WO2019241916A1 - 一种柔性薄膜太阳电池及其制造方法 - Google Patents

一种柔性薄膜太阳电池及其制造方法 Download PDF

Info

Publication number
WO2019241916A1
WO2019241916A1 PCT/CN2018/091898 CN2018091898W WO2019241916A1 WO 2019241916 A1 WO2019241916 A1 WO 2019241916A1 CN 2018091898 W CN2018091898 W CN 2018091898W WO 2019241916 A1 WO2019241916 A1 WO 2019241916A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible thin
solar cell
film solar
electrode
film
Prior art date
Application number
PCT/CN2018/091898
Other languages
English (en)
French (fr)
Inventor
李明阳
刘冠洲
毕京锋
李森林
宋明辉
陈文浚
Original Assignee
天津三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津三安光电有限公司 filed Critical 天津三安光电有限公司
Priority to CN201880025516.8A priority Critical patent/CN110574170B/zh
Priority to PCT/CN2018/091898 priority patent/WO2019241916A1/zh
Publication of WO2019241916A1 publication Critical patent/WO2019241916A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention provides a flexible thin-film solar cell and a method for manufacturing the same, and belongs to the technical field of semiconductor devices and processes.
  • the substrate of flexible thin-film solar cells is generally a polymer material. These polymer films are insulating materials, so the flexible thin-film batteries produced have the same electrode type. Compared with the traditional battery device structure of P under N, the original battery array arrangement and welding method have been changed. One of the electrodes is directly on the polymer film or the thin epitaxial contact layer. Compared with the traditional structure, the solderability is reduced, which brings certain risks to the reliability of the flexible thin-film solar array.
  • the present invention provides a flexible thin-film solar cell and a manufacturing method thereof.
  • the flexible thin film solar cell of the present invention includes a flexible thin film substrate, an epitaxial layer structure on the flexible thin film substrate, a lower electrode located between the epitaxial layer structure and the flexible thin film substrate, and an upper electrode located above the epitaxial layer. It is characterized in that it also includes a through-via on the epitaxial structure, a through-electrode connected to the lower electrode through the through-via, and an insulation layer structure covering at least the side wall of the through-hole and located between the through-electrode and the upper surface of the epitaxial structure.
  • the insulating layer structure insulates the penetrating electrode from the epitaxial layer; the penetrating electrode and the upper electrode include a pad structure located on the same side of the epitaxial layer.
  • the thickness of the epitaxial layer of the flexible thin-film solar cell is less than 15um; [0007] The remaining thickness of the epitaxial growth substrate of the flexible thin-film solar cell is less than 10um;
  • the upper electrode and the lower electrode of the flexible thin-film solar cell are a positive electrode and a negative electrode, respectively, wherein the upper electrode has a pad structure for welding;
  • the through electrode of the flexible thin-film solar cell is electrically connected to the lower electrode, and the through electrode has a pad structure for soldering;
  • the through-electrode pad structure of the flexible thin-film solar cell is located on the insulating layer structure, and a through-via is provided below the non-pad structure region of the through-electrode, and the through-electrode can pass through the electrode at the via to the lower electrode.
  • the insulating layer structure of the flexible thin-film solar cell includes, but is not limited to, Si0 2 , SiN x , Al 2 0 3 , MgF 2 , Ti 3 0 5 single-layer or multi-layer film structure; the material of the insulating layer may be Adopt the same structure as the anti-reflection film material, and adopt plasma enhanced deposition method;
  • the substrate of the flexible thin-film solar cell is a polymer flexible thin-film substrate, including but not limited to PET, PI, PMMA, and a spin-curing film-forming method is used to form the flexible thin-film substrate of the battery or Use commercial flexible film substrate;
  • the flexible thin-film solar cell includes, but is not limited to, a single-junction or multi-junction GaAs-based, Ge-based group III battery, a silicon-based battery, a copper indium gallium selenium, a copper zinc tin sulfide, a cadmium telluride, an organic battery , Dye-sensitized batteries, quantum dot batteries, or a composite battery of any two or more of the above;
  • the thickness of the flexible film substrate of the flexible film solar cell is less than 150um; more preferably, the thickness of the film substrate is 50um.
  • At least one of the upper electrode, the lower electrode, and the through electrode of the flexible thin-film solar cell is composed of a metal or a transparent conductive material, and the transparent conductive material includes, but is not limited to, ITO, IZO, GTO, and TC 0;
  • the non-pad area of the electrode is made of transparent conductive material, so that more light is incident through the sidewall of the via and the surface of the battery, thereby improving battery efficiency.
  • the module formed by the flexible thin-film solar cell is connected in a form of connecting a penetrating electrode pad to an upper electrode pad of another solar cell without wire bonding from a lower electrode.
  • the epitaxial layer structure further includes an epitaxial growth substrate, and the lower electrode is disposed between the epitaxial substrate and the flexible thin film substrate.
  • the thickness of the epitaxial production substrate is less than 10 um, and the through hole penetrates the epitaxial growth substrate.
  • a method for manufacturing a flexible thin-film solar cell includes the following steps
  • the epitaxial wafer includes an epitaxial layer structure and a growth substrate;
  • the etching process in the step (2) uses a plasma etching method
  • the insulating layer structure of the flexible thin-film solar cell includes, but is not limited to, Si0 2 , SiN x , A1 2 0 3 , MgF 2 , Ti 3 0 5 single layer or more Layer film structure; the insulation layer material can adopt the same structure as the anti-reflection film material, using a plasma enhanced deposition method, and a plasma-assisted deposition method;
  • the epitaxial growth substrate may be thinned or removed by a method of mechanical grinding and chemical etching, so as to improve the mechanical strength of the entire epitaxial layer;
  • the case of removing the epitaxial substrate by a chemical method may have an etching stop structure between the substrate and the epitaxial layer;
  • the temporary bonding material is TPU hot melt adhesive
  • the substrate is a polymer non-conductive substrate, which is formed by solution spin coating and solidified into a film, or is directly commercialized.
  • the polymer film is formed by solution spin coating and solidified into a film or directly connected to the lower electrode by a bonding method using a commercial polymer film;
  • the step (3) penetrates the through-holes to at least a part of the epitaxial substrate, and the step (5) is thinned to a region where the vias of the epitaxial growth substrate appear.
  • the beneficial effect of the present invention is that the positive and negative electrode pads of the flexible thin-film solar cell are on all the battery epitaxial layers, compared with the electrode pads located on the thin contact layer epitaxial layer or the flexible thin film substrate film, The solderability of the pad is greatly improved, and the reliability is further enhanced; the pad is connected to the lower electrode through the through electrode in the via area, that is, the pad is connected to the lower electrode on the entire surface, which will not affect the flexibility of the thin film solar cell.
  • the electrode material can be partially set (electrodes other than the pad) as a transparent electrode material, and the material of the insulating layer can be the same as the material of the anti-reflection layer to increase the light transmittance;
  • the substrate is thinned or removed and After the lower electrode is evaporated, the final flexible film substrate is formed by direct spin-coating, thereby avoiding the flexible film substrate from being heated during the battery process, and the battery failure caused by the mismatch of thermal expansion coefficients, which makes the The manufacturing process of flexible thin-film solar cells is more stable and reliable, thereby increasing the availability of the battery itself and the components after welding. Reliability.
  • FIG. 1 is a device structure diagram of Embodiment 1, wherein FIG. 1a is a side view, and FIG. 1b is a top view;
  • FIG. 2 is an epitaxial structure diagram of a GaAs substrate double-junction solar cell of Embodiment 1;
  • FIG. 3 is a schematic diagram of a device structure in which via etching is completed in Embodiment 1;
  • FIG. 4 is a schematic structural view of a device in which a via-hole sidewall insulation is completed in Example 1, wherein 4a is a side view and 4b is a top view;
  • FIG. 5 is a schematic structural diagram of a device in which a front electrode, a via electrode, and an antireflection film of a solar cell are completed in Example 1.
  • FIG. 6 is a schematic diagram of the device structure after the GaAs substrate is removed and the lower electrode is deposited in Example 1;
  • FIG. 7 is a structural schematic view of manufacturing a flexible thin-film solar cell according to Example 1, wherein FIG. 7a is a side view, and FIG. 7b is a top view; [0044] In the figure:
  • Embodiment 1 Taking a GaAs substrate double-junction solar cell epitaxial wafer to make a solar cell as an example;
  • FIG. 1 is a device structure diagram of this embodiment, wherein FIG. 1a is a side view, and FIG. 1b is a top view;
  • FIG. 2 is The epitaxial structure diagram of the GaAs substrate double-junction solar cell in this embodiment;
  • FIG. 3 is a schematic diagram of the structure of the device in which the via-hole etching is completed in this embodiment;
  • FIG. Side view, 4b is a top view;
  • FIG. 5 is a schematic structural view of a device in which a solar cell front electrode, a via electrode, and an antireflection film are completed in this embodiment, where 5a is a side view, and 5b is a top view; Schematic diagram of the device structure after the bottom is removed and the bottom electrode is deposited.
  • FIG. 7 is a structural schematic diagram of manufacturing a flexible thin film solar cell according to Example 1, wherein FIG. 7a is a side view and FIG. 7b is a top view.
  • the specific method of forming the device structure is as follows:
  • a GaAs substrate double-junction solar cell epitaxial wafer is provided, and the structure is shown in FIG. 2;
  • the epitaxial wafer is cleaned, then photoresist is applied, exposure and development are performed, and then dry etching is performed. The non-resin area is etched, and the etching is stopped at the GaAs substrate. structure;
  • SiNx deposition is performed, and SiNx is deposited to a thickness of 500 nm by PECVD, and then a photomask is used.
  • BOE performs chemical etching to preserve the structure of the insulating layer on the epitaxial wafer for the formation of the through electrode and the side wall of the via; to achieve insulation between the through electrode and the epitaxial wafer and the side wall of the through via to form the structure shown in Figure 4;
  • the hot-melt adhesive is used to temporarily attach the above-mentioned battery sheet to the glass sheet, and the GaAs substrate is removed using ammonia water: hydrogen peroxide solution, staying in the cutoff layer, and then the hydrochloric acid is used to remove the cutoff layer;
  • Pd / Ag / Au is deposited to a thickness of 50/300/100 nm, respectively, to form a structure as shown in FIG. 6;
  • a spin coating method is used to spin-coat a prepolymer film on a lower electrode with a polyimide prepolymer solution, and the thickness is formed by pre-curing at a low temperature of 50 ° C and curing at a high temperature of 180 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种柔性薄膜太阳电池及其制造方法,该柔性薄膜太阳电池包括柔性薄膜衬底、柔性薄膜衬底上的外延层结构、位于外延层结构和柔性薄膜衬底之间的下电极以及位于外延层之上的上电极,还包括外延结构上的贯穿过孔、通过贯穿过孔与下电极相连的贯穿电极、至少包覆贯穿过孔侧壁并位于贯穿电极和外延结构上表面之间的绝缘层结构,该绝缘层结构将贯穿电极与外延层绝缘;该贯穿电极与上电极包括位于外延层同侧的焊盘结构。

Description

一种柔性薄膜太阳电池及其制造方法 技术领域
[0001] 本发明提供了一种柔性薄膜太阳电池及其制造方法, 属于半导体器件与工艺技 术领域。
背景技术
[0002] 柔性薄膜太阳电池因其质量轻、 质量功率比高、 可弯曲、 适应环境多样等特点 , 在航天领域、 军事领域、 甚至是民用市场备受关注。 柔性薄膜太阳电池的衬 底一般为聚合物材料, 这些聚合物薄膜为绝缘材料, 所以制作的柔性薄膜电池 其电极形式为同侧电极。 相对于传统上 N下 P的电池器件结构, 改变了原来的电 池阵排列及焊接方式; 其中一侧电极直接位于聚合物薄膜或者极薄的外延接触 层上, 此处电极的附着牢固度及可焊性相对于传统结构都有所降低, 给柔性薄 膜太阳电池阵的可靠性带来一定风险。
[0003] 通过改善柔性薄膜太阳电池的器件结构、 优化工艺流程来提高柔性薄膜太阳电 池的可靠性, 是亟待解决的问题之一。
发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 针对以上问题, 本发明提供了一柔性薄膜太阳电池及其制造方法。
[0005] 本发明的柔性薄膜太阳电池, 包括柔性薄膜衬底、 柔性薄膜衬底上的外延层结 构、 位于外延层结构和柔性薄膜衬底之间的下电极以及位于外延层之上的上电 极, 其特征在于: 还包括外延结构上的贯穿过孔、 通过贯穿过孔与下电极相连 的贯穿电极、 至少包覆贯穿过孔侧壁并位于贯穿电极和外延结构上表面之间的 绝缘层结构, 所述绝缘层结构将贯穿电极与外延层绝缘; 所述贯穿电极与上电 极包括位于外延层同侧的焊盘结构。
[0006] 所述柔性薄膜太阳电池的外延层厚度小于 15um; [0007] 所述柔性薄膜太阳电池的外延生长衬底的保留厚度小于 10um;
[0008] 所述柔性薄膜太阳电池的上电极和下电极分别为一正电极和一负电极, 其中上 电极具有焊盘结构, 供焊接使用;
[0009] 所述柔性薄膜太阳电池的贯穿电极与下电极电性相连, 贯穿电极具有焊盘结构 , 供焊接使用;
[0010] 所述柔性薄膜太阳电池的贯穿电极焊盘结构位于绝缘层结构上, 贯穿电极的非 焊盘结构区域下方为贯穿过孔, 通过该过孔处的电极, 贯穿电极得以与下电极 电性相连;
[0011] 优选地, 所述柔性薄膜太阳电池的绝缘层结构包括但不限于 Si0 2、 SiN x、 Al 2 0 3、 MgF 2、 Ti 30 5单层或多层膜结构; 绝缘层材料可以采用与减反膜材料相同 的结构, 采用等离子增强的沉积方式;
[0012] 优选地, 所述柔性薄膜太阳电池的衬底为聚合物柔性薄膜衬底, 包含但不限于 PET、 PI、 PMMA, 采用旋涂固化的成膜方式, 形成电池的柔性薄膜衬底或者采 用商用的柔性薄膜衬底;
[0013] 所述柔性薄膜太阳电池包含但不限于单结或多结 GaAs基、 Ge基构成的三五族 电池、 硅基电池、 铜铟镓硒、 铜锌锡硫、 碲化镉、 有机电池、 染料敏化电池、 量子点电池或以上任何二种以上电池的复合型电池;
[0014] 优选地, 所述柔性薄膜太阳电池的柔性薄膜衬底厚度小于 150um; 更优选地, 所述的薄膜衬底厚度为 50um。
[0015] 优选地, 所述柔性薄膜太阳电池上电极、 下电极和贯穿电极的至少一种电极采 用金属或透明导电材料组成, 透明导电材料包括但不限于 ITO、 IZO、 GTO、 TC 0; 贯穿电极的非焊盘区域采用透明导电材料制成, 使贯穿过孔的侧壁及电池表 面入射更多光线, 从而提高电池效率。
[0016] 优选地, 所述柔性薄膜太阳电池形成的组件, 其连接形式为将贯穿电极焊盘与 另外一颗太阳电池的上电极焊盘连接, 不需从下电极处引线焊接。
[0017] 优选地, 所述外延层结构还包括外延生长衬底, 下电极设置在外延衬底和柔性 薄膜衬底之间。
[0018] 优选地, 外延生产衬底的厚度小于 10um, 贯穿孔贯穿外延生长衬底。 [0019] 根据本发明的第二个方面, 一种柔性薄膜太阳电池的制造方法, 包括如下步骤
[0020] ( 1) 提供一太阳电池外延片, 外延片包含外延层结构及生长衬底;
[0021] (2) 在所述太阳电池外延片上进行上胶掩膜, 对所述贯穿电极区域进行曝光 显影; 对所述贯穿电极区域进行蚀刻, 形成贯穿过孔;
[0022] (3) 在所述太阳电池外延片上进行绝缘介质膜沉积, 并通过光罩、 蚀刻, 保 留外延片上用于贯穿电极的区域以及贯穿过孔侧壁的绝缘层结构;
[0023] (4) 进行电极沉积前的光罩制作掩膜过程; 然后进行贯穿电极以及上电极金 属层沉积、 剥离并去除掩膜材料;
[0024] (5) 将电池外延片临时键合至刚性支撑衬底, 进行外延生长衬底减薄或去除
[0025] (6) 进行下电极金属层沉积;
[0026] (7) 进行衬底制作, 并移除刚性支撑衬底;
[0027] (8) 退火划片、 并进行切割槽处理。
[0028] 优选地, 所述步骤 (2) 中的蚀刻过程采用等离子刻蚀方式;
[0029] 优选地, 所述步骤 (3) 中, 所述柔性薄膜太阳电池的绝缘层结构包括但不限 于 Si0 2、 SiN x、 A1 20 3、 MgF 2、 Ti 30 5单层或多层膜结构; 绝缘层材料可以采 用与减反膜材料相同的结构, 采用等离子增强的沉积方式, 采用等离子辅助沉 积的方式;
[0030] 优选地, 所述步骤 (5) 中, 所述外延生长衬底的减薄或去除可以采用机械研 磨再化学腐蚀的方法, 这样能够提高整个外延层的机械强度;
[0031] 优选地, 所述步骤 (5) 中, 利用化学法去除外延衬底的情况可以在衬底与外 延层之间具有腐蚀截止结构;
[0032] 优选地, 所述步骤 (6) 中, 所述临时键合材料采用 TPU热熔胶;
[0033] 优选地, 所述步骤 (8) 中, 所述步骤 (7)中, 所述衬底为聚合物非导电性衬底 , 采用溶液旋涂固化成膜的方式形成或直接采用商品化聚合物薄膜, 采用溶液 旋涂固化成膜的方式形成或直接采用商品化聚合物薄膜通过键合方式连接在下 电极; [0034] 优选地, 所述步骤 (3) 贯穿过孔贯穿至至少部分外延衬底, 步骤 (5) 减薄至 外延生长衬底出现过孔的区域。
发明的有益效果
有益效果
[0035] 本发明的有益效果在于: 柔性薄膜太阳电池的正负极焊盘在全部的电池外延层 上, 相对于坐落在较薄接触层外延层或者柔性薄膜衬底薄膜上的电极焊盘, 焊 盘的可焊性大大提高, 可靠性也进一步增强; 焊盘通过过孔区域的贯穿电极与 下电极相连, 也即焊盘与整面的下电极相连, 从而不至于影响柔性薄膜太阳电 池的发电效率; 电极材料可部分地 (焊盘以外的电极) 设置为透明电极材料, 绝缘层的材料可以与减反射层材料相同, 以增加光透过率; 另外, 进行衬底减 薄或去除且蒸镀下电极后, 采用直接旋涂成膜的方式形成最终使用的柔性薄膜 衬底, 从而避免了柔性薄膜衬底在电池工艺过程中受热, 因为热膨胀系数不匹 配而导致的电池失效情况, 使柔性薄膜太阳电池的制作工艺更加稳定可靠, 从 而增加了电池本身及焊接后组件的可靠性。
对附图的简要说明
附图说明
[0036] 本附图说明以 GaAs衬底双结电池外延片, 制作柔性薄膜太阳电池为例进行说 明, 但不应以此局限本发明的保护范围。
[0037] 图 1为实施例 1的器件结构图, 其中图 la为侧视图, 图 lb为俯视图;
[0038] 图 2为实施例 1的 GaAs衬底双结太阳电池外延结构图;
[0039] 图 3为实施例 1中完成过孔蚀刻的器件结构示意图;
[0040] 图 4为实施例 1中完成过孔蚀侧壁绝缘的器件结构示意图, 其中 4a为侧视图, 4b 为俯视图;
[0041] 图 5为实施例 1中完成太阳电池正面电极和过孔电极及减反膜的器件结构示意图
, 其中 5a为侧视图, 5b为俯视图; ;
[0042] 图 6为实施例 1中完成 GaAs衬底去除并进行下电极沉积后的器件结构示意图;
[0043] 图 7为实施例 1柔性薄膜太阳电池进行组件制作的结构示意图, 其中图 7a为侧视 图, 图 7b为俯视图; [0044] 图中:
[0045] 001: GaAs衬底
[0046] 002: P型接触层
[0047] 003: 中电池
[0048] 004: 顶电池
[0049] 005: N型接触层
[0050] 006: 过孔绝缘层
[0051] 007: 贯穿电极焊盘
[0052] 008: 减反膜结构
[0053] 009: 上电极
[0054] 010: 下电极
[0055] 011: 柔性薄膜衬底
[0056] 012: 贯穿过孔
[0057] 013: 贯穿电极
[0058] 014: 焊接带
发明实施例
本发明的实施方式
[0059] 下面结合实施例对本发明作进一步描述, 但不应以此限制本发明的保护范围。
[0060] 实施例 1 : 以 GaAs衬底双结太阳电池外延片, 制作太阳电池为例; 图 1为本实 施例的器件结构图, 其中图 la为侧视图, 图 lb为俯视图; 图 2为本实施例 GaAs衬 底双结太阳电池外延结构图; 图 3为本实施例完成过孔蚀刻的器件结构示意图; 图 4为本实施例完成过孔蚀侧壁绝缘的器件结构示意图, 其中 4a为侧视图, 4b为 俯视图; 图 5为本实施例完成太阳电池正面电极和过孔电极及减反膜的器件结构 示意图, 其中 5a为侧视图, 5b为俯视图; 图 6为本实施例完成 GaAs衬底去除并进 行下电极沉积后的器件结构示意图; 图 7为实施例 1柔性薄膜太阳电池进行组件 制作的结构示意图, 其中图 7a为侧视图, 图 7b为俯视图; 器件结构具体形成方法 如下:
[0061] 1) 提供一 GaAs衬底双结太阳电池外延片, 结构如图 2所示; [0062] 2) 对外延片进行清洗, 然后涂覆光刻胶, 进行曝光和显影, 然后进行干法蚀 刻, 将无胶区域进行蚀刻, 蚀刻至 GaAs衬底处停止, 形成如图 3所示结构;
[0063] 3) 进行 SiNx沉积, 用 PECVD沉积 500nm厚度的 SiNx, 然后进行光罩, 在采用
BOE进行化学蚀刻, 保留外延片上用于制作贯穿电极的区域以及贯穿过孔侧壁 的绝缘层结构; 以实现贯穿电极与外延片上、 贯穿过孔侧壁绝缘, 形成如图 4所 示结构;
[0064] 4) 采用负性光刻胶进行光罩、 显影, 并进行贯穿电极和上电极沉积; 采用电 子束蒸发的形式, 沉积 Ti/Ag/Au金属材料, 上电极的 Ti/Ag/Au厚度分别为 50/600 0/100nm, 随后进行剥离, 并进行去胶, 形成如图 5所示结构;
[0065] 5) 采用电子束蒸发进行 Ti 30 5/Al 20 3双层减反膜沉积, 然后进行上电极熔合
, 使上电极与 N型接触层形成欧姆接触;
[0066] 6) 采用热熔胶将上述电池片临时贴合在玻璃片上, 采用氨水 :双氧水进行 GaAs 衬底去除, 停留在截止层, 再采用盐酸将截止层去除掉; 随后进行下电极制作 , 用电子束蒸发的形式, 沉积 Pd/Ag/Au, 厚度分别为 50/300/100nm, 形成如图 6 所示结构;
[0067] 7) 采用旋涂的方式, 用聚酰亚胺预聚体溶液在下电极上旋涂预聚体薄膜, 采 用先 50°C低温预固化, 再 180°C高温固化的方式, 形成厚度为 lOOum的 PI薄膜; 在高温固化的同时, 将热熔胶和玻璃片进行剥离, 随后进行清洗, 形成如图 1所 示柔性薄膜电池结构;
[0068] 8) 进行低温退火, 然后划片、 并进行切割槽处理, 即可获得单颗的柔性薄膜 太阳电池芯片;
[0069] 9) 将柔性薄膜电池的两个电极焊盘进行串联焊接, 即可形成基于该种柔性薄 膜太阳电池的柔性薄膜电池组件。
[0070] 上述实施例仅例示性说明本发明的原理及其功效, 而非用于限制本发明。 任何 熟悉此技术的人士皆可在不违背本发明的精神及范畴下, 对上述实施例进行修 饰或改变。 因此, 举凡所属技术领域中具有通常知识者在未脱离本发明所揭示 的精神与技术思想下所完成的一切等效修饰或改变, 仍应由本发明的权利要求 所涵盖。

Claims

权利要求书
[权利要求 1] 一种柔性薄膜太阳电池, 包括柔性薄膜衬底、 柔性薄膜衬底上的外延 层结构、 位于外延层结构和柔性薄膜衬底之间的下电极以及位于外延 层结构之上的上电极, 其特征在于: 还包括外延层结构上的贯穿过孔 、 通过贯穿过孔与下电极相连的贯穿电极、 至少包覆贯穿过孔侧壁并 位于贯穿电极和外延层结构上表面之间的绝缘层结构, 所述绝缘层结 构将贯穿电极与外延层绝缘; 所述贯穿电极与上电极包括位于外延层 同侧的焊盘结构。
[权利要求 2] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 所述柔性薄 膜太阳电池的外延层厚度小于 15um。
[权利要求 3] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 所述外延层 结构还包括外延生长衬底。
[权利要求 4] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 所述外延生 产衬底的厚度小于 10um, 贯穿过孔贯穿外延生长衬底。
[权利要求 5] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 所述柔性薄 膜太阳电池的贯穿电极焊盘结构位于绝缘层结构上; 贯穿电极的非焊 盘结构区域下方包括贯穿过孔。
[权利要求 6] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 所述柔性薄 膜太阳电池的绝缘层结构包括但不限于 Si0 2、 SiN x、 A1 20 3、 MgF 2 、 Ti 30 5单层或多层膜结构。
[权利要求 7] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 绝缘层材料 采用与减反膜材料相同的结构。
[权利要求 8] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 所述柔性薄 膜衬底为非导电性衬底。
[权利要求 9] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 所述柔性薄 膜衬底为聚合物柔性薄膜衬底。
[权利要求 10] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 聚合物柔性 薄膜衬底为 PET、 PI、 PMMA中的至少一种制成。
[权利要求 11] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 所述柔性薄 膜太阳电池包含但不限于单结或多结 GaAs基、 Ge基构成的三五族电 池、 硅基电池、 铜铟镓硒、 铜锌锡硫、 碲化镉、 有机电池、 染料敏化 电池、 量子点电池或以上任何二种以上电池的复合型电池。
[权利要求 12] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 所述柔性薄 膜太阳电池的柔性薄膜衬底厚度小于 150um。
[权利要求 13] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 所述柔性薄 膜太阳电池上电极、 下电极和贯穿电极的至少一种电极采用金属或透 明导电材料组成, 透明导电材料包括但不限于 ITO、 IZO、 GTO、 TC 0。
[权利要求 14] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 其中贯穿电 极的非焊盘区域和或上电极采用透明导电材料制成, 使贯穿过孔的侧 壁及电池表面入射更多光线, 从而提高电池效率。
[权利要求 15] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 所述柔性薄 膜太阳电池形成的组件, 其连接形式为将贯穿电极焊盘与另外一颗太 阳电池上电极焊盘电性连接, 不需从下电极处引线焊接。
[权利要求 16] 一种柔性薄膜太阳电池的制造方法, 包括如下步骤:
提供一太阳电池外延片, 外延片包含外延层结构及生长衬底; 在所述太阳电池外延片上进行上胶掩膜, 对所述贯穿电极区域进行曝 光显影; 对所述贯穿电极区域进行蚀刻, 形成贯穿过孔;
在所述太阳电池外延片上进行绝缘介质膜沉积, 并通过光罩、 蚀刻, 保留外延片上用于贯穿电极的区域以及贯穿过孔侧壁的绝缘层结构; 进行电极沉积前的光罩制作掩膜过程; 然后进行贯穿电极以及上电极 金属层沉积、 剥离并去除掩膜材料;
将电池外延片临时键合至刚性支撑衬底, 进行外延生长衬底减薄或去 除;
进行下电极金属层沉积;
进行衬底制作, 并移除刚性支撑衬底; 退火划片、 并进行切割槽处理。
[权利要求 17] 根据权利要求 16所述的柔性薄膜太阳电池的制造方法, 其特征在于: 所述步骤 (2)中, 所述过孔蚀刻过程包含但并不局限于化学腐蚀、 等 离子刻蚀。
[权利要求 18] 根据权利要求 16所述的柔性薄膜太阳电池的制造方法, 其特征在于: 所述步骤 (3)中, 绝缘层结构包括但不限于 Si0 2、 SiN x、 A1 20 3 MgF Ti 30 5单层或多层膜结构。
[权利要求 19] 根据权利要求 16所述的柔性薄膜太阳电池的制造方法, 其特征在于: 所述步骤 (3)中, 所述绝缘膜结构沉积需包覆过孔侧壁, 通过等离子 增强沉积实现。
[权利要求 20] 根据权利要求 1所述的柔性薄膜太阳电池, 其特征在于: 所述柔性薄 膜太阳电池上电极、 下电极和贯穿电极的至少一种电极采用金属或透 明导电材料组成, 透明导电材料包括但不限于 ITO、 IZO、 GTO、 TC 0。
[权利要求 21] 根据权利要求 16所述的柔性薄膜太阳电池的制造方法, 其特征在于: 所述步骤 (5)中, 所述外延生长衬底的减薄或去除可以采用机械研磨 或化学腐蚀方法; 若采用化学腐蚀方法去除外延生长衬底可在衬底与 外延层之间具有腐蚀截止层结构。
[权利要求 22] 根据权利要求 16所述的柔性薄膜太阳电池的制造方法, 其特征在于: 所述步骤 (7)中, 所述衬底为聚合物非导电性衬底, 采用溶液旋涂固 化成膜的方式形成或直接采用商品化聚合物薄膜通过键合方式连接在 下电极。
[权利要求 23] 根据权利要求 16所述的柔性薄膜太阳电池的制造方法, 其特征在于: 所述步骤 (3) 贯穿过孔贯穿至至少部分外延生长衬底, 步骤 (5) 减 薄至外延生长衬底出现过孔的区域。
PCT/CN2018/091898 2018-06-20 2018-06-20 一种柔性薄膜太阳电池及其制造方法 WO2019241916A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880025516.8A CN110574170B (zh) 2018-06-20 2018-06-20 一种柔性薄膜太阳电池及其制造方法
PCT/CN2018/091898 WO2019241916A1 (zh) 2018-06-20 2018-06-20 一种柔性薄膜太阳电池及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/091898 WO2019241916A1 (zh) 2018-06-20 2018-06-20 一种柔性薄膜太阳电池及其制造方法

Publications (1)

Publication Number Publication Date
WO2019241916A1 true WO2019241916A1 (zh) 2019-12-26

Family

ID=68772505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091898 WO2019241916A1 (zh) 2018-06-20 2018-06-20 一种柔性薄膜太阳电池及其制造方法

Country Status (2)

Country Link
CN (1) CN110574170B (zh)
WO (1) WO2019241916A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335214A (zh) * 2021-12-30 2022-04-12 天津三安光电有限公司 柔性太阳能电池及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531077B (zh) * 2020-12-11 2022-07-29 中国电子科技集团公司第十八研究所 一种空间用柔性砷化镓太阳电池制备方法
TWI774397B (zh) * 2021-05-28 2022-08-11 位速科技股份有限公司 薄膜光伏結構
WO2023035180A1 (zh) * 2021-09-09 2023-03-16 华为技术有限公司 一种太阳能电池器件及其制造方法、电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626686A (en) * 1994-12-28 1997-05-06 Fuji Electric Co. Ltd. Thin-film solar cell and method of manufacturing the same
CN102194900A (zh) * 2010-03-05 2011-09-21 周星工程股份有限公司 太阳能电池及其制造方法
CN202905744U (zh) * 2012-09-28 2013-04-24 深圳市创益科技发展有限公司 一种柔性太阳能电池组件
CN103474485A (zh) * 2013-09-17 2013-12-25 北京汉能创昱科技有限公司 一种柔性薄膜太阳能电池及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101173344B1 (ko) * 2009-10-30 2012-08-10 엘지이노텍 주식회사 태양전지 및 이의 제조방법
CN103730519B (zh) * 2013-12-19 2017-04-26 北京汉能创昱科技有限公司 一种柔性薄膜太阳能电池组件及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626686A (en) * 1994-12-28 1997-05-06 Fuji Electric Co. Ltd. Thin-film solar cell and method of manufacturing the same
CN102194900A (zh) * 2010-03-05 2011-09-21 周星工程股份有限公司 太阳能电池及其制造方法
CN202905744U (zh) * 2012-09-28 2013-04-24 深圳市创益科技发展有限公司 一种柔性太阳能电池组件
CN103474485A (zh) * 2013-09-17 2013-12-25 北京汉能创昱科技有限公司 一种柔性薄膜太阳能电池及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335214A (zh) * 2021-12-30 2022-04-12 天津三安光电有限公司 柔性太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN110574170B (zh) 2023-04-11
CN110574170A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2019241916A1 (zh) 一种柔性薄膜太阳电池及其制造方法
JPS63232376A (ja) 光起電力デバイスの製造方法
JP2008166794A (ja) フレキシブル膜上に載置された反転メタモルフィックソーラーセル
JP2014075526A (ja) 光電変換素子および光電変換素子の製造方法
JP2014103259A (ja) 太陽電池、太陽電池モジュールおよびその製造方法
US20210126140A1 (en) Surface mount solar cell having low stress passivation layers
US20210273124A1 (en) Dual-depth via device and process for large back contact solar cells
CN109148615A (zh) 一种异质结太阳能电池电极的制作方法
KR101091379B1 (ko) 태양전지 및 이의 제조방법
US20240038911A1 (en) Flip-chip solar cell
CN111613693A (zh) 柔性太阳能电池及其制作方法
JP2013532907A (ja) 太陽光発電装置及びその製造方法
JP2014017366A (ja) 薄膜化合物太陽電池セルおよびその製造方法
WO2013161145A1 (ja) 裏面接合型太陽電池及びその製造方法
JP2012256881A (ja) 太陽電池モジュールの製造方法
WO2019232904A1 (zh) 太阳能电池及其制备方法
TWI496308B (zh) Thin film solar cell and manufacturing method thereof
WO2014050193A1 (ja) 光電変換モジュール
CN115000057A (zh) 金属网格互联层的钙钛矿/GaAs两端机械叠层太阳电池
KR101091359B1 (ko) 태양전지 및 이의 제조방법
JP2002076397A (ja) 光起電力素子の製造方法
TW201442260A (zh) 太陽能電池及其製造方法
JP2014183073A (ja) 光電変換素子および光電変換素子の製造方法
JP5569139B2 (ja) 太陽電池モジュール
WO2020029581A1 (zh) 柔性太阳能电池及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923358

Country of ref document: EP

Kind code of ref document: A1