WO2013141281A1 - 薄膜化合物太陽電池およびその製造方法 - Google Patents

薄膜化合物太陽電池およびその製造方法 Download PDF

Info

Publication number
WO2013141281A1
WO2013141281A1 PCT/JP2013/058008 JP2013058008W WO2013141281A1 WO 2013141281 A1 WO2013141281 A1 WO 2013141281A1 JP 2013058008 W JP2013058008 W JP 2013058008W WO 2013141281 A1 WO2013141281 A1 WO 2013141281A1
Authority
WO
WIPO (PCT)
Prior art keywords
back electrode
electrode
solar cell
forming
thin film
Prior art date
Application number
PCT/JP2013/058008
Other languages
English (en)
French (fr)
Inventor
洋司 山口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/387,017 priority Critical patent/US20150075604A1/en
Publication of WO2013141281A1 publication Critical patent/WO2013141281A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin film compound solar cell and a manufacturing method thereof.
  • Patent Document 1 As a prior document disclosing a method for manufacturing a thin film compound solar cell, there is International Publication No. 2010-098293 (Patent Document 1).
  • a back electrode, a photoelectric conversion layer, and a surface electrode are formed on a substrate made of a film-like polyimide.
  • Patent Document 2 JP 2009-44049 A
  • a second electrode having a second polarity formed on a surface different from the first electrode The 1st electrode of the 1st photovoltaic cell of the plurality of photovoltaic cells and the 2nd electrode of the 2nd photovoltaic cell are connected by the interconnector.
  • a solar battery cell of a thin film compound solar battery is separated into pieces by cutting between a plurality of photoelectric conversion layers formed on the substrate at intervals with a Thomson blade. Since the back electrode was formed on the entire surface of the substrate, the substrate and the back electrode were cut together with a Thomson blade when the solar cells were separated.
  • Thread-shaped portions that are poorly cut may occur at the edges of the solar cells thus separated.
  • This thread-like portion is composed of a part of the base material and a part of the back electrode.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a thin film compound solar cell and a method for manufacturing the same, which can prevent a short circuit from occurring due to the filamentous portion and obtain a stable output. To do.
  • a thin-film compound solar cell includes a base material made of a thin film, a back electrode located on the base material, a photoelectric conversion layer located on the back electrode, a position above the back electrode, And a first surface electrode having a first polarity and a second surface electrode having a second polarity different from the first polarity located on the photoelectric conversion layer.
  • the edge of the substrate is positioned outside while being spaced apart from the edge of the back electrode in plan view and surrounds the entire circumference of the back electrode.
  • the edge of the substrate is formed by a cut surface.
  • the edge of the back electrode is constituted by a corroded surface exposed by etching the material of the back electrode or a deposition surface deposited by depositing the material of the back electrode.
  • a base material consists of film-form resin.
  • the resin is polyimide.
  • the said cut surface is a cut surface cut
  • the manufacturing method of the thin film compound solar cell based on this invention was patterned, the process of forming a photoelectric converting layer on a board
  • the Thomson blade in the above cutting step, is pressed against the position of the groove for cutting.
  • the step of forming the back electrode patterned so as to have the groove includes a step of forming the back electrode on the photoelectric conversion layer, and a step of etching by forming a resist on the back electrode. Including.
  • the step of forming the back electrode patterned so as to have the groove includes a step of forming a resist at a position where the groove is to be formed on the photoelectric conversion layer, A step of vapor-depositing the material of the back electrode on the resist, and a step of removing both the resist and the material of the back electrode deposited on the resist.
  • FIG. 2 is a cross-sectional view seen from the direction of arrows II-II in FIG. It is sectional drawing which shows the state which formed the compound semiconductor layer on the board
  • FIG. 1 is a partial cross-sectional view showing a configuration of a solar cell array including a thin film compound solar cell according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view seen from the direction of arrows II-II in FIG. In FIG. 1, the photoelectric conversion layer is not shown.
  • a solar cell 100 of a thin film compound solar cell includes a base material 180, a back electrode 160 positioned on the base material 180, and a back electrode 160. And a positioned photoelectric conversion layer.
  • the photoelectric conversion layer includes a first contact layer 130, an emitter layer 140, a base layer 141, and a second contact layer 150, which will be described later.
  • the solar battery cell 100 is located above the back electrode 160, is electrically connected to the back electrode 160, has a first polarity, and is located on the photoelectric conversion layer. And a second surface electrode 191 having a second polarity different from the first polarity.
  • the first polarity is p-type and the second polarity is n-type.
  • the first polarity may be n-type and the second polarity may be p-type.
  • the base material 180 has a hexagonal outer shape in plan view.
  • the outer shape of the substrate 180 is not limited to a hexagon, and may be a rectangle or a circle.
  • the back electrode 160 also has a hexagonal outer shape in plan view.
  • the outer shape of the back electrode 160 is not limited to a hexagon, and may be a rectangle or a circle.
  • the edge of the base material 180 is located outside while being separated from the edge of the back electrode 160 in plan view, and surrounds the entire circumference of the back electrode 160. That is, the edge of the back surface electrode 160 is located inside the edge of the substrate 180 in plan view.
  • the first surface electrode 190 and the second surface electrode 191 of the solar cells 100 arranged adjacent to each other are electrically connected by the interconnector 10, whereby a plurality of the solar cells 100. Are connected in series.
  • FIG. 3 is a cross-sectional view showing a state in which a compound semiconductor layer is formed on a substrate.
  • an etching stop layer 120 on the substrate 110, an etching stop layer 120, a first contact layer 130, an emitter layer 140 made of a first compound semiconductor, a base layer 141 that forms a pn junction with the emitter layer 140, and a first layer
  • the etching stop layer 120 is a layer that serves as an etching stopper with respect to the first etchant that etches the substrate 110.
  • the substrate 110 has, for example, a wafer shape.
  • the compound semiconductor layer including the etching stop layer 120, the first contact layer 130, the emitter layer 140, the base layer 141, and the second contact layer 150 can be laminated by epitaxial growth using, for example, metal organic chemical vapor deposition.
  • Ge, GaP, GaAs, or the like can be used as the material of the substrate 110.
  • InGaP can be used.
  • GaAs can be used.
  • n-type InGaP can be used.
  • p-type InGaP can be used.
  • GaAs can be used.
  • the compound semiconductor layer has a five-layer structure.
  • the number of compound semiconductor layers stacked is not limited to this, and may be, for example, four or six.
  • the compound semiconductor layer may include a back surface field layer, a window layer, a tunnel junction layer of a multijunction solar cell, another emitter layer of the multijunction solar cell, or another base layer.
  • the compound semiconductor layer only needs to include at least one pn junction.
  • the compound semiconductor layer is easily etched with respect to at least the second etching solution for etching the first contact layer 130 and is difficult to be etched with respect to the third etching solution for mesa etching; Any layer may be used as long as it includes a layer that is difficult to be etched with respect to the third etching solution and is easily etched with respect to the third etching solution.
  • the former layer is the first contact layer 130, and the latter layer is the emitter layer 140 and the base layer 141.
  • FIG. 4 is a cross-sectional view showing a state in which a back electrode is formed on the compound semiconductor layer.
  • the back electrode 160 is formed on the second contact layer 150.
  • the back electrode 160 is formed by applying a metal paste such as Al or Ag to the entire upper surface of the second contact layer 150 by screen printing, and then performing heat treatment and baking.
  • the back electrode 160 may be formed by evaporating an electrode material such as Al or Ag.
  • the back electrode 160 By forming the back electrode 160 in this way, the contact resistance between the surface of the compound semiconductor layer and the back electrode 160 can be reduced, and the adhesion between the surface of the compound semiconductor layer and the back electrode 160 can be improved. it can.
  • FIG. 5 is a cross-sectional view showing a state in which a resist is formed on the back electrode. As shown in FIG. 5, a resist 170 patterned by photolithography is formed on the back electrode 160.
  • FIG. 6 is a cross-sectional view showing a state where the back electrode is etched. As shown in FIG. 6, by etching with the resist 170 formed, the portion of the back electrode 160 that is not covered with the resist 170 is removed. Thus, the back electrode 160 is patterned so as to have a groove. In the groove portion, the back electrode 160 does not exist, and the photoelectric conversion layer is exposed. Thereafter, the resist 170 is removed.
  • FIG. 7 is a cross-sectional view showing a state in which a base material is provided on the back electrode.
  • the substrate 180 is provided so as to cover the entire upper surface of the back electrode 160.
  • the substrate 180 is made of a film-like resin.
  • the substrate 180 is formed by applying a varnish-like resin to the entire upper surface of the back electrode 160 by spin coating or the like at normal temperature and then baking.
  • the base material 180 is formed by applying and baking polyimide varnish, it is necessary to control the polyimide film thickness. This is because when the film thickness of the polyimide is 20 ⁇ m or more, bubbles are mixed in the polyimide film and the flat film cannot be baked, and the warpage of the polyimide film is increased to damage the compound semiconductor layer.
  • the film thickness of the polyimide When the film thickness of the polyimide is decreased, bubbles are not mixed and warpage of the film is reduced within a range of 20 ⁇ m or less.
  • the film thickness of polyimide is about 7 ⁇ m, the amount of warpage becomes the smallest, and when the film thickness becomes thinner than that, the direction of warpage is reversed and the amount of warpage increases again.
  • the film thickness of the polyimide is preferably in the range of 5 ⁇ m to 15 ⁇ m, and particularly preferably about 7 ⁇ m.
  • the base material 180 is formed by firing varnish-like polyimide.
  • the method of forming the base material 180 is not limited to this, and for example, pressure bonding while heating a heat-sealing film. You may use the method to do.
  • the base material 180 functions as a support for the thin film solar cell. Moreover, the curvature of the whole thin film solar cell can be reduced with the film thickness of the base material 180 being 15 micrometers or less, with the curvature of the base material 180 reducing.
  • FIG. 8 is a cross-sectional view showing a state in which a reinforcing material is pasted on a base material.
  • the reinforcing material 111 is a member that reinforces the compound semiconductor layer during the manufacturing process.
  • a PET (Polyethylene terephthalate) film or the like in which an adhesive material whose adhesive strength decreases when irradiated with ultraviolet rays is applied to one surface can be used.
  • the reinforcing material 111 can be mounted on the base material 180 as shown in FIG.
  • FIG. 9 is a cross-sectional view showing a state where the substrate is removed by etching. As shown in FIG. 9, after attaching the reinforcing material 111, the substrate 110 is removed by etching using a first etching solution.
  • a solution containing hydrofluoric acid, hydrogen peroxide solution, and water at a ratio of 1: 1: 4 is used when the substrate 110 is made of Ge, although it varies depending on the type of the substrate 110.
  • the etching stop layer 120 is a layer that is difficult to be etched by the first etching solution. Therefore, when the substrate 110 is etched and the etching stop layer 120 is exposed, the etching progresses. Stop. Thereby, only the substrate 110 can be removed leaving only the compound semiconductor layer.
  • FIG. 10 is a cross-sectional view showing a state where the etching stop layer is removed by etching. As shown in FIG. 10, after removing the substrate 110, the etching stop layer 120 is removed using a second etching solution. As a result, the upper surface of the first contact layer 130 is exposed.
  • FIG. 11 is a cross-sectional view showing a state in which a resist is formed on the contact layer. As shown in FIG. 11, a resist 171 patterned by photolithography is formed on the first contact layer 130.
  • FIG. 12 is a cross-sectional view showing a state where the compound semiconductor layer is etched. As shown in FIG. 12, by etching with the resist 171 formed, a portion of the compound semiconductor layer not covered with the resist 171 is removed. In the present embodiment, the etching is stopped when the second contact layer 150 remains slightly. However, etching may be performed until the upper surface of the back electrode 160 is exposed.
  • FIG. 13 is a cross-sectional view showing a state in which an electrode material to be the first surface electrode is provided.
  • a resist 171a is formed on a part of the second contact layer 150 exposed by etching.
  • an electrode material is provided on the resists 171 and 171a and the second contact layer 150.
  • an electrode material such as Al or Ag is deposited, but it may be applied by, for example, a screen printing method.
  • FIG. 14 is a cross-sectional view showing a state where the first surface electrode is formed.
  • the compound semiconductor layer on which the electrode material is deposited is immersed in an organic solvent such as acetone. Then, the resists 171 and 171a are dissolved in an organic solvent, and the electrode material deposited on the resists 171 and 171a is removed together with the resists 171 and 171a.
  • the electrode material is selectively deposited only on the second contact layer 150 to form the first surface electrode 190. That is, the first surface electrode 190 having the first polarity that is electrically connected to the back surface electrode 160 is formed on the photoelectric conversion layer side as viewed from the back surface electrode 160.
  • the first surface electrode 190 is a p-type electrode because it is electrically connected to the base layer 141 via the back electrode 160.
  • FIG. 15 is a cross-sectional view showing a state in which a resist is formed on a part of the contact layer and on the first surface electrode. As shown in FIG. 15, a resist 172 patterned by photolithography is formed on a part of the first contact layer 130 and the first surface electrode 190.
  • FIG. 16 is a cross-sectional view showing a state where the contact layer is etched. As shown in FIG. 16, by etching with the resist 172 formed, a portion of the first contact layer 130 not covered with the resist 172 is removed. An alkaline solution can be used as the etching solution. A part of the first contact layer 130 is removed, and a part of the upper surface of the emitter layer 140 is exposed.
  • FIG. 17 is a cross-sectional view showing a state where the resist is removed. As shown in FIG. 17, the patterned first contact layer 130 appears by removing the resist 172.
  • FIG. 18 is a cross-sectional view showing a state in which a resist is formed at a position other than on the contact layer. As shown in FIG. 18, a resist 173 patterned by photolithography is formed at a position other than on the first contact layer 130.
  • FIG. 19 is a cross-sectional view showing a state in which an electrode material to be the second surface electrode is provided. As shown in FIG. 19, an electrode material is provided on the resist 173. In the present embodiment, an electrode material such as Al or Ag is deposited, but it may be applied by, for example, a screen printing method.
  • FIG. 20 is a cross-sectional view showing a state in which the second surface electrode is formed.
  • the photoelectric conversion layer on which the electrode material is deposited is immersed in an organic solvent such as acetone. Then, the resist 173 is dissolved in the organic solvent, and the electrode material deposited on the resist 173 is removed together with the resist 173.
  • the electrode material is selectively deposited only on the first contact layer 130 to form the second surface electrode 191. That is, the second surface electrode 191 having a second polarity different from the first polarity is formed on the side opposite to the back electrode 160 side of the photoelectric conversion layer. Since the second surface electrode 191 is in contact with the emitter layer 140, it becomes an n-type electrode.
  • a resist (not shown) patterned so as to have an opening for determining the region of the solar cell element is formed on the emitter layer 140.
  • the photoelectric conversion layer is immersed in a third etching solution that can etch the photoelectric conversion layer, and mesa etching is performed.
  • the third etching solution is composed of an alkaline solution and an acid solution.
  • the solar cell element region can be determined by mesa etching.
  • FIG. 21 is a cross-sectional view showing a state where the reinforcing material is removed.
  • the thin film compound solar cell and the reinforcing material 111 are peeled off.
  • the reinforcing material 111 is peeled off by reducing the adhesive force of the adhesive material by irradiating the reinforcing material 111 with ultraviolet rays by an ultraviolet irradiation device.
  • the first surface electrode 190 and the second surface electrode 191 are fired.
  • the contact resistance between the first surface electrode 190 and the second contact layer 150 and the contact resistance between the second surface electrode 191 and the first contact layer 130 can be reduced.
  • the adhesion between the first surface electrode 190 and the second contact layer 150 and the adhesion between the second surface electrode 191 and the first contact layer 130 can be improved.
  • the solar cell 100 of a thin film compound solar cell can be produced by the above method.
  • a resist is formed on the back electrode 160 and etched.
  • the groove may be formed by a so-called lift-off method. .
  • FIG. 22 is a cross-sectional view showing a state in which a resist is formed on the compound semiconductor layer. As shown in FIG. 22 from the state shown in FIG. 3, a resist 174 patterned by photolithography is formed on a part of the second contact layer 150 before forming the back electrode 160.
  • FIG. 23 is a cross-sectional view showing a state in which an electrode material to be a back electrode is provided. As shown in FIG. 23, after the resist 174 is formed, an electrode material is provided on the resist 174 and the second contact layer 150. In a modification, an electrode material such as Al or Ag is deposited.
  • the compound semiconductor layer on which the electrode material is deposited is immersed in an organic solvent such as acetone. Then, the resist 174 is dissolved in the organic solvent, and the electrode material deposited on the resist 174 is removed together with the resist 174. As a result, as shown in FIG. 6, the back electrode 160 can be patterned so that the back electrode 160 has a groove. In the groove portion, the back electrode 160 does not exist, and the photoelectric conversion layer is exposed.
  • the step of forming the back electrode 160 includes a step of forming a resist 174 at a position where a groove is to be formed on the photoelectric conversion layer, and a step of depositing the material of the back electrode 160 on the resist 174.
  • the step of forming the groove both the resist 174 and the material of the back electrode 160 deposited on the resist 174 are removed.
  • FIG. 24 is a plan view showing the structure of a plurality of thin film compound solar cells before being singulated.
  • the photoelectric conversion layer and the first and second surface electrodes 190 and 191 are not shown.
  • the back surface electrode 160 is patterned to form a groove 161.
  • the groove 161 is formed at the outer edge of the solar cell element region determined by mesa etching.
  • the Thomson blade is pressed against the position of the groove 161 and cut.
  • the back electrode 160 does not exist at the position of the groove 161. That is, cutting is performed at the position of the groove 161 where the back electrode 160 does not exist.
  • FIG. 25 is a cross-sectional view showing a state in which the Thomson blade is pressed.
  • FIG. 26 is a plan view showing a structure of a solar battery cell of a thin film compound solar battery separated into pieces. In FIG. 26, the photoelectric conversion layer is not illustrated.
  • the solar cell 100 of the thin film compound solar cell is separated into pieces by pressing and cutting the Thomson blade 20 at the position of the groove 161.
  • the Thomson blade 20 has a flat surface with a width L 1 at the tip.
  • the width of the groove 161 of the back electrode 160 is L 2 , and L 2 > L 1 .
  • the width L 1 is 30 ⁇ m or more and 50 ⁇ m or less.
  • the width L 2 of the groove 161 is, for example, (L 1 +100) ⁇ m in consideration of the alignment accuracy between the Thomson blade 20 and the solar battery cell 100.
  • the edge of the base material 180 is located outside while being separated from the edge of the back electrode 160 in plan view, and surrounds the entire circumference of the back electrode 160.
  • the distance L 3 between the edge of the substrate 180 and the edge of the back electrode 160 varies depending on the alignment accuracy between the Thomson blade 20 and the solar battery cell 100.
  • the distance L 3 is 5 ⁇ m or more and 1 mm or less. As described above, when the width L 2 of the groove 161 is (L 1 +100) ⁇ m, the distance L 3 is approximately 50 ⁇ m if the alignment accuracy is good.
  • the edge of the substrate 180 is constituted by a cut surface cut by the Thomson blade 20.
  • the edge of the back electrode 160 is constituted by a corroded surface exposed by etching the material of the back electrode 160.
  • the edge of the back electrode 160 is formed by a deposition surface on which the material of the back electrode 160 is deposited.
  • the solar battery cell 100 when singulated, only the base material 180 and the second contact layer 150 are cut and the back electrode 160 is not cut.
  • the thread-like part 181 is a part of the base material 180.
  • the second contact layer 150 is composed of only a part.
  • the second contact layer 150 is made of crystal and has almost no ductility, and the portion of the second contact layer 150 cut by the Thomson blade 20 is broken into pieces and is not a continuous crystal.
  • the adhesion between the second contact layer 150 and the substrate 180 is not higher than the adhesion between the back electrode 160 and the substrate 180, and a part of the second contact layer 150 that is broken and broken into pieces is thread-like. It peels easily from the base material 180 contained in the part 181.
  • the electrical resistance in the in-plane direction of the second contact layer 150 is higher than the electrical resistance in the thickness direction. Therefore, there is almost no possibility that a short circuit is caused by a part of the second contact layer 150 included in the thread portion 181.
  • the yield of the solar battery cell 100 can be improved and the productivity can be improved.
  • the back electrode 160 is located inside the photoelectric conversion layer in a plan view.
  • the back electrode 160 is not limited to this, and the back electrode 160 is cut by the Thomson blade 20. It may be not located, and a part of back electrode 160 may be located outside the photoelectric conversion layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 薄膜からなる基材(180)と、基材(180)上に位置する裏面電極(160)と、裏面電極(160)上に位置する光電変換層と、裏面電極(160)の上方に位置し、裏面電極(160)と電気的に接続されて第1の極性を有する第1表面電極(190)と、光電変換層上に位置して第1の極性とは異なる第2の極性を有する第2表面電極(191)とを備える。基材(180)の縁が、平面視において裏面電極(160)の縁と離間しつつ外側に位置して裏面電極(160)の全周を取り囲んでいる。

Description

薄膜化合物太陽電池およびその製造方法
 本発明は、薄膜化合物太陽電池およびその製造方法に関する。
 薄膜化合物太陽電池の製造方法を開示した先行文献として、国際公開第2010-098293号(特許文献1)がある。特許文献1に記載された薄膜化合物太陽電池の製造方法で製造された薄膜化合物太陽電池においては、フィルム状のポリイミドからなる基材上に裏面電極、光電変換層および表面電極が形成されている。
 また、太陽電池アレイの構成を開示した先行文献として、特開2009-44049号公報(特許文献2)がある。特許文献2に記載された太陽電池アレイにおいては、少なくとも1つのpn接合を有する半導体単結晶層の受光面上に形成された第1の極性を有する第1電極と、半導体単結晶層の受光面側で、第1電極とは異なる表面上に形成された第2の極性を有する第2電極とを備えている。複数個の太陽電池セルのうちの第1の太陽電池セルの第1電極と、第2の太陽電池セルの第2電極とがインターコネクタにより接続されている。
国際公開第2010-098293号 特開2009-44049号公報
 薄膜化合物太陽電池の太陽電池セルは、基材上に間隔を置いて形成された複数の光電変換層同士の間をトムソン刃で切断することにより個片化される。基材上には裏面電極が一面に形成されていたため、太陽電池セルを個片化する際に、基材と裏面電極とが一緒にトムソン刃で切断されていた。
 このように個片化された太陽電池セルの縁には、切断不良部である糸状部が発生する場合がある。この糸状部は、基材の一部と裏面電極の一部とから構成されている。糸状部を有する太陽電池セルをインターコネクタにより他の太陽電池セルと接続して太陽電池アレイを構成した場合、糸状部に含まれる裏面電極の一部によって短絡が生じて、太陽電池アレイの出力が低下することがある。
 本発明は上記の問題点に鑑みてなされたものであって、糸状部によって短絡が生じることを防止して安定した出力を得られる、薄膜化合物太陽電池およびその製造方法を提供することを目的とする。
 本発明に基づく薄膜化合物太陽電池は、薄膜からなる基材と、基材上に位置する裏面電極と、裏面電極上に位置する光電変換層と、裏面電極の上方に位置し、裏面電極と電気的に接続されて第1の極性を有する第1表面電極と、光電変換層上に位置して第1の極性とは異なる第2の極性を有する第2表面電極とを備える。基材の縁が、平面視において裏面電極の縁と離間しつつ外側に位置して裏面電極の全周を取り囲んでいる。
 本発明の一形態においては、基材の縁は、切断面で構成されている。
 本発明の一形態においては、裏面電極の縁は、裏面電極の材料がエッチングされて露出した腐食面、または、裏面電極の材料が蒸着されて堆積した堆積面で構成されている。
 本発明の一形態においては、基材がフィルム状の樹脂からなる。
 本発明の一形態においては、樹脂がポリイミドである。
 本発明の一形態においては、上記切断面は、トムソン刃で切断された切断面である。
 本発明に基づく薄膜化合物太陽電池の製造方法は、基板上に光電変換層を形成する工程と、光電変換層上に、溝を有するようにパターニングされた裏面電極を形成する工程と、パターニングされた裏面電極上に薄膜からなる基材を形成する工程と、基材を形成する工程の後、基板を除去する工程と、基板を除去する工程の後、裏面電極から見て光電変換層側に、裏面電極と電気的に接続されて第1の極性を有する第1表面電極を形成する工程と、第1表面電極を形成する工程の後、光電変換層の裏面電極側とは反対側に第1の極性とは異なる第2の極性を有する第2表面電極を形成する工程と、第2表面電極を形成する工程の後、溝の位置にて切断する工程とを備える。
 本発明の一形態においては、上記切断する工程において、溝の位置にトムソン刃を押し付けて切断する。
 本発明の一形態においては、上記溝を有するようにパターニングされた裏面電極を形成する工程は、光電変換層上に裏面電極を形成する工程と、裏面電極上にレジストを形成してエッチングする工程とを含む。
 本発明の一形態においては、上記溝を有するようにパターニングされた裏面電極を形成する工程は、光電変換層上において溝が形成されるべき位置にレジストを形成する工程と、光電変換層上およびレジスト上に裏面電極の材料を蒸着させる工程と、レジストおよびレジスト上に蒸着した裏面電極の上記材料をともに除去する工程とを含む。
 本発明によれば、糸状部によって短絡が生じることを防止して安定した出力を得られる。
本発明の一実施形態に係る薄膜化合物太陽電池を含む太陽電池アレイの構成を示す一部断面図である。 図1のII-II線矢印方向から見た断面図である。 基板上に化合物半導体層を形成した状態を示す断面図である。 化合物半導体層上に裏面電極を形成した状態を示す断面図である。 裏面電極上にレジストを形成した状態を示す断面図である。 裏面電極をエッチングした状態を示す断面図である。 裏面電極上に基材を設けた状態を示す断面図である。 基材上に補強材を貼り付けた状態を示す断面図である。 基板をエッチングして除去した状態を示す断面図である。 エッチングストップ層をエッチングして除去した状態を示す断面図である。 コンタクト層上にレジストを形成した状態を示す断面図である。 化合物半導体層をエッチングした状態を示す断面図である。 第1表面電極となる電極材料を設けた状態を示す断面図である。 第1表面電極を形成した状態を示す断面図である。 コンタクト層上の一部および第1表面電極上にレジストを形成した状態を示す断面図である。 コンタクト層をエッチングした状態を示す断面図である。 レジストを除去した状態を示す断面図である。 コンタクト層上以外の位置にレジストを形成した状態を示す断面図である。 第2表面電極となる電極材料を設けた状態を示す断面図である。 第2表面電極を形成した状態を示す断面図である。 補強材を除去した状態を示す断面図である。 化合物半導体層上にレジストを形成した状態を示す断面図である。 裏面電極となる電極材料を設けた状態を示す断面図である。 個片化される前の複数の薄膜化合物太陽電池の構造を示す平面図である。 トムソン刃を押し付ける状態を示す断面図である。 個片化された薄膜化合物太陽電池の太陽電池セルの構造を示す平面図である。
 以下、本発明の一実施形態に係る薄膜化合物太陽電池およびその製造方法について説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 図1は、本発明の一実施形態に係る薄膜化合物太陽電池を含む太陽電池アレイの構成を示す一部断面図である。図2は、図1のII-II線矢印方向から見た断面図である。なお、図1においては、光電変換層を図示していない。
 図1,2に示すように、本発明の一実施形態に係る薄膜化合物太陽電池の太陽電池セル100は、基材180と、基材180上に位置する裏面電極160と、裏面電極160上に位置する光電変換層とを備えている。光電変換層は、後述する第1コンタクト層130、エミッタ層140、ベース層141および第2コンタクト層150を含む。
 また、太陽電池セル100は、裏面電極160の上方に位置し、裏面電極160と電気的に接続されて第1の極性を有する第1表面電極190と、光電変換層上に位置して第1の極性とは異なる第2の極性を有する第2表面電極191とを備えている。本実施形態においては、第1の極性はp型であり、第2の極性はn型である。ただし、第1の極性がn型であり、第2の極性がp型でもよい。
 基材180は、平面視六角形状の外形を有している。ただし、基材180の外形は、六角形に限られず、矩形または円形などでもよい。裏面電極160も、平面視六角形状の外形を有している。ただし、裏面電極160の外形は、六角形に限られず、矩形または円形などでもよい。
 基材180の縁は、平面視において裏面電極160の縁と離間しつつ外側に位置して裏面電極160の全周を取り囲んでいる。すなわち、平面視において、基材180の縁より内側に裏面電極160の縁が位置している。
 太陽電池アレイにおいては、隣接して配置される太陽電池セル100同士の第1表面電極190と第2表面電極191とがインターコネクタ10により電気的に接続されることにより、複数の太陽電池セル100が直列に接続されている。
 以下、薄膜化合物太陽電池の太陽電池セル100の製造方法について説明する。
 図3は、基板上に化合物半導体層を形成した状態を示す断面図である。図3に示すように、基板110上に、エッチングストップ層120、第1コンタクト層130、第1の化合物半導体からなるエミッタ層140、エミッタ層140とpn接合を形成するベース層141、および、第2コンタクト層150をこの順に積層することにより、単結晶薄膜からなる化合物半導体層を形成する。なお、エッチングストップ層120は、基板110をエッチングする第1のエッチング液に対してエッチングストッパとなる層である。
 基板110は、たとえば、ウエハ状の形態を有している。エッチングストップ層120、第1コンタクト層130、エミッタ層140、ベース層141および第2コンタクト層150を含む化合物半導体層は、たとえば、有機金属気相成長法などによってエピタキシャル成長させて積層することができる。
 具体的には、基板110の材料として、Ge、GaPまたはGaAsなどを用いることができる。エッチングストップ層120の材料として、InGaPを用いることができる。第1コンタクト層130の材料として、GaAsを用いることができる。エミッタ層140の材料として、n型のInGaPを用いることができる。ベース層141の材料として、p型のInGaPを用いることができる。第2コンタクト層150の材料として、GaAsを用いることができる。
 なお、本実施形態においては化合物半導体層を5層構造としたが、化合物半導体層の積層数はこれに限られず、たとえば、4層または6層であってもよい。また、化合物半導体層が、裏面電界層、窓層、多接合型太陽電池のトンネル接合層、多接合型太陽電池の他のエミッタ層、または、他のベース層などを含んでもよい。
 すなわち、化合物半導体層は、少なくとも1つのpn接合を含んでいればよい。また、化合物半導体層は、少なくとも第1コンタクト層130をエッチングする第2のエッチング液に対してエッチングされ易く、かつ、メサエッチング用の第3のエッチング液に対してエッチングされ難い層と、第2のエッチング液に対してエッチングされ難く、かつ、第3のエッチング液に対してエッチングされ易い層とを含むものであればよい。前者の層は第1コンタクト層130であり、後者の層はエミッタ層140およびベース層141である。
 図4は、化合物半導体層上に裏面電極を形成した状態を示す断面図である。図4に示すように、第2コンタクト層150上に裏面電極160を形成する。裏面電極160は、AlまたはAgなどの金属ペーストをスクリーン印刷により第2コンタクト層150の上面全体に塗布した後、熱処理を施して焼成することにより形成される。または、裏面電極160をAlまたはAgなどの電極材料を蒸着させて形成してもよい。
 このように裏面電極160を形成することにより、化合物半導体層の表面と裏面電極160との間の接触抵抗を低減するとともに、化合物半導体層の表面と裏面電極160との密着力を向上させることができる。
 図5は、裏面電極上にレジストを形成した状態を示す断面図である。図5に示すように、フォトリソグラフィ法を用いてパターニングされたレジスト170を裏面電極160上に形成する。
 図6は、裏面電極をエッチングした状態を示す断面図である。図6に示すように、レジスト170を形成した状態でエッチングすることにより、レジスト170で覆われていない部分の裏面電極160が除去される。このように、裏面電極160は、溝を有するようにパターニングされる。この溝の部分においては、裏面電極160が存在せず、光電変換層が露出している。その後、レジスト170を除去する。
 図7は、裏面電極上に基材を設けた状態を示す断面図である。図7に示すように、図7に示すように、基材180は裏面電極160の上面全体を覆うように設けられる。本実施形態においては、基材180はフィルム状の樹脂からなる。
 樹脂としては、300℃以上の耐熱性を有する材料を用いることができ、本実施形態においてはポリイミドを用いている。基材180は、常温においてワニス状の樹脂をスピンコート法などにより裏面電極160の上面全体に塗布した後、焼成することにより形成される。
 ポリイミドのワニスを塗布および焼成して基材180を形成する場合、ポリイミドの膜厚を制御する必要がある。なぜなら、ポリイミドの膜厚が20μm以上の場合、ポリイミド膜中に気泡が混入して平坦な膜が焼成できなくなるとともに、ポリイミド膜の反りが大きくなって化合物半導体層にダメージを与えるためである。
 ポリイミドの膜厚を薄くしていくと、20μm以下の範囲内では、気泡の混入がなくなり、かつ、膜の反りも小さくなる。ポリイミドの膜厚が7μm程度において、反り量が最も小さくなり、それより膜厚が薄くなると、反りの方向が逆転し、再び反り量が大きくなる。
 したがって、ポリイミドの反り量と基材としての弾性を考慮した結果、ポリイミドの膜厚として、5μm以上15μm以下の範囲が好適であり、特に7μm程度が好ましい。
 なお、本実施形態においては、ワニス状のポリイミドを焼成することにより基材180を形成したが、基材180の形成方法はこれに限られず、たとえば、熱融着型のフィルムを加熱しつつ圧着する方法を用いてもよい。
 上記の方法で基材180を形成することにより、基材180が薄膜太陽電池の支持体として機能する。また、基材180の膜厚を15μm以下にすることにより、基材180の反りが低減するのに伴って、薄膜太陽電池全体の反りを低減することができる。
 図8は、基材上に補強材を貼り付けた状態を示す断面図である。補強材111は、製造プロセス中において化合物半導体層を補強する部材である。補強材111としては、紫外線を照射されると粘着力が低下する粘着材を一方の面に塗布されたPET(Polyethylene terephthalate)フィルムなどを用いることができる。
 PETフィルムの粘着材が塗布された側の面と基材180の上面とを接触させることにより、図8に示すように、補強材111を基材180上に取り付けることができる。
 図9は、基板をエッチングして除去した状態を示す断面図である。図9に示すように、補強材111を取り付けた後、第1のエッチング液を用いて、基板110をエッチングして除去する。
 第1のエッチング液としては、基板110の種類によって異なるが、基板110がGeからなる場合、フッ酸、過酸化水素水、水をそれぞれ1:1:4の割合で含む溶液を用いる。
 第1のエッチング液を用いてエッチングすると、エッチングストップ層120は第1のエッチング液によりエッチングされ難い層であるため、基板110がエッチングされてエッチングストップ層120が露出した段階で、エッチングの進行が止まる。これにより、化合物半導体層のみを残して基板110だけを除去することができる。
 図10は、エッチングストップ層をエッチングして除去した状態を示す断面図である。図10に示すように、基板110を除去した後、第2のエッチング液を用いて、エッチングストップ層120を除去する。その結果、第1コンタクト層130の上面が露出する。
 図11は、コンタクト層上にレジストを形成した状態を示す断面図である。図11に示すように、フォトリソグラフィ法を用いてパターニングされたレジスト171を第1コンタクト層130上に形成する。
 図12は、化合物半導体層をエッチングした状態を示す断面図である。図12に示すように、レジスト171を形成した状態でエッチングすることにより、レジスト171で覆われていない部分の化合物半導体層が除去される。本実施形態においては、第2コンタクト層150が僅かに残っている段階でエッチングを止めている。ただし、裏面電極160の上面が露出するまでエッチングを行なってもよい。
 図13は、第1表面電極となる電極材料を設けた状態を示す断面図である。図13に示すように、化合物半導体層をエッチングした後、エッチングされて露出した第2コンタクト層150上の一部にレジスト171aを形成する。その後、レジスト171,171a上および第2コンタクト層150上に電極材料を設ける。本実施形態においては、AlまたはAgなどの電極材料を蒸着させたが、たとえば、スクリーン印刷法により塗布してもよい。
 図14は、第1表面電極を形成した状態を示す断面図である。電極材料を堆積させた化合物半導体層をアセトンなどの有機溶剤に浸漬させる。すると、レジスト171,171aが有機溶剤に溶解し、レジスト171,171a上に堆積した電極材料がレジスト171,171aとともに除去される。
 その結果、図14に示すように、第2コンタクト層150上にのみ選択的に電極材料が堆積して第1表面電極190が形成される。すなわち、裏面電極160から見て光電変換層側に、裏面電極160と電気的に接続されて第1の極性を有する第1表面電極190を形成する。第1表面電極190は、裏面電極160を介してベース層141と電気的に接続されているため、p型電極となる。
 図15は、コンタクト層上の一部および第1表面電極上にレジストを形成した状態を示す断面図である。図15に示すように、フォトリソグラフィ法を用いてパターニングされたレジスト172を第1コンタクト層130上の一部および第1表面電極190上に形成する。
 図16は、コンタクト層をエッチングした状態を示す断面図である。図16に示すように、レジスト172を形成した状態でエッチングすることにより、レジスト172で覆われていない部分の第1コンタクト層130が除去される。エッチング液は、アルカリ溶液を用いることができる。第1コンタクト層130の一部が除去されて、エミッタ層140の上面の一部が露出する。
 図17は、レジストを除去した状態を示す断面図である。図17に示すように、レジスト172を除去することにより、パターニングされた第1コンタクト層130が現れる。
 図18は、コンタクト層上以外の位置にレジストを形成した状態を示す断面図である。図18に示すように、フォトリソグラフィ法を用いてパターニングされたレジスト173を第1コンタクト層130上以外の位置に形成する。
 図19は、第2表面電極となる電極材料を設けた状態を示す断面図である。図19に示すように、レジスト173上に電極材料を設ける。本実施形態においては、AlまたはAgなどの電極材料を蒸着させたが、たとえば、スクリーン印刷法により塗布してもよい。
 図20は、第2表面電極を形成した状態を示す断面図である。電極材料を堆積させた光電変換層をアセトンなどの有機溶剤に浸漬させる。すると、レジスト173が有機溶剤に溶解し、レジスト173上に堆積した電極材料がレジスト173とともに除去される。
 その結果、図20に示すように、第1コンタクト層130上にのみ選択的に電極材料が堆積して第2表面電極191が形成される。すなわち、光電変換層の裏面電極160側とは反対側に第1の極性とは異なる第2の極性を有する第2表面電極191を形成する。第2表面電極191は、エミッタ層140と接触しているため、n型電極となる。
 その後、エミッタ層140上に、太陽電池素子の領域を確定するための開口部を有するようにパターニングされた図示しないレジストが形成される。次に、光電変換層をエッチングできる第3のエッチング液に光電変換層を浸漬してメサエッチングする。
 第3のエッチング液は、アルカリ溶液および酸溶液から構成されている。メサエッチングにより太陽電池素子領域を確定することができる。
 図21は、補強材を除去した状態を示す断面図である。図21に示すように、薄膜化合物太陽電池と補強材111とを剥離する。剥離方法としては、粘着材に紫外線硬化型の材料を用いている場合、紫外線照射装置により紫外線を補強材111に照射することにより粘着材の粘着力を低下させて、補強材111を剥離させる。
 補強材111の剥離後、第1表面電極190および第2表面電極191を焼成する。熱処理を施すことにより、第1表面電極190と第2コンタクト層150との接触抵抗、および、第2表面電極191と第1コンタクト層130との接触抵抗を低減できる。また、第1表面電極190と第2コンタクト層150との密着性、および、第2表面電極191と第1コンタクト層130との密着性を向上することができる。
 上記の方法により、薄膜化合物太陽電池の太陽電池セル100を作製することができる。なお、上記の薄膜化合物太陽電池の製造方法においては、裏面電極160に溝を形成する工程において、裏面電極160上にレジストを形成してエッチングしたが、いわゆるリフトオフ法により溝を形成してもよい。
 以下、リフトオフ法を用いた変形例について説明する。
 図22は、化合物半導体層上にレジストを形成した状態を示す断面図である。図3に示す状態から図22に示すように、裏面電極160を形成する前に、フォトリソグラフィ法を用いてパターニングされたレジスト174を第2コンタクト層150上の一部に形成する。
 図23は、裏面電極となる電極材料を設けた状態を示す断面図である。図23に示すように、レジスト174を形成した後、レジスト174上および第2コンタクト層150上に電極材料を設ける。変形例においては、AlまたはAgなどの電極材料を蒸着させる。
 電極材料を堆積させた化合物半導体層をアセトンなどの有機溶剤に浸漬させる。すると、レジスト174が有機溶剤に溶解し、レジスト174上に堆積した電極材料がレジスト174とともに除去される。その結果、図6に示すように、裏面電極160が溝を有するように裏面電極160をパターニングすることができる。この溝の部分においては、裏面電極160が存在せず、光電変換層が露出している。
 すなわち、変形例においては、裏面電極160を形成する工程は、光電変換層上において溝が形成されるべき位置にレジスト174を形成する工程と、レジスト174上に裏面電極160の材料を蒸着させる工程とを含み、溝を形成する工程において、レジスト174およびレジスト174上に蒸着した裏面電極160の材料をともに除去している。
 図24は、個片化される前の複数の薄膜化合物太陽電池の構造を示す平面図である。なお、図24においては、光電変換層および第1および第2表面電極190,191を図示していない。
 図24に示すように、裏面電極160はパターニングされて溝161が形成されている。溝161は、メサエッチングにより確定された太陽電池素子領域の外縁に形成されている。薄膜化合物太陽電池の太陽電池セル100を個片化するには、溝161の位置にトムソン刃を押し付けて切断する。この溝161の位置には、裏面電極160が存在していない。すなわち、裏面電極160の存在していない溝161の位置にて切断する。
 図25は、トムソン刃を押し付ける状態を示す断面図である。図26は、個片化された薄膜化合物太陽電池の太陽電池セルの構造を示す平面図である。なお、図26においては、光電変換層を図示していない。
 図25に示すように、溝161の位置にトムソン刃20を押し付けて切断することにより、薄膜化合物太陽電池の太陽電池セル100を個片化する。トムソン刃20は、先端に幅がL1の平坦面を有している。裏面電極160の溝161の幅はL2であり、L2>L1である。
 たとえば、幅L1は、30μm以上50μm以下である。溝161の幅L2は、トムソン刃20と太陽電池セル100とのアライメント精度を考慮して、たとえば、(L1+100)μmとする。
 図26に示すように、基材180の縁が、平面視において裏面電極160の縁と離間しつつ外側に位置して裏面電極160の全周を取り囲んでいる。基材180の縁と裏面電極160の縁との距離L3は、トムソン刃20と太陽電池セル100とのアライメント精度により変化する。
 たとえば、距離L3は、5μm以上1mm以下である。上記のように、溝161の幅L2が(L1+100)μmである場合、アライメント精度が良好であれば距離L3が略50μmとなる。
 基材180の縁は、トムソン刃20で切断された切断面で構成されている。本実施形態においては、裏面電極160の縁は、裏面電極160の材料がエッチングされて露出した腐食面で構成されている。上記の変形例においては、裏面電極160の縁は、裏面電極160の材料が蒸着されて堆積した堆積面で構成されている。
 このように、太陽電池セル100を個片化する際に基材180および第2コンタクト層150のみを切断して裏面電極160は切断しないようにする。そうすることにより、仮に、図26に示すように、太陽電池セル100の縁に切断不良部である糸状部181が発生した場合であっても、この糸状部181は基材180の一部および第2コンタクト層150の一部のみから構成されることになる。
 その結果、糸状部181を有する太陽電池セル100を図1に示すようにインターコネクタ10により他の太陽電池セル100と接続して太陽電池アレイを構成した場合、糸状部181によって短絡が生じることを防止することができる。よって、糸状部181によって短絡が生じることを防止して、安定して太陽電池アレイの出力を得ることができる。
 なお、第2コンタクト層150は結晶からなり延性をほとんど有さず、トムソン刃20により切断された部分の第2コンタクト層150は、粉々に砕けて連続した結晶になっていない。また、第2コンタクト層150と基材180との密着性は、裏面電極160と基材180との密着性に比べて高くなく、砕けて破片となった第2コンタクト層150の一部は糸状部181に含まれる基材180から容易に剥離する。さらに、第2コンタクト層150の面内方向における電気抵抗は、厚さ方向における電気抵抗に比べて高い。そのため、糸状部181に含まれる第2コンタクト層150の一部によって短絡が生じる可能性はほとんどない。
 このように、太陽電池セル100の短絡を防止することにより、太陽電池セル100の歩留まりを改善して生産性を向上することができる。
 なお、本実施形態に係る太陽電池セル100においては、平面視において、光電変換層の内側に裏面電極160が位置しているが、これに限られず、裏面電極160がトムソン刃20による切断箇所に位置していなければよく、光電変換層の外側に裏面電極160の一部が位置していてもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 インターコネクタ、20 トムソン刃、100 太陽電池セル、110 基板、111 補強材、120 エッチングストップ層、130 第1コンタクト層、140 エミッタ層、141 ベース層、150 第2コンタクト層、160 裏面電極、161 溝、170,171,171a,172,173,174 レジスト、180 基材、181 糸状部、190 第1表面電極、191 第2表面電極。

Claims (10)

  1.  薄膜からなる基材と、
     前記基材上に位置する裏面電極と、
     前記裏面電極上に位置する光電変換層と、
     前記裏面電極の上方に位置し、前記裏面電極と電気的に接続されて第1の極性を有する第1表面電極と、
     前記光電変換層上に位置して前記第1の極性とは異なる第2の極性を有する第2表面電極と
    を備え、
     前記基材の縁が、平面視において前記裏面電極の縁と離間しつつ外側に位置して前記裏面電極の全周を取り囲んでいる、薄膜化合物太陽電池。
  2.  前記基材の縁は、切断面で構成されている、請求項1に記載の薄膜化合物太陽電池。
  3.  前記裏面電極の縁は、前記裏面電極の材料がエッチングされて露出した腐食面、または、前記裏面電極の材料が蒸着されて堆積した堆積面で構成されている、請求項1または2に記載の薄膜化合物太陽電池。
  4.  前記基材がフィルム状の樹脂からなる、請求項1から3のいずれか1項に記載の薄膜化合物太陽電池。
  5.  前記樹脂がポリイミドである、請求項4に記載の薄膜化合物太陽電池。
  6.  前記切断面は、トムソン刃で切断された切断面である、請求項2に記載の薄膜化合物太陽電池。
  7.  基板上に光電変換層を形成する工程と、
     前記光電変換層上に、溝を有するようにパターニングされた裏面電極を形成する工程と、
     パターニングされた前記裏面電極上に薄膜からなる基材を形成する工程と、
     前記基材を形成する工程の後、前記基板を除去する工程と、
     前記基板を除去する工程の後、前記裏面電極から見て前記光電変換層側に、前記裏面電極と電気的に接続されて第1の極性を有する第1表面電極を形成する工程と、
     前記第1表面電極を形成する工程の後、前記光電変換層の前記裏面電極側とは反対側に前記第1の極性とは異なる第2の極性を有する第2表面電極を形成する工程と、
     前記第2表面電極を形成する工程の後、前記溝の位置にて切断する工程と
    を備える、薄膜化合物太陽電池の製造方法。
  8.  前記切断する工程において、前記溝の位置にトムソン刃を押し付けて切断する、請求項7に記載の薄膜化合物太陽電池の製造方法。
  9.  前記溝を有するようにパターニングされた前記裏面電極を形成する工程は、前記光電変換層上に前記裏面電極を形成する工程と、前記裏面電極上にレジストを形成してエッチングする工程とを含む、請求項7または8に記載の薄膜化合物太陽電池の製造方法。
  10.  前記溝を有するようにパターニングされた前記裏面電極を形成する工程は、前記光電変換層上において前記溝が形成されるべき位置にレジストを形成する工程と、前記光電変換層上および前記レジスト上に前記裏面電極の材料を蒸着させる工程と、前記レジストおよび前記レジスト上に蒸着した前記裏面電極の前記材料をともに除去する工程とを含む、請求項7または8に記載の薄膜化合物太陽電池の製造方法。
PCT/JP2013/058008 2012-03-21 2013-03-21 薄膜化合物太陽電池およびその製造方法 WO2013141281A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/387,017 US20150075604A1 (en) 2012-03-21 2013-03-21 Thin-film compound photovoltaic cell and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-063605 2012-03-21
JP2012063605A JP5840544B2 (ja) 2012-03-21 2012-03-21 薄膜化合物太陽電池およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013141281A1 true WO2013141281A1 (ja) 2013-09-26

Family

ID=49222738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058008 WO2013141281A1 (ja) 2012-03-21 2013-03-21 薄膜化合物太陽電池およびその製造方法

Country Status (3)

Country Link
US (1) US20150075604A1 (ja)
JP (1) JP5840544B2 (ja)
WO (1) WO2013141281A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633907A (ja) * 1986-06-23 1988-01-08 シャープ株式会社 半導体製品の切断方法
JPH07106619A (ja) * 1993-10-07 1995-04-21 Sanyo Electric Co Ltd 太陽電池の製造方法
JPH10335688A (ja) * 1997-05-30 1998-12-18 Canon Inc 光起電力素子の製造方法
JP2009044049A (ja) * 2007-08-10 2009-02-26 Sharp Corp 太陽電池アレイおよび太陽電池モジュール
WO2010098293A1 (ja) * 2009-02-26 2010-09-02 シャープ株式会社 薄膜化合物太陽電池の製造方法
JP2011091224A (ja) * 2009-10-23 2011-05-06 Hitachi Maxell Ltd 集積型光発電素子及び集積型光発電素子の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022172A1 (en) * 1993-03-24 1994-09-29 E.I. Du Pont De Nemours And Company Solar panels and process for manufacture thereof
JPH09321330A (ja) * 1996-05-31 1997-12-12 Sony Corp オプトエレクトロニクス装置及びその製造方法、並びに情報記録及び/又は再生装置
US7512297B2 (en) * 2003-05-02 2009-03-31 John Farah Polymide substrate bonded to other substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633907A (ja) * 1986-06-23 1988-01-08 シャープ株式会社 半導体製品の切断方法
JPH07106619A (ja) * 1993-10-07 1995-04-21 Sanyo Electric Co Ltd 太陽電池の製造方法
JPH10335688A (ja) * 1997-05-30 1998-12-18 Canon Inc 光起電力素子の製造方法
JP2009044049A (ja) * 2007-08-10 2009-02-26 Sharp Corp 太陽電池アレイおよび太陽電池モジュール
WO2010098293A1 (ja) * 2009-02-26 2010-09-02 シャープ株式会社 薄膜化合物太陽電池の製造方法
JP2011091224A (ja) * 2009-10-23 2011-05-06 Hitachi Maxell Ltd 集積型光発電素子及び集積型光発電素子の製造方法

Also Published As

Publication number Publication date
US20150075604A1 (en) 2015-03-19
JP2013197356A (ja) 2013-09-30
JP5840544B2 (ja) 2016-01-06

Similar Documents

Publication Publication Date Title
JP4717545B2 (ja) 光電変換素子の製造方法
JP3169497B2 (ja) 太陽電池の製造方法
JP5554772B2 (ja) 薄膜化合物太陽電池の製造方法
US20120012180A1 (en) Back electrode type solar cell, connecting sheet, solar cell with connecting sheet, solar cell module, method of manufacturing solar cell with connecting sheet, and method of manufacturing solar cell module
CN110574170B (zh) 一种柔性薄膜太阳电池及其制造方法
JP6837877B2 (ja) 太陽電池アレイの製造方法および太陽電池アレイ
JP5840544B2 (ja) 薄膜化合物太陽電池およびその製造方法
WO2017057029A1 (ja) 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法
JP2014017366A (ja) 薄膜化合物太陽電池セルおよびその製造方法
TWI496308B (zh) Thin film solar cell and manufacturing method thereof
JP2013149773A (ja) 薄膜化合物太陽電池の製造方法
US9214573B2 (en) Bypass diode
US20160087577A1 (en) Flexible solar cells comprising thick and thin absorber regions
JP4911883B2 (ja) 光電変換素子の製造方法
JP2016046362A (ja) 光電変換装置
JP2014103305A (ja) 太陽電池素子およびその製造方法
JP6564199B2 (ja) 裏面電極型光電変換素子および裏面電極型光電変換素子の製造方法
JP6616632B2 (ja) 薄膜化合物太陽電池、薄膜化合物太陽電池の製造方法、薄膜化合物太陽電池アレイおよび薄膜化合物太陽電池アレイの製造方法
WO2016121532A1 (ja) 光電変換素子および光電変換素子の製造方法
US20220285567A1 (en) Method for through-hole plating
JP2016096201A (ja) 太陽電池および太陽電池の製造方法
JP2006135017A (ja) 光電変換装置およびその製造方法
JP3854977B2 (ja) 太陽電池セルの製造方法
WO2016143547A1 (ja) 光電変換素子、光電変換装置、光電変換素子の製造方法および光電変換装置の製造方法
CN111223947A (zh) 砷化镓电池外延结构及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387017

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764582

Country of ref document: EP

Kind code of ref document: A1