WO2020029581A1 - 柔性太阳能电池及其制作方法 - Google Patents

柔性太阳能电池及其制作方法 Download PDF

Info

Publication number
WO2020029581A1
WO2020029581A1 PCT/CN2019/078134 CN2019078134W WO2020029581A1 WO 2020029581 A1 WO2020029581 A1 WO 2020029581A1 CN 2019078134 W CN2019078134 W CN 2019078134W WO 2020029581 A1 WO2020029581 A1 WO 2020029581A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
manufacturing
flexible
substrate
thin film
Prior art date
Application number
PCT/CN2019/078134
Other languages
English (en)
French (fr)
Inventor
龙军华
陆书龙
黄欣萍
李雪飞
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810904936.5A external-priority patent/CN110828581A/zh
Priority claimed from CN201910132351.0A external-priority patent/CN111613693A/zh
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Priority to EP19828181.8A priority Critical patent/EP3836233A4/en
Priority to US16/631,376 priority patent/US20210066531A1/en
Priority to JP2019570572A priority patent/JP6937050B2/ja
Publication of WO2020029581A1 publication Critical patent/WO2020029581A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of solar cells, in particular to a flexible solar cell and a manufacturing method thereof.
  • Flexible solar cells have a wide market in various fields because of their advantages such as good flexibility, high quality-to-power ratio, and portability.
  • flexible batteries are difficult to produce in a large area, and the cost is high.
  • the main reasons are as follows:
  • the materials of flexible cells, especially the materials of multi-junction flexible solar cells, are brittle in texture and easy to break if the area is larger; if the epitaxial layer of the flexible solar cells is transferred to a rigid substrate for fabrication, The problem is more difficult.
  • a secondary temporary bonding method is often used to make a large-area multi-junction flexible solar cell.
  • an inverted solar cell is epitaxially grown on an epitaxial substrate, and then After the back electrode is made on the back of the battery cell by an electron beam evaporation process or a magnetron sputtering process, a temporary substrate is temporarily bonded on the back electrode for the first time, and then the epitaxial substrate on the front of the solar cell is separated.
  • a front electrode is made on the front surface of the solar cell by an electron beam evaporation process or a magnetron sputtering process, and then another temporary substrate is bonded to the front electrode a second time, and then the first temporary substrate is After debonding with the back electrode, a flexible substrate is made on the back electrode, and finally The second temporary substrate and the solar battery cell to obtain a desired debonding i.e. flexible multijunction solar cell.
  • the above-mentioned secondary temporary bonding method has the following disadvantages: it has two bonding operations, the process is complicated, and it is necessary to repeatedly use a bonding machine for bonding and debonding using debonding reagents and other auxiliary means, and the production cost is high. Production efficiency is relatively low.
  • the first bonding operation requires higher surface roughness of the battery, the surface roughness of the battery needs to be small enough, and debonding is more complicated.
  • the bonding operation needs to be performed at a high temperature, and because the thermal expansion coefficients of the materials are different, the wafer is likely to warp under high temperature conditions, and the yield is reduced.
  • an object of the present invention is to provide a flexible solar cell and a manufacturing method thereof to solve the above problems.
  • the invention provides a method for manufacturing a flexible solar cell, comprising: fabricating a separation layer on a substrate; flip-growing a solar cell on the separation layer; fabricating a back electrode on a back surface of the solar cell; Making a metal thin film on the substrate; bonding the metal thin film to a temporary substrate; separating the separation layer from the solar cell; making a front electrode on the front surface of the solar cell; The metal film is debonded.
  • the separation layer is a corrosion barrier layer; wherein the method for separating the separation layer from the solar cell includes: removing the substrate by a wet peeling method; using a wet peeling method; The corrosion barrier layer is stripped and removed in a manner.
  • the separation layer is a sacrificial layer; wherein the method for separating the separation layer and the solar cell includes: removing the sacrificial layer by a wet peeling method.
  • the manufacturing method further includes: depositing an anti-reflection film on the front electrode.
  • the solar cell is a multi-junction solar cell.
  • the method for bonding the metal thin film to a temporary substrate includes: bonding the metal thin film and the temporary substrate with a low temperature bonding adhesive in a low temperature state.
  • the low-temperature bonding glue is a low-temperature-curing silica gel.
  • the method for debonding the temporary substrate and the metal thin film includes: cleaning and removing the low-temperature bonding adhesive by using a low-temperature adhesive cleaning agent.
  • the method for making a metal thin film on the back electrode includes: forming a metal thin film on the back electrode by electroplating; and performing a mechanochemical polishing treatment on the surface of the metal thin film.
  • the invention provides a flexible solar cell manufactured by the method for manufacturing a flexible solar cell.
  • the invention provides a method for manufacturing a flexible solar cell.
  • the manufacturing method includes: fabricating an inverted solar cell unit on a first rigid substrate; fabricating a back electrode and a flexible layer disposed on the back surface of the solar cell unit; A substrate; attaching the flexible substrate to a second rigid substrate coated with an adhesive and curing the adhesive by baking to adhere the flexible substrate to the second rigid substrate; The first rigid substrate is separated from the solar battery cell; a front electrode is made on the front surface of the solar battery cell; and the second rigid substrate is peeled off.
  • the method for fabricating an inverted solar battery cell on a first rigid substrate includes: fabricating an corrosion barrier layer on the first rigid substrate; and fabricating an inverted solar battery cell on the corrosion barrier layer.
  • a method for fabricating a back electrode and a flexible substrate provided on a back surface of the solar battery cell includes: plating a back seed layer on the back surface of the solar battery cell; and plating a back surface on the back seed layer An electrode; a metal thin film is plated on the back electrode to form a flexible substrate.
  • the metal thin film is a copper thin film
  • the second rigid substrate is borosilicate glass
  • the adhesive is a peelable silica gel
  • the peelable silica gel has an adhesion strength to the second rigid substrate that is greater than an adhesion strength to the flexible substrate.
  • the method for separating the first rigid substrate from the solar cell includes: removing the first rigid substrate on the corrosion barrier layer by using a wet stripping process; and removing the first rigid substrate by using a wet stripping process.
  • the method for manufacturing the flexible solar cell further includes: removing the corrosion barrier layer on the solar battery cell by etching using a wet stripping process.
  • the method for making a front electrode on the front surface of the solar battery cell includes: plating a front surface seed layer on the front surface of the solar battery cell; and plating a front electrode on the front seed layer.
  • the method for manufacturing a flexible solar cell further includes: the front electrode of the solar battery cell and the front surface of the solar battery cell are not on the front surface.
  • An anti-reflection layer is made on the area covered by the electrodes.
  • the solar cell is a multi-junction solar cell.
  • the flexible solar cell provided by the present invention and a manufacturing method thereof reduce the bonding and unbonding operations, improve production efficiency, and have industrialization compared with the prior art solution that requires multiple bonding and repeated transfer of epitaxial layers.
  • the application value can avoid damaging the battery under the high temperature conditions required for bonding.
  • the temporary substrate can be directly separated from the flexible substrate, the process is rapid, and the battery is not easily damaged.
  • the front electrode, the back electrode, and the flexible substrate in the flexible solar cell can be manufactured by using an electroplating method, the relative cost is low, and the equipment requirements are low.
  • FIG. 1 is a flowchart of a method for manufacturing a flexible solar cell according to Embodiment 1 of the present invention
  • Embodiment 2 is a flowchart of forming a metal thin film on a back electrode in Embodiment 1 of the present invention
  • FIG. 3 is a process flowchart of a flexible solar cell according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a battery cell of a flexible solar cell according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart of a method for manufacturing a flexible solar cell according to Embodiment 2 of the present invention.
  • FIG. 6 is a process flow diagram of the flexible solar cell corresponding to FIG. 5;
  • FIG. 7 is a schematic structural diagram of a solar battery cell provided by Embodiment 2 of the present invention.
  • FIG. 8 is a relationship curve between a current density and a voltage of an AM1.5G spectrum of a flexible solar cell exemplarily manufactured in Embodiment 2 of the present invention.
  • this embodiment provides a method for manufacturing a flexible solar cell, including:
  • a separation layer 20 is formed on the substrate 10.
  • the substrate 10 is made of a semiconductor material GaAs, and the band gap of the GaAs material is relatively matched with the solar spectrum, which is beneficial to the growth of an efficient multi-junction solar cell.
  • the separation layer 20 is a sacrificial layer, the material of the sacrificial layer is AlAs, and the sacrificial layer is a structure to be removed when the substrate and the solar cell are separated.
  • each junction of the solar cell 30 is a battery cell.
  • each battery cell has a window layer 100, an emission region 110, a base region 120, and a back field layer 130.
  • the surface of the window layer 100 is the front side of the solar cell 30, and the back field
  • the surface where the layer 130 is located is the back surface of the solar cell 30.
  • the solar cell 30 is grown upside down, that is, when each cell of the solar cell 30 is prepared, a window layer 100, an emission region 110, a base region 120, and a back layer are sequentially formed on a substrate.
  • Field layer 130 is sequentially formed on a substrate.
  • a back electrode 40 is deposited on the back surface of the solar cell 30.
  • the material of the back electrode 40 is Ti / Pt / Au.
  • the specific method of the deposition process is: Ti / Pt / Au is evaporated by an electron beam, deposited on the back surface of the solar cell 30 to form a back electrode 40, and the back electrode 40 is then rapidly annealed to form an ohmic contact with the solar cell 30.
  • a metal thin film 50 is formed on the back electrode 40 as a flexible substrate.
  • the method for making a metal thin film 50 on the back electrode 40 in this embodiment specifically includes:
  • the metal thin film 50 is made of Cu.
  • the metal Cu has good ductility and can be used as a flexible substrate.
  • the surface of the metal thin film 50 is mechanically and chemically polished. Because the bonding operation requires a high degree of roughness on the operating surface and the surface roughness needs to be made as small as possible, the metal thin film 50 can be mechanically and chemically polished. After the processing is completed, the thickness of the metal thin film 50 is 10 ⁇ 20 ⁇ m. Of course, if the metal thin film 50 obtained by the plating process of the previous step is sufficiently flat so that the surface roughness is small enough to meet the requirements of the bonding operation, it is not necessary to perform step S042 on the metal thin film 50. The surface is mechanically and chemically polished.
  • the low-temperature bonding adhesive 60 is used to bond the metal thin film 50 to the temporary substrate 70.
  • the temporary substrate 70 is a material having a thermal expansion coefficient similar to that of a solar cell, and may be GaAs or glass.
  • the low-temperature bonding adhesive 60 is a low-temperature-curing silica gel having a thermal curing temperature of 90 ° C and a thermal stability temperature of 300 ° C.
  • the separation layer 20 is a sacrificial layer
  • a method for separating the sacrificial layer and the solar cell 30 is a wet peeling process.
  • a front electrode 80 is deposited on the front surface of the solar cell 30. After being separated from the substrate, the front surface of the solar cell 30 is exposed, and a front electrode 80 is deposited on the front surface.
  • the material of the front electrode 80 is AuGe / Ni / Au. After deposition, it can form an ohmic contact with the solar cell 30; AuGe / Ni / Au has a comb-like structure, which can not only transmit light to the solar cell 30, but also realize current collection. If the battery produced at one time is large, the isolation groove can be etched on the solar cell 30 to divide the solar cell 30 into a desired size.
  • An anti-reflection film 90 is deposited on the front electrode 80.
  • the anti-reflection film 90 covers the front electrode 80, greatly reducing the reflection of light on the surface of the battery, enabling more light to be absorbed by the battery, and improving the energy conversion rate of the solar battery 30.
  • the solar cell 30 described in this embodiment has three battery cells, which are a GaInP sub-cell, a GaAs sub-cell, and an InGaAs sub-cell, respectively.
  • the manufacturing sequence of the solar cell 30 on the substrate is the GaInP sub-cell, the GaAs sub-cell, and the InGaAs sub-cell in this order.
  • the GaInP sub-cell has a band gap of 1.88 eV
  • the GaAs sub-cell has a band gap of 1.42 eV
  • the InGaAs sub-cell has a band gap of 1.05 eV.
  • the InGaAs sub-cell grows mismatched.
  • the separation layer 20 is an corrosion barrier layer, and the corrosion barrier layer is used to prevent the substrate and the solar cell from being separated when the substrate is separated from the solar cell.
  • the solar cell causes damage, and the material of the corrosion barrier layer is GaInP.
  • the method for separating the separation layer 20 and the solar cell 30 is: peeling the substrate 10 by a wet peeling method, and the solution for removing the substrate 10 may be a mixed solution of hydrogen peroxide, ammonia, and water.
  • the corrosion barrier layer protects the solar cell 30.
  • the corrosion barrier layer is stripped again by a wet stripping method.
  • the solution for removing the corrosion barrier layer can be prepared for hydrochloric acid and phosphoric acid After the resulting mixed solution is etched, the front surface of the solar cell 30 is exposed. However, this method destroys the substrate 10, and the substrate 10 cannot be reused.
  • This embodiment provides a flexible solar cell and the above-mentioned manufacturing method thereof.
  • By performing only one bonding and unbonding in the process of manufacturing the battery compared with the prior art two bonding and unbonding, it is simpler and improved.
  • this embodiment provides another method for manufacturing a flexible solar cell.
  • the method includes:
  • An inverted solar battery cell 2 is fabricated on the first rigid substrate 1.
  • the solar battery 2 is equivalent to the battery cell of the solar battery 30 in Example 1.
  • the solar cell 2 includes a front contact layer 21, a window layer 22, an emission region 23, a base region 24, and a back contact layer that are sequentially stacked on the first rigid substrate 1. 25.
  • the side where the front contact layer 21 is located is the front side of the solar battery unit 2. Light needs to be incident from the front side of the solar battery unit.
  • the side where the back contact layer 25 is located is the solar battery unit 2. back.
  • a method for fabricating an inverted solar battery cell 2 on a first rigid substrate 1 includes:
  • An inverted solar battery cell 2 is fabricated on the corrosion barrier layer 11.
  • the corrosion barrier layer 11 is used to subsequently remove the first rigid substrate 1 on the corrosion barrier layer 11 by using a wet stripping process, which can block the corrosion of the solar cell 2 by an etching solution and protect the solar cell 2.
  • the solar cell 2 is described, and the corrosion barrier layer 11 corresponds to the separation layer 20 in the first embodiment.
  • the thickness of the corrosion barrier layer 11 is 150-170 nm, and preferably 160 nm.
  • the first rigid substrate 1 is a GaAs substrate, and the front contact layer 21, the window layer 22, the emission region 23, and the base region 24 of the solar battery cell 2 are sequentially epitaxially grown on the GaAs substrate.
  • the back contact layer 25 forms an inverted solar battery cell 2.
  • the solar battery cell 2 is a multi-junction solar battery. Exemplarily, it is a GaInP / GaAs / InGaAs three-junction solar cell.
  • the GaInP solar cell, the GaAs solar cell, and the InGaAs solar cell are sequentially grown upside down on the first rigid substrate, and the band gaps of the three are sequentially 1.9eV. , 1.42eV, and 1.05eV, the InGaAs solar cell is mismatched.
  • a back electrode 3 and a flexible substrate 4 are provided on the back surface of the solar battery cell 2 and are stacked.
  • the back surface electrode 3 forms an ohmic contact on the back surface of the solar battery cell 2.
  • a method for fabricating a back electrode 3 and a flexible substrate 4 arranged on the back surface of the solar battery cell 2 includes:
  • a back surface seed layer 31 is plated on the back surface of the solar battery cell 2;
  • a metal thin film is plated on the back electrode 3 to form a flexible substrate 4.
  • the back electrode 3 is a metal or alloy such as Ti, Pt, Au, and Cu, and the thickness of the back electrode 3 is less than 500 nanometers.
  • the metal thin film is preferably Kovar alloy thin film.
  • the thin film plated on the back electrode 3 is used as a flexible substrate, and the thickness of the thin film is 10-20 micrometers, preferably 15 micrometers. Further, the surface of the flexible substrate 4 needs to be subjected to an oxidation prevention treatment.
  • the flexible substrate 4 is attached to a second rigid substrate 5 coated with an adhesive, and the adhesive 6 is cured by baking to adhere the flexible substrate 4 to the second rigid substrate. 5 on.
  • the second rigid substrate 5 is used as a temporary substrate for transferring the epitaxial layer portion of the solar battery cell 2, and a borosilicate glass close to the thermal expansion coefficient of the epitaxial material of the solar battery cell 2 is used.
  • the method for curing the adhesive by baking specifically includes: placing the second rigid substrate 5 on a hot plate furnace for baking to cure the adhesive 6.
  • the adhesive 6 is cured by a low-temperature baking method, and the prior art bonding scheme is not used to avoid damaging the battery in a high-temperature environment.
  • the adhesive 6 is a peelable silicone gel, and the peelable silicone gel has a stronger adhesion strength to the second rigid substrate 5 than to the flexible substrate 4. Due to its strength, when the second rigid substrate 5 is directly peeled from the flexible substrate 4 in the subsequent steps, the adhesive 6 is more prone to adhere to the second rigid substrate 5 and can be The second rigid substrate 5 is peeled from the flexible substrate together with the adhesive 6.
  • the baking time is preferably 20 minutes, and the baking temperature is lower than 90 ° C.
  • the flexible substrate 4 when the adhesive 6 applied on the second rigid substrate 5 is in a semi-cured state, the flexible substrate 4 is then attached to the second rigid substrate 5. Baking and curing on the adhesive 6 not only can ensure that the adhesion between the flexible substrate 4 and the second rigid substrate 5 is sufficiently stable after the adhesive 6 is cured, but also can make the flexible substrate in this process. 4 is automatically adsorbed by the adhesive 6 on the second rigid substrate 5 and exhausts the air in the contact interface, thereby improving the transfer efficiency and product quality.
  • the semi-cured state refers to a state between an uncured state and a fully cured state.
  • the thermal expansion coefficient of the flexible substrate 4 and the second rigid substrate 5 is close to that of the battery material, which can greatly reduce the impact of stress on the battery performance during the manufacturing process and improve the quality of the flexible battery.
  • the present embodiment is to form a flexible substrate 4 by electroplating a metal thin film before fabricating the front electrode 7 of the flexible solar cell.
  • the second rigid substrate 5 is pasted to complete the transfer of the epitaxial layer. It is in contact with the second rigid substrate 5 through the flexible substrate 4 and avoids the problem of uneven surface of the front contact layer 21 after the epitaxial layer transfer due to the excessive surface roughness of the back contact layer 25 and contact on the back surface.
  • the operation of bonding the temporary substrate on the layer 25 or the back electrode 3 is difficult and requires high equipment.
  • the method for separating the first rigid substrate 1 from the solar battery cell 2 includes: removing the first rigid substrate 1 on the corrosion barrier layer 11 by etching using a wet stripping process;
  • the method for manufacturing the flexible solar cell further includes: removing the corrosion on the solar cell 2 by using a wet stripping process. Barrier layer 11.
  • the first rigid substrate 1 and the corrosion barrier layer 11 are selectively etched by using an etching solution according to a wet stripping process, so that the first rigid substrate of about 4 inches and the corrosion barrier of about 160 nm can be realized.
  • the layer 11 is completely removed without causing damage to the battery.
  • a front electrode 7 is fabricated on the front surface of the solar battery cell 2.
  • the method for making a front electrode 7 on the front surface of the solar battery cell 2 includes:
  • a front surface seed layer 71 is plated on the front surface of the solar battery unit 2;
  • a front electrode 7 is plated on the front seed layer 71.
  • the front electrodes 7 are arranged in a comb shape on the front surface of the solar battery cell 2, and the areas on the front surface of the solar battery cell 2 that are not covered by the front electrode 7 and the front seed layer 71 need to be removed
  • the front contact layer 21 exposes the window layer 22 to avoid blocking light.
  • the front electrode 7, the back electrode 3, and the flexible substrate 4 are prepared by using the electroplating method, thereby realizing the preparation of the metal film layer in a full electroplating manner, compared with the prior art through electron beam evaporation or magnetic control.
  • the ohmic contact electrode is prepared by sputtering and other methods. The plating method has lower requirements on equipment and lower cost.
  • the front electrode 7 is any alloy or metal of AuGe, Ni, Au, and Cu, and the thickness of the front electrode 7 is less than 500 nanometers.
  • the second rigid substrate 5 is peeled.
  • the electroplated metal film is used as the flexible substrate 4 to be adhered to the second rigid substrate 5. Since the flexible substrate 4 made of a metal film has good flexibility, it can be directly obtained from the flexibility.
  • the second rigid substrate 5 is directly peeled off from the substrate 4 without causing damage to the solar cell.
  • the metal thin film produced by the above electroplating effectively supports the epitaxial layer of the solar cell, and avoids the cracking of the epitaxial layer caused by the debonding operation.
  • the method for manufacturing the flexible solar cell further includes: forming a passivation layer on the sidewall of the solar battery cell 2 to cover the sidewall.
  • the passivation layer is an insulating material and is used to protect the side wall of the solar battery cell and prevent electric leakage.
  • the passivation layer is made of a silicon nitride material, and the thickness of the passivation layer is 290 nm to 310 nm, and preferably 300 nm.
  • the method for manufacturing a flexible solar cell further includes: the front electrode 7 of the solar battery cell and the front surface of the solar battery cell 2 are not An anti-reflection layer 8 is formed on the area covered by the front electrode.
  • the anti-reflection layer 8 can greatly reduce the reflection of light on the surface of the solar cell, so that more photons are absorbed by the battery, and the photoelectric conversion efficiency is improved.
  • the anti-reflection layer 8 is equivalent to the anti-reflection film 90 in Embodiment 1.
  • the anti-reflection layer 8 is formed by a four-layer optical film of TiO 2 / SiO 2 / TiO 2 / SiO 2 .
  • the present invention also provides a flexible solar cell, which is made by the above-mentioned method for manufacturing a flexible solar cell.
  • the present invention exemplarily prepares a 4-inch flexible solar cell. From the relationship curve between the current density and the voltage under the AM1.5G spectrum, it can be seen that the photoelectric conversion efficiency (Eff) can reach 28.8%, and the circuit is open.
  • the voltage (Voc) is about 2.74V
  • the short-circuit current density (Jsc) is about 13.07 mA / cm 2
  • the fill factor (FF) is about 80.76%.
  • the flexible solar cell and the manufacturing method thereof provided in the embodiments of the present invention transfer a flexible substrate 4 fabricated on the back electrode 3 to a second rigid substrate 5 through an adhesive 6, and curing of the adhesive 6 is performed at a low temperature.
  • the baking method is realized, avoiding the high temperature conditions required for bonding to damage the battery; after the production of the flexible solar cell is completed, the second rigid substrate 5 can be directly peeled from the flexible substrate 4, compared with the need of the prior art
  • the scheme of multiple bonding and repeated transfer of the epitaxial layer does not need to be bonded by a bonding machine, and the second rigid substrate 5 can be peeled off by direct peeling without debonding by additional auxiliary means, which also improves Productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供一种柔性太阳能电池及其制作方法,通过在背面电极(40)上制作柔性衬底(50),以将太阳能电池单元及柔性衬底转移到临时衬底(70)上,完成柔性太阳能电池的制作后,再将临时衬底从柔性衬底上分离。由此减少了制作电池过程中繁琐的键合及解键合操作,可以提高生产效率,避免了键合所需的高温条件损坏电池。并且,该过程迅速,不易损伤电池。柔性太阳能电池中的正面电极、背面电极及柔性衬底均可利用电镀法进行制作,相对成本较低,对设备要求低,有利于产业化的大规模生产。

Description

柔性太阳能电池及其制作方法 技术领域
本发明涉及太阳能电池的技术领域,尤其涉及柔性太阳能电池及其制作方法。
背景技术
柔性太阳能电池因其具有柔韧性好、质量功率比高以及方便携带等优点,在各个领域拥有广阔的市场。现有技术中,柔性电池很难进行大面积生产,而且成本居高不下。主要原因如下:柔性电池的材料尤其是多结柔性太阳能电池的材料本身质地脆,面积稍大就容易发生破碎;而若通过柔性太阳能电池的外延层部分转移到刚性衬底上进行制作来解决该问题又较为困难,比如:现有技术常常采用二次临时键合的方法来制作大面积的多结柔性太阳能电池,具体地,通过在外延衬底上外延生长倒置的太阳能电池单元,然后在太阳能电池单元的背面上通过电子束蒸发工艺或磁控溅射工艺制作背面电极后,在背面电极上通过第一次临时键合一个临时衬底,然后分离太阳能电池单元的正面上的外延衬底,在太阳能电池单元的正面上通过电子束蒸发工艺或磁控溅射工艺制作正面电极,接着再在所述正面电极上第二次键合另一个临时衬底,然后通过对第一个临时衬底和背面电极进行解键合后,在所述背面电极上制作柔性衬底,最后将第二个临时衬底和所述太阳能电池单元进行解键合即获得所需的多结柔性太阳能电池。
但是上述二次临时键合的方法存在以下缺点:其共有两次键合操作,工艺较复杂,需要反复地利用键合机进行键合和利用解键合试剂等辅助手段进行解键合,生产成本较高,生产效率比较低。第一次键合操作对电池表面粗糙度要求较高,电池表面的粗糙度需要足够小,解键合较复杂。其键合操作需要在高温下进行,且由于材料的热膨胀系数不一样,高温条件下容易导致晶圆翘曲,良品率下降。
发明内容
有鉴于此,本发明的目的在于提供柔性太阳能电池及其制作方法,来解决 上述问题。
为了实现上述的目的,本发明采用了如下的技术方案:
本发明提供一种柔性太阳能电池的制作方法,包括:在衬底上制作分离层;在所述分离层上倒装生长太阳能电池;在所述太阳能电池的背面制作背面电极;在所述背面电极上制作金属薄膜;将所述金属薄膜键合到临时衬底上;将所述分离层和所述太阳能电池进行分离;在所述太阳能电池的正面制作正面电极;将所述临时衬底与所述金属薄膜解键合。
优选的,所述分离层为腐蚀阻挡层;其中,所述将所述分离层和所述太阳能电池进行分离的方法包括:采用湿法剥离的方式将所述衬底腐蚀去除;采用湿法剥离的方式将所述腐蚀阻挡层剥离去除。
优选的,所述分离层为牺牲层;其中,所述将所述分离层和所述太阳能电池进行分离的方法包括:采用湿法剥离的方式去除所述牺牲层。
优选的,在所述太阳能电池的正面制作正面电极之后,所述制作方法还包括:在所述正面电极上沉积抗反射膜。
优选的,所述太阳能电池为多结太阳能电池。
优选的,所述将所述金属薄膜键合到临时衬底上的方法包括:在低温状态下利用低温键合胶键合所述金属薄膜和所述临时衬底。
优选的,所述低温键合胶为低温固化硅胶。
优选的,所述将所述临时衬底与所述金属薄膜解键合的方法包括:利用低温胶清洗剂将所述低温键合胶清洗去除。
优选的,所述在所述背面电极上制作金属薄膜的方法包括:利用电镀工艺在所述背面电极上电镀形成金属薄膜;对所述金属薄膜的表面进行机械化学抛光处理。
本发明提供一种由上述的柔性太阳能电池的制作方法制成的柔性太阳能电池。
本发明提供一种柔性太阳能电池的制作方法,所述制作方法包括:在第一刚性衬底上制作倒置的太阳能电池单元;在所述太阳能电池单元的背面上制作叠层设置的背面电极和柔性衬底;将所述柔性衬底贴附于涂覆粘贴剂的第二刚 性衬底上并通过烘烤固化所述粘贴剂,以将所述柔性衬底粘贴至第二刚性衬底上;将所述第一刚性衬底从所述太阳能电池单元上分离;在所述太阳能电池单元的正面上制作正面电极;剥离所述第二刚性衬底。
优选地,在第一刚性衬底上制作倒置的太阳能电池单元的方法包括:在第一刚性衬底上制作腐蚀阻挡层;在所述腐蚀阻挡层上制作倒置的太阳能电池单元。
优选地,在所述太阳能电池单元的背面上制作叠层设置的背面电极和柔性衬底的方法包括:在所述太阳能电池单元的背面上电镀背面种子层;在所述背面种子层上电镀背面电极;在所述背面电极上电镀金属薄膜以形成柔性衬底。
优选地,所述金属薄膜为铜薄膜,所述第二刚性衬底为硼硅玻璃。
优选地,所述粘贴剂为可剥离的硅胶,所述可剥离的硅胶对所述第二刚性衬底的粘附强度大于对所述柔性衬底的粘附强度。
优选地,将所述第一刚性衬底从所述太阳能电池单元上分离的方法包括:利用湿法剥离工艺腐蚀去除所述腐蚀阻挡层上的第一刚性衬底;利用湿法剥离工艺腐蚀去除所述腐蚀阻挡层上的第一刚性衬底后,所述柔性太阳能电池的制作方法还包括:利用湿法剥离工艺腐蚀去除所述太阳能电池单元上的腐蚀阻挡层。
优选地,在所述太阳能电池单元的正面上制作正面电极的方法包括:在所述太阳能电池单元的正面上电镀正面种子层;在所述正面种子层上电镀正面电极。
优选地,在所述太阳能电池单元的正面上制作正面电极后,所述柔性太阳能电池的制作方法还包括:在所述太阳能电池单元的正面电极及所述太阳能电池单元的正面未被所述正面电极覆盖的区域上制作减反射层。
优选地,所述太阳能电池单元为多结太阳能电池。
本发明提供的柔性太阳能电池及其制作方法,相比于现有技术需要多次键合、反复转移外延层的方案,其减少了键合和解键合的操作,提高了生产效率,具有产业化的应用价值,可以避免键合所需的高温条件损坏电池。当完成柔性太阳能电池的制作后,可直接将临时衬底从柔性衬底上分离,过程迅速,不易损伤电池。并且,所述柔性太阳能电池中的正面电极、背面电极及柔性衬底均可利用电镀法进行制作,相对成本较低,对设备要求低。
附图说明
图1是本发明实施例1提供的柔性太阳能电池的制作方法流程图;
图2是本发明实施例1在背面电极上制作金属薄膜的流程图;
图3是本发明实施例1的柔性太阳能电池的工艺流程图;
图4是本发明实施例1的柔性太阳能电池的电池单元的结构示意图;
图5是本发明实施例2提供的柔性太阳能电池的制作方法流程图;
图6是对应图5的柔性太阳能电池的工艺流程图;
图7是本发明实施例2提供的太阳能电池单元的结构示意图;
图8是本发明实施例2示例性制作的柔性太阳能电池在AM1.5G光谱下的电流密度和电压的关系曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了关系不大的其他细节。
实施例1
如图1和图3所示,本实施例提供了一种柔性太阳能电池的制作方法,包括:
S01、在衬底10上制作分离层20。其中,所述衬底10采用的是半导体材料GaAs,GaAs材料带隙与太阳光谱较匹配,有利于生长高效的多结太阳能电池。所述分离层20为牺牲层,所述牺牲层材料为AlAs,所述牺牲层为分离所述衬底和所述太阳能电池时要去除的结构。
S02、在所述分离层20上倒装生长太阳能电池30。为了获得较高光电转换效率的太阳能电池30,所述太阳能电池30可以布置为三结、四结或者更多结, 使电池能吸收不同波段的光。在本实施例中,所述太阳能电池30的每一结均为一个电池单元。
如图4所示,每一个电池单元均具有窗口层100、发射区110、基区120和背场层130,所述窗口层100所在的面为所述太阳能电池30的正面,所述背场层130所在的面为所述太阳能电池30的背面。在制作所述太阳能电池30时,所述太阳能电池30倒装生长,即在制备太阳能电池30的每一个电池单元时,依次在衬底上制作窗口层100、发射区110、基区120以及背场层130。
S03、在所述太阳能电池30背面沉积背面电极40。其中,背面电极40材料为Ti/Pt/Au。沉积工艺的具体方法为:利用电子束蒸发Ti/Pt/Au,将其沉积在太阳能电池30背面,形成背面电极40,然后对背面电极40进行快速退火,使其与太阳能电池30形成欧姆接触。
S04、在所述背面电极40上制作金属薄膜50,作为柔性基底。结合图2,本实施例在所述背面电极40上制作金属薄膜50的方法,具体包括:
S041、通过电镀工艺将所述金属薄膜50沉积在所述背面电极40上。所述金属薄膜50材质为Cu,金属Cu具有良好的延展性,可以作为柔性衬底。
S042、对所述金属薄膜50表面进行机械化学抛光处理。由于键合操作对操作表面的粗糙度要求较高,需要使表面的粗糙度尽可能地小,所以可对所述金属薄膜50机械化学抛光处理,处理完成后,所述金属薄膜50厚度为10~20μm。当然,若通过前一步骤的电镀工艺制得的金属薄膜50足够平整,使其表面的粗糙度足够小而能符合键合操作的需求,则可以无需执行步骤S042来对所述金属薄膜50的表面进行机械化学抛光处理。
S05、将所述金属薄膜50键合到临时衬底70上。所述键合工艺在真空环境下进行,高真空有助于键合界面气体分子的排出,增加了接触面积;采用低温键合胶60使所述金属薄膜50粘结在临时衬底70上,所述临时衬底70是与太阳能电池热膨胀系数相近的材料,可以是GaAs或者玻璃。所述低温键合胶60为热固化温度为90℃、热稳定性温度为300℃的低温固化硅胶。
S06、将所述分离层20和所述太阳能电池30分离;在本实施例中,所述分离层20为牺牲层,使所述牺牲层和所述太阳能电池30分离的方法为湿法剥离工艺,通过湿法剥离工艺将牺牲层腐蚀掉,可以实现所述衬底10和所述太阳能电池30的分离,且分离后的所述衬底10不会被破坏,还能重复使用。
S07、在所述太阳能电池30正面沉积正面电极80。与衬底分离后,所述太阳能电池30的正面会露出,在正面上沉积正面电极80,正面电极80的材料为AuGe/Ni/Au,沉积后无需退火即可与太阳能电池30形成欧姆接触;AuGe/Ni/Au为梳状结构,既能让光透过照射到太阳能电池30上,又能实现电流收集。如果一次制作的电池较大,可以在太阳能电池30上刻蚀隔离槽,将太阳能电池30分割成所需要的大小。
S08、在所述正面电极80上沉积抗反射膜90。抗反射膜90覆盖住正面电极80,大大降低电池表面对光的反射,使更多光能够被电池吸收,提高太阳能电池30的能量转换率。
S09、将所述临时衬底70与所述金属薄膜50解键合。由于金属薄膜50与临时衬底70之间存在着应力,在低温胶清洗剂中,随着低温键合胶的逐渐溶解,金属薄膜50与临时衬底70之间由于晶格常数和热膨胀系数的差异而存在的应力,会使金属薄膜50与临时衬底70分离,即可得到所述柔性太阳能电池,且分离后的所述临时衬底70不会被破坏,还能重复使用。
作为一种优选的实施方式,本实施例所述的太阳能电池30具有三个电池单元,依次分别为GaInP子电池、GaAs子电池和InGaAs子电池。所述太阳能电池30在所述衬底上的制作顺序依次为所述GaInP子电池、所述GaAs子电池和所述InGaAs子电池。所述GaInP子电池带隙为1.88eV,所述GaAs子电池带隙为1.42eV和所述InGaAs子电池带隙为1.05eV。其中,所述InGaAs子电池失配生长。
作为另一种优选的实施方式,与上一个实施方式不同的是,所述分离层20为腐蚀阻挡层,所述腐蚀阻挡层用于阻止分离所述衬底和所述太阳能电池时对所述太阳能电池造成损伤,所述腐蚀阻挡层材料为GaInP。所述使所述分离层20和所述太阳能电池30分离的方法为:采用湿法剥离的方法剥离所述衬底10,去除衬底10的溶液可以为双氧水、氨水和水配置成的混合溶液,此时腐蚀阻挡层对太阳能电池30起到了保护作用,待所述衬底10腐蚀干净,再次采用湿法剥离的方法剥离所述腐蚀阻挡层,去除腐蚀阻挡层的溶液可以为盐酸和磷酸配制成的混合溶液,腐蚀完成后,露出太阳能电池30正面。但是这种方法会破坏所述衬底10,所述衬底10不能重复使用。
本实施例提供了一种柔性太阳能电池及其上述制作方法,通过在制作电池的过程中只进行一次键合与解键合,相比于现有技术的两次键合与解键合更为 简单,提高了生产效率;解键合过程快速且不损伤电池和临时衬底70;利用电镀金属薄膜50的延展性作为柔性衬底,不仅柔韧性好,还降低了生产成本,具有产业化的应用价值。
实施例2
参阅图5和图6所示,本实施例提供了另一种柔性太阳能电池的制作方法,所述制作方法包括:
S1、在第一刚性衬底1上制作倒置的太阳能电池单元2,所述太阳能电池2相当于实施例1中的太阳能电池30的电池单元。其中,结合图7所示,所述太阳能电池单元2包括依次叠层设置于所述第一刚性衬底1上的正面接触层21、窗口层22、发射区23、基区24以及背面接触层25,所述正面接触层21所在的一面为所述太阳能电池单元2的正面,光线需要从所述太阳能电池单元的正面入射,所述背面接触层25所在的面为所述太阳能电池单元2的背面。
在本实施例中,具体地,在第一刚性衬底1上制作倒置的太阳能电池单元2的方法包括:
在第一刚性衬底1上制作腐蚀阻挡层11;
在所述腐蚀阻挡层11上制作倒置的太阳能电池单元2。
其中,所述腐蚀阻挡层11用于后续利用湿法剥离工艺腐蚀去除所述腐蚀阻挡层11上的第一刚性衬底1,其能阻挡腐蚀液对所述太阳能电池单元2的腐蚀,保护所述太阳能电池单元2,所述腐蚀阻挡层11相当于实施例1中的分离层20。所述腐蚀阻挡层11的厚度为150~170nm,优选为160nm。
更具体地,所述第一刚性衬底1选用GaAs衬底,在所述GaAs衬底上依次外延生长所述太阳能电池单元2的正面接触层21、窗口层22、发射区23、基区24以及背面接触层25,形成倒置的太阳能电池单元2。本实施例中,所述太阳能电池单元2为多结太阳能电池。示例性地,其为GaInP/GaAs/InGaAs三结太阳能电池,GaInP太阳能电池、GaAs太阳能电池以及InGaAs太阳能电池依次倒置生长在所述第一刚性衬底上,三者的带隙依次分别为1.9eV、1.42eV以及1.05eV,所述InGaAs太阳能电池为失配生长。
S2、在所述太阳能电池单元2的背面上制作叠层设置的背面电极3和柔性衬底4。所述背面电极3在所述太阳能电池单元2的背面上形成欧姆接触。
具体地,在所述太阳能电池单元2的背面上制作叠层设置的背面电极3和柔性衬底4的方法包括:
在所述太阳能电池单元2的背面上电镀背面种子层31;
在所述背面种子层31上电镀背面电极3;
在所述背面电极3上电镀金属薄膜以形成柔性衬底4。
当需要电镀电极时,先通过在接触层上电镀种子层,例如Ni薄膜等,然后再在种子层上电镀形成欧姆接触的电极,有利于电极的稳固。示例性地,所述背面电极3为Ti、Pt、Au以及Cu等金属或合金,所述背面电极3的厚度小于500纳米。由于与铜相比,可伐合金与电池材料的热膨胀系数更相近,更有利于减小应力对电池性能的影响,因此,本实施例中,所述金属薄膜优选为可伐合金薄膜,通过在所述背面电极3上电镀的薄膜作为柔性衬底,所述薄膜的厚度为10~20微米,优选为15微米。进一步地,所述柔性衬底4的表面还需进行防氧化处理。
S3、将所述柔性衬底4贴附于涂覆粘贴剂的第二刚性衬底5上并通过烘烤固化所述粘贴剂6,以将所述柔性衬底4粘贴至第二刚性衬底5上。其中,所述第二刚性衬底5作为太阳能电池单元2外延层部分进行转移的临时衬底,采用与所述太阳能电池单元2外延材料的热膨胀系数相接近的硼硅玻璃。
进一步地,通过烘烤固化所述粘贴剂的方法具体包括:将所述第二刚性衬底5置于热板炉上进行烘烤以固化所述粘贴剂6。上述步骤利用低温的烘烤方式固化所述粘贴剂6,不使用现有技术的键合方案,避免高温环境损坏电池。
示例性地,在本实施例中,所述粘贴剂6为可剥离的硅胶,所述可剥离的硅胶对所述第二刚性衬底5的粘附强度大于对所述柔性衬底4的粘附强度,因此,后续步骤从所述柔性衬底4上直接剥离所述第二刚性衬底5时,所述粘贴剂6会更倾向于粘附在所述第二刚性衬底5上,可以将所述第二刚性衬底5连带所述粘贴剂6一同从所述柔性衬底上剥离。示例性地,所述烘烤时间优选为20分钟,所述烘烤温度低于90℃。
示例性地,本实施例是在所述第二刚性衬底5上涂覆的粘贴剂6处于半固化状态时,再将所述柔性衬底4贴附于所述第二刚性衬底5的粘贴剂6上进行烘烤固化,使得不仅能保证粘贴剂6固化后所述柔性衬底4和第二刚性衬底5之间的粘贴足够稳固,还能使得在此过程中所述柔性衬底4自动地被第二刚性 衬底5上的粘贴剂6吸附而排尽接触界面内的空气,从而能提高转移效率和制品质量。其中,所述半固化状态指处于未固化状态与完全固化状态之间的状态。而且本实施例中柔性衬底4和第二刚性衬底5与电池材料热膨胀系数较接近,制作过程中能够大大减小应力对电池性能的影响,提高柔性电池品质。
相比于现有技术中的二次临时键合的方法,本实施例是在进行柔性太阳能电池的正面电极7的制作前先通过电镀金属薄膜形成柔性衬底4,以所述柔性衬底4粘贴到所述第二刚性衬底5来完成外延层的转移。其通过所述柔性衬底4与所述第二刚性衬底5接触,避免了因为背面接触层25表面粗糙度过大引发外延层转移后正面接触层21的表面不平整的问题以及在背面接触层25或背面电极3上键合临时衬底的操作难度高和对设备要求高的问题。而且,同理地,通过电镀金属薄膜的方式形成柔性衬底4后,可以选择再通过打磨抛光的方法来继续降低所述柔性衬底4的表面粗糙度,使表面更为光滑平整来适应制作需求。
S4、将所述第一刚性衬底1从所述太阳能电池单元2上分离。
具体地,将所述第一刚性衬底1从所述太阳能电池单元2上分离的方法包括:利用湿法剥离工艺腐蚀去除所述腐蚀阻挡层11上的第一刚性衬底1;
利用湿法剥离工艺腐蚀去除所述腐蚀阻挡层11上的第一刚性衬底1后,所述柔性太阳能电池的制作方法还包括:利用湿法剥离工艺腐蚀去除所述太阳能电池单元2上的腐蚀阻挡层11。
所述步骤S4中,根据湿法剥离工艺,采用腐蚀液对第一刚性衬底1和腐蚀阻挡层11进行选择性腐蚀,能实现将约4寸的第一刚性衬底和约160nm厚的腐蚀阻挡层11完整去除,而不会对电池造成损伤。
S5、在所述太阳能电池单元2的正面上制作正面电极7。
具体地,在所述太阳能电池单元2的正面上制作正面电极7的方法包括:
在所述太阳能电池单元2的正面上电镀正面种子层71;
在所述正面种子层71上电镀正面电极7。
其中,所述正面电极7呈梳状排列于所述太阳能电池单元2的正面上,所述太阳能电池单元2的正面上未被所述正面电极7及正面种子层71覆盖的区域中,需要去除正面接触层21以露出窗口层22,避免造成对光的遮挡。本实施例中,利用电镀的方法制备正面电极7、背面电极3以及柔性衬底4,实现了以全 电镀方式进行金属膜层的制备,相比于现有技术中通过电子束蒸发或磁控溅射等方式制备欧姆接触电极,电镀的方法对设备要求较低,所需成本较低。
示例性地,所述正面电极7为AuGe、Ni、Au以及Cu中的任意一种合金或金属,所述正面电极7的厚度小于500纳米。
S6、剥离所述第二刚性衬底5。其中,如上所述,采用电镀金属薄膜作为柔性衬底4粘贴至所述第二刚性衬底5,由于金属薄膜构成的所述柔性衬底4的柔韧性较好,所以可以直接从所述柔性衬底4上直接剥离所述第二刚性衬底5,而不会对所述太阳能电池单元造成损伤。而且凭借上述电镀制作的金属薄膜有效支撑了太阳能电池外延层,避免了采用解键合操作而造成外延层的破裂。
进一步地,在所述太阳能电池单元的正面上制作正面电极7后,所述柔性太阳能电池的制作方法还包括:在所述太阳能电池单元2的侧壁上制作覆盖所述侧壁的钝化层。其中,所述钝化层为绝缘材料,用于保护所述太阳能电池单元的侧壁,防止漏电。示例性地,本实施例中,所述钝化层选用氮化硅材料,所述钝化层的厚度为290nm~310nm,优选为300nm。
进一步地,在所述太阳能电池单元2的正面上制作正面电极7后,所述柔性太阳能电池的制作方法还包括:在所述太阳能电池单元的正面电极7及所述太阳能电池单元2的正面未被所述正面电极覆盖的区域上制作减反射层8。
所述减反射层8能够大大减少太阳能电池表面对光的反射,使更多光子被电池吸收,提高光电转换效率,所述减反射层8相当于实施例1中的抗反射膜90。在本实施例中,所述减反射层8采用TiO 2/SiO 2/TiO 2/SiO 2四层光学膜构成。
本发明还提供了一种柔性太阳能电池,所述柔性太阳能电池由以上所述的柔性太阳能电池的制作方法制成。
参阅图8所示,本发明示例性制备了4寸的柔性太阳能电池,由其在AM1.5G光谱下的电流密度和电压的关系曲线可知,其光电转换效率(Eff)可达到28.8%,开路电压(Voc)约为2.74V,短路电流密度(Jsc)约为13.07mA/cm 2,填充因子(FF)约为80.76%。
本发明实施例提供的柔性太阳能电池及其制作方法,将在背面电极3上制作的柔性衬底4通过粘贴剂6转移到第二刚性衬底5上,所述粘贴剂6的固化通过低温的烘烤方法实现,避免了键合所需的高温条件损坏电池;当完成柔性太阳能电池的制作后,可直接将第二刚性衬底5从柔性衬底4上剥离,相比于 现有技术需要多次键合、反复转移外延层的方案,其无需通过键合机进行键合,可以通过直接剥离的方式剥离所述第二刚性衬底5而无需通过额外的辅助手段进行解键合,同样提高了生产效率。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (19)

  1. 一种柔性太阳能电池的制作方法,其中,包括:
    在衬底上制作分离层;
    在所述分离层上倒装生长太阳能电池;
    在所述太阳能电池的背面制作背面电极;
    在所述背面电极上制作金属薄膜;
    将所述金属薄膜键合到临时衬底上;
    将所述分离层和所述太阳能电池进行分离;
    在所述太阳能电池的正面制作正面电极;
    将所述临时衬底与所述金属薄膜解键合。
  2. 根据权利要求1所述的柔性太阳能电池的制作方法,其中,所述分离层为腐蚀阻挡层;其中,所述将所述分离层和所述太阳能电池进行分离的方法包括:
    采用湿法剥离的方式将所述衬底腐蚀去除;
    采用湿法剥离的方式将所述腐蚀阻挡层剥离去除。
  3. 根据权利要求1所述的柔性太阳能电池的制作方法,其中,所述分离层为牺牲层;其中,所述将所述分离层和所述太阳能电池进行分离的方法包括:采用湿法剥离的方式去除所述牺牲层。
  4. 根据权利要求1所述的柔性太阳能电池的制作方法,其中,在所述太阳能电池的正面制作正面电极之后,所述制作方法还包括:在所述正面电极上制作抗反射膜。
  5. 根据权利要求1所述的柔性太阳能电池的制作方法,其中,所述太阳能电池为多结太阳能电池。
  6. 根据权利要求1所述的柔性太阳能电池的制作方法,其中,所述将所述金属薄膜键合到临时衬底上的方法包括:在低温状态下利用低温键合胶键合所 述金属薄膜和所述临时衬底。
  7. 根据权利要求6所述的柔性太阳能电池的制作方法,其中,所述低温键合胶为低温固化硅胶。
  8. 根据权利要求6所述的柔性太阳能电池的制作方法,其中,所述将所述临时衬底与所述金属薄膜解键合的方法包括:利用低温胶清洗剂将所述低温键合胶溶解去除。
  9. 根据权利要求1所述的柔性太阳能电池的制作方法,其中,所述在所述背面电极上制作金属薄膜的方法包括:
    利用电镀工艺在所述背面电极上电镀形成金属薄膜;
    对所述金属薄膜的表面进行机械化学抛光处理。
  10. 一种由权利要求1所述的柔性太阳能电池的制作方法制成的柔性太阳能电池。
  11. 一种柔性太阳能电池的制作方法,其中,所述制作方法包括:
    在第一刚性衬底上制作倒置的太阳能电池单元;
    在所述太阳能电池单元的背面上制作叠层设置的背面电极和柔性衬底;
    将所述柔性衬底贴附于涂覆粘贴剂的第二刚性衬底上并通过烘烤固化所述粘贴剂,以将所述柔性衬底粘贴至第二刚性衬底上;
    将所述第一刚性衬底从所述太阳能电池单元上分离;
    在所述太阳能电池单元的正面上制作正面电极;
    剥离所述第二刚性衬底。
  12. 根据权利要求11所述的柔性太阳能电池的制作方法,其中,在第一刚性衬底上制作倒置的太阳能电池单元的方法包括:
    在第一刚性衬底上制作腐蚀阻挡层;
    在所述腐蚀阻挡层上制作倒置的太阳能电池单元。
  13. 根据权利要求11所述的柔性太阳能电池的制作方法,其中,在所述太阳能电池单元的背面上制作叠层设置的背面电极和柔性衬底的方法包括:
    在所述太阳能电池单元的背面上电镀背面种子层;
    在所述背面种子层上电镀背面电极;
    在所述背面电极上电镀金属薄膜以形成柔性衬底。
  14. 根据权利要求13所述的柔性太阳能电池的制作方法,其中,所述金属薄膜为铜薄膜,所述第二刚性衬底为硼硅玻璃。
  15. 根据权利要求11所述的柔性太阳能电池的制作方法,其中,所述粘贴剂为可剥离的硅胶,所述可剥离的硅胶对所述第二刚性衬底的粘附强度大于对所述柔性衬底的粘附强度。
  16. 根据权利要求12所述的柔性太阳能电池的制作方法,其中,将所述第一刚性衬底从所述太阳能电池单元上分离的方法包括:利用湿法剥离工艺腐蚀去除所述腐蚀阻挡层上的第一刚性衬底;
    利用湿法剥离工艺腐蚀去除所述腐蚀阻挡层上的第一刚性衬底后,所述柔性太阳能电池的制作方法还包括:利用湿法剥离工艺腐蚀去除所述太阳能电池单元上的腐蚀阻挡层。
  17. 根据权利要求11所述的柔性太阳能电池的制作方法,其中,在所述太阳能电池单元的正面上制作正面电极的方法包括:
    在所述太阳能电池单元的正面上电镀正面种子层;
    在所述正面种子层上电镀正面电极。
  18. 根据权利要求11所述的柔性太阳能电池的制作方法,其中,在所述太阳能电池单元的正面上制作正面电极后,所述柔性太阳能电池的制作方法还包括:在所述太阳能电池单元的正面电极及所述太阳能电池单元的正面未被所述正面电极覆盖的区域上制作减反射层。
  19. 根据权利要求11所述的柔性太阳能电池的制作方法,其中,所述太阳能电池单元为多结太阳能电池。
PCT/CN2019/078134 2018-08-09 2019-03-14 柔性太阳能电池及其制作方法 WO2020029581A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19828181.8A EP3836233A4 (en) 2018-08-09 2019-03-14 FLEXIBLE SOLAR CELL AND MANUFACTURING PROCESS THEREOF
US16/631,376 US20210066531A1 (en) 2018-08-09 2019-03-14 Flexible solar cell and manufacturing method thereof
JP2019570572A JP6937050B2 (ja) 2018-08-09 2019-03-14 フレキシブル太陽電池の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810904936.5 2018-08-09
CN201810904936.5A CN110828581A (zh) 2018-08-09 2018-08-09 一种柔性太阳电池及其制作方法
CN201910132351.0 2019-02-22
CN201910132351.0A CN111613693A (zh) 2019-02-22 2019-02-22 柔性太阳能电池及其制作方法

Publications (1)

Publication Number Publication Date
WO2020029581A1 true WO2020029581A1 (zh) 2020-02-13

Family

ID=69414020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078134 WO2020029581A1 (zh) 2018-08-09 2019-03-14 柔性太阳能电池及其制作方法

Country Status (4)

Country Link
US (1) US20210066531A1 (zh)
EP (1) EP3836233A4 (zh)
JP (1) JP6937050B2 (zh)
WO (1) WO2020029581A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380913A (zh) * 2021-05-13 2021-09-10 西安埃德迈光电科技有限公司 一种超柔薄膜电池组件结构及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964398A (zh) * 2010-10-11 2011-02-02 福建钧石能源有限公司 柔性薄膜太阳能电池及其制造方法
CN103390674A (zh) * 2013-07-17 2013-11-13 深圳先进技术研究院 Czts柔性太阳电池及其制备方法
CN104393098A (zh) * 2014-10-09 2015-03-04 苏州强明光电有限公司 基于半导体量子点的多结太阳能电池及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488890B2 (en) * 2003-04-21 2009-02-10 Sharp Kabushiki Kaisha Compound solar battery and manufacturing method thereof
JP5576272B2 (ja) * 2007-07-03 2014-08-20 マイクロリンク デバイセズ インコーポレイテッド Iii−v化合物薄膜太陽電池
US9178105B2 (en) * 2010-09-21 2015-11-03 Amberwave Inc. Flexible monocrystalline thin silicon cell
JP2014123712A (ja) * 2012-11-26 2014-07-03 Ricoh Co Ltd 太陽電池の製造方法
CN105470317B (zh) * 2014-09-12 2018-02-13 中国科学院苏州纳米技术与纳米仿生研究所 一种柔性衬底GaAs薄膜电池及其制备方法
US20180233612A1 (en) * 2015-09-28 2018-08-16 Sharp Kabushiki Kaisha Thin-film compound photovoltaic cell, method for manufacturing thin-film compound photovoltaic cell, thin-film compound photovoltaic cell array, and method for manufacturing thin-film compound photovoltaic cell array
KR101783971B1 (ko) * 2016-11-22 2017-10-10 한국표준과학연구원 금속 디스크 어레이를 구비한 적층형 태양전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964398A (zh) * 2010-10-11 2011-02-02 福建钧石能源有限公司 柔性薄膜太阳能电池及其制造方法
CN103390674A (zh) * 2013-07-17 2013-11-13 深圳先进技术研究院 Czts柔性太阳电池及其制备方法
CN104393098A (zh) * 2014-10-09 2015-03-04 苏州强明光电有限公司 基于半导体量子点的多结太阳能电池及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3836233A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380913A (zh) * 2021-05-13 2021-09-10 西安埃德迈光电科技有限公司 一种超柔薄膜电池组件结构及制备方法
CN113380913B (zh) * 2021-05-13 2024-01-26 西安埃德迈光电科技有限公司 一种超柔薄膜电池组件结构及制备方法

Also Published As

Publication number Publication date
EP3836233A4 (en) 2022-04-06
EP3836233A1 (en) 2021-06-16
US20210066531A1 (en) 2021-03-04
JP6937050B2 (ja) 2021-09-22
JP2020537815A (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
TWI511317B (zh) 安裝在撓性膜上的倒置變質太陽能電池
TWI660520B (zh) 經由印刷方法整合磊晶剝離太陽能電池與小型拋物線集光器陣列
JP5576272B2 (ja) Iii−v化合物薄膜太陽電池
CN104247047B (zh) 多结太阳能电池装置的制造
US8518724B2 (en) Method to form a device by constructing a support element on a thin semiconductor lamina
US8101451B1 (en) Method to form a device including an annealed lamina and having amorphous silicon on opposing faces
US10593824B2 (en) Ultra-thin flexible rear-contact Si solar cells and methods for manufacturing the same
WO2012160765A1 (ja) 多接合型化合物太陽電池セル、多接合型化合物太陽電池およびその製造方法
CN111613693A (zh) 柔性太阳能电池及其制作方法
CN110120438B (zh) 基于金属柔性基底的太阳能电池的制备方法
Zhao et al. Characteristics of InGaP/GaAs double junction thin film solar cells on a flexible metallic substrate
WO2019241916A1 (zh) 一种柔性薄膜太阳电池及其制造方法
WO2020029581A1 (zh) 柔性太阳能电池及其制作方法
WO2018192199A1 (zh) 多结叠层激光光伏电池及其制作方法
JP5972369B2 (ja) 反転型メタモルフィック多接合(imm)太陽電池セル及び関連する製作方法
CN110828581A (zh) 一种柔性太阳电池及其制作方法
JP2004319934A (ja) 多接合型太陽電池およびその製造方法
TWI685124B (zh) 整合非追蹤小型混合拋物線集中器之磊晶剝離加工GaAs薄膜太陽能電池
JP2000349066A (ja) 半導体基体及び太陽電池の製造方法と陽極化成装置
WO2017084492A1 (zh) 双结薄膜太阳能电池组件及其制作方法
CN114447155B (zh) 柔性太阳能电池及半导体器件的栅电极的制作方法
CN219457629U (zh) 一种无栅线的柔性砷化镓太阳能电池
KR101449336B1 (ko) 그리드 전극 구조 및 이를 포함하는 화합물 반도체 태양전지의 제조방법
JP2014501456A (ja) 薄い半導体膜上に支持要素を構築することによって装置を形成するための方法
CN116583119A (zh) 一种柔性太阳能电池及其制备方法和应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019570572

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19828181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019828181

Country of ref document: EP

Effective date: 20210309