WO2010098293A1 - 薄膜化合物太陽電池の製造方法 - Google Patents

薄膜化合物太陽電池の製造方法 Download PDF

Info

Publication number
WO2010098293A1
WO2010098293A1 PCT/JP2010/052655 JP2010052655W WO2010098293A1 WO 2010098293 A1 WO2010098293 A1 WO 2010098293A1 JP 2010052655 W JP2010052655 W JP 2010052655W WO 2010098293 A1 WO2010098293 A1 WO 2010098293A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
film
electrode
thin film
Prior art date
Application number
PCT/JP2010/052655
Other languages
English (en)
French (fr)
Inventor
児玉知也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP10746174.1A priority Critical patent/EP2403003B1/en
Priority to US13/202,678 priority patent/US20110303281A1/en
Priority to JP2011501582A priority patent/JP5554772B2/ja
Publication of WO2010098293A1 publication Critical patent/WO2010098293A1/ja
Priority to US14/060,985 priority patent/US9070819B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a thin film compound solar cell having a cell body in which at least one PN junction is formed by a compound semiconductor layer composed of a plurality of layers having different compositions.
  • a conventional thin film compound solar cell has a structure in which a surface electrode is provided on a light receiving surface of a cell body on which a plurality of compound semiconductor layers are stacked, and a back electrode is provided on a surface opposite to the light receiving surface of the cell body. .
  • This thin film compound solar cell is manufactured as follows.
  • an etching stop layer 102, a base layer 103, an emitter layer 104, and a contact layer 105 are stacked in this order as a compound semiconductor layer on a substrate 101 to form a cell body.
  • a protective film such as a photoresist is applied on the surface of the contact layer 105, and the region patterned by exposure is etched.
  • the contact layer 105 is patterned by this contact layer etching.
  • the applied resist is removed.
  • a photoresist is applied again to form a surface electrode to form a protective film.
  • step A3 shown in FIG. 26 the photoresist is patterned by exposure so as to be included in the region of the contact layer 105 created in the previous step, and a protective film opening is formed.
  • the photoresist is removed, and the surface electrode 106 is selectively formed only in the protective film opening.
  • the surface electrode 106 is baked at a temperature of about 350 ° C. in order to lower the contact resistance component between the surface electrode 106 and the contact layer 105 and increase the adhesion.
  • step A4 shown in FIG. 27 the protective film is patterned by exposure so as to determine a cell formation region corresponding to a predetermined shape (chip shape) of the solar cell element.
  • a protective film opening is formed, and the opening is mesa-etched. Thereafter, the solar cell element is separated into a predetermined shape (chip shape) by mechanical means such as dicing.
  • step A5 shown in FIG. 28 a transparent resin such as silicone resin is applied to the light receiving surface side of the solar cell element, and a transparent surface film 107 is bonded thereon.
  • a transparent resin such as silicone resin is applied to the light receiving surface side of the solar cell element, and a transparent surface film 107 is bonded thereon.
  • the thin film compound solar cell and the surface film 107 are bonded via the resin, and the surface film 107 serves as a base material of the thin film compound solar cell.
  • a reinforcing material 108 such as glass or sapphire is bonded to the light receiving surface side of the solar cell element to which the surface film 107 is bonded via wax.
  • step A7 shown in FIG. 30 the solar cell element bonded with the reinforcing material 108 is immersed in an etchant. Since etching stops at the etching stop layer 102, only the cell body can be left and only the substrate 101 can be removed by etching. Thereby, the board
  • step A8 shown in FIG. 31 an electrode material is vapor-deposited on the exposed back surface of the compound semiconductor layer to form the back electrode 109.
  • the wax that bonds the reinforcing material 108 and the solar cell element is dissolved by an organic solvent such as acetone, and the reinforcing material 108 is removed from the solar cell element.
  • the thin-film compound solar cell manufactured as described above has a structure in which a surface film is attached as a base material to the light-receiving surface of a cell body on which a PN junction is formed.
  • the surface film is required to have high transparency so as not to impair the conversion efficiency of the solar cell element.
  • a highly transparent film generally has low heat resistance.
  • the substrate is removed and the back electrode is formed after the surface film is bonded to the solar cell element in the process. After the back electrode is formed, the back electrode needs to be fired in order to reduce the contact resistance component between the back electrode and the compound semiconductor layer and improve the adhesion. Since this firing temperature is higher than the heat resistance temperature of the surface film, the back electrode cannot be fired when the surface film is bonded. Therefore, there exists a problem that a back surface electrode peels from a compound semiconductor layer.
  • the wax that bonds the solar cell element and the reinforcing material is peeled off with an organic solvent.
  • the resin that bonds the compound semiconductor layer and the surface film is also exposed to the organic solvent.
  • the resin permeates the interface between the surface film and the resin or the interface between the compound semiconductor layer and the resin, and the surface film easily peels off from the compound semiconductor layer. is there.
  • the process of removing the substrate with an etchant is performed after welding a metal ribbon for electrical connection to the solar cell element.
  • an etchant for etching a substrate hydrofluoric acid or the like needs to be used depending on the substrate material.
  • hydrofluoric acid reacts with the metal ribbon and attacks the metal ribbon.
  • a back electrode is formed on the cell body, a support plate is attached on the back electrode, the substrate is separated from the cell body, and the exposed cell body After the surface electrode is formed on the surface, the support plate is removed.
  • the present invention provides a method for producing a thin-film compound solar cell that can improve the adhesion of an electrode even when a substrate is provided, and that can withstand external force without causing peeling of the substrate.
  • the purpose is to provide.
  • the present invention is a method of manufacturing a thin film compound solar cell having a cell body in which at least one PN junction is formed by a plurality of compound semiconductor layers having different compositions, an etching stop layer that suppresses permeation of an etchant from the substrate side, Forming a contact layer, an emitter layer made of a compound semiconductor of the first conductivity type, a base layer that forms a PN junction with the emitter layer, and a buffer layer to form a cell body; and a back electrode on the cell body
  • the method includes a step of forming a surface electrode on the exposed surface of the main body, a step of peeling the reinforcing material, and a step of firing the surface electrode. And after baking of a surface electrode,
  • the back electrode By forming the back electrode in the initial stage, the back electrode can be baked, and adhesion can be improved and contact resistance can be reduced. Moreover, unnecessary protection for the metal ribbon can be eliminated by finally connecting the metal ribbon.
  • the cell main body has an etching stop layer and a contact layer laminated on the substrate side, the step of removing the etching stop layer from the cell main body after separating the substrate, the step of etching the contact layer into a predetermined pattern, and the cell A surface electrode is formed on the contact layer after the mesa etching.
  • the method includes a step of removing the etching stop layer from the cell body after separating the substrate, a step of mesa etching the cell body, and a step of etching the contact layer after forming the surface electrode on the contact layer.
  • the surface electrode functions as an etching mask.
  • the base material is a material having heat resistance equal to or higher than the firing temperature of the surface electrode.
  • the base material is a film-like polyimide.
  • the polyimide film is formed by applying and baking resinous polyimide.
  • a polyimide film is formed by apply
  • the thickness of a polyimide film shall be 15 micrometers or less.
  • the surface electrode can be fired after the base material is formed.
  • interposed into the polyimide film is manufactured.
  • the compound semiconductor layer is a single crystal thin film formed by epitaxial growth.
  • the adhesion of each electrode can be enhanced and the contact resistance can be reduced.
  • the heat resistant base material is used, after removing a reinforcing material, an electrode can be baked with a base material attached. Thereby, since the reinforcing material is not heat-treated, the reinforcing material can be reused.
  • the film itself serves as a support. Therefore, even if an external force is applied, the solar battery cell does not break. Moreover, since the warpage of the solar battery cell changes depending on the thickness of the film, the warpage of the cell can be controlled during the film formation process.
  • Sectional drawing of the thin film compound solar cell at the time of cell main body formation which consists of several compound semiconductor layers of this invention Cross-sectional view of thin-film compound solar cell during backside electrode formation
  • Cross-sectional view of thin film compound solar cell during backside film formation
  • Cross-sectional view of thin-film compound solar cell with reinforcing material attached
  • Cross-sectional view of thin-film compound solar cell when removing substrate
  • Cross-sectional view of thin-film compound solar cell when etching stop layer is removed
  • Sectional drawing of the thin film compound solar cell at the time of 1st protective film formation Cross-sectional view of thin-film compound solar cell during protective film patterning
  • Cross section of thin film compound solar cell during contact layer etching
  • Cross section of thin film compound solar cell when protective film is peeled off
  • Sectional drawing of the thin film compound solar cell at the time of 2nd protective film formation
  • Cross-sectional view of thin-film compound solar cell during protective film patterning
  • the thin film compound solar cell of the present embodiment includes a cell body in which a plurality of compound semiconductor layers having different compositions are stacked to form at least one PN junction, a surface electrode formed on a light receiving surface of the cell body, a cell It is set as the structure provided with the back surface electrode formed in the opposite surface of the main body, and the base material for thin film solar cells.
  • the substrate is formed on the opposite surface of the cell body, and the back electrode is sandwiched between the cell body and the substrate.
  • step 1 shown in FIG. 1 an etching stop layer 2, a contact layer 3, an emitter layer 4 made of a first compound semiconductor, and an emitter layer 4 and a PN junction are formed on the substrate 1 to suppress penetration of the etchant from the substrate side.
  • the base layer 5 and the buffer layer 6 to be formed are stacked in this order to form a compound semiconductor layer made of a single crystal thin film.
  • the substrate 1 has a wafer-like form, for example, and a compound semiconductor layer such as an etching stop layer 2, a contact layer 3, an emitter layer 4, a base layer 5, and a buffer layer 6 is described in a well-known process, for example, Patent Document 1.
  • the cell body is formed by stacking by an epitaxial growth method.
  • the compound semiconductor layer includes, for example, an etching stop layer 2 such as an InGaP layer, a contact layer 3 such as an AlInP layer, an emitter layer 4 such as an N-type InGaP layer, a base layer 5 such as a P-type InGaP layer, and a buffer layer 6 such as an AlInP layer.
  • an etching stop layer 2 such as an InGaP layer
  • a contact layer 3 such as an AlInP layer
  • an emitter layer 4 such as an N-type InGaP layer
  • a base layer 5 such as a P-type InGaP layer
  • a buffer layer 6 such as an AlInP layer.
  • the cell body has a five-layer structure, it is not limited to this.
  • the cell body may be, for example, 4 layers or 6 layers.
  • a BSF Back Surface Field
  • a window layer a tunnel junction layer of a multi-junction solar cell
  • Compound semiconductor layers such as other emitter layers and other base layers of the multi-junction solar cell can be included.
  • the cell body formed on the substrate 1 may be composed of a plurality of compound semiconductor layers having different compositions, and at least one PN junction may be formed by the plurality of compound semiconductor layers.
  • the plurality of compound semiconductor layers are at least easily etched with the second etching solution for etching the contact layer and difficult to be etched with the third etching solution for mesa etching, and are not easily etched with the second etching solution, and What is necessary is just to include the layer easy to be etched with the third etching solution.
  • the former layer is a contact layer 3, and the latter layer is an emitter layer 4 and a base layer 5.
  • step 2 shown in FIG. 2 on the surface of the buffer layer 6, which is the outermost surface of each compound semiconductor layer (etching stop layer 2, contact layer 3, emitter layer 4, base layer 5, buffer layer 6) formed in a stacked manner A back electrode 7 is formed on the substrate.
  • the back electrode 7 is formed on the entire surface of the compound semiconductor layer.
  • the back electrode 7 is formed by applying a metal paste such as Al or Ag to the outermost surface of the cell body by screen printing. After the back electrode 7 is formed, heat treatment is performed, and the back electrode 7 is baked. Therefore, the contact resistance between the compound semiconductor layer surface and the back electrode 7 can be reduced, and the adhesion between the compound semiconductor layer surface and the back electrode 7 can be improved.
  • a highly heat-resistant back film 8 is formed on the back electrode 7.
  • the back film 8 is made of a material having heat resistance of 300 ° C. or higher, and for example, polyimide is used.
  • Examples of the method for forming the back film 8 include a method in which a varnish-like resin is applied onto the back electrode 7 at room temperature by a spin coating method and then baked.
  • the polyimide varnish When the polyimide varnish is applied and baked, it is necessary to control the polyimide film thickness. This is because when the polyimide film thickness is 20 ⁇ m or more, bubbles are mixed in the polyimide film, the flat film cannot be baked, and the polyimide film warps severely, causing damage to the cell body. It is. When the film thickness of the polyimide is decreased, bubbles are not mixed and the warpage of the film is reduced within a range of 20 ⁇ m or less. When the film thickness of the polyimide is about 7 ⁇ m, the amount of warpage is the smallest, and when it is thinner than that, the direction of warpage is reversed and the amount of warpage increases again.
  • a film thickness of 5 to 15 ⁇ m is appropriate for the production of the cell body, especially about 7 ⁇ m. Is optimal.
  • membrane by baking the varnish-like polyimide was mentioned above, there exists the method of crimping
  • the back surface film 8 may play the role of a support body as a base material of a thin film solar cell.
  • a reinforcing material 9 for reinforcing the compound semiconductor layer is attached on the back film 8.
  • the reinforcing material 9 it is preferable to use a PET film or the like with an adhesive material whose adhesive strength is reduced by irradiating UV light. Thereby, the reinforcing material 9 can be directly attached to the back film 8.
  • the substrate 1 is etched and removed using the first etching solution.
  • step 6 shown in FIG. 6 after the substrate is etched, the etching stop layer 2 is etched and removed by the second etching solution. Contact layer 3 is exposed on the outermost surface.
  • a first protective film 10 is formed on the contact layer 3 in order to protect the outermost surface of the cell body from chemical treatment (contact layer etching).
  • the protective film 10 is resistant to a second etching solution that etches the compound semiconductor layer in a later step, and if it is a photoresist, the processing is easy and reliable.
  • Step 8 shown in FIG. 8 after the protective film 10 is formed, an opening is formed in the protective film 10 by patterning the surface electrode using a glass mask.
  • the protective film 10 acts as an etching mask when the contact layer is etched in the next step.
  • step 9 shown in FIG. 9 after the protective film 10 is patterned, contact layer etching is performed.
  • the cell body is immersed in a second etching solution capable of etching the compound semiconductor layer, and the contact layer 3 is etched using the patterned protective film 10 as an etching mask.
  • the second etching solution is an alkaline solution. A part of the emitter layer 4 is exposed on the outermost surface.
  • the protective film 10 used as an etching mask for the contact layer etching is peeled off by a lift-off method.
  • a second protective film 11 is applied and formed to protect the outermost surface of the cell body from mesa etching.
  • a photoresist is used as the second protective film 11.
  • step 12 shown in FIG. 12 after the protective film 11 is formed, patterning is performed using a glass mask, so that an opening for defining the region of the solar cell element is formed in the protective film 11.
  • the protective film 11 acts as an etching mask at the time of subsequent mesa etching.
  • step 13 shown in FIG. 13 after patterning the protective film 11, the cell body is immersed in a third etching solution capable of etching the compound semiconductor layer, and the cell body is mesa-etched using the patterned protective film 11 as an etching mask. .
  • the emitter layer 4 and the base layer 5 are etched along the patterning.
  • the third etching solution is an alkaline solution and an acid solution.
  • the solar cell element region can be determined by mesa etching.
  • step 14 shown in FIG. 14 after the mesa etching, the protective film 11 used as an etching mask is peeled off by a lift-off method.
  • step 15 shown in FIG. 15 in order to perform patterning of the surface electrode, a third protective film 12 made of a photoresist is applied and formed on the entire outer surface of the etched cell body.
  • step 16 shown in FIG. 16 after forming the protective film 12, an opening is formed in the protective film 12 so that the surface electrode can be patterned by patterning using a glass mask. At this time, patterning is performed so that an opening is formed on the contact layer 3 patterned in the previous step.
  • step 17 shown in FIG. 17 after patterning the protective film 12, the cell main body to which the reinforcing material 9 is attached is put into the electrode forming apparatus.
  • a surface electrode 13 is formed on the protective film 12 and in the opening.
  • the surface electrode 13 is formed by applying an electrode material such as Al or Ag to the outermost surface of the cell body by screen printing, or by depositing an electrode material.
  • step 18 shown in FIG. 18 the cell body on which the electrode material is laminated is immersed in an organic solvent such as acetone.
  • the photoresist which is the protective film 12 is dissolved in an organic solvent, and the electrode material attached on the photoresist is removed together with the photoresist.
  • An electrode material selectively adheres only to the opening, and the surface electrode 13 is formed on the contact layer 3 to produce a thin film compound solar cell.
  • the thin film compound solar cell and the reinforcing material 9 are peeled off.
  • a peeling method when a UV peeling type material is used for the adhesive material, UV light is irradiated by a UV irradiation device to peel the reinforcing material 9 from the cell body.
  • the surface electrode 13 is baked. By performing the heat treatment, the contact resistance between the contact layer 3 and the surface electrode 13 can be reduced, and the adhesion between the contact layer 3 and the surface electrode 13 can be improved.
  • the thin film compound solar cell created in the wafer is separated into a plurality of solar cell elements.
  • a separation method a thin-film compound solar cell is fixed to a stage by vacuum adsorption or the like, and an opening formed by mesa etching is cut with a scriber to create a plurality of solar cell elements.
  • a metal ribbon such as Ag for electrical connection between each element is connected to the electrode pad on each electrode of the solar cell element by welding or the like.
  • the reinforcing material 9 is peeled off by directly attaching the reinforcing material 9 to the back film 8 as a base material without using an adhesive such as wax.
  • a solvent can be made unnecessary, and the problem that the back film 8 is peeled off by the solvent cannot occur. Since the back film 8 has heat resistance equal to or higher than the firing temperature of the front electrode 13, the front electrode 13 can be fired after the back film 8 is formed on the back electrode 7.
  • the adhesion with the cell body is improved, and each electrode does not peel off.
  • the contact resistance between the electrode and the compound semiconductor layer can be reduced, and the conversion efficiency is increased.
  • the surface electrode 13 is not covered with the surface film, the surface electrode 13 is exposed.
  • the metal ribbon can be connected after the substrate 1 is removed, so that it is not necessary to protect the metal ribbon when removing the substrate as in the prior art, and the number of processes can be reduced.
  • the film itself serves as a support. Therefore, even if an external force is applied, the solar battery cell does not break. And since the curvature of a photovoltaic cell changes with the thickness of a film, when forming a film, the curvature of a cell can be reduced by adjusting the thickness of a film to the whole cell according to thickness.
  • this invention is not limited to the said embodiment, Of course, many corrections and changes can be added to the said embodiment within the scope of the present invention.
  • the cell body is mesa-etched. Is done.
  • a protective film made of a photoresist is formed on the contact layer 3, and patterning for the surface electrode is performed.
  • the surface electrode 13 is formed as shown in FIG.
  • the contact layer 3 is etched by contact layer etching.
  • the surface electrode 13 is used as an etching mask.
  • the reinforcing material 9 is peeled from the cell body, and the surface electrode 13 is fired. And it isolate
  • the surface electrode 13 serves as a protective film in the contact layer etching, so that the step of forming the protective film for performing the contact layer etching can be omitted as compared with the above manufacturing method. Can be reduced.
  • a polyamic acid solution as a polyimide precursor is applied and baked to form a back film. That is, a varnish-like polyamic acid solution is applied onto the back electrode and baked stepwise to form a polyimide film.
  • the polyamic acid solvent is evaporated by baking at 120 ° C. for 1 hour, and the solution is temporarily cured. After this, the temperature for firing in steps is raised. Finally, the polyamic acid is polymerized, and the firing temperature is raised to a temperature at which the polyamic acid changes to a polyimide film, and the polyimide film is formed by performing main curing.
  • the reason for firing stepwise in this way is that when firing at a temperature at which the polyamic acid begins to polymerize from the beginning, the surface layer of the polyamic acid solution hardens before the inside, so it was included in the solution during firing. Bubbles remain inside, or the remaining bubbles expand, and a portion where the back electrode and the polyimide film do not adhere is generated.
  • the degree of shrinkage of the surface layer portion of the formed polyimide film becomes larger than that inside, and the warpage of the polyimide film is increased. Therefore, the solar battery cell is greatly warped. Therefore, by raising the firing temperature stepwise as described above, bubbles are not generated inside, and further, there is no difference in the degree of shrinkage between the surface layer portion and the inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】基材を設けても、電極の密着性を向上させることができるとともに、基材の剥離が生じることのない薄膜化合物太陽電池を製造する。 【解決手段】基板上に複数の化合物半導体層からなるセル本体が形成される。セル本体に裏面電極7が形成され、裏面電極7上に基材としての裏面フィルム8が形成される。裏面フィルム8上に補強材9が取り付けられる。セル本体から基板が分離され、セル本体がメサエッチングされる。エッチング後のコンタクト層3上に表面電極13が形成される。補強材9が剥離され、表面電極13が焼成される。作成された薄膜化合物太陽電池が複数の太陽電池素子に分離される。

Description

薄膜化合物太陽電池の製造方法
 本発明は、組成の異なる複数の層からなる化合物半導体層によって少なくとも1つのPN接合が形成されたセル本体を有する薄膜化合物太陽電池の製造方法に関する。
 従来の薄膜化合物太陽電池では、複数の化合物半導体層が積層されたセル本体の受光面に表面電極が設けられ、セル本体の受光面とは反対の面に裏面電極が設けられた構造とされる。
 この薄膜化合物太陽電池は、以下のように製造される。図24に示す工程A1において、基板101上に、化合物半導体層として、エッチングストップ層102、ベース層103、エミッタ層104、コンタクト層105がこの順に積層され、セル本体が形成される。
 図25に示す工程A2において、コンタクト層105の表面上にフォトレジスト等の保護膜が塗布され、露光によりパターニングした領域がエッチングされる。このコンタクト層エッチングにより、コンタクト層105のパターニングが行われる。パターニングが完了した後、塗布したレジストが除去される。次に、表面電極の形成のために再度フォトレジストが塗布されて、保護膜が形成される。
 図26に示す工程A3において、前の工程により作成したコンタクト層105の領域内に含まれるようにフォトレジストが露光によりパターニングされて、保護膜開口部が形成される。表面電極が積層された後、フォトレジストが除去されて、保護膜開口部にのみ選択的に表面電極106が形成される。この表面電極形成工程によって、前工程により形成したコンタクト層領域に表面電極の領域が含まれるようパターニングできる。
 表面電極106のパターニングが完了した後、表面電極106とコンタクト層105との接触抵抗成分を下げること、および密着力を上げるために、350℃程度の温度で表面電極106が焼成される。
 図27に示す工程A4において、太陽電池素子の所定形状(チップ形状)に対応したセル形成領域を確定するように、保護膜が露光によりパターニングされる。保護膜開口部が形成され、開口部がメサエッチングされる。その後、ダイシング等の機械的手段により、所定形状(チップ形状)の太陽電池素子に分離される。
 図28に示す工程A5において、太陽電池素子の受光面側にシリコーン樹脂などの透明な樹脂が塗布され、その上から透明な表面フィルム107が貼り合わせられる。これにより、樹脂を介して薄膜化合物太陽電池と表面フィルム107とが接着され、表面フィルム107が薄膜化合物太陽電池の基材の役割を果たす。
 図29に示す工程A6において、表面フィルム107を接着した太陽電池素子の受光面側に、ワックスを介してガラスやサファイア等の補強材108が貼り合わせられる。
 図30に示す工程A7において、補強材108を貼り合わせた太陽電池素子がエッチャントに浸漬される。エッチングストップ層102でエッチングが止まるため、セル本体だけを残し、基板101のみをエッチングにより除去できる。これにより、基板101と化合物半導体層が分離され、太陽電池素子のフレキシブル性が発現する。
 図31に示す工程A8において、露出した化合物半導体層の裏面に電極材料が蒸着されて、裏面電極109が形成される。
 図32に示す工程A9において、最後に補強材108と太陽電池素子とを接着するワックスがアセトンなどの有機溶剤により溶解され、太陽電池素子から補強材108が取り外される。
 上記のように製造された薄膜化合物太陽電池は、PN接合が形成されたセル本体の受光面に基材として表面フィルムが貼り付けられた構造である。
 ところで、表面フィルムは受光面側に貼り合わされるため、太陽電池素子の変換効率を損なわないよう、表面フィルムには高透明性が要求される。高透明性のフィルムは一般的に耐熱性が低い。従来の薄膜化合物太陽電池の製造方法では、工程上、表面フィルムが太陽電池素子に貼り合わされた後に基板の除去、裏面電極の形成が行われる。裏面電極形成後に、裏面電極と化合物半導体層との接触抵抗成分の低減、密着力向上のために、裏面電極の焼成が行う必要がある。この焼成温度が表面フィルムの耐熱温度よりも高いため、表面フィルムが貼り合わされた状態では裏面電極の焼成を行うことができない。そのため、化合物半導体層から裏面電極が剥離するという問題がある。
 また、太陽電池素子と補強材を接着するワックスを有機溶剤により剥離するが、そのとき、化合物半導体層と表面フィルムとを接着する樹脂も同時に有機溶剤に曝される。この樹脂は有機溶剤や水に曝されると、樹脂が表面フィルムと樹脂との界面あるいは化合物半導体層と樹脂との界面に浸透してしまい、表面フィルムが化合物半導体層から剥離しやすいという問題がある。
 さらに、基板をエッチャントにより除去するプロセスは、電気的接続をとるための金属リボンを太陽電池素子に溶接した後に行われる。基板をエッチングするためのエッチャントは、基板材料によってはフッ酸などを用いる必要がある。しかし、フッ酸は金属リボンと反応し、金属リボンを侵してしまう。基板のエッチング時には、露出した金属リボンを耐酸性の材料で覆うといった保護が必要であった。このための工数が増えるという問題がある。
 ここで、特許文献1に記載された化合物太陽電池の製造方法では、セル本体上に裏面電極を形成し、裏面電極上に支持板を取り付け、セル本体から基板を分離して、露出したセル本体の面に表面電極を形成してから支持板を取り外す。
 特許文献1に記載された化合物太陽電池では、最初に裏面電極が形成される。そのため、裏面電極を焼成した後に、表面フィルムを貼り合わせることが可能となる。ただし、上記文献の化合物太陽電池には、基材としての表面ファイルは設けられていないので、表面フィルムが剥離する問題は生じない。
特開2004-327889号公報
 特許文献1記載の太陽電池セルの構造では、半導体エピタキシャル層と裏面電極のみからなる構造のため、曲げなどによる外力が加わると、容易にエピタキシャル層が割れてしまう問題がある。また、半導体エピタキシャル層と裏面電極のみであると、太陽電池セルの反りをコントロールすることができなかった。
 そこで、本発明は、上記に鑑み、基材を設けても、電極の密着性を向上させることができるとともに、基材の剥離が生じることがなく、外力に耐えられる薄膜化合物太陽電池の製造方法の提供を目的とする。
 本発明は、組成の異なる複数の化合物半導体層によって少なくとも1つのPN接合が形成されたセル本体を有する薄膜化合物太陽電池の製造方法であって、基板側からエッチング液の染み込みを押さえるエッチングストップ層、コンタクト層、第1の導電型の化合物半導体からなるエミッタ層、前記エミッタ層とPN接合を形成するベース層、バッファ層を形成して、セル本体を作成する工程と、セル本体上に裏面電極を形成する工程と、裏面電極を焼成する工程と、裏面電極上に基材を形成する工程と、基材上に補強材を取り付ける工程と、セル本体から基板を分離する工程と、分離されたセル本体の露出面に表面電極を形成する工程と、補強材を剥離する工程と、表面電極を焼成する工程とを備えている。そして、表面電極の焼成後に、複数の太陽電池素子に分離する工程と、各電極に金属リボンを接続する工程とを備えている。
 初期に裏面電極を形成することにより、裏面電極の焼成が可能となり、密着性の向上および接触抵抗の低減を図れる。また、最後に金属リボンを接続することにより、金属リボンに対する不要な保護をなくせる。
 セル本体は、基板側に積層されたエッチングストップ層およびコンタクト層を有し、基板を分離した後にセル本体からエッチングストップ層を除去する工程と、コンタクト層を所定のパターンにエッチングする工程と、セル本体をメサエッチングする工程とを備え、メサエッチング後のコンタクト層上に表面電極を形成する。
 あるいは、基板を分離した後にセル本体からエッチングストップ層を除去する工程と、セル本体をメサエッチングする工程と、コンタクト層上に表面電極を形成した後に、コンタクト層をエッチングする工程とを備えている。この場合、表面電極がエッチングマスクとして機能する。
 基材は、表面電極の焼成温度以上の耐熱性を有する材料とされ、例えば基材は、フィルム状のポリイミドとされる。ポリイミドフィルムは、樹脂状のポリイミドを塗布、焼成することによって形成される。あるいは、ポリイミドフィルムは、ポリイミド前駆体であるポリアミック酸の溶液を塗布、焼成することによって形成される。そして、ポリイミドフィルムの厚さは15μm以下とされる。
 ここで、裏面電極上に、接着剤を用いてポリイミドフィルムを貼り付けることは、接着剤自体の耐熱性の問題から技術的に不可能である。そこで、上記のような方法で基材を形成することにより、基材の形成後に表面電極の焼成を行える。
 上記の製造方法により、少なくとも1つのPN接合が形成された化合物半導体層と、該化合物半導体層の一方の表面に形成された表面電極と、前記化合物半導体層の他方の表面に形成されたポリイミドフィルムと、前記化合物半導体層とポリイミドフィルムに挟持された裏面電極とを有する薄膜化合物太陽電池が製造される。なお、化合物半導体層はエピタキシャル成長による単結晶薄膜からなる。
 本発明によると、表面電極および裏面電極が焼成されるので、各電極の密着性を高めることができるとともに、接触抵抗の低減を図ることができる。しかも、耐熱性の基材を使用しているので、補強材を取り除いた後、基材を取り付けたまま電極の焼成を行うことができる。これにより、補強材は熱処理されないので、補強材の再利用が可能となる。
 また、基材にポリイミドなどの高耐熱性のフィルムを用いることにより、フィルム自体が支持体の役目を果たす。したがって、外力が加わっても太陽電池セルは割れることはない。しかも、フィルムの厚さにより、太陽電池セルの反りが変わるため、フィルムの形成プロセス中において、セルの反りをコントロールできる。
本発明の複数の化合物半導体層からなるセル本体形成時の薄膜化合物太陽電池の断面図 裏面電極形成時の薄膜化合物太陽電池の断面図 裏面フィルム形成時の薄膜化合物太陽電池の断面図 補強材取付時の薄膜化合物太陽電池の断面図 基板除去時の薄膜化合物太陽電池の断面図 エッチングストップ層除去時の薄膜化合物太陽電池の断面図 第1の保護膜形成時の薄膜化合物太陽電池の断面図 保護膜パターニング時の薄膜化合物太陽電池の断面図 コンタクト層エッチング時の薄膜化合物太陽電池の断面図 保護膜剥離時の薄膜化合物太陽電池の断面図 第2の保護膜形成時の薄膜化合物太陽電池の断面図 保護膜パターニング時の薄膜化合物太陽電池の断面図 メサエッチング時の薄膜化合物太陽電池の断面図 保護膜剥離時の薄膜化合物太陽電池の断面図 第3の保護膜形成時の薄膜化合物太陽電池の断面図 表面電極パターニング時の薄膜化合物太陽電池の断面図 表面電極形成時の薄膜化合物太陽電池の断面図 保護膜除去時の薄膜化合物太陽電池の断面図 補強材剥離時の薄膜化合物太陽電池の断面図 太陽電池素子に分離時の薄膜化合物太陽電池の断面図 他の製造方法におけるコンタクト層エッチング前にメサエッチングした時の薄膜化合物太陽電池の断面図 他の製造方法における表面電極形成時の薄膜化合物太陽電池の断面図 他の製造方法におけるコンタクト層エッチング時の薄膜化合物太陽電池の断面図 従来の製造方法におけるセル本体形成時の薄膜化合物太陽電池の断面図 コンタクト層エッチング時の薄膜化合物太陽電池の断面図 表面電極形成時の薄膜化合物太陽電池の断面図 太陽電池素子に分離時の薄膜化合物太陽電池の断面図 表面フィルム形成時の薄膜化合物太陽電池の断面図 補強材取付時の薄膜化合物太陽電池の断面図 基板除去時の薄膜化合物太陽電池の断面図 裏面電極形成時の薄膜化合物太陽電池の断面図 補強材剥離時の薄膜化合物太陽電池の断面図
1 基板
2 エッチングストップ層
3 コンタクト層
4 エミッタ層
5 ベース層
6 バッファ層
7 裏面電極
8 裏面フィルム
9 補強材
10 第1の保護膜
11 第2の保護膜
12 第3の保護膜
13 表面電極
 本実施形態の薄膜化合物太陽電池は、組成の異なる複数の化合物半導体層が積層されて、少なくとも1つのPN接合が形成されたセル本体と、セル本体の受光面に形成された表面電極と、セル本体の反対面に形成された裏面電極と、薄膜太陽電池用基材とを備えた構造とされる。基材は、セル本体の反対面に形成され、裏面電極は、セル本体と基材とに挟持される。
 この構造の太陽電池の製造方法について説明する。図1に示す工程1において、基板1の上に、基板側からエッチング液の染み込みを押さえるエッチングストップ層2、コンタクト層3、第1の化合物半導体からなるエミッタ層4、エミッタ層4とPN接合を形成するベース層5、バッファ層6がこの順に積層して、単結晶薄膜からなる化合物半導体層が形成される。基板1は、例えばウエハ状の形態を有し、エッチングストップ層2、コンタクト層3、エミッタ層4、ベース層5、バッファ層6といった化合物半導体層が周知のプロセス、例えば特許文献1に記載されたエピタキシャル成長法により積層されて、セル本体が形成される。
 基板1としては、Ge,GaP,GaAsなどのウェハを用いることができる。化合物半導体層としては、例えばInGaP層といったエッチングストップ層2、AlInP層といったコンタクト層3、N型のInGaP層といったエミッタ層4、P型のInGaP層といったベース層5、AlInP層といったバッファ層6とされる。
 なお、セル本体を5層構造としたが、これに限るものでない。セル本体は、例えば4層、6層などであってもよい。また、エッチングストップ層2、コンタクト層3、エミッタ層4、ベース層5、バッファ層6の他に、BSF(Back Surface Field:裏面電界層)や窓層、多接合型太陽電池のトンネル接合層、多接合型太陽電池の他のエミッタ層、他のベース層などの化合物半導体層を含むことができる。
 すなわち、基板1の上に形成されたセル本体は、組成の異なる複数の化合物半導体層からなり、複数の化合物半導体層によって少なくとも1つのPN接合が形成されていればよい。また、複数の化合物半導体層は、少なくともコンタクト層エッチング用の第2のエッチング液でエッチングされ易くかつメサエッチング用の第3のエッチング液でされにくい層と、第2のエッチング液でエッチングされにくくかつ第3のエッチング液でエッチングされ易い層とを含むものであればよい。前者の層はコンタクト層3であり、後者の層はエミッタ層4、ベース層5である。
 図2に示す工程2において、積層形成された各化合物半導体層(エッチングストップ層2、コンタクト層3、エミッタ層4、ベース層5、バッファ層6)の最外表面であるバッファ層6の表面上に裏面電極7が形成される。裏面電極7は化合物半導体層全面に形成される。裏面電極7の形成方法は、Al、Ag等の金属ペーストをセル本体の最外表面にスクリーン印刷によって塗布して行われる。裏面電極7が形成された後、熱処理が施され、裏面電極7が焼成される。したがって、化合物半導体層表面と裏面電極7との間の接触抵抗を低減することができ、化合物半導体層表面と裏面電極7との密着力を向上させることができる。
 図3に示す工程3において、裏面電極7の形成後、裏面電極7上に高耐熱性の裏面フィルム8が形成される。裏面フィルム8は、300℃以上の耐熱性を有する材料とされ、例えばポリイミドが用いられる。裏面フィルム8の形成方法としては、常温においてワニス状の樹脂をスピンコート法等により、裏面電極7上に塗布後、焼成する方法があげられる。
 ポリイミドのワニスを塗布・焼成して形成する場合は、ポリイミドの膜厚を制御する必要がある。なぜならば、ポリイミドの膜厚が20μm以上の場合、ポリイミド膜中に気泡が混入してしまい、平坦な膜が焼成できず、しかもポリイミド膜の反りも激しいため、セル本体にダメージを与えてしまうからである。ポリイミドの膜厚を薄くしていくと、20μm以下の範囲内では、気泡の混入は無くなり、膜の反りも減少していく。ポリイミドの膜厚が7μm程度であると、反り量が最も少なくなり、それよりも薄くなると反りの方向が逆転し、再び反り量が大きくなっていく。したがって、ポリイミドの反り量とセル本体に対する基材としての弾性を考慮した結果、ポリイミドの膜厚として、5~15μmの範囲がセル本体を作製する上で適当であり、特に7μm程度の膜厚が最適である。なお、上記では、ワニス状のポリイミドを焼成することにより膜を形成する方法をあげたが、これ以外にも熱融着型のフィルムを用いて加熱しながら圧着する方法がある。これにより、薄膜太陽電池の基材として裏面フィルム8が支持体の役目を果たすように形成される。しかも、裏面フィルムの膜厚を15μm以下とすることにより、反りの少ない基材を形成でき、セル本体の反りをコントロールして、セル本体の反りが低減される。
 図4に示す工程4において、裏面フィルム8の形成後、化合物半導体層を補強するための補強材9が裏面フィルム8の上に貼り付けられる。補強材9としては、UV光を照射することにより粘着力が低下する粘着材のついたPETフィルム等を用いるとよい。これにより、補強材9を直接裏面フィルム8に取り付けることができる。
 図5に示す工程5において、補強材9を貼り付け後、第1のエッチング液を用いて、基板1がエッチングされて、除去される。第1のエッチング液としては、基板材料によって使い分けるが、Geの場合、フッ酸:過酸化水素水:水=1:1:4を用いるとよい。エッチングストップ層2は第1のエッチング液によりエッチングされにくい層であるため、基板がエッチングされて、エッチングストップ層2が露出すると、エッチングの進行が止まる。これにより、化合物半導体層のみを残して基板1だけを分離することができる。
 図6に示す工程6において、基板エッチングを行った後、エッチングストップ層2が第2のエッチング液によりエッチングされて除去される。コンタクト層3が最外表面に露出する。
 図7に示す工程7において、セル本体の最外表面を化学処理(コンタクト層エッチング)から保護するために、コンタクト層3上に第1の保護膜10が塗布されて形成される。保護膜10は後の工程で化合物半導体層をエッチングする第2のエッチング液に対する耐性を有するものとされ、フォトレジストであれば、処理が容易、確実である。
 図8に示す工程8において、保護膜10の形成後に、ガラスマスクを用いて表面電極用のパターニングすることにより、保護膜10に開口部が形成される。保護膜10は、次工程のコンタクト層エッチング時にエッチングマスクとして作用する。
 図9に示す工程9において、保護膜10をパターニングした後、コンタクト層エッチングが行われる。化合物半導体層をエッチングできる第2のエッチング液にセル本体が浸漬され、パターニングされた保護膜10をエッチングマスクとしてコンタクト層3がエッチングされる。第2のエッチング液はアルカリ溶液とされる。エミッタ層4の一部が最外表面に露出する。
 図10に示す工程10において、コンタクト層3のエッチング後、コンタクト層エッチングのエッチングマスクとして用いた保護膜10がリフトオフ法により剥離される。
 図11に示す工程11において、セル本体の最外表面をメサエッチングから保護するために、第2の保護膜11が塗布されて形成される。第2の保護膜11として、フォトレジストが用いられる。
 図12に示す工程12において、保護膜11の形成後、ガラスマスクを用いてパターニングすることにより、保護膜11に太陽電池素子の領域を確定するための開口部が形成される。保護膜11は、後工程のメサエッチング時にエッチングマスクとして作用する。
 図13に示す工程13において、保護膜11のパターニング後、化合物半導体層をエッチングできる第3のエッチング液にセル本体が浸漬され、パターニングされた保護膜11をエッチングマスクとしてセル本体がメサエッチングされる。パターニングに沿ってエミッタ層4およびベース層5がエッチングされる。第3のエッチング液はアルカリ溶液および酸溶液とされる。メサエッチングにより、太陽電池素子領域を確定することができる。
 図14に示す工程14において、メサエッチング後、エッチングマスクとして用いた保護膜11がリフトオフ法により剥離される。
 図15に示す工程15において、表面電極のパターニングを行うために、エッチングされたセル本体の外表面全体に、フォトレジストからなる第3の保護膜12が塗布されて形成される。
 図16に示す工程16において、保護膜12の形成後、ガラスマスクを用いてパターニングすることにより、保護膜12に表面電極をパターニングできるよう開口部が形成される。このとき、前工程でパターニングされたコンタクト層3上に開口部が形成されるように、パターニングが行われる。
 図17に示す工程17において、保護膜12のパターニング後、補強材9を取り付けられたセル本体が電極形成装置に投入される。保護膜12上および開口部内に表面電極13が形成される。表面電極13の形成は、Al、Ag等の電極材料をセル本体の最外表面にスクリーン印刷によって塗布して行われる、あるいは電極材料を蒸着して行われる。
 図18に示す工程18において、電極材料を積層したセル本体がアセトンなどの有機溶剤に浸漬される。保護膜12であるフォトレジストが有機溶剤に溶解され、フォトレジスト上に付着した電極材料がフォトレジストとともに除去される。開口部にのみ選択的に電極材料が付着して、コンタクト層3上に表面電極13が形成され、薄膜化合物太陽電池が作成される。
 図19に示す工程19において、表面電極13の形成後、薄膜化合物太陽電池と補強材9とが剥離される。剥離方法としては、粘着材にUV剥離型の材料を用いている場合、UV照射装置によりUV光を照射し、補強材9をセル本体から剥離する。
 図20に示す工程20において、補強材9の剥離後、表面電極13が焼成される。熱処理を施すことにより、コンタクト層3と表面電極13との接触抵抗を低減でき、コンタクト層3と表面電極13との密着性を向上させることができる。次に、ウエハ内に作成された薄膜化合物太陽電池が複数の太陽電池素子に分離される。分離の方法としては、薄膜化合物太陽電池がステージに真空吸着等で固定され、メサエッチングにより形成された開口部がスクライバーで切断され、複数の太陽電池素子が作成される。
 最後に、太陽電池素子の各電極上の電極パッドに各素子間の電気的な接続を行うためのAg等の金属リボンが溶接等により接続される。
 以上のような製造方法によって製造された薄膜化合物太陽電池において、補強材9を基材としての裏面フィルム8にワックスといった接着剤を用いずに直接貼り付けることにより、補強材9を剥離するときの溶剤を不要にでき、溶剤によって裏面フィルム8が剥離するという問題は起こり得ない。裏面フィルム8は表面電極13の焼成温度以上の耐熱性を有するので、裏面フィルム8を裏面電極7上に形成した後に表面電極13の焼成を行うことができる。
 表面電極13および裏面電極7が焼成されることにより、セル本体との密着性が向上して、各電極が剥離することはない。しかも、電極と化合物半導体層との接触抵抗を低減でき、変換効率が高まる。
 また、表面電極13を表面フィルムで覆わない構造であるので、表面電極13が露出している。基板1を除去した後に金属リボンを接続することができ、従来のような基板除去時の金属リボンの保護を行う必要がなくなり、工程の削減を図れる。
 さらに、基材にポリイミドなどの高耐熱性のフィルムを用いることにより、フィルム自体が支持体の役目を果たす。したがって、外力が加わっても太陽電池セルは割れることはない。しかも、フィルムの厚さにより太陽電池セルの反りが変わるため、フィルムを形成するとき、フィルムの厚さをセル全体に厚さに応じて調節することにより、セルの反りを低減することができる。
 なお、本発明は、上記実施形態に限定されるものではなく、本発明の範囲内で上記実施形態に多くの修正および変更を加え得ることは勿論である。薄膜化合物太陽電池の他の製造方法として、上記の工程4の後、図21に示すように、セル本体から基板1が分離されて、エッチングストップ層2が除去された後、セル本体がメサエッチングされる。コンタクト層3上にフォトレジストからなる保護膜が形成され、表面電極用のパターニングが行われる。保護膜および開口部内のコンタクト層3上に電極材料が積層され、保護膜が除去されると、図22に示すように表面電極13が形成される。
 この後、図23に示すように、コンタクト層エッチングによりコンタクト層3がエッチングされる。このとき、表面電極13がエッチングマスクと利用される。以降、補強材9がセル本体から剥離され、表面電極13が焼成される。そして、複数の太陽電池素子に分離され、最後に金属リボンが接続される。
 この製造方法によれば、コンタクト層エッチングにおいて、表面電極13が保護膜の役割を果たすので、上記の製造方法に比べて、コンタクト層エッチングを行うために保護膜を形成する工程を省略することができ、工程を削減できる。
 また、基材である裏面フィルムの他の製造方法として、ポリイミド前駆体であるポリアミック酸の溶液を塗布、焼成して、裏面フィルムを形成する。すなわち、ワニス状のポリアミック酸の溶液が裏面電極上に塗布され、段階的に焼成されて、ポリイミドフィルムが形成される。
 具体的には、スピンコート法などによりポリアミック酸溶液が裏面電極上に塗布された後、まず120℃で1時間焼成することにより、ポリアミック酸の溶媒が蒸発され、溶液が仮硬化される。この後、段階的に焼成する温度が上げられていく。最終的にポリアミック酸が重合し、ポリイミド膜に変化する温度まで焼成温度が上げられ、本硬化されることにより、ポリイミド膜が形成される。
 このように段階的に焼成する理由として、最初からポリアミック酸が重合し始める温度で焼成すると、ポリアミック酸溶液の表層が内部よりも先に硬化してしまうため、焼成の際に溶液に内包された気泡が内部に残ってしまったり、残留した気泡が膨張して、裏面電極とポリイミド膜が密着しない箇所が発生する。これに加えて、急激にポリアミック酸溶液を硬化させると、形成されたポリイミド膜の表層部の収縮度合いが内部に比べて大きくなり、ポリイミド膜の反りが大きくなってしまう。そのため、太陽電池セルが大きく反ってしまう。そこで、上記のように焼成温度を段階的に上げていくことにより、内部に気泡が発生せず、しかも表層部と内部での収縮度合いに差が生じない。

Claims (11)

  1. 組成の異なる複数の化合物半導体層によって少なくとも1つのPN接合が形成されたセル本体を有する薄膜化合物太陽電池の製造方法であって、基板側からエッチング液の染み込みを押さえるエッチングストップ層、コンタクト層、第1の導電型の化合物半導体からなるエミッタ層、前記エミッタ層とPN接合を形成するベース層、バッファ層を形成して、セル本体を作成する工程と、化合物半導体側表面上に裏面電極を形成する工程と、裏面電極を焼成する工程と、裏面電極上に基材を形成する工程と、基材上に補強材を取り付ける工程と、セル本体から基板を分離する工程と、分離されたセル本体の露出面に表面電極を形成する工程と、補強材を剥離する工程と、表面電極を焼成する工程とを備えたことを特徴とする薄膜化合物太陽電池の製造方法。
  2. 表面電極の焼成後に、複数の太陽電池素子に分離する工程と、各電極に金属リボンを接続する工程とを備えたことを特徴とする請求項1記載の薄膜化合物太陽電池の製造方法。
  3. セル本体は、基板側に積層されたエッチングストップ層およびコンタクト層を有し、基板を分離した後にセル本体からエッチングストップ層を除去する工程と、コンタクト層を所定のパターンにエッチングする工程と、セル本体をメサエッチングする工程とを備え、メサエッチング後のコンタクト層上に表面電極を形成することを特徴とする請求項1または2記載の薄膜化合物太陽電池の製造方法。
  4. セル本体は、基板側に積層されたエッチングストップ層およびコンタクト層を有し、基板を分離した後にセル本体からエッチングストップ層を除去する工程と、セル本体をメサエッチングする工程と、コンタクト層上に表面電極を形成した後に、コンタクト層をエッチングする工程とを備えたことを特徴とする請求項1または2記載の薄膜化合物太陽電池の製造方法。
  5. 基材は、表面電極の焼成温度以上の耐熱性を有する材料とされたことを特徴とする請求項1~4のいずれかに記載の薄膜化合物太陽電池の製造方法。
  6. 基材は、フィルム状のポリイミドとされたことを特徴とする請求項5記載の薄膜化合物太陽電池の製造方法。
  7. ポリイミドフィルムは樹脂状のポリイミドを塗布、焼成することによって形成されることを特徴とする請求項6記載の薄膜化合物太陽電池の製造方法。
  8. ポリイミドフィルムはポリイミド前駆体であるポリアミック酸の溶液を塗布、焼成することによって形成されることを特徴とする請求項6記載の薄膜化合物太陽電池の製造方法。
  9. ポリイミドフィルムの厚さは15μm以下であることを特徴とする請求項6~8のいずれかに記載の薄膜化合物太陽電池の製造方法。
  10. 少なくとも1つのPN接合が形成された化合物半導体層と、該化合物半導体層の一方の表面に形成された表面電極と、前記化合物半導体層の他方の表面に形成されたポリイミドフィルムと、前記化合物半導体層とポリイミドフィルムに挟持された裏面電極とを有することを特徴とする薄膜化合物太陽電池。
  11. 化合物半導体層がエピタキシャル成長による単結晶薄膜からなることを特徴とする請求項10記載の薄膜化合物太陽電池。
PCT/JP2010/052655 2009-02-26 2010-02-22 薄膜化合物太陽電池の製造方法 WO2010098293A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10746174.1A EP2403003B1 (en) 2009-02-26 2010-02-22 Method for manufacturing thin film compound solar cell
US13/202,678 US20110303281A1 (en) 2009-02-26 2010-02-22 Method for manufacturing thin film compound solar cell
JP2011501582A JP5554772B2 (ja) 2009-02-26 2010-02-22 薄膜化合物太陽電池の製造方法
US14/060,985 US9070819B2 (en) 2009-02-26 2013-10-23 Method for manufacturing thin film compound solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-044415 2009-02-26
JP2009044415 2009-02-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/202,678 A-371-Of-International US20110303281A1 (en) 2009-02-26 2010-02-22 Method for manufacturing thin film compound solar cell
US14/060,985 Division US9070819B2 (en) 2009-02-26 2013-10-23 Method for manufacturing thin film compound solar cell

Publications (1)

Publication Number Publication Date
WO2010098293A1 true WO2010098293A1 (ja) 2010-09-02

Family

ID=42665500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052655 WO2010098293A1 (ja) 2009-02-26 2010-02-22 薄膜化合物太陽電池の製造方法

Country Status (4)

Country Link
US (2) US20110303281A1 (ja)
EP (1) EP2403003B1 (ja)
JP (1) JP5554772B2 (ja)
WO (1) WO2010098293A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141281A1 (ja) * 2012-03-21 2013-09-26 シャープ株式会社 薄膜化合物太陽電池およびその製造方法
WO2014002824A1 (ja) * 2012-06-26 2014-01-03 シャープ株式会社 薄膜太陽電池セルおよびその製造方法
JP2014017366A (ja) * 2012-07-09 2014-01-30 Sharp Corp 薄膜化合物太陽電池セルおよびその製造方法
JP2019057536A (ja) * 2017-09-19 2019-04-11 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
US11563132B2 (en) 2018-01-29 2023-01-24 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8912617B2 (en) * 2011-10-27 2014-12-16 Solar Junction Corporation Method for making semiconductor light detection devices
US9263611B2 (en) 2011-11-17 2016-02-16 Solar Junction Corporation Method for etching multi-layer epitaxial material
US9142615B2 (en) 2012-10-10 2015-09-22 Solar Junction Corporation Methods and apparatus for identifying and reducing semiconductor failures
JPWO2017057029A1 (ja) * 2015-09-28 2018-07-19 シャープ株式会社 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法
CN112349796A (zh) * 2019-08-06 2021-02-09 东泰高科装备科技有限公司 砷化镓电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289884A (ja) * 2001-03-27 2002-10-04 Sumitomo Electric Ind Ltd 太陽電池、太陽電池装置
JP2004327889A (ja) 2003-04-28 2004-11-18 Sharp Corp 化合物太陽電池およびその製造方法
JP2007324563A (ja) * 2006-06-02 2007-12-13 Emcore Corp 多接合太陽電池における変成層
JP2008166794A (ja) * 2006-12-27 2008-07-17 Emcore Corp フレキシブル膜上に載置された反転メタモルフィックソーラーセル
JP2008270604A (ja) * 2007-04-23 2008-11-06 Sharp Corp 化合物半導体太陽電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370510A (en) * 1980-09-26 1983-01-25 California Institute Of Technology Gallium arsenide single crystal solar cell structure and method of making
US4392297A (en) * 1980-11-20 1983-07-12 Spire Corporation Process of making thin film high efficiency solar cells
US4514579A (en) * 1984-01-30 1985-04-30 Energy Conversion Devices, Inc. Large area photovoltaic cell and method for producing same
US4681654A (en) * 1986-05-21 1987-07-21 International Business Machines Corporation Flexible film semiconductor chip carrier
US5538902A (en) * 1993-06-29 1996-07-23 Sanyo Electric Co., Ltd. Method of fabricating a photovoltaic device having a three-dimensional shape
JPH08107281A (ja) * 1994-10-06 1996-04-23 Sumitomo Bakelite Co Ltd 多層フレキシブルプリント回路板およびその製造方法
KR100304161B1 (ko) * 1996-12-18 2001-11-30 미다라이 후지오 반도체부재의제조방법
ES2149137B1 (es) * 1999-06-09 2001-11-16 Univ Madrid Politecnica Celula solar fotovoltaica de semiconductor de banda intermedia.
US6410362B1 (en) * 2000-08-28 2002-06-25 The Aerospace Corporation Flexible thin film solar cell
US8067687B2 (en) * 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
JP2007317834A (ja) * 2006-05-25 2007-12-06 Toyobo Co Ltd フィルム状太陽電池
US20080223436A1 (en) * 2007-03-15 2008-09-18 Guardian Industries Corp. Back reflector for use in photovoltaic device
WO2009012345A2 (en) * 2007-07-16 2009-01-22 Ascent Solar Technologies, Inc. Hybrid multi-junction photovoltaic cells and associated methods
US20090038679A1 (en) * 2007-08-09 2009-02-12 Emcore Corporation Thin Multijunction Solar Cells With Plated Metal OHMIC Contact and Support
US20100200063A1 (en) * 2009-02-12 2010-08-12 Derek Djeu Thin film solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289884A (ja) * 2001-03-27 2002-10-04 Sumitomo Electric Ind Ltd 太陽電池、太陽電池装置
JP2004327889A (ja) 2003-04-28 2004-11-18 Sharp Corp 化合物太陽電池およびその製造方法
JP2007324563A (ja) * 2006-06-02 2007-12-13 Emcore Corp 多接合太陽電池における変成層
JP2008166794A (ja) * 2006-12-27 2008-07-17 Emcore Corp フレキシブル膜上に載置された反転メタモルフィックソーラーセル
JP2008270604A (ja) * 2007-04-23 2008-11-06 Sharp Corp 化合物半導体太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2403003A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141281A1 (ja) * 2012-03-21 2013-09-26 シャープ株式会社 薄膜化合物太陽電池およびその製造方法
WO2014002824A1 (ja) * 2012-06-26 2014-01-03 シャープ株式会社 薄膜太陽電池セルおよびその製造方法
TWI496308B (zh) * 2012-06-26 2015-08-11 Sharp Kk Thin film solar cell and manufacturing method thereof
JPWO2014002824A1 (ja) * 2012-06-26 2016-05-30 シャープ株式会社 薄膜太陽電池セルおよびその製造方法
JP2014017366A (ja) * 2012-07-09 2014-01-30 Sharp Corp 薄膜化合物太陽電池セルおよびその製造方法
JP2019057536A (ja) * 2017-09-19 2019-04-11 株式会社東芝 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
US11563132B2 (en) 2018-01-29 2023-01-24 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic system

Also Published As

Publication number Publication date
JPWO2010098293A1 (ja) 2012-08-30
JP5554772B2 (ja) 2014-07-23
EP2403003A1 (en) 2012-01-04
US20140051205A1 (en) 2014-02-20
EP2403003A4 (en) 2013-06-05
US20110303281A1 (en) 2011-12-15
US9070819B2 (en) 2015-06-30
EP2403003B1 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
JP5554772B2 (ja) 薄膜化合物太陽電池の製造方法
TWI511317B (zh) 安裝在撓性膜上的倒置變質太陽能電池
JP2017195401A (ja) 薄い結晶半導体吸収体を使用する高効率ソーラー光発電セルおよびモジュール
CN108598218B (zh) 一种外延层刚性-柔性衬底无机键合转移方法
CN112789735B (zh) 生产在两个方向上弯曲的太阳能面板的方法
KR102103067B1 (ko) 낮은 영률을 가지는 신축성층 위 단단한 아일랜드 패턴의 제작 방법 및 이를 이용한 신축성 전자소자 플랫폼
AU2006276661A1 (en) Method for manufacturing photoelectric conversion element and the photoelectric conversion element
WO2007060743A1 (ja) 太陽電池セル
JP4315742B2 (ja) 半導体薄膜の製造方法及び半導体装置の製造方法
CN108269864B (zh) 一种柔性太阳能电池及其制备方法
JP6837877B2 (ja) 太陽電池アレイの製造方法および太陽電池アレイ
JPH114008A (ja) 薄膜太陽電池の製造方法
JP2014017366A (ja) 薄膜化合物太陽電池セルおよびその製造方法
WO2017057029A1 (ja) 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法
JP2013149773A (ja) 薄膜化合物太陽電池の製造方法
JP6915054B2 (ja) 光電変換装置およびそれを備える太陽電池モジュール
JP5980923B2 (ja) 薄膜太陽電池セルおよびその製造方法
US10438814B2 (en) Method for manufacturing wiring pattern, method for manufacturing transistor, and member for transfer
CN110867518A (zh) 一种柔性显示面板的制备方法
JP2000124491A (ja) 太陽電池モジュールおよびその製造方法
WO2020209010A1 (ja) 電子デバイスの製造方法
JP5225429B2 (ja) 半導体薄膜の製造方法及び半導体装置の製造方法
JP4762753B2 (ja) 薄膜単結晶化合物太陽電池の製造方法
CN114447155B (zh) 柔性太阳能电池及半导体器件的栅电极的制作方法
JP5840544B2 (ja) 薄膜化合物太陽電池およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746174

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011501582

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010746174

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13202678

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE