WO2019232904A1 - 太阳能电池及其制备方法 - Google Patents

太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2019232904A1
WO2019232904A1 PCT/CN2018/098056 CN2018098056W WO2019232904A1 WO 2019232904 A1 WO2019232904 A1 WO 2019232904A1 CN 2018098056 W CN2018098056 W CN 2018098056W WO 2019232904 A1 WO2019232904 A1 WO 2019232904A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
base substrate
via hole
solar cell
Prior art date
Application number
PCT/CN2018/098056
Other languages
English (en)
French (fr)
Inventor
张鹏举
李胜春
谈笑天
鱼志坚
苏志倩
张雨
Original Assignee
汉能新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汉能新材料科技有限公司 filed Critical 汉能新材料科技有限公司
Publication of WO2019232904A1 publication Critical patent/WO2019232904A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of solar cells, in particular to a solar cell and a method for preparing the same.
  • common packaging structures include external packaging structures and alternating laminated packaging structures of organic thin films and inorganic thin films.
  • packaging effect and the ease of packaging processes are inevitably affected by the surface flatness of solar cells. Ensuring that the surface of the solar cell is flat is very important for the packaging effect.
  • embodiments of the present invention provide a solar cell and a method for manufacturing the same.
  • the technical scheme is as follows:
  • a solar cell including:
  • An electrode layer group located on a surface of the base substrate, the electrode layer group including a first electrode and a second electrode, and the first electrode and the second electrode are electrically insulated;
  • a photoelectric layer is located on a side of the electrode layer group facing away from the base substrate and is electrically connected to the first electrode.
  • the photoelectric layer is provided with a first via hole, and a position of the first via hole is in accordance with that of the first via hole.
  • the position of the second electrode corresponds;
  • the window layer is located on a side of the photoelectric layer facing away from the base substrate and is electrically connected to the second electrode through the first via hole.
  • the orthographic projection of the first electrode on the base substrate and the orthographic projection of the second electrode on the base substrate do not overlap.
  • the first electrode and the second electrode are located on the same layer, and the first electrode and the second electrode are separated by a predetermined distance.
  • the first electrode is located on a side of the second electrode facing away from the base substrate, and the electrode layer group further includes insulation between the first electrode and the second electrode.
  • Floor
  • a second via hole is provided in the insulating layer
  • a third via hole is provided in the first electrode
  • the positions of the first via hole, the second via hole, and the third via hole are provided.
  • the first electrode and the second electrode are made of the same material.
  • the first electrode and the second electrode are both metal electrodes.
  • the window layer is electrically connected to the second electrode through a transparent conductive film or solder constituting the window layer.
  • the solar cell further includes an encapsulation layer on a side of the window layer facing away from the base substrate.
  • the encapsulation layer includes:
  • a flat layer located on a side of the window layer facing away from the base substrate;
  • the protective layer is located on a side of the flat layer facing away from the base substrate.
  • the flat layer includes an organic flat layer
  • the protective layer includes an inorganic protective layer
  • a method for preparing a solar cell including:
  • the electrode layer group including a first electrode and a second electrode, and the first electrode and the second electrode are electrically insulated;
  • a photoelectric layer electrically connected to the first electrode is formed on a side of the electrode layer group facing away from the base substrate.
  • the photovoltaic layer is provided with a first via hole, and a position of the first via hole and The position of the second electrode corresponds;
  • a window layer is formed on a side of the photoelectric layer facing away from the base substrate, and the window layer is electrically connected to the second electrode through the first via hole.
  • the forming of an electrode layer group on a base substrate includes a first electrode and a second electrode, and the electrical insulation between the first electrode and the second electrode includes:
  • the first electrode and the second electrode are formed on the base substrate in the same layer and are separated by a predetermined interval.
  • the forming of an electrode layer group on a base substrate includes a first electrode and a second electrode, and the electrical insulation between the first electrode and the second electrode includes:
  • the first electrode having a third via hole is formed on a side of the insulating layer facing away from the base substrate, and the positions of the first via hole, the second via hole, and the third via hole are formed. Right.
  • the technical solution provided by the embodiments of the present invention may include the following beneficial effects: By placing both the first electrode and the second electrode under the photoelectric layer, the technical solution can effectively prevent the electrode from blocking the photoelectric layer, so as to facilitate Increasing the aperture ratio of the solar cell to improve its power generation efficiency.
  • a recessed structure corresponding to the second electrode can be formed on the surface of the window layer, compared to the raised structure of the second electrode protruding from the surface of the window layer. In other words, the recessed structure is easier to be filled, which is beneficial to the planarization of the surface of the solar cell, so as to reduce the process difficulty of the thin film encapsulation and improve the effect of the thin film encapsulation.
  • FIG. 1 is a schematic structural diagram of a solar cell according to a prior art
  • Fig. 2 is a schematic structural diagram of a solar cell according to an exemplary embodiment
  • Fig. 3 is a first schematic view of a packaging structure of a solar cell according to an exemplary embodiment
  • Fig. 4 is a first plan view of a solar cell according to an exemplary embodiment
  • Fig. 5 is a second schematic diagram of a packaging structure of a solar cell according to an exemplary embodiment
  • Fig. 6 is a second plan view of a solar cell according to an exemplary embodiment
  • Fig. 7 is a flow chart showing a method for manufacturing a solar cell according to an exemplary embodiment.
  • the core material of the solar cell module is very sensitive to water vapor, it is necessary to adopt a specific packaging structure to prevent the invasion of water vapor, thereby ensuring the power generation efficiency and service life of the solar cell.
  • common packaging structures include alternating laminated packaging structures of organic thin films and inorganic thin films, but the packaging effect and the ease of packaging processes are inevitably affected by the surface flatness of solar cells.
  • FIG. 1 exemplarily shows a schematic structural diagram of a solar cell in a related art.
  • the solar cell 10 may include a base substrate 100, a first electrode 101, a photovoltaic layer 102, a window layer 103, and a second electrode 104 on the base substrate 100 in this order, and a second electrode 104 on the second electrode 104.
  • the first electrode 101 is a planar electrode and is tiled on the surface of the base substrate 100
  • the second electrode 104 is a strip electrode and is distributed on the surface of the window layer 103.
  • the thickness of the second electrode 104 is at least several microns or even tens of microns, and the thickness of the thin film encapsulation layer 105 is relatively small. Usually, it is only 2 to 3 microns or even thinner, so the thickness of the second electrode 104 is too large compared to the packaging layer 105, which will directly affect the process difficulty and packaging effect of the thin film packaging.
  • the solar cell 20 includes:
  • a base substrate 200 such as a flexible substrate or a glass substrate
  • the electrode layer group 201 is located on the surface of the base substrate 200.
  • the electrode layer group 201 includes a first electrode 2011 and a second electrode 2012, and the first electrode 2011 and the second electrode 2012 are electrically insulated;
  • the photovoltaic layer 202 is located on a side of the electrode layer group 201 facing away from the substrate 200 and is electrically connected to the first electrode 2011.
  • the photovoltaic layer 202 is provided with a first via hole 2020, and a position of the first via hole 2020 and a second electrode Corresponding position of 2012;
  • the window layer 203 is located on a side of the photoelectric layer 202 facing away from the base substrate 200 and is electrically connected to the second electrode 2012 through the first via hole 2020.
  • the photoelectric layer 202 may include a photoelectric conversion semiconductor film such as a crystalline silicon semiconductor film or a CIGS (CuInGaSe, copper indium gallium selenium) semiconductor film; and the window layer 203 may be a transparent conductive film such as ITO (Indium Tin Oxide, oxide (Indium tin) film or AZO (Aluminum doped Zinc Oxid).
  • a photoelectric conversion semiconductor film such as a crystalline silicon semiconductor film or a CIGS (CuInGaSe, copper indium gallium selenium) semiconductor film
  • the window layer 203 may be a transparent conductive film such as ITO (Indium Tin Oxide, oxide (Indium tin) film or AZO (Aluminum doped Zinc Oxid).
  • the shielding of the photovoltaic layer 202 by the electrodes can be effectively avoided, so as to increase the solar cell. 20, thereby improving its power generation efficiency.
  • a recessed structure corresponding to the second electrode 2012 can also be formed on the surface of the window layer 203, compared to the protrusion of the second electrode 2012 protruding from the surface of the window layer 203.
  • the recessed structure is easier to be filled, which is beneficial to the planarization of the surface of the solar cell 20, so as to reduce the process difficulty of the thin film encapsulation and improve the effect of the thin film encapsulation.
  • the orthographic projection of the first electrode 2011 on the base substrate 200 and the orthographic projection of the second electrode 2012 on the base substrate 200 are staggered, that is, they do not overlap.
  • the first electrode 2011 is used as a positive electrode of the solar cell 20, which may adopt a planar electrode structure having an opening
  • the second electrode 2012 is used as a negative electrode of the solar cell 20, which may adopt, for example, a strip electrode structure corresponding to the opening position.
  • the window layer 203 needs to be electrically connected to the second electrode 2012 through the first via hole 2020 in the photovoltaic layer 202 Therefore, in order to ensure the reliability of the electrical connection between the window layer 203 and the second electrode 2012, the window layer 203 needs to maintain electrical connection with the second electrode 2012 by forming its own transparent conductive film or even by soldering.
  • the former means that in the process of forming the window layer 203, the transparent conductive film itself can be directly formed on the surface of the second electrode 2012 through the first via hole 2020 to realize the electrical connection between the two.
  • this via connection method may affect the reliability of the electrical connection between the two. Therefore, the latter further uses soldering to ensure the reliability of the electrical connection between the two.
  • the first electrode 2011 and the second electrode 2012 may be located on the same layer.
  • the first electrode 2011 and the second electrode 2012 may be formed on the same conductive layer and through the same photolithography process. .
  • the first electrode 2011 and the second electrode 2012 are separated from each other by a preset distance so as to ensure electrical insulation therebetween.
  • the preset distance between the first electrode 2011 and the second electrode 2012 may be formed by performing a scribing process at a preset position of the conductive layer, for example, setting a groove 2013, but of course
  • the first electrode 2011 is formed first, and then the second electrode 2012 is formed at a predetermined interval from the first electrode 2011, which is not specifically limited in this embodiment.
  • the solar cell 20 may include a base substrate 200, which is located on the base substrate 200 and is composed of first electrodes 2011 and second electrodes 2012 arranged at the same layer and separated by a predetermined interval.
  • the electrode layer group 201 is located on the electrode layer group 201 and is electrically connected to the first electrode 2011 and has the first photovoltaic hole 202 corresponding to the second electrode 2012.
  • the photovoltaic layer 202 is located on the photovoltaic layer 202 and passes through the first via hole.
  • a window layer 203 electrically connected to the second electrode 2012 in 2020, and a package structure such as a flat layer 204 and a protective layer 205 on the window layer 203.
  • the preset distance between the first electrode 2011 and the second electrode 2012 can be achieved by setting the groove 2013, and the groove can be filled with insulating material or no material, as long as it can be guaranteed
  • the electrical insulation between the first electrode 2011 and the second electrode 2012 and the electrical insulation between the first electrode 2011 and the window layer 203 may be sufficient. It should be noted that, since the photoelectric layer 202 will cover the surface of the first electrode 2011 during the formation process, only the etching accuracy of the photoelectric layer 202 needs to be controlled to ensure that the window layer 203 and the first electrode 2011 do not contact each other.
  • the light receiving area of the solar cell 20 can be increased, thereby improving the power generation efficiency of the solar cell 20
  • it can also reduce the number of electrode deposition processes, thereby saving raw materials and simplifying the process.
  • the thickness of the electrode layer group 201 is relatively thin and the step difference is relatively small, and the depth of the groove formed by the film layer located thereon is also smaller, so the surface is easier to be filled It is flat, so that the surface flatness of the solar cell 20 can be improved to facilitate thin film encapsulation.
  • the materials of the first electrode 2011 and the second electrode 2012 may be the same, for example, they are formed based on the same conductive layer.
  • the first electrode 2011 and the second electrode 2012 can both be metal electrodes such as a metal molybdenum Mo electrode. Since the molybdenum Mo electrode is usually formed by a sputtering process, not only the film quality is good, but also the resistance is low, so the electrode thickness can be significantly reduced .
  • the first electrode 2011 and the second electrode 2012 may be located in different layers.
  • the first electrode 2011 is above the substrate 200 and the second electrode 2012 is below the substrate.
  • the substrate 200 is further provided with an insulating layer 2014 between the first electrode 2011 and the second electrode 2012.
  • a second via hole 2015 is provided in the insulating layer 2014
  • a third via hole 2016 is provided in the first electrode 2011, and the position of the second via hole 2015 and the position of the third via hole 2016 are the same as
  • the positions of the first vias 2020 are opposite to each other, so as to ensure the electrical connection between the window layer 203 and the second electrode 2012.
  • the solar cell 20 may include a base substrate 200, a second electrode 2012 on the base substrate 200, and an insulation on the second electrode 2012 and having a second via hole 2015.
  • a photovoltaic layer 202 on the photovoltaic layer 202 and a window layer 203 electrically connected to the second electrode 2012 through the first via hole 2020, the second via hole 2015 and the third via hole 2016, and a package structure on the window layer 203
  • the flat layer 204 and the protective layer 205 For example, the flat layer 204 and the protective layer 205.
  • the first electrode 2011, the second electrode 2012, and the insulating layer 2014 therebetween collectively constitute an electrode layer group 201.
  • the first electrode 2011 may be correspondingly disposed at the first preset position
  • the second electrode 2012 may be correspondingly disposed at the second preset position
  • the projections of the two preset positions on the substrate 200 are staggered with each other, for example, they do not overlap each other.
  • the etching accuracy of the photovoltaic layer 202 can be controlled so that the photovoltaic layer 202 covers the first electrode.
  • this embodiment can also control the hole diameter of the third via hole 2016 to be larger than that of the first via hole 2020.
  • the photovoltaic layer 202 can be covered on the surface of the first electrode 2011 without extension. To the insulation layer 2014.
  • the first electrode 2011 and the second electrode 2012 are placed on different layers and disposed below the photovoltaic layer 202, so that the light receiving area of the solar cell 20 can be increased, and the power generation efficiency of the solar cell 20 can be improved. .
  • a second electrode 2012 such as a metal silver Ag electrode may be formed on the base substrate 200 through a photolithography process first, and then An insulating layer 2014 having a second via hole 2015 is deposited on the second electrode 2012, and then a first electrode 2011 having a third via hole 2016 such as a metal molybdenum Mo electrode is formed on the insulating layer 2014 through a photolithography process, thereby forming Desired electrode layer group 201.
  • the second via hole 2015 in the insulating layer 2014 and the third via hole 2016 in the first electrode 2011 can be realized by a laser etching process in addition to a mask method and a photolithography process.
  • the film layer located above the electrode layer group 201 can form a groove structure at a position corresponding to the second electrode 2012.
  • the groove structure is easier to fill the surface than the convex structure, so that The surface flatness of the solar cell 20 can be improved to facilitate thin film encapsulation.
  • the materials of the first electrode 2011 and the second electrode 2012 may be the same, that is, they are formed based on the same conductive thin film.
  • the first electrode 2011 and the second electrode 2012 can both be metal electrodes such as a metal molybdenum Mo electrode. Since the molybdenum Mo electrode is usually formed by a sputtering process, not only the film quality is good, but also the resistance is low, so the electrode thickness can be significantly reduced.
  • the materials of the first electrode 2011 and the second electrode 2012 may also be different, that is, they are formed based on different conductive films, for example, the first electrode 2011 is a metal molybdenum Mo electrode, and the second electrode 2012 is a metal aluminum Al electrode. This embodiment is not limited thereto.
  • the solar cell 20 may further include an encapsulation layer located on a side of the window layer 203 facing away from the substrate 200.
  • the encapsulation layer may be used to protect the solar cell from moisture. erosion.
  • the packaging layer may adopt a laminated structure of an organic thin film and an inorganic thin film, so as to improve the water vapor barrier capability of the packaging layer.
  • the packaging layer may include a flat layer 204 on a side of the window layer 203 facing away from the base substrate 200 and a protective layer 205 on a side of the flat layer 204 facing away from the base substrate 200.
  • the flat layer 204 can be used to fill the surface of the window layer 203 to facilitate the subsequent preparation of the film layer.
  • an organic resin material can be used to form a thick and flexible organic flat layer.
  • the protective layer 205 can be used to protect solar cells. In order to reduce damage and cracking, for example, a silicon nitride film or a diamond-like film can be used, which has a high hardness and strong water blocking ability.
  • the technical solution provided by the embodiment of the present invention relates to a method for preparing a solar cell.
  • the method for preparing a solar cell includes the following steps:
  • Step S1 forming an electrode layer group 201 on the base substrate 200, the electrode layer group 201 includes a first electrode 2011 and a second electrode 2012, and the first electrode 2011 and the second electrode 2012 are electrically insulated;
  • Step S2 A photovoltaic layer 202 electrically connected to the first electrode 2011 is formed on a side of the electrode layer group 201 facing away from the base substrate 200.
  • the photovoltaic layer 202 is provided with a first via 2020.
  • a position of the first via hole 2020 corresponds to a position of the second electrode 2012;
  • Step S3 A window layer 203 is formed on a side of the photoelectric layer 202 facing away from the base substrate 200, and the window layer 203 is connected to the second electrode 2012 through the first via hole 2020.
  • the first electrode 2011 and the second electrode 2012 are formed on the base substrate 200 in the same layer and separated by a predetermined distance.
  • the second electrode 2012 is formed on the base substrate 200;
  • the first electrode 2011 having a third via hole 2016, the first via hole 2020, the second via hole 2015, and the first electrode 2011 is formed on a side of the insulating layer 2014 facing away from the base substrate 200.
  • the position of the third via hole 2016 is directly opposite.

Abstract

一种太阳能电池及其制备方法。该太阳能电池包括:衬底基板;电极层组,位于衬底基板的表面,该电极层组包括第一电极和第二电极,第一电极与第二电极之间电绝缘;光电层,位于电极层组背离衬底基板的一侧且与第一电极电连接,该光电层中设有第一过孔,第一过孔的位置与第二电极的位置相对应;窗口层,位于光电层背离衬底基板的一侧且通过第一过孔与第二电极电连接。

Description

太阳能电池及其制备方法 技术领域
本发明涉及太阳能电池技术领域,尤其涉及一种太阳能电池及其制备方法。
背景技术
近些年来,日渐突出的传统能源问题促进了新能源的迅速发展,尤其是以太阳能为代表的清洁能源受到了高度的重视和广泛的关注。由于太阳能电池组件中的核心材料对于水汽十分敏感,而暴露在大气环境中很容易造成其发电效率的衰减,因此采用有效的封装结构对于保证太阳能电池组件的发电效率以及使用寿命十分重要。
目前常见的封装结构包括外贴式封装结构以及有机薄膜和无机薄膜的交替叠层封装结构,但其封装效果以及封装工艺的难易程度不可避免的会受到太阳能电池的表面平整度的影响,因此保证太阳能电池的表面平坦化对于封装效果十分重要。
发明内容
为克服相关技术中存在的问题,本发明实施例提供一种太阳能电池及其制备方法。该技术方案如下:
根据本发明实施例的第一方面,提供一种太阳能电池,包括:
衬底基板;
电极层组,位于所述衬底基板的表面,所述电极层组包括第一电极和第二电极,所述第一电极与所述第二电极之间电绝缘;
光电层,位于所述电极层组背离所述衬底基板的一侧且与所述第一电极电连接,所述光电层中设有第一过孔,所述第一过孔的位置与所述第二电极的位置相对应;
窗口层,位于所述光电层背离所述衬底基板的一侧且通过所述第一过孔与所述第二电极电连接。
在一个实施例中,所述第一电极在所述衬底基板上的正投影与所述第二电极在所述衬底基板上的正投影不重叠。
在一个实施例中,所述第一电极与所述第二电极位于同一层,所述第一电极与所述第二电极之间相隔预设间距。
在一个实施例中,所述第一电极位于所述第二电极背离所述衬底基板的一侧,所述电极层组还包括位于所述第一电极与所述第二电极之间的绝缘层;
其中,所述绝缘层中设有第二过孔,所述第一电极中设有第三过孔,所述第一过孔、所述第二过孔、以及所述第三过孔的位置正对。
在一个实施例中,所述第一电极和所述第二电极的材质相同。
在一个实施例中,所述第一电极和所述第二电极均为金属电极。
在一个实施例中,所述窗口层通过构成该窗口层的透明导电薄膜或者焊锡与所述第二电极电连接。
在一个实施例中,所述太阳能电池还包括位于所述窗口层背离所述衬底基板一侧的封装层。
在一个实施例中,所述封装层包括:
平坦层,位于所述窗口层背离所述衬底基板的一侧;
保护层,位于所述平坦层背离所述衬底基板的一侧。
在一个实施例中,所述平坦层包括有机平坦层,所述保护层包括无机保护层。
根据本发明实施例的第二方面,提供一种太阳能电池的制备方法,包括:
在衬底基板上形成电极层组,所述电极层组包括第一电极和第二电极,所述第一电极与所述第二电极之间电绝缘;
在所述电极层组背离所述衬底基板的一侧形成与所述第一电极电连接的光电层,所述光电层中设有第一过孔,所述第一过孔的位置与所述第二电极的位置相对应;
在所述光电层背离所述衬底基板的一侧形成窗口层,所述窗口层通过所述第一过孔与所述第二电极电连接。
在一个实施例中,所述在衬底基板上形成电极层组,所述电极层组包括第一电极和第二电极,所述第一电极与所述第二电极之间电绝缘包括:
在所述衬底基板上形成位于同一层且相隔预设间距的所述第一电极与所述第二电极。
在一个实施例中,所述在衬底基板上形成电极层组,所述电极层组包括第一电极和第二电极,所述第一电极与所述第二电极之间电绝缘包括:
在所述衬底基板上形成所述第二电极;
在所述第二电极背离所述衬底基板的一侧形成具有第二过孔的绝缘层;
在所述绝缘层背离所述衬底基板的一侧形成具有第三过孔的所述第一电极,所述第一过孔、所述第二过孔、以及所述第三过孔的位置正对。
本发明的实施例提供的技术方案可以包括以下有益效果:该技术方案通过将第一电极和第二电极均置于光电层的下方,一方面可以有效的避免电极对光电层的遮挡,以便于增大太阳能电池的开口率,从而提升其发电效率,另一方面还可以在窗口层的表面形成对应于第二电极的凹陷结构,相比于第二电极凸出于窗口层表面的凸起结构而言,凹陷结构更容易被填平,从而有利于实现太阳能电池的表面平坦化,以便于降低薄膜封装的工艺难度并提升薄膜封装的效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一作为现有技术示出的太阳能电池的结构示意图;
图2是根据一示例性实施例示出的太阳能电池的结构示意图;
图3是根据一示例性实施例示出的太阳能电池的封装结构示意图一;
图4是根据一示例性实施例示出的太阳能电池的平面结构图一;
图5是根据一示例性实施例示出的太阳能电池的封装结构示意图二;
图6是根据一示例性实施例示出的太阳能电池的平面结构图二;
图7是根据一示例性实施例示出的太阳能电池的制备方法流程图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时, 除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
考虑到太阳能电池组件的核心材料对于水汽十分敏感,因此需要采用特定的封装结构来防止水汽的入侵,从而保证太阳能电池的发电效率以及使用寿命。目前常见的封装结构包括有机薄膜和无机薄膜的交替叠层封装结构,但其封装效果以及封装工艺的难易程度不可避免的会受到太阳能电池的表面平整度的影响。
图1示例性示出了一相关技术中的太阳能电池的结构示意图。根据图1可知,该太阳能电池10可以包括衬底基板100,依次位于衬底基板100上的第一电极101、光电层102、窗口层103和第二电极104,以及位于第二电极104上的封装层105。其中,第一电极101为面状电极且平铺在衬底基板100的表面,第二电极104为条状电极且分布在窗口层103的表面。
基于该结构,由于第二电极104是贴覆或者丝网印刷等工艺的方式制作在窗口层103的表面,其厚度至少达到几微米甚至数十微米,而薄膜封装层105的厚度相对较小,通常仅有2~3微米甚至更薄,因此第二电极104的厚度相比于封装层105而言就显得过大,这将直接影响薄膜封装的工艺难度以及封装效果。
本发明实施例提供的技术方案涉及一种太阳能电池20,如图2所示,该太阳能电池20包括:
衬底基板200,例如柔性基板或者玻璃基板;
电极层组201,位于衬底基板200的表面,该电极层组201中包括第一电极2011和第二电极2012,且第一电极2011与第二电极2012之间电绝缘;
光电层202,位于电极层组201背离衬底基板200的一侧且与第一电极2011电连接,该光电层202中设有第一过孔2020,第一过孔2020的位置与第二电极2012的位置相对应;
窗口层203,位于光电层202背离衬底基板200的一侧且通过第一过孔2020与第二电极2012电连接。
其中,所述光电层202可以包括光电转换半导体薄膜例如晶硅半导体薄膜或者CIGS(CuInGaSe,铜铟镓硒)半导体薄膜等;所述窗口层203可以采用透明导电薄膜例如ITO(Indium Tin Oxide,氧化铟锡)薄膜或者AZO(Aluminum doped Zinc Oxid,掺铝氧化锌)薄膜等。
本发明实施例所提供的技术方案,通过将第一电极2011和第二电极2012均置于光电层202的下方,一方面可以有效的避免电极对光电层202的遮挡,以便于增大太阳能电池20的开口率,从而提升其发电效率,另一方面还可以在窗口层203的表面形成对应于第二电极2012的凹陷结构,相比于第二电极2012凸出于窗口层203表面的凸起结构而言,凹陷结构更容易被填平,从而有利于实现太阳能电池20的表面平坦化,以便于降低薄膜封装的工艺难度并提升薄膜封装的效果。
本示例实施方式中,第一电极2011在衬底基板200上的正投影与第二电极2012在衬底基板200上的正投影相互交错即不重叠。其中,第一电极2011作为太阳能电池20的正极,其例如可以采用具有开口的平面电极结构,第二电极2012作为太阳能电池20的负极,其例如可以采用对应开口位置的条状电极结构。
考虑到第一电极2011和第二电极2012均设置在光电层202背离窗口层203的一侧,且窗口层203需要通过位于光电层202中的第一过孔2020与第二电极2012保持电连接,因此为了保证窗口层203与第二电极2012之间电连接的可靠性,则窗口层203需要通过形成自身的透明导电薄膜甚至通过焊锡的方式与第二电极2012保持电连接。其中,前者是指在形成窗口层203的过程中,透明导电薄膜本身可以通过第一过孔2020直接形成在第二电极2012的表面,以实现二者之间的电连接。但在窗口层203与第二电极2012之间的距离即窗口层203所需穿过的过孔深度较大的情况下,这种过孔连接方式可能会影响二者之间电连接的可靠性,因此后者进一步的采用焊锡的方式来保证二者电连接的可靠性。
在一种实施方式中,如图3所示,第一电极2011与第二电极2012可以位于同一层,例如第一电极2011和第二电极2012可以基于同一导电层并通过同一次光刻工艺形成。其中,第一电极2011与第二电极2012之间相隔预设间距,以便于保证二者之间的电绝缘。示例的,如图4所示,第一电极2011与第二电极2012之间的预设间距可以是在该导电层的预设位置处进行划线处理例如设置凹槽2013而形成,当然也可以是先形成第一电极2011,再形成与第一电极2011相隔预设间距的第二电极2012,本实施例对此不作具体限定。
在此情况下,参考图3所示,所述太阳能电池20可以包括衬底基板200,位于衬底基板200上且由同层设置并相隔预设间距的第一电极2011和第二电极2012构成的电极层组201,位于电极层组201上且与第一电极2011电连接并具有与第二电极2012对应的第一过孔2020的光电层202,位于光电层202上且通过第一过孔2020与第二电极2012电连接的窗口层203,以及位于窗口层203上的封装结构例如平坦层204和保护层205。
其中,参考图4所示,第一电极2011与第二电极2012之间的预设间距可以通过设置凹 槽2013的方式实现,而在槽中可以填充绝缘材料或者不填充任何材料,只要能保证第一电极2011与第二电极2012之间的电绝缘,以及第一电极2011与窗口层203之间的电绝缘即可。需要说明的是:由于光电层202在形成过程中会覆盖在第一电极2011的表面,因此只需控制光电层202的刻蚀精度便可保证窗口层203与第一电极2011之间不接触。
基于此,本实施例通过将第一电极2011与第二电极2012置于同一层并设置在光电层202的下方,一方面可以增大太阳能电池20的受光面积,从而提高太阳能电池20的发电效率,另一方面还能减少电极沉积工艺的次数,从而节省原料并简化工艺流程。示例的,若第一电极2011与第二电极2012是基于同一导电层例如金属钼Mo导电层并通过同一次光刻工艺而形成的,即第一电极2011与第二电极2012是通过对该导电层进行开槽处理形成的,那么该电极层组201的厚度相对较薄且段差也相对较小,则位于其上的膜层所形成的凹槽的深度也较小,因此表面更加容易被填平,从而能够提升太阳能电池20的表面平坦度,以便于进行薄膜封装。
基于该实施方式,第一电极2011和第二电极2012的材质可以相同,例如二者是基于同一导电层形成的。其中,第一电极2011和第二电极2012可以均采用金属电极例如金属钼Mo电极,由于钼Mo电极通常采用溅射工艺形成,不仅膜质好,而且电阻低,因此能够显著的降低电极的厚度。
在另一种实施方式中,如图5所示,第一电极2011与第二电极2012可以位于不同层,第一电极2011在上即远离衬底基板200,第二电极2012在下即靠近衬底基板200,且第一电极2011与第二电极2012之间还设有绝缘层2014。其中,如图6所示,绝缘层2014中设有第二过孔2015,第一电极2011中设有第三过孔2016,且第二过孔2015的位置和第三过孔2016的位置与第一过孔2020的位置正对,以便于保证窗口层203与第二电极2012的电连接。
在此情况下,参考图5所示,所述太阳能电池20可以包括衬底基板200,位于衬底基板200上的第二电极2012,位于第二电极2012上且具有第二过孔2015的绝缘层2014,位于绝缘层2014上且具有与第二过孔2015对应的第三过孔2016的第一电极2011,位于第一电极2011上且具有与第二过孔2015对应的第一过孔2020的光电层202,位于光电层202上且通过第一过孔2020、第二过孔2015和第三过孔2016与第二电极2012电连接的窗口层203,以及位于窗口层203上的封装结构例如平坦层204和保护层205。
其中,参考图6所示,第一电极2011、第二电极2012、以及二者之间的绝缘层2014共同构成电极层组201。第一电极2011可以对应设置在第一预设位置,第二电极2012可以对应设置在第二预设位置,且该两个预设位置在衬底基板200上的投影相互交错例如互不交叠。 需要说明的是:为了保证窗口层203与第一电极2011的电绝缘,本实施例可在形成光电层202的过程中控制光电层202的刻蚀精度,以使光电层202覆盖在第一电极2011的表面;在此基础上,本实施例还可以控制第三过孔2016的孔径大于第一过孔2020的孔径,此时光电层202包覆在第一电极2011的表面即可,无需延伸至绝缘层2014中。
基于此,本实施例通过将第一电极2011与第二电极2012置于不同层并设置在光电层202的下方,这样便可增大太阳能电池20的受光面积,从而提高太阳能电池20的发电效率。示例的,若第一电极2011与第二电极2012是基于不同导电层形成的,则本实施例可以先经过一次光刻工艺在衬底基板200上形成第二电极2012例如金属银Ag电极,然后在第二电极2012上沉积具有第二过孔2015的绝缘层2014,接着再经过一次光刻工艺在绝缘层2014上形成具有第三过孔2016的第一电极2011例如金属钼Mo电极,从而形成所需的电极层组201。需要说明的是:绝缘层2014中的第二过孔2015以及第一电极2011中的第三过孔2016除了采用掩膜法并通过光刻工艺实现以外,还可以通过激光刻蚀工艺实现,本实施例对此不作限定。这样一来,位于该电极层组201上方的膜层在对应第二电极2012的位置处便可形成凹槽结构,该凹槽结构相比于凸起结构而言表面更容易被填平,从而能够提升太阳能电池20的表面平坦度,以便于进行薄膜封装。
基于该实施方式,第一电极2011和第二电极2012的材质可以相同,即二者是基于同一种导电薄膜形成的。其中,第一电极2011和第二电极2012可以均采用金属电极例如金属钼Mo电极,由于钼Mo电极通常采用溅射工艺形成,不仅膜质好,而且电阻低,因此能够显著的降低电极的厚度。当然,第一电极2011与第二电极2012的材质也可以不同,即二者是基于不同的导电薄膜形成的,例如第一电极2011为金属钼Mo电极,第二电极2012为金属铝Al电极,本实施例对此不做限定。
本示例实施方式中,参考图3和图5所示,所述太阳能电池20还可以包括位于窗口层203背离衬底基板200一侧的封装层,该封装层可用于保护太阳能电池不受水汽的侵蚀。其中,该封装层可以采用有机薄膜与无机薄膜的叠层结构,以便于提升封装层的水汽阻隔能力。
示例的,所述封装层可以包括位于窗口层203背离衬底基板200一侧的平坦层204以及位于平坦层204背离衬底基板200一侧的保护层205。其中,平坦层204可用于填平窗口层203的表面以便于后续膜层的制备,其例如可以采用有机树脂材料以形成厚度较大且具有柔性的有机平坦层,保护层205可用于保护太阳能电池的表面以减少受损开裂,其例如可以采用氮化硅薄膜或者类金刚石薄膜等具有较高硬度且阻水能力较强的无机薄膜。
本发明实施例提供的技术方案涉及一种太阳能电池的制备方法,如图7所示,该太阳能 电池制备方法,包括下述步骤:
步骤S1:在衬底基板200上形成电极层组201,所述电极层组201包括第一电极2011和第二电极2012,所述第一电极2011与所述第二电极2012之间电绝缘;
步骤S2:在所述电极层组201背离所述衬底基板200的一侧形成与所述第一电极2011电连接的光电层202,所述光电层202中设有第一过孔2020,所述第一过孔2020的位置与所述第二电极2012的位置相对应;
步骤S3:在所述光电层202背离所述衬底基板200的一侧形成窗口层203,所述窗口层203通过所述第一过孔2020与所述第二电极2012连接。
示例的,在所述衬底基板200上形成位于同一层且相隔预设间距的所述第一电极2011与所述第二电极2012。
示例的,在所述衬底基板200上形成所述第二电极2012;
在所述第二电极2012背离所述衬底基板200的一侧形成具有第二过孔2015的绝缘层2014;
在所述绝缘层2014背离所述衬底基板200的一侧形成具有第三过孔2016的所述第一电极2011,所述第一过孔2020、所述第二过孔2015、以及所述第三过孔2016的位置正对。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种太阳能电池,其特征在于,包括:
    衬底基板;
    电极层组,位于所述衬底基板的表面,所述电极层组包括第一电极和第二电极,所述第一电极与所述第二电极之间电绝缘;
    光电层,位于所述电极层组背离所述衬底基板的一侧且与所述第一电极电连接,所述光电层中设有第一过孔,所述第一过孔的位置与所述第二电极的位置相对应;
    窗口层,位于所述光电层背离所述衬底基板的一侧且通过所述第一过孔与所述第二电极电连接。
  2. 根据权利要求1所述的太阳能电池,其特征在于,所述第一电极在所述衬底基板上的正投影与所述第二电极在所述衬底基板上的正投影不重叠。
  3. 根据权利要求1所述的太阳能电池,其特征在于,所述第一电极与所述第二电极位于同一层,所述第一电极与所述第二电极之间相隔预设间距。
  4. 根据权利要求1所述的太阳能电池,其特征在于,所述第一电极位于所述第二电极背离所述衬底基板的一侧,所述电极层组还包括位于所述第一电极与所述第二电极之间的绝缘层;
    其中,所述绝缘层中设有第二过孔,所述第一电极中设有第三过孔,所述第一过孔、所述第二过孔、以及所述第三过孔的位置正对。
  5. 根据权利要求1所述的太阳能电池,其特征在于,所述窗口层通过构成该窗口层的透明导电薄膜或者焊锡与所述第二电极电连接。
  6. 根据权利要求1所述的太阳能电池,其特征在于,所述太阳能电池还包括位于所述窗口层背离所述衬底基板一侧的封装层。
  7. 根据权利要求6所述的太阳能电池,其特征在于,所述封装层包括:
    平坦层,位于所述窗口层背离所述衬底基板的一侧,所述平坦层包括有机平坦层;
    保护层,位于所述平坦层背离所述衬底基板的一侧,所述保护层包括无机保护层。
  8. 一种太阳能电池的制备方法,其特征在于,包括:
    在衬底基板上形成电极层组,所述电极层组包括第一电极和第二电极,所述第一电极与所述第二电极之间电绝缘;
    在所述电极层组背离所述衬底基板的一侧形成与所述第一电极电连接的光电层,所述光电层中设有第一过孔,所述第一过孔的位置与所述第二电极的位置相对应;
    在所述光电层背离所述衬底基板的一侧形成窗口层,所述窗口层通过所述第一过孔与所述第二电极电连接。
  9. 根据权利要求8所述的制备方法,其特征在于,所述在衬底基板上形成电极层组,所述电极层组包括第一电极和第二电极,所述第一电极与所述第二电极之间电绝缘包括:
    在所述衬底基板上形成位于同一层且相隔预设间距的所述第一电极与所述第二电极。
  10. 根据权利要求9所述的制备方法,其特征在于,所述在衬底基板上形成电极层组,所述电极层组包括第一电极和第二电极,所述第一电极与所述第二电极之间电绝缘包括:
    在所述衬底基板上形成所述第二电极;
    在所述第二电极背离所述衬底基板的一侧形成具有第二过孔的绝缘层;
    在所述绝缘层背离所述衬底基板的一侧形成具有第三过孔的所述第一电极,所述第一过孔、所述第二过孔、以及所述第三过孔的位置正对。
PCT/CN2018/098056 2018-06-08 2018-08-01 太阳能电池及其制备方法 WO2019232904A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820893330.1 2018-06-08
CN201820893330.1U CN207834314U (zh) 2018-06-08 2018-06-08 太阳能电池

Publications (1)

Publication Number Publication Date
WO2019232904A1 true WO2019232904A1 (zh) 2019-12-12

Family

ID=63168308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098056 WO2019232904A1 (zh) 2018-06-08 2018-08-01 太阳能电池及其制备方法

Country Status (8)

Country Link
US (1) US20190378939A1 (zh)
EP (1) EP3579283A1 (zh)
JP (1) JP2019212884A (zh)
CN (1) CN207834314U (zh)
AU (1) AU2018101195A4 (zh)
CA (1) CA3013495A1 (zh)
SG (1) SG10201806694VA (zh)
WO (1) WO2019232904A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816726B (zh) * 2020-06-15 2023-10-03 隆基绿能科技股份有限公司 背接触太阳电池及生产方法、背接触电池组件
CN112838134B (zh) * 2021-01-25 2023-08-15 浙江上方电子装备有限公司 一种铜铟镓硒薄膜太阳能电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231411A (zh) * 2011-07-11 2011-11-02 中国科学院深圳先进技术研究院 薄膜型太阳能电池表面自对准电极的制造方法
US20130233374A1 (en) * 2010-05-28 2013-09-12 General Electric Company Monolithically integrated solar modules and methods of manufacture
CN103346173A (zh) * 2013-06-18 2013-10-09 南开大学 一种柔性铜铟镓硒薄膜太阳电池组件及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150057807A (ko) * 2013-11-20 2015-05-28 삼성에스디아이 주식회사 태양 전지 및 그 제조 방법
CN104716207A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 一种柔性薄膜太阳电池的结构和制备工艺
DE102014223485A1 (de) * 2014-11-18 2016-05-19 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Schichtaufbau für eine Dünnschichtsolarzelle und Herstellungsverfahren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130233374A1 (en) * 2010-05-28 2013-09-12 General Electric Company Monolithically integrated solar modules and methods of manufacture
CN102231411A (zh) * 2011-07-11 2011-11-02 中国科学院深圳先进技术研究院 薄膜型太阳能电池表面自对准电极的制造方法
CN103346173A (zh) * 2013-06-18 2013-10-09 南开大学 一种柔性铜铟镓硒薄膜太阳电池组件及其制备方法

Also Published As

Publication number Publication date
CN207834314U (zh) 2018-09-07
JP2019212884A (ja) 2019-12-12
CA3013495A1 (en) 2019-12-08
SG10201806694VA (en) 2020-01-30
US20190378939A1 (en) 2019-12-12
EP3579283A1 (en) 2019-12-11
AU2018101195A4 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP5901656B2 (ja) 太陽電池およびその製造方法{solarcellandmanufacturingmethodofthesame}
US8779282B2 (en) Solar cell apparatus and method for manufacturing the same
WO2015147225A1 (ja) 太陽電池モジュールおよびその製造方法
US20120273039A1 (en) Solar Cell Apparatus and Method for Manufacturing the Same
US9818897B2 (en) Device for generating solar power and method for manufacturing same
JP2020508559A (ja) 薄膜太陽電池
JP2024020304A (ja) 表示素子の封止構造及び表示装置
WO2019232904A1 (zh) 太阳能电池及其制备方法
WO2019241916A1 (zh) 一种柔性薄膜太阳电池及其制造方法
KR101114018B1 (ko) 태양전지 및 이의 제조방법
KR101091379B1 (ko) 태양전지 및 이의 제조방법
KR101075721B1 (ko) 태양전지 및 이의 제조 방법
TWI730701B (zh) 一種薄膜太陽能電池的製作方法及薄膜太陽能電池
JP2011507297A (ja) 太陽電池システムにおける直列接続の付与方法
US9087953B2 (en) Solar cell module and method for manufacturing the same
US9806207B2 (en) Solar cell and method for manufacturing same
KR20110035733A (ko) 태양전지 및 이의 제조방법
JP2013527622A (ja) 太陽電池モジュールおよびそのための製造方法
US9954122B2 (en) Solar cell apparatus and method of fabricating the same
KR101306529B1 (ko) 태양전지 및 이의 제조방법
JP2012532446A (ja) 太陽電池及びその製造方法
TWI774397B (zh) 薄膜光伏結構
TWM587827U (zh) 薄膜太陽能電池
CN113488593B (zh) 薄膜光伏结构
TW202408026A (zh) 薄膜光伏結構及其製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18921792

Country of ref document: EP

Kind code of ref document: A1