WO2019244198A1 - サンプル温調機能を備えた装置 - Google Patents

サンプル温調機能を備えた装置 Download PDF

Info

Publication number
WO2019244198A1
WO2019244198A1 PCT/JP2018/023088 JP2018023088W WO2019244198A1 WO 2019244198 A1 WO2019244198 A1 WO 2019244198A1 JP 2018023088 W JP2018023088 W JP 2018023088W WO 2019244198 A1 WO2019244198 A1 WO 2019244198A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature control
sample
sample rack
area
Prior art date
Application number
PCT/JP2018/023088
Other languages
English (en)
French (fr)
Inventor
弘貴 宮崎
田中 伸治
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201880093430.9A priority Critical patent/CN112189131A/zh
Priority to JP2020525085A priority patent/JP7120305B2/ja
Priority to US17/059,667 priority patent/US11378496B2/en
Priority to PCT/JP2018/023088 priority patent/WO2019244198A1/ja
Publication of WO2019244198A1 publication Critical patent/WO2019244198A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • G01N2030/3084Control of physical parameters of the fluid carrier of temperature ovens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • G01N2035/00386Holding samples at elevated temperature (incubation) using fluid heat transfer medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0412Block or rack elements with a single row of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems

Definitions

  • the present invention relates to an apparatus used in an analyzer such as a liquid chromatograph and provided with a sample temperature control function for controlling the temperature while cooling or heating a sample plate holding a sample.
  • Some liquid chromatograph autosamplers have a function of adjusting the temperature of a sample plate containing a sample to a constant temperature by cooling or heating the sample plate in order to prevent deterioration of the sample to be analyzed. Reference 1).
  • the temperature control method for a sample is a direct temperature control method in which a sample plate loaded with a sample is placed on a metal plate on which a temperature control element such as a Peltier element or a heater is mounted, and the container is directly cooled or heated.
  • Reference 1 and the sample plate is placed in a space thermally separated from the outside air (hereinafter referred to as a temperature control space), and the air in the temperature control space is controlled by a temperature control element such as a Peltier device.
  • a temperature control space thermally separated from the outside air
  • a temperature control element such as a Peltier device
  • the direct temperature control method has the advantage that the response speed of the temperature control is good because the sample plate is directly cooled or heated, but has the problem that it is difficult to control the temperature of the entire surface of the sample plate uniformly. is there.
  • the response speed of the temperature control is inferior to that of the direct temperature control method, but by cooling or heating the entire temperature control space where the sample plate is arranged, the air temperature control method is compared with the direct temperature control method. The temperature of the sample plate can be uniformly controlled.
  • an object of the present invention is to provide an apparatus capable of uniformly and highly efficiently controlling the temperature of a sample plate holding a sample.
  • An apparatus includes a sample rack having a mounting area for mounting a sample plate for holding a sample, and a temperature control for a sample plate mounted on the sample rack while accommodating the sample rack therein. Temperature control space, an air inlet for sucking air in the temperature control space, a temperature control element for cooling or heating the air sucked from the suction portion, and cooled or heated by the temperature control element. And an air temperature control section having an air outlet for blowing the air.
  • the apparatus further includes a ventilation path for flowing air between a bottom surface of the mounting area of the sample rack and a floor surface of the temperature control space when the sample rack is housed in the temperature control space.
  • the air blown out from the air outlet of the air temperature control unit is located between the bottom surface of the mounting area of the sample rack accommodated in the temperature control space and the floor surface of the temperature control space. It is configured to be directly introduced into the ventilation path and to flow from one end to the other end of the mounting area through the ventilation path.
  • the air blown out from the outlet of the air temperature control section is “directly” introduced into the ventilation path between the bottom surface of the mounting area of the sample rack and the floor of the temperature control space.
  • the air cooled or heated by the temperature control element in the control section hardly exchanges heat with other structures, that is, without substantially changing its temperature, and the bottom surface of the mounting area of the sample rack and the temperature control space. Is introduced into the ventilation path between the floor and the floor.
  • the air whose temperature has been controlled in the air temperature control section intensively exchanges heat with the sample plate mounted in the mounting area of the sample rack, so that the temperature of the sample plate can be controlled uniformly and efficiently. it can. Since it is not necessary to actively exchange heat with temperature-controlled air for structures unrelated to the sample, the temperature control capability of the temperature control element can be reduced compared to a case where the entire temperature control space is controlled uniformly. Therefore, cost reduction and energy saving can be achieved.
  • the air temperature control section includes a hood at the outlet for guiding the air cooled or heated by the temperature control element to the ventilation path.
  • the sample rack has a baffle plate at the one end, and the baffle plate of the sample rack housed in the temperature control space and the hood come into contact with each other, whereby the temperature control element is provided.
  • a path for guiding the cooled or heated air to the ventilation path is formed.
  • the sample rack is made of a metal material such as aluminum having a high thermal conductivity. Better to be.
  • the sample rack is made of such a metal material, when the cooling temperature of the sample plate is adjusted, dew condensation easily occurs on the sample rack.
  • the mounting area of the sample rack that is in direct contact with the temperature-controlled air is formed of resin, and the air that flows through the ventilation path is provided on the sample plate mounted on the mounting area in the mounting area of the sample rack.
  • An opening for contact may be provided. This makes it possible to positively exchange heat between the air for temperature control and the sample plate while suppressing the occurrence of dew condensation on the sample rack.
  • the air for temperature control flowing from one end of the mounting area of the sample rack to the other end through the ventilation path formed between the sample rack and the floor of the temperature control space performs heat exchange in order from one end side of the sample rack. Therefore, the efficiency of heat exchange with the sample plate becomes worse toward the other end of the sample rack. Therefore, when an opening is provided in the mounting area of the sample rack, if the ratio of the opening in the mounting area of the sample rack is equal between the one end area and the other end area, the one end area and the other end area are different. It is conceivable that the temperature difference can be caused by the above.
  • the area ratio of the opening in the mounting area of the sample rack is larger in the area on the other end far from the outlet of the air temperature control section than in the area on one end close to the outlet of the air temperature control section. Is preferred. Then, the heat exchange efficiency between the temperature controlling air and the sample plate can be made uniform between the one end region and the other end region of the sample rack mounting region.
  • a sample rack that can mount different sample plates on one end and the other end of the mounting area can be used. If only a part of the sample plates is used in spite of using such a sample rack, the sample plate will not be mounted on the one end region or the other end region of the sample rack. In order to improve the heat exchange efficiency between the air for temperature control and the sample plate, it is effective to increase the ratio of the opening area in the mounting area.However, the sample plate is located at one end of the mounting area. If not mounted, if a large opening is formed in that area, the air for temperature control will escape from the opening, and the air for temperature control will not reach the area on the other end side, and the mounted sample plate Cannot be effectively controlled.
  • the area ratio of the opening in the area on the one end side of the mounting area of the sample rack is such that the ventilation path is substantially formed even when the sample plate is not installed in the area on the one end side. Is preferably set to. Then, even when the sample plate is not mounted in the one end region, the air passage through which the temperature control air flows is substantially formed, so that the temperature control air reaches the other end region. Thus, the temperature of the sample plate mounted on the other end region can be effectively controlled.
  • the present invention can be applied to an autosampler for a liquid chromatograph.
  • the air blown out from the outlet of the air temperature control unit is provided in the mounting area of the sample rack housed in the temperature control space.
  • Air is introduced directly into the ventilation path between the bottom surface and the floor of the temperature control space, and flows from one end to the other end of the mounting area of the sample rack through the ventilation path. Performs heat exchange intensively with the sample plate mounted on the sample rack, so that the temperature of the sample plate can be controlled uniformly and efficiently.
  • FIG. 1 is a schematic cross-sectional configuration diagram showing one embodiment of an apparatus having a sample temperature control function. It is sectional drawing for demonstrating the flow of the air in a temperature control space when the sample rack is pulled out in the same Example. It is a top view of the sample rack in which the sample plate is not mounted.
  • the apparatus 1 includes a temperature control space 4 inside a housing 2.
  • the temperature control space 4 is defined by a sheet metal 6, and the outer peripheral surface of the sheet metal 6 is a heat insulating layer made of, for example, a polyethylene resin foam material except for the rear side (the right side in FIG. 1) where the air temperature control section 16 is provided. 8 covered.
  • the sample plate 10 holding the sample is placed on the bottom of the temperature control space 4 while being mounted on the sample rack 12.
  • the sample plate 10 may hold a plurality of vials containing a sample, or may have a plurality of wells containing a sample provided on an upper surface.
  • the other end of the sample rack 12 is provided with a handle 12a for holding the sample rack 12.
  • a packing is attached to the periphery of the surface of the handle 12a facing the housing 2 (the right side in the figure), and the handle 12a is inserted when the sample rack 12 is inserted into the temperature control space 4 from one end. Packing comes into contact with the edge of the rack insertion port 14 so that the airtightness of the rack insertion port 14 is maintained.
  • the sample rack 12 has a mounting area 12d for mounting the sample plate 10.
  • the sample plate 10 can be mounted in each of the one end area, the center area, and the other end area of the mounting area 12d of the sample rack 12.
  • the sample rack 12 includes a plate member forming the mounting area 12d and a floor surface of the temperature control space 4 such that an air passage 32 through which air flows is formed between the bottom surface of the mounting area 12d and the floor surface of the temperature control space 4. Are accommodated in the temperature control space 4 with a gap between them.
  • a baffle plate 12b is provided at one end of the sample rack 12.
  • the air guide plate 12b is provided to extend vertically upward from one end of the sample rack 12, for example.
  • the air guide plate 12 b is for guiding the air cooled together with the hood 24 described later to the ventilation path 32.
  • An opening 12c is provided on the other end side of the mounting area 12d of the sample rack 12 to allow the air flowing through the ventilation path 32 to escape upward.
  • the air temperature control section 16 includes a Peltier element 18 as a temperature control element, a fan 20, an intake section 22, a hood 24, an outlet 23, a rising guide 26, and heat exchange fins 28 and 30.
  • the air temperature control unit 16 is configured to draw air in the temperature control space 4 from the suction unit 22, cool or heat the drawn air with the Peltier element 18, and blow the air through the outlet 23.
  • the Peltier device 18 is provided such that one heat transfer surface is disposed inside the temperature control space 4 and the other heat transfer surface is disposed outside the temperature control space 4.
  • the heat exchange fins 28 are attached to one heat transfer surface of the Peltier element 18.
  • the fan 20 is provided at a lower portion in the temperature control space 4 so as to blow air from an outlet toward the front side of the housing 2.
  • the intake section 22 is an opening for intake provided near the intake section in the temperature control space 4.
  • hood 24 and an ascending guide 26 are provided at the outlet 23 of the air temperature control section 16.
  • the rising guide 26 is provided so as to guide the air blown by the fan 20 to the upper part in the temperature control space 4 when the sample rack 12 is pulled out from the temperature control space.
  • the plate constituting the mounting area 12d of the sample rack 12 is made of resin. Therefore, as shown in FIG. 3, the mounting area 12d of the sample rack 12 has an opening 12e through which air for temperature control flowing through the ventilation path 32 is brought into contact with the sample plate 10 mounted on the mounting area 12d. Is provided so that the air for temperature control and the sample plate 10 directly exchange heat.
  • the area ratio occupied by the opening 12e is different in each of the area on one end side, the central area, and the area on the other end side of the mounting area 12d. Area has the largest ratio.
  • the area ratio of the opening 12 in each of the one end area, the center area, and the other end area of the mounting area 12d is determined by the heat exchange efficiency between the temperature control air flowing through the ventilation path 32 and the sample plate 10 and the mounting area 12d. Is designed to be substantially uniform in each region from one end side to the other end side.
  • the size of the opening 12e in the area on one end side or the central area of the mounting area 12d is such that the ventilation path 32 is substantially formed even when the sample plate 10 is not mounted in these areas, that is,
  • the size is designed such that even if the sample plate 10 is not mounted in these areas, most of the air for temperature control reaches the other end of the mounting area 12d without escaping from the opening 12e. Accordingly, even when the sample plate 10 is mounted only in a part of the mounting area 12d of the sample rack 12, the temperature of the sample plate 10 can be similarly controlled regardless of the mounting position.
  • three sample plates 10 can be mounted on the mounting area of the sample rack 12, but the present invention is not limited to this, and two or less or four The above-described sample plate 10 may be mounted.
  • the opening e of the mounting area 12d of the sample rack 12 has a slit shape parallel to the longitudinal direction of the sample rack 12, but the present invention is not limited to this, and the shape is not limited thereto. There may be.
  • the device 1 of the above embodiment is realized by, for example, an autosampler for liquid chromatography.
  • the apparatus 1 is an autosampler, a needle for sucking the sample held by the sample plate 10, a syringe pump, a driving mechanism for moving the needle, and the like are also provided in the temperature control space 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

装置は、サンプルを保持するサンプルプレートを搭載するための搭載領域をもつサンプルラックと、前記サンプルラックを内部に収容して前記サンプルラックに搭載されたサンプルプレートの温調を行なうための温調空間と、前記温調空間内の空気を吸気するための吸気口、前記吸気部から吸気された空気を冷却又は加熱するための温調素子、及び前記温調素子によって冷却又は加熱された空気を吹出すための吹出し口を有する空気温調部と、を備えている。当該装置はさらに、前記サンプルラックが前記温調空間内に収容されている状態において、前記サンプルラックの前記搭載領域の底面と前記温調空間の床面との間に空気を流すための通気路が形成され、前記空気温調部の前記吹出し口から吹き出された空気が、前記温調空間内に収容された前記サンプルラックの前記搭載領域の底面と前記温調空間の床面との間の前記通気路に直接的に導入され、前記通気路を通って前記搭載領域の一端から他端まで流れるように構成されている。

Description

サンプル温調機能を備えた装置
 本発明は、液体クロマトグラフなどの分析装置に用いられ、サンプルを保持するサンプルプレートの冷却又は加熱を行ないながら温調するサンプル温調機能を備えた装置に関するものである。
 液体クロマトグラフのオートサンプラには、分析対象のサンプルの変質等を防止するために、サンプルを収容したサンプルプレートを冷却又は加熱して一定温度に調節する機能を備えたものがある(例えば、特許文献1参照。)。
 サンプルの温調方式には、ペルチェ素子やヒータなどの温調素子が取り付けられた金属プレート上にサンプルを装填したサンプルプレートを配置して容器を直接的に冷却又は加熱する直接温調方式(特許文献1参照。)と、サンプルプレートを外気とは熱的に分離された空間(以下、温調空間という。)内に配置し、その温調空間内の空気をペルチェ素子などの温調素子によって冷却又は加熱する空気温調方式と、がある。
特開2016-176749号公報
 直接温調方式は、サンプルプレートを直接的に冷却又は加熱するため、温調の応答速度が良好であるという利点がある一方で、サンプルプレートの全面を均一に温調することが難しいという問題がある。空気温調方式は、温調の応答速度が直接温調方式よりも劣る反面、サンプルプレートの配置されている温調空間内を全体的に冷却又は加熱することにより、直接温調方式に比べてサンプルプレートを均一に温調することができる。
 しかし、温調空間内を全体的に温調しようとすると、温調空間の内部と外部で熱交換を行なう面積が広くなるため、多量の断熱材を使用して温調空間を外気と遮断する必要がある。また、本来的には温調の不要な温調空間内の構造物まで温調することになるため、温調対象の熱容量が大きくなり、サンプルの温調に要する時間が長くなったり、過度に高い温調能力をもった温調素子が必要になったりするなど、効率が悪いという問題がある。さらには、装置サイズの拡大化や装置コストの増大にも繋がる。
 そこで、本発明は、サンプルを保持するサンプルプレートの温調を均一かつ高効率に行なうことができる装置を提供することを目的とするものである。
 本発明に係る装置は、サンプルを保持するサンプルプレートを搭載するための搭載領域をもつサンプルラックと、前記サンプルラックを内部に収容して前記サンプルラックに搭載されたサンプルプレートの温調を行なうための温調空間と、前記温調空間内の空気を吸気するための吸気口、前記吸気部から吸気された空気を冷却又は加熱するための温調素子、及び前記温調素子によって冷却又は加熱された空気を吹出すための吹出し口を有する空気温調部と、を備えている。当該装置はさらに、前記サンプルラックが前記温調空間内に収容されている状態において、前記サンプルラックの前記搭載領域の底面と前記温調空間の床面との間に空気を流すための通気路が形成され、前記空気温調部の前記吹出し口から吹き出された空気が、前記温調空間内に収容された前記サンプルラックの前記搭載領域の底面と前記温調空間の床面との間の前記通気路に直接的に導入され、前記通気路を通って前記搭載領域の一端から他端まで流れるように構成されている。
 ここで、空気温調部の吹出し口から吹き出された空気がサンプルラックの搭載領域の底面と温調空間の床面との間の通気路に「直接的に」導入されるとは、空気温調部において温調素子により冷却又は加熱された空気が、他の構造物と熱交換をほとんど行なうことなく、すなわち、その温度をほとんど変化させることなく、サンプルラックの搭載領域の底面と温調空間の床面との間の通気路に導入されることを意味する。この構造により、空気温調部において温調された空気がサンプルラックの搭載領域に搭載されたサンプルプレートと集中的に熱交換を行なうので、サンプルプレートの温調を均一かつ高効率に行なうことができる。サンプルに無関係な構造物に対しては温調された空気によって積極的に熱交換を行なう必要がないので、温調空間全体を均一に温調する場合に比べて温調素子の温調能力を低減することができ、コストの低減や省エネルギー化を図ることができる。
 好ましい実施形態では、前記空気温調部が、前記温調素子によって冷却又は加熱された空気を前記通気路へ導くためのフードを前記吹出し口に備えている。
 さらに好ましい実施形態では、前記サンプルラックは前記一端に導風板を有し、前記温調空間内に収容された前記サンプルラックの導風板と前記フードとが当接することによって、前記温調素子によって冷却又は加熱された空気を前記通気路へ導くための経路が形成されるように構成されている。
 ところで、温調用の空気とサンプルラックに搭載されているサンプルプレートとの間の熱交換を積極的に行なわせる観点でいえば、サンプルラックが熱伝導率の高いアルミニウムなどの金属材料で構成されているほうがよい。しかし、サンプルラックがそのような金属材料で構成されていると、サンプルプレートの冷却温調を行なう場合に、サンプルラックに結露が発生しやすくなる。
 そこで、温調された空気と直接的に接するサンプルラックの搭載領域を樹脂で構成し、前記サンプルラックの前記搭載領域に、前記通気路を流れる空気を当該搭載領域に搭載されているサンプルプレートに接触させるための開口を設けてもよい。そうすれば、サンプルラックでの結露の発生を抑制しながら、温調用の空気とサンプルプレートとの間で積極的に熱交換を行なわせることができる。
 ところで、サンプルラックと温調空間の床面との間に形成された通気路をサンプルラックの搭載領域の一端から他端へ流れる温調用の空気は、サンプルラックの一端側から順に熱交換を行なっていくため、サンプルラックの他端側へ行くにしたがってサンプルプレートとの間の熱交換効率が悪くなる。そのため、サンプルラックの搭載領域に開口を設ける場合、サンプルラックの搭載領域における開口の割合を一端側の領域と他端側の領域とで同等にすると、一端側の領域と他端側の領域とで温度差ができることが考えられる。そこで、サンプルラックの搭載領域における開口の面積割合は、空気温調部の吹出し口に近い一端側の領域よりも空気温調部の吹出し口から遠い他端側の領域のほうが大きくなっていることが好ましい。そうすれば、サンプルラックの搭載領域の一端側の領域と他端側の領域とで温調用の空気とサンプルプレートとの間の熱交換効率を均一化することができる。
 また、サンプルラックとして、搭載領域の一端側の領域と他端側の領域に別々のサンプルプレートを搭載することができるものを用いることができる。そのようなサンプルラックを用いているにも拘わらず一部のサンプルプレートしか使用しない場合には、サンプルラックの一端側の領域又は他端側の領域にサンプルプレートが搭載されないことになる。温調用の空気とサンプルプレートとの間の熱交換効率を向上させるためには、搭載領域における開口面積の割合を大きくするのが効果的であるが、搭載領域の一端側の領域にサンプルプレートが搭載されない場合、その領域に大きな開口が形成されていると、その開口から温調用の空気が抜けてしまい、他端側の領域にまで温調用の空気が辿り着かず、搭載されているサンプルプレートの温調を効果的に行なうことができなくなる。
 そこで、前記サンプルラックの搭載領域の前記一端側の領域における前記開口の面積割合は、前記一端側の領域に前記サンプルプレートが設置されていなくても前記通気路が実質的に形成される大きさに設定されていることが好ましい。そうすれば、前記一端側の領域にサンプルプレートが搭載されない場合でも、温調用の空気が流れる通気路が実質的に形成されているので、他端側の領域にまで温調用の空気が辿り着くことができ、他端側の領域に搭載されたサンプルプレートの温調を効果的に行なうことができる。
 本発明は、液体クロマトグラフ用のオートサンプラに適用することができる。
 本発明に係る装置では、サンプルラックが温調空間内に収容されている状態において、空気温調部の吹出し口から吹き出された空気が、温調空間内に収容されたサンプルラックの搭載領域の底面と温調空間の床面との間の通気路に直接的に導入され、通気路を通ってサンプルラックの搭載領域の一端から他端まで流れるように構成されているので、温調用の空気がサンプルラックに搭載されたサンプルプレートと集中的に熱交換を行なうようになり、サンプルプレートの温調を均一かつ高効率に行なうことができる。
サンプル温調機能を備えた装置の一実施例を示す概略断面構成図である。 同実施例においてサンプルラックが引き出されたときの温調空間内の空気の流れを説明するための断面図である。 サンプルプレートの搭載されていないサンプルラックの平面図である。
 以下、図面を参照しながら、本発明に係る装置の一実施例について説明する。
 図1に示されているように、装置1は、筐体2の内部に温調空間4を備えている。温調空間4は板金6によって画され、その板金6の外周面が空気温調部16の設けられている背面側(図1において右側)を除いて、例えばポリエチレン樹脂発泡材などからなる断熱層8によって覆われている。
 サンプルを保持したサンプルプレート10は、サンプルラック12に搭載された状態で温調空間4の底部に設置される。なお、サンプルプレート10は、サンプルを収容した複数のバイアルを保持するものであってもよいし、サンプルを収容する複数のウエルが上面に設けられたものであってもよい。筐体2の一側面である正面側(図1において左側)に、サンプルラック12を一端側から挿入して温調空間4内に収容するための開口であるラック挿入口14が設けられている。
 サンプルラック12の他端にはサンプルラック12を保持するための取っ手部12aが設けられている。取っ手部12aの筐体2と対向する面(図において右側の面)の周縁部にパッキンが取り付けられており、サンプルラック12が一端側から温調空間内4へ挿入されたときに取っ手部12aのパッキンがラック挿入口14の縁と当接し、ラック挿入口14の密閉性が保たれるようになっている。
 サンプルラック12はサンプルプレート10を搭載するための搭載領域12dを備えている。この実施例では、サンプルラック12の搭載領域12dの一端側の領域、中央の領域、他端側の領域のそれぞれにサンプルプレート10を搭載することができるようになっている。サンプルラック12は、搭載領域12dの底面と温調空間4の床面との間に空気が流れる通気路32が形成されるように、搭載領域12dを形成する板材と温調空間4の床面との間に隙間をもって温調空間4内に収容される。
 サンプルラック12の一端部に導風板12bが設けられている。導風板12bは、例えばサンプルラック12の一端から鉛直上方へ延びるように設けられている。導風板12bは、後述するフード24とともに冷却された空気を通気路32へ導くためのものである。サンプルラック12の搭載領域12dよりも他端側に、通気路32を流れる空気を上方へ抜けさせるための開口12cが設けられている。
 筐体2の背面側に空気温調部16が設けられている。空気温調部16は、温調素子であるペルチェ素子18、ファン20、吸気部22、フード24、吹出し口23、上昇ガイド26、熱交換フィン28及び30を備えている。空気温調部16は、温調空間4内の空気を吸気部22から吸気し、吸気した空気をペルチェ素子18で冷却又は加熱して吹出し口23から吹き出すように構成されている。
 ペルチェ素子18は、一方の伝熱面が温調空間4の内側、他方の伝熱面が温調空間4の外側に配置されるように設けられており、熱交換フィン30はペルチェ素子18の一方の伝熱面に取り付けられ、熱交換フィン28はペルチェ素子18の他方の伝熱面に取り付けられている。ファン20は温調空間4内の下部において筐体2の正面側へ向けて吹出し口から空気を送風するように設けられている。吸気部22は、温調空間4内の吸気部近傍に設けられた吸気用の開口である。
 空気温調部16の吹出し口23に、フード24と上昇ガイド26が設けられている。フード24は、温調空間4内に収容されたサンプルラック12の導風板12bとともに、ファン20によって送風される温調用の空気をサンプルラック12の下面と温調空間4の床面との間の通気路32へ導くように設けられている。上昇ガイド26は、サンプルラック12が温調空間から引き出された際に、ファン20によって送風される空気を温調空間4内の上部へ導くように設けられている。
 サンプルラック12が温調空間4内に収容されているときは、導風板12bとフード24によって上方へ向かう空気の流れが遮断されるので、上昇ガイド26は機能しない。そのため、サンプルラック12が温調空間4内に収容されている状態では、図1において矢印で示されているように、吸気部22から吸気されてペルチェ素子18により冷却又は加熱された空気は、通気路32を流れてサンプルラック12の開口部12cから上方へ抜け、再び吸気部22から吸気されるという循環経路をとる。
 一方で、図2に示されているように、サンプルラック12が温調空間4から引き出されたときは上昇ガイド26が機能する。ファン20によって送風される空気は上昇ガイド26によって温調空間4内の上部へ上昇し、再び吸気部22から吸気されるという循環経路をとる。これにより、ラック挿入口14の付近における空気の流れが小さくなり、ラック挿入口14を介した空気の流出入が抑制される。
 また、この実施例では、サンプルラック12の搭載領域12dを構成する板材が樹脂で構成されている。そのため、図3に示されているように、サンプルラック12の搭載領域12dには、通気路32を流れる温調用の空気を搭載領域12dに搭載されているサンプルプレート10に接触させるための開口12eが設けられており、温調用の空気とサンプルプレート10とが直接的に熱交換を行なうようになっている。
 搭載領域12dの一端側の領域、中央の領域、他端側の領域のそれぞれにおいて開口12eの占める面積割合が異なっており、搭載領域12dの一端側の領域で最もその割合が小さく、他端側の領域で最もその割合が大きくなっている。搭載領域12dの一端側の領域、中央の領域、他端側の領域のそれぞれにおける開口12の面積割合は、通気路32を流れる温調用の空気とサンプルプレート10との熱交換効率が搭載領域12dの一端側から他端側の各領域において略均一になるように設計されている。
 また、搭載領域12dの一端側の領域や中央の領域の開口12eの大きさは、これらの領域にサンプルプレート10が搭載されていなくても実質的に通気路32が形成される大きさ、すなわち、これらの領域にサンプルプレート10が搭載されていなくても温調用の空気の大部分が開口12eから逃げずに搭載領域12dの他端側へ到達するような大きさに設計されている。これにより、サンプルラック12の搭載領域12dの一部の領域にのみサンプルプレート10が搭載されている場合でも、その搭載位置に関わらず同様にサンプルプレート10の温調を行なうことができる。
 なお、上記実施例では、サンプルラック12の搭載領域に3つのサンプルプレート10を搭載することができるようになっているが、本発明はこれに限定されるものではなく、2つ以下又は4つ以上のサンプルプレート10を搭載することができるようになっていてもよい。
 また、図3では、サンプルラック12の搭載領域12dの開口eが、サンプルラック12の長手方向に平行なスリット状になっているが、本発明はこれに限定されるものではなく、いかなる形状であってもよい。
 また、上記実施例の装置1は、例えば液体クロマトグラフ用オートサンプラによって実現される。装置1がオートサンプラである場合には、サンプルプレート10によって保持されたサンプルを吸入するためのニードルやシリンジポンプ、ニードルを移動させるための駆動機構なども温調空間4内に設けられる。
   1   装置
   2   筐体
   4   温調空間
   6   板金
   8   断熱層
   10   サンプルラック
   12   サンプルプレート
   12a   取っ手部
   12b   導風板
   12c,12e   開口
   12d   搭載領域
   14   ラック挿入部
   16   空気温調部
   18   ペルチェ素子
   20   ファン
   22   吸気部
   23   吹出し口
   24   フード
   26   上昇ガイド
   28,30   熱交換フィン
   32   通気路

Claims (7)

  1.  サンプルを保持するサンプルプレートを搭載するための搭載領域をもつサンプルラックと、
     前記サンプルラックを内部に収容して前記サンプルラックに搭載されたサンプルプレートの温調を行なうための温調空間と、
     前記温調空間内の空気を吸気するための吸気口、前記吸気部から吸気された空気を冷却又は加熱するための温調素子、及び前記温調素子によって冷却又は加熱された空気を吹出すための吹出し口を有する空気温調部と、を備え、
     前記サンプルラックが前記温調空間内に収容されている状態において、前記サンプルラックの前記搭載領域の底面と前記温調空間の床面との間に空気が流れる通気路が形成され、
     前記空気温調部の前記吹出し口から吹き出された空気が、前記温調空間内に収容された前記サンプルラックの前記搭載領域の底面と前記温調空間の床面との間の前記通気路に直接的に導入され、前記通気路を通って前記サンプルラックの前記搭載領域の一端から他端まで流れるように構成されている、装置。
  2.  前記空気温調部は、前記温調素子によって冷却又は加熱された空気を前記通気路へ導くためのフードを前記吹出し口に備えている、請求項1に記載の装置。
  3.  前記サンプルラックは前記一端に導風板を有し、
     前記温調空間内に収容された前記サンプルラックの導風板と前記フードとが当接することによって、前記温調素子によって冷却又は加熱された空気を前記通気路へ導くための経路が形成されるように構成されている、請求項2に記載の装置。
  4.  前記サンプルラックの前記搭載領域は樹脂からなり、
     前記サンプルラックの前記搭載領域には、当該搭載領域の底面と前記温調空間の床面との間の前記通気路を流れる空気を当該搭載領域に搭載されているサンプルプレートに接触させるための開口が設けられている、請求項1から3のいずれか一項に記載の装置。
  5.  前記サンプルラックの前記搭載領域における前記開口の面積割合は、前記一端側の領域よりも前記他端側の領域のほうが大きくなっている、請求項4に記載の装置。
  6.  前記サンプルラックは、前記搭載領域の前記一端側の領域と前記他端側の領域にそれぞれ個別のサンプルプレートを搭載することができるものであり、
     前記一端側の領域における前記開口の面積割合は、前記サンプルプレートが設置されていなくても前記通気路が実質的に形成される大きさに設定されている、請求項4又は5に記載の装置。
  7.  前記装置は液体クロマトグラフ用のオートサンプラである、請求項1から6のいずれか一項に記載の装置。
PCT/JP2018/023088 2018-06-18 2018-06-18 サンプル温調機能を備えた装置 WO2019244198A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880093430.9A CN112189131A (zh) 2018-06-18 2018-06-18 具备样品调温功能的装置
JP2020525085A JP7120305B2 (ja) 2018-06-18 2018-06-18 サンプル温調機能を備えた装置
US17/059,667 US11378496B2 (en) 2018-06-18 2018-06-18 Device with sample temperature adjustment function
PCT/JP2018/023088 WO2019244198A1 (ja) 2018-06-18 2018-06-18 サンプル温調機能を備えた装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023088 WO2019244198A1 (ja) 2018-06-18 2018-06-18 サンプル温調機能を備えた装置

Publications (1)

Publication Number Publication Date
WO2019244198A1 true WO2019244198A1 (ja) 2019-12-26

Family

ID=68982979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023088 WO2019244198A1 (ja) 2018-06-18 2018-06-18 サンプル温調機能を備えた装置

Country Status (4)

Country Link
US (1) US11378496B2 (ja)
JP (1) JP7120305B2 (ja)
CN (1) CN112189131A (ja)
WO (1) WO2019244198A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193808A (ja) * 2019-05-24 2020-12-03 株式会社島津製作所 クロマトグラフ用サンプル温調装置
US11953473B2 (en) 2018-11-05 2024-04-09 Shimadzu Corporation Autosampler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111554U (ja) * 1985-12-27 1987-07-16
JP2005257552A (ja) * 2004-03-12 2005-09-22 Tsubakimoto Chain Co 創薬研究用温調装置
CN102213965A (zh) * 2011-04-13 2011-10-12 苏州捷美电子有限公司 恒温设备及其控制方法
WO2014147696A1 (ja) * 2013-03-18 2014-09-25 株式会社島津製作所 試料冷却装置及びこれを備えたオートサンプラ、並びに、試料冷却方法
JP2015010857A (ja) * 2013-06-27 2015-01-19 株式会社ミツトヨ 恒温槽
CN106546034A (zh) * 2016-11-30 2017-03-29 武汉工程大学 一种基于半导体制冷制热的恒温箱

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3145634B2 (ja) * 1996-04-11 2001-03-12 タバイエスペック株式会社 温度分布調整式恒温装置
JP3874322B2 (ja) 1998-06-02 2007-01-31 エスペック株式会社 引出し式扉を持つ環境試験装置
CN2384441Y (zh) * 1999-06-24 2000-06-28 李进清 自控高温热油内循环烟叶烘烤设备
DE202006003844U1 (de) * 2006-03-10 2006-05-04 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Klimakammer, insbesondere für molekularbiologische Anwendungen
JP5466883B2 (ja) * 2009-05-27 2014-04-09 延幸 高橋 熱処理方法、熱処理装置、連続式熱処理システム、及び被処理物載置台
CN201548537U (zh) * 2009-09-23 2010-08-11 宝山钢铁股份有限公司 金属高温实验控温模具
JP5949603B2 (ja) * 2013-03-08 2016-07-06 株式会社島津製作所 試料冷却装置
CN105229462B (zh) * 2013-03-29 2017-12-29 株式会社岛津制作所 试样冷却装置以及具备其的自动取样器
WO2015162680A1 (ja) 2014-04-22 2015-10-29 株式会社島津製作所 加熱温調用サンプルラック及びその加熱温調用サンプルラックを用いる試料温度調節装置
JP6428414B2 (ja) 2015-03-19 2018-11-28 株式会社島津製作所 オートサンプラ
JP2017003477A (ja) 2015-06-12 2017-01-05 株式会社クボタ 環境試験装置
JP6625380B2 (ja) 2015-09-10 2019-12-25 日立ジョンソンコントロールズ空調株式会社 空気調和機の室外ユニット
CN107293046A (zh) * 2016-04-11 2017-10-24 鸿富锦精密工业(武汉)有限公司 自动售货机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111554U (ja) * 1985-12-27 1987-07-16
JP2005257552A (ja) * 2004-03-12 2005-09-22 Tsubakimoto Chain Co 創薬研究用温調装置
CN102213965A (zh) * 2011-04-13 2011-10-12 苏州捷美电子有限公司 恒温设备及其控制方法
WO2014147696A1 (ja) * 2013-03-18 2014-09-25 株式会社島津製作所 試料冷却装置及びこれを備えたオートサンプラ、並びに、試料冷却方法
JP2015010857A (ja) * 2013-06-27 2015-01-19 株式会社ミツトヨ 恒温槽
CN106546034A (zh) * 2016-11-30 2017-03-29 武汉工程大学 一种基于半导体制冷制热的恒温箱

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953473B2 (en) 2018-11-05 2024-04-09 Shimadzu Corporation Autosampler
JP2020193808A (ja) * 2019-05-24 2020-12-03 株式会社島津製作所 クロマトグラフ用サンプル温調装置
JP7147686B2 (ja) 2019-05-24 2022-10-05 株式会社島津製作所 クロマトグラフ用サンプル温調装置

Also Published As

Publication number Publication date
JPWO2019244198A1 (ja) 2021-04-22
US11378496B2 (en) 2022-07-05
JP7120305B2 (ja) 2022-08-17
US20210208034A1 (en) 2021-07-08
CN112189131A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
US9459036B2 (en) Sample cooling device
KR101896569B1 (ko) 반도체 모듈의 방열 장치
KR102501211B1 (ko) 디스플레이 어셈블리 냉각 방법
US9267743B2 (en) Housing for electronic equipment with variable coolant channel widths
JP5887023B2 (ja) 培養装置
JP2008171720A (ja) 加熱調理器
WO2019244198A1 (ja) サンプル温調機能を備えた装置
JP2007267478A (ja) 制御盤
US20170038346A1 (en) Convectively controlled adiabatic column chamber for use in chromatographic systems
JP7031507B2 (ja) サンプル温調機能を備えた装置
JP5887022B2 (ja) 培養装置
JP2010508495A (ja) 空調装置
US10345276B2 (en) Passive column pre-heater for use in chromatographic systems
JP2005044857A (ja) 冷却機構
JP7070129B2 (ja) サンプル温調機能を備えた装置
TW201739677A (zh) 冷熱箱
JP6860089B2 (ja) サンプル温調装置
JP5469913B2 (ja) 断熱構造及びこの断熱構造を有する収納装置
US20210404997A1 (en) Autosampler
JP7147686B2 (ja) クロマトグラフ用サンプル温調装置
JP2023054774A (ja) 冷却された化学物質キャビネットのための方法および装置
CN113970210B (zh) 制冷组件及酒柜
JP7405815B2 (ja) 検査室試料分配システムおよび検査室自動化システム
TWI833958B (zh) 加熱裝置、加熱系統及加熱方法
JP7079043B2 (ja) 加熱装置および加熱方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525085

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923614

Country of ref document: EP

Kind code of ref document: A1