions in which the polycondensation is performed. Such conditions include longer time.
  • the aromatic amine compound as the component (D) As the aromatic amine compound as the component (D) according to the present embodiment, a compound that is usually used as a curing agent for an epoxy resin may be mentioned.
  • the aromatic amine compound is preferably diaminodiphenylmethane, diaminodiphenylsulfone or a derivative thereof.
  • the aromatic amine compound one type may be used alone, or two or more types may be used in combination.
  • a “derivative” is a compound in which a small part of a compound is substituted with another atom or atomic group without changing the basic skeleton.
  • the aromatic amine compound preferably contains at least the following component (D-1). Further, the component (D) may include the following component (D-2).
  • D-1) 4,4'-diaminodiphenyl sulfone
  • D-2 3,3'-diaminodiphenyl sulfone
  • the mass content ratio (D-2) / (D-1) of the component (D-1) to the component (D-2) is preferably less than 1.
  • the content of the component (A) in the epoxy resin composition of the present embodiment is not less than 60 parts by mass and not more than 90 parts by mass based on 100 parts by mass of the total epoxy resin contained in the epoxy resin composition, It is preferably from 65 parts by mass to 85 parts by mass, more preferably from 70 parts by mass to 80 parts by mass.
  • the “epoxy resin contained in the epoxy resin composition” means an epoxy resin other than the components (A) and (B) and optionally the components (A) and (B).
  • the content of the component (A) is 60 parts by mass or more with respect to 100 parts by mass of the total content of the epoxy resin contained in the epoxy resin composition, the cross-linking density of a molded article described later tends to be sufficiently high. . This makes it easy to obtain an epoxy resin composition having high heat resistance.
  • the content of the component (A) is 90 parts by mass or less based on 100 parts by mass of the total amount of the epoxy resin contained in the epoxy resin composition, molding is performed while suppressing the viscosity of the epoxy resin composition to a low level.
  • the elastic modulus of the body tends to be sufficiently high.
  • the content of the component (B) in the epoxy resin composition of the present embodiment is 10 parts by mass or more and 40 parts by mass or less based on 100 parts by mass of the total epoxy resin contained in the epoxy resin composition, It is preferably from 15 parts by mass to 35 parts by mass, more preferably from 20 parts by mass to 30 parts by mass.
  • the content of the component (B) is 10 parts by mass or more based on 100 parts by mass of the total amount of the epoxy resin contained in the epoxy resin composition, the impact resistance and elastic modulus of a molded article described later are obtained. But it is easy to be compatible. When the content of the component (B) is 10 parts by mass or more, the cost of the epoxy resin composition can be reduced.
  • the content of the component (B) is 40 parts by mass or less based on 100 parts by mass of the total content of the epoxy resin contained in the epoxy resin composition, the cross-linking density of a molded product described later tends to be sufficiently high. . Thereby, a molded article having a high elastic modulus is easily obtained.
  • the content of the aromatic polysulfone resin as the component (C) in the epoxy resin composition of the present embodiment is determined by a resin composition comprising the components (A), (B), (C) and (D) described below.
  • the viscosity at 100 ° C. is adjusted to a range of 5 Pa ⁇ s to 35 Pa ⁇ s, preferably 8 Pa ⁇ s to 215 Pa ⁇ s.
  • the content of the component (D) in the epoxy resin composition of the present embodiment is preferably 20 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition. Is from 20 parts by mass to 45 parts by mass.
  • the epoxy resin composition of the present embodiment includes a filler, an additive other than the aromatic amine compound, a resin other than the components (A), (B), and (C) within a range in which the effects of the present invention are exhibited. It may contain at least one other component or a solvent.
  • resins other than the components (A), (B) and (C) may be referred to as “other resins”.
  • the filler may be a fibrous filler, a plate-like filler, or a granular filler. Further, the filler may be an inorganic filler or an organic filler.
  • fibrous inorganic filler examples include glass fibers; carbon fibers such as bread-based carbon fibers and pitch-based carbon fibers; ceramic fibers such as silica fibers, alumina fibers and silica-alumina fibers; and metal fibers such as stainless steel fibers.
  • whiskers such as potassium titanate whiskers, barium titanate whiskers, wollastonite whiskers, aluminum borate whiskers, silicon nitride whiskers, and silicon carbide whiskers can be used.
  • fibrous organic filler examples include ultrahigh molecular weight polyethylene fibers having a molecular weight of 1,000,000 or more, polyester fibers, aramid fibers, and polyparaphenylene benzobisoxazole fibers.
  • Examples of the plate-like inorganic filler include talc, mica, graphite, wollastonite, glass flake, barium sulfate, and calcium carbonate.
  • the mica may be muscovite, phlogopite, fluorophlogopite, or tetrasilicic mica.
  • particulate inorganic filler examples include silica, alumina, titanium oxide, glass beads, glass balloon, boron nitride, silicon carbide, and calcium carbonate.
  • particulate organic filler examples include carbon black.
  • the content of the filler is preferably, for example, 0 to 100 parts by mass based on 100 parts by mass of the total content of the epoxy resin contained in the epoxy resin composition of the present embodiment.
  • additives include antioxidants, heat stabilizers, ultraviolet absorbers, antistatic agents, surfactants, flame retardants, and colorants.
  • the content of the additive is preferably, for example, 0 to 20 parts by mass based on 100 parts by mass of the total content of the epoxy resin contained in the epoxy resin composition of the present embodiment.
  • thermoplastic resins other than aromatic polysulfone resins such as polypropylene, polyamide, polyester, polyphenylene sulfide, polyvinyl formal, polyether ketone, polycarbonate, polyphenylene ether, polyetherimide; and phenolic resins,
  • thermosetting resins such as epoxy resin, polyimide resin, cyanate resin, bismaleimide resin and benzoxazine resin other than component (B) and component (B).
  • the content of the other resin is preferably, for example, 0 to 20 parts by mass based on 100 parts by mass of the total epoxy resin contained in the epoxy resin composition of the present embodiment.
  • the solvent is not particularly limited, but usually, a solvent used for an epoxy resin composition for molding a molded article is preferable.
  • a solvent used for an epoxy resin composition for molding a molded article examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, isopropyl alcohol, dimethyl sulfoxide, N, N-dimethylformamide, N-methylpyrrolidone, and N, N-dimethylacetamide.
  • the epoxy resin composition of the present embodiment may include rubber particles as long as the effects of the present invention are exhibited.
  • the rubber particles include synthetic rubbers such as polybutadiene, polyisoprene, polychloroprene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, silicone rubber, natural rubber, and core-shell rubber.
  • the content of the rubber component is preferably from 0 to 50 parts by mass, and more preferably from 0 to 25 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition of the present embodiment. More preferably, the amount is not more than part by mass.
  • the glass transition temperature of the cured product of the epoxy resin composition of the present embodiment is 200 ° C. or higher, preferably 205 ° C. or higher, and more preferably 210 ° C. or higher.
  • the glass transition temperature is 200 ° C or higher and 230 ° C or lower, preferably 205 ° C or higher and 220 ° C or lower, more preferably 210 ° C or lower. C. to 220.degree. C., particularly preferably 211 to 215.degree.
  • the epoxy resin composition When the glass transition temperature of the cured product when the epoxy resin composition is cured is 200 ° C or higher, the epoxy resin composition is used in applications where excellent mechanical properties are required in a high-temperature environment of 200 ° C or higher. Can be.
  • the glass transition temperature of the cured product of the epoxy resin composition is measured using a dynamic viscoelasticity measuring device (manufactured by TA Instruments Inc., “Q800”) under the following conditions. The value obtained based on the peak of is adopted.
  • the viscosity at 100 ° C. of the resin composition comprising the component (A), the component (B), the component (C) and the component (D) is from 5 Pa ⁇ s to 35 Pa ⁇ s. Yes, it is preferably from 7 Pa ⁇ s to 30 Pa ⁇ s, more preferably from 8 Pa ⁇ s to 21 Pa ⁇ s.
  • the viscosity at 100 ° C. is from 5 Pa ⁇ s to 35 Pa ⁇ s, preferably from 7 Pa ⁇ s to 30 Pa ⁇ s, more preferably from 8 Pa ⁇ s to 21 Pa ⁇ s.
  • the viscosity of the resin composition at 100 ° C. is 5 Pa ⁇ s or more, it is easy to impregnate the reinforcing fibers with the epoxy resin composition in the production of a prepreg described later.
  • the viscosity at 100 ° C. of the resin composition is determined from a viscosity curve obtained by using a parallel plate with a dynamic viscoelasticity measuring device (a rheometer CVO model manufactured by BOHLIN Instruments) under the following conditions. Adopt the value that is obtained.
  • the epoxy resin composition of the present embodiment has high heat resistance and impact resistance.
  • a molded article molded from the above-described epoxy resin composition has high impact resistance, mechanical properties, and solvent resistance.
  • thermosetting resins such as epoxy resins have high heat resistance, and cured products thereof have high elastic modulus, but thermosetting resins have low impact resistance. Because the impact resistance of the thermosetting resin is low, cracks are likely to propagate easily between the resin layer and the reinforcing fiber layer, especially in a molded article in which a plurality of prepregs each using the thermosetting resin as a matrix resin are laminated. ing. As a result, it is considered that the impact resistance of the molded article tends to be low.
  • a molded article molded from the above-described epoxy resin composition has a resin layer in which the epoxy resin is the sea and the aromatic polysulfone resin is the island, and a sea-island structure is easily formed. I understood. It is considered that in the resin layer having such a sea-island structure, propagation of cracks is suppressed in the region of the aromatic polysulfone resin.
  • a molded article molded from the above-described epoxy resin composition is not limited to a case where a sea-island structure is formed. As a result of extensive studies by the present inventors, it was found that the impact resistance of the epoxy resin composition was improved even when the molded article had a uniform structure. Thereby, it is considered that the impact resistance of the molded body is increased.
  • the impact resistance of the epoxy resin composition can be evaluated by measuring the fracture toughness value of a cured product obtained by curing the epoxy resin composition according to ASTM D5045-99.
  • the adhesion between the epoxy resin and the reinforcing fiber is poor.
  • the aromatic polysulfone resin improves the adhesion between the epoxy resin and the reinforcing fibers.
  • the molded article molded from the epoxy resin composition of the present embodiment has less voids as compared with the molded article molded from the conventional resin composition having the same viscosity at 100 ° C. I found out. It can be said that the smaller the number of voids in the molded article, the higher the mechanical properties and solvent resistance of the molded article.
  • a molded article molded from the above-described epoxy resin composition has high impact resistance, mechanical properties, and solvent resistance.
  • the method for producing the epoxy resin composition of the present embodiment is not particularly limited, and the component (A), the component (B), the component (C), the component (D) and, if desired, other components may be mixed.
  • the component (A), the component (B), and the component (C) may be mixed in advance, and the component (D) may be mixed with the mixture.
  • each component may be heated as long as the effects of the present invention are exhibited.
  • the prepreg of the present embodiment is a sheet-like base material in which the above-described epoxy resin composition is impregnated into reinforcing fibers.
  • the reinforcing fiber according to the present embodiment is preferably at least one selected from the group consisting of carbon fiber, glass fiber, boron fiber and aramid fiber from the viewpoint of strength, and more preferably carbon fiber. These reinforcing fibers may be woven or non-woven.
  • the prepreg of the present embodiment preferably has a fiber volume content of 40 to 70%.
  • the method for producing the prepreg of the present embodiment is not particularly limited, and the above-described epoxy resin composition may be impregnated into the reinforcing fibers.
  • Examples of the method of impregnating the reinforcing fiber with the epoxy resin composition include a wet method and a hot melt method (dry method).
  • the wet method is a method in which a reinforcing fiber is immersed in a resin, the reinforcing fiber is pulled up, and a solvent is evaporated from the reinforcing fiber using an oven or the like, thereby impregnating the resin with the resin.
  • the hot melt method is a method in which a resin whose viscosity has been reduced by heating is directly impregnated into reinforcing fibers. Further, as another form of the hot melt method, a resin-coated film is prepared on release paper or the like, and then the film is stacked on both sides or one side of the reinforcing fiber, and heated and pressed to form a reinforcing fiber. Is impregnated with a resin.
  • the prepreg can be manufactured by heating the impregnated epoxy resin composition to, for example, 120 to 150 ° C. to partially cure the impregnated epoxy resin composition.
  • “semi-cured” is a state in which the viscosity or hardness of the resin is increased until a certain shape can be maintained, and the viscosity or hardness can be increased from this state to a state where the viscosity or hardness can be further increased. Point.
  • a prepreg capable of obtaining a molded article having high impact resistance, mechanical properties, and solvent resistance is obtained.
  • the molded article of the present embodiment uses a cured product of the above prepreg as a forming material.
  • the molded article of the present embodiment has high impact resistance, mechanical properties and solvent resistance, it can be suitably used for applications such as automobiles and aircraft.
  • the molded article of the present embodiment is configured by laminating a plurality of the above prepregs.
  • a molded body can be obtained by stacking a plurality of prepregs produced by the above method and thermosetting them using an autoclave or a hot press.
  • a method of laminating the reinforcing fibers contained in the prepreg in an aligned direction that is, an angle formed by the orientation direction of each layer is 0 °
  • a method of laminating the prepreg while shifting at an arbitrary angle is used.
  • the angle formed by the orientation direction of each layer is 0 ° / 45 ° / 90 ° / 135 ° / 180 ° / 225 ° / 270 ° / 315 ° / 360 °. (0 °).
  • shifting at an arbitrary angle means changing the relative angle in the fiber direction included in the two-layer prepreg to be laminated.
  • the arbitrary angle can be appropriately set according to the use of the molded article.
  • the present embodiment it is possible to suppress the voids, and preferably obtain a molded body having no voids. Therefore, a molded article having high mechanical properties and high solvent resistance can be obtained.
  • the epoxy resin composition according to one embodiment of the present invention includes: Including component (A), component (B), component (C) and component (D);
  • the component (A) contains tetraglycidyldiaminodiphenylmethane and a polymer thereof,
  • the epoxy equivalent of the component (A) is 95 g / eq to 118 g / eq,
  • the content of the trimer of the component (A) is 0% by mass or more and 3% by mass or less based on the total mass of the component (A);
  • the component (B) is bisphenol A diglycidyl ether;
  • the component (C) is an aromatic polysulfone resin in which bis (4-hydroxyphenyl) sulfone and bis (4-chlorophenyl) sulfone are polycondensed,
  • the reduced viscosity of the aromatic polysulfone resin is 0.20 dl / g or more and 0.27 dL / g or less,
  • the viscosity at 100 ° C. of the resin composition comprising the component (A), the component (B), the component (C), and the component (D) is from 5 Pa ⁇ s to 35 Pa ⁇ s; It is an epoxy resin composition.
  • the epoxy resin composition according to one embodiment of the present invention includes: Including component (A), component (B), component (C) and component (D);
  • the component (A) contains tetraglycidyldiaminodiphenylmethane and a polymer thereof,
  • the component (B) is bisphenol A diglycidyl ether;
  • the component (C) is an aromatic polysulfone resin in which bis (4-hydroxyphenyl) sulfone and bis (4-chlorophenyl) sulfone are polycondensed, The reduced viscosity of the aromatic polysulfone resin is 0.20 dl / g or more and 0.27 dL / g or less,
  • the component (D) is bis (4-aminophenyl) sulfone;
  • the content of the component (A) is 70 parts by mass or more and 80 parts by mass or less based on 100 parts by mass of the total epoxy resin contained in the epoxy resin composition;
  • the viscosity at 100 ° C. of the resin composition comprising the component (A), the component (B), the component (C), and the component (D) is from 5 Pa ⁇ s to 35 Pa ⁇ s; It is an epoxy resin composition.
  • Epoxy equivalent of component (A) The epoxy equivalent of the component (A) was measured by a hydrochloric acid-dioxane method according to JIS K7236.
  • the content of the trimer in the component (A) was calculated based on the results of liquid chromatography (LC) analysis under the following conditions. Specifically, in the LC analysis, the sum of the peak areas detected during a retention time of 30 minutes to 35 minutes was defined as the trimer content. The ratio of the sum of the peak areas detected during the retention time of 30 to 35 minutes to the sum of the peak areas detected during the retention time of 0 to 35 minutes was adopted as the trimer content in the component (A). .
  • Sample 5 ⁇ L of a solution in which 1 mg of a sample is dissolved in 1 ml of acetonitrile
  • Equipment Liquid chromatograph Nexera XR manufactured by Shimadzu Corporation
  • the reduced viscosity of the aromatic polysulfone resin was determined as follows. 1 g of the aromatic polysulfone resin was dissolved in N, N-dimethylformamide to make the volume 1 dl, and the viscosity ( ⁇ ) of this solution was measured at 25 ° C. using an Ostwald type viscosity tube. The viscosity ( ⁇ 0 ) of N, N-dimethylformamide as a solvent was measured at 25 ° C. using an Ostwald-type viscosity tube. Since the concentration of the solution is 1 g / dl, the value of the specific viscosity (( ⁇ 0 ) / ⁇ 0 ) is the value of the reduced viscosity in unit dl / g.
  • a value obtained by dividing the amount (mol) of potassium methoxide required for neutralization of the hydroxy group by the above-mentioned predetermined amount (g) of the aromatic polysulfone resin is a value of the phenolic hydroxyl group in the aromatic polysulfone resin.
  • Glass transition temperature of cured product of epoxy resin composition The glass transition temperature of the cured product of the epoxy resin composition is based on the peak of tan ⁇ measured using a dynamic viscoelasticity measurement device (“Q800” manufactured by TA Instruments Inc.) under the following conditions. I asked.
  • Viscosity of resin composition at 100 ° C. As the viscosity at 100 ° C. of the resin composition, a value obtained from a viscosity curve obtained by using a parallel plate with a dynamic viscoelasticity measuring device (a rheometer CVO model manufactured by BOHLIN INSTRUMENTS) under the following conditions is adopted.
  • the resin composition is an epoxy resin composition.
  • component (A), component (B), and component (D) are used as component (A), component (B), and component (D).
  • the resulting reaction solution was cooled to room temperature to be solidified, pulverized finely, washed several times with warm water and a mixed solvent of acetone and methanol, and then dried by heating at 150 ° C. to obtain the component (C-1).
  • the component (C-1) was obtained as a white powder.
  • the reduced viscosity of the obtained component (C-1) was 0.27 dl / g.
  • the content of the phenolic hydroxyl group in the component (C-1) was 169 ⁇ mol / g.
  • the reduced viscosity of the obtained component (C-2) was 0.50 dl / g.
  • the content of the phenolic hydroxyl group in the component (C-2) was 49 ⁇ mol / g.
  • the reduced viscosity of the obtained component (C-3) was 0.41 dl / g.
  • the content of the phenolic hydroxyl group in the component (C-3) was 61 ⁇ mol / g.
  • Example 2 An epoxy resin composition was obtained in the same manner as in Example 1, except that the component (C-1) was changed from 26 g to 40 g.
  • Example 3 An epoxy resin composition was obtained in the same manner as in Example 2, except that the component (A) was changed from 140 g to 160 g, and the component (B) was changed from 60 g to 40 g.
  • the 18 prepregs are laminated in the same direction, and are heated at a temperature of 150 ° C. and a pressure of 3 MPa for 30 minutes using a TA-200-1W press manufactured by Yamamoto Iron Works, and then at a temperature of 180 ° C. and a pressure of 3 MPa. Press molding was performed for 60 minutes to produce a molded body. The glass transition temperature and the number of voids in the molded body were measured using the molded body obtained here.
  • Tables 1 and 2 show the glass transition temperature and the viscosity at 100 ° C of the cured product of the epoxy resin composition used, and the number of voids in the molded product.
  • each value of the components (A) to (D) in Tables 1 and 2 means the content of each component with respect to 100 parts by mass of the total content of the components (A) and (B).
  • the number of voids is considered to be about the same.
  • voids were generated in the molded article of Comparative Example 1, surprisingly, voids were generated in the molded article of Example 1 using the epoxy resin composition having the same viscosity as Comparative Example 1. Did not.
  • the content of the aromatic polysulfone resin is different between Example 1 and Comparative Example 1.
  • a molded article of Comparative Example 2 was produced with the same content of the aromatic polysulfone resin as in Example 1.
  • voids were generated in the molded article of Comparative Example 2 even though the content of the aromatic polysulfone resin was the same as that of Example 1. That is, it is considered that the difference in the content of the aromatic polysulfone resin has little effect on the generation of voids.
  • the reduced viscosity of the aromatic polysulfone resin used is not more than 0.30 dl / g, which affects the generation of voids.
  • the present invention is extremely industrially useful because it can provide an epoxy resin composition, a prepreg and a molded article capable of obtaining a molded article having high impact resistance, mechanical properties and solvent resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

エポキシ樹脂組成物であって、(A)成分、(B)成分、(C)成分および(D)成分を含み;(A)成分の含有率は、このエポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して60質量部以上90質量部以下であり;(B)成分の含有率は、このエポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して10質量部以上40質量部以下であり;このエポキシ樹脂組成物は、硬化させて硬化物としたとき、この硬化物のガラス転移温度が200℃以上となる特性を有し;(A)成分、(B)成分、(C)成分および(D)成分からなる樹脂組成物の100℃における粘度が5Pa・s以上35Pa・s以下である、エポキシ樹脂組成物。 (A):1分子中に少なくとも3個のグリシジル基を有する芳香族エポキシ樹脂 (B):1分子中に2個のグリシジル基を有する芳香族エポキシ樹脂 (C):還元粘度が0.18dl/g以上0.30dl/g以下である芳香族ポリスルホン樹脂 (D):芳香族アミン化合物

Description

エポキシ樹脂組成物、プリプレグおよび成形体
 本発明は、エポキシ樹脂組成物、プリプレグおよび成形体に関するものである。本願は、2018年6月20日に、日本に出願された特願2018-117258号に基づき優先権を主張し、その内容をここに援用する。
 炭素繊維をはじめとする強化繊維を用いた繊維強化プラスチック(FRPと略すことがある)は、比強度、比弾性率が高いことから、航空機をはじめとする構造物の材料として使用されている。
 FRPの形成材料には、エポキシ樹脂と、硬化剤とが含まれている。
 しかし、エポキシ樹脂は耐熱性が高く、またその硬化物の弾性率が高い反面、エポキシ樹脂の耐衝撃性(靭性)が低いという問題がある。
 このような問題に対し、特許文献1には、耐熱性および靭性を両立させた繊維強化複合材料用エポキシ樹脂組成物が開示されている。特許文献1のエポキシ樹脂組成物は、ビフェニル骨格を有するエポキシ樹脂20~40重量%と、一分子中に少なくとも3個のエポキシ基を有する25℃で液状のエポキシ樹脂20~40重量%と、ビスフェノールA型エポキシ樹脂30~50重量%とから構成されるエポキシ樹脂成分100重量部に対して、熱可塑性樹脂を20~40重量部および硬化剤を含む。
特開2006-291094号公報
 しかしながら、この種のエポキシ樹脂組成物から得られる成形体は、耐衝撃性、機械的特性および耐溶剤性が必ずしも十分ではない。
 本発明はこのような事情に鑑みてなされたものであって、耐衝撃性、機械的特性および耐溶剤性が高い成形体を得ることができるエポキシ樹脂組成物、プリプレグおよび成形体を提供することを目的とする。
 なお、本明細書において、「機械的特性」とは、強度および弾性率を意味する。
 本発明者らが鋭意検討した結果、エポキシ樹脂に芳香族ポリスルホン樹脂を添加することにより、得られる成形体の耐衝撃性が向上することが分かった。
 しかしながら、本発明者らがさらに鋭意検討した結果、エポキシ樹脂および芳香族ポリスルホン樹脂を含むエポキシ樹脂組成物が成形体を形成する場合、必ずしも成形体の機械的特性および耐溶剤性が十分ではないことが分かった。
 そこで、本発明者らは、以下の態様の芳香族ポリスルホン樹脂を含むエポキシ樹脂組成物であれば、得られる成形体の機械的特性および耐溶剤性も向上することを見出し、本発明を完成させるに至った。
 本発明の一態様は、エポキシ樹脂組成物であって、下記(A)成分、(B)成分、(C)成分および(D)成分を含み、(A)成分の含有率は、エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して60質量部以上90質量部以下であり、(B)成分の含有率は、エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して10質量部以上40質量部以下であり、エポキシ樹脂組成物の硬化物のガラス転移温度が200℃以上であり、(A)成分、(B)成分、(C)成分および(D)成分からなる樹脂組成物の100℃における粘度が5Pa・s以上35Pa・s以下であるエポキシ樹脂組成物を提供する。
(A):1分子中に3個以上のグリシジル基を有する芳香族エポキシ樹脂
(B):1分子中に2個のグリシジル基を有する芳香族エポキシ樹脂
(C):還元粘度が0.18dl/g以上0.30dl/g以下である芳香族ポリスルホン樹脂
(D):芳香族アミン化合物
 本発明の一態様においては、(A)成分のエポキシ当量が125g/eq以下である構成としてもよい。
 本発明の一態様においては、(C)成分におけるフェノール性水酸基の含有率が、(C)成分の総質量に対して100μmol/g以上350μmol/g以下である構成としてもよい。
 本発明の一態様においては、(D)成分が、ジアミノジフェニルスルホンまたはその誘導体である構成としてもよい。
 本発明の一態様においては、(D)成分が、下記(D-1)成分を含む構成としてもよい。
(D-1):4,4’-ジアミノジフェニルスルホン
 本発明の一態様においては、(D)成分が、さらに下記(D-2)成分を含み、(D-1)成分と(D-2)成分との質量含有比(D-2)/(D-1)が1未満である構成としてもよい。
(D-2):3,3’-ジアミノジフェニルスルホン
 本発明の一態様においては、(A)成分における三量体の含有率は、(A)成分の総質量に対して3質量%以下である構成としてもよい。
 本発明の一態様は、上記のエポキシ樹脂組成物が強化繊維に含浸したプリプレグを提供する。
 本発明の一態様においては、強化繊維が炭素繊維である構成としてもよい。
 本発明の一態様は、上記のプリプレグの硬化物を形成材料とする成形体を提供する。
 すなわち、本発明は以下の態様を含む。
[1] エポキシ樹脂組成物であって、
 下記(A)成分、(B)成分、(C)成分および(D)成分を含み;
 前記(A)成分の含有率は、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して60質量部以上90質量部以下であり;
 前記(B)成分の含有率は、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して10質量部以上40質量部以下であり;
 前記エポキシ樹脂組成物は、硬化させて硬化物としたとき、前記硬化物のガラス転移温度が200℃以上となる特性を有し;
 前記(A)成分、前記(B)成分、前記(C)成分および前記(D)成分からなる樹脂組成物の100℃における粘度が5Pa・s以上35Pa・s以下である、
エポキシ樹脂組成物。
(A):1分子中に少なくとも3個のグリシジル基を有する芳香族エポキシ樹脂
(B):1分子中に2個のグリシジル基を有する芳香族エポキシ樹脂
(C):還元粘度が0.18dl/g以上0.30dl/g以下である芳香族ポリスルホン樹脂
(D):芳香族アミン化合物
[2] 前記(A)成分のエポキシ当量が125g/eq以下である[1]に記載のエポキシ樹脂組成物。
[3] 前記(C)成分におけるフェノール性水酸基の含有率が、前記(C)成分の質量に対して100μmol/g以上350μmol/g以下である[1]または[2]に記載のエポキシ樹脂組成物。
[4] 前記(D)成分が、ジアミノジフェニルスルホンまたはその誘導体である[1]~[3]のいずれか1つに記載のエポキシ樹脂組成物。
[5] 前記(D)成分が、下記(D-1)成分を含む[4]に記載のエポキシ樹脂組成物。
(D-1):4,4’-ジアミノジフェニルスルホン
[6] 前記(D)成分が、さらに下記(D-2)成分を含み、
 前記(D-1)成分と前記(D-2)成分との質量含有比(D-2)/(D-1)が1未満である[5]に記載のエポキシ樹脂組成物。
(D-2):3,3’-ジアミノジフェニルスルホン
[7] 前記(A)成分中、三量体の含有率は、前記(A)成分の総質量に対して3質量%以下である[1]~[6]のいずれか1つに記載のエポキシ樹脂組成物。
[8] [1]~[7]のいずれか1つに記載のエポキシ樹脂組成物が強化繊維に含浸したプリプレグ。
[9] 前記強化繊維が炭素繊維である[8]に記載のプリプレグ。
[10] [8]または[9]に記載のプリプレグの硬化物で形成されている成形体。
 本発明の一態様によれば、耐衝撃性、機械的特性および耐溶剤性が高い成形体を得ることができるエポキシ樹脂組成物、プリプレグおよび成形体が提供される。
<エポキシ樹脂組成物>
 本実施形態のエポキシ樹脂組成物は、少なくとも下記(A)成分、(B)成分、(C)成分および(D)成分を含む。
(A):1分子中に少なくとも3個のグリシジル基を有する芳香族エポキシ樹脂
(B):1分子中に2個のグリシジル基を有する芳香族エポキシ樹脂
(C):還元粘度が0.18dl/g以上0.30dl/g以下である芳香族ポリスルホン樹脂
(D):芳香族アミン化合物
 本実施形態のエポキシ樹脂組成物は、後述する成形体の形成材料として用いられる。
 以下、各成分の詳細について説明する。
・(A)成分
 本実施形態に係る(A)成分は、1分子中に少なくとも3個のグリシジル基を有する芳香族エポキシ樹脂であり、例えばグリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂を挙げることができる。(A)成分としては、特にグリシジルアミン型エポキシ樹脂が好ましく、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾールなどのモノマーおよびその重合体を含む樹脂を好ましく挙げることができる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 1つの側面として、テトラグリシジルジアミノジフェニルメタンおよびその重合体を含む樹脂が好ましい。
 (A)成分のエポキシ当量は、125g/eq以下であることが好ましく、120g/eq以下であることがより好ましく、118g/eq以下であることがさらに好ましい。
 また、(A)成分のエポキシ当量は、95g/eq以上であってもよい。
 1つの側面として、(A)成分のエポキシ当量は、95g/eq以上125g/eq以下であることが好ましく、95g/eq以上120g/eq以下であることがより好ましく、95g/eq以上118g/eq以下であることがさらに好ましい。
 (A)成分のエポキシ当量が125g/eq以下であると、後述する成形体の架橋密度が十分高くなりやすく、成形体の弾性率が高くなりやすい。また、(A)成分のエポキシ当量が125g/eq以下であると、エポキシ樹脂組成物の粘度を低く抑えやすく、取り扱いが容易になる。
 本実施形態において、(A)成分のエポキシ当量は、JIS K7236に準じて、塩酸-ジオキサン法にて測定される値を採用する。
 1つの側面として、(A)成分は上記モノマーの三量体を含んでもよく、(A)成分中に含まれる三量体の含有率は、(A)成分の総質量に対して3質量%以下であることが好ましい。また、(A)成分中の三量体の含有率は、(A)成分の総質量に対して0質量%以上であってもよい。
 1つの側面として、(A)成分中の三量体の含有率は、(A)成分の総質量に対して、0質量%以上3質量%以下であることが好ましい。
 (A)成分の三量体の含有率が3質量%以下であると、(A)成分の粘度が低くなり、取り扱いが容易になるため好ましい。
 本実施形態において、(A)成分中に含まれる三量体の含有率は、下記の条件で液体クロマトグラフィー(LCと略すことがある)分析の測定結果に基づいて算出される。詳しくは、LC分析において、保持時間30分から35分の間に検出されたピーク面積の総和を三量体の含有量とする。保持時間0分から35分の間に検出されたピーク面積の総和に対する保持時間30分から35分の間に検出されたピーク面積の総和の割合を(A)成分中の三量体の含有率として採用する。
(条件)
 試料:アセトニトリル1mlに試料1mgを溶かした溶液を5μL注入
 装置:島津製作所製液体クロマトグラフ Nexera XR
 カラム:住化分析センター製SUMIPAX ODS A-212(内径:6mm、長さ:150m、膜厚:5μm)
 カラム温度:40℃
・(B)成分
 本実施形態に係る(B)成分は1分子中に2個のグリシジル基を有する芳香族エポキシ樹脂であり、例えば、ビスフェノールAのジグリシジルエーテル、ビスフェールFのジグリシジルエーテルおよびビスフェノールSのジグリシジルエーテルのようなモノマーおよびその重合体を含むビスフェノール型エポキシ樹脂などが挙げられる。これらの中でビスフェノールAのジグリシジルエーテルおよびその重合体を含む樹脂が好適に用いられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
・(C)成分
 本実施形態に係る(C)成分としての芳香族ポリスルホン樹脂は、典型的には、2価の芳香族基(芳香族化合物から、その芳香環に結合した水素原子を2個除いてなる残基)とスルホニル基(-SO2-)と酸素原子とを含む繰返し単位を有する樹脂である。
 芳香族ポリスルホン樹脂は、芳香族ポリスルホン樹脂の耐熱性や耐薬品性の点から、下記式(1)で表される繰返し単位を有することが好ましい。さらに、芳香族ポリスルホン樹脂は、下記式(2)で表される繰返し単位や、下記式(3)で表される繰返し単位などの他の繰返し単位を1種以上有していてもよい。
 以下、「下記式(1)で表される繰返し単位」を「繰返し単位(1)」ということがある。また、「下記式(2)で表される繰返し単位」を「繰返し単位(2)」ということがある。また、「下記式(3)で表される繰返し単位」を「繰返し単位(3)」ということがある。
(1)-Ph1-SO2-Ph2-O-
 Ph1およびPh2は、それぞれ独立に、フェニレン基を表す。前記フェニレン基にある水素原子は、それぞれ独立に、アルキル基、アリール基またはハロゲン原子で置換されていてもよい。
(2)-Ph3-R-Ph4-O-
 Ph3およびPh4は、それぞれ独立に、フェニレン基を表す。前記フェニレン基にある水素原子は、それぞれ独立に、アルキル基、アリール基またはハロゲン原子で置換されていてもよい。Rは、アルキリデン基、酸素原子または硫黄原子を表す。
(3)-(Ph5)n-O-
 Ph5は、フェニレン基を表す。前記フェニレン基にある水素原子は、それぞれ独立に、アルキル基、アリール基またはハロゲン原子で置換されていてもよい。nは、1~3の整数を表す。nが2以上である場合、複数存在するPh5は、互いに同一であっても異なっていてもよい。
 Ph1~Ph5のいずれかで表されるフェニレン基は、p-フェニレン基であってもよいし、m-フェニレン基であってもよいし、o-フェニレン基であってもよいが、p-フェニレン基であることが好ましい。
 前記フェニレン基にある水素原子を置換していてもよいアルキル基としては、炭素数1~10アルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基およびn-デシル基が挙げられる。
 前記フェニレン基にある水素原子を置換していてもよいアリール基としては、炭素数6~20のアリール基が好ましく、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基および2-ナフチル基が挙げられる。
 前記フェニレン基にある水素原子を置換していてもよいハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 前記フェニレン基にある水素原子がこれらの基で置換されている場合、その数は、前記フェニレン基毎に、それぞれ独立に、例えば2個以下であり、好ましくは1個である。
 Rであるアルキリデン基としては、炭素数は、1~5のアルキリデン基が好ましく、例えば、メチレン基、エチリデン基、イソプロピリデン基および1-ブチリデン基が挙げられる。
 芳香族ポリスルホン樹脂は、繰返し単位(1)を、芳香族ポリスルホン樹脂を構成する全繰返し単位の合計モル数に対して、50モル%以上100モル%以下有することが好ましく、80モル%以上100モル%以下有することがより好ましく、繰返し単位として実質的に繰返し単位(1)のみを有することがさらに好ましい。なお、芳香族ポリスルホン樹脂は、繰返し単位(1)~(3)を、それぞれ独立に、2種以上有してもよい。
 後述の方法により製造される芳香族ポリスルホンは、その末端にハロゲン原子またはフェノール性水酸基を有する。芳香族ポリスルホン樹脂におけるフェノール性水酸基の含有率が、芳香族ポリスルホン樹脂の質量に対して100μmol/g以上350μmol/g以下であることが好ましい。1つの側面として、芳香族ポリスルホン樹脂におけるフェノール性水酸基の含有率は、100μmol/g以上200μmol/g以下であってもよい。
 芳香族ポリスルホン樹脂におけるフェノール性水酸基の含有率が100μmol/g以上であると、エポキシ樹脂組成物の硬化時に(A)成分および(B)成分に含まれるグリシジル基または硬化剤と反応するフェノール性水酸基の量が十分多くなる。その結果、後述する成形体の耐衝撃性および耐溶剤性が高くなりやすい。
 芳香族ポリスルホン樹脂におけるフェノール性水酸基の含有率が350μmol/g以下であると、成形体において、フェノール性水酸基に起因する吸水が起こりにくいと考えられる。
 本実施形態において、芳香族ポリスルホン樹脂におけるフェノール性水酸基の含有率は、以下のようにして求められる値を採用する。まず、所定量の芳香族ポリスルホン樹脂をジメチルホルムアミドに溶解させた後、過剰量のp-トルエンスルホン酸を加える。次いで、電位差滴定装置を用いて、0.05モル/lのカリウムメトキシド/トルエン・メタノール溶液で滴定し、残存p-トルエンスルホン酸を中和した後、フェノール性水酸基を中和する。このとき、フェノール性水酸基の中和に要したカリウムメトキシドの量(モル)を、芳香族ポリスルホン樹脂の上記所定量(g)で除することで得られる値を芳香族ポリスルホン樹脂におけるフェノール性水酸基の含有率とする。
 芳香族ポリスルホン樹脂は、それを構成する繰返し単位に対応するジハロゲノスルホン化合物とジヒドロキシ化合物とを重縮合させることにより、製造することができる。例えば、繰返し単位(1)を有する樹脂は、ジハロゲノスルホン化合物として下記式(4)で表される化合物を用い、ジヒドロキシ化合物として下記式(5)で表される化合物を用いることにより、製造することができる。なお、以下では、「下記式(4)で表される化合物」を「化合物(4)」ということがある。また、「下記式(5)で表される化合物」を「化合物(5)」ということがある。
 また、繰返し単位(1)と繰返し単位(2)とを有する樹脂は、ジハロゲノスルホン化合物として化合物(4)を用い、ジヒドロキシ化合物として下記式(6)で表される化合物を用いることにより、製造することができる。なお、以下では、「下記式(6)で表される化合物」を「化合物(6)」ということがある。
 また、繰返し単位(1)と繰返し単位(3)とを有する樹脂は、ジハロゲノスルホン化合物として化合物(4)を用い、ジヒドロキシ化合物として下記式(7)で表される化合物を用いることにより、製造することができる。なお、以下では、「下記式(7)で表される化合物」を「化合物(7)」ということがある。
(4)X1-Ph1-SO2-Ph2-X2
 X1およびX2は、それぞれ独立に、ハロゲン原子を表す。Ph1およびPh2は、上記と同義である。
(5)HO-Ph1-SO2-Ph2-OH
 Ph1およびPh2は、上記と同義である。
(6)HO-Ph3-R-Ph4-OH
 Ph3、Ph4およびRは、上記と同義である。
 X1およびX2のハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
(7)HO-(Ph5)n-OH
 Ph5およびnは、上記と同義である。
 前記重縮合は、炭酸のアルカリ金属塩を用いて、溶媒中で行うことが好ましい。炭酸のアルカリ金属塩は、正塩である炭酸アルカリであってもよいし、酸性塩である重炭酸アルカリ(炭酸水素アルカリともいう)であってもよいし、両者の混合物であってもよい。
 炭酸アルカリとしては、炭酸ナトリウムや炭酸カリウムが好ましく用いられる。
 重炭酸アルカリとしては、重炭酸ナトリウムや重炭酸カリウムが好ましく用いられる。
 溶媒としては、ジメチルスルホキシド、1-メチル-2-ピロリドン、スルホラン(1,1-ジオキソチランともいう)、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、ジメチルスルホン、ジエチルスルホン、ジイソプロピルスルホン、ジフェニルスルホンなどの有機極性溶媒が好ましく用いられる。
 芳香族ポリスルホン樹脂の還元粘度は、0.18dl/g以上0.30dL/g以下であり、0.20dl/g以上0.28dL/g以下であることが好ましい。
1つの側面として、芳香族ポリスルホン樹脂の還元粘度は、0.20dl/g以上0.27dL/g以下であってもよい。
 芳香族ポリスルホン樹脂の還元粘度が0.18dl/g以上であると、エポキシ樹脂組成物に含まれる他の成分にもよるが、エポキシ樹脂組成物から得られる成形体の耐熱性や耐衝撃性が向上し易い。芳香族ポリスルホン樹脂の還元粘度が0.30dL/g以下であると、エポキシ樹脂組成物に含まれる他の成分にもよるが、エポキシ樹脂組成物の粘度が高くなりすぎず、成形加工に必要な温度が高くなりすぎない。
 ここで、一般に樹脂組成物の粘度が高いほど、樹脂組成物を成形した成形体にはボイドが多く発生する傾向があることが知られている。
 本発明者らの検討により、(A)成分、(B)成分、(C)成分および(D)成分からなる樹脂組成物の100℃における粘度が同じであるにもかかわらず、還元粘度が0.18dl/g以上0.30dL/g以下の範囲内である芳香族ポリスルホン樹脂を用いた樹脂組成物は、還元粘度が0.18dl/g以上0.30dL/g以下の範囲外である芳香族ポリスルホン樹脂を用いた樹脂組成物と比較して、成形体におけるボイドの個数が少ないことが分かった。成形体におけるボイドの個数が少ないほど、成形体の機械的特性が高いことが知られている。また、成形体におけるボイドの個数が少ないほど、成形体の耐溶剤性も高いと考えられる。これは、成形体におけるボイドの個数が少ないほど、成形体に溶剤が浸み込みにくく、樹脂が劣化しにくいためと考えられる。
 なお、本明細書において、「機械的特性」とは、強度および弾性率を意味する。
 強度および弾性率は引張試験機、曲げ試験機等により測定することができる。
 本実施形態において、芳香族ポリスルホン樹脂の還元粘度は、以下のようにして求められる値を採用する。芳香族ポリスルホン樹脂1gをN,N-ジメチルホルムアミドに溶解させて、その容量を1dlとし、この溶液の粘度(η)を、オストワルド型粘度管を用いて、25℃で測定する。また、溶媒であるN,N-ジメチルホルムアミドの粘度(η)を、オストワルド型粘度管を用いて、25℃で測定する。上記溶液の濃度は1g/dlであるので、比粘性率((η-η)/η)の値が、単位dl/gの還元粘度の値となる。
 前記重縮合において、仮に副反応が生じなければ、ジハロゲノスルホン化合物とジヒドロキシ化合物とのモル比が1:1に近いほど、得られる芳香族ポリスルホン樹脂の重合度が高くなり易く、還元粘度が高くなり易い。この他にも、芳香族ポリスルホン樹脂の重合度が高くなり易く、還元粘度が高くなり易い条件としては、炭酸のアルカリ金属塩の使用量がより多い条件、重縮合温度がより高い条件、重縮合時間がより長い条件などが挙げられる。
 しかし、実際は、副生する水酸化アルカリなどにより、ハロゲノ基のヒドロキシ基への置換反応や解重合などの副反応が生じる。この副反応により、得られる芳香族ポリスルホン樹脂の重合度が低下し易く、還元粘度が低下し易い。そのため、この副反応の度合いも考慮して、所望の還元粘度を有する芳香族ポリスルホン樹脂が得られるように、ジハロゲノスルホン化合物とジヒドロキシ化合物とのモル比、炭酸のアルカリ金属塩の使用量、重縮合温度および重縮合時間を調整することが好ましい。
・(D)成分
 本実施形態に係る(D)成分としての芳香族アミン化合物は、通常、エポキシ樹脂の硬化剤として用いられる化合物が挙げられる。芳香族アミン化合物は、ジアミノジフェニルメタン、ジアミノジフェニルスルホンまたはその誘導体であることが好ましい。芳香族アミン化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本明細書において、「誘導体」とは、基本骨格は変えずに、化合物の小部分を他の原子または原子団に置換した化合物である。
 芳香族アミン化合物は、少なくとも下記(D-1)成分を含むことが好ましい。さらに、(D)成分は、下記(D-2)成分を含んでもよい。
(D-1):4,4’-ジアミノジフェニルスルホン
(D-2):3,3’-ジアミノジフェニルスルホン
 (D-1)成分と(D-2)成分との質量含有比(D-2)/(D-1)は1未満であることが好ましい。
[含有率]
 本実施形態のエポキシ樹脂組成物における(A)成分の含有率は、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して60質量部以上90質量部以下であり、65質量部以上85質量部以下であることが好ましく、70質量部以上80質量部以下であることがより好ましい。なお、「エポキシ樹脂組成物に含まれるエポキシ樹脂」とは、(A)成分、(B)成分および所望により含まれる(A)成分および(B)成分以外のエポキシ樹脂を意味する。
 (A)成分の含有率が、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して60質量部以上であると、後述する成形体の架橋密度が十分高くなりやすい。これにより、耐熱性が高いエポキシ樹脂組成物が得られやすい。
 (A)成分の含有率が、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して90質量部以下であると、エポキシ樹脂組成物の粘度を低く抑えながらも成形体の弾性率が十分高くなりやすい。
 本実施形態のエポキシ樹脂組成物における(B)成分の含有率は、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して10質量部以上40質量部以下であり、15質量部以上35質量部以下であることが好ましく、20質量部以上30質量部以下であることがより好ましい。
 (B)成分の含有率が、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して10質量部以上であると、後述する成形体の耐衝撃性と弾性率とが両立しやすい。また、(B)成分の含有率が10質量部以上であると、エポキシ樹脂組成物のコストが抑えられる。
 (B)成分の含有率が、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して40質量部以下であると、後述する成形体の架橋密度が十分高くなりやすい。これにより、弾性率が高い成形体が得られやすい。
 本実施形態のエポキシ樹脂組成物における(C)成分である芳香族ポリスルホン樹脂の含有率は、後述する(A)成分、(B)成分、(C)成分および(D)成分からなる樹脂組成物の100℃における粘度が5Pa・s以上35Pa・s以下、好ましくは8Pa・s以上215Pa・s以下となるような範囲に調整される。
 本実施形態のエポキシ樹脂組成物における(D)成分の含有率は、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して、20質量部以上50質量部以下、好ましくは20質量部以上45質量部以下である。
[その他の成分]
 本実施形態のエポキシ樹脂組成物は、本発明の効果を奏する範囲において、充填材、芳香族アミン化合物以外の添加剤、(A)成分、(B)成分および(C)成分以外の樹脂などのその他の成分や;溶媒を少なくとも1種含んでもよい。以下、(A)成分、(B)成分および(C)成分以外の樹脂を「その他の樹脂」と称することがある。
 充填材は、繊維状充填材であってもよいし、板状充填材であってもよいし、粒状充填材であってもよい。また、充填材は、無機充填材であってもよいし、有機充填材であってもよい。
 繊維状無機充填材の例としては、ガラス繊維;パン系炭素繊維、ピッチ系炭素繊維などの炭素繊維;シリカ繊維、アルミナ繊維、シリカアルミナ繊維などのセラミック繊維;およびステンレス繊維などの金属繊維が挙げられる。また、チタン酸カリウムウイスカー、チタン酸バリウムウイスカー、ウォラストナイトウイスカー、ホウ酸アルミニウムウイスカー、窒化ケイ素ウイスカー、炭化ケイ素ウイスカーなどのウイスカーも挙げられる。
 繊維状有機充填材の例としては、分子量100万以上の超高分子量ポリエチレン繊維、ポリエステル繊維、アラミド繊維、ポリパラフェニレンベンゾビスオキサゾール繊維が挙げられる。
 板状無機充填材の例としては、タルク、マイカ、グラファイト、ウォラストナイト、ガラスフレーク、硫酸バリウムおよび炭酸カルシウムが挙げられる。マイカは、白雲母であってもよいし、金雲母であってもよいし、フッ素金雲母であってもよいし、四ケイ素雲母であってもよい。
 粒状無機充填材の例としては、シリカ、アルミナ、酸化チタン、ガラスビーズ、ガラスバルーン、窒化ホウ素、炭化ケイ素および炭酸カルシウムが挙げられる。また、粒状有機充填材の例としては、カーボンブラックが挙げられる。
 充填材の含有率は、本実施形態のエポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して、例えば0~100質量部が好ましい。
 添加剤の例としては、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、界面活性剤、難燃剤および着色剤が挙げられる。
 添加剤の含有率は、本実施形態のエポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して、例えば0~20質量部が好ましい。
 その他の樹脂の例としては、ポリプロピレン、ポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリビニルホルマール、ポリエーテルケトン、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルイミドなどの芳香族ポリスルホン樹脂以外の熱可塑性樹脂;およびフェノール樹脂、(A)成分および(B)成分以外のエポキシ樹脂、ポリイミド樹脂、シアネート樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂などの熱硬化性樹脂が挙げられる。
 その他の樹脂の含有率は、本実施形態のエポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して、例えば0~20質量部が好ましい。
 溶媒としては、特に制限されないが、通常、成形体の成形用のエポキシ樹脂組成物に用いられる溶媒が好ましい。このような溶媒としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、イソプロピルアルコール、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N-メチルピロリドン、N,N-ジメチルアセトアミドなどが挙げられる。
 また、本実施形態のエポキシ樹脂組成物は、本発明の効果を奏する範囲において、ゴム粒子を含んでもよい。ゴム粒子としては、ポリブタジエン、ポリイソプレン、ポリクロロプレン、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、シリコーンゴムなどの合成ゴム類および天然ゴム、コアシェルゴムなどが挙げられる。
 ゴム成分の含有率は、本実施形態のエポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して0質量部以上50質量部以下であることが好ましく、0質量部以上25質量部以下であることがより好ましい。
[エポキシ樹脂組成物]
 本実施形態のエポキシ樹脂組成物の硬化物のガラス転移温度が200℃以上であり、205℃以上であることが好ましく、210℃以上であることがより好ましい。
 1つの側面として、本実施形態のエポキシ樹脂組成物は、硬化させて硬化物としたとき、ガラス転移温度が200℃以上230℃以下であり、好ましくは205℃以上220℃以下、より好ましくは210℃以上220℃以下、特に好ましくは211℃以上215℃以下である特性を有する。
 エポキシ樹脂組成物を硬化させたときの硬化物のガラス転移温度が200℃以上であると、200℃以上の高温環境下で優れた機械的特性が求められる用途において前記エポキシ樹脂組成物を用いることができる。
 本実施形態において、エポキシ樹脂組成物の硬化物のガラス転移温度は、下記の条件で動的粘弾性測定装置(ティー・エイ・インスツルメント社製、「Q800」)を用いて測定されるtanδのピークに基づいて求められる値を採用する。
(条件)
 測定モード:引張モード
 振幅:20μm
 周波数:20Hz
 昇温速度:5℃/分
 本実施形態のエポキシ樹脂組成物においては、(A)成分、(B)成分、(C)成分および(D)成分からなる樹脂組成物の100℃における粘度が5Pa・s以上35Pa・s以下であり、7Pa・s以上30Pa・s以下であることが好ましく、8Pa・s以上21Pa・s以下であることがより好ましい。
 別の側面として、本実施形態のエポキシ樹脂組成物を構成する(A)成分、(B)成分、(C)成分および(D)成分のみから樹脂組成物を調製したとき、前記樹脂組成物の100℃における粘度は、5Pa・s以上35Pa・s以下であり、好ましくは7Pa・s以上30Pa・s以下であり、より好ましくは8Pa・s以上21Pa・s以下である。
 樹脂組成物の100℃における粘度が5Pa・s以上であると、後述するプリプレグの製造において、強化繊維にエポキシ樹脂組成物を含浸しやすい。
 樹脂組成物の100℃における粘度が35Pa・s以下であると、樹脂組成物の成形の際に取り扱いやすい。また、樹脂組成物を硬化させて得られた成形体中にボイドが残留し難い。
 本実施形態において、上記樹脂組成物の100℃における粘度は、下記の条件で動的粘弾性測定装置(BOHLIN INSTRUMENTS社製レオメーターCVOモデル)にて、パラレルプレートを用いて得られる粘度曲線より求められる値を採用する。
(条件)
 測定範囲:室温(約20℃)~120℃
 昇温速度:2℃/分
 歪み:10%
 周波数:1Hz
 プレート間隔:1mm
 本実施形態のエポキシ樹脂組成物は、耐熱性および耐衝撃性が高い。また、上述のエポキシ樹脂組成物から成形される成形体は、耐衝撃性、機械的特性および耐溶剤性が高い。
 通常、エポキシ樹脂などの熱硬化性樹脂は耐熱性が高く、またその硬化物は弾性率が高い反面、熱硬化性樹脂は耐衝撃性が低いという問題がある。熱硬化性樹脂の耐衝撃性が低いため、特に、熱硬化樹脂をマトリックス樹脂とするプリプレグを複数積層した成形体においては、樹脂層と強化繊維層との層間でクラックが伝播しやすいと考えられている。その結果、成形体の耐衝撃性が低くなりやすいと考えられている。
 このような成形体の耐衝撃性が低いという問題に対し、本発明者らは熱可塑性樹脂である芳香族ポリスルホンに着目した。本発明者らが鋭意検討した結果、上述のエポキシ樹脂組成物から成形された成形体は、樹脂層が、エポキシ樹脂を海とし、芳香族ポリスルホン樹脂を島とする、海島構造を形成しやすいことが分かった。このような海島構造を有する樹脂層においては、芳香族ポリスルホン樹脂の領域でクラックの伝播が抑えられると考えられる。
 なお、上述のエポキシ樹脂組成物から成形された成形体は海島構造を形成する場合に限定されない。本発明者らが鋭意検討した結果、成形体が均一構造である場合もエポキシ樹脂組成物の耐衝撃性が向上することが分かった。これにより、成形体の耐衝撃性が高くなると考えられる。
 本実施形態において、エポキシ樹脂組成物の耐衝撃性は、ASTM D5045-99に準拠してエポキシ樹脂組成物を硬化させた硬化物の破壊靭性値を測定することにより評価することができる。
 また、通常、エポキシ樹脂と強化繊維とは密着性が不良であることが知られている。本実施形態においては、芳香族ポリスルホン樹脂は、エポキシ樹脂と強化繊維との密着性を向上させる。
 また、上述したように、本実施形態のエポキシ樹脂組成物から成形された成形体は、100℃における粘度が同じである従来の樹脂組成物から成形された成形体と比較して、ボイドが少ないことが分かった。成形体におけるボイドの個数が少ないほど、成形体の機械的特性や耐溶剤性が高いと言える。
 以上のことから、上述のエポキシ樹脂組成物から成形される成形体は耐衝撃性、機械的特性、および耐溶剤性が高くなると考えられる。
[エポキシ樹脂組成物の製造方法]
 本実施形態のエポキシ樹脂組成物の製造方法は、特に制限されず、(A)成分、(B)成分、(C)成分、(D)成分および所望によりその他の成分を混合すればよい。本実施形態においては、予め(A)成分、(B)成分、(C)成分を混合しておき、この混合物に(D)成分を混合してもよい。各成分を混合する際、本発明の効果を奏する範囲で、各成分を加熱してもよい。
<プリプレグ>
 本実施形態のプリプレグは、上記のエポキシ樹脂組成物を強化繊維に含浸させたシート状の基材である。
 本実施形態に係る強化繊維は、強度の観点から、炭素繊維、ガラス繊維、ボロン繊維およびアラミド繊維からなる群から選ばれる少なくとも1種であるのが好ましく、炭素繊維であることがより好ましい。これらの強化繊維は、織布または不織布であってもよい。
 本実施形態のプリプレグは、繊維体積含有率が40~70%であることが好ましい。
[プリプレグの製造方法]
 本実施形態のプリプレグの製造方法は特に限定されず、上述のエポキシ樹脂組成物を強化繊維に含浸させればよい。
 エポキシ樹脂組成物を強化繊維に含浸させる方法としては、ウェット法およびホットメルト法(ドライ法)などが挙げられる。
 ウェット法は、樹脂に強化繊維を浸漬した後、強化繊維を引き上げ、オーブンなどを用いて強化繊維から溶媒を蒸発させることにより、樹脂を強化繊維に含浸させる方法である。
 ホットメルト法は、加熱により低粘度化した樹脂を直接強化繊維に含浸させる方法である。また、ホットメルト法の別の形態としては、離型紙などの上に樹脂をコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側から当該フィルムを重ね、加熱加圧することにより、強化繊維に樹脂を含浸させる方法である。
 このようにして強化繊維にエポキシ樹脂組成物を含浸させた後、例えば120~150℃に加熱して、含浸させたエポキシ樹脂組成物を半硬化させることにより、プリプレグを製造することができる。
 本明細書において「半硬化」とは、一定の形状が維持できるまで樹脂の粘度または硬度が増加した状態であって、この状態からさらに粘度または硬度が増加し得る状態まで粘度または硬度が増加可能である状態を指す。
 本実施形態によれば、耐衝撃性、機械的特性および耐溶剤性が高い成形体を得ることができるプリプレグが得られる。
<成形体>
 本実施形態の成形体は、上記のプリプレグの硬化物を形成材料とする。
 本実施形態の成形体は、耐衝撃性、機械的特性および耐溶剤性が高いことから、自動車や航空機などの用途に好適に使用できる。
 本実施形態の成形体は、上記のプリプレグが複数積層されて構成される。具体的には、上記方法で製造されたプリプレグを、複数重ね、オートクレーブまたは熱プレス機などを用いて熱硬化成形することで、成形体を得ることができる。
 プリプレグを積層するパターンとしては、プリプレグに含まれる強化繊維の配列方向を揃えて積層する方法(すなわち、各層の配向方向のなす角が0°)や、任意の角度でずらしながらプリプレグを積層する方法が挙げられる。例えば、各層の配向方向を45°ずつ、ずらす場合には、各層の配向方向のなす角が0°/45°/90°/135°/180°/225°/270°/315°/360°(0°)という具合になる。なお、「任意の角度でずらす」とは、積層させる2層のプリプレグに含まれる繊維方向の相対角度を変更することを意味する。任意の角度については、成形体の用途に応じて適宜設定することができる。
 本実施形態によれば、ボイドが抑制され、好ましくはボイドが存在しない成形体を得ることができる。したがって、機械的特性および耐溶剤性が高い成形体が得られる。
 1つの側面として、本発明の1実施形態であるエポキシ樹脂組成物は、
 (A)成分、(B)成分、(C)成分および(D)成分を含み;
 前記(A)成分は、テトラグリシジルジアミノジフェニルメタンおよびその重合体を含み、
 前記(A)成分のエポキシ当量は、95g/eq以上118g/eq以下であり、
 前記(A)成分の三量体の含有率は、前記(A)成分の総質量に対して、0質量%以上3質量%以下であり;
 前記(B)成分は、ビスフェノールAジグリシジルエーテルであり;
 前記(C)成分は、ビス(4-ヒドロキシフェニル)スルホンと、ビス(4-クロロフェニル)スルホンとが重縮合している芳香族ポリスルホン樹脂であり、
 前記芳香族ポリスルホン樹脂の還元粘度は0.20dl/g以上0.27dL/g以下であり、
 前記芳香族ポリスルホン樹脂のフェノール性水酸基の含有率は、100μmol/g以上200μmol/g以下であり;
 前記(D)成分は、ビス(4-アミノフェニル)スルホンであり;
 前記(A)成分の含有率は、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して70質量部以上80質量部以下であり;
 前記(B)成分の含有率は、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して20質量部以上30質量部以下であり;
 前記(D)成分の含有率は、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して20質量部以上45質量部以下であり、
 前記エポキシ樹脂組成物は、硬化させて硬化物としたとき、前記硬化物のガラス転移温度が211℃以上215℃以下となる特性を有し、
 前記(A)成分、前記(B)成分、前記(C)成分および前記(D)成分からなる樹脂組成物の100℃における粘度が5Pa・s以上35Pa・s以下である;
エポキシ樹脂組成物である。
 別の側面として、本発明の1実施形態であるエポキシ樹脂組成物は、
(A)成分、(B)成分、(C)成分および(D)成分を含み;
 前記(A)成分は、テトラグリシジルジアミノジフェニルメタンおよびその重合体を含み、
 前記(B)成分は、ビスフェノールAジグリシジルエーテルであり;
 前記(C)成分は、ビス(4-ヒドロキシフェニル)スルホンと、ビス(4-クロロフェニル)スルホンとが重縮合している芳香族ポリスルホン樹脂であり、
 前記芳香族ポリスルホン樹脂の還元粘度は0.20dl/g以上0.27dL/g以下であり、
 前記(D)成分は、ビス(4-アミノフェニル)スルホンであり;
 前記(A)成分の含有率は、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して70質量部以上80質量部以下であり;
 前記(B)成分の含有率は、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して20質量部以上30質量部以下であり;
 前記エポキシ樹脂組成物は、硬化させて硬化物としたとき、前記硬化物のガラス転移温度が211℃以上215℃以下となる特性を有し、
 前記(A)成分、前記(B)成分、前記(C)成分および前記(D)成分からなる樹脂組成物の100℃における粘度が5Pa・s以上35Pa・s以下である;
エポキシ樹脂組成物である。
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
〔(A)成分におけるエポキシ当量〕
 (A)成分のエポキシ当量は、JIS K7236に準じて、塩酸-ジオキサン法にて測定した。
〔(A)成分における三量体の含有率〕
 (A)成分における三量体の含有率は、下記の条件で液体クロマトグラフィー(LC)分析の測定結果に基づいて算出した。詳しくは、LC分析において、保持時間30分から35分の間に検出されたピーク面積の総和を三量体の含有量とした。保持時間0分から35分の間に検出されたピーク面積の総和に対する保持時間30分から35分の間に検出されたピーク面積の総和の割合を(A)成分における三量体の含有率として採用した。
(条件)
 試料:アセトニトリル1mlに試料1mgを溶かした溶液を5μL注入
 装置:島津製作所製液体クロマトグラフ Nexera XR
 カラム:住化分析センター製SUMIPAX ODS A-212(内径:6mm、長さ:150m、膜厚:5μm)
 カラム温度:40℃
〔芳香族ポリスルホン樹脂の還元粘度〕
 芳香族ポリスルホン樹脂の還元粘度は、以下のようにして求めた。芳香族ポリスルホン樹脂1gをN,N-ジメチルホルムアミドに溶解させて、その容量を1dlとし、この溶液の粘度(η)を、オストワルド型粘度管を用いて、25℃で測定した。また、溶媒であるN,N-ジメチルホルムアミドの粘度(η)を、オストワルド型粘度管を用いて、25℃で測定した。上記溶液の濃度は1g/dlであるので、比粘性率((η-η)/η)の値が、単位dl/gの還元粘度の値となる。
〔芳香族ポリスルホン樹脂におけるフェノール性水酸基の含有率〕
 芳香族ポリスルホン樹脂におけるフェノール性水酸基の含有率は、以下のようにして求められる値を採用する。まず、所定量の芳香族ポリスルホン樹脂をジメチルホルムアミドに溶解させた後、過剰量のp-トルエンスルホン酸を加えた。次いで、電位差滴定装置を用いて、0.05モル/lのカリウムメトキシド/トルエン・メタノール溶液で滴定し、残存p-トルエンスルホン酸を中和した後、ヒドロキシ基を中和した。このとき、ヒドロキシ基の中和に要したカリウムメトキシドの量(モル)を、芳香族ポリスルホン樹脂の上記所定量(g)で除することで得られる値を芳香族ポリスルホン樹脂におけるフェノール性水酸基の含有率とする。
〔エポキシ樹脂組成物の硬化物のガラス転移温度〕
 エポキシ樹脂組成物の硬化物のガラス転移温度は、下記の条件で動的粘弾性測定装置(ティー・エイ・インスツルメント社製、「Q800」)を用いて測定されるtanδのピークに基づいて求めた。
(条件)
 測定モード:引張モード
 振幅:20μm
 周波数:20Hz
 昇温速度:5℃/分
〔樹脂組成物の100℃における粘度〕
 樹脂組成物の100℃における粘度は、下記の条件で動的粘弾性測定装置(BOHLIN INSTRUMENTS社製レオメーターCVOモデル)にて、パラレルプレートを用いて得られる粘度曲線より求められる値を採用する。なお、実施例および比較例において、樹脂組成物はエポキシ樹脂組成物である。
(条件)
 測定範囲:室温(約20℃)~120℃
 昇温速度:2℃/分
 歪み:10%
 周波数:1Hz
 プレート間隔:1mm
〔成形体におけるボイドの個数の測定〕
 以下、実施例および比較例で得られた成形体における炭素繊維(強化繊維)の繊維方向に沿う断面の走査型電子顕微鏡(SEM)写真(倍率:5000倍、加速電圧:2kV)を撮影し、任意の異なる3箇所において30mm×30mmサイズ内のボイド数を計数し、これらの平均値を算出した。なお、本測定において、SEM写真における黒点箇所をボイドとした。
 実施例および比較例では、(A)成分、(B)成分および(D)成分として下記の材料を用いた。
(A)成分:製造例1で得られた芳香族エポキシ樹脂
(B)成分:シグマアルドリッチジャパン社より購入したビスフェノールAジグリシジルエーテル
(D)成分:純正化学株式会社より購入したビス(4-アミノフェニル)スルホン
 実施例および比較例では、芳香族ポリスルホン樹脂として下記の材料を用いた。
(C-1)成分:製造例2で得られた芳香族ポリスルホン樹脂
(C-2)成分:製造例3で得られた芳香族ポリスルホン樹脂
(C-3)成分:製造例4で得られた芳香族ポリスルホン樹脂
・(A)成分の製造
〔製造例1〕
 4,4’-メチレンジアニリン(99.1g)、エピクロルヒドリン(231.3g)、メチルイソブチルケトン(52.1g)を温度計、撹拌機、滴下漏斗、分離管付きコンデンサーの付いた反応容器に仕込んだ。反応系内を70℃に保ちながら、48%苛性ソーダ(208g)を2時間で連続的に滴下した。この間、温度は70℃に保ちながら、水を冷却液化し、有機層を反応系内に戻しながら反応させた。反応終了後に、未反応エピクロルヒドリンを減圧濃縮により除去し、副生塩とグリシジルエーテルをメチルイソブチルケトン500gに溶解させ、副生成物を水洗により除去した。その後130℃、10torrにてメチルイソブチルケトンを減圧留去し、テトラグリシジルジアミノジフェニルメタンおよびその重合体を含む(A)成分を得た。
 得られた(A)成分のエポキシ当量は、118g/eqであった。また、(A)成分における三量体の含有率は、2.9質量%であった。
・芳香族ポリスルホン樹脂の製造
〔製造例2〕
 撹拌機、窒素導入管、温度計、および先端に受器を付したコンデンサーを備えた重合槽に、ビス(4-ヒドロキシフェニル)スルホン(300.3g)、ビス(4-クロロフェニル)スルホン(331.5g)、および重合溶媒としてジフェニルスルホン(560.9g)を仕込み、系内に窒素ガスを流通させながら180℃まで昇温した。得られた溶液に、炭酸カリウム(160.1g)を添加した後、290℃まで徐々に昇温し、290℃でさらに3時間反応させた。得られた反応液を室温まで冷却して固化させ、細かく粉砕した後、温水による洗浄並びにアセトンおよびメタノールの混合溶媒による洗浄を数回行い、次いで150℃で加熱乾燥させ、(C-1)成分を白色粉末として得た。
 得られた(C-1)成分の還元粘度は、0.27dl/gであった。(C-1)成分におけるフェノール性水酸基の含有率は、169μmol/gであった。
〔製造例3〕
 製造例2において、原料の仕込み量としてビス(4-ヒドロキシフェニル)スルホン(100.1g)、ビス(4-クロロフェニル)スルホン(114.8g)、および重合溶媒としてジフェニルスルホン(188.2g)、炭酸カリウム(59.0g)とした以外は製造例2と同様の操作を行い、(C-2)成分を白色粉末として得た。
 得られた(C-2)成分の還元粘度は、0.50dl/gであった。(C-2)成分におけるフェノール性水酸基の含有率は、49μmol/gであった。
〔製造例4〕
 製造例2において、原料の仕込み量としてビス(4-ヒドロキシフェニル)スルホン(300.3g)、ビス(4-クロロフェニル)スルホン(341.2g)、および重合溶媒としてジフェニルスルホン(564.8g)、炭酸カリウム(169.2g)とした以外は製造例2と同様の操作を行い、(C-3)成分を白色粉末として得た。
 得られた(C-3)成分の還元粘度は、0.41dl/gであった。(C-3)成分におけるフェノール性水酸基の含有率は、61μmol/gであった。
[エポキシ樹脂組成物の製造]
〔実施例1〕
 500mlセパラブルフラスコに、製造例1で得られた(A)成分140g、ビスフェノールAジグリシジルエーテル(B)60gおよび製造例2で得られた(C-1)成分26gを入れ、120℃で3時間撹拌した後、100℃まで冷却し、ビス(4-アミノフェニル)スルホン(D)90gを入れ、100℃で1時間撹拌し、エポキシ樹脂組成物を得た。
〔実施例2〕
 (C-1)成分26gから40gに変更した以外は、実施例1と同様にしてエポキシ樹脂組成物を得た。
〔実施例3〕
 (A)成分140gから160g、(B)成分60gから40gに変更した以外は、実施例2と同様にしてエポキシ樹脂組成物を得た。
〔比較例1〕
 (C-1)成分26gから(C-2)成分14gに変更した以外は、実施例1と同様にしてエポキシ樹脂組成物を得た。
〔比較例2〕
 (C-1)成分から(C-2)成分に変更した以外は、実施例1と同様にしてエポキシ樹脂組成物を得た。
〔比較例3〕
 (C-1)成分26gから(C-3)成分32gに変更した以外は、実施例1と同様にしてエポキシ樹脂組成物を得た。
〔比較例4〕
 (A)成分140gから100g、(B)成分60gから100gに変更した以外は、実施例1と同様にしてエポキシ樹脂組成物を得た。
〔比較例5〕
 (C-1)成分26gから60gに変更した以外は、実施例1と同様にしてエポキシ樹脂組成物を得た。
〔比較例6〕
 (C-1)成分40gから(C-2)成分26gに変更した以外は、実施例3と同様にしてエポキシ樹脂組成物を得た。
[成形体の評価]
 実施例および比較例のエポキシ樹脂組成物を、リバースロールコーター方式の樹脂コーティング装置を用いて、シリコーンを塗布した離型紙上に均一に塗工して、幅20cmの樹脂フィルムとした。次いで、均一に引き揃えた炭素繊維(三菱レイヨン(株)製TR50S15L)の両面から得られた樹脂フィルムを挟み込み、プレスロール装置を用いて100℃下、圧力を適宜調整して、炭素繊維にエポキシ樹脂組成物が含浸したプリプレグ(繊維体積含有率:55%、厚さ:0.17mm)を得た。
 このプリプレグ18枚を同方向に積層し、山本鉄工所製のTA-200-1Wプレス機を用いて温度150℃、圧力3MPaの条件下で30分間、次いで温度180℃、圧力3MPaの条件下で60分間プレス成形を行い、成形体を作製した。ここで得られた成形体を用いてガラス転移温度および成形体におけるボイドの個数を測定した。
 実施例および比較例において、用いたエポキシ樹脂組成物の硬化物のガラス転移温度および100℃における粘度、ならびに成形体におけるボイドの個数を表1および表2に示す。なお、表1および表2における(A)成分~(D)成分の各値は、(A)成分および(B)成分の合計の含有量100質量部に対する各成分の含有率を意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示すように、本発明を適用した実施例1~3の成形体には、ボイドが発生していないことを確認した。
 通常、用いるエポキシ樹脂組成物の粘度が同じであれば、ボイドの個数も同程度になると考えられる。しかし、比較例1の成形体にはボイドが発生したのに対し、驚くべきことに、比較例1と同じ粘度をもつエポキシ樹脂組成物を用いた実施例1の成形体には、ボイドが発生しなかった。
 実施例1と比較例1とでは芳香族ポリスルホン樹脂の含有率が異なっている。芳香族ポリスルホン樹脂の含有率の違いがボイドの発生に及ぼす影響について検証するため、実施例1と芳香族ポリスルホン樹脂の含有率を同じにして、比較例2の成形体を作製した。その結果、実施例1と芳香族ポリスルホン樹脂の含有率を同じにしたにもかかわらず、比較例2の成形体にはボイドが発生した。つまり、芳香族ポリスルホン樹脂の含有率の違いがボイドの発生に及ぼす影響は少ないと考えられる。
 ボイドの発生の原因については不明ではあるが、用いた芳香族ポリスルホン樹脂の還元粘度が0.30dl/g以下であることがボイドの発生に影響していると考えられる。
 同様に、比較例2および比較例3の成形体には、ボイドが発生したのに対し、比較例2および比較例3と同じ粘度をもつエポキシ樹脂組成物を用いた実施例2の成形体には、ボイドが発生しなかった。これらの結果は、通常のエポキシ樹脂組成物からは予想外の結果である。
 以上のことから、ボイドが発生していない実施例1~3の成形体は、機械的特性および耐溶剤性が高いと言える。また、実施例1~3では、このような機械的特性および耐溶剤性が高い成形体を得ることができるエポキシ樹脂組成物が得られたと言える。
 以上の結果より、本発明が有用であることが確かめられた。
 本発明は、耐衝撃性、機械的特性および耐溶剤性が高い成形体を得ることができるエポキシ樹脂組成物、プリプレグおよび成形体を提供できるので、産業上極めて有用である。

Claims (10)

  1.  エポキシ樹脂組成物であって、
     下記(A)成分、(B)成分、(C)成分および(D)成分を含み;
     前記(A)成分の含有率は、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して60質量部以上90質量部以下であり;
     前記(B)成分の含有率は、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の合計の含有量100質量部に対して10質量部以上40質量部以下であり;
     前記エポキシ樹脂組成物は、硬化させて硬化物としたとき、前記硬化物のガラス転移温度が200℃以上となる特性を有し;
     前記(A)成分、前記(B)成分、前記(C)成分および前記(D)成分からなる樹脂組成物の100℃における粘度が5Pa・s以上35Pa・s以下である、
     エポキシ樹脂組成物。
    (A):1分子中に少なくとも3個のグリシジル基を有する芳香族エポキシ樹脂
    (B):1分子中に2個のグリシジル基を有する芳香族エポキシ樹脂
    (C):還元粘度が0.18dl/g以上0.30dl/g以下である芳香族ポリスルホン樹脂
    (D):芳香族アミン化合物
  2.  前記(A)成分のエポキシ当量が125g/eq以下である請求項1に記載のエポキシ樹脂組成物。
  3.  前記(C)成分におけるフェノール性水酸基の含有率が、前記(C)成分の質量に対して100μmol/g以上350μmol/g以下である請求項1または2に記載のエポキシ樹脂組成物。
  4.  前記(D)成分が、ジアミノジフェニルスルホンまたはその誘導体である請求項1~3のいずれか1項に記載のエポキシ樹脂組成物。
  5.  前記(D)成分が、下記(D-1)成分を含む請求項4に記載のエポキシ樹脂組成物。
    (D-1):4,4’-ジアミノジフェニルスルホン
  6.  前記(D)成分が、さらに下記(D-2)成分を含み、
     前記(D-1)成分と前記(D-2)成分との質量含有比(D-2)/(D-1)が1未満である請求項5に記載のエポキシ樹脂組成物。
    (D-2):3,3’-ジアミノジフェニルスルホン
  7.  前記(A)成分中、三量体の含有率は、前記(A)成分の総質量に対して3質量%以下である請求項1~6のいずれか1項に記載のエポキシ樹脂組成物。
  8.  請求項1~7のいずれか1項に記載のエポキシ樹脂組成物が強化繊維に含浸したプリプレグ。
  9.  前記強化繊維が炭素繊維である請求項8に記載のプリプレグ。
  10.  請求項8または9に記載のプリプレグの硬化物で形成されている成形体。
PCT/JP2019/024067 2018-06-20 2019-06-18 エポキシ樹脂組成物、プリプレグおよび成形体 WO2019244879A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980029355.4A CN112105669A (zh) 2018-06-20 2019-06-18 环氧树脂组合物、预浸料和成型体
US17/251,956 US11530323B2 (en) 2018-06-20 2019-06-18 Epoxy resin composition, prepreg and molded body
EP19822909.8A EP3812412A4 (en) 2018-06-20 2019-06-18 EPOXY RESIN, PREPREG AND MOLDED BODY COMPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018117258A JP7297414B2 (ja) 2018-06-20 2018-06-20 エポキシ樹脂組成物、プリプレグおよび成形体
JP2018-117258 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019244879A1 true WO2019244879A1 (ja) 2019-12-26

Family

ID=68982939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024067 WO2019244879A1 (ja) 2018-06-20 2019-06-18 エポキシ樹脂組成物、プリプレグおよび成形体

Country Status (5)

Country Link
US (1) US11530323B2 (ja)
EP (1) EP3812412A4 (ja)
JP (1) JP7297414B2 (ja)
CN (1) CN112105669A (ja)
WO (1) WO2019244879A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4169968A1 (en) * 2020-06-23 2023-04-26 Sumitomo Chemical Company, Limited Resin composition, cured object, prepreg, method for producing resin composition, and aromatic polysulfone resin

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291094A (ja) 2005-04-13 2006-10-26 Yokohama Rubber Co Ltd:The 繊維強化複合材料用エポキシ樹脂組成物
JP2009167333A (ja) * 2008-01-18 2009-07-30 Toray Ind Inc エポキシ樹脂組成物・プリプレグ・繊維強化複合材料
JP2010001446A (ja) * 2007-08-10 2010-01-07 Toray Ind Inc ヒドロキシフェニル末端基を有する芳香族ポリエーテルスルホンとその製造方法
JP2010254955A (ja) * 2009-03-31 2010-11-11 Toray Ind Inc アンダーフィル剤およびそれを用いた半導体装置
JP2012021086A (ja) * 2010-07-15 2012-02-02 Sumitomo Bakelite Co Ltd 液状封止樹脂組成物および半導体装置
JP2012505267A (ja) * 2008-10-07 2012-03-01 ヘクセル コーポレイション 改良された燃焼性を有するエポキシ樹脂および複合材料
JP2012046616A (ja) * 2010-08-26 2012-03-08 Nippon Steel Chem Co Ltd フェノール性樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及び硬化物
JP2016074922A (ja) * 2011-02-16 2016-05-12 三菱レイヨン株式会社 繊維強化複合材料を得る製造方法、およびそれに用いるエポキシ樹脂組成物
JP2016169381A (ja) * 2015-03-12 2016-09-23 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP6118009B1 (ja) * 2015-12-02 2017-04-19 住友化学株式会社 熱可塑性芳香族ポリスルホン樹脂の製造方法、エポキシ組成物の製造方法、及びエポキシ硬化物の製造方法
JP2018117258A (ja) 2017-01-19 2018-07-26 パナソニックIpマネジメント株式会社 板状アンテナおよびこれを用いた無線機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514977A (en) 1978-07-20 1980-02-01 Suzuki Motor Co Ltd Cooler for catalyser holding part of ship outside equipment
US6399199B1 (en) * 1999-12-28 2002-06-04 Toray Industries Inc. Prepeg and carbon fiber reinforced composite materials
DE602016072437C5 (de) 2015-12-02 2024-02-22 Sumitomo Chemical Company, Limited Verfahren zur herstellung eines thermoplastischen aromatischen polysulfonharzes, verfahren zur herstellung einer epoxidzusammensetzung und verfahren zur herstellung eines gehärteten epoxidproduktes

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291094A (ja) 2005-04-13 2006-10-26 Yokohama Rubber Co Ltd:The 繊維強化複合材料用エポキシ樹脂組成物
JP2010001446A (ja) * 2007-08-10 2010-01-07 Toray Ind Inc ヒドロキシフェニル末端基を有する芳香族ポリエーテルスルホンとその製造方法
JP2009167333A (ja) * 2008-01-18 2009-07-30 Toray Ind Inc エポキシ樹脂組成物・プリプレグ・繊維強化複合材料
JP2012505267A (ja) * 2008-10-07 2012-03-01 ヘクセル コーポレイション 改良された燃焼性を有するエポキシ樹脂および複合材料
JP2010254955A (ja) * 2009-03-31 2010-11-11 Toray Ind Inc アンダーフィル剤およびそれを用いた半導体装置
JP2012021086A (ja) * 2010-07-15 2012-02-02 Sumitomo Bakelite Co Ltd 液状封止樹脂組成物および半導体装置
JP2012046616A (ja) * 2010-08-26 2012-03-08 Nippon Steel Chem Co Ltd フェノール性樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及び硬化物
JP2016074922A (ja) * 2011-02-16 2016-05-12 三菱レイヨン株式会社 繊維強化複合材料を得る製造方法、およびそれに用いるエポキシ樹脂組成物
JP2016169381A (ja) * 2015-03-12 2016-09-23 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP6118009B1 (ja) * 2015-12-02 2017-04-19 住友化学株式会社 熱可塑性芳香族ポリスルホン樹脂の製造方法、エポキシ組成物の製造方法、及びエポキシ硬化物の製造方法
JP2018117258A (ja) 2017-01-19 2018-07-26 パナソニックIpマネジメント株式会社 板状アンテナおよびこれを用いた無線機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3812412A4

Also Published As

Publication number Publication date
US20210261769A1 (en) 2021-08-26
EP3812412A4 (en) 2022-03-09
JP2019218487A (ja) 2019-12-26
JP7297414B2 (ja) 2023-06-26
US11530323B2 (en) 2022-12-20
CN112105669A (zh) 2020-12-18
EP3812412A1 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
CN104245779B (zh) 环氧树脂组合物
US11718708B2 (en) Curable composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JP6519965B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
US10155835B2 (en) Cyanate ester compound and method for producing the same, and curable resin composition comprising the compound, and cured product thereof composition
JP5468853B2 (ja) 複合材料
CN111770948A (zh) 热固性树脂组合物、预浸料及纤维增强复合材料
WO2019244879A1 (ja) エポキシ樹脂組成物、プリプレグおよび成形体
TWI819735B (zh) 預浸體、覆金屬箔疊層板及印刷配線板
JP7411170B2 (ja) 硬化性組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板
EP3904423B1 (en) Aromatic polysulfone resin, epoxy resin composition, prepreg, and molded body
JP2012046720A (ja) ポリマーアロイとその製造方法
JP2022157075A (ja) エポキシ樹脂組成物及び硬化物
WO2023204070A1 (ja) アルデヒド基含有ベンゾオキサジン樹脂
Park et al. Matrices for Carbon Fiber Composites
CN115956100A (zh) 环氧树脂组合物和固化物
Park et al. Matrices for Carbon Fiber Composites
WO2023013711A1 (ja) 熱硬化性樹脂組成物、プリプレグ及びプリント配線板
JP2023153036A (ja) 積層体、該積層体に用いられる部材及び樹脂組成物
JP2024024630A (ja) 硬化性組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板
JP2019116633A (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグ、炭素繊維強化複合材料
TW202022011A (zh) 樹脂組成物、硬化物、積層體及電子構件
JPH06179758A (ja) プリプレグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019822909

Country of ref document: EP

Effective date: 20210120