TWI509521B - 鋰電池之電路模型建構方法 - Google Patents

鋰電池之電路模型建構方法 Download PDF

Info

Publication number
TWI509521B
TWI509521B TW102109583A TW102109583A TWI509521B TW I509521 B TWI509521 B TW I509521B TW 102109583 A TW102109583 A TW 102109583A TW 102109583 A TW102109583 A TW 102109583A TW I509521 B TWI509521 B TW I509521B
Authority
TW
Taiwan
Prior art keywords
battery
voltage
curve
time
function
Prior art date
Application number
TW102109583A
Other languages
English (en)
Other versions
TW201437917A (zh
Inventor
Yao Ching Hsieh
Tin Da Lin
Ruei Ji Chen
Zhen Hao You
Hong Yu Lin
Original Assignee
Nat Univ Dong Hwa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Dong Hwa filed Critical Nat Univ Dong Hwa
Priority to TW102109583A priority Critical patent/TWI509521B/zh
Publication of TW201437917A publication Critical patent/TW201437917A/zh
Application granted granted Critical
Publication of TWI509521B publication Critical patent/TWI509521B/zh

Links

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

鋰電池之電路模型建構方法
本發明係關於一種針對電池進行模擬的方法,更進一步來說,本發明係關於一種鋰電池之電路模型建構方法。
在文獻中可以找到許多不同的電化學電池模型,如電化學模型(electrochemical models)、電池行為模型(behavioral models)以及電路模型(electric circuit models)。雖然電化學模型精確度較高,但是模型本身由許多複雜的非線性微分方程式構成[1],除了計算複雜之外,需對電化學反應有較深入了解才能建構此種模型。行為模型則運用簡化的方程式,來描述電池電量與其他參數(如電流)的關係。最著名的行為模型是Peukert's law,評估電池可放電時間與放電電流間的關係。電路模型則是利用如電容、電阻和電壓源等電路元件,構成可代表電池的等效電路[2]。對電源設計者而言,電路模型最容易理解,也最方便操作。
至於電路模型的建構方法,包括電化學阻抗頻譜法(electrochemical impedance spectroscopy,EIS)[3],此法需使用阻抗分析儀,掃描電池在多個頻段下的阻抗變化情形,再以曲線逼近的方式,推導出電路的架構。上述方法另有一種變形的作法,即是以阻抗分析儀繪出電池的頻率響應的波德圖(Bode plot),之後同樣以曲線逼近法,求得等效電路[4]。另外,也有運用人工智慧,如類神經網路的方法[5]來尋求正確的電路模型參數。
然而,上述幾種方法,都需要相當大的成本,以及相對多的資源。申請人基於此,提出了了一種利用相對有限的資源,可以達成準確建構鋰電池之電路模型的方法。
參考資料:
[1] D. M. Bernardi, H. Gu, A. Y. Schoene, “Two-Dimensional Mathematical Model of a Lead-Acid Cell,” Journal of the Electrochemical Society, Vol.140, No.8, Aug. 1993, pp.2250-2257.
[2] L. Gao, S. Liu, and R. A. Dougal,” Dynamic Lithium-Ion Battery Model for System Simulation,” IEEE Trans. on Components and Packaging Technologies, Vol. 25, No. 3, Sep. 2002, pp. 495-505.2 . M. Chen and G. A. Rincón-Mora, “Accurate Electrical Battery Model Capable of Predicting Runtime and I-V Performance,” IEEE Trans. on Energy Conversion, Vol. 21, No. 2, Jun. 2006, pp. 504-511.3 . M. Urbain, M. Hinaje, S Raël, B. Davat, and P. Desprez, “Energetical Modeling of Lithium-Ion Batteries Including Electrode Porosity Effects,” IEEE Trans. on Energy Conversion, Vol. 25, No. 3, Sep. 2010, pp. 862-872.
[3] S. Buller, M. Thele, R W. A. A. De Doncker, and E. Karden, “Impedance-Based Simulation Models of Supercapacitors and Li-Ion Batteries for Power Electronic Applications,” IEEE Trans. on Industry Applications, Vol. 41, No. 3, May/Jun. 2005, pp. 742-747.
[4] J. Jang, and J. Yoo, “Equivalent Circuit Evaluation Method of Lithium Polymer Battery Using Bode Plot and Numerical Analysis,” IEEE Trans. on Energy Conversion, Vol. 26, No. 1, Mar. 2011, pp. 290-298.
[5] Y. Song and L. Gao, “Incremental Battery Model Using Wavelet-Based Neural Networks,” IEEE Trans. on Components, Packaging and Manufacturing Technology, Vol. 1, No. 7, Jul. 2011, pp. 1075-1081.
本發明的一目的在於提供一種鋰電池之電路模型建構方法,藉此,將電池分階段放電,並利用電池靜置電壓估計模型內部參數。
本發明的另一目的在於提供一種鋰電池之電路模型建構方法,藉此了解電池的行為與電量狀態(state of charge,SOC )和溫度等因素的相依關係。
有鑒於此,本發明提供一種鋰電池之電路模型建構方法,此鋰電池之電路模型建構方法包括下列步驟:(步驟A)對一電池用一固定電流放出一固定電量的電力;(步驟B)停止放電,並靜置一預定時間,直到電池的端電壓穩定;(步驟C)記錄(步驟B)的電壓對時間變化曲線;(步驟D)設置該(步驟B)的電壓對時間變化曲線為一電池函數;(步驟E)取得上述停止放電時的電池的電壓之初始變化電壓;(步驟F)取得上述靜置過程的電池的端電壓之最大電壓;(步驟G)假設一自然函數;(步驟H)利用一曲線配適法,根據該(步驟B)的電壓對時間變化曲線以及該自然函數,找出一配適曲線、其所對應的一配適曲線函數以及一時間常數;(步驟I)比較該配適曲線與該(步驟B)的電壓對時間變化曲線,獲得一誤差對時間變化曲線;(步驟J)提供一誤差門檻;(步驟K)根據該誤差門檻,找出該誤差對時間變化曲線中,超過該誤差門檻的時間點,以作為一分段時間;(步驟L)將該配適曲線函數代入該(步驟B)的初始時間,獲得一初始電壓;(步驟M)將該初始電壓除以該固定電流,獲得一電阻值;(步驟N)將該時間常數除以該第一電阻,獲得一電容值;(步驟O)將該電池函數扣除該配適曲線函數,重複(步驟G)到(步驟N)n次獲得n個電阻值、n個電容值以及 n個時間常數;以及(步驟P)根據上述n個電阻值、n個電容值以及n個時間常數,建構該鋰電池之電路模型。
依照本發明較佳實施例所述之鋰電池之電路模型建構方法,上述(步驟H)的曲線配適法包括:最小平方差法。另外,在較佳實施例中,上述步驟更包括:(步驟Q)回到(步驟A),重複執行(步驟A)~(步驟Q),直到電池的電量低於一預設電量。在較佳實施例中,電池電流所造成的電壓降之電阻值可由下述方式獲得:停止放電時的電池的電壓之初始變化電壓除以該固定電流獲得電池電流所造成的電壓降之電阻值。另外,『(步驟D)設置該(步驟B)的電壓對時間變化曲線為一電池函數』的步驟包括:將最大電壓減去所量測得的電池之開路端電壓獲得該(步驟B)的電壓對時間變化曲線。
本發明之精神是在於提出一種新的鋰電池之電路模型的建構方法,主要係將電池分階段放電,並利用電池靜置電壓估計模型內部參數。在實驗舉例中,電池模型構想為一電阻與三個RC 電路串聯,用以描述電池的動態電氣特性。利用此電路模型可以更精確的估測鋰離子電池充放電時的電池端電壓,並應用於電池電源電路設計;或是進一步應用於電池電量估測上。
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。
E ‧‧‧電池內部電動勢
R t ‧‧‧電池電流所造成的電壓降之電阻值
V t ‧‧‧電池電流所造成的電壓降
R s ‧‧‧第一段RC電路之電阻
C s ‧‧‧第一段RC電路之電容
V s ‧‧‧第一段RC電路之電壓降
τ s ‧‧‧第一段RC電路之時間常數
R m ‧‧‧第二段RC電路之電阻
C m ‧‧‧第二段RC電路之電容
V m ‧‧‧第二段RC電路之電壓降
τ m ‧‧‧第二段RC電路之時間常數
R f ‧‧‧第三段RC電路之電阻
C f ‧‧‧第三段RC電路之電容
V f ‧‧‧第三段RC電路之電壓降
τ f ‧‧‧第三段RC電路之時間常數
V b ‧‧‧電池外部端電壓
i b ‧‧‧電池放電壓電流
SOC、θ ‧‧‧電池剩餘電量
t 1 ‧‧‧分段點一
t 2 ‧‧‧分段點二
t end ‧‧‧靜置終點
圖1繪示為本發明一較佳實施例所揭示間歇放電時電池端電壓對時間的變化波形圖。
圖2繪示為本發明一較佳實施例所揭示之轉換後的鋰電池的端電壓對時間的變化波形圖。
圖3繪示為本發明一較佳實施例所揭示之鋰離子電池模型。
圖4繪示為本發明一較佳實施例所揭示之不同電量狀態(SOC )下的靜置過程端電壓對時間的變化波形圖。
圖5繪示為本發明一較佳實施例所揭示之使用三個指數函數近似靜置電壓曲線圖。
圖6繪示為本發明一較佳實施例所揭示之不同分段點的平方誤差平均值。
圖7繪示為本發明一較佳實施例所揭示之求取參數的流程圖。
圖8繪示為本發明一較佳實施例所揭示之R t 與電量狀態(SOC )的關係圖。
圖9繪示為本發明一較佳實施例所揭示之τ s -1 與電量狀態(SOC )的關係圖。
圖10繪示為本發明一較佳實施例所揭示之R s 與電量狀態(SOC )的關係圖。
圖11繪示為本發明一較佳實施例所揭示之τ m -1 與電量狀態(SOC )的關係圖。
圖12繪示為本發明一較佳實施例所揭示之R m 與電量狀態(SOC )的關係圖。
圖13繪示為本發明一較佳實施例所揭示之τ f -1 與電量狀態(SOC )的關係圖。
圖14繪示為本發明一較佳實施例所揭示之R f 與電量狀態(SOC )的關係圖。
圖15繪示為本發明一較佳實施例所揭示之鋰電池之電路模型建構方法的流程圖。
由於電池內部化學反應會受反應物濃度、電解質的擴散速率...等因素影響,不僅會有電極及界面上的歐姆壓降,還會有電化學上所稱呼的濃度極化(concentration polarization)和電化學極化(electrochemical polarization)等現象。圖1繪示為本發明一較佳實施例所揭示間歇放電時電池端電壓對時間的變化波形圖。請參考圖1,鋰電池經過一段時間放電,電池電壓會有一段陡降(如圖中的V t 所表示),接著再一段類似指數型式的電壓變化;緊接著靜置階段中,電池端電壓同樣會有一段突然的上升,再接著指數型式的電壓恢復。圖1中的E 為是指充分靜置後的最大電壓,一般稱為靜置電壓。由於這個靜置過程的電池電壓量測值近似一個常數值與一個指數函數的差,若欲以此型式求解時較為困難。為了方便分析及說明起見,將最大電壓E 減去所量測 得的開路端電壓,則所得曲線如同圖2所呈現。圖2繪示為本發明一較佳實施例所揭示之轉換後的鋰電池的端電壓對時間的變化波形圖。其結果近似指數衰減的圖形。其中的資料點是轉換後的靜置電壓;而實線則為以指數函數作為趨勢線來近似的結果。
由圖2可知,若只用單一個指數函數來近似,並不能確實地模擬開路電壓的變化。倘若著重於近似初始段,則電壓衰減會較實際快得多;但如果著重於近似後段資料,則前段變化較劇烈的部分明顯將被忽略。因此本發明選擇以三個指數衰減的函數來近似開路電壓,其中每個指數函數所模擬的電壓變化,在電路上可以用一組並聯的電容和電阻來實現。另外,在靜置初始時,因電池電流變化所造成的歐姆壓降,則可以簡單地用一電阻來實現。因此本將電池模型建立為一電阻與三個RC 並聯組合相串聯的電路,如圖3所示,圖3繪示為本發明一較佳實施例所揭示之鋰離子電池模型。在圖3中,電動勢E 代表電池充分靜置後的電壓,是電池端電壓,而下標“s ”,“m ”,“f ”分別代表“慢”、“中”、“快”,亦即RC 電路的時間常數由最長至最短。由於三個RC 電路在數學上,僅代表三個不同時間常數的指數函數的線性組合,無法以簡單的曲線配適法(curve fitting)分離出三個RC 電路的相關參數。
為了控制變因,將待測電池均放置於溫控箱中,先排除溫度的影響。接著探討電池電量狀態(SOC )的對參數的影響。首先將電池以固定條件充飽,例如本發 明的實施例是以定電流0.1A進行充電。當電池端電壓到達額定電壓後,切換成定電壓4.2V進行充電;當充電電流小於0.01A時,視為電池已充飽。將電池反覆地以固定電流放出固定電量後並開路靜置一段時間(例如30分鐘),如圖4所示,圖4繪示為本發明一較佳實施例所揭示之不同電量狀態(SOC )下的靜置過程端電壓對時間的變化波形圖。請參考圖4,因為每次電池釋放出固定電量,所以圖4中,每段靜置曲線代表在不同電量狀態(SOC )下的靜置曲線。之後再分析靜置曲線,找出參數與電池電量狀態(SOC )的關係。為避免過度放電,影響電池的使用循環壽命,需設定一個安全截止電壓(例如鋰離子電池約為3.2V),放電不得低於此截止電壓。
沿襲圖2的作法,將充分靜置後的最大電壓令為電動勢E ,量測得的電池端電壓為v b (t )。將靜置電壓減去量測得的端電壓得到v 2 (t ),亦即v 2 (t )=E -v b (t ),之後使用三個指數函數近似,結果如圖5所示,圖5繪示為本發明一較佳實施例所揭示之使用三個指數函數近似靜置電壓曲線圖。請參考圖5,V t 為靜置開始時電壓的瞬間變化,亦即圖3模型中電阻R t 上的電壓,所以可以得出以下方程式求得R t R t =V t /i b (1)
其餘三個模擬電壓的指數函數v s (t )、v m (t )、v f (t )的數學式分別為:
其中,τ s =R s C s τ m =R m C m τ f =R f C f
如前所述,雖然三個指數函數的時間常數有所區別,然而卻有完全相同的數學型式,所以無法直接以曲線配適的方式找出參數值。我們觀察曲線的變化情形,發現由於τ s 是最大的時間常數,所以v s 衰減最慢。因此在某個時間點,如t 2 以後,其他兩個電壓,即v f v m ,均已衰減至零,獨留下v s 。運用t 2 -t end 時段的電壓資料,亦即v 2 (t |t 2 t t end ),進行如下的曲線配適分析,即可獲得指數函數中的初始值V s 和時間常數τ s
式(4)表示配適曲線與量測值v 2 (t )之間平方差的和,若此平方差和最小,則表示已取得最佳的配適曲線。例如Matlab的數學軟體中,有一個函數fminsearch(fun, [x,y, ...]),可以用來求解多變數函數的最小值,可運用來方便地取得此一配適曲線的參數值。換句話說,這樣的技術是可以用程式或硬體實現的。接下來,將所求得的v s (t ),以外插的方式,取得v s (t |t 0 t t 2 )的值,並且令v 1 (t )=v 2 (t )-v s (t );亦即將v s (t )由量測值v 2 (t )中移除。至此,可以重覆前面的過程,令在某個時間點,如t 1 以後,v f 已衰減至零,獨留下v m 。運用t 1 -t 2 時段的電壓資料,亦即v 1 (t |t 1 t t 2 ),進行曲線配適分析,即可獲得指數函數中的初始值V m 和時間常數τ m 。同樣的程序再一次重覆,即可求得最小時間常數的V f τ f
至於前述t 1 t 2 的選擇方法則是再次運用最小平方差的方式,如圖6所示。圖6繪示為本發明一較佳實施例所揭示之不同分段點的平方誤差平均值。請參考圖6,圖6是將v x (t |t y t t end )以指數函數求取其配適曲線後,再求此配適曲線與v x (t )間平方差的平均值所繪製而成。其中,v x 可能是v 1 v 2 ;而t y 則是由t 0 開始逐漸遞增至t end 。由圖中可見,一開始會有較大的平方差;但自t cut 之後,平方誤差即不再減少,且幾乎維持不變。只要t 1 t 2 是選擇在大於t cut 的時間點,即可獲得正確的配適曲線。
倘若將上面所獲得的三個指數衰減的配適曲線外插回到t 0 ,求取在放電電流中斷時的三個RC 電路的電壓初始值,亦即v s (t 0 )、v m (t 0 )和v f (t 0 )。由於在電流中斷前,電池係以固定的直流電流i b 釋放電量一段長時間;也就是說,模型中的電容C s C m C f 處於穩態,且電容電壓於放電電流中斷的前後,電壓大小是連續的。當電容處於直流穩態時,可以視為開路狀態;也就是說,在t 0 的前一刻,電流i b 流過R s R m R f ,分別產生v s (t 0 )、v m (t 0 )和v f (t 0 )的壓降。經由這個觀察,我們可以進一步將RC 電路中的電阻和電容值分離出來:R x =V x /i b (6)
C x =τ x /R x (7)
其中x 表示上述的sm 、或f
經過上述過程,即可求得在某一個電量狀態(SOC )下的電池等效電路的參數值。繼續以相同程序,分析其他的靜置過程的電池端電壓,即可獲得在不同電量狀態(SOC )下的電池等效電路的參數分佈。
圖7繪示為本發明一較佳實施例所揭示之求取參數的流程圖。此求取參數的方法包括下列步驟:步驟S701:取得靜置過程電壓的最大值E 與初始電壓變化V t
步驟S702:設定v 2 (t)=E -v b (t )。如此,便可以獲得圖2的電壓對時間變化圖。
步驟S703:利用v 2 (t |t 2 t t end ),求出V s τ s
步驟S704:設定v 1 (t )=v 2 (t )-v s (t )。
步驟S705:利用v 1 (t |t 1 t t 2 ),求出V m τ m
步驟S706:設定v 0 (t )=v 1 (t )-v 2 (t )。
步驟S707:利用v 0 (t |t 0 t t 1 ),求出V f τ f
步驟S708:根據電流i b ,求得R t R s R m R f
步驟S709:根據電阻R s R m R f ,求 得C s C m C f
本實施例針對某廠牌8.5Ah的鋰離子電池,運用前述的程序求取電池模型參數,在圖8至圖14中分別顯示參數對電量狀態(SOC )的分佈情形。由圖8可以發現,R t 與電量狀態(SOC )沒有明顯關係,因此設定R t 為一個定值。在圖9至圖14中,τ s -1R s R m τ m -1τ f -1R f 相對於電量狀態(SOC )均呈現ω形狀的關係,所以選擇這些參數分別對電量狀態(SOC )以最小平方法尋找每個時間點上的最小誤差,並近似成兩個上凹的二次曲線。參數近似的曲線方程式整理如下,其中θ表示電量狀態(SOC):R t (θ)=5.570319 (8)
τ s -1 (θ)=9.74θ2 -14.01θ+6.09 52%<θ
τ s -1 (θ)=8.03θ2 -5.15θ+1.91 θ≦52% (9)
R s (θ)=72.42θ2 -104.15θ+39.51 52%<θ
R s (θ)=96.57θ2 -67.64θ+13.69 θ≦52% (10)
τ m -1 (θ)=-20.94θ2 +34.57θ-2.65 52%<θ
τ m -1 (θ)=57.47θ2 -56.42θ+23.74 θ≦52% (11)
R m (θ)=48.98θ2 -74.24θ+30.12 52%<θ
R m (θ)=23.28θ2 -16.18θ+5.24 θ≦52% (12)
τ f -1 (θ)=240.43θ2 -371.62θ+220.03 52%<θ
τ f -1 (θ)=451.9θ2 -383.26θ+156.8 θ≦52% (13)
R f (θ)=11.76θ2 -17.59θ+9.78 52%<θ
R f (θ)=1.41θ2 -1.72θ+2.11 θ≦52% (14)
所屬技術領域具有通常知識者應當瞭解,上述實施例雖然是以3個串聯的RC 電路,所屬技術領域具有通常知識者應當瞭解,越多RC 電路,電池的電路模型越準確。另外,本發明的方法亦可以適用於建構兩個RC 電路或兩個以上的RC 電路的電池模型。因此,本發明不以此為限。
為了讓所屬技術領域具有通常知識者能夠理解本發明的精神,本實施例另外提出了鋰電池之電路模型建構方法的流程圖,圖15繪示為本發明一較佳實施例所揭示之鋰電池之電路模型建構方法的流程圖。請參考圖15,此鋰電池之電路模型建構方法的步驟包括下列步驟:步驟S1501:對一電池用一固定電流放出一固定電量的電力。
步驟S1502:停止放電,並靜置一預定時間,直到電池的端電壓穩定。
步驟S1503:記錄(步驟S1502)的電壓對時間變化曲線。如圖2所示。
步驟S1504:設置該(步驟S1502)的電壓對時間變化曲線為一電池函數。
步驟S1505:取得上述停止放電時的電池的電壓之初始變化電壓V t 。當取得V t 後,可以藉由R t =V t /i b ,取得上述R t
步驟S1506:取得上述靜置過程的電池 的端電壓之最大電壓E
步驟S1507:假設一自然函數。例如,
步驟S1508:利用一曲線配適法,根據該(步驟S1502)的電壓對時間變化曲線以及該自然函數,找出一配適曲線、其所對應的一配適曲線函數以及一時間常數。例如上述的
步驟S1509:比較該配適曲線與該(步驟S1502)的電壓對時間變化曲線,獲得一誤差對時間變化曲線。如圖6所示。
步驟S1510:提供一誤差門檻。
步驟S1511:根據該誤差門檻,找出該誤差對時間變化曲線中,超過該誤差門檻的時間點,以作為一分段時間。由圖6的t cut t end ,可以看出,這一段是最符合上述的自然函數,也就是誤差最穩定的一段。換句話說,只要門檻有設定好,就很容易找到分段點。
步驟S1512:將該配適曲線函數代入該(步驟S1502)的初始時間v s (t 0 ),獲得一初始電壓V s
步驟S1513:將該初始電壓V s 除以該固定電流i b ,獲得一電阻值R s 。請參考上述數學式(6)R s =V s /i b
步驟S1514:將該時間常數τ s 除以該第一電阻R s ,獲得一電容值C s 。請參考上述數學式(7)C s =τ s /R s
步驟S1515:將該電池函數扣除該配適曲線函數,重複(步驟S1507)到(步驟S1514)n次獲得n個電阻值、n個電容值以及n個時間常數。由上述實施例,總共來回執行3次,獲得C s τ s R s C m τ m R m C f τ f R f
步驟S1516:根據上述n個電阻值、n個電容值以及n個時間常數,建構該鋰電池之電路模型。如圖3所示,電路模型便可以被建立。
步驟S1517:回到(步驟S1501),重複執行(步驟S1501)~(步驟S1517),直到電池的電量低於一預設電量。由於上面的步驟S1501到步驟S1516,只有建立一個電池剩餘電量(SOC )的鋰電池之電路模型,然而,鋰電池電量(SOC )變化時,鋰電池之電路模型也會跟著變動,僅執行一次,恐怕不足以正確地描述電池的行為。因此,上述這些步驟需要執行多次,才能有效準確的獲得鋰電池之電路模型對電池剩餘電量(SOC )的函數,也才可以正確地描述電池的行為。
由上述幾個實施例,所屬技術領域具有通常知識者可以看出,此方法除了可以精確的建構出針對電池剩餘電量(SOC )的電路模型外,此方法易於實施於電路上。換句話說,只要在電池接上一固定的開關、固定放電的負載、測量電池的電壓之波形記錄器以及進行時間常數與配適曲線的運算之運算單元,便可以實現無人工的電池電路模型的建構。因此,本發明並非單純的數學方 法,而是具有產業利用性的電池模型建構方法。特別是電池廠商或行動裝置廠商,可以利用此方法建構或測試電池模型,以判斷某一批生產的電池是否符合規範。
綜上所述,本發明之精神是在於提出一種新的鋰電池之電路模型的建構方法,主要係將電池分階段放電,並利用電池靜置電壓估計模型內部參數。在實驗舉例中,電池模型構想為一電阻與三個RC 電路串聯,用以描述電池的動態電氣特性。利用此電路模型可以更精確的估測鋰離子電池充放電時的電池端電壓,並應用於電池電源電路設計;或是進一步應用於電池電量估測上。尤其是近年來,鋰電池逐漸應用於電動車上。面對如同電動車這類大功率,且變動負載的應用而言,僅使用簡單的靜態模型恐怕不足以正確地描述電池的行為,因而影響車輛的整體設計。因此,本發明所揭示之電池動態模型的建構方法,對產業應用將有相當大的助益。
在較佳實施例之詳細說明中所提出之具體實施例僅用以方便說明本發明之技術內容,而非將本發明狹義地限制於上述實施例,在不超出本發明之精神及以下申請專利範圍之情況,所做之種種變化實施,皆屬於本發明之範圍。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
E ‧‧‧電池內部電動勢
R t ‧‧‧電池電流所造成的電壓降之電阻值
V t ‧‧‧電池電流所造成的電壓降
R s ‧‧‧第一段RC電路之電阻
C s ‧‧‧第一段RC電路之電容
V s ‧‧‧第一段RC電路之電壓降
R m ‧‧‧第二段RC電路之電阻
C m ‧‧‧第二段RC電路之電容
V m ‧‧‧第二段RC電路之電壓降
R f ‧‧‧第三段RC電路之電阻
C f ‧‧‧第三段RC電路之電容
V f ‧‧‧第三段RC電路之電壓降
V b ‧‧‧電池外部端電壓
i b ‧‧‧電池放電壓電流

Claims (6)

  1. 一種鋰電池之電路模型建構方法,包括:(步驟A)對一電池用一固定電流放出一固定電量的電力;(步驟B)停止放電,並靜置一預定時間,直到電池的端電壓穩定;(步驟C)記錄(步驟B)的電壓對時間變化曲線;(步驟D)設置該(步驟B)的電壓對時間變化曲線為一電池函數;(步驟E)取得上述停止放電時的電池的電壓之初始變化電壓;(步驟F)取得上述靜置過程的電池的端電壓之最大電壓;(步驟G)假設一自然函數;(步驟H)利用一曲線配適法,根據該(步驟B)的電壓對時間變化曲線以及該自然函數,找出一配適曲線、其所對應的一配適曲線函數以及一時間常數;(步驟I)比較該配適曲線與該(步驟B)的電壓對時間變化曲線,獲得一誤差對時間變化曲線;(步驟J)提供一誤差門檻;(步驟K)根據該誤差門檻,找出該誤差對時間變化曲線中,超過該誤差門檻的時間點,以作為一分段時間;(步驟L)將該配適曲線函數代入該(步驟B)的初始時間,獲得一初始電壓; (步驟M)將該初始電壓除以該固定電流,獲得一電阻值;(步驟N)將該時間常數除以該第一電阻,獲得一電容值;(步驟O)將該電池函數扣除該配適曲線函數,重複(步驟G)到(步驟N)n次獲得n個電阻值、n個電容值以及n個時間常數;以及(步驟P)根據上述n個電阻值、n個電容值以及n個時間常數,建構該鋰電池之電路模型,其中,n為自然數。
  2. 如申請專利範圍第1項所記載之鋰電池之電路模型建構方法,其中,該(步驟H)的曲線配適法包括:最小平方差法。
  3. 如申請專利範圍第1項所記載之鋰電池之電路模型建構方法,更包括:(步驟Q)重複執行(步驟A)~(步驟P),直到電池的電量低於一預設電量。
  4. 如申請專利範圍第1項所記載之鋰電池之電路模型建構方法,其中,電池電流所造成的電壓降之電阻值可由下述方式獲得:停止放電時的電池的電壓之初始變化電壓除以該固 定電流獲得電池電流所造成的電壓降之電阻值。
  5. 如申請專利範圍第1項所記載之鋰電池之電路模型建構方法,其中,『(步驟D)設置該(步驟B)的電壓對時間變化曲線為一電池函數』的步驟包括:將最大電壓減去所量測得的電池之開路端電壓獲得該(步驟B)的電壓對時間變化曲線。
  6. 如申請專利範圍第5項所記載之鋰電池之電路模型建構方法,其中,『(步驟G)假設一自然函數;』的自然函數被假設為: ,其中,V x 為該初始電壓,τ x 為該時間常數。
TW102109583A 2013-03-19 2013-03-19 鋰電池之電路模型建構方法 TWI509521B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102109583A TWI509521B (zh) 2013-03-19 2013-03-19 鋰電池之電路模型建構方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102109583A TWI509521B (zh) 2013-03-19 2013-03-19 鋰電池之電路模型建構方法

Publications (2)

Publication Number Publication Date
TW201437917A TW201437917A (zh) 2014-10-01
TWI509521B true TWI509521B (zh) 2015-11-21

Family

ID=52113406

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102109583A TWI509521B (zh) 2013-03-19 2013-03-19 鋰電池之電路模型建構方法

Country Status (1)

Country Link
TW (1) TWI509521B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112580284B (zh) * 2020-12-04 2024-03-19 华中科技大学 一种混合电容器等效电路模型及在线参数辨识方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200618374A (en) * 2004-11-29 2006-06-01 Lg Chemical Ltd Method and system for battery state and parameter estimation
TW201122523A (en) * 2009-12-22 2011-07-01 Ind Tech Res Inst Apparatus for estimating battery's state of health
TW201224485A (en) * 2010-12-02 2012-06-16 Ind Tech Res Inst State-of-charge estimation method and battery control unit
CN102831100A (zh) * 2012-07-18 2012-12-19 深圳职业技术学院 电池荷电状态估算方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200618374A (en) * 2004-11-29 2006-06-01 Lg Chemical Ltd Method and system for battery state and parameter estimation
TW201122523A (en) * 2009-12-22 2011-07-01 Ind Tech Res Inst Apparatus for estimating battery's state of health
TW201224485A (en) * 2010-12-02 2012-06-16 Ind Tech Res Inst State-of-charge estimation method and battery control unit
CN102831100A (zh) * 2012-07-18 2012-12-19 深圳职业技术学院 电池荷电状态估算方法及装置

Also Published As

Publication number Publication date
TW201437917A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
Murnane et al. A closer look at state of charge (SOC) and state of health (SOH) estimation techniques for batteries
Gholizadeh et al. Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model
Xiong et al. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter
Watrin et al. Multiphysical lithium-based battery model for use in state-of-charge determination
Huria et al. Simplified extended kalman filter observer for soc estimation of commercial power-oriented lfp lithium battery cells
CN110573892B (zh) 用于估计电池等效电路模型的参数的方法、装置和记录介质
Goud et al. An online method of estimating state of health of a Li-ion battery
CN106872899B (zh) 一种基于降维观测器的动力电池soc估计方法
Wehbe et al. Battery equivalent circuits and brief summary of components value determination of lithium ion: A review
CN112595979B (zh) 一种考虑非充分激励的锂电池参数在线辨识方法及系统
CN104833917B (zh) 用于锂蓄电池中荷电状态实时估算的标称电池电阻的确定
CN110673037B (zh) 基于改进模拟退火算法的电池soc估算方法及系统
CN113433464A (zh) 一种适用于富锂锰基电池的高阶模型参数辨识方法和系统
Kharisma et al. Modeling and simulation of lithium-ion battery pack using modified battery cell model
Biswas et al. Simultaneous state and parameter estimation of li-ion battery with one state hysteresis model using augmented unscented kalman filter
Chen et al. An approach for state of charge estimation of Li-ion battery based on Thevenin equivalent circuit model
Ramezani-al et al. A novel combined online method for SOC estimation of a Li-Ion battery with practical and industrial considerations
Li et al. A high-fidelity hybrid lithium-ion battery model for SOE and runtime prediction
CN105301504A (zh) 基于单位脉冲响应估计锂电池荷电状态的方法
CN116930794A (zh) 电池容量更新方法、装置、电子设备及存储介质
TWI509521B (zh) 鋰電池之電路模型建構方法
Baba et al. State of charge estimation of HEV/EV battery with series Kalman filter
Sarsembayev et al. Lipo battery modeling for dynamic wireless power transfer in uav application
CN112906176B (zh) 一种电池等效电路模型的健康预测方法及系统
Raman et al. Computationally efficient and accurate modeling of Li-ion battery

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees