WO2019242472A1 - 一种电池荷电状态的估计方法及装置 - Google Patents

一种电池荷电状态的估计方法及装置 Download PDF

Info

Publication number
WO2019242472A1
WO2019242472A1 PCT/CN2019/088992 CN2019088992W WO2019242472A1 WO 2019242472 A1 WO2019242472 A1 WO 2019242472A1 CN 2019088992 W CN2019088992 W CN 2019088992W WO 2019242472 A1 WO2019242472 A1 WO 2019242472A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
charge
battery
state
current time
Prior art date
Application number
PCT/CN2019/088992
Other languages
English (en)
French (fr)
Inventor
李娟�
李慧
范团宝
李阳兴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19823205.0A priority Critical patent/EP3812777A4/en
Publication of WO2019242472A1 publication Critical patent/WO2019242472A1/zh
Priority to US17/126,895 priority patent/US20210103002A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Definitions

  • the present application relates to the field of battery management, and in particular, to a method and device for estimating a state of charge of a battery.
  • the state of charge (SOC) of a battery is one of the main parameters of the battery state, and its value is defined as the ratio of the remaining capacity of the battery to the total capacity of the battery.
  • SOC state of charge
  • BMS battery management system
  • SOC state of charge
  • It is a very complicated electrochemical system, and its internal electrochemical relationship has a non-linear relationship, which makes it difficult to use the limited external features that can be detected to establish a relationship model to predict the internal state of the battery.
  • a method and system for estimating the state of charge of a power battery are provided.
  • the Thevenin equivalent circuit model is selected, and pulse current excitation is applied to the power battery.
  • the output voltage and current data of the power battery are collected, and The relationship between voltage and time is used to obtain the pulse current excitation response curve.
  • the excitation response curve is divided into three sections A, B, and C. According to the section A excitation response curve, the time constant is obtained by combining the zero-input response expression of the resistance-capacitance circuit and the least square method.
  • the polarization resistance and polarization capacitance are obtained by the least square method; according to the C-phase excitation response curve, ohms
  • the law obtains the ohmic internal resistance; according to the polarization resistance, the polarization capacitance, and the ohmic internal resistance, an extended Kalman filter algorithm is used to obtain an estimated value of the state of charge of the power battery.
  • the response time of each application also varies greatly (from milliseconds to minutes), and as time increases, the ohmic internal resistance, charge transfer resistance, and diffusion resistance of the battery
  • the total internal resistance of the battery will appear and superimposed in turn, and the total internal resistance of the battery also changes over time.
  • the influence of the charge transfer resistance and the diffusion resistance on the total internal resistance of the battery is not considered, and the estimated value of the state of charge of the battery calculated is not accurate.
  • the embodiments of the present application provide a method and a device for estimating a state of charge of a battery, which are used to estimate a state of charge of a battery according to a more accurate battery internal resistance model, thereby improving the accuracy of the estimated value of the state of charge of the battery.
  • the first aspect of the present application provides a method for estimating the state of charge of a battery, which includes: real-time obtaining the current charging and discharging current of a battery to be measured, a temperature at the current time, a Coulomb power at the current time, and a battery voltage according to a preset time interval.
  • the state-of-charge value determines the current resistance data of the battery under test at the current time; according to the internal resistance data of the current time, the charge and discharge current at the current time, and the temperature at the current time to determine the unavailable power of the battery at the current time, the Power consumption is the state of charge when the battery under test cannot release power; according to the Coulomb power at the current time and the current time The unavailable power determines the current state of charge value of the battery under test.
  • a more accurate battery internal resistance model is established, and an accurate battery internal resistance model is obtained according to the type of internal resistance response of the battery to be measured and a more accurate battery internal resistance model. Based on the internal resistance data, and then accurately calculate the unusable power of the battery according to the over-resistance data, and then accurately estimate the current battery charge status of the battery.
  • determining the type of the internal resistance response at the current time of the battery under test according to the discharge duration includes: according to the discharge duration and a preset first A correspondence relationship determines the type of the internal resistance response of the battery under test at the current moment, and the first correspondence relationship is used to indicate the correspondence between the discharge duration of the battery to be tested and the type of the internal resistance response of the battery to be tested. According to the correspondence between the discharge duration of the battery under test and the type of the internal resistance response of the battery under test, and the process of determining the corresponding type of internal resistance response at the current discharge time, the implementation manner of this application is added.
  • the first correspondence relationship includes: when the discharge duration is less than or equal to the first threshold, the type of the internal resistance response is the first response Type, the first response type includes ohmic resistance; when the discharge duration is greater than the first threshold value and less than or equal to the second threshold value, the type of the internal resistance response is the second response type, and the second response type includes the ohmic resistance and the charge transfer resistance ;
  • the type of the internal resistance response is a third response type, and the third response type includes an ohmic resistance, a charge transfer resistance, and a diffusion resistance.
  • the state-of-charge value of the internal resistance data of the battery under test includes: determining a second correspondence relationship according to the first response type, and the second correspondence relationship is used to indicate the ohmic resistance and temperature of the battery under test, and the state of charge.
  • Correspondence relationship Determine the current resistance data of the battery under test at the current time according to the second correspondence relationship, the temperature at the current time, the charge and discharge current at the current time, and the state of charge at the previous time.
  • the internal resistance data is the ohm at the current time. resistance. The process of determining the ohmic resistance of the battery at the current moment is refined, and an implementation manner of the present application is added.
  • a fourth implementation manner of the first aspect of the embodiments of the present application according to the type of the internal resistance response at the current time, the temperature at the current time, the charge and discharge current at the current time, and the The value of the state of charge to determine the internal resistance data of the battery at the current moment includes determining a second correspondence relationship and a third correspondence relationship according to a second response type.
  • the second correspondence relationship is used to indicate the ohmic resistance and temperature of the battery to be measured
  • the third correspondence is used to indicate the correspondence between the charge transfer resistance and temperature, the state of charge, and the charge and discharge current of the battery under test; according to the second correspondence, the third correspondence, and the current time
  • the temperature, the charge and discharge current at the current moment, and the state of charge at the previous moment determine the internal resistance data of the battery under test at the current moment, which is the sum of the ohmic resistance at the current moment and the charge transfer resistance at the current moment.
  • the process of determining the ohmic resistance and charge transfer resistance of the battery at the current moment is refined, and the implementation manner of the present application is increased.
  • the internal resistance data of the current moment of the battery under test determined by the state of charge includes determining a second correspondence relationship, a third correspondence relationship, and a fourth correspondence relationship according to a third response type.
  • the second correspondence relationship is used to indicate the Correspondence between ohmic resistance and temperature and state of charge.
  • This third correspondence is used to indicate the correspondence between charge transfer resistance of the battery under test and temperature, state of charge, and charge / discharge current.
  • This fourth correspondence is used to indicate Correspondence between the diffusion impedance and temperature, the state of charge, and the charge-discharge current of the battery under test; according to the second correspondence, the third correspondence, the fourth correspondence, the current temperature, the current charge-discharge current, and the The value of the state of charge at a moment determines the current resistance data of the battery under test at the current time.
  • the internal resistance data is the ohmic resistance at the current time, The sum of the charge transfer resistance and the diffusion resistance at the current moment. The process of determining the ohmic resistance, charge transfer resistance, and diffusion resistance of the battery at the current moment is refined, and the implementation manner of the present application is increased.
  • the current time of the battery to be tested is determined according to the internal resistance data at the current time, the charge and discharge current at the current time, and the temperature at the current time.
  • the amount of unavailable power includes: determining the current resistance voltage of the battery under test based on the internal resistance data of the current time and the charge and discharge current at the current time, which is the voltage loss caused by the internal resistance of the battery under test; The internal resistance voltage at the current moment and the preset cut-off voltage determine the unavailable voltage of the battery under test at the current time; the current voltage of the battery under test is determined according to the unavailable voltage at the current time, the temperature at the current moment, and the preset fifth correspondence At the moment of unavailable power, the fifth correspondence relationship is used to indicate the correspondence between the open circuit voltage, temperature, and state of charge of the battery to be measured.
  • the process of determining unavailable power is described in detail, which makes this application more complete and logical.
  • the current state of charge value of the battery to be tested is determined according to the Coulomb power at the current time and the unavailable power at the current time. Including: determining the initial power according to the preset full power, the state of charge value at the previous moment, and the fifth correspondence, the initial power is the power at the previous moment of the battery to be tested; Coulomb power and unavailable power at the current time determine the remaining power of the battery under test at the current time; determine the current load of the battery under test based on the remaining power at the current time, the preset full power and the unavailable power at the current time. Electrical state value. The process of estimating the state of charge is explained in detail, making the process of estimating the state of charge easier to implement.
  • a second aspect of the present application provides a device for estimating a state of charge of a battery, including: a current sensor, a temperature sensor, a coulomb counter, a timer, a memory, and a processor; the current sensor is used to obtain the charging and discharging current of a battery to be tested in real time And transmit to the processor; the temperature sensor is used to obtain the temperature of the battery to be measured in real time and transmitted to the processor; the coulomb meter is used to accumulate the current flowing through the battery to be measured, obtain the current coulomb power and transmit to the processor; The timer is used to obtain the discharge duration of the battery to be tested and transmitted to the processor; the memory is used to store parameter information of the battery to be tested, the parameter information includes the value of the state of charge at the previous moment; the processor is used according to the parameter information, The charge and discharge current at the current time, the temperature at the current time, and the Coulomb capacity at the current time are estimated values of the state of charge of the battery to be tested at the current time.
  • the parameter information further includes a first correspondence relationship, where the first correspondence relationship is used to indicate a discharge duration of the battery to be tested and a measurement to be tested. Correspondence between the types of battery internal resistance response. A first correspondence relationship stored in a memory is added, and an implementation manner of the present application is added.
  • the parameter information further includes: a second correspondence relationship, a third correspondence relationship, and a fourth correspondence relationship;
  • the second correspondence relationship is used for Indicating the correspondence between the ohmic resistance, temperature, and state of charge of the battery under test;
  • the third correspondence is used to indicate the correspondence between charge transfer resistance and temperature, state of charge, and charge / discharge current of the battery under test;
  • the four correspondences are used to indicate the correspondence between the diffusion impedance and temperature, the state of charge, and the charge and discharge current of the battery to be measured.
  • the second correspondence relationship, the third correspondence relationship, and the fourth correspondence relationship stored in the memory are added, and an implementation manner of the present application is added.
  • a third aspect of the present application provides a device for estimating a state of charge of a battery, including: a first obtaining unit, configured to obtain, in real time, a charging current and a discharging current of a battery to be measured, a temperature at the current time, The Coulomb power at the current moment and the state of charge at the previous moment, where the preset time interval is the time between the previous moment and the current moment; a second acquisition unit is used to acquire the discharge duration of the battery to be tested, The discharge duration is the duration of the charge and discharge current; the first determination unit is used to determine the type of the internal resistance response of the battery under test at the current time according to the discharge duration; the second determination unit is used to determine the type of the internal resistance response at the current time according to the discharge time , The current temperature, the current charge and discharge current, and the state of charge at the previous time determine the current resistance data of the battery under test at the current time; a third determination unit is configured to use the current resistance data at the current time, the current time Charge and discharge current and temperature
  • a fourth determining unit for the current state of charge value at the point is not determined according to the test battery consumption coulomb current time and the current time.
  • a more accurate battery internal resistance model is established, and an accurate battery internal resistance model is obtained according to the type of internal resistance response of the battery to be measured and a more accurate battery internal resistance model.
  • Based on the internal resistance data and then accurately calculate the unusable power of the battery according to the over-resistance data, and then accurately estimate the current battery charge status of the battery.
  • the first determining unit is specifically configured to determine the current time of the battery to be tested according to the discharge duration and a preset first correspondence relationship.
  • the first correspondence relationship is used to indicate the correspondence between the discharge duration of the battery to be tested and the type of the internal resistance response of the battery to be tested. According to the correspondence between the discharge duration of the battery under test and the type of the internal resistance response of the battery under test, and the process of determining the corresponding type of internal resistance response at the current discharge time, the implementation manner of this application is added.
  • the first correspondence relationship includes: when the discharge duration is less than or equal to the first threshold, the type of the internal resistance response is the first response Type, the first response type includes ohmic resistance; when the discharge duration is greater than the first threshold value and less than or equal to the second threshold value, the type of the internal resistance response is the second response type, and the second response type includes the ohmic resistance and the charge transfer resistance ;
  • the type of the internal resistance response is a third response type, and the third response type includes an ohmic resistance, a charge transfer resistance, and a diffusion resistance.
  • the second determining unit is specifically configured to determine a second correspondence relationship according to a first response type, where the second correspondence relationship is used for Indicate the correspondence between the ohmic resistance, temperature, and state of charge of the battery under test; determine the current state of the battery under test based on the second correspondence, the current temperature, the charge and discharge current at the current moment, and the state of charge at the previous moment Internal resistance data at time, the internal resistance data is the ohmic resistance at the current time; or a second correspondence relationship and a third correspondence relationship are determined according to the second response type, and the second correspondence relationship is used to indicate the ohmic resistance and Correspondence between temperature and state of charge.
  • This third correspondence is used to indicate the correspondence between charge transfer resistance and temperature, state of charge, and charge / discharge current of the battery under test.
  • the temperature at the current moment, the charge and discharge current at the current moment, and the value of the state of charge at the previous moment determine the internal resistance data of the battery at the current moment.
  • the data is the sum of the ohmic resistance at the current time and the charge transfer resistance at the current time; or the second correspondence relationship, the third correspondence relationship, and the fourth correspondence relationship are determined according to the third response type, and the second correspondence relationship is used to indicate the test The correspondence between the ohmic resistance of the battery and the temperature and the state of charge.
  • This third correspondence is used to indicate the correspondence between the charge transfer resistance of the battery under test and the temperature, the state of charge, and the charge and discharge current.
  • This fourth correspondence is used for To indicate the correspondence between the diffusion impedance and temperature, the state of charge, and the charge-discharge current of the battery under test; according to the second correspondence, the third correspondence, the fourth correspondence, the current temperature, and the current charge-discharge current.
  • the current resistance data of the battery under test at the current moment is determined with the value of the state of charge at the previous moment.
  • the internal resistance data is the sum of the ohmic resistance at the current moment, the charge transfer resistance at the current moment, and the diffusion impedance at the current moment. The process of determining the ohmic resistance, charge transfer resistance, and diffusion resistance of the battery at the current moment is refined, and the implementation manner of the present application is increased.
  • the third determining unit is specifically configured to determine the battery to be tested according to the internal resistance data at the current time and the charge and discharge current at the current time.
  • the internal resistance voltage at the current moment which is the voltage loss caused by the internal resistance of the battery under test;
  • the unavailable voltage at the current moment of the battery under test is determined according to the internal resistance voltage at the current moment and a preset cut-off voltage; according to The unavailable voltage at the current moment, the temperature at the current moment, and a preset fifth correspondence relationship determine the unavailable power at the current moment of the battery under test.
  • the fifth correspondence relationship is used to indicate the open circuit voltage, temperature, and load of the battery under test. Correspondence of electrical state values. The process of determining unavailable power is described in detail, which makes this application more complete and logical.
  • the fourth determining unit is specifically configured to: according to a preset full power, a state of charge value of the previous moment, and the fifth The corresponding relationship determines the starting power, which is the power of the battery at the previous moment; the remaining power of the battery at the current time is determined based on the starting power, the Coulomb power at the current time, and the unavailable power at the current time. ; Determine the current state of charge value of the battery under test according to the remaining power at the current time, the preset full power, and the unavailable power at the current time.
  • the process of estimating the state of charge is explained in detail, making the process of estimating the state of charge easier to implement.
  • a fourth aspect of the present application provides a terminal, including:
  • the device for estimating a state of charge of a battery is the device for estimating a state of charge of a battery according to any one of the third aspects.
  • a fifth aspect of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the methods described in the above aspects.
  • a sixth aspect of the present application provides a computer program product containing instructions that, when run on a computer, causes the computer to perform the methods described in the above aspects.
  • FIG. 1A is a schematic diagram of the influence of the temperature of the battery on the resistance of the battery
  • FIG. 1B is a schematic diagram of the influence of the state of charge and current of the battery on the resistance of the battery;
  • FIG. 1C is a schematic diagram of the influence of the discharge duration on the resistance of the battery
  • FIG. 2 is a schematic diagram of an embodiment of a method for estimating a state of charge of a battery according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a second-order equivalent circuit in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a third-order equivalent circuit in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an embodiment of an apparatus for estimating a state of charge of a battery in an embodiment of the present application
  • FIG. 6 is a schematic diagram of another embodiment of an apparatus for estimating a state of charge of a battery in an embodiment of the present application.
  • the embodiments of the present application provide a method and a device for estimating a state of charge of a battery, which are used to estimate a state of charge of a battery according to a more accurate battery internal resistance model, thereby improving the accuracy of the estimated value of the state of charge of the battery.
  • references to "including” or “having” and any variations thereof in this application document are intended to cover non-exclusive inclusions, for example, a process, method, system, product, or device that includes a series of steps or units need not be limited to Those steps or units that are explicitly listed may instead include other steps or units that are not explicitly listed or inherent to these processes, methods, products, or equipment.
  • the existing solution provides a method for measuring the internal resistance of a battery.
  • the first battery is tested for discharging performance at various ambient temperatures to obtain the current and voltage values corresponding to different states of charge; according to the battery under different states of charge,
  • the equivalent circuit model calculates the corresponding current and voltage values to obtain the DC internal resistance corresponding to different states of charge; according to the DC internal resistance corresponding to different states of charge at various ambient temperatures, polynomial fitting is performed to establish a mathematical model of DC internal resistance estimation ;
  • the mathematical model indicates the relationship between the DC internal resistance, the state of charge, and the temperature; the mathematical model is used to estimate the DC internal resistance of the second battery under the known ambient temperature and the state of charge of the second battery. Therefore, by establishing a mathematical model of the DC internal resistance estimation, the DC resistance is estimated based on the temperature and the state of charge of the battery, thereby improving the accuracy of the DC internal resistance estimation of the battery.
  • the present application provides a method and a device for estimating the state of charge of a battery, and estimates the state of charge of the battery according to a more accurate battery internal resistance model, thereby improving the accuracy of the estimated value of the state of charge of the battery.
  • the battery internal resistance model takes into account the effects of temperature, state of charge, current, and time on the internal resistance of the battery. The obtained internal resistance of the battery is more accurate, and a more accurate value of the state of charge is estimated.
  • a lithium battery is used as an example for description.
  • the solution of the present application can also be applied to other types of batteries, including but not limited to lithium batteries.
  • it can also be applied to lithium metal-air batteries, Lead-acid batteries, nickel-metal hydride batteries, nickel-cadmium batteries, and the like are not specifically limited here.
  • An embodiment of the method for estimating the state of charge of a battery in the embodiment of the present application includes:
  • the current charge and discharge current of the battery to be measured the current temperature, the Coulomb power at the current time, and the state of charge of the previous time are obtained in real time.
  • the device for estimating the state of charge of a battery obtains, in real time, the charging and discharging current of the battery to be measured, the temperature of the current time, the Coulomb power of the current time, and the value of the state of charge of the previous time according to a preset time interval.
  • the time interval is the time between the previous time and the current time
  • the coulomb power is the accumulated power consumed by the battery to be tested from the last time to the current time.
  • the device for estimating the state of charge of the battery acquires state information of the current time of the battery under test every 3 seconds, and the state information includes the current charge and discharge current of the battery under test, the temperature of the current time, and the Coulomb power of the current time.
  • the device for estimating the state of charge of a battery performs timing, starting from 0 seconds, and when the recorded time is 3 seconds, obtaining the charge and discharge current, temperature, and coulomb power of the battery to be tested connected to the device for estimating the state of charge of the battery; When the recording time is 6 seconds, the charge and discharge current, temperature, and coulomb capacity of the battery to be measured are obtained again.
  • the device for estimating the state of charge of a battery obtains a state of charge value of a previous moment, for example, the current time is 6 seconds, and the device for estimating the state of charge of a battery obtains a state of charge value of the battery to be measured at 3 seconds, where, the The state of charge value is configured in advance and stored in the estimation device of the state of charge of the battery.
  • the status information of the battery under test is not exactly the same at different times.
  • the charge and discharge current of the battery under test can be 0.1A
  • the temperature is 40 ° C
  • the coulomb power is 0.3C
  • the charge and discharge current of the battery to be tested can be 0.1A
  • the temperature is 40 ° C
  • the coulomb charge is 0.6C.
  • the device for estimating the state of charge of a battery can set a time interval according to actual needs.
  • the time interval can be 2 seconds, 4 seconds, or 8 seconds, and can also be 1 minute, 5 minutes, etc. Be limited.
  • the device for estimating a state of charge of a battery acquires a discharge duration of a battery to be tested, and the discharge duration is a duration from a start time to a current time when the battery to be tested has been continuously discharged.
  • Each time interval is a detection period, and the discharge duration can be longer than the charge and discharge current duration of a detection period.
  • the discharge duration can also be less than the charge and discharge current duration of a detection period. There is no relationship between the discharge duration and the detection period. .
  • the time period from the start of the discharge to the current time is taken as the discharge duration.
  • the charging and discharging current may be an average current or a peak current.
  • the detected discharge duration is different. For example, when the terminal to which the battery to be tested belongs is in the startup scenario, the peak current is 3000 mA, and the peak current The duration is 800 milliseconds, the average current is 1500 milliamps, and the average current duration is 20,000 milliseconds.
  • the discharge time is 20,000 milliseconds; if the peak current is used as the charge and discharge current, the discharge time is 800 milliseconds.
  • the peak current is 1500 milliamps
  • the duration of the peak current is 200 milliseconds
  • the average current is 600 milliamps
  • the average current duration is 5200 milliseconds. If the average current is used as the charge and discharge current, the discharge time is 5200 milliseconds; if the peak current is used as the charge and discharge current, the discharge time is 200 milliseconds.
  • the peak current or average current is selected as the charge and discharge current.
  • the peak current is used as the charge and discharge current.
  • the duration of the peak current is all within 3 seconds; when the preset time interval is 60 seconds, the average current is used as the charge and discharge current.
  • the duration of the average current in different application scenarios is within 60 seconds, which is convenient according to the discharge duration. Differentiate different application scenarios.
  • the device for estimating the state of charge of the battery determines the type of the internal resistance response of the battery to be tested at the current moment according to the discharge duration. Specifically, the device for estimating the state of charge of the battery determines the type of the internal resistance response of the battery under test at the current moment according to the discharge duration and a preset first correspondence relationship, wherein the first correspondence relationship is used to indicate the discharge duration of the battery under test Correspondence to the type of internal resistance response of the battery under test.
  • the size of the discharge time determines the type of the internal resistance response of the battery to be tested.
  • the type of internal resistance response of the battery under test is the first response type, where the first response type includes ohmic resistance; when the unit of discharge duration is seconds, the internal resistance response of the battery under test The type of is the second response type, where the second response type includes ohmic resistance and charge transfer resistance; when the unit of discharge duration is minutes, the type of the internal resistance response of the battery under test is the third response type, where the third Response types include ohmic resistance, charge transfer resistance, and diffusion impedance.
  • the discharge time increases, the resistance of the battery to be tested also increases.
  • the peak current value and average current value of each application scenario measured by a product, and the duration of each scenario are shown in Table 1.
  • the first threshold may be 1000 milliseconds, that is, the duration of the average current. From 1 to 1000 milliseconds, only the ohmic resistor has time to respond at this time.
  • the type of internal resistance response to the battery to be measured is the ohmic resistance response.
  • the second preset is 10000 milliseconds, that is, the duration of the average current is between 1000 milliseconds and 10,000 milliseconds.
  • the battery under test has a response of the charge transfer resistance after the ohmic resistance response, and the types of the internal resistance response of the battery under test are an ohmic resistance response and a charge transfer resistance response.
  • the duration of the average current of the battery under test is greater than the second threshold, that is, the duration of the average current Above 10,000 milliseconds, at this time, in addition to the response of the ohmic resistance and the charge transfer resistance, there is also the response of the diffusion impedance, so the types of the internal resistance response are judged to be ohmic resistance response, charge transfer resistance response, and diffusion impedance response.
  • Peak current / mA Duration / ms Average current / mA Duration / ms Boot 3000 800 1500 20000 Shutdown 1500 200 600 5200 Standby to desktop 1400 150 600 2500
  • the total internal resistance of the battery needs to be obtained based on the initial relationship table of the battery temperature, the state of charge of the battery, and the charge and discharge current of the battery.
  • the different constants are further decomposed into ohmic resistance and polarization resistance (that is, charge transfer resistance and diffusion resistance) to obtain an ohmic resistance model and polarization resistance model (that is, charge transfer resistance model and diffusion impedance model).
  • the transfer resistance model and the diffusion impedance model determine the models to be called at the current moment of the battery under test.
  • the open-circuit voltage method is used to test the selected battery.
  • the specific test steps are as follows:
  • the battery is fully charged by constant current-constant voltage charging.
  • the battery is allowed to stand for a period of time to stabilize the voltage, and the voltage at this time is read as V 0 (for example, SOC is 100%).
  • R 0 (V 0 -V 1 ) / I 1 ;
  • R 0 is the ohmic internal resistance
  • V 0 is the battery voltage before discharging
  • V 1 is the battery voltage at the instant when discharge starts
  • I 1 is the discharging current.
  • the apparent voltage drop that occurs when a battery is discharged is caused by ohmic internal resistance.
  • the ohmic internal resistance R 0 does not change with the discharge current, and the test conditions of the battery temperature T and the battery state of charge SOC can be changed to obtain the ohmic resistance model.
  • the ohmic internal resistance and the battery temperature T and the battery state of charge SOC can be obtained.
  • the relationship table is shown in Table 2.
  • Step 1 Use the open-circuit voltage method to test the selected target battery.
  • the specific test steps are as follows:
  • the target battery is fully charged by constant current-constant voltage charging.
  • the target battery is allowed to stand for a period of time to stabilize the voltage, and the voltage at this time is read as V 0 (for example, SOC is 100%).
  • R 0 is the ohmic internal resistance
  • V 0 is the target battery voltage before discharge
  • V 1 is the target battery voltage at the instant when discharge starts
  • I 1 is the discharge current.
  • the total internal polarization resistance of the battery is affected by battery temperature, battery state of charge SOC, and discharge current.
  • the battery temperature T (-30 to 60 ° C), battery state of charge SOC (0 to 100%), and charge and discharge current I are changed. (0.01A to 5A), a polarization resistance model can be obtained.
  • a relationship table between polarization internal resistance and battery temperature T, battery state of charge SOC, and charge / discharge current I can be obtained, as shown in Table 3.
  • Step 2 According to the different time response of the battery discharge type, the total polarization internal resistance R p of the battery is further decomposed into a charge transfer resistance and a diffusion impedance, that is, the polarization internal resistance model is divided into a charge transfer resistance model and a diffusion impedance model.
  • a relational table of battery charge transfer resistance or battery diffusion resistance and battery temperature, battery state of charge SOC, and charge and discharge current can be established.
  • the response relationship between ohmic internal resistance, charge transfer resistance, diffusion resistance and time is as follows:
  • the unit level of ohmic resistance is: subtle to milliseconds (us ⁇ ms); the unit level of charge transfer resistance is: milliseconds to seconds (ms ⁇ s);
  • the unit level of the diffusion impedance is: seconds to minutes (s ⁇ min).
  • the polarization internal resistance is split using the least squares fitting method or Kalman filter algorithm.
  • the equivalent circuit model of the battery can be a second-order equivalent circuit model, the structure is shown in Figure 3, where R 0 describes the ohmic resistance, R 1 , C 1 and R 2 , C 2 describes the polarization effect of the battery, R 1 and R 2 corresponds to the charge transfer resistance and the diffusion resistance, respectively.
  • the selected fitting curve expression is:
  • R 1 , R 2 , C 1 , and C 2 can be obtained from equations (3) and (4), where R 1 is a charge transfer resistance and R 2 is a diffusion resistance.
  • Q is the battery capacity
  • is the charging / discharging efficiency
  • SOC is the state of charge of the battery
  • V 1 and V 2 are the voltage drops of the polarization capacitor.
  • V V oc + V 1 + V 2 + R 0 i (6)
  • V 0, k -V k p 1 [V k-1 -V 0, k-1 ] + p 2 [V k-2 -V 0, k-2 ] + p 3 i k + p 4 i k- 1 + p 5 i k-2 (8)
  • Equation (8) is identified by the Kalman filter algorithm, and the state space of the model parameters can be expressed as:
  • ⁇ k is random interference and ⁇ k is random observation noise.
  • x k [p 1, k , p 2, k , p 3, k , p 4, k , p 5, k ] T (11)
  • x k x k / k-1 + k k y k -C k x k / k-1 (13)
  • y k is the terminal voltage sampling value Vk; I is the identity matrix; x k / k-1 is the predicted value of the state variable; x k is the output value of the state variable; p k / k-1 is the predicted value of the error covariance; p k is the error covariance update value; k k is the filter gain update value.
  • the state optimal estimate x k + 1 obtained according to the Kalman filter algorithm is recursively, and the battery model parameters can be obtained by combining (9).
  • the equivalent circuit model of the battery can be a third-order equivalent circuit model, and its structure is shown in FIG. 4, where R 0 describes the ohmic resistance, R 1 , C 1 , R 2 , C 2 , R 3 , C 3 describes the polarization effect of the battery, and R 1 , R 2 , and R 3 correspond to charge transfer resistance, diffusion resistance 1, and diffusion resistance 2, respectively.
  • the calculation method of the third-order equivalent circuit model is similar to that of the second-order equivalent circuit model, and details are not described herein again.
  • the charge transfer resistance model and the diffusion impedance model are obtained.
  • a relationship table between the charge transfer resistance of the battery and the battery temperature, the SOC of the battery charge state, and the charge-discharge current can be established, as shown in Table 4.
  • the battery diffusion resistance and the battery temperature, the SOC of the battery charge state, and the charge-discharge current can be established. Relation table, as shown in Table 5.
  • the device for estimating the state of charge of the battery determines the current resistance data of the battery to be tested at the current time according to the type of the internal resistance response at the current time, the temperature at the current time, the charge and discharge current at the current time, and the state of charge at the previous time.
  • the corresponding relationship to be called by the device for estimating the state of charge of the battery is also different.
  • the first response type is first determined
  • a second correspondence which is used to indicate the correspondence between the ohmic resistance, temperature, and state of charge of the battery to be measured; determined according to the second correspondence, the temperature at the current moment, and the state of charge at the previous moment
  • the internal resistance data of the battery under test at the current moment is the ohmic resistance at the current moment.
  • a second correspondence relationship and a third correspondence relationship are first determined according to the second response type, and the second correspondence relationship is used to indicate the ohmic resistance and temperature of the battery under test
  • the third correspondence is used to indicate the correspondence between the charge transfer resistance and temperature, the state of charge, and the charge and discharge current of the battery under test; according to the second correspondence, the third correspondence, and the current time
  • the temperature, the charge and discharge current at the current moment, and the state of charge at the previous moment determine the current resistance data of the battery under test at the current moment.
  • the internal resistance data is the sum of the ohmic resistance at the current moment and the charge transfer resistance at the current moment.
  • the current time of the battery under test is the third response type
  • the second correspondence relationship is used to indicate the Correspondence between ohmic resistance and temperature and state of charge.
  • This third correspondence is used to indicate the correspondence between charge transfer resistance of the battery under test and temperature, state of charge, and charge / discharge current.
  • This fourth correspondence is used to indicate Correspondence between the diffusion impedance and temperature, the state of charge, and the charge-discharge current of the battery under test; according to the second correspondence, the third correspondence, the fourth correspondence, the current temperature, the current charge-discharge current, and the The value of the state of charge at a moment determines the internal resistance data of the battery under test at the current time.
  • the internal resistance data is the sum of the ohmic resistance at the current time, the charge transfer resistance at the current time, and the diffusion resistance at the current time.
  • the polarization resistance can be obtained according to the preset polarization resistance correspondence relationship.
  • the polarization resistance is the sum of the charge transfer resistance and the diffusion resistance.
  • the corresponding relationship between the resistances can be split into a third corresponding relationship and a fourth corresponding relationship.
  • the process of determining the internal resistance data is similar, and is not repeated here.
  • the type of the internal resistance response of the battery under test at the current moment is the first response type
  • the type of the internal resistance response of the battery under test at the current time is the second response type, according to the temperature at the current time, the charge and discharge current at the current time, and the state of charge at the previous time in Tables 2 and 4 To find the corresponding internal resistance data respectively.
  • the current temperature is 60 ° C
  • the current charging and discharging current is 0.1A
  • the state of charge at the previous time is 95%
  • the corresponding ohmic resistance of the battery to be tested It is 41.5m ⁇
  • the corresponding charge transfer resistance of the battery under test is 21.105m ⁇ .
  • the type of the internal resistance response of the battery under test at the current time is the third response type, according to the temperature at the current time, the charge and discharge current at the current time, and the state of charge at the previous time in Tables 2 and 4 Find the corresponding ohmic resistance, charge transfer resistance, and diffusion resistance in Table 5.
  • the current temperature is 25 ° C
  • the current charge and discharge current is 0.5A
  • the state of charge at the previous time is 95%.
  • the ohmic resistance corresponding to the battery under test is 81.3m ⁇
  • the charge transfer resistance corresponding to the battery under test is 23.474m ⁇
  • the diffusion impedance corresponding to the battery under test is 83.226m ⁇ .
  • Table 4 and Table 5 are obtained by splitting from Table 3.
  • Internal resistance data at time For example, if the type of the internal resistance response of the battery under test at the current time is the third response type, the values according to the current temperature, the charge and discharge current at the current time, and the state of charge at the previous time are shown in Tables 2 and 3. Find the corresponding ohmic resistance and polarization resistance respectively. Specifically, the current temperature is 25 ° C, the charge and discharge current at the current time is 0.5A, and the state of charge at the previous time is 95%. The ohmic resistance is 81.3m ⁇ , and the polarization resistance corresponding to the battery under test is 106.7m ⁇ .
  • the device for estimating the state of charge of a battery determines the current unavailable power of the battery under test based on the internal resistance data at the current time, the charge and discharge current at the current time, and the temperature at the current time. The state of charge at the time of charge.
  • the device for estimating the state of charge of the battery determines the current resistance voltage of the battery under test according to the current resistance data and the charge and discharge current at the current time; and determines the current resistance voltage and the preset cut-off voltage based on the current resistance voltage and the preset cut-off voltage.
  • the current unavailable voltage of the battery under test; the current unavailable power of the battery under test is determined according to the current unavailable voltage, the current temperature, and a preset fifth correspondence relationship, and the fifth correspondence relationship uses It is used to indicate the correspondence between the open circuit voltage, temperature, and state of charge of the battery to be measured.
  • I is the charge and discharge current at the current moment
  • R is the internal resistance data of the battery to be tested determined in step 204.
  • the cut-off voltage is preset according to the actual situation. Different types of batteries may have different cut-off voltages, which are not limited here.
  • the device for estimating the state of charge of the battery then obtains the unavailable amount of electricity by searching for a fifth correspondence relationship based on the calculated unavailable voltage, where the fifth correspondence relationship may be the battery's open circuit voltage and battery temperature, and the battery charge state SOC.
  • the relationship table is shown in Table 6.
  • Table 6 only lists part of the data. In actual applications, the omitted data can be calculated based on the given data, and details will not be repeated here.
  • the device for estimating the state of charge of the battery determines the value of the state of charge of the battery to be tested at the current time according to the Coulomb power at the current time and the unavailable power at the current time.
  • the device for estimating the state of charge of the battery first determines the starting amount of electricity based on the state of charge SOC start and full charge capacity (FCC) of the battery at the last moment, and then obtains the coulomb (coulomb) capacity (CC) and the calculated unusable capacity (UUC) to calculate the current state of charge value of the battery under test.
  • FCC state of charge SOC start and full charge capacity
  • UUC calculated unusable capacity
  • the device for estimating the state of charge of the battery estimates the state of charge of the current time according to formula (15).
  • SOC start is the state of charge at the previous moment.
  • FCC is full power
  • CC is coulomb power
  • UUC unavailable power.
  • the total internal resistance of the battery is first obtained based on the initial relationship table of the battery temperature, the state of charge of the battery SOC, and the battery current, and then the total internal resistance is further decomposed into ohmic resistance and electric charge according to different time constants through an equivalent circuit model method. Transfer resistance and diffusion impedance are used to obtain a new battery internal resistance model. Factors affecting the internal resistance of the battery, such as discharge time and current, have been fully considered, and a more accurate battery internal resistance model has been established. Then the current temperature of the battery under test, the state of charge SOC of the battery at the previous moment, and the charge and discharge current at the current moment are obtained in real time.
  • the response type of the internal resistance is determined according to the current operating time, and then from the battery according to the above conditions
  • the corresponding internal resistance data is extracted from the internal resistance model, and the unusable power of the battery is accurately calculated through the internal resistance of the battery, and then the current state of charge of the battery, SOC, is accurately estimated.
  • SOC current state of charge of the battery
  • the method for estimating the state of charge of the battery in the embodiment of the present application has been described above.
  • the device for estimating the state of charge of the battery in the embodiment of the present application is described below. Please refer to FIG. 5.
  • the apparatus for estimating the state of charge of the battery in the embodiment of the present application An embodiment of 500 includes:
  • the current sensor 501 is used to obtain the charging and discharging current of the battery to be measured in real time and transmits it to the processor 506;
  • the temperature sensor 502 is configured to obtain the temperature of the battery to be measured in real time and transmit it to the processor 506;
  • the coulomb counter 503 is used to accumulate the current flowing through the battery to be measured, obtain the coulomb power at the current moment and transmit it to the processor 506;
  • the timer 504 is used to obtain the discharge duration of the battery to be measured, and transmits it to the processor 506;
  • the memory 505 is configured to store parameter information of a battery to be tested, where the parameter information includes a state of charge value of a previous moment;
  • the processor 506 is configured to estimate the current state of charge state of the battery to be tested according to the parameter information, the charge and discharge current at the current moment, the temperature at the current moment, and the Coulomb power at the current moment.
  • the accuracy of the estimated value of the battery state of charge is improved by estimating the state of charge of the battery according to the battery internal resistance model with higher accuracy.
  • the memory 505 may further store a first correspondence relationship, where the first correspondence relationship is used to indicate a correspondence relationship between a discharge duration of the battery to be tested and a type of an internal resistance response of the battery to be tested.
  • the memory 505 further stores a second correspondence relationship, a third correspondence relationship, and a fourth correspondence relationship.
  • the second correspondence relationship is used to indicate the ohmic resistance, temperature, and charge of the battery to be tested.
  • Correspondence of state values; this third correspondence is used to indicate the correspondence between charge transfer resistance and temperature, state of charge, and charge / discharge current of the battery under test; this fourth correspondence is used to indicate the battery under test The corresponding relationship between the diffusion impedance and temperature, the state of charge, and the charge and discharge current.
  • the memory 505 may further store data information acquired by the current sensor 501, the temperature sensor 502, the coulomb counter 503, and the timer 504, respectively.
  • the processor 506 is a control center of the apparatus 500 for estimating the state of charge of a battery, and may perform processing according to a set estimation method of the state of charge of the battery.
  • the processor 506 uses various interfaces and lines to connect various parts of the entire battery state-of-charge estimation device, executes or executes software programs and / or modules stored in the memory 505, and calls data stored in the memory 505 to execute Various functions and processing data of the device for estimating the state of charge of the battery, thereby estimating the value of the state of charge of the battery.
  • the memory 505 may be used to store software programs and modules.
  • the processor 506 runs the software programs and modules stored in the memory 505 to execute various functional applications and data processing of the apparatus 500 for estimating the state of charge of the battery.
  • the memory 505 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, an application program (such as a first correspondence relationship, etc.) required for at least one function, and the storage data area may store data according to the use of the device. Created data (such as Coulomb power at the current moment, etc.).
  • the memory 505 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • a non-volatile memory such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • FIG. 6 another embodiment of an apparatus for estimating a state of charge of a battery in an embodiment of the present application includes:
  • the first obtaining unit 601 is configured to obtain, in real time, the current charging / discharging current of the battery to be measured, the temperature of the current time, the Coulomb power of the current time, and the state of charge of the previous time according to a preset time interval. Set the time interval as the time between the previous time and the current time;
  • a second obtaining unit 602 configured to obtain a discharge duration of a battery to be tested, where the discharge duration is a duration of a charge and discharge current;
  • a first determining unit 603, configured to determine the type of the internal resistance response of the battery under test at the current moment according to the discharge duration
  • a second determining unit 604 configured to determine the current resistance data of the battery to be tested at the current time according to the type of the internal resistance response at the current time, the temperature at the current time, the charge and discharge current at the current time, and the state of charge of the previous time;
  • the third determining unit 605 is configured to determine the current unavailable power of the battery under test based on the internal resistance data at the current time, the charge and discharge current at the current time, and the temperature at the current time. The state of charge when the power is released;
  • a fourth determining unit 606 is configured to determine the current state of charge state value of the battery to be tested according to the Coulomb power at the current time and the unavailable power at the current time.
  • the first determining unit 603 is specifically configured to:
  • the type of the internal resistance response of the battery under test at the current moment is determined according to the discharge duration and a preset first correspondence, which is used to indicate the type of the battery discharge duration and the type of internal resistance response of the battery under test. Correspondence.
  • the first correspondence relationship includes:
  • the type of the internal resistance response is a first response type, and the first response type includes an ohmic resistance
  • the type of the internal resistance response is a second response type, and the second response type includes an ohmic resistance and a charge transfer resistance;
  • the type of the internal resistance response is a third response type, and the third response type includes an ohmic resistance, a charge transfer resistance, and a diffusion resistance.
  • the second determining unit 604 is specifically configured to:
  • a second correspondence relationship and a third correspondence relationship are determined according to a second response type, and the second correspondence relationship is used to indicate a correspondence relationship between an ohmic resistance, a temperature, and a state of charge of a battery to be measured, and the third correspondence relationship is used to Indicate the correspondence between the charge transfer resistance and temperature, state of charge, and charge / discharge current of the battery under test;
  • a second correspondence relationship, a third correspondence relationship, and a fourth correspondence relationship are determined according to a third response type.
  • the second correspondence relationship is used to indicate the correspondence relationship between the ohmic resistance, temperature, and state of charge of the battery to be measured.
  • the three correspondences are used to indicate the correspondence between the charge transfer resistance and temperature, the state of charge, and the charge and discharge current of the battery under test.
  • the fourth correspondence is used to indicate the diffusion impedance and temperature, the state of charge, and the charge of the battery to be measured. Corresponding relationship of discharge current;
  • the resistance data is the sum of the ohmic resistance at the current moment, the charge transfer resistance at the current moment, and the diffusion impedance at the current moment.
  • the third determining unit 605 is specifically configured to:
  • the unavailable power at the current time of the battery to be tested is determined according to the unavailable voltage at the current time, the temperature at the current time, and a preset fifth correspondence relationship, which is used to indicate the open circuit voltage and temperature of the battery to be tested, Correspondence between the state of charge values.
  • the fourth determining unit 606 is specifically configured to:
  • the current state of charge status of the battery to be tested is determined according to the remaining power at the current time, the preset full power, and the unavailable power at the current time.
  • the present application also provides a terminal, which includes a battery and a device for estimating a state of charge of the battery;
  • the device for estimating the state of charge of a battery is the device for estimating the state of charge of a battery according to any one of the foregoing embodiments.
  • a structure of the device for estimating the state of charge of a battery refer to the foregoing embodiment, and details are not described herein again.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center. Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • wire for example, coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless for example, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium , Including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROM), random access memories (RAM), magnetic disks or optical disks, and other media that can store program codes .

Abstract

一种电池荷电状态的估计方法及装置,用于提高电池荷电状态的估计值的准确性。本方法包括:根据预置的时间间隔实时获取待测电池的当前时刻的充放电电流、当前时刻的温度、当前时刻的库仑电量和上一时刻的荷电状态值(201);获取待测电池的放电时长(202);根据放电时长确定待测电池的当前时刻的内阻响应的类型(203);根据当前时刻的内阻响应的类型、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据(204);根据当前时刻的内阻数据、当前时刻的充放电电流和当前时刻的温度确定待测电池的当前时刻的不可用电量(205);根据当前时刻的库仑电量和当前时刻的不可用电量确定待测电池的当前时刻的荷电状态值(206)。

Description

一种电池荷电状态的估计方法及装置
本申请要求于2018年6月19日提交中国国家知识产权局、申请号为201810634553.0、发明名称为“一种电池荷电状态的估计方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池管理领域,尤其涉及一种电池荷电状态的估计方法及装置。
背景技术
电池的荷电状态(state of charge,SOC),是电池状态的主要参数之一,其数值定义为电池的剩余容量占电池的总容量的比值。对电池管理系统(battery management system,BMS)而言,判断电池的荷电状态SOC一直是个难题,原因在于:一方面电池荷电状态SOC无法直接测量,只能间接地通过测量电流、电压、温度等外部参数进行估计,并且受到电池充放电率、温度、自放电率、老化寿命、电池的放电截止电压、内阻等多种因素的影响,很难对其做出准确估计;另一方面电池本身是一个非常复杂的电化学体系,其内部电化学关系具有非线性关系,这就使得很难利用所能检测到的有限的外部特征建立关系模型预测电池内部状态。
现有方案中,提供了一种动力电池荷电状态估计方法及系统,选定戴维南(Thevenin)等效电路模型,并向动力电池施加脉冲电流激励,采集动力电池输出电压、电流数据,根据输出电压与时间关系得到脉冲电流激励响应曲线;将激励响应曲线分为A、B、C三段,根据A段激励响应曲线,结合阻容回路的零输入响应表达式以及最小二乘法得到时间常数;根据B段激励响应曲线,结合阻容回路的零状态响应表达式,并将时间常数代入零状态响应表达式,利用最小二乘法得到极化电阻和极化电容;根据C段激励响应曲线利用欧姆定律得到欧姆内阻;根据极化电阻、极化电容和欧姆内阻,利用扩展卡尔曼滤波算法得到动力电池荷电状态的估计值。
由于用户的使用需求和习惯,每种应用的响应时间也差别很大(从以毫秒作为单位到以分作为单位),而随着时间的增加,电池的欧姆内阻、电荷传递电阻、扩散阻抗会依次出现并叠加构成电池的总内阻,电池的总内阻也是随着时间发生变化的。现有方案中并没有考虑电荷传递电阻、扩散阻抗对电池的总内阻的影响,计算得到的电池荷电状态的估计值不准确。
发明内容
本申请实施例提供了一种电池荷电状态的估计方法及装置,用于根据精确度更高的电池内阻模型估计电池荷电状态,提高了电池荷电状态的估计值的准确性。
本申请第一方面提供了一种电池荷电状态的估计方法,包括:根据预置的时间间隔实时获取待测电池的当前时刻的充放电电流、当前时刻的温度、当前时刻的库仑电量和上一时刻的荷电状态值,其中,该预置的时间间隔为上一时刻与当前时刻之间的时长,该预置的时间间隔预先进行配置;获取待测电池的放电时长,该放电时长为充放电电流的持续时长;根据放电时长确定待测电池的当前时刻的内阻响应的类型;根据当前时刻的内阻响应的类型、当 前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据;根据当前时刻的内阻数据、当前时刻的充放电电流和当前时刻的温度确定待测电池的当前时刻的不可用电量,该不可用电量为待测电池不能释放电量时的荷电状态值;根据当前时刻的库仑电量和当前时刻的不可用电量确定待测电池的当前时刻的荷电状态值。根据温度、SOC、电流、放电时长对电池的电阻的影响,建立更准确的电池内阻模型,根据待测电池的内阻响应的类型和更准确的电池的内阻模型获取准确的待测电池的内阻数据,再根据该过内阻数据准确计算出电池的不可用电量,进而准确估算出电池当前电池荷电状态。
在一种可能的设计中,在本申请实施例第一方面的第一种实现方式中,根据放电时长确定待测电池的当前时刻的内阻响应的类型包括:根据放电时长和预置的第一对应关系确定待测电池的当前时刻的内阻响应的类型,该第一对应关系用于指示待测电池的放电时长和待测电池的内阻响应的类型的对应关系。根据待测电池的放电时长和待测电池的内阻响应的类型的对应关系,以及当前时刻的放电时长确定对应的内阻响应的类型的过程,增加了本申请的实现方式。
在一种可能的设计中,在本申请实施例第一方面的第二种实现方式中,第一对应关系包括:当放电时长小于或等于第一阈值时,内阻响应的类型为第一响应类型,该第一响应类型包含欧姆电阻;当放电时长大于第一阈值且小于或等于第二阈值时,内阻响应的类型为第二响应类型,该第二响应类型包含欧姆电阻和电荷传递电阻;当放电时长大于第二阈值时,内阻响应的类型为第三响应类型,该第三响应类型包含欧姆电阻、电荷传递电阻和扩散阻抗。对放电时长与内阻响应的类型的关系进行了细化,明确了放电时长的长短与内阻响应的类型的对应关系。
在一种可能的设计中,在本申请实施例第一方面的第三种实现方式中,根据当前时刻的内阻响应的类型、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据包括:根据第一响应类型确定第二对应关系,该第二对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系;根据第二对应关系、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据,该内阻数据为当前时刻的欧姆电阻。对确定待测电池的当前时刻的欧姆电阻的过程进行了细化,增加了本申请的实现方式。
在一种可能的设计中,在本申请实施例第一方面的第四种实现方式中,根据当前时刻的内阻响应的类型、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据包括:根据第二响应类型确定第二对应关系和第三对应关系,该第二对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系,该第三对应关系用于指示待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系;根据第二对应关系、第三对应关系、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据,该内阻数据为当前时刻的欧姆电阻与当前时刻的电荷传递电阻之和。对确定待测电池的当前时刻的欧姆电阻和电荷传递电阻的过程进行了细化,增加了本申请的实现方式。
在一种可能的设计中,在本申请实施例第一方面的第五种实现方式中,根据当前时刻的内阻响应的类型、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待 测电池的当前时刻的内阻数据包括:根据第三响应类型确定第二对应关系、第三对应关系和第四对应关系,该第二对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系,该第三对应关系用于指示待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系,该第四对应关系用于指示待测电池的扩散阻抗和温度、荷电状态值、充放电电流的对应关系;根据第二对应关系、第三对应关系、第四对应关系、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据,该内阻数据为当前时刻的欧姆电阻、当前时刻的电荷传递电阻和当前时刻的扩散阻抗之和。对确定待测电池的当前时刻的欧姆电阻、电荷传递电阻和扩散阻抗的过程进行了细化,增加了本申请的实现方式。
在一种可能的设计中,在本申请实施例第一方面的第六种实现方式中,根据当前时刻的内阻数据、当前时刻的充放电电流和当前时刻的温度确定待测电池的当前时刻的不可用电量包括:根据当前时刻的内阻数据和当前时刻的充放电电流确定待测电池的当前时刻的内阻电压,该内阻电压为待测电池的内阻引起的电压损耗;根据当前时刻的内阻电压和预置的截止电压确定待测电池的当前时刻的不可用电压;根据当前时刻的不可用电压、当前时刻的温度和预置的第五对应关系确定待测电池的当前时刻的不可用电量,第五对应关系用于指示待测电池的开路电压和温度、荷电状态值的对应关系。对不可用电量的确定过程进行了详细说明,使本申请在步骤上更完善,更具有逻辑性。
在一种可能的设计中,在本申请实施例第一方面的第七种实现方式中,根据当前时刻的库仑电量和当前时刻的不可用电量确定待测电池的当前时刻的荷电状态值包括:根据预置的满电量、上一时刻的荷电状态值和第五对应关系确定起始电量,该起始电量为待测电池的上一时刻的电量;根据起始电量、当前时刻的库仑电量和当前时刻的不可用电量确定待测电池的当前时刻的剩余电量;根据当前时刻的剩余电量、预置的满电量和当前时刻的不可用电量确定待测电池的当前时刻的荷电状态值。对荷电状态的估算过程进行了详细说明,使得荷电状态的估算过程更容易实现。
本申请第二方面提供了一种电池荷电状态的估计装置,包括:电流传感器、温度传感器、库仑计、计时器、存储器和处理器;该电流传感器用于实时获取待测电池的充放电电流并传输至处理器;该温度传感器用于实时获取待测电池的温度并传输至处理器;该库仑计用于累积待测电池流经的电流,得到当前时刻的库仑电量并传输至处理器;该计时器用于获取待测电池的放电时长,并传输至处理器;该存储器用于存储待测电池的参数信息,参数信息包括上一时刻的荷电状态值;该处理器用于根据参数信息、当前时刻的充放电电流、当前时刻的温度和当前时刻的库仑电量估计待测电池的当前时刻的荷电状态值。提供了一种电池荷电状态的估计装置的具体硬件结构组成,对每个硬件结构的功能进行了描述。
在一种可能的设计中,在本申请实施例第二方面的第一种实现方式中,参数信息还包括:第一对应关系,第一对应关系用于指示待测电池的放电时长和待测电池的内阻响应的类型的对应关系。增加了在存储器中存储的第一对应关系,增加了本申请的实现方式。
在一种可能的设计中,在本申请实施例第二方面的第二种实现方式中,参数信息还包括:第二对应关系,第三对应关系和第四对应关系;该第二对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系;该第三对应关系用于指示待测电池的电荷传递电阻和温 度、荷电状态、充放电电流的对应关系;该第四对应关系用于指示待测电池的扩散阻抗和温度、荷电状态值、充放电电流的对应关系。增加了在存储器中存储的第二对应关系、第三对应关系、第四对应关系,增加了本申请的实现方式。
本申请第三方面提供了一种电池荷电状态的估计装置,包括:第一获取单元,用于根据预置的时间间隔实时获取待测电池的当前时刻的充放电电流、当前时刻的温度、当前时刻的库仑电量和上一时刻的荷电状态值,其中,该预置的时间间隔为上一时刻与当前时刻之间的时长;第二获取单元,用于获取待测电池的放电时长,放电时长为充放电电流的持续时长;第一确定单元,用于根据放电时长确定待测电池的当前时刻的内阻响应的类型;第二确定单元,用于根据当前时刻的内阻响应的类型、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据;第三确定单元,用于根据当前时刻的内阻数据、当前时刻的充放电电流和当前时刻的温度确定待测电池的当前时刻的不可用电量,该不可用电量为待测电池不能释放电量时的荷电状态值;第四确定单元,用于根据当前时刻的库仑电量和当前时刻的不可用电量确定待测电池的当前时刻的荷电状态值。根据温度、SOC、电流、放电时长对电池的电阻的影响,建立更准确的电池内阻模型,根据待测电池的内阻响应的类型和更准确的电池的内阻模型获取准确的待测电池的内阻数据,再根据该过内阻数据准确计算出电池的不可用电量,进而准确估算出电池当前电池荷电状态。
在一种可能的设计中,在本申请实施例第三方面的第一种实现方式中,第一确定单元具体用于:根据放电时长和预置的第一对应关系确定待测电池的当前时刻的内阻响应的类型,该第一对应关系用于指示待测电池的放电时长和待测电池的内阻响应的类型的对应关系。根据待测电池的放电时长和待测电池的内阻响应的类型的对应关系,以及当前时刻的放电时长确定对应的内阻响应的类型的过程,增加了本申请的实现方式。
在一种可能的设计中,在本申请实施例第三方面的第二种实现方式中,第一对应关系包括:当放电时长小于或等于第一阈值时,内阻响应的类型为第一响应类型,该第一响应类型包含欧姆电阻;当放电时长大于第一阈值且小于或等于第二阈值时,内阻响应的类型为第二响应类型,该第二响应类型包含欧姆电阻和电荷传递电阻;当放电时长大于第二阈值时,内阻响应的类型为第三响应类型,该第三响应类型包含欧姆电阻、电荷传递电阻和扩散阻抗。对放电时长与内阻响应的类型的关系进行了细化,明确了放电时长的长短与内阻响应的类型的对应关系。
在一种可能的设计中,在本申请实施例第三方面的第三种实现方式中,第二确定单元具体用于:根据第一响应类型确定第二对应关系,该第二对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系;根据第二对应关系、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据,该内阻数据为当前时刻的欧姆电阻;或者,根据第二响应类型确定第二对应关系和第三对应关系,该第二对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系,该第三对应关系用于指示待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系;根据第二对应关系、第三对应关系、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据,该内阻数据为当前时刻的欧姆电阻与当前时刻的电荷传递电阻之和;或者,根据第三响应类型确定第二对应关系、第三对应关系和第四对应关系,该第二 对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系,该第三对应关系用于指示待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系,该第四对应关系用于指示待测电池的扩散阻抗和温度、荷电状态值、充放电电流的对应关系;根据第二对应关系、第三对应关系、第四对应关系、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据,该内阻数据为当前时刻的欧姆电阻、当前时刻的电荷传递电阻和当前时刻的扩散阻抗之和。对确定待测电池的当前时刻的欧姆电阻、电荷传递电阻和扩散阻抗的过程进行了细化,增加了本申请的实现方式。
在一种可能的设计中,在本申请实施例第三方面的第四种实现方式中,第三确定单元具体用于:根据当前时刻的内阻数据和当前时刻的充放电电流确定待测电池的当前时刻的内阻电压,该内阻电压为待测电池的内阻引起的电压损耗;根据当前时刻的内阻电压和预置的截止电压确定待测电池的当前时刻的不可用电压;根据当前时刻的不可用电压、当前时刻的温度和预置的第五对应关系确定待测电池的当前时刻的不可用电量,该第五对应关系用于指示待测电池的开路电压和温度、荷电状态值的对应关系。对不可用电量的确定过程进行了详细说明,使本申请在步骤上更完善,更具有逻辑性。
在一种可能的设计中,在本申请实施例第三方面的第五种实现方式中,第四确定单元具体用于:根据预置的满电量、上一时刻的荷电状态值和第五对应关系确定起始电量,该起始电量为待测电池的上一时刻的电量;根据起始电量、当前时刻的库仑电量和当前时刻的不可用电量确定待测电池的当前时刻的剩余电量;根据当前时刻的剩余电量、预置的满电量和当前时刻的不可用电量确定待测电池的当前时刻的荷电状态值。对荷电状态的估算过程进行了详细说明,使得荷电状态的估算过程更容易实现。
本申请的第四方面提供了一种终端,包括:
电池和电池荷电状态的估计装置;
所述电池荷电状态的估计装置为如上述第三方面中任一项所述的电池荷电状态的估计装置。
本申请的第五方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的第六方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1A为电池的温度对电池的电阻大小的影响示意图;
图1B为电池的荷电状态和电流大小对电池的电阻大小的影响示意图;
图1C为放电时长对电池的电阻大小的影响示意图;
图2为本申请实施例中电池荷电状态的估计方法的一个实施例示意图;
图3为本申请实施例中二阶等效电路的一个示意图;
图4为本申请实施例中三阶等效电路的一个示意图;
图5为本申请实施例中电池荷电状态的估计装置的一个实施例示意图;
图6为本申请实施例中电池荷电状态的估计装置的另一个实施例示意图。
具体实施方式
本申请实施例提供了一种电池荷电状态的估计方法及装置,用于根据精确度更高的电池内阻模型估计电池荷电状态,提高了电池荷电状态的估计值的准确性。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例进行描述。
本申请文件中提及的“第一”或“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,本申请文件中提及的“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
现有方案中提供了一种电池的内阻的测量方法,在各个环境温度下对第一电池进行放电性能测试得到不同荷电状态对应的电流值和电压值;在不同荷电状态下根据电池等效电路模型计算对应的电流值和电压值得到不同荷电状态对应的直流内阻;根据各环境温度下不同荷电状态对应的直流内阻进行多项式拟合以建立直流内阻估算的数学模型;数学模型指示直流内阻、荷电状态与温度之间的关系;利用数学模型在已知环境温度和第二电池荷电状态的情况下估算第二电池的直流内阻。由此,通过建立直流内阻估算的数学模型,基于温度和电池的荷电状态实现对直流电阻的估算,提高了电池直流内阻估算的准确性。
可以理解的是,电池内阻受到多个因素的影响如下:
1、随着温度的降低,电池内阻逐渐增大,尤其是在低温环境下,电池内阻会出现激增,如图1A所示;
2、在10%~100%SOC范围内,电池内阻出现小幅度波动,但是当SOC降低至10%SOC以下时,电池内阻出现激增,如图1B所示;
3、由于用户的使用需求和习惯,每种应用的响应时间也差别很大(从ms级别到min级别),而随着时间的增加,电池的欧姆内阻、电荷传递电阻、扩散阻抗会依次出现并叠加构成电池内阻,电池内阻也是随着时间发生变化的,如图1C所示。
4、移动终端产品应用种类繁多,每种应用运行时的峰值电流和均值电流均不相同,通常随着电流的增加,电池内阻也会降低,如图1B所示。
如何准确地获取电池内阻,是精确估计电池荷电状态(state of charge,SOC)的关键。现有方案仅考虑了温度和荷电状态两个因素,建立了内阻-温度、SOC二维数据表,而并未考虑电流、时间等因素对电池内阻的影响,导致估算的电池荷电状态值不准确。因此本申请提供了一种电池荷电状态的估计方法及装置,根据精确度更高的电池内阻模型估计电池荷电状态,提高电池荷电状态的估计值的准确性。需要说明的是,该电池内阻模型考虑了温度、荷电状态、电流和时间等因素对电池内阻的影响,得到的电池内阻更准确,从而估算得到更准确的荷电状态值。
为了便于描述,本申请实施例中,以锂电池为例进行说明,本申请的方案还可以应用其他类型的电池中,包括但不限于锂电池,例如,还可以应用在锂金属-空气电池、铅酸电池、镍氢电池、镍镉电池等,具体此处不做限定。
为便于理解,下面对本申请实施例的具体流程进行描述,请参阅图2,本申请实施例中 电池荷电状态的估计方法的一个实施例包括:
201、根据预置的时间间隔实时获取待测电池的当前时刻的充放电电流、当前时刻的温度、当前时刻的库仑电量和上一时刻的荷电状态值。
电池荷电状态的估计装置根据预置的时间间隔实时获取待测电池的当前时刻的充放电电流、当前时刻的温度、当前时刻的库仑电量和上一时刻的荷电状态值,其中,预置的时间间隔为上一时刻与当前时刻之间的时长,库仑电量为从上一时刻至当前时刻待测电池累积消耗的电量。
具体的,电池荷电状态的估计装置每隔3秒获取待测电池的当前时刻的状态信息,该状态信息包括待测电池的当前时刻的充放电电流、当前时刻的温度和当前时刻的库仑电量。例如,电池荷电状态的估计装置进行计时,从0秒开始,当记录的时间为3秒时,获取与电池荷电状态的估计装置连接的待测电池的充放电电流、温度和库仑电量;当记录的时间为6秒时,再次获取待测电池的充放电电流、温度和库仑电量。电池荷电状态的估计装置获取上一时刻的荷电状态值,例如,当前时刻为6秒,则电池荷电状态的估计装置获取待测电池在3秒时的荷电状态值,其中,该荷电状态值为事先配置并存储在电池荷电状态的估计装置中。
可以理解的是,不同时刻待测电池的状态信息不完全相同,例如,当时间为3秒时,待测电池的充放电电流可以为0.1A,温度为40℃,库仑电量为0.3C;当时间为6秒时,待测电池的充放电电流可以为0.1A,温度为40℃,库仑电量为0.6C。
需要说明的是,电池荷电状态的估计装置可以根据实际需要设置时间间隔,例如,时间间隔可以是2秒、4秒或8秒等,还可以是1分钟、5分钟等,具体此处不做限定。
202、获取待测电池的放电时长。
电池荷电状态的估计装置获取待测电池的放电时长,该放电时长为从开始时刻截止到当前时刻待测电池已经持续放电的持续时长。
每一个时间间隔为一个检测周期,放电时长可以为大于一个检测周期的充放电电流的持续时长,放电时长还可以为小于一个检测周期的充放电电流的持续时长,放电时长和检测周期没有关联关系。将从放电开始时刻至当前时刻之间的时长作为放电时长。其中,充放电电流可以为平均电流或尖峰电流,不同的应用场景中,检测到的放电时长不相同,例如,当待测电池所属的终端处于开机场景时,尖峰电流为3000毫安,尖峰电流的持续时长为800毫秒,平均电流为1500毫安,平均电流的持续时长为20000毫秒。若将平均电流作为充放电电流,则放电时长为20000毫秒;若将尖峰电流作为充放电电流,则放电时长为800毫秒。当待测电池所属的终端处于关机场景时,尖峰电流为1500毫安,尖峰电流的持续时长为200毫秒,平均电流为600毫安,平均电流的持续时长为5200毫秒。若将平均电流作为充放电电流,则放电时长为5200毫秒;若将尖峰电流作为充放电电流,则放电时长为200毫秒。
需要说明的是,根据设置的时间间隔的大小,选择尖峰电流或平均电流作为充放电电流,例如,预置的时间间隔为3秒时,将尖峰电流作为充放电电流,不同的应用场景下的尖峰电流的持续时间都在3秒内;预置的时间间隔为60秒时,将平均电流作为充放电电流,不同的应用场景下的平均电流的持续时间都在60秒内,便于根据放电时长区分不同的应用场景。
203、根据放电时长确定待测电池的当前时刻的内阻响应的类型。
电池荷电状态的估计装置根据放电时长确定待测电池的当前时刻的内阻响应的类型。具 体的,电池荷电状态的估计装置根据放电时长和预置的第一对应关系确定待测电池的当前时刻的内阻响应的类型,其中,第一对应关系用于指示待测电池的放电时长和待测电池的内阻响应的类型的对应关系。
需要说明的是,放电时长的大小决定了待测电池的内阻响应的类型。当放电时长的单位为毫秒时,待测电池的内阻响应的类型为第一响应类型,其中,第一响应类型包含欧姆电阻;当放电时长的单位为秒时,待测电池的内阻响应的类型为第二响应类型,其中,第二响应类型包含欧姆电阻和电荷传递电阻;当放电时长的单位为分时,待测电池的内阻响应的类型为第三响应类型,其中,第三响应类型包含欧姆电阻、电荷传递电阻和扩散阻抗。随着放电时长的增加,待测电池的电阻也会增加,本领域技术人员根据本领域公知常识可以得到该对应关系,具体此处不再赘述。
例如,某产品实测各个应用场景的尖峰电流值和平均电流值,以及每种场景的持续时长如表1所示。以平均电流作为充放电电流为例进行说明,当进行普通拍照、桌面滑动等操作时,平均电流的放电时长小于或等于第一阈值时,第一阈值可以为1000毫秒,即平均电流的持续时长在1至1000毫秒时,此时只有欧姆电阻来得及响应,待测电池到的内阻响应的类型为欧姆电阻响应。当进行待机到桌面、关机等操作时,平均电流的放电时长大于第一阈值且小于或等于第二阈值时,第二预置为10000毫秒,即平均电流的持续时长在1000毫秒至10000毫秒,此时待测电池在欧姆电阻响应之后还有电荷传递电阻的响应,待测电池的内阻响应的类型为欧姆电阻响应和电荷传递电阻响应。当进行电话接听、网页浏览、本地视频播放、游戏外放最大音量、外放最大音量导航、开机等操作时,待测电池的平均电流的持续时长大于第二阈值时,即平均电流的持续时长在10000毫秒以上,此时除了欧姆电阻和电荷传递电阻的响应,还有扩散阻抗的响应,因此判断其内阻响应的类型为欧姆电阻响应、电荷传递电阻响应和扩散阻抗响应。可以理解的是,还可以有其他的应用场景,对应不同的尖峰电流和平均电流、尖峰电流的持续时长以及平均电流的持续时长,并且第一阈值和第二阈值可以根据实际情况进行设置,具体此处不再赘述。
表1:
应用场景 尖峰电流/mA 持续时间/ms 平均电流/mA 持续时间/ms
开机 3000 800 1500 20000
关机 1500 200 600 5200
待机到桌面 1400 150 600 2500
桌面滑动 660 25 420 520
电话接听 2000 350 520 30000
网页浏览 1600 900 520 50000
普通拍照 4000 3 2400 10
本地视频播放 1400 260 520 33000
游戏外放最大音量 2600 350 840 30000
外放最大音量导航 2200 100 640 240000
需要说明的是,在确定内阻响应的类型之前,需要基于电池温度、电池荷电状态、电池充放电电流的初始关系表获取电池总内阻,通过等效电路模型方法将总内阻依据时间常数不 同进一步分解为欧姆电阻、极化电阻(即电荷传递电阻和扩散阻抗),得到欧姆电阻模型、极化电阻模型(即电荷传递电阻模型和扩散阻抗模型),本申请根据欧姆电阻模型、电荷传递电阻模型和扩散阻抗模型确定待测电池的当前时刻需要调用的模型。
下面对欧姆电阻模型、极化电阻模型(电荷传递电阻模型和扩散阻抗模型)的得到过程进行说明:
1、得到欧姆电阻模型的过程如下:
利用开路电压法对选定的电池进行测试,具体的测试步骤如下:
(1)通过恒流-恒压充电的方式将电池满充,将电池静置一段时间使电压达到稳定,读取此时的电压为V 0(例如SOC为100%)。
(2)将电池以恒定电流I 1放电至固定荷电状态(例如SOC为95%),读取放电开始时(例如放电时间0.1s)的电压为V 1,读取放电结束时的电压为V 2,将电池静置一段时间使电压达到稳定。
(3)重复上述步骤(2),直至电池的SOC降至0%。
(4)改变电池的测试温度和放电电流,进行上述步骤(1)~(3)测试,即可得到不同温度、不同电流、不同SOC条件下的欧姆内阻。
欧姆内阻计算公式为:
R 0=(V 0-V 1)/I 1
其中,R 0为欧姆内阻,V 0为放电前的电池电压,V 1为放电开始瞬间的电池电压,I 1为放电电流。
电池放电瞬间产生的明显电压降,是由欧姆内阻引起的。同时欧姆内阻R 0不随放电电流发生改变,改变电池温度T和电池荷电状态SOC的测试条件,即可得到欧姆电阻模型,例如,可以得到欧姆内阻和电池温度T、电池荷电状态SOC的关系表,如表2所示。
表2:
Figure PCTCN2019088992-appb-000001
2、得到极化电阻模型的过程如下:
步骤一、利用开路电压法对选定的目标电池进行测试,具体的测试步骤如下:
(1)通过恒流-恒压充电的方式将目标电池满充,将目标电池静置一段时间使电压达到稳定,读取此时的电压为V 0(例如SOC为100%)。
(2)将目标电池以恒定电流I 1放电至固定荷电状态(例如SOC为95%),读取放电开始时(例如放电时间0.1s)的电压为V 1,读取放电结束时的电压为V 2,将目标电池静置一段时间使电压达到稳定。
(3)重复上述步骤(2),直至目标电池的SOC降至0%。
(4)改变目标电池的测试温度和放电电流,进行上述步骤(1)~(3)测试,即可得到不同温度、不同电流、不同SOC条件下的极化内阻。
极化内阻计算公式为:
R p=(V 0-V 2)/I 1
其中,R 0为欧姆内阻,V 0为放电前的目标电池电压,V 1为放电开始瞬间的目标电池电压,I 1为放电电流。
电池总的极化内阻受到电池温度、电池荷电状态SOC、放电电流的影响,改变电池温度T(-30~60℃)、电池荷电状态SOC(0~100%)、充放电电流I(0.01A~5A),即可得到极化电阻模型,例如,可获得极化内阻和电池温度T、电池荷电状态SOC、充放电电流I的关系表,如表3所示。
表3:
Figure PCTCN2019088992-appb-000002
步骤二、根据电池放电类型的时间响应不同,将电池总的极化内阻R p进一步分解为电荷传递电阻和扩散阻抗,即将极化内阻模型拆分为电荷传递电阻模型和扩散阻抗模型,例如,可以建立电池电荷传递电阻或电池扩散阻抗和电池温度、电池荷电状态SOC、充放电电流的关系表。
(1)根据放电时长确定极化内阻的子类型。
欧姆内阻、电荷传递电阻、扩散阻抗和时间的响应关系如下:欧姆电阻的单位级别为:微妙至毫秒(us~ms);电荷传递电阻的单位级别为:毫秒至秒(ms~s);扩散阻抗的单位级别为:秒至分(s~min)。
(2)根据等效电路模型,采用最小二乘拟合法或卡尔曼滤波算法对极化内阻进行拆分。
电池的等效电路模型可以为二阶等效电路模型,结构如图3所示,其中R 0描述欧姆电阻,R 1、C 1和R 2、C 2描述电池的极化效应,R 1和R 2分别对应电荷传递电阻和扩散阻抗。
当采用最小二乘拟合法拆分上述二阶等效电路模型时,计算电荷传递电阻和扩散阻抗的方法如下:
当锂离子电池处于放电状态下,其电压输出为:
Figure PCTCN2019088992-appb-000003
选取的拟合曲线表达式为:
Figure PCTCN2019088992-appb-000004
采用最小二乘拟合法在软件中对参数进行拟合,得到式(2)中的参数k0、k1、k2、λ1、λ2。
由式(1)和(2)可知,
Figure PCTCN2019088992-appb-000005
Figure PCTCN2019088992-appb-000006
由式(3)和(4)可以得到参数R 1、R 2、C 1、C 2的值,其中,R 1为电荷传递电阻,R 2为扩散阻抗。
当采用卡尔曼滤波算法拆分上述二阶等效电路模型时,计算电荷传递电阻和扩散阻抗的方法如下:
对于二阶RC等效电路模型,电池的状态方程为:
Figure PCTCN2019088992-appb-000007
其中,Q为电池容量;η为充/放电效率;SOC为电池荷电状态;V 1、V 2为极化电容压降。
测量方程:
V=V oc+V 1+V 2+R 0i   (6)
电池开路电压与SOC的关系:
Figure PCTCN2019088992-appb-000008
当采样周期为T时,测量方程(6)可改写为:
V 0,k-V k=p 1[V k-1-V 0,k-1]+p 2[V k-2-V 0,k-2]+p 3i k+p 4i k-1+p 5i k-2   (8)
各参数关系如式(9)所示:
Figure PCTCN2019088992-appb-000009
对式(8)采用卡尔曼滤波算法进行辨识,模型参数的状态空间可表达为:
x k=x k-1k
y k=C kx kk   (10)
其中ξ k为随机干扰,χ k为随机观测噪声。
y k=V 0,k-V k
C k=[V k-1-V 0,k-1,V k-2-V 0,k-2,i k,i k-1,i k-2]
x k=[p 1,k,p 2,k,p 3,k,p 4,k,p 5,k] T     (11)
系统干扰ξ k、观测噪声χ k和状态变量初始值x 0的统计特性如下:
E{ξ k}=0,E{χ k}=0,E{x 0}=μ 0
E{[x 00][x 00] T}=p 0
Figure PCTCN2019088992-appb-000010
Figure PCTCN2019088992-appb-000011
以u 0、p 0分别作为状态变量和误差方差矩阵初始值,启动递推算法。算法递推过程如下:
x k=x k-1
P k/k-1=P k-1+M
Figure PCTCN2019088992-appb-000012
P k=[I-k kC k]P k/k-1
x k=x k/k-1+k ky k-C kx k/k-1   (13)
其中:y k为端电压采样值Vk;I为单位矩阵;x k/k-1为状态变量预测值;x k为状态变量输出值;p k/k-1为误差协方差预测值;p k为误差协方差更新值;k k为滤波增益更新值。
根据卡尔曼滤波算法递推获得的状态最优估计x k+1,结合式(9)即可求得电池模型参数。
需要说明的是,电池的等效电路模型可以为三阶等效电路模型,其结构如图4所示,其中R 0描述欧姆电阻,R 1、C 1,R 2、C 2,R 3、C 3描述电池的极化效应,R 1、R 2、R 3分别对应为电荷传递电阻、扩散阻抗1和扩散阻抗2。三阶等效电路模型的计算方法与二阶等效电路模型的计算方法类似,具体此处不再赘述。
(3)得到电荷传递电阻模型和扩散阻抗模型。例如,可以建立电池电荷传递电阻和电池温度、电池荷电状态SOC、充放电电流的关系表,如表4所示;可以建立电池扩散阻抗和电池温度、电池荷电状态SOC、充放电电流的关系表,如表5所示。
表4:
Figure PCTCN2019088992-appb-000013
Figure PCTCN2019088992-appb-000014
表5:
Figure PCTCN2019088992-appb-000015
204、根据当前时刻的内阻响应的类型、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据。
电池荷电状态的估计装置根据当前时刻的内阻响应的类型、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据。
需要说明的是,不同的内阻响应的类型,电池荷电状态的估计装置需要调用的对应关系也不同,例如,当待测电池当前时刻为第一响应类型时,先根据第一响应类型确定第二对应关系,该第二对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系;根据第二对应关系、当前时刻的温度和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据,内阻数据为当前时刻的欧姆电阻。
又例如,当待测电池当前时刻为第二响应类型时,先根据第二响应类型确定第二对应关系和第三对应关系,该第二对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系,该第三对应关系用于指示待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系;根据第二对应关系、第三对应关系、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据,内阻数据为当前时刻的欧姆电阻与当前时刻的电荷传递电阻之和。
又例如,当待测电池当前时刻为第三响应类型时,先根据第三响应类型确定第二对应关系、第三对应关系和第四对应关系,该第二对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系,该第三对应关系用于指示待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系,该第四对应关系用于指示待测电池的扩散阻抗和温度、荷电状态值、充放电电流的对应关系;根据第二对应关系、第三对应关系、第四对应关系、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据,内阻数据为当前时刻的欧姆电阻、当前时刻的电荷传递电阻和当前时刻的扩散阻抗之和。需要说明的是,当待测电池当前时刻为第三响应类型时,可以根据预置的极化电阻对应关系得到极化电阻,极化电阻为电荷传递电阻与扩散阻抗之和,预置的极化电阻对应关系可以拆分为第三对应关系和第四对应关系,确定内阻数据的过程类似,此处不再赘述。
举例说明,若待测电池在当前时刻的内阻响应的类型为第一响应类型,则根据当前时刻的温度和上一时刻的荷电状态值在表2中查找对应的内阻数据,具体的,当前时刻的温度为40℃,上一时刻的荷电状态值为90%,则待测电池对应的欧姆电阻为41.3mΩ。又例如,若待测电池在当前时刻的内阻响应的类型为第二响应类型,则根据当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值在表2和表4中分别查找对应的内阻数据,具体的,当前时刻的温度为60℃,当前时刻的充放电电流为0.1A,上一时刻的荷电状态值为95%,则待测电池对应的欧姆电阻为41.5mΩ、待测电池对应的电荷传递电阻为21.105mΩ。又例如,若待测电池在当前时刻的内阻响应的类型为第三响应类型,则根据当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值在表2、表4和表5中分别查找对应的欧姆电阻、电荷传递电阻、扩散阻抗,具体的,当前时刻的温度为25℃,当前时刻的充放电电流为0.5A,上一时刻的荷电状态值为95%,则待测电池对应的欧姆电阻为81.3mΩ、待测电池对应的电荷传递电阻为23.474mΩ,待测电池对应的扩散阻抗为83.226mΩ。
可以理解的是,表4和表5由表3拆分得到,当为第三响应类型时,也可以直接查找表3得到极化内阻,再与查找表2得到的欧姆电阻相加得到当前时刻的内阻数据。例如,若待测电池在当前时刻的内阻响应的类型为第三响应类型,则根据当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值在表2、表3中分别查找对应的欧姆电阻和极化电阻,具体的,当前时刻的温度为25℃,当前时刻的充放电电流为0.5A,上一时刻的荷电状态值为95%,则待测电池对应的欧姆电阻为81.3mΩ、待测电池对应的极化电阻为106.7mΩ。
205、根据当前时刻的内阻数据、当前时刻的充放电电流和当前时刻的温度确定待测电池的当前时刻的不可用电量。
电池荷电状态的估计装置根据当前时刻的内阻数据、当前时刻的充放电电流和当前时刻的温度确定待测电池的当前时刻的不可用电量,该不可用电量为待测电池不能释放电量时的荷电状态值。
具体的,电池荷电状态的估计装置根据当前时刻的内阻数据和当前时刻的充放电电流确定待测电池的当前时刻的内阻电压;根据当前时刻的内阻电压和预置的截止电压确定待测电池的当前时刻的不可用电压;根据当前时刻的不可用电压、当前时刻的温度和预置的第五对应关系确定待测电池的当前时刻的不可用电量,该第五对应关系用于指示待测电池的开路电压和温度、荷电状态值的对应关系。
可以根据如下公式(14)进行计算:
不可用电压=I*R+截止电压;(14)
其中,I为当前时刻的充放电电流,R为步骤204中确定的待测电池的内阻数据。截止电压为根据实际情况预先设置的,不同型号的电池可能有不同的截止电压,具体此处不做限定。
电池荷电状态的估计装置再根据计算得到的不可用电压,通过查找第五对应关系得到不可用电量,其中,第五对应关系可以为电池的开路电压和电池温度、电池荷电状态SOC的关系表,如表6所示。
表6:
Figure PCTCN2019088992-appb-000016
需要说明的是,表6仅列出了部分数据,实际应用中可以根据给出的数据计算得到省略部分的数据,具体此处不再赘述。
206、根据当前时刻的库仑电量和当前时刻的不可用电量确定待测电池的当前时刻的荷电状态值。
电池荷电状态的估计装置根据当前时刻的库仑电量和当前时刻的不可用电量确定待测电池的当前时刻的荷电状态值。
具体的,电池荷电状态的估计装置先根据待测电池的上一时刻的荷电状态值SOC start和满电量(full charge capacity,FCC)确定起始电量,再通过获取到的库仑电量(coulomb capacity,CC)以及计算得到的不可用电量(unusable capacity,UUC)计算得到待测电池当前时刻的荷电状态值。
例如,电池荷电状态的估计装置根据公式(15)估算当前时刻的荷电状态值。
Figure PCTCN2019088992-appb-000017
其中,SOC start为上一时刻的荷电状态,根据表6得到,FCC为满电量,CC为库仑电量,UUC为不可用电量。
本申请实施例,首先基于电池温度、电池荷电状态SOC、电池电流的初始关系表获取电池总内阻,再通过等效电路模型方法将总内阻依据时间常数不同进一步分解为欧姆电阻、电荷传递电阻和扩散阻抗,得到新的电池内阻模型。充分考虑了放电时长和电流大小等影响电池内阻的因素,建立了更为精确的电池内阻模型。再实时获取待测电池的当前时刻的温度、待测电池上一时刻的荷电状态SOC、当前时刻的充放电电流,先根据当前运行时间确定内阻的响应类型,再根据上述条件从该电池内阻模型中提取相应的内阻数据,通过电池内阻准确计算出电池的不可用电量,进而准确估算出电池当前时刻的电池荷电状态SOC。通过根据精确度更高的电池内阻模型估计电池荷电状态,提高了电池荷电状态的估计值的准确性。
上面对本申请实施例中电池荷电状态的估计方法进行了描述,下面对本申请实施例中电池荷电状态的估计装置进行描述,请参阅图5,本申请实施例中电池荷电状态的估计装置500的一个实施例包括:
电流传感器501、温度传感器502、库仑计503、计时器504、存储器505和处理器506;
电流传感器501用于实时获取待测电池的充放电电流并传输至处理器506;
温度传感器502用于实时获取待测电池的温度并传输至处理器506;
库仑计503用于累积待测电池流经的电流,得到当前时刻的库仑电量并传输至处理器506;
计时器504用于获取待测电池的放电时长,并传输至处理器506;
存储器505用于存储待测电池的参数信息,该参数信息包括上一时刻的荷电状态值;
处理器506用于根据参数信息、当前时刻的充放电电流、当前时刻的温度和当前时刻的库仑电量估计待测电池的当前时刻的荷电状态值。
本申请实施例中,通过根据精确度更高的电池内阻模型估计电池荷电状态,提高了电池荷电状态的估计值的准确性。
在一种可能的实现方式中,存储器505还可以存储有第一对应关系,该第一对应关系用于指示待测电池的放电时长和待测电池的内阻响应的类型的对应关系。
在一种可能的实现方式中,存储器505还存储有第二对应关系,第三对应关系和第四对应关系,该第二对应关系用于指示所述待测电池的欧姆电阻和温度、荷电状态值的对应关系;该第三对应关系用于指示所述待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系;该第四对应关系用于指示所述待测电池的扩散阻抗和温度、荷电状态值、充放电电流的对应关系。
在一种可能的实现方式中,存储器505还可以存储电流传感器501、温度传感器502、库仑计503、计时器504各自获取到的数据信息。
处理器506是电池荷电状态的估计装置500的控制中心,可以按照设置的电池荷电状态的估计方法进行处理。处理器506利用各种接口和线路连接整个电池荷电状态的估计装置的 各个部分,通过运行或执行存储在存储器505内的软件程序和/或模块,以及调用存储在存储器505内的数据,执行电池荷电状态的估计装置的各种功能和处理数据,从而估计电池荷电状态值。
存储器505可用于存储软件程序以及模块,处理器506通过运行存储在存储器505的软件程序以及模块,从而执行电池荷电状态的估计装置500的各种功能应用以及数据处理。存储器505可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如第一对应关系等)等;存储数据区可存储根据设备的使用所创建的数据(比如当前时刻的库仑电量等)等。此外,存储器505可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。在本申请实施例中提供的电池荷电状态的估计方法的程序和获取到的数据流存储在存储器505中,当需要使用时,处理器506从存储器505中调用。
上面图5从硬件处理的角度分别对本申请实施例中电池荷电状态的估计装置进行了详细描述,下面从功能化模块的角度对本申请实施例中电池荷电状态的估计装置进行详细描述,请参阅图6,本申请实施例中电池荷电状态的估计装置的另一个实施例包括:
第一获取单元601,用于根据预置的时间间隔实时获取待测电池的当前时刻的充放电电流、当前时刻的温度、当前时刻的库仑电量和上一时刻的荷电状态值,其中,预置的时间间隔为上一时刻与当前时刻之间的时长;
第二获取单元602,用于获取待测电池的放电时长,该放电时长为充放电电流的持续时长;
第一确定单元603,用于根据放电时长确定待测电池的当前时刻的内阻响应的类型;
第二确定单元604,用于根据当前时刻的内阻响应的类型、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据;
第三确定单元605,用于根据当前时刻的内阻数据、当前时刻的充放电电流和当前时刻的温度确定待测电池的当前时刻的不可用电量,该不可用电量为待测电池不能释放电量时的荷电状态值;
第四确定单元606,用于根据当前时刻的库仑电量和当前时刻的不可用电量确定待测电池的当前时刻的荷电状态值。
在一种可能的实现方式中,第一确定单元603具体用于:
根据放电时长和预置的第一对应关系确定待测电池的当前时刻的内阻响应的类型,该第一对应关系用于指示待测电池的放电时长和待测电池的内阻响应的类型的对应关系。
在一种可能的实现方式中,第一对应关系包括:
当放电时长小于或等于第一阈值时,内阻响应的类型为第一响应类型,该第一响应类型包含欧姆电阻;
当放电时长大于第一阈值且小于或等于第二阈值时,内阻响应的类型为第二响应类型,该第二响应类型包含欧姆电阻和电荷传递电阻;
当放电时长大于第二阈值时,内阻响应的类型为第三响应类型,该第三响应类型包含欧姆电阻、电荷传递电阻和扩散阻抗。
在一种可能的实现方式中,第二确定单元604具体用于:
根据第一响应类型确定第二对应关系,该第二对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系;
根据第二对应关系、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据,该内阻数据为当前时刻的欧姆电阻;
或者,根据第二响应类型确定第二对应关系和第三对应关系,该第二对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系,该第三对应关系用于指示待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系;
根据第二对应关系、第三对应关系、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据,该内阻数据为当前时刻的欧姆电阻与当前时刻的电荷传递电阻之和;
或者,根据第三响应类型确定第二对应关系、第三对应关系和第四对应关系,该第二对应关系用于指示待测电池的欧姆电阻和温度、荷电状态值的对应关系,该第三对应关系用于指示待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系,该第四对应关系用于指示待测电池的扩散阻抗和温度、荷电状态值、充放电电流的对应关系;
根据第二对应关系、第三对应关系、第四对应关系、当前时刻的温度、当前时刻的充放电电流和上一时刻的荷电状态值确定待测电池的当前时刻的内阻数据,该内阻数据为当前时刻的欧姆电阻、当前时刻的电荷传递电阻和当前时刻的扩散阻抗之和。
在一种可能的实现方式中,第三确定单元605具体用于:
根据当前时刻的内阻数据和当前时刻的充放电电流确定待测电池的当前时刻的内阻电压;
根据当前时刻的内阻电压和预置的截止电压确定待测电池的当前时刻的不可用电压;
根据当前时刻的不可用电压、当前时刻的温度和预置的第五对应关系确定待测电池的当前时刻的不可用电量,该第五对应关系用于指示待测电池的开路电压和温度、荷电状态值的对应关系。
在一种可能的实现方式中,第四确定单元606具体用于:
根据预置的满电量、上一时刻的荷电状态值和第五对应关系确定起始电量,起始电量为待测电池的上一时刻的电量;
根据起始电量、当前时刻的库仑电量和当前时刻的不可用电量确定待测电池的当前时刻的剩余电量;
根据当前时刻的剩余电量、预置的满电量和当前时刻的不可用电量确定待测电池的当前时刻的荷电状态值。
本申请还提供了一种终端,该终端中包括电池和电池荷电状态的估计装置;
所述电池荷电状态的估计装置为如上述实施例中任一所述的电池荷电状态的估计装置,电池荷电状态的估计装置的结构参照上述实施例,具体此处不再赘述。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、 光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (18)

  1. 一种电池荷电状态的估计方法,其特征在于,包括:
    根据预置的时间间隔实时获取待测电池的当前时刻的充放电电流、当前时刻的温度、当前时刻的库仑电量和上一时刻的荷电状态值,其中,所述预置的时间间隔为所述上一时刻与所述当前时刻之间的时长;
    获取所述待测电池的放电时长,所述放电时长为充放电电流的持续时长;
    根据所述放电时长确定所述待测电池的当前时刻的内阻响应的类型;
    根据所述当前时刻的内阻响应的类型、所述当前时刻的温度、所述当前时刻的充放电电流和所述上一时刻的荷电状态值确定所述待测电池的当前时刻的内阻数据;
    根据所述当前时刻的内阻数据、所述当前时刻的充放电电流和所述当前时刻的温度确定所述待测电池的当前时刻的不可用电量,所述不可用电量为所述待测电池不能释放电量时的荷电状态值;
    根据所述当前时刻的库仑电量和所述当前时刻的不可用电量确定所述待测电池的当前时刻的荷电状态值。
  2. 根据权利要求1所述的估计方法,其特征在于,所述根据所述放电时长确定所述待测电池的当前时刻的内阻响应的类型包括:
    根据所述放电时长和预置的第一对应关系确定所述待测电池的当前时刻的内阻响应的类型,所述第一对应关系用于指示所述待测电池的放电时长和所述待测电池的内阻响应的类型的对应关系。
  3. 根据权利要求2所述的估计方法,其特征在于,
    所述第一对应关系包括:
    当所述放电时长小于或等于第一阈值时,所述内阻响应的类型为第一响应类型,所述第一响应类型包含欧姆电阻;
    当所述放电时长大于第一阈值且小于或等于第二阈值时,所述内阻响应的类型为第二响应类型,所述第二响应类型包含欧姆电阻和电荷传递电阻;
    当所述放电时长大于第二阈值时,所述内阻响应的类型为第三响应类型,所述第三响应类型包含欧姆电阻、电荷传递电阻和扩散阻抗。
  4. 根据权利要求3所述的估计方法,其特征在于,所述根据所述当前时刻的内阻响应的类型、所述当前时刻的温度、所述当前时刻的充放电电流和所述上一时刻的荷电状态值确定所述待测电池的当前时刻的内阻数据包括:
    根据所述第一响应类型确定第二对应关系,所述第二对应关系用于指示所述待测电池的欧姆电阻和温度、荷电状态值的对应关系;
    根据所述第二对应关系、所述当前时刻的温度、所述当前时刻的充放电电流和所述上一时刻的荷电状态值确定所述待测电池的当前时刻的内阻数据,所述内阻数据为当前时刻的欧姆电阻。
  5. 根据权利要求3所述的估计方法,其特征在于,所述根据所述当前时刻的内阻响应的类型、所述当前时刻的温度、所述当前时刻的充放电电流和所述上一时刻的荷电状态值确定所述待测电池的当前时刻的内阻数据包括:
    根据所述第二响应类型确定第二对应关系和第三对应关系,所述第二对应关系用于指示所述待测电池的欧姆电阻和温度、荷电状态值的对应关系,所述第三对应关系用于指示所述待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系;
    根据所述第二对应关系、所述第三对应关系、所述当前时刻的温度、所述当前时刻的充放电电流和所述上一时刻的荷电状态值确定所述待测电池的当前时刻的内阻数据,所述内阻数据为当前时刻的欧姆电阻与当前时刻的电荷传递电阻之和。
  6. 根据权利要求3所述的估计方法,其特征在于,所述根据所述当前时刻的内阻响应的类型、所述当前时刻的温度、所述当前时刻的充放电电流和所述上一时刻的荷电状态值确定所述待测电池的当前时刻的内阻数据包括:
    根据所述第三响应类型确定第二对应关系、第三对应关系和第四对应关系,所述第二对应关系用于指示所述待测电池的欧姆电阻和温度、荷电状态值的对应关系,所述第三对应关系用于指示所述待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系,所述第四对应关系用于指示所述待测电池的扩散阻抗和温度、荷电状态值、充放电电流的对应关系;
    根据所述第二对应关系、所述第三对应关系、所述第四对应关系、所述当前时刻的温度、所述当前时刻的充放电电流和所述上一时刻的荷电状态值确定所述待测电池的当前时刻的内阻数据,所述内阻数据为当前时刻的欧姆电阻、当前时刻的电荷传递电阻和当前时刻的扩散阻抗之和。
  7. 根据权利要求1-6任一所述的估计方法,其特征在于,所述根据所述当前时刻的内阻数据、所述当前时刻的充放电电流和所述当前时刻的温度确定所述待测电池的当前时刻的不可用电量包括:
    根据所述当前时刻的内阻数据和所述当前时刻的充放电电流确定所述待测电池的当前时刻的内阻电压,所述内阻电压为所述待测电池的内阻引起的电压损耗;
    根据所述当前时刻的内阻电压和预置的截止电压确定所述待测电池的当前时刻的不可用电压;
    根据所述当前时刻的不可用电压、当前时刻的温度和预置的第五对应关系确定所述待测电池的当前时刻的不可用电量,所述第五对应关系用于指示所述待测电池的开路电压和温度、荷电状态值的对应关系。
  8. 根据权利要求7所述的估计方法,其特征在于,所述根据所述当前时刻的库仑电量和所述当前时刻的不可用电量确定所述待测电池的当前时刻的荷电状态值包括:
    根据预置的满电量、所述上一时刻的荷电状态值和所述第五对应关系确定起始电量,所述起始电量为所述待测电池的上一时刻的电量;
    根据所述起始电量、所述当前时刻的库仑电量和所述当前时刻的不可用电量确定所述待测电池的当前时刻的剩余电量;
    根据所述当前时刻的剩余电量、所述预置的满电量和所述当前时刻的不可用电量确定所述待测电池的当前时刻的荷电状态值。
  9. 一种电池荷电状态的估计装置,其特征在于,包括:
    电流传感器、温度传感器、库仑计、计时器、存储器和处理器;
    所述电流传感器用于实时获取待测电池的充放电电流并传输至所述处理器;
    所述温度传感器用于实时获取所述待测电池的温度并传输至所述处理器;
    所述库仑计用于累积所述待测电池流经的电流,得到当前时刻的库仑电量并传输至所述处理器;
    所述计时器用于获取所述待测电池的放电时长,并传输至所述处理器;
    所述存储器用于存储所述待测电池的参数信息,所述参数信息包括上一时刻的荷电状态值;
    所述处理器用于根据所述参数信息、当前时刻的充放电电流、当前时刻的温度和当前时刻的库仑电量估计所述待测电池的当前时刻的荷电状态值。
  10. 根据权利要求9所述的估计装置,其特征在于,所述参数信息还包括:
    第一对应关系,所述第一对应关系用于指示所述待测电池的放电时长和所述待测电池的内阻响应的类型的对应关系。
  11. 根据权利要求10所述的估计装置,其特征在于,所述参数信息还包括:
    第二对应关系,第三对应关系和第四对应关系;
    所述第二对应关系用于指示所述待测电池的欧姆电阻和温度、荷电状态值的对应关系;
    所述第三对应关系用于指示所述待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系;
    所述第四对应关系用于指示所述待测电池的扩散阻抗和温度、荷电状态值、充放电电流的对应关系。
  12. 一种电池荷电状态的估计装置,其特征在于,包括:
    第一获取单元,用于根据预置的时间间隔实时获取待测电池的当前时刻的充放电电流、当前时刻的温度、当前时刻的库仑电量和上一时刻的荷电状态值,其中,所述预置的时间间隔为所述上一时刻与所述当前时刻之间的时长;
    第二获取单元,用于获取所述待测电池的放电时长,所述放电时长为充放电电流的持续时长;
    第一确定单元,用于根据所述放电时长确定所述待测电池的当前时刻的内阻响应的类型;
    第二确定单元,用于根据所述当前时刻的内阻响应的类型、所述当前时刻的温度、所述当前时刻的充放电电流和所述上一时刻的荷电状态值确定所述待测电池的当前时刻的内阻数据;
    第三确定单元,用于根据所述当前时刻的内阻数据、所述当前时刻的充放电电流和所述当前时刻的温度确定所述待测电池的当前时刻的不可用电量,所述不可用电量为所述待测电池不能释放电量时的荷电状态值;
    第四确定单元,用于根据所述当前时刻的库仑电量和所述当前时刻的不可用电量确定所述待测电池的当前时刻的荷电状态值。
  13. 根据权利要求12所述的估计装置,其特征在于,所述第一确定单元具体用于:
    根据所述放电时长和预置的第一对应关系确定所述待测电池的当前时刻的内阻响应的类型,所述第一对应关系用于指示所述待测电池的放电时长和所述待测电池的内阻响应的类型的对应关系。
  14. 根据权利要求13所述的估计装置,其特征在于,所述第一对应关系包括:
    当所述放电时长小于或等于第一阈值时,所述内阻响应的类型为第一响应类型,所述第一响应类型包含欧姆电阻;
    当所述放电时长大于第一阈值且小于或等于第二阈值时,所述内阻响应的类型为第二响应类型,所述第二响应类型包含欧姆电阻和电荷传递电阻;
    当所述放电时长大于第二阈值时,所述内阻响应的类型为第三响应类型,所述第三响应类型包含欧姆电阻、电荷传递电阻和扩散阻抗。
  15. 根据权利要求14所述的估计装置,其特征在于,所述第二确定单元具体用于:
    根据所述第一响应类型确定第二对应关系,所述第二对应关系用于指示所述待测电池的欧姆电阻和温度、荷电状态值的对应关系;
    根据所述第二对应关系、所述当前时刻的温度、所述当前时刻的充放电电流和所述上一时刻的荷电状态值确定所述待测电池的当前时刻的内阻数据,所述内阻数据为当前时刻的欧姆电阻;
    或者,根据所述第二响应类型确定第二对应关系和第三对应关系,所述第二对应关系用于指示所述待测电池的欧姆电阻和温度、荷电状态值的对应关系,所述第三对应关系用于指示所述待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系;
    根据所述第二对应关系、所述第三对应关系、所述当前时刻的温度、所述当前时刻的充放电电流和所述上一时刻的荷电状态值确定所述待测电池的当前时刻的内阻数据,所述内阻数据为当前时刻的欧姆电阻与当前时刻的电荷传递电阻之和;
    或者,根据所述第三响应类型确定第二对应关系、第三对应关系和第四对应关系,所述第二对应关系用于指示所述待测电池的欧姆电阻和温度、荷电状态值的对应关系,所述第三对应关系用于指示所述待测电池的电荷传递电阻和温度、荷电状态、充放电电流的对应关系,所述第四对应关系用于指示所述待测电池的扩散阻抗和温度、荷电状态值、充放电电流的对应关系;
    根据所述第二对应关系、所述第三对应关系、所述第四对应关系、所述当前时刻的温度、所述当前时刻的充放电电流和所述上一时刻的荷电状态值确定所述待测电池的当前时刻的内阻数据,所述内阻数据为当前时刻的欧姆电阻、当前时刻的电荷传递电阻和当前时刻的扩散阻抗之和。
  16. 根据权利要求12-15任一所述的估计装置,其特征在于,所述第三确定单元具体用于:
    根据所述当前时刻的内阻数据和所述当前时刻的充放电电流确定所述待测电池的当前时刻的内阻电压,所述内阻电压为所述待测电池的内阻引起的电压损耗;
    根据所述当前时刻的内阻电压和预置的截止电压确定所述待测电池的当前时刻的不可用电压;
    根据所述当前时刻的不可用电压、当前时刻的温度和预置的第五对应关系确定所述待测电池的当前时刻的不可用电量,所述第五对应关系用于指示所述待测电池的开路电压和温度、荷电状态值的对应关系。
  17. 根据权利要求16所述的估计装置,其特征在于,所述第四确定单元具体用于:
    根据预置的满电量、所述上一时刻的荷电状态值和所述第五对应关系确定起始电量,所述起始电量为所述待测电池的上一时刻的电量;
    根据所述起始电量、所述当前时刻的库仑电量和所述当前时刻的不可用电量确定所述待测电池的当前时刻的剩余电量;
    根据所述当前时刻的剩余电量、所述预置的满电量和所述当前时刻的不可用电量确定所述待测电池的当前时刻的荷电状态值。
  18. 一种终端,其特征在于,包括:
    电池和电池荷电状态的估计装置;
    所述电池荷电状态的估计装置为如上述权利要求12-17任一项所述的电池荷电状态的估计装置。
PCT/CN2019/088992 2018-06-19 2019-05-29 一种电池荷电状态的估计方法及装置 WO2019242472A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19823205.0A EP3812777A4 (en) 2018-06-19 2019-05-29 METHOD AND APPARATUS FOR ESTIMATING THE STATUS OF THE BATTERY CHARGE
US17/126,895 US20210103002A1 (en) 2018-06-19 2020-12-18 Method and Apparatus for Estimating State of Charge of Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810634553.0A CN110687468B (zh) 2018-06-19 2018-06-19 一种电池荷电状态的估计方法及装置
CN201810634553.0 2018-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/126,895 Continuation US20210103002A1 (en) 2018-06-19 2020-12-18 Method and Apparatus for Estimating State of Charge of Battery

Publications (1)

Publication Number Publication Date
WO2019242472A1 true WO2019242472A1 (zh) 2019-12-26

Family

ID=68982549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088992 WO2019242472A1 (zh) 2018-06-19 2019-05-29 一种电池荷电状态的估计方法及装置

Country Status (4)

Country Link
US (1) US20210103002A1 (zh)
EP (1) EP3812777A4 (zh)
CN (1) CN110687468B (zh)
WO (1) WO2019242472A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113447824A (zh) * 2021-06-28 2021-09-28 三一重型装备有限公司 电池最大充放电电流的估算方法、装置及存储介质
CN113820603A (zh) * 2021-08-29 2021-12-21 西北工业大学 一种预测锂电池组可输出能量的方法
CN113864133A (zh) * 2020-06-30 2021-12-31 北京金风科创风电设备有限公司 超级电容器的电容特性检测方法、装置以及变桨系统
CN114879053A (zh) * 2022-06-16 2022-08-09 珠海科创电力电子有限公司 一种储能磷酸铁锂电池寿命预测方法
WO2023274194A1 (zh) * 2021-06-28 2023-01-05 中国科学院电工研究所 一种适用于富锂锰基电池的高阶模型参数辨识方法和系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113138340B (zh) * 2020-01-17 2022-11-11 华为技术有限公司 电池等效电路模型的建立方法、健康状态估算方法及装置
CN111781521B (zh) * 2020-07-10 2022-11-08 深圳市道通科技股份有限公司 一种车辆的蓄电池检测的方法以及电池检测设备
WO2022116037A1 (zh) * 2020-12-02 2022-06-09 宁德新能源科技有限公司 电量预测方法和设备
CN113466728B (zh) * 2021-07-13 2024-04-05 北京西清能源科技有限公司 一种两阶段电池模型参数在线辨识的方法与系统
CN116529620A (zh) * 2021-08-11 2023-08-01 宁德时代新能源科技股份有限公司 一种充电电流的测试方法、装置及充电测试系统
CN114200309B (zh) * 2021-12-08 2024-01-09 广州小鹏汽车科技有限公司 车辆电池的仿真测试方法、装置、车辆以及存储介质
CN114355212B (zh) * 2021-12-31 2023-10-31 珠海冠宇电池股份有限公司 电池自放电检测方法、装置、计算机设备及存储介质
WO2023141841A1 (zh) * 2022-01-26 2023-08-03 宁德时代新能源科技股份有限公司 电池荷电状态确定方法、装置、电池管理系统和车载设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020195999A1 (en) * 2001-06-20 2002-12-26 Matsushita Electric Industrial Co., Ltd. Method of detecting and resolving memory effect
CN101303397A (zh) * 2008-06-25 2008-11-12 河北工业大学 锂离子电池组剩余电能计算方法及装置
CN101598769A (zh) * 2009-06-29 2009-12-09 杭州电子科技大学 一种基于采样点卡尔曼滤波的电池剩余电量估计方法
US20110148424A1 (en) * 2009-12-22 2011-06-23 Industrial Technology Research Institute Apparatus for estimating battery state of health
CN102756661A (zh) * 2011-04-27 2012-10-31 北京八恺电气科技有限公司 车用电池荷电状态的确定方法及装置
CN104111377A (zh) * 2014-08-06 2014-10-22 先进储能材料国家工程研究中心有限责任公司 二次电池不同荷电状态下直流内阻的测试方法
CN106054080A (zh) * 2016-06-06 2016-10-26 电子科技大学 一种动力电池荷电状态与健康状态的联合估计方法
CN106067560A (zh) * 2016-08-04 2016-11-02 清华大学 内短路锂离子动力电池的制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236656A1 (en) * 2002-06-21 2003-12-25 Johnson Controls Technology Company Battery characterization system
US8103485B2 (en) * 2004-11-11 2012-01-24 Lg Chem, Ltd. State and parameter estimation for an electrochemical cell
JP5109304B2 (ja) * 2006-08-03 2012-12-26 日産自動車株式会社 電池の残存容量検出装置
US7898219B2 (en) * 2008-02-25 2011-03-01 Jimmie Doyle Felps On-board battery supervisor
KR101267213B1 (ko) * 2009-06-03 2013-05-24 규슈덴료쿠 가부시키가이샤 전지 충전율 산출 장치
JP5303528B2 (ja) * 2010-09-16 2013-10-02 カルソニックカンセイ株式会社 フィルタによるパラメータ推定装置
US20120133282A1 (en) * 2010-11-30 2012-05-31 Aptera Motors, Inc. External state of charge indicator system for an automotive vehicle
US8639954B2 (en) * 2010-12-20 2014-01-28 Motorola Mobility Llc Portable electronic device and method for recovering power to a rechargeable battery used therein
EP2535729A1 (en) * 2011-06-16 2012-12-19 ST-Ericsson SA Battery charge determination
EP2804249B1 (en) * 2012-01-13 2017-08-30 Toyota Jidosha Kabushiki Kaisha Method for controlling and device for controlling secondary battery
JP2014063693A (ja) * 2012-09-24 2014-04-10 Toshiba Corp 二次電池装置および電池容量推定システム
CN103901344A (zh) * 2012-12-24 2014-07-02 财团法人金属工业研究发展中心 电池残电量估测系统及其估测方法
CN103901347B (zh) * 2012-12-28 2016-11-23 华为终端有限公司 一种显示电池电量的方法和终端
JP6239241B2 (ja) * 2013-02-04 2017-11-29 株式会社東芝 電池性能推定方法および電池性能推定装置
JP6044512B2 (ja) * 2013-11-07 2016-12-14 株式会社デンソー 電池特性学習装置
CN106324508B (zh) * 2015-07-02 2020-06-02 华为技术有限公司 电池健康状态的检测装置及方法
CN105277898B (zh) * 2015-10-27 2018-07-10 浙江大学 一种电池荷电状态的检测方法
JP6414558B2 (ja) * 2016-02-01 2018-10-31 株式会社デンソー 電池状態推定装置
WO2017183241A1 (ja) * 2016-04-18 2017-10-26 住友電気工業株式会社 充電量算出装置、コンピュータプログラム及び充電量算出方法
US20180184189A1 (en) * 2016-12-27 2018-06-28 Bragi GmbH Load sharing for charging peripheral device
CN107015156B (zh) * 2017-03-27 2019-10-15 上海工程技术大学 一种电池健康状态检测方法及装置
CN108132442B (zh) * 2017-12-13 2019-12-06 中国船舶重工集团公司第七一九研究所 一种基于离线数据驱动的蓄电池联合状态估算方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020195999A1 (en) * 2001-06-20 2002-12-26 Matsushita Electric Industrial Co., Ltd. Method of detecting and resolving memory effect
CN101303397A (zh) * 2008-06-25 2008-11-12 河北工业大学 锂离子电池组剩余电能计算方法及装置
CN101598769A (zh) * 2009-06-29 2009-12-09 杭州电子科技大学 一种基于采样点卡尔曼滤波的电池剩余电量估计方法
US20110148424A1 (en) * 2009-12-22 2011-06-23 Industrial Technology Research Institute Apparatus for estimating battery state of health
CN102756661A (zh) * 2011-04-27 2012-10-31 北京八恺电气科技有限公司 车用电池荷电状态的确定方法及装置
CN104111377A (zh) * 2014-08-06 2014-10-22 先进储能材料国家工程研究中心有限责任公司 二次电池不同荷电状态下直流内阻的测试方法
CN106054080A (zh) * 2016-06-06 2016-10-26 电子科技大学 一种动力电池荷电状态与健康状态的联合估计方法
CN106067560A (zh) * 2016-08-04 2016-11-02 清华大学 内短路锂离子动力电池的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3812777A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113864133A (zh) * 2020-06-30 2021-12-31 北京金风科创风电设备有限公司 超级电容器的电容特性检测方法、装置以及变桨系统
CN113864133B (zh) * 2020-06-30 2022-11-15 北京金风科创风电设备有限公司 超级电容器的电容特性检测方法、装置以及变桨系统
CN113447824A (zh) * 2021-06-28 2021-09-28 三一重型装备有限公司 电池最大充放电电流的估算方法、装置及存储介质
WO2023274194A1 (zh) * 2021-06-28 2023-01-05 中国科学院电工研究所 一种适用于富锂锰基电池的高阶模型参数辨识方法和系统
CN113820603A (zh) * 2021-08-29 2021-12-21 西北工业大学 一种预测锂电池组可输出能量的方法
CN114879053A (zh) * 2022-06-16 2022-08-09 珠海科创电力电子有限公司 一种储能磷酸铁锂电池寿命预测方法

Also Published As

Publication number Publication date
CN110687468A (zh) 2020-01-14
EP3812777A1 (en) 2021-04-28
CN110687468B (zh) 2021-01-15
US20210103002A1 (en) 2021-04-08
EP3812777A4 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
WO2019242472A1 (zh) 一种电池荷电状态的估计方法及装置
CN106461732B (zh) 用于估计电池的健康状态的方法
CN105277898B (zh) 一种电池荷电状态的检测方法
CN109921111B (zh) 一种锂离子电池内部温度估测方法及系统
CN110286324B (zh) 一种电池荷电状态估算方法及电池健康状态估算方法
WO2016134496A1 (zh) 锂离子电池荷电状态估算方法和装置
WO2018196121A1 (zh) 一种确定电池内短路的方法及装置
WO2017143830A1 (zh) 检测电池健康状态的方法、装置和电池管理系统
CN106646256B (zh) 电池容量计算方法
WO2015188610A1 (zh) 电池荷电状态估算方法和装置
CN105403835B (zh) 一种测量电池电量的系统及方法
CN103250066A (zh) 感测电池容量的系统和方法
CN109031133B (zh) 一种动力电池的soc修正方法
JP2020521947A (ja) バッテリー等価回路モデルのパラメータ推定方法、装置及び記録媒体
CN113219351B (zh) 动力电池的监控方法及装置
WO2021143592A1 (zh) 电池等效电路模型的建立方法、健康状态估算方法及装置
CN108051755A (zh) 电池内阻获取方法与装置、电池管理系统以及计算机存储可读介质
CN109298340B (zh) 一种基于可变时间尺度的电池容量在线估计方法
CN107402356B (zh) 一种基于动态参数辨识的ekf估算铅酸电池soc方法
CN116520167A (zh) 自调整零点的soc估算方法、装置、电子设备及存储介质
CN115036590A (zh) 二次电池内阻检测方法、装置及电子设备
WO2015086754A1 (fr) Procede d'estimation de l'etat de sante d'une batterie
CN112698225B (zh) 一种电池容量跟踪方法、装置及电子设备
TWI509521B (zh) 鋰電池之電路模型建構方法
Brećko et al. Proposed method for battery state estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 19823205.0

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019823205

Country of ref document: EP

Effective date: 20201210

NENP Non-entry into the national phase

Ref country code: DE