TWI511317B - 安裝在撓性膜上的倒置變質太陽能電池 - Google Patents

安裝在撓性膜上的倒置變質太陽能電池 Download PDF

Info

Publication number
TWI511317B
TWI511317B TW097113117A TW97113117A TWI511317B TW I511317 B TWI511317 B TW I511317B TW 097113117 A TW097113117 A TW 097113117A TW 97113117 A TW97113117 A TW 97113117A TW I511317 B TWI511317 B TW I511317B
Authority
TW
Taiwan
Prior art keywords
solar
substrate
cell
band gap
solar cell
Prior art date
Application number
TW097113117A
Other languages
English (en)
Other versions
TW200943572A (en
Inventor
Tansen Varghese
Arthur Cornfeld
Michelle Xie
Original Assignee
Solaero Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solaero Technologies Corp filed Critical Solaero Technologies Corp
Publication of TW200943572A publication Critical patent/TW200943572A/zh
Application granted granted Critical
Publication of TWI511317B publication Critical patent/TWI511317B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Description

安裝在撓性膜上的倒置變質太陽能電池
本發明係關於太陽能電池半導體裝置之領域,且特定言之係關於安裝在撓性膜上之整合半導體結構,其包含多結(multijunction)太陽能電池及通孔,該通孔允許自電池前側到達陽極與陰極端子兩者。
光伏電池(亦稱為太陽能電池)係在過去若干年中變得可用的最重要新能源之一。在太陽能電池開發中投入了相當多的努力。由此,太陽能電池目前用於許多商業及面向消費者之應用中。儘管在此領域中已有顯著進步,但對太陽能電池滿足更複雜應用之需要的要求沒有與需求保持同步。例如在資料通信中使用之衛星之應用急劇增加了對具有改良之功率及能量轉換特性之太陽能電池的需求。
在衛星及其他與空間有關之應用中,衛星電力系統的大小、品質及成本取決於所使用之太陽能電池之功率及能量轉換效率。換言之,有效負載的大小及機載服務之可用性與所提供之電力量成比例。因此,隨著有效負載變得更加複雜,充當機載電力系統之功率轉換裝置之太陽能電池的設計效率變得愈加重要。
太陽能電池常製造於垂直多結結構中且設置在水平陣列中,其中個別太陽能電池串聯連接在一起。陣列之形狀及結構以及其含有之電池數目部分由所需輸出電壓及電流決定。
例如M. W. Wanless等人題為"Lattice Mismatched Approaches for High Performance,III-V Photovoltaic Energy Converters"(第31屆IEEE光伏專家會議之會議記錄,2005年1月3日-7日,IEEE出版,2005)之第6,951,819號美國專利及本發明受讓人2006年6月2日申請之第11/445,793號共同待決美國專利申請案中描述之倒置變質太陽能電池結構為具有高能量轉換效率之未來商業產品的發展提出了重要起點。
在本發明之前,先前技術中揭示之材料及製造步驟沒有描述基於安裝在撓性膜上之倒置變質結構來製作能量有效之太陽能電池。
簡單地且一般而言,本發明提出一種藉由以下方式製造太陽能電池之方法:提供基板:在該基板上沈積形成太陽能電池之半導體材料層之序列:將該基板安裝在撓性膜上;以及使該基板變薄至預定厚度。
在另一態樣中,簡單地且一般而言,本發明提供一種藉由以下方式製造太陽能電池之方法:在基板上沈積半導體材料層之序列之後,將第一基板黏附至撓性膜支撐件,以形成多結太陽能電池之至少一個單元;以及隨後移除第一基板之至少一部分。
本發明進一步提供一種安裝在撓性膜上之太陽能電池,該太陽能電池包含具有層之序列之半導體主體,該層之序列包含:第一太陽能子電池,其具有第一帶隙;第二太陽 能子電池,其設置在第一子電池上且具有小於第一帶隙之第二帶隙;分級夾層,其設置在第二子電池上且具有大於第二帶隙之第三帶隙;以及第三子電池,其設置在夾層上使得第三太陽能子電池相對於第二子電池晶格失配,且具有小於第三帶隙之第四帶隙。
圖1描繪在基板上形成三個子電池A、B及C之後根據本發明之多結太陽能電池。更特定而言,展示第一基板100,其可為砷化鎵(GaAs)、鍺(Ge)或其他合適材料。在Ge基板的情況下,例如InGap2 之成核層沈積在基板上。在基板上,或在Ge基板的情況下在成核層上,進一步沈積GaAs之緩衝層103及Galnp2 之蝕刻停止層104。n++GaAs的帽(cap)或接觸層105接著沈積在層104上,且n+AlInP2 之窗層106沈積在帽或接觸層105上。由GaInp2 之n+發射極層107及GaInp2 之p型基極層108組成之子電池A接著沈積於窗層106上。
儘管較佳實施例利用上述III-V半導體材料,但實施例僅為說明性的,且應注意,多結太陽能電池結構可由服從晶格常數及帶隙要求的在週期表中列出之族III至V元素之任何合適的組合形成,其中族III包含硼(B)、鋁(Al)、鎵(Ga)、錮(In)及鉈(T)。族IV包含碳(C)、矽(Si)、鍺(Ge)及錫(Sn)。族V包含氮(N)、磷(P)、砷(AS)、銻(Sb)及鉍(Bi)。
在較佳實施例中,基板100為砷化鎵,發射極層107包含 InGa(Al)P,且基極層包含InGa(Al)P。括號中之Al項意謂Al為可選組成物,且在此實例中可以0%至30%範圍內的量使用。
在基極層108之頂部上沈積AlGaInP之p+型背面場("BSF")層109,其用於減少重組損失。
BSF層109自基極/BSF分界面附近之區域驅動少數載流子以使重組損失之影響最小化。換言之,BSF層109減少太陽能子電池A背側處之重組損失,且藉此減少基極中之重組。
在BSF層109頂部上沈積重度摻雜p型(例如AlGaAs)及n型層110(例如InGaP2 )之序列,其形成隧道二極體,該隧道二極體用作將電池A電連接至電池B之電路元件。
在隧道二極體層110a頂部上沈積n+InAlP2 之窗層111。子電池B中使用之窗層111亦起作用以減少重組損失。窗層111改良下伏結之電池表面之鈍化。熟習此項技術者應明瞭,在不脫離本發明範疇的情況下可在電池結構中添加或刪除額外層。
在窗層111頂部上沈積電池B的層:n+發射極層112及p型基極層113。該等層較佳地分別由n+GaAs及p型GaAs構成,但亦可使用符合晶格常數及帶隙要求之任何其他合適材料。
在電池B頂部上沈積p+型AlGaAs之BSF層114,其執行與BSF層109相同的功能。接著在BSF層114上沈積類似於層110之隧道二極體之n++/p++隧道二極體115,再次形成將 電池B電連接至電池C之電路元件。隧道二極體較佳為AlGaAs層上之GaAs層。接著在隧道二極體116上沈積變質緩衝層117。層117較佳為作為具有單調改變之晶格常數的一系列層沈積之按組分步階分級之組分InGaAlAs,其提供自電池B至電池C之晶格常數轉變。層117之帶隙為恆定1.5電子伏特,其值略大於中間電池B之帶隙。
在一個實施例中,如Wanless等人論文中所建議,步階級含有九個按組分分級之步階,其中每一步階的層具有0.25微米(μ)之厚度。在較佳實施例中,夾層由InGaAlAs構成,其具有單調改變之晶格常數。
在變質緩衝層117頂部上沈積GaInP2 之另一n+窗層118。窗層118改良下伏結之電池表面之鈍化。可在不脫離本發明範疇的情況下提供額外層。
在窗層118頂部上沈積子電池C的層:n+型發射極層119及p型基極層120。在較佳實施例中,發射極層包含GaInAs,且基極層包含具有約1.0電子伏特帶隙之GaInAs,但亦可使用具有合適之晶格常數及帶隙要求之任何其他半導體材料。
在子電池C之基極層120頂部上沈積背面場(BSF)層121,其較佳包含GaInP2
在BSF層121上方或頂部上沈積p+接觸層122,其較佳為p++型GaInAs。
在p+接觸層122頂部上沈積金屬層123,其較佳為Ti/Au/Ag/Au層序列。
接著藉由黏合劑150將圖1所示之半導體結構黏結至撓性膜151(例如Kapton)之表面,如圖2所示。該撓性膜通常具有約75微米(μ)之厚度,而包含基板之半導體結構約660微米(μ)。更特定而言,面向下黏結該結構,即,使金屬接觸層123鄰近於膜151。
圖3係在將例如藍寶石之代用基板175黏附至撓性膜151底部之下一處理步驟之後圖2之結構的橫截面圖。在較佳實施例中,代用基板厚度約1000微米(μ),且經打孔而具有直徑約1mm且間隔開4mm的孔,以幫助隨後移除基板。隨後將論述黏附製程之細節,包含材料選擇之論述。
圖4係在所描繪之根據本發明之下一處理步驟之後圖3之太陽能電池結構之橫截面圖,該下一處理步驟包含移除太陽能電池層123至103下方之原始基板100而留下厚度約12微米(μ)的由層123至103組成之半導體結構。
圖5係在根據本發明之下一處理步驟之後圖4之太陽能電池之橫截面圖,該下一處理步驟為藉由已知濕式或乾式化學蝕刻自暴露之半導體表面頂部移除層103。由於104為蝕刻停止層,因此蝕刻完全移除層103。
圖6係在根據本發明之下一處理步驟之後圖5之太陽能電池之橫截面圖,該下一處理步驟中通常藉由HCl/H2 O溶液移除半導體表面的層104。
圖7係在根據本發明之下一處理步驟之後圖6之太陽能電池之橫截面圖。首先完成光微影以沈積光阻以界定將不存在金屬的區域。在光阻上蒸鍍金屬層。金屬層125通常由 Pd/Ge/Ti/Pd/Ag/Au層構成。
圖8係在根據本發明之下一處理步驟之後圖7之太陽能電池之橫截面圖,在該下一處理步驟中,藉由已知光微影技術將金屬層圖案化為網格線,其中金屬層125之若干部分被提除,使得剩餘金屬形成平行線126,該平行線126形成太陽能電池前表面上的網格。
圖9係在根據本發明之下一處理步驟之後圖8之太陽能電池之橫截面圖,在該下一處理步驟中網格線用作遮罩,且藉由已知濕式或乾式化學蝕刻製程移除網格線之間的半導體結構之帽層105,藉此暴露網格線之間及已暴露之半導體表面之其餘部分上的窗層106。
圖10係根據本發明之下一處理步驟之後圖9之太陽能電池之橫截面圖,在該下一處理步驟中在網格線126頂面上沈積ARC層達到約2000埃之厚度。接著使用光微影製程,以便自將定位有黏結墊之區域移除ARC。
圖11係根據本發明之下一處理步驟之後圖10之太陽能電池之橫截面圖,該下一處理步驟中向下蝕刻結構之外圍邊緣到達金屬層123,藉此在晶圓表面上形成台面半導體結構。接著使用另一光微影製程來濕式蝕刻自電池頂部至背部金屬之背部金屬通孔。此允許形成與背部金屬或太陽能電池之陽極的接觸。
圖12係根據本發明之下一處理步驟之後圖11之太陽能電池之橫截面圖,該下一處理步驟中移除代用基板。
儘管上文已在特定較佳實施例中將本發明描述為用於製 造某一類型之太陽能電池之製程,但更一般而言本發明僅為以下一種方法:使用適當黏合劑(例如,特氟隆(FFP/PFA)或來自Du Pont之聚醯亞胺)在相對較薄的撓性膜(例如,來自Du Pont之Kapton)上面向下黏結晶圓(具有或不具有裝置結構或層),接著使晶圓變薄(碾磨/研磨及蝕刻)直到達到所需厚度或到達所需層為止,且接著進一步處理薄晶圓以製成電子、光學或機械裝置(例如,薄光伏電池)。
本發明更一般地亦包含使用剛性載體(例如,藍寶石)在撓性薄膜上支撐薄半導體結構或晶圓(藉由所有半導體裝置界定及處理),接著可自剛性基板卸下膜,並接著施加至最終表面(例如,太陽能面板)。可使用臨時黏合劑(例如,來自Dow Corning之I-4010)將膜附裝至載體。
使基板變薄意謂必須在處理期間及使用中向裝置層提供某些其他支撐構件。Kapton係一種良好材料,因為其耐熱且耐化學藥品,且亦具有撓性。其可以不同厚度獲得,且可在一側或兩側具有黏合劑的狀態下獲得。Kapton上可使用適合於此目的之例如特氟隆之黏合劑,因為特氟隆非常耐化學藥品,且亦在某種程度上耐熱。或者,可(藉由例如層壓或旋塗)塗覆黏合劑。可將特氟隆薄片層壓至Kapton上。可將聚醯亞胺旋塗至晶圓上並可使用聚醯亞胺作為黏合劑將晶圓附裝至Kapton。亦可在製程結束時將黏合劑塗覆至Kapton以臨時或永久地將其附裝至彎曲或平坦表面。
如上所述,本發明之一個實施例包括使用例如特氟隆或聚醯亞胺之黏合劑將晶圓面向下附裝至例如Kapton的膜上,在需要時附裝剛性載體,使晶圓變薄,處理裝置,自剛性載體(若使用)卸下,以及接著利用或不利用另一黏合劑將Kapton上之裝置施加至最終表面。
FEP及PFA係Du Pont品種之特氟隆,且係亦可用作黏合劑之熱塑性材料。PFA (300-310C)熔點高於FEP(250-280C)。PFA可經受260C之連續使用,且FEP可經受250C之連續使用。該兩者均可以具有各種厚度之膜之形式使用。
Kapton係來自Du Pont、可以各種厚度使用且已層壓有FEP或PFA之聚醯亞胺。或者,可藉由在熱印壓機中層壓而將FEP及/或PFA施加至Kapton膜。
存在兩種方法,取決於Kapton在一側亦或兩側上具有FEP/PFA。若聚合物僅在一側上,且若必須將晶圓/Kapton組合附裝至用於在處理時(例如,在光微影期間)進行支撐之剛性載體,則可在另一側使用例如Dow corning 1-4010之另一黏合劑。
在使用雙側FEP/Kapton或PFA/Kapton之實施例中,起點將為具有任何所需裝置層之晶圓。對於製造薄倒置光伏元件的特殊情況,可接著在裝置側使晶圓金屬化,並在需要時進行退火。
若在處理期間需要剛性載體,則在熱印壓機中在Kapton之任一側使晶圓(裝置側向下)及載體(例如,藍寶石盤/Si晶圓)配合。印壓機施加熱量與壓力之組合。FEP/PFA在壓 力下熔化以形成連續黏結。一旦冷卻並移除壓力,則在規定時間之後,晶圓(裝置側向下)、Kapton及載體(藍寶石/Si)將彼此附裝。
使晶圓體積變薄(碾磨、研磨及/或蝕刻)到達蝕刻停止層及/或裝置層(若存在),並進一步處理晶圓(標準裝置製造製程)。對於薄倒置光伏元件的特殊情況,該等製程可能包含(且不限於)光微影、金屬化、沈積、蝕刻等。可藉由適當蝕刻之接觸窗以及前接觸墊自前側接觸背部金屬,而在此階段測試晶圓上的單元。
藉由加熱至熱塑性材料之熔點使Kapton與載體分開。此可例如在熱板上完成。當載體與Kapton之間的聚合物熔化時,上面有變薄之晶圓之Kapton可能脫落。Kapton與晶圓之間的聚合物可能存在某一程度的熔化,但其在Kapton脫離載體時將重新凝固。不會有任何IMM晶圓/單元與Kapton分開。理想地,應使用在晶圓側具有PFA且在載體側具有FEP的Kapton,在此情況下,加熱至FEP熔化溫度將自載體釋放Kapton/晶圓,使Kapton與晶圓之間的PFA黏結完好,因為PFA熔點高於FEP。
裝置現在在Kapton上,準備用於進一步連接。在需要時藉由晶圓上之蝕刻道以機械方式切割Kapton可使其分離。可附裝覆蓋玻璃。對於光伏元件的特殊情況,若單元需要分離,則可使用台面道來切割穿過Kapton,且可互連單元。可利用或不利用黏合劑而將Kapton附裝至最終平坦或彎曲表面(例如,太陽能面板),因為裝置將足夠薄(微米) 而具有撓性。
在使用單側FEP/Kapton或PFA/Kapton之實施例中(其中在處理期間可使用剛性載體),可使用例如Dow Corning I-4010之另一黏合劑將Kapton附裝至剛性載體,該剛性載體可例如為如先前所述具有孔的藍寶石基板。此在市售晶圓設備中完成,該設備施加真空、壓力與熱量之組合以使黏合劑固化。此可在熱印壓機中在將Kapton/FEP或Kapton/PFA附裝至晶圓之後完成。I-4010係矽樹脂黏合劑,其對於晶圓製造中之許多溶劑、酸、鹼及其他化學物質為惰性的。其亦耐熱。
與之前一樣,在處理之後,必須藉由溶劑松解所使用之載體。藍寶石中的孔藉由增加溶劑向黏合劑之到達而幫助加速松解。FEP/PFA黏結對於此溶劑為惰性的,且因此Kapton/晶圓黏結在自藍寶石卸下之後將保持完好。正如之前一樣,可以機械方式切割黏結至Kapton之晶圓以使裝置分離,用於進一步處理。
其他黏合劑:替代於FEP/PFA,吾人亦可使用對在裝置之處理及最終施加過程中涉及之溫度、化學物質及其他環境具有耐受性之任何其他黏合劑。可使用的一種耐化學藥品且耐熱之材料為聚醯亞胺,其有多個品種可用,且具有不同的固化溫度及環境耐受性。可藉由例如旋塗將此材料塗覆至晶圓背側,可附裝Kapton,且堆疊可固化以形成黏結。在此之後程序與上文相同。
100‧‧‧第一基板/基板/原始基板
103‧‧‧緩衝層
104‧‧‧蝕刻停止層
105‧‧‧帽或接觸層/帽層
106‧‧‧窗層
107‧‧‧n+發射極層
108‧‧‧p型基極層/基極層
109‧‧‧p+型背面場("BSF")層
110‧‧‧n型層
111‧‧‧窗層
112‧‧‧n+發射極層
113‧‧‧p型基極層
114‧‧‧BSF層
115‧‧‧n++/p++隧道二極體
117‧‧‧變質緩衝層
118‧‧‧n+窗層/窗層
119‧‧‧n+型發射極層
120‧‧‧p型基極層/基極層
121‧‧‧背面場(BSF)層
122‧‧‧p+接觸層
123‧‧‧金屬層/金屬接觸層
125‧‧‧金屬層
126‧‧‧平行線/網格線
150‧‧‧黏合劑
151‧‧‧撓性膜
175‧‧‧代用基板
A‧‧‧太陽能子電池/子電池/電池
B‧‧‧太陽能子電池/子電池/電池
C‧‧‧太陽能子電池/子電池/電池
藉由結合附圖參看以下具體實施方式,將更好地且更完全地瞭解本發明之該等及其他特徵與優點,其中:圖1係在第一基板上形成太陽能電池之層的處理步驟結束時根據本發明之太陽能電池之放大橫截面圖;圖2係根據本發明之下一處理步驟之後圖1之太陽能電池之橫截面圖,該下一處理步驟包含將該結構黏附至撓性膜頂部;圖3係在將代用基板黏附至撓性膜之下一處理步驟之後圖2之結構之橫截面圖;圖4係在所描繪之根據本發明之下一處理步驟之後圖3之太陽能電池結構之橫截面圖,該下一處理步驟包含移除太陽能電池層下方之原始基板而留下半導體結構;圖5係在根據本發明之下一處理步驟之後圖4之太陽能電池之橫截面圖,該下一處理步驟為自半導體表面之頂部移除一層;圖6係在根據本發明之下一處理步驟之後圖5之太陽能電池之橫截面圖,該下一處理步驟中移除半導體表面之另一層;圖7係在根據本發明之下一處理步驟之後圖6之太陽能電池之橫截面圖,該下一處理步驟中在半導體表面之表面上沈積金屬層;圖8係在根據本發明之下一處理步驟之後圖7之太陽能電池之橫截面圖,該下一處理步驟中將金屬層圖案化為網格線; 圖9係在根據本發明之下一處理步驟之後圖8之太陽能電池之橫截面圖,該下一處理步驟中移除網格線之間的半導體表面之頂層;圖10係在根據本發明之下一處理步驟之後圖9之太陽能電池之橫截面圖,該下一處理步驟中在表面上沈積ARC層;圖11係在根據本發明之下一處理步驟之後圖10之太陽能電池之橫截面圖,該下一處理步驟中在ARC層中打開黏結墊;圖12係在根據本發明之下一處理步驟之後圖11之太陽能電池之橫截面圖,該下一處理步驟中移除代用基板。
100‧‧‧第一基板/基板/原始基板
103‧‧‧緩衝層
104‧‧‧蝕刻停止層
105‧‧‧帽或接觸層/帽層
106‧‧‧窗層
107‧‧‧n+發射極層
108‧‧‧p型基極層/基極層
109‧‧‧p+型背面場("BSF")層
110‧‧‧n型層
111‧‧‧窗層
112‧‧‧n+發射極層
113‧‧‧p型基極層
114‧‧‧BSF層
115‧‧‧n++/p++隧道二極體
117‧‧‧變質緩衝層
118‧‧‧n+窗層/窗層
119‧‧‧n+型發射極層
120‧‧‧p型基極層/基極層
121‧‧‧背面場(BSF)層
122‧‧‧p+接觸層
123‧‧‧金屬層/金屬接觸層
A‧‧‧太陽能子電池/子電池/電池
B‧‧‧太陽能子電池/子電池/電池
C‧‧‧太陽能子電池/子電池/電池

Claims (16)

  1. 一種製造太陽能電池之方法,其包括:提供具有一第一表面及相對的一第二表面之一第一基板;在該第一基板之該第一表面上沈積一序列的半導體材料層以形成一太陽能電池,形成該太陽能電池包含形成具有一第一帶隙之一第一太陽能子電池於該第一基板上;形成具有一第二帶隙之一第二太陽能子電池於該第一太陽能子電池上,該第二帶隙小於該第一帶隙;形成一InGaAlAs分級夾層於該第二太陽能子電池上,該InGaAlAs分級夾層具有大於該第二帶隙之一第三帶隙;形成一第三太陽能子電池,該第三太陽能子電池具有小於該第二帶隙之一第四帶隙使得該第三太陽能子電池相對於該第二太陽能子電池係晶格失配;將該第一基板及該序列的半導體材料層安裝在一撓性膜上;附裝該撓性膜至一剛性代用基板;以及自該第一基板之該第二表面藉由碾磨或研磨使該第一基板變薄,使得僅餘留形成該太陽能電池的該序列的層。
  2. 如請求項1之方法,其中將該序列的半導體材料層安裝成直接鄰近於該撓性膜。
  3. 如請求項1之方法,其中該代用基板為藍寶石或矽晶圓。
  4. 如請求項3之方法,其進一步包括在使該第一基板變薄之後,移除該代用基板。
  5. 如請求項4之方法,其進一步包括將具有該撓性膜之該太陽能電池附裝至一玻璃支撐部件。
  6. 如請求項1之製造太陽能電池之方法,其中該第一基板由GaAs所構成。
  7. 如請求項1之製造太陽能電池之方法,其中該第一太陽能子電池由一InGa(Al)P發射極區域及一InGa(Al)P基極區域所構成。
  8. 如請求項1之製造太陽能電池之方法,其中該InGaAlAs分級夾層由具有單調增加之晶格常數之複數個層所構成。
  9. 如請求項1之製造太陽能電池之方法,其中該變薄係由研磨所執行。
  10. 一種製造太陽能電池之方法,其包括:在一生長基板上形成一多結的太陽能電池,該太陽能電池包含:一第一太陽能子電池,其在該生長基板上且具有一第一帶隙,一第二太陽能子電池,其在該第一太陽能子電池上且具有一小於該第一帶隙之第二帶隙;一InGaAlAs分級夾層,其在該第二太陽能子電池上且具有一大於該第二帶隙之恆定第三帶隙,及一第三太陽能子電池,其具有一小於該第二帶隙之 第四帶隙,使得該第三太陽能子電池相對於該第二太陽能子電池係晶格失配,該InGaAlAs分級夾層係成分上經分級以將在一第一側上之該第二太陽能子電池與在一第二側上之該第三太陽能子電池晶格相配;附裝一非金屬撓性膜之一第一表面至該太陽能電池之表面,其背對該生長基板;附裝該撓性膜之一第二表面至一第二剛性基板;從該太陽能電池移除該生長基板。
  11. 如請求項10之製造太陽能電池之方法,其中該撓性膜係一聚醯亞胺,且附裝該撓性膜之該第一表面至該太陽能電池之表面包含藉由一黏合劑以附裝該第一表面至該太陽能電池之一金屬接觸層。
  12. 如請求項10之製造太陽能電池之方法,其進一步包括利用一黏合劑來附裝該撓性膜至該太陽能電池之表面。
  13. 一種製造太陽能電池之方法,其包括:提供一第一基板;在該第一基板上形成一第一太陽能子電池,其具有一第一帶隙;在該第一太陽能子電池上形成一第二太陽能子電池,且二者之間晶格相配,該第二太陽能子電池具有一小於該第一帶隙之第二帶隙;在該第二太陽能子電池上形成一InGaAlAs分級夾層,其具有一大於該第二帶隙之第三帶隙;在該InGaAlAs分級夾層上形成一第三太陽能子電池, 其具有一小於該第二帶隙之第四帶隙,該第三太陽能子電池相對於該第二太陽能子電池係晶格失配;在該第三太陽能子電池上沉積一金屬接觸層;附裝一撓性膜之一第一表面至該金屬接觸層;附裝一第二基板至該撓性膜之一第二表面;藉由研磨或碾磨以移除該第一基板。
  14. 如請求項13之製造太陽能電池之方法,其進一步包括在該等第一、第二、第三太陽能子電池中形成一溝槽且暴露該金屬接觸層。
  15. 如請求項14之製造太陽能電池之方法,其進一步包括在形成該溝槽之後,移除該第二基板。
  16. 如請求項13之製造太陽能電池之方法,其進一步包括在沉積該金屬接觸層之前,在該第三太陽能子電池上形成一或多個額外層。
TW097113117A 2006-12-27 2008-04-10 安裝在撓性膜上的倒置變質太陽能電池 TWI511317B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/616,596 US20080245409A1 (en) 2006-12-27 2006-12-27 Inverted Metamorphic Solar Cell Mounted on Flexible Film

Publications (2)

Publication Number Publication Date
TW200943572A TW200943572A (en) 2009-10-16
TWI511317B true TWI511317B (zh) 2015-12-01

Family

ID=39313085

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097113117A TWI511317B (zh) 2006-12-27 2008-04-10 安裝在撓性膜上的倒置變質太陽能電池

Country Status (5)

Country Link
US (1) US20080245409A1 (zh)
EP (1) EP1939945A3 (zh)
JP (1) JP2008166794A (zh)
CN (1) CN101211994B (zh)
TW (1) TWI511317B (zh)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894990B1 (fr) 2005-12-21 2008-02-22 Soitec Silicon On Insulator Procede de fabrication de substrats, notamment pour l'optique,l'electronique ou l'optoelectronique et substrat obtenu selon ledit procede
US20100229913A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells
US20100229926A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US9634172B1 (en) 2007-09-24 2017-04-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US10381501B2 (en) 2006-06-02 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US10170656B2 (en) 2009-03-10 2019-01-01 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with a single metamorphic layer
US20100122724A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers
US20090078309A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US9117966B2 (en) 2007-09-24 2015-08-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell
US20100186804A1 (en) * 2009-01-29 2010-07-29 Emcore Solar Power, Inc. String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers
US20100047959A1 (en) * 2006-08-07 2010-02-25 Emcore Solar Power, Inc. Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells
US20100203730A1 (en) * 2009-02-09 2010-08-12 Emcore Solar Power, Inc. Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells
US20110041898A1 (en) * 2009-08-19 2011-02-24 Emcore Solar Power, Inc. Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells
US20080264476A1 (en) * 2007-04-27 2008-10-30 Emcore Corporation Solar cell with diamond like carbon cover glass
US20100233838A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Mounting of Solar Cells on a Flexible Substrate
US10381505B2 (en) 2007-09-24 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells including metamorphic layers
US8895342B2 (en) 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
US20090155952A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20090272430A1 (en) * 2008-04-30 2009-11-05 Emcore Solar Power, Inc. Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20100012175A1 (en) * 2008-07-16 2010-01-21 Emcore Solar Power, Inc. Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
US20090272438A1 (en) * 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20090288703A1 (en) * 2008-05-20 2009-11-26 Emcore Corporation Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
US20100012174A1 (en) * 2008-07-16 2010-01-21 Emcore Corporation High band gap contact layer in inverted metamorphic multijunction solar cells
US9287438B1 (en) * 2008-07-16 2016-03-15 Solaero Technologies Corp. Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation
DE102008034701B4 (de) * 2008-07-25 2010-07-08 Emcore Solar Power, Inc., Albuquerque Verfahren zur Herstellung von dünnen invertierten metamorphen Multijunction Solarzellen mit starrem Träger
ATE511704T1 (de) * 2008-07-25 2011-06-15 Emcore Solar Power Inc Sperrschichten in umgekehrten metamorphischen multiverbindungssolarzellen
US8263853B2 (en) 2008-08-07 2012-09-11 Emcore Solar Power, Inc. Wafer level interconnection of inverted metamorphic multijunction solar cells
US7741146B2 (en) * 2008-08-12 2010-06-22 Emcore Solar Power, Inc. Demounting of inverted metamorphic multijunction solar cells
US8330036B1 (en) * 2008-08-29 2012-12-11 Seoijin Park Method of fabrication and structure for multi-junction solar cell formed upon separable substrate
DE102008049374A1 (de) 2008-09-27 2010-04-01 JODLAUK, Jörg Halbleiterfaserstrukturen als Energieerzeuger
US8686284B2 (en) * 2008-10-23 2014-04-01 Alta Devices, Inc. Photovoltaic device with increased light trapping
CN102257635A (zh) * 2008-10-23 2011-11-23 奥塔装置公司 光伏器件的薄吸收层
TW201030998A (en) * 2008-10-23 2010-08-16 Alta Devices Inc Photovoltaic device
US20120104460A1 (en) 2010-11-03 2012-05-03 Alta Devices, Inc. Optoelectronic devices including heterojunction
US8236600B2 (en) * 2008-11-10 2012-08-07 Emcore Solar Power, Inc. Joining method for preparing an inverted metamorphic multijunction solar cell
US20100122764A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US7785989B2 (en) 2008-12-17 2010-08-31 Emcore Solar Power, Inc. Growth substrates for inverted metamorphic multijunction solar cells
US9018521B1 (en) 2008-12-17 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell
US10541349B1 (en) 2008-12-17 2020-01-21 Solaero Technologies Corp. Methods of forming inverted multijunction solar cells with distributed Bragg reflector
US20100147366A1 (en) * 2008-12-17 2010-06-17 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector
US7960201B2 (en) * 2009-01-29 2011-06-14 Emcore Solar Power, Inc. String interconnection and fabrication of inverted metamorphic multijunction solar cells
US8778199B2 (en) 2009-02-09 2014-07-15 Emoore Solar Power, Inc. Epitaxial lift off in inverted metamorphic multijunction solar cells
US20100206365A1 (en) * 2009-02-19 2010-08-19 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers
WO2010098293A1 (ja) * 2009-02-26 2010-09-02 シャープ株式会社 薄膜化合物太陽電池の製造方法
US20100229933A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating
US9018519B1 (en) 2009-03-10 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells having a permanent supporting substrate
US8316593B2 (en) 2009-03-18 2012-11-27 Garland Industries, Inc. Solar roofing system
US8733035B2 (en) * 2009-03-18 2014-05-27 Garland Industries, Inc. Solar roofing system
US8283558B2 (en) * 2009-03-27 2012-10-09 The Boeing Company Solar cell assembly with combined handle substrate and bypass diode and method
US20100282288A1 (en) * 2009-05-06 2010-11-11 Emcore Solar Power, Inc. Solar Cell Interconnection on a Flexible Substrate
US20100310775A1 (en) * 2009-06-09 2010-12-09 International Business Machines Corporation Spalling for a Semiconductor Substrate
US8802477B2 (en) * 2009-06-09 2014-08-12 International Business Machines Corporation Heterojunction III-V photovoltaic cell fabrication
US8703521B2 (en) * 2009-06-09 2014-04-22 International Business Machines Corporation Multijunction photovoltaic cell fabrication
US20110048517A1 (en) * 2009-06-09 2011-03-03 International Business Machines Corporation Multijunction Photovoltaic Cell Fabrication
US8633097B2 (en) 2009-06-09 2014-01-21 International Business Machines Corporation Single-junction photovoltaic cell
US8263856B2 (en) * 2009-08-07 2012-09-11 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells with back contacts
US8961687B2 (en) * 2009-08-31 2015-02-24 Alliance For Sustainable Energy, Llc Lattice matched crystalline substrates for cubic nitride semiconductor growth
US8575471B2 (en) * 2009-08-31 2013-11-05 Alliance For Sustainable Energy, Llc Lattice matched semiconductor growth on crystalline metallic substrates
US8490343B2 (en) * 2009-09-09 2013-07-23 Saint-Gobain Performance Plastics Corporation Attachment system of photovoltaic cells to fluoropolymer structural membrane
US9691921B2 (en) 2009-10-14 2017-06-27 Alta Devices, Inc. Textured metallic back reflector
US9768329B1 (en) 2009-10-23 2017-09-19 Alta Devices, Inc. Multi-junction optoelectronic device
US11271128B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device
US20170141256A1 (en) 2009-10-23 2017-05-18 Alta Devices, Inc. Multi-junction optoelectronic device with group iv semiconductor as a bottom junction
US20150380576A1 (en) 2010-10-13 2015-12-31 Alta Devices, Inc. Optoelectronic device with dielectric layer and method of manufacture
US9502594B2 (en) 2012-01-19 2016-11-22 Alta Devices, Inc. Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US8507365B2 (en) * 2009-12-21 2013-08-13 Alliance For Sustainable Energy, Llc Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates
US8187907B1 (en) 2010-05-07 2012-05-29 Emcore Solar Power, Inc. Solder structures for fabrication of inverted metamorphic multijunction solar cells
US9041027B2 (en) 2010-12-01 2015-05-26 Alliance For Sustainable Energy, Llc Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates
US9425249B2 (en) 2010-12-01 2016-08-23 Alliance For Sustainable Energy, Llc Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers
CN102139769B (zh) * 2011-02-21 2013-03-27 哈尔滨工业大学 基于自组织cmac的挠性卫星快速稳定控制方法
EP2515349A1 (en) * 2011-04-18 2012-10-24 Everphoton Energy Corporation III-V solar cell package and method of fabricating the same
US20140378853A1 (en) * 2011-10-20 2014-12-25 George Anthony McKinney Universal wearable limb band mounting, powering and providing an antenna for, diverse physiological sensors and monitors
US11038080B2 (en) 2012-01-19 2021-06-15 Utica Leaseco, Llc Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
CN102569476A (zh) * 2012-03-13 2012-07-11 天津三安光电有限公司 三结太阳能电池及其制备方法
US8884157B2 (en) * 2012-05-11 2014-11-11 Epistar Corporation Method for manufacturing optoelectronic devices
US8569097B1 (en) * 2012-07-06 2013-10-29 International Business Machines Corporation Flexible III-V solar cell structure
US20140069479A1 (en) * 2012-09-11 2014-03-13 Samsung Sdi Co., Ltd. Photoelectric Device Module and Manufacturing Method Thereof
CN103000759B (zh) * 2012-10-08 2015-03-11 天津蓝天太阳科技有限公司 砷化镓薄膜多结叠层太阳电池的制备方法
BR112015014071B1 (pt) * 2012-12-13 2022-05-31 Tae Technologies, Inc Dispositivo fotônico magneticamente polarizado
US10153388B1 (en) 2013-03-15 2018-12-11 Solaero Technologies Corp. Emissivity coating for space solar cell arrays
JP2015023281A (ja) * 2013-07-19 2015-02-02 エムコア ソーラー パワー インコーポレイテッド 反転型メタモルフィック多接合型ソーラーセルを用いた航空機、船舶又は陸上用車両用の太陽発電システム
EP2827380A1 (en) * 2013-07-19 2015-01-21 Emcore Solar Power, Inc. Solar power system for space vehicles or satellites using inverted metamorphic multijunction solar cells
CN104362215B (zh) * 2014-09-18 2016-10-26 厦门乾照光电股份有限公司 一种高效率柔性薄膜太阳能电池制造方法
US10256359B2 (en) 2015-10-19 2019-04-09 Solaero Technologies Corp. Lattice matched multijunction solar cell assemblies for space applications
US10403778B2 (en) 2015-10-19 2019-09-03 Solaero Technologies Corp. Multijunction solar cell assembly for space applications
US9935209B2 (en) 2016-01-28 2018-04-03 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US10361330B2 (en) 2015-10-19 2019-07-23 Solaero Technologies Corp. Multijunction solar cell assemblies for space applications
US10270000B2 (en) 2015-10-19 2019-04-23 Solaero Technologies Corp. Multijunction metamorphic solar cell assembly for space applications
US9985161B2 (en) 2016-08-26 2018-05-29 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US10263134B1 (en) 2016-05-25 2019-04-16 Solaero Technologies Corp. Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell
US10636926B1 (en) 2016-12-12 2020-04-28 Solaero Technologies Corp. Distributed BRAGG reflector structures in multijunction solar cells
US20190181289A1 (en) 2017-12-11 2019-06-13 Solaero Technologies Corp. Multijunction solar cells
CN110391333A (zh) * 2018-04-16 2019-10-29 清华大学 聚合物太阳能电池
CN110391334B (zh) * 2018-04-16 2023-05-09 清华大学 聚合物太阳能电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166681A1 (en) * 2002-12-05 2004-08-26 Iles Peter A. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US20050274411A1 (en) * 2004-06-15 2005-12-15 King Richard R Solar cells having a transparent composition-graded buffer layer
US20060144435A1 (en) * 2002-05-21 2006-07-06 Wanlass Mark W High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2004104A (en) * 1932-07-30 1935-06-11 American Can Co Container
US4001864A (en) * 1976-01-30 1977-01-04 Gibbons James F Semiconductor p-n junction solar cell and method of manufacture
US4338480A (en) * 1980-12-29 1982-07-06 Varian Associates, Inc. Stacked multijunction photovoltaic converters
US4881979A (en) * 1984-08-29 1989-11-21 Varian Associates, Inc. Junctions for monolithic cascade solar cells and methods
US5053086A (en) * 1985-03-15 1991-10-01 The United States Of America As Represented By The Secretary Of The Navy Gas generant compositions containing energetic high nitrogen binders
US4759803A (en) * 1987-08-07 1988-07-26 Applied Solar Energy Corporation Monolithic solar cell and bypass diode system
DE68923061T2 (de) * 1988-11-16 1995-11-09 Mitsubishi Electric Corp Sonnenzelle.
US5343453A (en) * 1988-12-01 1994-08-30 Canon Kabushiki Kaisha Method for accessing desired track on disk with plurality of recording zones with head, and apparatus therefore
US5019177A (en) * 1989-11-03 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5322572A (en) * 1989-11-03 1994-06-21 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5376185A (en) * 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US5405453A (en) * 1993-11-08 1995-04-11 Applied Solar Energy Corporation High efficiency multi-junction solar cell
US6147296A (en) * 1995-12-06 2000-11-14 University Of Houston Multi-quantum well tandem solar cell
US6281426B1 (en) * 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US6482672B1 (en) * 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6278054B1 (en) * 1998-05-28 2001-08-21 Tecstar Power Systems, Inc. Solar cell having an integral monolithically grown bypass diode
US6103970A (en) * 1998-08-20 2000-08-15 Tecstar Power Systems, Inc. Solar cell having a front-mounted bypass diode
DE19845658C2 (de) * 1998-10-05 2001-11-15 Daimler Chrysler Ag Solarzelle mit Bypassdiode
US6300557B1 (en) * 1998-10-09 2001-10-09 Midwest Research Institute Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
US6239354B1 (en) * 1998-10-09 2001-05-29 Midwest Research Institute Electrical isolation of component cells in monolithically interconnected modules
US6165873A (en) * 1998-11-27 2000-12-26 Nec Corporation Process for manufacturing a semiconductor integrated circuit device
US6376051B1 (en) * 1999-03-10 2002-04-23 Matsushita Electric Industrial Co., Ltd. Mounting structure for an electronic component and method for producing the same
JP3657143B2 (ja) * 1999-04-27 2005-06-08 シャープ株式会社 太陽電池及びその製造方法
DE19921545A1 (de) * 1999-05-11 2000-11-23 Angew Solarenergie Ase Gmbh Solarzelle sowie Verfahren zur Herstellung einer solchen
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US6635507B1 (en) * 1999-07-14 2003-10-21 Hughes Electronics Corporation Monolithic bypass-diode and solar-cell string assembly
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US7339109B2 (en) * 2000-06-20 2008-03-04 Emcore Corporation Apparatus and method for optimizing the efficiency of germanium junctions in multi-junction solar cells
US7119271B2 (en) * 2001-10-12 2006-10-10 The Boeing Company Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US20030070707A1 (en) * 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US6680432B2 (en) * 2001-10-24 2004-01-20 Emcore Corporation Apparatus and method for optimizing the efficiency of a bypass diode in multijunction solar cells
US6864414B2 (en) * 2001-10-24 2005-03-08 Emcore Corporation Apparatus and method for integral bypass diode in solar cells
US6660928B1 (en) * 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US6690041B2 (en) * 2002-05-14 2004-02-10 Global Solar Energy, Inc. Monolithically integrated diodes in thin-film photovoltaic devices
US20060162768A1 (en) * 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US6794631B2 (en) * 2002-06-07 2004-09-21 Corning Lasertron, Inc. Three-terminal avalanche photodiode
US7122733B2 (en) * 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US7122734B2 (en) * 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US7071407B2 (en) * 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
US20050211291A1 (en) * 2004-03-23 2005-09-29 The Boeing Company Solar cell assembly
US7846759B2 (en) * 2004-10-21 2010-12-07 Aonex Technologies, Inc. Multi-junction solar cells and methods of making same using layer transfer and bonding techniques

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060144435A1 (en) * 2002-05-21 2006-07-06 Wanlass Mark W High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US20040166681A1 (en) * 2002-12-05 2004-08-26 Iles Peter A. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US20050274411A1 (en) * 2004-06-15 2005-12-15 King Richard R Solar cells having a transparent composition-graded buffer layer

Also Published As

Publication number Publication date
JP2008166794A (ja) 2008-07-17
TW200943572A (en) 2009-10-16
EP1939945A3 (en) 2014-04-09
CN101211994A (zh) 2008-07-02
EP1939945A2 (en) 2008-07-02
US20080245409A1 (en) 2008-10-09
CN101211994B (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
TWI511317B (zh) 安裝在撓性膜上的倒置變質太陽能電池
US11677037B2 (en) Metamorphic layers in multijunction solar cells
US9601652B2 (en) Ohmic N-contact formed at low temperature in inverted metamorphic multijunction solar cells
US8263853B2 (en) Wafer level interconnection of inverted metamorphic multijunction solar cells
US7785989B2 (en) Growth substrates for inverted metamorphic multijunction solar cells
US7846759B2 (en) Multi-junction solar cells and methods of making same using layer transfer and bonding techniques
EP2040309A2 (en) Thin inverted metamorphic multijunction solar cells with rigid support
US20090038679A1 (en) Thin Multijunction Solar Cells With Plated Metal OHMIC Contact and Support
US20100093127A1 (en) Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film
US20100047959A1 (en) Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells
TW201543708A (zh) 經由印刷方法整合磊晶剝離太陽能電池與小型拋物線集光器陣列
US9691930B2 (en) Fabrication of solar cells with electrically conductive polyimide adhesive
US11961931B2 (en) Inverted metamorphic multijunction solar cells having a permanent supporting substrate
CN111613693A (zh) 柔性太阳能电池及其制作方法
US9929300B2 (en) Multijunction solar cells with electrically conductive polyimide adhesive
US9768326B1 (en) Fabrication of solar cells with electrically conductive polyimide adhesive
TWI685124B (zh) 整合非追蹤小型混合拋物線集中器之磊晶剝離加工GaAs薄膜太陽能電池
WO2020029581A1 (zh) 柔性太阳能电池及其制作方法