WO2023141841A1 - 电池荷电状态确定方法、装置、电池管理系统和车载设备 - Google Patents

电池荷电状态确定方法、装置、电池管理系统和车载设备 Download PDF

Info

Publication number
WO2023141841A1
WO2023141841A1 PCT/CN2022/074121 CN2022074121W WO2023141841A1 WO 2023141841 A1 WO2023141841 A1 WO 2023141841A1 CN 2022074121 W CN2022074121 W CN 2022074121W WO 2023141841 A1 WO2023141841 A1 WO 2023141841A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
battery
target battery
capacity
formula
Prior art date
Application number
PCT/CN2022/074121
Other languages
English (en)
French (fr)
Inventor
杜明树
赵微
李占良
李世超
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280030432.XA priority Critical patent/CN117203540A/zh
Priority to PCT/CN2022/074121 priority patent/WO2023141841A1/zh
Publication of WO2023141841A1 publication Critical patent/WO2023141841A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte

Definitions

  • the present application relates to the technical field of battery management, in particular, to a method and device for determining a state of charge of a battery, a battery management system, and a vehicle-mounted device.
  • the open circuit voltage method Open Circuit Voltage, OCV
  • the ampere-hour integration method and the like.
  • These state of charge estimation methods are mainly applicable to the state of charge of the battery under normal use, but for some special cases, for example, the battery temperature changes greatly in a short period of time, the state of charge determined by the existing estimation methods The data will have large errors.
  • the purpose of the embodiments of the present application is to provide a method and device for determining a state of charge of a battery, a battery management system, and a vehicle-mounted device.
  • a method and device for determining a state of charge of a battery In order to improve the problem that the existing nuclear power state estimation method has a large error in estimating the state of charge of the battery under special circumstances.
  • the embodiment of the present application provides a method for determining the state of charge of a battery, including:
  • a first formula is determined according to the first temperature of the target battery, and the first formula is used to characterize the relationship between the battery temperature and the battery capacity;
  • a second state of charge of the target battery at a second temperature is determined according to the consumption capacity, the first state of charge of the target battery at the first temperature, and the nominal capacity of the target battery.
  • the determining the first formula according to the first temperature of the target battery includes:
  • the capacity consumption formula group corresponding to the type parameter is screened out, and the type parameter includes the model of the target battery;
  • a first formula is determined in the set of capacity consumption formulas according to the first temperature of the target battery.
  • filtering out the capacity consumption formula group corresponding to the type parameter includes:
  • linear capacity consumption formula group is expressed as:
  • k1, k2, k3, k4 represent the slope of each linear capacity consumption formula
  • b1, b2, b3, b4 represent the intercept of each linear capacity consumption formula
  • T0 represents the first temperature of the target battery
  • T1 represents the second temperature of the target battery
  • Tc1, Tc2, Tc3, Tc4, and Tc5 represent the endpoint temperatures of the four temperature ranges.
  • the second charge of the target battery at a second temperature is determined according to the consumption capacity, the first state of charge at the first temperature, and the nominal capacity of the target battery. state, achieved by the following formula:
  • SOC k represents the second state of charge of the target battery at a second temperature
  • SOC 0 represents a first state of charge of the target battery at a first temperature
  • C 0 represents the nominal capacity of the target battery.
  • the method also includes:
  • the second temperature is determined according to the plurality of second initial temperatures.
  • the method also includes:
  • the vehicle controller or the battery management system determine whether the target battery enters the low-temperature rapid heating mode
  • the step of determining the first formula according to the first temperature of the target battery is performed.
  • an embodiment of the present application provides a device for determining a state of charge of a battery, including:
  • a formula determining module configured to determine a first formula according to the first temperature of the target battery, and the first formula is used to characterize the relationship between the battery temperature and the battery capacity;
  • a capacity determination module configured to determine the consumption capacity of the target battery from the first temperature to the second temperature according to the first formula, the first temperature, and the second temperature of the target battery ;
  • a state determination module configured to determine the capacity of the target battery at a second temperature according to the consumption capacity, the first state of charge of the target battery at the first temperature, and the nominal capacity of the target battery. Second state of charge.
  • the embodiment of the present application provides a battery management system, including: including a processor and a memory,
  • the memory stores computer readable instructions which, when executed by the processor, perform the steps of the above-described method.
  • an embodiment of the present application provides a vehicle-mounted device, including: a processor, a memory, the memory stores machine-readable instructions executable by the processor, and when the vehicle-mounted device is running, the machine-readable instructions When executed by the processor, the above-mentioned method steps are performed.
  • the embodiments of the present application provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the above method are executed.
  • the battery state of charge determination method, device, battery management system, vehicle-mounted device, and computer-readable storage medium provided in the embodiments of the present application use the first temperature before the temperature change to determine the formula that can express the battery temperature and battery capacity, so that It can be realized that in some special cases, the capacity consumption caused by the temperature change process of the target battery can be determined more accurately, so that the state of charge of the target battery can be determined more accurately.
  • FIG. 1 is a schematic block diagram of a vehicle-mounted device provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a method for determining a state of charge of a battery provided in an embodiment of the present application
  • FIG. 3 is a partial flowchart of a method for determining a state of charge of a battery provided in an embodiment of the present application
  • FIG. 4 is a schematic diagram of functional modules of a device for determining a state of charge of a battery provided in an embodiment of the present application.
  • the inventor has learned through research that the power battery cannot work stably in some special environments, for example, in some extremely cold environments, the temperature of the battery is very low, which makes it difficult for the battery to work stably. In order to make the battery work better, it is necessary to use the rapid heating technology to make the battery temperature reach the temperature that can work normally before the battery starts to work.
  • the inventor has learned from research that the root cause of the large error of the battery when the traditional state of charge (SOC) algorithm is used in the rapid heating technology processing stage is: (1) Ampere-hour integration method: the positive and negative alternating current used for rapid heating The change frequency is above 1kHz, and the current sensor in the battery pack cannot collect such a high-frequency current change; (2) Open circuit voltage method: the voltage in the platform area of the lithium iron phosphate battery is very flat, and the SOC of the two batteries with a voltage difference of 1mV may be poor. 5% SOC, while the battery management system (battery management system, BMS) voltage sampling accuracy is ⁇ 5mV; (3) Kalman filter method: estimating the current SOC based on the dynamic voltage requires a more accurate battery model. During the rapid heat treatment of the battery, the current condition of the battery is very severe, and the traditional battery model cannot describe this process. Therefore, the existing three battery SOC estimation methods are no longer able to meet the SOC estimation of the battery during the rapid heat treatment process.
  • this application provides a method for determining the state of charge of a battery.
  • the capacity change formula applicable to different types of batteries at different temperatures is determined to estimate the state of charge of the battery.
  • the method for determining the state of charge of a battery provided in the present application is described below through some embodiments.
  • the batteries involved in the embodiments of the present application can be used, but not limited to, in electrical equipment such as vehicles, ships, or aircrafts, and the batteries mentioned in this application can be used to form the power supply system of the electrical equipment.
  • An embodiment of the present application provides a method for determining a state of charge of a battery, and the method may be applied to a battery management system of a battery, and may also be applied to an electric device installed with a battery.
  • the electric device may be, but not limited to, a mobile phone, a tablet, a notebook computer, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, and the like.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • a vehicle 100 is taken as an example of an electric device according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a vehicle 100 provided by some embodiments of the present application.
  • the vehicle 100 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle, or an extended-range vehicle.
  • a battery 110 is disposed inside the vehicle 100 , and the battery 110 may be disposed at the bottom, head, tail or waist of the vehicle 100 .
  • the battery 110 can be used for power supply of the vehicle 100 , for example, the battery 110 can be used as an operating power source of the vehicle 100 .
  • the vehicle 100 may further include a controller 120 and a motor 130 , the controller 120 is used to control the battery 110 to supply power to the motor 130 , for example, for starting, navigating and running the vehicle 100 .
  • the vehicle 100 may also include other components, for example, the vehicle 100 may also include an on-board device 140, the on-board computer 140 may provide the driver with music or video images, and may also provide navigation and the like.
  • the vehicle 100 may also include an on-board device 140
  • the on-board computer 140 may provide the driver with music or video images, and may also provide navigation and the like.
  • the battery 110 can also provide power for the on-vehicle device 140 .
  • the battery 110 can not only be used as an operating power source for the vehicle 100 , but can also be used as a driving power source for the vehicle 100 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 100 .
  • the battery management system of the on-board device 140 or the battery 110 in the vehicle 100 mentioned above can execute the steps in the method for determining the state of charge of the battery provided by the embodiment of the present application.
  • the following describes the battery charge provided by the embodiment of the present application through some embodiments. State determination method.
  • FIG. 2 is a flowchart of a method for determining a state of charge of a battery provided in an embodiment of the present application. The specific process shown in FIG. 2 will be described in detail below.
  • Step 220 determine a first formula according to the first temperature of the target battery.
  • the first formula is used to characterize the relationship between battery temperature and battery capacity.
  • the first formula may be a linear formula, or a quadratic function, etc.
  • the first formula may be a formula with temperatures at two time nodes as independent variables and battery capacity as a dependent variable.
  • the two time nodes may be a first time node before the temperature change of the battery caused by the rapid heating technology processing the battery, and a second time node after the temperature change.
  • the first formula may be a formula in which the temperature variation generated at two time nodes is used as an independent variable and the battery capacity is a dependent variable.
  • the first temperature may be the temperature of the target battery before the rapid heat treatment is performed on the target battery.
  • Step 240 according to the first formula, the first temperature and the second temperature of the target battery, determine the consumption capacity of the target battery changing from the first temperature to the second temperature.
  • the first temperature may be the temperature of the target battery after the rapid heat treatment is performed on the target battery.
  • the first formula can be a formula with the temperature at two time nodes as the independent variable and the battery capacity as the dependent variable, then the first temperature and the second temperature can be substituted into the first formula to obtain Calculate the consumption capacity of the target battery changing from the first temperature to the second temperature.
  • the battery capacity can be calculated based on the first temperature and the second temperature. temperature change, and then substitute the temperature change into the first formula to calculate the consumption capacity of the target battery from the first temperature to the second temperature.
  • Step 260 Determine a second state of charge of the target battery at a second temperature according to the consumed capacity, the first state of charge of the target battery at the first temperature, and the nominal capacity of the target battery.
  • the changing state of charge of the target battery can be determined according to the nominal capacity and consumption capacity of the target battery. Then, based on the first state of charge of the target battery at the first temperature and the changed state of charge, a second state of charge of the target battery at the second temperature is determined.
  • the second state of charge of the target battery at the second temperature is realized by the following formula:
  • SOC k represents the second state of charge of the target battery at a second temperature
  • SOC 0 represents the first state of charge of the target battery at the first temperature
  • C 0 represents the nominal capacity of the target battery.
  • the value of the consumption capacity ⁇ cap of the target battery is a negative number.
  • the determination of the state of charge of the battery can be limited to the battery, and it is no longer limited to satisfying the existing
  • the conventional battery in the state of charge determination method can realize the determination of the state of charge of the battery in some special environments such as extreme cold.
  • step 220 may include: according to the type parameter of the target battery, filter out a group of capacity consumption formulas corresponding to the type parameter; according to the first temperature of the target battery, determine the first formula in the group of capacity consumption formulas.
  • the type parameter includes the model of the target battery.
  • the type parameter may also include the nominal capacity of the target battery.
  • the capacity consumption formula group may include a plurality of capacity consumption formulas, and each capacity consumption formula may represent the relationship between the temperature and the capacity of the target battery at different temperatures.
  • each capacity consumption formula in the above capacity consumption formula group may be a linear formula in which temperature variation is an independent variable and battery capacity is a dependent variable.
  • the capacity consumption formula group corresponding to the type parameter is screened out, including: according to the type parameter of the target battery, the linear capacity consumption formula group corresponding to the type parameter is screened out.
  • the set of linear capacity consumption equations is expressed as:
  • k1, k2, k3, k4 represent the slope of each linear capacity consumption formula
  • b1, b2, b3, b4 represent the intercept of each linear capacity consumption formula
  • T0 represents the first temperature of the target battery
  • T1 represents the second temperature of the target battery
  • Tc1, Tc2, Tc3, Tc4, and Tc5 represent the endpoint temperatures of the four temperature ranges.
  • Tc1, Tc2, Tc3, Tc4, and Tc5 are the endpoint temperatures of the temperature intervals obtained through experimental tests on batteries with the same model as the target battery.
  • the number of linear capacity consumption formulas included in the linear capacity consumption formula group may also be different. For example, five temperature ranges may also be divided, and the temperature in each temperature range may match a linear capacity consumption formula.
  • the number of linear capacity consumption formulas contained in the linear capacity consumption formula group of batteries of different models may also be different.
  • the number of linear capacity consumption formulas contained in the linear capacity consumption formula group of batteries with different nominal capacities may also be different.
  • the intercept and slope of each linear capacity consumption formula in the linear capacity consumption formula group can be determined through the following test.
  • Multiple temperatures in the temperature interval [Tc1, Tc5] are used as initial temperatures, for example, the initial temperatures are: Tc1+ ⁇ T, Tc1+2* ⁇ T, Tc1+3* ⁇ T, ..., Tc5- ⁇ T, Tc5.
  • Perform rapid heat treatment on batteries at different initial temperatures collect the temperature of the battery after rapid heat treatment, detect the battery capacity before rapid heat treatment, and detect the capacity of the battery after rapid heat treatment, so as to determine the relationship between temperature and battery capacity alternative relation.
  • the detection method for the capacity of the battery after the rapid heat treatment may be an open circuit voltage method, or a discharge test method.
  • the discharge test method is: discharge the battery with a constant current until the voltage of the battery reaches the specified voltage and end the discharge. The time of constant current discharge and the discharge current can be used to calculate the released battery capacity.
  • the first formula that can better characterize the relationship between the temperature change difference of the battery and the battery capacity is screened out, so that the change of the battery capacity can be more accurately determined, and further , so that the determined second state of charge at the second temperature can also be more accurate.
  • the initial temperature of the target battery can also be determined before the first formula is screened. Based on this, as shown in Figure 3, it can also include The following steps.
  • Step 211 collecting first initial temperatures of multiple sampling points in the target battery at a first moment.
  • each sampling point may be set in advance according to requirements.
  • each sampling point can be evenly distributed on the target battery; for another example, each sampling point can also be unevenly distributed on the target battery, for example, more sampling points are distributed in the middle of the target battery, and more sampling points are distributed on the edge of the target battery. Fewer sampling points.
  • Step 212 Determine a first temperature according to a plurality of the first initial temperatures.
  • an average value of multiple first initial temperatures may be calculated, and the average value may be used as the first temperature of the target battery.
  • a weighted sum may be performed on a plurality of first initial temperatures, and a value obtained by the weighted sum may be used as the first temperature of the target battery.
  • the sum of the weights of each first initial temperature is equal to one, and each weight may be unequal.
  • the weights of the first initial temperatures can be set randomly, and the weights used in each calculation are different; the weights of the first initial temperatures can also be preset weights, and the weights used in each calculation are the same.
  • Step 213 collecting the second initial temperatures of multiple sampling points in the target battery at a second moment.
  • the multiple sampling points for collecting the second initial temperature at the second moment can be the same as the sampling points for collecting the first initial temperature at the first moment, and the multiple sampling points for collecting the second initial temperature at the second moment can also be the same as the sampling points for collecting the first initial temperature at the first moment.
  • the sampling points of the first initial temperature are different.
  • Step 214 Determine a second temperature according to the plurality of second initial temperatures.
  • an average value of multiple second initial temperatures may be calculated, and the average value may be used as the second temperature of the target battery.
  • a weighted sum may be performed on a plurality of second initial temperatures, and a value obtained by the weighted sum may be used as the second temperature of the target battery.
  • the sum of the weights of the second initial temperatures is equal to one, and the weights may not be equal.
  • steps 211 to 214 may be before step 220; of course, some steps in steps 211 to 214 may also be before step 220, and some steps in steps 211 to 214 may be after step 220. Wherein, as long as the first temperature is determined before step 220 and the second temperature is determined before step 240 .
  • Determining the first temperature and the second temperature based on the above steps can reduce the calculation error caused by the possible uneven temperature of the target battery, thereby improving the accuracy of the second state of charge of the target battery.
  • the battery consumption may be uneven.
  • the power consumption of some sampling points is faster, and the power consumption of some sampling points is slower.
  • multiple sampling points can also be set on the target battery, for example, the target battery can include m sampling points, then step 220 and step 240 can be used to collect the temperature of 2*m times of m sampling points Calculations are performed to determine the consumption capacity of m items, and then the consumption capacity of the target battery is calculated based on the consumption capacities of the m items.
  • the temperatures collected at the m sampling points are respectively: T01, T02, T03, . . . , T0m.
  • the temperatures collected at the m sampling points are respectively: T11, T12, T13, . . . , T1m.
  • i 1, 2, 3, ..., m;
  • ⁇ capi represents the i-th consumption capacity of the target battery
  • T1i represents the i-th sampling point of the target battery, the temperature collected after the rapid heat treatment of the target battery
  • T0i represents the i-th sampling point of the target battery, the temperature collected before the rapid heat treatment of the target battery
  • ki represents the slope of the first formula screened out according to T0i;
  • bi represents the intercept of the first formula screened out according to T0i.
  • the consumption capacity ⁇ cap of the target battery can be calculated according to the consumption capacity ⁇ capi of the m items.
  • ⁇ cap ⁇ capi/m.
  • ⁇ cap ⁇ ( ⁇ capi*wi);
  • the data of each sampling point of the battery can be balanced to make the determined consumption capacity of the target battery more accurate, and furthermore, the state of charge determined based on the consumption capacity of the target battery can also be more precise.
  • step 220 it may also include: according to the state parameters in the vehicle controller, determine whether the target battery enters the low-temperature rapid heating mode; when the target battery is in the low-temperature rapid heating mode, perform step 220.
  • the rapid heat treatment may be triggered through a designated button or a setting operation.
  • the current state parameter of the vehicle can be updated, therefore, based on the current state parameter, it can be determined that the target battery is in the low temperature and rapid heating mode.
  • the state parameter can have two values, 1 and 0, respectively, and when the specified button is touched, or the setting operation of the vehicle is triggered, the state parameter can change from 0 to 1. After the rapid heat treatment, the state parameter can change from 1 to 0.
  • step 220 it may also include: according to the state parameters in the battery management system, determine whether the target battery enters the low temperature and rapid heating mode; when the target battery is in the low temperature and rapid heating mode, perform step 220.
  • the first temperature before the temperature change is used to determine the formula that can express the battery temperature and battery capacity, so that the target battery can be determined more accurately in some special cases.
  • the capacity consumption caused by the temperature change process can more accurately determine the state of charge of the target battery.
  • steps 220 to 260 are used to determine the state of charge, based on the state parameters in the vehicle controller or the battery management system, if the state of the battery satisfies the fast heating mode, then steps 220 to 260 can be used. 260. Determining the state of charge can make the determination of the state of charge of the battery more in line with the requirements of the battery, making the determined state of charge more accurate.
  • the embodiment of the present application also provides a battery state-of-charge determination device corresponding to the battery state-of-charge determination method. Since the problem-solving principle of the device in the embodiment of the present application is the same as the aforementioned battery state-of-charge determination method The embodiments are similar, so the implementation of the device in this embodiment can refer to the description in the embodiment of the above method, and the repetition will not be repeated.
  • FIG. 4 is a schematic diagram of functional modules of an apparatus for determining a state of charge of a battery provided in an embodiment of the present application.
  • Each module in the device for determining the state of charge of the battery in this embodiment is used to execute each step in the above method embodiment.
  • the device for determining the state of charge of the battery includes: a formula determination module 310, a capacity determination module 320, and a state determination module 330; the contents of each module are as follows.
  • a formula determining module 310 configured to determine a first formula according to the first temperature of the target battery, and the first formula is used to characterize the relationship between the battery temperature and the battery capacity;
  • a capacity determination module 320 configured to determine the consumption capacity of the target battery from the first temperature to the second temperature according to the first formula, the first temperature and the second temperature of the target battery;
  • a state determination module 330 configured to determine a second state of charge of the target battery at a second temperature according to the consumption capacity, the first state of charge of the target battery at the first temperature, and the nominal capacity of the target battery state.
  • the formula determining module 310 includes: a screening unit and a determining unit.
  • the screening unit is used to filter out the capacity consumption formula group corresponding to the type parameter of the target battery according to the type parameter of the target battery, and the type parameter includes the model of the target battery;
  • the determination unit is configured to determine a first formula in the capacity consumption formula group according to the first temperature of the target battery.
  • the screening unit is configured to, according to the type parameter of the target battery, filter out a set of linear capacity consumption formulas corresponding to the type parameter;
  • linear capacity consumption formula group is expressed as:
  • k1, k2, k3, k4 represent the slope of each linear capacity consumption formula
  • b1, b2, b3, b4 represent the intercept of each linear capacity consumption formula
  • T0 represents the first temperature of the target battery
  • T1 represents the second temperature of the target battery
  • Tc1, Tc2, Tc3, Tc4, and Tc5 represent the endpoint temperatures of the four temperature ranges.
  • the state determination module 330 is implemented by the following formula:
  • SOC k represents the second state of charge of the target battery at a second temperature
  • SOC 0 represents the first state of charge of the target battery at the first temperature
  • C 0 represents the nominal capacity of the target battery.
  • the device for determining the state of charge of the battery may further include:
  • a first sampling module configured to collect first initial temperatures of multiple sampling points in the target battery at a first moment
  • a first temperature determining module configured to determine a first temperature according to a plurality of the first initial temperatures
  • the second sampling module is used to collect the second initial temperature of multiple sampling points in the target battery at a second moment
  • the second temperature determination module is used to determine the second temperature according to the plurality of second initial temperatures.
  • the device for determining the state of charge of the battery may further include:
  • the state determination module 330 is used to determine whether the target battery enters the low-temperature rapid heating mode according to the state parameters in the vehicle controller or the battery management system;
  • the formula determination module 310 is executed.
  • an embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is run by a processor, the determination of the state of charge of the battery described in the above-mentioned method embodiments is performed. method steps.
  • the computer program product of the method for determining the state of charge of a battery provided in the embodiments of the present application includes a computer-readable storage medium storing program codes.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified function or action , or may be implemented by a combination of dedicated hardware and computer instructions.
  • each functional module in each embodiment of the present application may be integrated to form an independent part, each module may exist independently, or two or more modules may be integrated to form an independent part.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes.
  • relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. There is no such actual relationship or order between them.
  • the term “comprises”, “comprises” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the statement "comprising" does not exclude the presence of additional same elements in the process, method, article or device comprising said element.

Abstract

本申请提供了一种电池荷电状态确定方法、装置、电池管理系统和车载设备,其中,该方法包括:根据目标电池的第一温度,确定出第一公式,所述第一公式用于表征电池温度与电池容量的关系;根据所述第一公式、所述第一温度和所述目标电池的第二温度,确定出所述目标电池从所述第一温度变化至所述第二温度的消耗容量;根据所述消耗容量、所述第一温度下所述目标电池的第一荷电状态和所述目标电池的标称容量,确定出所述目标电池在第二温度下的第二荷电状态。

Description

电池荷电状态确定方法、装置、电池管理系统和车载设备 技术领域
本申请涉及电池管理技术领域,具体而言,涉及一种电池荷电状态确定方法、装置、电池管理系统和车载设备。
背景技术
目前关于电池的荷电状态的确定方式有很多,例如,开路电压法(Open Circuit Voltage,OCV)、安时积分法等。这些荷电状态估算方式主要适用于电池在正常使用状态下的荷电状态,但是针对一些特殊情况下,例如,电池在短时间内温度变化较大,现有的估算方式确定出的荷电状态的数据会存在较大的误差。
发明内容
有鉴于此,本申请实施例的目的在于提供一种电池荷电状态确定方法、装置、电池管理系统和车载设备。以改善现有的核电状态估算方法对特殊情况下的电池的荷电状态估算误差较大的问题。
第一方面,本申请实施例提供了一种电池荷电状态确定方法,包括:
根据目标电池的第一温度,确定出第一公式,所述第一公式用于表征电池温度与电池容量的关系;
根据所述第一公式、所述第一温度和所述目标电池的第二温度,确定出所述目标电池从所述第一温度变化至所述第二温度的消耗容量;
根据所述消耗容量、所述第一温度下所述目标电池的第一荷电状态和所述目标电池的标称容量,确定出所述目标电池在第二温度下的第二荷电状态。
可选地,所述根据目标电池的第一温度确定出第一公式,包括:
根据目标电池的类型参数,筛选出所述类型参数对应的容量消耗公式组,所述类型参数包括所述目标电池的型号;
根据所述目标电池的第一温度,在所述容量消耗公式组中确定出第一公式。
可选地,所述根据目标电池的类型参数,筛选出所述类型参数对应的容量消耗公式组,包括:
根据目标电池的类型参数,筛选出所述类型参数对应的线性容量消耗公式组;
其中,所述线性容量消耗公式组表示为:
Figure PCTCN2022074121-appb-000001
其中,k1、k2、k3、k4表示各线性容量消耗公式的斜率;
b1、b2、b3、b4表示各线性容量消耗公式的截距;
T0表示所述目标电池的第一温度;
T1表示所述目标电池的第二温度;
Tc1、Tc2、Tc3、Tc4、Tc5表示四个温度区间的端点温度。
可选地,所述根据所述消耗容量、所述第一温度下的第一荷电状态和所述目标电池的标称容量,确定出所述目标电池在第二温度下的第二荷电状态,通过以下公式实现:
Figure PCTCN2022074121-appb-000002
其中,SOC k表示所述目标电池在第二温度下的第二荷电状态;
SOC 0表示所述目标电池在第一温度下的第一荷电状态;
C 0表示所述目标电池的标称容量。
可选地,所述方法还包括:
在第一时刻采集所述目标电池中多个采样点的第一初始温度;
根据多个所述第一初始温度,确定出第一温度;
在第二时刻采集所述目标电池中多个采样点的第二初始温度;
根据多个所述第二初始温度,确定出第二温度。
可选地,所述方法还包括:
根据整车控制器或电池管理系统中的状态参数,确定所述目标电池是否进入低温速热模式;
在所述目标电池处于所述低温速热模式时,执行所述根据目标电池的第一温度确定出第一公式的步骤。
第二方面,本申请实施例提供一种电池荷电状态确定装置,包括:
公式确定模块,用于根据目标电池的第一温度,确定出第一公式,所述第一公式用于表征电池温度与电池容量的关系;
容量确定模块,用于根据所述第一公式、所述第一温度和所述目标电池的第二温度,确定出所述目标电池从所述第一温度变化至所述第二温度的消耗容量;
状态确定模块,用于根据所述消耗容量、所述第一温度下所述目标电池的第一荷电状态和所述目标电池的标称容量,确定出所述目标电池在第二温度下的第二荷电状态。
第三方面,本申请实施例提供一种电池管理系统,包括:包括处理器以及存储器,
所述存储器存储有计算机可读取指令,当所述计算机可读取指令由所述处理器执行时,运行上述的方法的步骤。
第四方面,本申请实施例提供一种车载设备,包括:处理器、存储器,所述存储器存储有所述处理器可执行的机器可读指令,当车载设备运行时,所述机器可读指令被所述处理器执行时执行上述的方法的步骤。
第五方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述的方法的步骤。
本申请实施例提供的电池荷电状态确定方法、装置、电池管理系统、车载设备和计算机可读存储介质,采用通过温度变化之前的第一温度确定出能够表达电池温度与电池容量的公式,从而可以实现在一些特殊情况下也能够更准确地确定出目标电池在温度变化过程中所导致的容量的消耗,从而可以更准确地实现目标电池的荷电状态的确定。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的车载设备的方框示意图;
图2为本申请实施例提供的电池荷电状态确定方法的流程图;
图3为本申请实施例提供的电池荷电状态确定方法的部分流程图;
图4为本申请实施例提供的电池荷电状态确定装置的功能模块示意图。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行描述。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
发明人研究了解到,在一些特殊环境中动力电池不能够稳定工作,如,在一些极寒环境中,电池温度很低,导致电池难以稳定的工作。为了使电池更好地工作,需要在电池进入工作之前通过速热技术,使电池温度达到能够正常工作的温度。
但是经过速热技术的处理,会导致电池的荷电状态的变化规律与常规不能够满足开路电压法、安时积分法的规律,导致在对速热技术处理后的电池的荷电状态确定不准确。发明人研究了解到,传统荷电状态(state of charge,SOC)算法用在速热技术处理阶段的电池误差大的根本原因是:(1)安时积分法:速热用的正负交替电流变化频率在1kHz以上,电池包内的电流传感器无法采集如此高频率的电流变化;(2)开路电压法:磷酸铁锂电池平台区电压很平缓,电压差1mV的两个电池的SOC可能会差5%SOC,而电池管理系统(battery management system,BMS)的电压采样精度是±5mV;(3)卡尔曼滤波方法:根据动态电压估算当前SOC,需要较为准确的电池模型。电池在进行速热处理过程中,电池的电流工况非常剧烈,传统的电池模型尚无法描述该过程。因此,现有的三种电池SOC估算方法已经不能够满足电池在进行速热处理过程中的电池的SOC估算。
基于此现状,本申请提供一种电池荷电状态确定方法,通过研究各个温度下不同电池的容量变化规律,确定出适用于不同温度不同型号电池的容量变化公式,以估算电池的荷电状态。下面通过一些实施例来描述本申请提供的电池荷电状态确定方法。
本申请实施例涉及到的电池可以但不限用于车辆、船舶或飞行器等用电设备中,可以使用具备本申请提及的电池组成该用电装置的电源系统。
本申请实施例提供一种电池荷电状态确定方法,该方法可以应用于电池的电池管理系统,也可以应用于安装电池的用电设备。
该用电设备可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆100为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆100的结构示意图。车辆100可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆100的内部设置有电池110,电池110可以设置在车辆100的底部、头部、尾部或腰部。电池110可以用于车辆100的供电,例如,电池110可以作为车辆100的操作电源。车辆100还可以包括控制器120和马达130,控制器120用来控制电池110为马达130供电,例如,用于车辆100的启动、导航和行驶时的工作用电需求。
基于不同需求,该车辆100上还可以包括其他组件,例如,该车辆100上还可以包括车载设备140,该车载电脑140可以为司机提供音乐或视频画面,还可以提供导航等。
可选地,该电池110还可以为车载设备140提供电源。
在本申请一些实施例中,电池110不仅可以作为车辆100的操作电源,还可以作为车辆100的驱动电源,代替或部分地代替燃油或天然气为车辆100提供驱动动力。
上述的车辆100中的车载设备140或电池110的电池管理系统可以执行本申请实施例提供的电池荷电状态确定方法中的步骤,下面通过一些实施例来描述本申请实施例提供的电池荷电状态确定方法。
请参阅图2,是本申请实施例提供的电池荷电状态确定方法的流程图。下面将对图2所示的具体流程进行详细阐述。
步骤220,根据目标电池的第一温度,确定出第一公式。
第一公式用于表征电池温度与电池容量的关系。
示例性地,该第一公式可以是线性公式,也可以是二次函数等。
可选地,该第一公式可以是以两个时间节点的温度为自变量,电池容量为因变量的公式。该两个时间节点可以是速热技术处理电池所导致的电池温度变化前的第一时间节点,和温度变化后的第二时间节点。
可选地,该第一公式可以是以两个时间节点所产生的温度变化量为自变量,电池容量为因变量的公式。
示例性地,该第一温度可以是在对目标电池进行速热处理之前,目标电池的温度。
步骤240,根据该第一公式、该第一温度和该目标电池的第二温度,确定出该目标电池从该第一温度变化至该第二温度的消耗容量。
示例性地,该第一温度可以是在对目标电池进行速热处理后,目标电池的温度。
示例性地,若该第一公式可以是以两个时间节点的温度为自变量,电池容量为因变量的公式,则可以将该第一温度和该第二温度代入该第一公式中,以计算出该目标电池从该第一温度变化至该第二温度的消耗容量。
示例性地,若该第一公式可以是以两个时间节点所产生的温度变化量为自变量,电池容量为因变量的公式,则可以先根据第一温度和第二温度,计算出电池的温度变化量,然后将该温度变化量代入该第一公式中,以计算出该目标电池从该第一温度变化至该第二温度的消耗容量。
步骤260,根据该消耗容量、该第一温度下该目标电池的第一荷电状态和该目标电池的标称容量,确定出该目标电池在第二温度下的第二荷电状态。
可选地,可以根据目标电池的标称容量和消耗容量,确定出目标电池的变化的荷电状态。然后基于目标电池在第一温度下的第一荷电状态和变化的荷电状态,确定出目标电池在第二温度下的第二荷电状态。
示例性地,该目标电池在第二温度下的第二荷电状态,通过以下公式实现:
Figure PCTCN2022074121-appb-000003
其中,SOC k表示该目标电池在第二温度下的第二荷电状态;
SOC 0表示该目标电池在第一温度下的第一荷电状态;
C 0表示该目标电池的标称容量。
示例性地,在实际计算过程中,经过速热处理后,目标电池的消耗容量△cap的取值为负数。
由于可以根据目标电池的第一温度,确定出能够表征该第一温度的容量变化的第一公式,从而可以使电池的荷电状态的确定对电池的限定更小,不再局限于满足现有的荷电状态确定方式中的常规规律的电池,从而可以实现对一些极寒等特殊环境下的电池的荷电状态的确定。
考虑不同型号或不同容量的电池的温度与容量的关系不同,因此,在确定表征电池温度与电池容量的第一公式时,还可以参考电池的类型参数。基于此,步骤220可以包括:根据目标电池的类型参数,筛选出该类型参数对应的容量消耗公式组;根据该目标电池的第一温度,在该容量消耗公式组中确定出第一公式。
其中,该类型参数包括该目标电池的型号。该类型参数还可以包括目标电池的标称容量。
该容量消耗公式组中可以包括多个容量消耗公式,各个容量消耗公式可以表征目标电池在不同的温度下的温度与容量的变化关系。
发明人研究了解到,低温下电池的内阻和温度的关系,电池的容量损耗和温度变化量近似符合线性上升规律,基于此,确定出用于表征电池容量与电池温度的关系的第一公式可以为线性公式。因此,上述的容量消耗公式组中的各个容量消耗公式可以是温度变化量为自变量,电池的容量为因变量的线性公式。
基于上述研究,根据目标电池的类型参数,筛选出该类型参数对应的容量消耗公式组,包括:根据目标电池的类型参数,筛选出该类型参数对应的线性容量消耗公式组。
在一个实例中,线性容量消耗公式组表示为:
Figure PCTCN2022074121-appb-000004
其中,k1、k2、k3、k4表示各线性容量消耗公式的斜率;
b1、b2、b3、b4表示各线性容量消耗公式的截距;
T0表示该目标电池的第一温度;
T1表示该目标电池的第二温度;
Tc1、Tc2、Tc3、Tc4、Tc5表示四个温度区间的端点温度。
其中,上述的Tc1、Tc2、Tc3、Tc4、Tc5为对目标电池型号相同的电池进行实验测试得到的温度区间的端点温度。
在其他实例中,线性容量消耗公式组中所包含的线性容量消耗公式的数量也可以不同。例如,也可以划分五个温度区间,每个温度区间内的温度可以匹配一个线性容量消耗公式。
例如,不同型号的电池的线性容量消耗公式组中所包含的线性容量消耗公式的数量也可以不同。再例如,不同标称容量的电池的线性容量消耗公式组中所包含的线性容量消耗公式的数量也可以不同。
在一个实例中,可以通过以下测试,确定出线性容量消耗公式组中各线性容量消耗公式中的截距和斜率。在温度区间[Tc1,Tc5]中的多个温度作为初始温度,例如,初始温度分别为:Tc1+ΔT、Tc1+2*ΔT、Tc1+3*ΔT、…、Tc5-ΔT、Tc5。分别对不同初始温度下的电池进行速热处理,并采集速热处理后的电池的温度、检测速热处理前的电池容量以及检测速热处理后电池的容量,以此,确定出温度与电池容量之间的变化关系。
示例性地,对速热处理后电池的容量的检测方法可以是开路电压法,也可以是放电测试方法。该放电测试方法为:对电池进行恒定电流放电,直到电池的电压为指定电压时结束放电,恒流放电的时间以及放电电流可计算出释放电池容量。
结合电池的速热处理之前的第一温度和电池的型号,筛选出能够更好表征电池的温度变化差与电池容量的关系的第一公式,可以更准确地确定 出电池的容量的变化,进一步地,使确定出的第二温度下的第二荷电状态也可以更加准确。
为了使筛选出的第一公式能够更好地表征目标电池的温度与容量的关系,在筛选第一公式之前还可以确定出目标电池的初始温度,基于此,如图3所示,还可以包括以下步骤。
步骤211,在第一时刻采集该目标电池中多个采样点的第一初始温度。
示例性地,各个采样点可以是预先按照需求设定的。例如,各个采样点可以均匀地分布在目标电池上;再例如,各个采样点也可以不均匀地分布在目标电池上,如,目标电池的中间位置分布更多的采样点,目标电池的边缘分布更少的采样点。
步骤212,根据多个该第一初始温度,确定出第一温度。
可选地,可以计算多个第一初始温度的平均值,将该平均值作为目标电池的第一温度。
可选地,可以对多个第一初始温度进行加权求和,将该加权求和得到的值作为目标电池的第一温度。其中,在对多个第一初始温度进行加权求和时,各第一初始温度的权重之和等于一,且各项权重可以不相等。各第一初始温度的权重可以随机设定,则每次计算所使用的权重不同;各第一初始温度的权重也可以是预先设定的权重,则每次计算所使用的权重相同。
步骤213,在第二时刻采集该目标电池中多个采样点的第二初始温度。
其中,第二时刻采集第二初始温度的多个采样点可以与第一时刻采集第一初始温度的采样点相同,第二时刻采集第二初始温度的多个采样点也可以与第一时刻采集第一初始温度的采样点不相同。
步骤214,根据多个该第二初始温度,确定出第二温度。
可选地,可以计算多个第二初始温度的平均值,将该平均值作为目标电池的第二温度。
可选地,可以对多个第二初始温度进行加权求和,将该加权求和得到的值作为目标电池的第二温度。其中,对各第二初始温度加权求和时,各第二初始温度的权重之和等于一,且各项权重可以不相等。
其中,步骤211至步骤214的执行顺序可以在步骤220之前;当然,步骤211至步骤214中的部分步骤也可以在步骤220之前,步骤211至步骤214中的部分步骤在步骤220之后。其中,只要在步骤220之前确定出第一温度,在步骤240之前确定出第二温度即可。
基于上述步骤确定第一温度和第二温度,可以降低目标电池可能存在温度不均匀的情况所导致的计算误差,从而也就能够提高目标电池的第二荷电状态的准确性。
考虑随着电池的使用,电池的消耗可能存在不均匀的情况,例如一些采样点的电量消耗更快,一些采样点的电量消耗更慢,为了使确定的目标电池的消耗容量更接近目标电池的实际消耗容量,还可以在目标电池上设置多个采样点,例如,目标电池上可以包括m个采样点,则可以使用步骤220和步骤240,对m个采样点的2*m次采集的温度进行计算,以确定出m项消耗容量,然后基于m项消耗容量计算出目标电池的消耗容量。
示例性地,在对目标电池进行速热处理之前,m个采样点采集的温度分别为:T01、T02、T03、…、T0m。
示例性地,在对目标电池进行速热处理之后,m个采样点采集的温度分别为:T11、T12、T13、…、T1m。
然后,分别使用T01、T02、T03、…、T0m和T11、T12、T13、…、T1m计算得到m项消耗容量,分别表示为:
△capi=ki(T1i-T0i)+bi;
其中,i的取值为1、2、3、…、m;
△capi表示目标电池的第i项消耗容量;
T1i表示目标电池的第i个采样点,对目标电池进行速热处理之后采集得到的温度;
T0i表示目标电池的第i个采样点,对目标电池进行速热处理之前采集得到的温度;
ki表示根据T0i筛选出的第一公式的斜率;
bi表示根据T0i筛选出的第一公式的截距。
目标电池的消耗容量△cap可以根据m项消耗容量△capi计算得到。
在一个实例中,△cap=∑△capi/m。
在另一个实例中,△cap=∑(△capi*wi);
其中,wi表示第i项消耗容量的权重;且∑wi=1。
基于上述方式确定目标电池的消耗容量,可以均衡电池各个采样点的数据,使确定出的目标电池的消耗容量更加准确,进一步地也可以使基于该目标电池的消耗容量确定出的荷电状态也更加准确。
考虑电池在正常情况下荷电状态的变化能够满足现有的荷电状态确定算法的规律,因此,电池在正常情况下,可以使用常规的荷电状态确定方式确定荷电状态,仅在对低温下的电池进行速热处理所导致的荷电状态的变化使用本申请实施例提供的步骤220至步骤260的方法确定。基于此,在步骤220之前还可以包括:根据整车控制器中的状态参数,确定该目标电池是否进入低温速热模式;在该目标电池处于该低温速热模式时,执行步骤220。
示例性地,在对目标电池进行速热处理之前,可以通过指定按钮,或设定操作触发速热处理。在该指定按钮被触碰后,或者车辆的设定操作被 触发后,可以更新该车辆的当前状态参数,因此,基于该当前状态参数可以确定出目标电池处于该低温速热模式。
在一个实例中,该状态参数可以有两个值,分别为1和0,当指定按钮被触碰后,或者车辆的设定操作被触发,该状态参数可以由0变成1。在速热处理结束后,该状态参数可以由1变成0。
可选地,在步骤220之前还可以包括:根据电池管理系统中的状态参数,确定该目标电池是否进入低温速热模式;在该目标电池处于该低温速热模式时,执行步骤220。
通过上述电池荷电状态确定方法中的步骤,采用通过温度变化之前的第一温度确定出能够表达电池温度与电池容量的公式,从而可以实现在一些特殊情况下也能够更准确地确定出目标电池在温度变化过程中所导致的容量的消耗,从而可以更准确地实现目标电池的荷电状态的确定。
进一步地,在采用步骤220至步骤260确定荷电状态之前,还可以基于整车控制器或电池管理系统中的状态参数,在电池的状态满足速热模式的情况下,再使用步骤220至步骤260确定荷电状态,可以使电池荷电状态的确定更加符合电池的需求,使确定出的荷电状态更加准确。
基于同一申请构思,本申请实施例中还提供了与电池荷电状态确定方法对应的电池荷电状态确定装置,由于本申请实施例中的装置解决问题的原理与前述的电池荷电状态确定方法实施例相似,因此本实施例中的装置的实施可以参见上述方法的实施例中的描述,重复之处不再赘述。
请参阅图4,是本申请实施例提供的电池荷电状态确定装置的功能模块示意图。本实施例中的电池荷电状态确定装置中的各个模块用于执行上述方法实施例中的各个步骤。电池荷电状态确定装置包括:公式确定模块 310、容量确定模块320以及状态确定模块330;其中各个模块的内容如下所示。
公式确定模块310,用于根据目标电池的第一温度,确定出第一公式,该第一公式用于表征电池温度与电池容量的关系;
容量确定模块320,用于根据该第一公式、该第一温度和该目标电池的第二温度,确定出该目标电池从该第一温度变化至该第二温度的消耗容量;
状态确定模块330,用于根据该消耗容量、该第一温度下该目标电池的第一荷电状态和该目标电池的标称容量,确定出该目标电池在第二温度下的第二荷电状态。
一种可能的实施方式中,公式确定模块310,包括:筛选单元和确定单元。
筛选单元,用于根据目标电池的类型参数,筛选出该类型参数对应的容量消耗公式组,该类型参数包括该目标电池的型号;
确定单元,用于根据该目标电池的第一温度,在该容量消耗公式组中确定出第一公式。
一种可能的实施方式中,筛选单元,用于根据目标电池的类型参数,筛选出该类型参数对应的线性容量消耗公式组;
其中,该线性容量消耗公式组表示为:
Figure PCTCN2022074121-appb-000005
其中,k1、k2、k3、k4表示各线性容量消耗公式的斜率;
b1、b2、b3、b4表示各线性容量消耗公式的截距;
T0表示该目标电池的第一温度;
T1表示该目标电池的第二温度;
Tc1、Tc2、Tc3、Tc4、Tc5表示四个温度区间的端点温度。
一种可能的实施方式中,状态确定模块330通过以下公式实现:
Figure PCTCN2022074121-appb-000006
其中,SOC k表示该目标电池在第二温度下的第二荷电状态;
SOC 0表示该目标电池在第一温度下的第一荷电状态;
C 0表示该目标电池的标称容量。
一种可能的实施方式中,电池荷电状态确定装置还可以包括:
第一采样模块,用于在第一时刻采集该目标电池中多个采样点的第一初始温度;
第一温度确定模块,用于根据多个该第一初始温度,确定出第一温度;
第二采样模块,用于在第二时刻采集该目标电池中多个采样点的第二初始温度;
第二温度确定模块,用于根据多个该第二初始温度,确定出第二温度。
一种可能的实施方式中,电池荷电状态确定装置还可以包括:
状态确定模块330,用于根据整车控制器或电池管理系统中的状态参数,确定该目标电池是否进入低温速热模式;
在该目标电池处于该低温速热模式时,执行该公式确定模块310。
此外,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述方法实施例中所述的电池荷电状态确定方法的步骤。
本申请实施例所提供的电池荷电状态确定方法的计算机程序产品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的指令可用于执行上述方法实施例中所述的电池荷电状态确定方法的步骤,具体可参见上述方法实施例,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服 务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种电池荷电状态确定方法,其特征在于,包括:
    根据目标电池的第一温度,确定出第一公式,所述第一公式用于表征电池温度与电池容量的关系;
    根据所述第一公式、所述第一温度和所述目标电池的第二温度,确定出所述目标电池从所述第一温度变化至所述第二温度的消耗容量;
    根据所述消耗容量、所述第一温度下所述目标电池的第一荷电状态和所述目标电池的标称容量,确定出所述目标电池在第二温度下的第二荷电状态。
  2. 根据权利要求1所述的方法,其特征在于,所述根据目标电池的第一温度确定出第一公式,包括:
    根据目标电池的类型参数,筛选出所述类型参数对应的容量消耗公式组,所述类型参数包括所述目标电池的型号;
    根据所述目标电池的第一温度,在所述容量消耗公式组中确定出第一公式。
  3. 根据权利要求2所述的方法,其特征在于,所述根据目标电池的类型参数,筛选出所述类型参数对应的容量消耗公式组,包括:
    根据目标电池的类型参数,筛选出所述类型参数对应的线性容量消耗公式组;
    其中,所述线性容量消耗公式组表示为:
    Figure PCTCN2022074121-appb-100001
    其中,k1、k2、k3、k4表示各线性容量消耗公式的斜率;
    b1、b2、b3、b4表示各线性容量消耗公式的截距;
    T0表示所述目标电池的第一温度;
    T1表示所述目标电池的第二温度;
    Tc1、Tc2、Tc3、Tc4、Tc5表示四个温度区间的端点温度。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述消耗容量、所述第一温度下的第一荷电状态和所述目标电池的标称容量,确定出所述目标电池在第二温度下的第二荷电状态,通过以下公式实现:
    Figure PCTCN2022074121-appb-100002
    其中,SOC k表示所述目标电池在第二温度下的第二荷电状态;
    SOC 0表示所述目标电池在第一温度下的第一荷电状态;
    C 0表示所述目标电池的标称容量。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在第一时刻采集所述目标电池中多个采样点的第一初始温度;
    根据多个所述第一初始温度,确定出第一温度;
    在第二时刻采集所述目标电池中多个采样点的第二初始温度;
    根据多个所述第二初始温度,确定出第二温度。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,所述方法还包括:
    根据整车控制器或电池管理系统中的状态参数,确定所述目标电池是否进入低温速热模式;
    在所述目标电池处于所述低温速热模式时,执行所述根据目标电池的第一温度确定出第一公式的步骤。
  7. 一种电池荷电状态确定装置,其特征在于,包括:
    公式确定模块,用于根据目标电池的第一温度,确定出第一公式,所述第一公式用于表征电池温度与电池容量的关系;
    容量确定模块,用于根据所述第一公式、所述第一温度和所述目标电池的第二温度,确定出所述目标电池从所述第一温度变化至所述第二温度的消耗容量;
    状态确定模块,用于根据所述消耗容量、所述第一温度下所述目标电池的第一荷电状态和所述目标电池的标称容量,确定出所述目标电池在第二温度下的第二荷电状态。
  8. 一种电池管理系统,其特征在于,包括:包括处理器以及存储器,
    所述存储器存储有计算机可读取指令,当所述计算机可读取指令由所述处理器执行时,运行如权利要求1至6任意一项所述的方法的步骤。
  9. 一种车载设备,其特征在于,包括:处理器、存储器,所述存储器存储有所述处理器可执行的机器可读指令,当车载设备运行时,所述机器可读指令被所述处理器执行时执行如权利要求1至6任意一项所述的方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行如权利要求1至6任意一项所述的方法的步骤。
PCT/CN2022/074121 2022-01-26 2022-01-26 电池荷电状态确定方法、装置、电池管理系统和车载设备 WO2023141841A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280030432.XA CN117203540A (zh) 2022-01-26 2022-01-26 电池荷电状态确定方法、装置、电池管理系统和车载设备
PCT/CN2022/074121 WO2023141841A1 (zh) 2022-01-26 2022-01-26 电池荷电状态确定方法、装置、电池管理系统和车载设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074121 WO2023141841A1 (zh) 2022-01-26 2022-01-26 电池荷电状态确定方法、装置、电池管理系统和车载设备

Publications (1)

Publication Number Publication Date
WO2023141841A1 true WO2023141841A1 (zh) 2023-08-03

Family

ID=87470149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074121 WO2023141841A1 (zh) 2022-01-26 2022-01-26 电池荷电状态确定方法、装置、电池管理系统和车载设备

Country Status (2)

Country Link
CN (1) CN117203540A (zh)
WO (1) WO2023141841A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443472A (zh) * 2016-09-29 2017-02-22 江苏大学 一种新型的电动汽车动力电池soc估算方法
US20210103002A1 (en) * 2018-06-19 2021-04-08 Huawei Technologies Co., Ltd. Method and Apparatus for Estimating State of Charge of Battery
CN112924872A (zh) * 2021-01-22 2021-06-08 苏州宇量电池有限公司 一种磷酸铁锂电池荷电状态的监测方法
CN113075558A (zh) * 2021-06-08 2021-07-06 天津市松正电动科技有限公司 一种电池soc估算方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443472A (zh) * 2016-09-29 2017-02-22 江苏大学 一种新型的电动汽车动力电池soc估算方法
US20210103002A1 (en) * 2018-06-19 2021-04-08 Huawei Technologies Co., Ltd. Method and Apparatus for Estimating State of Charge of Battery
CN112924872A (zh) * 2021-01-22 2021-06-08 苏州宇量电池有限公司 一种磷酸铁锂电池荷电状态的监测方法
CN113075558A (zh) * 2021-06-08 2021-07-06 天津市松正电动科技有限公司 一种电池soc估算方法、装置及系统

Also Published As

Publication number Publication date
CN117203540A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
Ye et al. A double-scale and adaptive particle filter-based online parameter and state of charge estimation method for lithium-ion batteries
Wang et al. Probability based remaining capacity estimation using data-driven and neural network model
Shen et al. Accurate state of charge estimation with model mismatch for li-ion batteries: A joint moving horizon estimation approach
US8560257B2 (en) Dynamic battery capacity estimation
Zhang et al. Online state of charge estimation of lithium-ion cells using particle filter-based hybrid filtering approach
US9519029B2 (en) Model-based battery monitoring
Mohan et al. Estimating the power capability of li-ion batteries using informationally partitioned estimators
CN104417386A (zh) 在车辆起动时的电池功率容量估计
CN102368091A (zh) 用于锂离子电池的适应性电池参数提取和soc评估
CN107024659B (zh) 使用非线性电阻元件的电池状态估计系统和方法
Baronti et al. Parameter identification of Li-Po batteries in electric vehicles: A comparative study
Zhou et al. Peak power prediction for series-connected LiNCM battery pack based on representative cells
WO2018103829A1 (en) A method of estimating a charge state for a battery cell
Wang et al. A driving-behavior-based SoC prediction method for light urban vehicles powered by supercapacitors
Vennam et al. A dynamic soh-coupled lithium-ion cell model for state and parameter estimation
CN104035035A (zh) 确定电池的残余容量的方法
Baba et al. Simultaneous state of charge and parameter estimation of lithium-ion battery using log-normalized unscented Kalman filter
WO2023141841A1 (zh) 电池荷电状态确定方法、装置、电池管理系统和车载设备
Rodriguez et al. Discovering governing equations of li-ion batteries pertaining state of charge using input-output data
Hametner et al. Local model network based dynamic battery cell model identification
Hou et al. The state of charge estimation of power lithium battery based on RBF neural network optimized by particle swarm optimization
CN113884905B (zh) 基于深度学习的动力电池荷电状态估计方法及系统
Li et al. On-line battery state of charge estimation using Gauss-Hermite quadrature filter
Feng et al. Fuzzy energy management strategy for hybrid electric vehicles on battery state-of-charge estimation by particle filter
Schweighofer et al. Fast and accurate battery model including temperature dependency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922691

Country of ref document: EP

Kind code of ref document: A1