CN101211994A - 安装在挠性膜上的倒置变质太阳能电池 - Google Patents

安装在挠性膜上的倒置变质太阳能电池 Download PDF

Info

Publication number
CN101211994A
CN101211994A CNA2007101643499A CN200710164349A CN101211994A CN 101211994 A CN101211994 A CN 101211994A CN A2007101643499 A CNA2007101643499 A CN A2007101643499A CN 200710164349 A CN200710164349 A CN 200710164349A CN 101211994 A CN101211994 A CN 101211994A
Authority
CN
China
Prior art keywords
solar cell
band gap
substrate
battery
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101643499A
Other languages
English (en)
Other versions
CN101211994B (zh
Inventor
坦森·瓦格赫塞
阿瑟·科恩费尔德
米歇尔·谢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suoaier Technology Co Ltd
Original Assignee
Oncogen LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oncogen LP filed Critical Oncogen LP
Publication of CN101211994A publication Critical patent/CN101211994A/zh
Application granted granted Critical
Publication of CN101211994B publication Critical patent/CN101211994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明揭示一种通过以下方式在挠性膜上制造太阳能电池的方法:提供衬底;在所述衬底上沉积形成太阳能电池的半导体材料层的序列;将所述半导体衬底安装在挠性膜上;以及使所述半导体衬底变薄到预定厚度。所述层的序列形成倒置变质太阳能电池结构。

Description

安装在挠性膜上的倒置变质太阳能电池
技术领域
本发明涉及太阳能电池半导体装置的领域,且明确地说涉及安装在挠性膜上的集成半导体结构,其包含多结(multijunction)太阳能电池和通孔,所述通孔允许从电池的前侧到达阳极与阴极端子两者。
背景技术
光伏电池(也称为太阳能电池)是在过去若干年中变得可用的最重要的新能源中的一种。在太阳能电池开发中投入了相当多的努力。由此,太阳能电池目前用于许多商业和面向消费者的应用中。尽管在此领域中已有显著进步,但对太阳能电池满足更复杂应用的需要的要求没有与需求保持同步。例如在数据通信中使用的卫星的应用急剧增加了对具有改进的功率和能量转换特性的太阳能电池的需求。
在卫星和其它与空间有关的应用中,卫星电力系统的大小、质量和成本取决于所使用的太阳能电池的功率和能量转换效率。换句话说,有效负载的大小和机载服务的可用性与所提供的电力的量成比例。因此,随着有效负载变得更加复杂,充当机载电力系统的功率转换装置的太阳能电池的设计效率变得越来越重要。
太阳能电池常制造于垂直多结结构中且设置在水平阵列中,其中个别太阳能电池串联连接在一起。阵列的形状和结构以及其含有的电池的数目部分由所需的输出电压和电流决定。
例如M.W.Wanless等人的题为“Lattice Mismatched Approaches for High Performance,III-V Photovoltaic Energy Converters”(第31届IEEE光伏专家会议的会议记录,2005年1月3日-7日,IEEE出版,2005)的第6,951,819号美国专利和本发明受让人的2006年6月2日申请的第11/445,793号共同待决美国专利申请案中描述的倒置变质太阳能电池结构为具有高能量转换效率的未来商业产品的发展提出了重要的起点。
在本发明之前,现有技术中揭示的材料和制造步骤没有描述基于安装在挠性膜上的倒置变质结构来制作能量有效的太阳能电池。
发明内容
简单地且一般来说,本发明提出一种通过以下方式制造太阳能电池的方法:提供衬底;在所述衬底上沉积形成太阳能电池的半导体材料层的序列;将所述衬底安装在挠性膜上;以及使所述衬底变薄到预定厚度。
在另一方面,简单地且一般来说,本发明提供一种通过以下方式制造太阳能电池的方法:在衬底上沉积半导体材料层的序列之后将第一衬底粘附到挠性膜支撑件,以形成多结太阳能电池的至少一个单元;以及随后移除第一衬底的至少一部分。
本发明进一步提供一种安装在挠性膜上的太阳能电池,所述太阳能电池包含具有层的序列的半导体主体,所述层的序列包含:第一太阳能子电池,其具有第一带隙;第二太阳能子电池,其设置在第一子电池上且具有小于第一带隙的第二带隙;分级夹层,其设置在第二子电池上且具有大于第二带隙的第三带隙;以及第三子电池,其设置在夹层上使得第三太阳能子电池相对于第二子电池晶格失配,且具有小于第三带隙的第四带隙。
附图说明
通过结合附图参看以下具体实施方式,将更好地且更完全地了解本发明的这些和其它特征与优点,其中:
图1是在第一衬底上形成太阳能电池的层的处理步骤结束时根据本发明的太阳能电池的放大横截面图;
图2是根据本发明的下一处理步骤之后图1的太阳能电池的横截面图,所述下一处理步骤包含将所述结构粘附到挠性膜的顶部;
图3是在将代用衬底粘附到挠性膜的下一处理步骤之后图2的结构的横截面图;
图4是在所描绘的根据本发明的下一处理步骤之后图3的太阳能电池结构的横截面图,所述下一处理步骤包含移除太阳能电池层下方的原始衬底而留下半导体结构;
图5是在根据本发明的下一处理步骤之后图4的太阳能电池的横截面图,所述下一处理步骤为从半导体表面的顶部移除一层;
图6是在根据本发明的下一处理步骤之后图5的太阳能电池的横截面图,所述下一处理步骤中移除半导体表面的另一层;
图7是在根据本发明的下一处理步骤之后图6的太阳能电池的横截面图,所述下一处理步骤中在半导体表面的表面上沉积金属层;
图8是在根据本发明的下一处理步骤之后图7的太阳能电池的横截面图,所述下一处理步骤中将金属层图案化为网格线;
图9是在根据本发明的下一处理步骤之后图8的太阳能电池的横截面图,所述下一处理步骤中移除网格线之间的半导体表面的顶层;
图10是在根据本发明的下一处理步骤之后图9的太阳能电池的横截面图,所述下一处理步骤中在表面上沉积ARC层;
图11是在根据本发明的下一处理步骤之后图10的太阳能电池的横截面图,所述下一处理步骤中在ARC层中打开粘结垫;
图12是在根据本发明的下一处理步骤之后图11的太阳能电池的横截面图,所述下一处理步骤中移除代用衬底。
具体实施方式
图1描绘在衬底上形成三个子电池A、B和C之后根据本发明的多结太阳能电池。更特定来说,展示第一衬底100,其可为砷化镓(GaAs)、锗(Ge)或其它合适的材料。在Ge衬底的情况下,例如InGap2的成核层沉积在衬底上。在衬底上,或在Ge衬底的情况下在成核层上,进一步沉积GaAs的缓冲层103和GaInP2的蚀刻停止层104。n++GaAs的帽(cap)或接触层105接着沉积在层104上,且n+AlInP2的窗层106沉积在帽或接触层105上。由GaInP2的n+发射极层107和GaInP2的p型基极层108组成的子电池A接着沉积于窗层106上。
尽管优选实施例利用上述III-V半导体材料,但实施例仅是说明性的,且应注意到多结太阳能电池结构可由服从晶格常数和带隙要求的在周期表中列出的族III到V元素的任何合适的组合形成,其中族III包含硼(B)、铝(Al)、镓(Ga)、铟(In)和铊(T)。族IV包含碳(C)、硅(Si)、锗(Ge)和锡(Sn)。族V包含氮(N)、磷(P)、砷(As)、锑(Sb)和铋(Bi)。
在优选实施例中,衬底100为砷化镓,发射极层107包含InGa(Al)P,且基极层包含InGa(Al)P。括号中的Al项意味着Al是可选的组成物,且在此实例中可以0%到30%的范围内的量使用。
在基极层108的顶部上沉积AlGalnP的p+型背面场(“BSF”)层109,其用于减少重组损失。
BSF层109从基极/BSF分界面附近的区域驱动少数载流子以使重组损失的影响最小化。换句话说,BSF层109减少太阳能子电池A的背侧处的重组损失,且借此减少基极中的重组。
在BSF层109的顶部上沉积重度掺杂p型(例如AlGaAs)和n型层110(例如InGaP2)的序列,其形成隧道二极管,所述隧道二极管用作将电池A电连接到电池B的电路元件。
在隧道二极管层110a的顶部上沉积n+InAlP2的窗层111。子电池B中使用的窗层111也起作用以减少重组损失。窗层111改进下伏结的电池表面的钝化。所属领域的技术人员应明了,在不脱离本发明范围的情况下可在电池结构中添加或删除额外的层。
在窗层111的顶部上沉积电池B的层:n+发射极层112和p型基极层113。这些层优选地分别由n+GaAs和p型GaAs构成,但也可使用符合晶格常数和带隙要求的任何其它合适的材料。
在电池B的顶部上沉积p+型AlGaAs的BSF层114,其执行与BSF层109相同的功能。接着在BSF层114上沉积类似于层110的隧道二极管的n++/p++隧道二极管115,再次形成将电池B电连接到电池C的电路元件。隧道二极管优选地为AlGaAs层上的GaAs层。接着在隧道二极管116上沉积变质缓冲层117。层117优选地为作为具有单调改变的晶格常数的一系列层沉积的按组分步阶分级的组分InGaAlAs,其提供从电池B到电池C的晶格常数转变。层117的带隙为恒定1.5电子伏特,其值略大于中间电池B的带隙。
在一个实施例中,如Wanless等人论文中所建议,步阶级含有九个按组分分级的步阶,其中每一步阶的层具有0.25微米的厚度。在优选实施例中,夹层由InGaAlAs构成,其具有单调改变的晶格常数。
在变质缓冲层117的顶部上沉积GaInP2的另一n+窗层118。窗层118改进下伏的结的电池表面的钝化。可在不脱离本发明范围的情况下提供额外的层。
在窗层118的顶部上沉积子电池C的层:n+型发射极层119和p型基极层120。在优选实施例中,发射极层包含GaInAs,且基极层包含具有约1.0电子伏特带隙的GaInAs,但也可使用具有合适的晶格常数和带隙要求的任何其它半导体材料。
在子电池C的基极层120的顶部上沉积背面场(BSF)层121,其优选地包含GaInP2
在BSF层121的上方或顶部上沉积p+接触层122,其优选地为p++型GaInAs。
在p+接触层122的顶部上沉积金属层123,其优选地为Ti/Au/Ag/Au层序列。
接着通过粘合剂150将图1所示的半导体结构粘结到挠性膜151(例如Kapton)的表面,如图2所示。所述挠性膜通常具有约75微米的厚度,而包含衬底的半导体结构约660微米。更特定来说,面向下粘结所述结构,即,使金属接触层123邻近于膜151。
图3是在将例如蓝宝石的代用衬底175粘附到挠性膜151的底部的下一处理步骤之后图2的结构的横截面图。在优选实施例中,代用衬底厚度约1000微米,且经打孔而具有直径约1mm且间隔开4mm的孔,以帮助随后移除衬底。随后将论述粘附工艺的细节,包含材料选择的论述。
图4是在所描绘的根据本发明的下一处理步骤之后图3的太阳能电池结构的横截面图,所述下一处理步骤包含移除太阳能电池层123到103下方的原始衬底100而留下厚度约12微米的由层123到103组成的半导体结构。
图5是在根据本发明的下一处理步骤之后图4的太阳能电池的横截面图,所述下一处理步骤为通过已知的湿式或干式化学蚀刻从暴露的半导体表面的顶部移除层103。由于104是蚀刻停止层,因此蚀刻完全移除层103。
图6是在根据本发明的下一处理步骤之后图5的太阳能电池的横截面图,所述下一处理步骤中通常通过HCl/H2O溶液移除半导体表面的层104。
图7是在根据本发明的下一处理步骤之后图6的太阳能电池的横截面图。首先完成光刻以沉积光致抗蚀剂以界定将不存在金属的区域。在光致抗蚀剂上蒸镀金属层。金属层125通常由Pd/Ge/Ti/Pd/Ag/Au层构成。
图8是在根据本发明的下一处理步骤之后图7的太阳能电池的横截面图,在所述下一处理步骤中,通过已知的光刻技术将金属层图案化为网格线,其中金属层125的若干部分被提除,使得剩余的金属形成平行线126,所述平行线126形成太阳能电池前表面上的网格。
图9是在根据本发明的下一处理步骤之后图8的太阳能电池的横截面图,在所述下一处理步骤中网格线用作掩模,且通过已知的湿式或干式化学蚀刻工艺移除网格线之间的半导体结构的帽层105,借此暴露网格线之间和已暴露的半导体表面的其余部分上的窗层106。
图10是根据本发明的下一处理步骤之后图9的太阳能电池的横截面图,在所述下一处理步骤中在网格线126的顶面上沉积ARC层达到约2000埃的厚度。接着使用光刻工艺,以便从将定位有粘结垫的区域移除ARC。
图11是根据本发明的下一处理步骤之后图10的太阳能电池的横截面图,所述下一处理步骤中向下蚀刻结构的外围边缘到达金属层123,借此在晶片的表面上形成台面半导体结构。接着使用另一光刻工艺来湿式蚀刻从电池顶部到背部金属的背部金属通孔。这允许形成与背部金属或太阳能电池的阳极的接触。
图12是根据本发明的下一处理步骤之后图11的太阳能电池的横截面图,所述下一处理步骤中移除代用衬底。
尽管上文已在特定优选实施例中将本发明描述为用于制造某一类型的太阳能电池的工艺,但更一般来说本发明只是以下一种方法:使用适当的粘合剂(例如,特氟隆(FFP/PFA)或来自Du Pont的聚酰亚胺)在相对较薄的挠性膜(例如,来自Du Pont的Kapton)上面向下粘结一晶片(具有或不具有装置结构或层),接着使晶片变薄(碾磨/研磨和蚀刻)直到达到所需的厚度或到达所需的层为止,且接着进一步处理薄晶片以制成电子、光学或机械装置(例如,薄光伏电池)。
本发明更一般地还包含使用刚性载体(例如,蓝宝石)以在挠性薄膜上支撑薄半导体结构或晶片(通过所有的半导体装置界定和处理),接着可从刚性衬底卸下膜,并接着施加到最终表面(例如,太阳能面板)。可使用临时粘合剂(例如,来自Dow Corning的I-4010)将膜附装到载体。
使衬底变薄意味着必须在处理期间和使用中向装置层提供某些其它的支撑构件。Kapton是一种良好的材料,因为其耐热且耐化学药品,且还具有挠性。其可以不同厚度获得,且可在一侧或两侧具有粘合剂的状态下获得。Kapton上可使用适合于此目的的例如特氟隆的粘合剂,因为特氟隆非常耐化学药品,且还在某种程度上耐热。或者,可(通过例如层压或旋涂)涂覆粘合剂。可将特氟隆薄片层压到Kapton上。可将聚酰亚胺旋涂到晶片上并可使用聚酰亚胺作为粘合剂将晶片附装到Kapton。也可在工艺结束时将粘合剂涂覆到Kapton以临时或永久地将其附装到弯曲或平坦表面。
如上所述,本发明的一个实施例包括使用例如特氟隆或聚酰亚胺的粘合剂将晶片面向下附装到例如Kapton的膜上,在需要时附装刚性载体,使晶片变薄,处理装置,从刚性载体(如果使用的话)卸下,以及接着利用或不利用另一粘合剂将Kapton上的装置施加到最终表面。
FEP和PFA是Du Pont品种的特氟隆,且是也可用作粘合剂的热塑性材料。PFA(300-310C)熔点高于FEP(250-280C)。PFA可经受260C的连续使用,且FEP可经受205C的连续使用。这两者均可以具有各种厚度的膜的形式使用。
Kapton是来自Du Pont的、可以各种厚度使用的且已层压有FEP或PFA的聚酰亚胺。或者,可通过在热印压机中层压而将FEP和/或PFA施加到Kapton膜。
存在两种方法,取决于Kapton在一侧还是两侧上具有FEP/PFA。如果聚合物仅在一侧上,且如果必须将晶片/Kapton组合附装到用于在处理时(例如,在光刻期间)进行支撑的刚性载体,那么可在另一侧使用例如Dow Corning I-4010的另一粘合剂。
在使用双侧FEP/Kapton或PFA/Kapton的实施例中,起点将为具有任何所需装置层的晶片。对于制造薄倒置光伏元件的特殊情况,可接着在装置侧使晶片金属化,并在需要时进行退火。
如果在处理期间需要刚性载体,那么在热印压机中在Kapton的任一侧使晶片(装置侧向下)和载体(例如,蓝宝石盘/Si晶片)配合。印压机施加热量与压力的组合。FEP/PFA在压力下熔化以形成连续粘结。一旦冷却并移除压力,那么在规定时间之后,晶片(装置侧向下)、Kapton和载体(蓝宝石/Si)将彼此附装。
使晶片体积变薄(碾磨、研磨和/或蚀刻)到达蚀刻停止层和/或装置层(如果有的话),并进一步处理晶片(标准装置制造工艺)。对于薄倒置光伏元件的特殊情况,这些工艺可能包含(且不限于)光刻、金属化、沉积、蚀刻等。可通过适当蚀刻的接触窗以及前接触垫从前侧接触背部金属,而在此阶段测试晶片上的单元。
通过加热到热塑性材料的熔点使Kapton与载体分开。这可例如在热板上完成。当载体与Kapton之间的聚合物熔化时,上面有变薄的晶片的Kapton可能脱落。Kapton与晶片之间的聚合物可能存在某一程度的熔化,但其在Kapton脱离载体时将重新凝固。不会有任何IMM晶片/单元与Kapton分开。理想地,应使用在晶片侧具有PFA且在载体侧具有FEP的Kapton,在此情况下,加热到FEP熔化温度将从载体释放Kapton/晶片,使Kapton与晶片之间的PFA粘结完好,因为PFA熔点高于FEP。
装置现在在Kapton上,准备用于进一步连接。在需要时通过晶片上的蚀刻道以机械方式切割Kapton可使其分离。可附装覆盖玻璃。对于光伏元件的特殊情况,如果单元需要分离,那么可使用台面道来切割穿过Kapton,且可互连单元。可利用或不利用粘合剂而将Kapton附装到最终平坦或弯曲表面(例如,太阳能面板),因为装置将足够薄(微米)而具有挠性。
在使用单侧FEP/Kapton或PFA/Kapton的实施例中(其中在处理期间可使用刚性载体),可使用例如Dow Corning I-4010的另一粘合剂将Kapton附装到刚性载体,所述刚性载体可例如为如先前所述具有孔的蓝宝石衬底。这在市售的晶片设备中完成,所述设备施加真空、压力与热量的组合以使粘合剂固化。这可在热印压机中在将Kapton/FEP或Kapton/PFA附装到晶片之后完成。I-4010是硅树脂粘合剂,其对于晶片制造中的许多溶剂、酸、碱和其它化学物质是惰性的。其还耐热。
像之前一样,在处理之后,必须通过溶剂松解所使用的载体。蓝宝石中的孔通过增加溶剂向粘合剂的到达而帮助加速松解。FEP/PFA粘结对于此溶剂是惰性的,且因此Kapton/晶片粘结在从蓝宝石卸下之后将保持完好。正像之前一样,可以机械方式切割粘结到Kapton的晶片以使装置分离,用于进一步处理。
其它粘合剂:替代于FEP/PFA,我们也可使用对在装置的处理和最终施加过程中涉及的温度、化学物质和其它环境具有耐受性的任何其它粘合剂。可使用的一种耐化学药品且耐热的材料是聚酰亚胺,其有多个品种可用,且具有不同的固化温度和环境耐受性。可通过例如旋涂将此材料涂覆到晶片背侧,可附装Kapton,且堆叠可固化以形成粘结。在此之后程序与上文相同。

Claims (10)

1.一种制造太阳能电池的方法,其包括:
提供衬底;
在第一衬底上沉积形成太阳能电池的半导体材料层的序列;
将半导体衬底安装在挠性膜上;以及
使所述半导体衬底变薄到预定厚度。
2.根据权利要求1所述的方法,其中将所述半导体材料层的序列安装成直接邻近于所述挠性膜。
3.根据权利要求1所述的方法,其进一步包括将所述挠性膜附装到代用衬底。
4.根据权利要求3所述的方法,其中所述代用衬底为蓝宝石晶片。
5.根据权利要求4所述的方法,其进一步包括在处理之后移除所述代用衬底。
6.根据权利要求5所述的方法,其进一步包括将具有所述挠性膜的所述太阳能电池附装到玻璃支撑部件。
7.根据权利要求1所述的方法,其中所述沉积半导体材料层的序列的步骤包含:在所述衬底上形成具有第一带隙的第一太阳能子电池;在所述第一子电池上形成具有小于所述第一带隙的第二带隙的第二太阳能子电池;在所述第二子电池上形成具有大于所述第二带隙的第三带隙的分级夹层;形成具有小于所述第二带隙的第四带隙的第三太阳能子电池,使得所述第三子电池相对于所述第二子电池晶格失配。
8.根据权利要求1所述的制造太阳能电池的方法,其中所述第一衬底包含GaAs,所述第一太阳能子电池包含InGa(Al)P发射极区域和InGa(Al)P基极区域,所述第二太阳能子电池由InGaP发射极区域和In0.015GaAs基极区域构成。
9.根据权利要求7所述的制造太阳能电池的方法,其中所述分级夹层由多个具有单调增加的晶格常数的InGaAlAs层构成。
10.一种太阳能电池,其包括:
挠性膜;
半导体主体,其安装在所述膜上,且具有层的序列:
包含第一太阳能子电池,其具有第一带隙;
第二太阳能子电池,其设置在所述第一子电池上且具有小于所述第一带隙的第二带隙;
分级夹层,其设置在所述第二子电池上且具有大于所述第二带隙的第三带隙;以及
第三子电池,其设置在所述夹层上使得所述第三太阳能子电池相对于所述第二子电池晶格失配,且具有小于所述第三带隙的第四带隙。
CN2007101643499A 2006-12-27 2007-10-30 安装在挠性膜上的倒置变质太阳能电池 Active CN101211994B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/616,596 2006-12-27
US11/616,596 US20080245409A1 (en) 2006-12-27 2006-12-27 Inverted Metamorphic Solar Cell Mounted on Flexible Film

Publications (2)

Publication Number Publication Date
CN101211994A true CN101211994A (zh) 2008-07-02
CN101211994B CN101211994B (zh) 2012-05-02

Family

ID=39313085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101643499A Active CN101211994B (zh) 2006-12-27 2007-10-30 安装在挠性膜上的倒置变质太阳能电池

Country Status (5)

Country Link
US (1) US20080245409A1 (zh)
EP (1) EP1939945A3 (zh)
JP (1) JP2008166794A (zh)
CN (1) CN101211994B (zh)
TW (1) TWI511317B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569476A (zh) * 2012-03-13 2012-07-11 天津三安光电有限公司 三结太阳能电池及其制备方法
CN103000759A (zh) * 2012-10-08 2013-03-27 天津蓝天太阳科技有限公司 砷化镓薄膜多结叠层太阳电池的制备方法
CN104348402A (zh) * 2013-07-19 2015-02-11 安科太阳能股份有限公司 利用反转变质多结太阳能电池的用于空间飞行器或卫星的太阳能电力系统

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894990B1 (fr) 2005-12-21 2008-02-22 Soitec Silicon On Insulator Procede de fabrication de substrats, notamment pour l'optique,l'electronique ou l'optoelectronique et substrat obtenu selon ledit procede
US20100229926A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US20100122724A1 (en) 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers
US9634172B1 (en) 2007-09-24 2017-04-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US9117966B2 (en) 2007-09-24 2015-08-25 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with two metamorphic layers and homojunction top cell
US20100186804A1 (en) * 2009-01-29 2010-07-29 Emcore Solar Power, Inc. String Interconnection of Inverted Metamorphic Multijunction Solar Cells on Flexible Perforated Carriers
US20100229913A1 (en) * 2009-01-29 2010-09-16 Emcore Solar Power, Inc. Contact Layout and String Interconnection of Inverted Metamorphic Multijunction Solar Cells
US20090078309A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Barrier Layers In Inverted Metamorphic Multijunction Solar Cells
US10381501B2 (en) 2006-06-02 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with multiple metamorphic layers
US10170656B2 (en) 2009-03-10 2019-01-01 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with a single metamorphic layer
US20100203730A1 (en) * 2009-02-09 2010-08-12 Emcore Solar Power, Inc. Epitaxial Lift Off in Inverted Metamorphic Multijunction Solar Cells
US20100047959A1 (en) * 2006-08-07 2010-02-25 Emcore Solar Power, Inc. Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells
US20110041898A1 (en) * 2009-08-19 2011-02-24 Emcore Solar Power, Inc. Back Metal Layers in Inverted Metamorphic Multijunction Solar Cells
US20080264476A1 (en) * 2007-04-27 2008-10-30 Emcore Corporation Solar cell with diamond like carbon cover glass
US10381505B2 (en) 2007-09-24 2019-08-13 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells including metamorphic layers
US20100233838A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Mounting of Solar Cells on a Flexible Substrate
US8895342B2 (en) 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
US20090155952A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20100012175A1 (en) 2008-07-16 2010-01-21 Emcore Solar Power, Inc. Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
US20090272430A1 (en) * 2008-04-30 2009-11-05 Emcore Solar Power, Inc. Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20090272438A1 (en) * 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20090288703A1 (en) * 2008-05-20 2009-11-26 Emcore Corporation Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
US9287438B1 (en) * 2008-07-16 2016-03-15 Solaero Technologies Corp. Method for forming ohmic N-contacts at low temperature in inverted metamorphic multijunction solar cells with contaminant isolation
US20100012174A1 (en) * 2008-07-16 2010-01-21 Emcore Corporation High band gap contact layer in inverted metamorphic multijunction solar cells
ATE511704T1 (de) * 2008-07-25 2011-06-15 Emcore Solar Power Inc Sperrschichten in umgekehrten metamorphischen multiverbindungssolarzellen
DE102008034701B4 (de) * 2008-07-25 2010-07-08 Emcore Solar Power, Inc., Albuquerque Verfahren zur Herstellung von dünnen invertierten metamorphen Multijunction Solarzellen mit starrem Träger
US8263853B2 (en) * 2008-08-07 2012-09-11 Emcore Solar Power, Inc. Wafer level interconnection of inverted metamorphic multijunction solar cells
US7741146B2 (en) 2008-08-12 2010-06-22 Emcore Solar Power, Inc. Demounting of inverted metamorphic multijunction solar cells
US8330036B1 (en) * 2008-08-29 2012-12-11 Seoijin Park Method of fabrication and structure for multi-junction solar cell formed upon separable substrate
DE102008049374A1 (de) 2008-09-27 2010-04-01 JODLAUK, Jörg Halbleiterfaserstrukturen als Energieerzeuger
US8686284B2 (en) * 2008-10-23 2014-04-01 Alta Devices, Inc. Photovoltaic device with increased light trapping
US20120104460A1 (en) 2010-11-03 2012-05-03 Alta Devices, Inc. Optoelectronic devices including heterojunction
WO2010048543A2 (en) * 2008-10-23 2010-04-29 Alta Devices, Inc. Thin absorber layer of a photovoltaic device
TW201030998A (en) * 2008-10-23 2010-08-16 Alta Devices Inc Photovoltaic device
US8236600B2 (en) * 2008-11-10 2012-08-07 Emcore Solar Power, Inc. Joining method for preparing an inverted metamorphic multijunction solar cell
US20100122764A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Surrogate Substrates for Inverted Metamorphic Multijunction Solar Cells
US9018521B1 (en) 2008-12-17 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cell with DBR layer adjacent to the top subcell
US20100147366A1 (en) * 2008-12-17 2010-06-17 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with Distributed Bragg Reflector
US10541349B1 (en) 2008-12-17 2020-01-21 Solaero Technologies Corp. Methods of forming inverted multijunction solar cells with distributed Bragg reflector
US7785989B2 (en) 2008-12-17 2010-08-31 Emcore Solar Power, Inc. Growth substrates for inverted metamorphic multijunction solar cells
US7960201B2 (en) * 2009-01-29 2011-06-14 Emcore Solar Power, Inc. String interconnection and fabrication of inverted metamorphic multijunction solar cells
US8778199B2 (en) 2009-02-09 2014-07-15 Emoore Solar Power, Inc. Epitaxial lift off in inverted metamorphic multijunction solar cells
US20100206365A1 (en) * 2009-02-19 2010-08-19 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells on Low Density Carriers
EP2403003B1 (en) * 2009-02-26 2018-10-03 Sharp Kabushiki Kaisha Method for manufacturing thin film compound solar cell
US9018519B1 (en) 2009-03-10 2015-04-28 Solaero Technologies Corp. Inverted metamorphic multijunction solar cells having a permanent supporting substrate
US20100229933A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cells with a Supporting Coating
US8316593B2 (en) * 2009-03-18 2012-11-27 Garland Industries, Inc. Solar roofing system
US8733035B2 (en) * 2009-03-18 2014-05-27 Garland Industries, Inc. Solar roofing system
US8283558B2 (en) * 2009-03-27 2012-10-09 The Boeing Company Solar cell assembly with combined handle substrate and bypass diode and method
US20100282288A1 (en) * 2009-05-06 2010-11-11 Emcore Solar Power, Inc. Solar Cell Interconnection on a Flexible Substrate
US8633097B2 (en) * 2009-06-09 2014-01-21 International Business Machines Corporation Single-junction photovoltaic cell
US8703521B2 (en) 2009-06-09 2014-04-22 International Business Machines Corporation Multijunction photovoltaic cell fabrication
US20100310775A1 (en) * 2009-06-09 2010-12-09 International Business Machines Corporation Spalling for a Semiconductor Substrate
US8802477B2 (en) * 2009-06-09 2014-08-12 International Business Machines Corporation Heterojunction III-V photovoltaic cell fabrication
US20110048517A1 (en) * 2009-06-09 2011-03-03 International Business Machines Corporation Multijunction Photovoltaic Cell Fabrication
US8263856B2 (en) * 2009-08-07 2012-09-11 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells with back contacts
US8961687B2 (en) * 2009-08-31 2015-02-24 Alliance For Sustainable Energy, Llc Lattice matched crystalline substrates for cubic nitride semiconductor growth
US8575471B2 (en) * 2009-08-31 2013-11-05 Alliance For Sustainable Energy, Llc Lattice matched semiconductor growth on crystalline metallic substrates
US8490343B2 (en) * 2009-09-09 2013-07-23 Saint-Gobain Performance Plastics Corporation Attachment system of photovoltaic cells to fluoropolymer structural membrane
US9691921B2 (en) 2009-10-14 2017-06-27 Alta Devices, Inc. Textured metallic back reflector
US9768329B1 (en) 2009-10-23 2017-09-19 Alta Devices, Inc. Multi-junction optoelectronic device
US11271128B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device
US20150380576A1 (en) 2010-10-13 2015-12-31 Alta Devices, Inc. Optoelectronic device with dielectric layer and method of manufacture
US9502594B2 (en) 2012-01-19 2016-11-22 Alta Devices, Inc. Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US20170141256A1 (en) 2009-10-23 2017-05-18 Alta Devices, Inc. Multi-junction optoelectronic device with group iv semiconductor as a bottom junction
US8507365B2 (en) * 2009-12-21 2013-08-13 Alliance For Sustainable Energy, Llc Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates
US8187907B1 (en) 2010-05-07 2012-05-29 Emcore Solar Power, Inc. Solder structures for fabrication of inverted metamorphic multijunction solar cells
US9041027B2 (en) 2010-12-01 2015-05-26 Alliance For Sustainable Energy, Llc Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates
US9425249B2 (en) 2010-12-01 2016-08-23 Alliance For Sustainable Energy, Llc Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers
CN102139769B (zh) * 2011-02-21 2013-03-27 哈尔滨工业大学 基于自组织cmac的挠性卫星快速稳定控制方法
EP2515349A1 (en) * 2011-04-18 2012-10-24 Everphoton Energy Corporation III-V solar cell package and method of fabricating the same
US20140378853A1 (en) * 2011-10-20 2014-12-25 George Anthony McKinney Universal wearable limb band mounting, powering and providing an antenna for, diverse physiological sensors and monitors
US11038080B2 (en) 2012-01-19 2021-06-15 Utica Leaseco, Llc Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
US8884157B2 (en) * 2012-05-11 2014-11-11 Epistar Corporation Method for manufacturing optoelectronic devices
US8569097B1 (en) * 2012-07-06 2013-10-29 International Business Machines Corporation Flexible III-V solar cell structure
US20140069479A1 (en) * 2012-09-11 2014-03-13 Samsung Sdi Co., Ltd. Photoelectric Device Module and Manufacturing Method Thereof
EA201591120A1 (ru) * 2012-12-13 2015-11-30 Дэниел Скотт Маршалл Магнитно-поляризованное фотонное устройство
US10153388B1 (en) 2013-03-15 2018-12-11 Solaero Technologies Corp. Emissivity coating for space solar cell arrays
JP2015023281A (ja) * 2013-07-19 2015-02-02 エムコア ソーラー パワー インコーポレイテッド 反転型メタモルフィック多接合型ソーラーセルを用いた航空機、船舶又は陸上用車両用の太陽発電システム
CN104362215B (zh) * 2014-09-18 2016-10-26 厦门乾照光电股份有限公司 一种高效率柔性薄膜太阳能电池制造方法
US9935209B2 (en) 2016-01-28 2018-04-03 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US10403778B2 (en) 2015-10-19 2019-09-03 Solaero Technologies Corp. Multijunction solar cell assembly for space applications
US10270000B2 (en) 2015-10-19 2019-04-23 Solaero Technologies Corp. Multijunction metamorphic solar cell assembly for space applications
US10361330B2 (en) 2015-10-19 2019-07-23 Solaero Technologies Corp. Multijunction solar cell assemblies for space applications
US9985161B2 (en) 2016-08-26 2018-05-29 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
US10256359B2 (en) 2015-10-19 2019-04-09 Solaero Technologies Corp. Lattice matched multijunction solar cell assemblies for space applications
US10263134B1 (en) 2016-05-25 2019-04-16 Solaero Technologies Corp. Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell
US10636926B1 (en) 2016-12-12 2020-04-28 Solaero Technologies Corp. Distributed BRAGG reflector structures in multijunction solar cells
US20190181289A1 (en) 2017-12-11 2019-06-13 Solaero Technologies Corp. Multijunction solar cells
CN110391334B (zh) * 2018-04-16 2023-05-09 清华大学 聚合物太阳能电池
CN110391333A (zh) * 2018-04-16 2019-10-29 清华大学 聚合物太阳能电池

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2004104A (en) * 1932-07-30 1935-06-11 American Can Co Container
US4001864A (en) * 1976-01-30 1977-01-04 Gibbons James F Semiconductor p-n junction solar cell and method of manufacture
US4338480A (en) * 1980-12-29 1982-07-06 Varian Associates, Inc. Stacked multijunction photovoltaic converters
US4881979A (en) * 1984-08-29 1989-11-21 Varian Associates, Inc. Junctions for monolithic cascade solar cells and methods
US5053086A (en) * 1985-03-15 1991-10-01 The United States Of America As Represented By The Secretary Of The Navy Gas generant compositions containing energetic high nitrogen binders
US4759803A (en) * 1987-08-07 1988-07-26 Applied Solar Energy Corporation Monolithic solar cell and bypass diode system
DE68923061T2 (de) * 1988-11-16 1995-11-09 Mitsubishi Electric Corp Sonnenzelle.
US5343453A (en) * 1988-12-01 1994-08-30 Canon Kabushiki Kaisha Method for accessing desired track on disk with plurality of recording zones with head, and apparatus therefore
US5019177A (en) * 1989-11-03 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5322572A (en) * 1989-11-03 1994-06-21 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
US5376185A (en) * 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US5405453A (en) * 1993-11-08 1995-04-11 Applied Solar Energy Corporation High efficiency multi-junction solar cell
US6147296A (en) * 1995-12-06 2000-11-14 University Of Houston Multi-quantum well tandem solar cell
US6281426B1 (en) * 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US6482672B1 (en) * 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6278054B1 (en) * 1998-05-28 2001-08-21 Tecstar Power Systems, Inc. Solar cell having an integral monolithically grown bypass diode
US6103970A (en) * 1998-08-20 2000-08-15 Tecstar Power Systems, Inc. Solar cell having a front-mounted bypass diode
DE19845658C2 (de) * 1998-10-05 2001-11-15 Daimler Chrysler Ag Solarzelle mit Bypassdiode
US6239354B1 (en) * 1998-10-09 2001-05-29 Midwest Research Institute Electrical isolation of component cells in monolithically interconnected modules
US6300557B1 (en) * 1998-10-09 2001-10-09 Midwest Research Institute Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters
US6165873A (en) * 1998-11-27 2000-12-26 Nec Corporation Process for manufacturing a semiconductor integrated circuit device
US6376051B1 (en) * 1999-03-10 2002-04-23 Matsushita Electric Industrial Co., Ltd. Mounting structure for an electronic component and method for producing the same
JP3657143B2 (ja) * 1999-04-27 2005-06-08 シャープ株式会社 太陽電池及びその製造方法
DE19921545A1 (de) * 1999-05-11 2000-11-23 Angew Solarenergie Ase Gmbh Solarzelle sowie Verfahren zur Herstellung einer solchen
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US6635507B1 (en) * 1999-07-14 2003-10-21 Hughes Electronics Corporation Monolithic bypass-diode and solar-cell string assembly
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
US7339109B2 (en) * 2000-06-20 2008-03-04 Emcore Corporation Apparatus and method for optimizing the efficiency of germanium junctions in multi-junction solar cells
US7119271B2 (en) * 2001-10-12 2006-10-10 The Boeing Company Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US20030070707A1 (en) * 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US6864414B2 (en) * 2001-10-24 2005-03-08 Emcore Corporation Apparatus and method for integral bypass diode in solar cells
US6680432B2 (en) * 2001-10-24 2004-01-20 Emcore Corporation Apparatus and method for optimizing the efficiency of a bypass diode in multijunction solar cells
US6660928B1 (en) * 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US6690041B2 (en) * 2002-05-14 2004-02-10 Global Solar Energy, Inc. Monolithically integrated diodes in thin-film photovoltaic devices
US20060162768A1 (en) * 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US8067687B2 (en) * 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US6794631B2 (en) * 2002-06-07 2004-09-21 Corning Lasertron, Inc. Three-terminal avalanche photodiode
US7122733B2 (en) * 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US7122734B2 (en) * 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US7071407B2 (en) * 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
WO2004054003A1 (en) * 2002-12-05 2004-06-24 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US20050211291A1 (en) * 2004-03-23 2005-09-29 The Boeing Company Solar cell assembly
US8227689B2 (en) * 2004-06-15 2012-07-24 The Boeing Company Solar cells having a transparent composition-graded buffer layer
US7846759B2 (en) * 2004-10-21 2010-12-07 Aonex Technologies, Inc. Multi-junction solar cells and methods of making same using layer transfer and bonding techniques

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569476A (zh) * 2012-03-13 2012-07-11 天津三安光电有限公司 三结太阳能电池及其制备方法
CN103000759A (zh) * 2012-10-08 2013-03-27 天津蓝天太阳科技有限公司 砷化镓薄膜多结叠层太阳电池的制备方法
CN103000759B (zh) * 2012-10-08 2015-03-11 天津蓝天太阳科技有限公司 砷化镓薄膜多结叠层太阳电池的制备方法
CN104348402A (zh) * 2013-07-19 2015-02-11 安科太阳能股份有限公司 利用反转变质多结太阳能电池的用于空间飞行器或卫星的太阳能电力系统

Also Published As

Publication number Publication date
TW200943572A (en) 2009-10-16
TWI511317B (zh) 2015-12-01
EP1939945A3 (en) 2014-04-09
US20080245409A1 (en) 2008-10-09
CN101211994B (zh) 2012-05-02
EP1939945A2 (en) 2008-07-02
JP2008166794A (ja) 2008-07-17

Similar Documents

Publication Publication Date Title
CN101211994B (zh) 安装在挠性膜上的倒置变质太阳能电池
JP2992638B2 (ja) 光起電力素子の電極構造及び製造方法並びに太陽電池
US5021099A (en) Solar cell interconnection and packaging using tape carrier
US8481844B2 (en) Solar cell and solar cell module
US5457057A (en) Photovoltaic module fabrication process
CN101237007B (zh) 具有用于背侧接点的通孔的倒置变形太阳能电池
US20090038679A1 (en) Thin Multijunction Solar Cells With Plated Metal OHMIC Contact and Support
US10892372B2 (en) High performance solar cells, arrays and manufacturing processes therefor
EP1869760A2 (en) Scalable photovoltaic cell and solar panel manufacturing with improved wiring
JPH07221339A (ja) 薄い半導体およびその製造方法
US20210273124A1 (en) Dual-depth via device and process for large back contact solar cells
US10593824B2 (en) Ultra-thin flexible rear-contact Si solar cells and methods for manufacturing the same
US20210126140A1 (en) Surface mount solar cell having low stress passivation layers
Ramu et al. Epitaxial lift-off process for GaAs solar cells controlled by InGaAs internal sacrificial stressor layers and a PMMA surface stressor
JP3548379B2 (ja) 光起電力デバイスおよびその製造方法
EP3836233A1 (en) Flexible solar cell and manufacturing method therefor
EP3652789B1 (en) Flexible solar cell and method
EP4160698A1 (en) Upright photovoltaic cell with front contacts
US11764315B2 (en) Solar cell separation with edge coating
CN111063745B (zh) 用于形成太阳能电池的电极的结构和方法
JP2000036611A (ja) 太陽電池モジュ―ル
JP2004228141A (ja) 薄膜太陽電池およびその製造方法
KR20200074297A (ko) 후면 전극 태양전지의 제조방법 및 이에 의해 제조된 후면 전극 태양전지 그리고 그 후면 전극 태양전지를 이용한 후면 전극 태양전지 모듈
JP2005012241A (ja) 太陽電池セルの製造方法及び太陽電池セル
JP2002203975A (ja) 光起電力素子の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: EMCORE SOLAR POWER INC.

Free format text: FORMER OWNER: ONCOGEN (US) 3005 FIRST AVENUE, SEATTLE, WASHINGTON, DC. 98121. U.S.A.

Effective date: 20141203

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20141203

Address after: New Mexico, USA

Patentee after: Emcore Solar Power, Inc.

Address before: New Jersey, USA

Patentee before: Onco

ASS Succession or assignment of patent right

Owner name: SOLE TECHNOLOGY, INC.

Free format text: FORMER OWNER: EMCORE SOLAR POWER INC.

Effective date: 20150304

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150304

Address after: New Mexico, USA

Patentee after: SUOAIER TECHNOLOGY CO., LTD.

Address before: New Mexico, USA

Patentee before: Emcore Solar Power, Inc.