WO2019240219A1 - 新規な架橋アルギン酸 - Google Patents

新規な架橋アルギン酸 Download PDF

Info

Publication number
WO2019240219A1
WO2019240219A1 PCT/JP2019/023478 JP2019023478W WO2019240219A1 WO 2019240219 A1 WO2019240219 A1 WO 2019240219A1 JP 2019023478 W JP2019023478 W JP 2019023478W WO 2019240219 A1 WO2019240219 A1 WO 2019240219A1
Authority
WO
WIPO (PCT)
Prior art keywords
alginic acid
formula
group
compound
gel
Prior art date
Application number
PCT/JP2019/023478
Other languages
English (en)
French (fr)
Inventor
古迫 正司
智裕 鳴海
佐藤 勉
Original Assignee
持田製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 持田製薬株式会社 filed Critical 持田製薬株式会社
Priority to KR1020207035554A priority Critical patent/KR20210019441A/ko
Priority to JP2020525652A priority patent/JP6815561B2/ja
Priority to CN201980038664.8A priority patent/CN112236457B/zh
Priority to CN202310971621.3A priority patent/CN116874636A/zh
Priority to CA3103227A priority patent/CA3103227A1/en
Priority to EP19819436.7A priority patent/EP3808783A4/en
Publication of WO2019240219A1 publication Critical patent/WO2019240219A1/ja
Priority to US17/119,681 priority patent/US11932708B2/en
Priority to US18/428,348 priority patent/US20240174772A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0023Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/042Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/74Alginate

Definitions

  • the present invention relates to a novel alginic acid derivative, a novel crosslinked alginic acid, a production method thereof, and the like.
  • Alginic acid is a high molecular acidic polysaccharide molecule extracted from the cell walls of natural brown algae such as lessonia, macrocystis, laminaria, ascophyllum, dabilia, kajika, arame, kombu, etc., ⁇ -D-mannuronic acid (M component) And a C-5 epimer, ⁇ -L-guluronic acid (G component), which is a linear heteropolymer in which two types of uronic acid are linked by 1-4.
  • the chemical structure is such that a homopolymer block (MM) of mannuronic acid, a homopolymer block (GG) of guluronic acid, and a block (MG) in which mannuronic acid and guluronic acid are randomly arranged are arbitrary permutations and ratios. It is a block copolymer combined in a complicated manner.
  • Alginic acid is widely used in fields such as medicine, biotechnology, cosmetics, textiles, papermaking, and food.
  • Alginate alkali metal salts of monovalent alginic acid eg, sodium alginate, etc.
  • alkaline earth metal alginates eg, calcium alginate, etc.
  • It has the property of gelling (insolubilizing), and attempts have been made to modify or mold the material into those suitable for various applications.
  • Patent Document 1 WO 2011/028031 pamphlet
  • Patent Document 3 International Publication No. 2009/073437 pamphlet
  • photoreactive groups such as cinnamic acid, substituted cinnamic acid, acrylic acid, maleic acid, fumaric acid, furyl acrylic acid, thiophenacrylic acid, cinnamylidene acetic acid, sorbic acid, thymine, or coumarin
  • photoreactive groups such as cinnamic acid, substituted cinnamic acid, acrylic acid, maleic acid, fumaric acid, furyl acrylic acid, thiophenacrylic acid, cinnamylidene acetic acid, sorbic acid, thymine, or coumarin
  • Patent Document 6 International Publication No. 2008/071058 pamphlet
  • Cross-linked polysaccharides obtained by cross-linking polysaccharides by the Huisgen reaction are (i) International Publication No. 2008/031525 (Patent Document 7), (ii) International Publication No. 2012/165462 (Patent Document 8), (iii) It is disclosed in the pamphlet of International Publication No. 2015/020206 (Patent Document 9) and (iv) Chinese Patent Application Publication No. 106140040 (Patent Document 10).
  • Patent Document 7 introduces a first polysaccharide as a polysaccharide selected from hyaluronic acid, a second polysaccharide as chondroitin, sulfated dermatan, alginic acid, or a salt thereof, and the like.
  • the present invention relates to a crosslinked polysaccharide obtained by causing a chain alkyne group and an azide group to undergo a Huisgen reaction in the presence of a copper catalyst, and does not disclose a novel crosslinked alginic acid described below.
  • Patent Document 8 discloses that the first polysaccharide and the second polysaccharide are polysaccharides selected from hyaluronic acid, carboxymethyl dextran, cellulose derivatives, and chitosan (the first polysaccharide and the second polysaccharide are of the same type.
  • the first polysaccharide and the second polysaccharide are of the same type.
  • cross-linked polysaccharides obtained by subjecting each saccharide to a Huisgen reaction with a cyclic alkyne group and an azide group introduced via a linker polysaccharide and linker are ester bonds
  • the following new crosslinked alginic acid is not disclosed.
  • Patent Document 9 is obtained by causing a Huisgen reaction between a cyclic alkyne group and an azide group introduced into each polysaccharide via a linker, using hyaluronic acid as the first polysaccharide and chondroitin sulfate as the second polysaccharide.
  • hyaluronic acid as the first polysaccharide
  • chondroitin sulfate as the second polysaccharide.
  • novel crosslinked alginic acid described below is not disclosed.
  • Patent Document 10 discloses that the first polysaccharide is chitosan, the second polysaccharide is sodium alginate, and a cyclic alkyne group introduced into each polysaccharide via a linker (the polysaccharide and the linker are ester bonds) and Although it relates to a crosslinked polysaccharide obtained by subjecting an azide group to a Huisgen reaction, a novel crosslinked alginic acid described later is not disclosed.
  • Patent Document 11 relates to a method of derivatizing a saccharide by bonding an 8-membered cycloalkyne group to the saccharide, and the saccharide is a non-natural saccharide (a capsular saccharide derived from Streptococcus agalactie) Since it is not alginic acid, nor is the terminal of the 8-membered cycloalkyne group to be bonded amide-bonded to the carboxyl group of the saccharide, it is different from the novel alginic acid derivative and its production method described below.
  • a non-natural saccharide a capsular saccharide derived from Streptococcus agalactie
  • Non-Patent Document 1 describes branched alginic acid (bAlg-DBCO) in which a cyclooctyne side chain is introduced into the side chain, but alginic acid and branched polyethylene glycol (4-arm PEG-NH 2 ). It was obtained by reacting branched alginic acid (bAlg) synthesized from aminated cyclooctyne (DBCO-PEG-amine) with a structure different from the new alginic acid derivative described below. Is also different.
  • novel alginic acid derivatives provided here can be used, for example, for the formation of chemical crosslinks, ie reactive groups that can be used for the formation of chemical crosslinks.
  • a reactive group complementary to the reactive group is introduced.
  • the chemical cross-linking is performed by, for example, a cross-linking reaction by a Huisgen reaction (1,3-dipolar cycloaddition reaction), for example, between alginic acid derivatives of the formula (I) and the formula (II). Or may be performed between, for example, an alginic acid derivative of formula (I) and another molecule having an azide group, or between an alginic acid derivative of formula (II) and another molecule having an alkyne group. May be.
  • a crosslinked alginic acid is obtained by utilizing a Huisgen reaction that does not require a copper catalyst in order to avoid copper-derived cytotoxicity in the crosslinked alginic acid.
  • a cyclooctyne derivative a highly strained cyclic alkyne group
  • the reaction could be carried out without requiring a high temperature condition of 100 ° C. or higher and a copper catalyst. . Therefore, since the novel crosslinked alginic acid of the preferred embodiment does not contain a copper catalyst, even when formed into a final form (crosslinked alginic acid structure), the toxicity derived from copper does not appear. Are better.
  • Alginic acid derivatives, novel crosslinked alginic acid obtained by carrying out a Huisgen reaction (1,3-dipolar cycloaddition reaction) using alginic acid derivatives of formula (I) and formula (II), and the above-mentioned alginic acid derivatives and bridges A method for producing alginic acid is provided. That is, exemplary embodiments can be as follows [1] to [17].
  • An arbitrary carboxyl group of the first alginic acid and an arbitrary carboxyl group of the second alginic acid are represented by the following formula (III-L): [In the formula (III-L), -CONH- and -NHCO- at both ends represent an amide bond via an arbitrary carboxyl group of alginic acid; -L 1- , -L 2- , and X are described later. The same as defined in the seventh embodiment].
  • the present invention provides, for example, a novel alginic acid derivative, a novel crosslinked alginic acid, and the like that can be used for chemical crosslinking.
  • the alginic acid derivative is introduced with a reactive group that does not exist in the living body, and even if an unreacted group remains, the alginic acid derivative is safe for a living organism that does not have a risk of a crosslinking reaction with a biological component such as a cell.
  • the crosslinking reaction is safe and easy to use because the reaction is completed at room temperature without using a metal catalyst.
  • the crosslinked alginic acid is chemically crosslinked by a Huisgen reaction (1,3-dipolar cycloaddition reaction).
  • Chemical crosslinking can be used in combination with crosslinking using, for example, divalent metal gold ions using calcium ions, and by adjusting the reaction conditions, the stability is preferably non-crosslinked alginic acid or non-chemically crosslinked alginic acid (for example, this is an improvement compared with calcium alginate crosslinked alginic acid).
  • the gel physical properties of the crosslinked product can be adjusted, and the substance permeability can also be adjusted. The present invention has at least one or more of these effects.
  • a cyclic alkyne group (Akn) introduced into any one or more carboxyl groups of alginic acid via an amide bond and a divalent linker (—L 1 —), has the following formula (I): [In the formula (I), (ALG) represents alginic acid; —NHCO— represents an amide bond via an arbitrary carboxyl group of alginic acid; —L 1 — represents the following partial structural formula [in each formula, Excludes wavy lines at both ends]: Represents a divalent linker selected from the group of Akn is the following partial structural formula [in each formula, the right side of the wavy line is not included]: A cyclic alkyne group selected from the group consisting of: an asterisk represents a chiral center].
  • —L 1 — is preferably the following partial structural formula [in each formula, the outside of the wavy line at both ends is not included]: A divalent linker selected from the group of More preferably, the following partial structural formula [in each formula, the outside of the wavy line at both ends is not included]: A divalent linker selected from the group of More preferably, the following partial structural formula [in each formula, the outside of the wavy line at both ends is not included]: A divalent linker selected from the group of More preferably, the following partial structural formula [in each formula, the outside of the wavy line at both ends is not included]: A divalent linker selected from the group of
  • Akn is preferably the following partial structural formula [in each formula, the right side of the wavy line is not included]: A cyclic alkyne group selected from the group of More preferably, the following partial structural formula [in each formula, the right side of the wavy line is not included]: A cyclic alkyne group selected from the group of
  • the combination of Akn and —L 1 — is preferably the following partial structural formula [in each formula, the right side of the wavy line (imino group side) Is not included]: A group selected from the group of: More preferably, the following partial structural formula [in each formula, the right side of the wavy line (imino group side) is not included]: A group selected from the group of: More preferably, the following partial structural formula [in each formula, the right side of the wavy line (imino group side) is not included]: It is as shown by the group selected from these groups.
  • -L 1 - is preferably the following partial structural formula [in each formula, the outside of the wavy line at both ends is not included]: A divalent linker selected from the group of More preferably, the following partial structural formula [in each formula, the outside of the wavy line at both ends is not included]: A divalent linker selected from the group of More preferably, the following partial structural formula [in each formula, the outside of the wavy line at both ends is not included]: A divalent linker selected from the group of More preferably, the following partial structural formula [in each formula, the outside of the wavy line at both ends is not included]: A divalent linker selected from the group of
  • Akn is preferably the following partial structural formula [in each formula, the right side of the wavy line is not included]: A cyclic alkyne group selected from the group of More preferably, the following partial structural formula [in each formula, the right side of the wavy line is not included]: A cyclic alkyne group selected from the group of
  • the combination of Akn and —L 1 — is preferably the following partial structural formula [in each formula, the right side of the wavy line (imino group side) Is not included]: A group selected from the group of: More preferably, the following partial structural formula [in each formula, the right side of the wavy line (imino group side) is not included]: A group selected from the group of: More preferably, the following partial structural formula [in each formula, the right side of the wavy line (imino group side) is not included]: It is as shown by the group selected from these groups.
  • —L 1 — is preferably the following partial structural formula [in each formula, the outside of the wavy line at both ends is not included]: A divalent linker selected from the group of More preferably, the following partial structural formula [in each formula, the outside of the wavy line at both ends is not included]: A divalent linker selected from the group of More preferably, the following partial structural formula [in each formula, the outside of the wavy line at both ends is not included]: A divalent linker selected from the group of More preferably, the following partial structural formula [in each formula, the outside of the wavy line at both ends is not included]: A divalent linker selected from the group of
  • Akn is preferably the following partial structural formula [in each formula, the right side of the wavy line is not included]: A cyclic alkyne group selected from the group of More preferably, the following partial structural formula [in each formula, the right side of the wavy line is not included]: A cyclic alkyne group selected from the group of
  • each formula of -L 1 -or Akn is represented by the above-described embodiments [1], [1-1], [1-1a], [1-2], [1-2a], and [1-1b], or a group selected from the group of the following formulas (in each formula, the right side of the wavy line (imino group side is not included));
  • each formula of -L 1 -or Akn is represented by the above-described embodiments [1], [1-1], [1-1a], [1-2], [1-2a], and As described in [1-1b]);
  • each formula of -L 1 -or Akn is represented by the above-described embodiments [1], [1-1], [1-1a], [1-2], [1-2a], and As described in [1-1b]);
  • the preferred embodiment of the embodiment [1], and further the preferred embodiment of the alginic acid derivative represented by the formula (I) of the embodiment [1] can be arbitrarily formed by appropriately combining the definitions of Akn and -L 1-. Can do.
  • the introduction rate of the Akn-L 1 —NH 2 group is preferably 2% to 20%; more preferably 3 to 10%.
  • the introduction rate of the Akn-L 1 -NH 2 group is preferably 0.3% to 20%; more preferably 0.5 to 10%. .
  • the third aspect is as follows.
  • the weight average molecular weight of the alginic acid derivative measured by gel filtration chromatography is preferably 300,000 Da to 2.5 million Da, more preferably 500,000 Da to 2 million Da. It is.
  • the weight average molecular weight of the alginic acid derivative measured by gel filtration chromatography is preferably 300,000 Da to 2.5 million Da, more preferably 1,000,000 Da to 2 million Da. It is.
  • the fourth aspect is as follows.
  • An azide group is introduced into any one or more carboxyl groups of alginic acid via an amide bond and a divalent linker (—L 2 —), and the following formula (II):
  • (ALG) represents alginic acid
  • —NHCO— represents an amide bond via an arbitrary carboxyl group of alginic acid
  • —L 2 — represents the following partial structural formula [in each formula, Excludes wavy lines at both ends]:
  • —L 2 — is preferably the following partial structural formula: A linker selected from the group [not including the outside of the wavy lines at both ends in each formula]; More preferably, the following partial structural formula: A linker selected from the group of
  • the preferred embodiment of the embodiment [4], and further the preferred embodiment of the alginic acid derivative represented by the formula (II) of the embodiment [4] can be arbitrarily combined by appropriately combining the definitions of an azide group and —L 2 —. Can be formed.
  • the fifth aspect is as follows.
  • the introduction rate of the N 3 -L 2 —NH 2 group (—L 2 — is the same as defined in the embodiment [4]) is 0.1% to 30%.
  • the introduction rate of the N 3 -L 2 —NH 2 group is preferably 2% to 20%; more preferably 3 to 10%.
  • the introduction rate of the N 3 -L 2 —NH 2 group is preferably 0.3% to 20%; more preferably 0.5 to 15%. is there.
  • the sixth aspect is as follows.
  • the weight average molecular weight of the alginic acid derivative of the formula (II) measured by gel filtration chromatography is preferably 300,000 Da to 2.5 million Da, and more preferably 500,000 Da. Da-2 million Da.
  • the weight average molecular weight of the alginic acid derivative of the formula (II) measured by gel filtration chromatography is preferably 300,000 Da to 2.5 million Da, more preferably 1,000,000. Da-2 million Da.
  • a seventh aspect is as follows.
  • An arbitrary carboxyl group of the first alginic acid and an arbitrary carboxyl group of the second alginic acid are represented by the following formula (III-L): [In the formula (III-L), —CONH— and —NHCO— at both ends represent an amide bond via an arbitrary carboxyl group of alginic acid; -L 1 -is the same as defined in the embodiment [1]; -L 2 -has the same definition as in the above embodiment [4]; X is the following partial structural formula: A cross-linked alginic acid bonded via a cyclic group selected from the group of (in which each star does not include the outside of the wavy line at both ends, and the asterisk represents a chiral center).
  • -L 1 represents the following partial structural formula: A divalent linker (not including the outside of the wavy line at both ends); -L 2 -represents the following partial structural formula: A divalent linker (not including the outside of the wavy line at both ends); X is the following partial structural formula: (In each formula, the outside of the wavy line at both ends is not included).
  • the combination of —L 2 —XL 1 — is preferably the following partial structural formula [in each formula, the outside of the wavy line at both ends is Not included]:
  • -L 1 is the following partial structural formula: A divalent linker selected from the group of (wherein the outer wavy lines at both ends are not included); -L 2 -represents the following partial structural formula: A divalent linker selected from the group of (wherein the outer wavy lines at both ends are not included); X is the following partial structural formula: (In each formula, the outside of the wavy line at both ends is not included).
  • each formula of -L 1- , -L 2 -or -X- is represented by the above-mentioned embodiments [1], [1-1], [1- 1a], [1-1b], [4], [4-1], [4-1a], [4-1b], [7], [7-1], [7-2], [7- 3], [7-3-1], [7-1a], [7-2a], [7-3a], and [7-3a-1]); More preferably, the combination of -L 2 -XL 1 -has the following partial structural formula [wherein the outside of the wavy line at both ends is not included]: As shown in the partial structure selected from the group of
  • each of the formulas -L 1- , -L 2 -or -X- is represented by the above-mentioned embodiments [1], [1-1], [1-1a], [1-1b], [1-1b], [4], [4-1], [4-1a], [4-1b], [7] [7-1], [ 7-2], [7-3], [7-3-1], [7-1a], [7-2a], [7-3a], [7-3a-1], [7-1b] , [7-2b], and [7-3b]);
  • the combination of -L 2 -XL 1 - has the following partial structural formula [wherein the outside of the wavy line at both ends is not included]: As shown in the partial structure selected from the group of
  • a preferred embodiment of the embodiment [7] and further a preferred embodiment of the bridged alginic acid derivative of the embodiment [7] can be arbitrarily formed by appropriately combining the definitions of -L 1- , -L 2- , and X.
  • the eighth aspect is as follows. According to the aspect [7], the alginic acid derivative of the formula (I) according to the aspect [1] and the alginate derivative of the formula (II) according to the aspect [4] are mixed and subjected to a Huisgen reaction. A process for producing a crosslinked alginic acid comprising obtaining a crosslinked alginic acid.
  • the 8-1st aspect is as follows.
  • Cross-linked alginic acid comprising chemical cross-linking with a triazole ring formed by a Huisgen reaction as a cross-link and ionic cross-linking partially formed by calcium ions.
  • a ninth aspect is as follows. A mixed solution of the alginic acid derivative of the formula (I) according to the aspect [1] and the alginic acid derivative obtained by mixing the alginic acid derivative of the formula (II) according to the aspect [4] is dropped into a calcium chloride solution. Obtained crosslinked alginic acid structure.
  • the tenth aspect is as follows.
  • the eleventh aspect is as follows.
  • a mixed solution of an alginic acid derivative obtained by mixing the alginic acid derivative of the formula (I) according to the aspect [1] and the alginic acid derivative of the formula (II) according to the aspect [4] is dropped into a calcium chloride solution.
  • a method for producing a crosslinked alginic acid structure comprising obtaining the crosslinked alginic acid structure according to the aspect [9] or [10].
  • the twelfth aspect is as follows.
  • the thirteenth aspect is as follows.
  • a medical material comprising the crosslinked alginic acid structure according to any one of the above aspects [9], [10] and [12].
  • the fourteenth aspect is as follows.
  • the fifteenth aspect is as follows.
  • the alginic acid derivative according to any one of the aspects [1] to [6] the cross-linked alginic acid according to the aspect [7] or [8-1], and the aspect [9], which are biocompatible.
  • [16-1] In the formula (AM-1) of the embodiment [16], preferably, the combinations of Akn-L 1 -are as follows: (Each formula has the same meaning as in the embodiments [1-1], [1-2], [1-1a], [1-2a], [1-1b], and [1-2b]. As described); More preferably, the table below: (Each formula is of the above-described embodiments [1-1], [1-2], [1-1a], [1-2a], [1-1b], and [1-2b]. The same as the definition); More preferably, the following table: (Each formula is of the above-described embodiments [1-1], [1-2], [1-1a], [1-2a], [1-1b], and [1-2b]. The same as the definition); For example, the following structural formula: As shown by any structural formula in FIG.
  • the preferred embodiment of the embodiment [16] and the preferred embodiment of the crosslinked alginic acid derivative of the embodiment [16] can be arbitrarily formed by appropriately combining the definitions of Akn and -L 1- .
  • a preferred embodiment of the embodiment [17], and further a preferred embodiment of the crosslinked alginic acid derivative of the embodiment [17] can be arbitrarily formed by appropriately combining the definitions of an azide group and —L 2 —.
  • alginic acid in the present specification, when described as alginic acid, at least one alginic acid selected from the group consisting of alginic acid, alginic acid esters, and salts thereof (for example, sodium alginate) (sometimes referred to as “alginic acids”). means.
  • the alginic acid used may be naturally derived or synthetic, but is preferably naturally derived.
  • Alginic acids preferably used are bioabsorbable polysaccharides extracted from brown algae such as Lessonia, Macrocystis, Laminaria, Ascophyllum, Davilia, Kajika, Alame, Kombu, etc.
  • D-mannuronic acid (M) And L-guluronic acid (G) are polymers in which two types of uronic acids are polymerized in a straight chain. More specifically, D-mannuronic acid homopolymer fraction (MM fraction), L-guluronic acid homopolymer fraction (GG fraction), and D-mannuronic acid and L-guluronic acid are randomly arranged. This is a block copolymer in which the fractions (M / G fraction) are arbitrarily bound.
  • alginic acid may be expressed as (ALG) -COOH, where alginic acid is (ALG) and one of the arbitrary carboxyl groups of alginic acid is -COOH.
  • the alginic acid is sodium alginate.
  • sodium alginate commercially available sodium alginate can be used.
  • sodium alginate is sodium alginate of A-1, A-2, A-3, B-1, B-2, and B-3 shown in the table below (available from Mochida Pharmaceutical). Co., Ltd.).
  • the viscosity, weight average molecular weight and M / G lamp of a 1 w / w% aqueous solution of each sodium alginate are shown in the following table.
  • the physical properties of sodium alginate A-1, A-2, A-3, B-1, B-2, and B-3 were measured by the following various methods.
  • the measurement method is not limited to this method, but each physical property value may differ from the above depending on the measurement method.
  • Viscosity measurement of sodium alginate According to the Japanese Pharmacopoeia (16th edition) viscosity measurement method, it was measured using a rotational viscometer method (cone plate type rotational viscometer). Specific measurement conditions are as follows. The sample solution was prepared using MilliQ water. As a measuring instrument, a cone plate type rotational viscometer (visco-viscoelasticity measuring device Rheostress RS600 (Thermo Haake GmbH) sensor: 35/1) was used. The number of revolutions was 1 rpm when measuring a 1 w / w% sodium alginate solution. The reading time was measured for 2 minutes, and an average value from 1 minute to 2 minutes from the start. The average value of three measurements was taken as the measurement value. The measurement temperature was 20 ° C.
  • Da (Dalton) may be added as a unit in the molecular weights of alginic acid, alginic acid derivatives, crosslinked alginic acid, and crosslinked alginic acid.
  • the composition ratio (M / G ratio) of D-mannuronic acid and L-guluronic acid of alginic acids varies depending on the type of organisms that are mainly derived from seaweeds, etc., and is also affected by the location and season of the organism. , Ranging from a high G type with an M / G ratio of about 0.2 to a high M type with an M / G ratio of about 5. It is known that the gelation ability of alginic acids and the properties of the generated gel are affected by the M / G ratio, and generally the gel strength increases when the G ratio is high. In addition, the M / G ratio affects the hardness, brittleness, water absorption, flexibility, and the like of the gel.
  • the M / G ratio of the alginic acids and / or salts thereof used is usually 0.2 to 4.0, more preferably 0.4 to 3.0, still more preferably 0.5 to 3.0. is there.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • alginate and “alginate” to be used are not particularly limited. However, in order to react with a crosslinking agent, it is necessary not to have a functional group that inhibits the crosslinking reaction. Preferred examples of the alginate include propylene glycol alginate.
  • examples of the alginate include a monovalent salt of alginic acid and a divalent salt of alginic acid.
  • the monovalent salt of alginic acid preferably includes sodium alginate, potassium alginate, ammonium alginate, etc., more preferably sodium alginate or potassium alginate, and particularly preferably sodium alginate.
  • Preferred examples of the divalent salt of alginic acid include calcium alginate, magnesium alginate, barium alginate, strontium alginate, and the like.
  • Alginic acid is a high molecular weight polysaccharide, and it is difficult to accurately determine the molecular weight, but generally a weight average molecular weight of 10 to 10 million, preferably 10,000 to 8 million, more preferably 20,000 to 3 million. Range. In measuring the molecular weight of a natural substance-derived polymer substance, it is known that the value may vary depending on the measurement method.
  • the weight average molecular weight measured by gel permeation chromatography (GPC) or gel filtration chromatography (also referred to as size exclusion chromatography) is preferably 100,000 or more, more preferably 500,000 or more, Preferably, it is 5 million or less, more preferably 3 million or less.
  • the preferable range is 100,000 to 5,000,000, more preferably 150,000 to 3,000,000.
  • the absolute weight average molecular weight can be measured.
  • the weight average molecular weight (absolute molecular weight) measured by GPC-MALS method is preferably 10,000 or more, more preferably 50,000 or more, still more preferably 60,000 or more, and preferably 1,000,000 or less, more preferably 80 10,000 or less, more preferably 700,000 or less, and particularly preferably 500,000 or less.
  • the preferable range is 10,000 to 1,000,000, more preferably 50,000 to 800,000, still more preferably 60,000 to 700,000, and particularly preferably 60,000 to 500,000.
  • a measurement error of 10% to 20% may occur.
  • the value may vary within the range of about 320,000 to 480,000 for 400,000, 400,000 to 600,000 for 500,000, and about 800,000 to 1,200,000 for 1,000,000.
  • the molecular weight of alginic acids can be measured according to a conventional method.
  • Typical conditions when gel filtration chromatography is used for molecular weight measurement are as described in the examples of the present specification to be described later.
  • the column for example, Superose 6 Increase 10/300 GL column (GE Healthcare Science) can be used, and as a developing solvent, for example, 10 mmol / L phosphate buffer (pH 7.4) containing 0.15 mol / L NaCl.
  • Blue dextran, thyroglobulin, ferritin, aldolase, conalbumin, ovalbumin, ribonuclease A and aprotinin can be used as molecular weight standards.
  • the viscosity of alginic acid used in the present specification is not particularly limited, but is preferably 10 mPa ⁇ s to 1000 mPa ⁇ s, more preferably 50 mPa ⁇ s when the viscosity is measured as an aqueous solution of 1 w / w% alginic acid. s to 800 mPa ⁇ s.
  • the viscosity of the aqueous solution of alginic acid can be measured according to a conventional method.
  • a rotational viscometer method such as a coaxial double cylindrical rotational viscometer, a single cylindrical rotational viscometer (Brookfield viscometer), a cone-plate rotational viscometer (cone plate viscometer), etc.
  • a rotational viscometer method such as a coaxial double cylindrical rotational viscometer, a single cylindrical rotational viscometer (Brookfield viscometer), a cone-plate rotational viscometer (cone plate viscometer), etc.
  • a cone plate viscometer is used.
  • Alginic acids are initially high in molecular weight and high in viscosity when extracted from brown algae, but in the process of drying and purification by heat, the molecular weight decreases and the viscosity decreases.
  • Alginic acids having different molecular weights can be produced by techniques such as condition management such as temperature in the production process, selection of brown algae as a raw material, and molecular weight fractionation in the production process. Furthermore, it is possible to obtain alginic acids having a target molecular weight by mixing with another lot of alginic acids having different molecular weights or viscosities.
  • alginic acid is alginic acid that has not been treated with low endotoxin in some embodiments, or alginic acid that has been treated with low endotoxin in some embodiments.
  • Low endotoxin refers to a low endotoxin level that does not substantially cause inflammation or fever. More preferably, it is desirable to use alginic acids treated with low endotoxin.
  • the low endotoxin treatment can be performed by a known method or a method analogous thereto.
  • the method of Takada et al. for example, see JP-A-9-32001 for purifying sodium hyaluronate
  • the method of Yoshida et al. for purifying ⁇ 1,3-glucan. Etc.
  • a method of William et al. for purifying biopolymer salts such as alginate, gellan gum, etc.
  • James et al. for example, international publication for purifying polysaccharides, etc.
  • Low endotoxin treatment is not limited to these, and uses washing, filtration with filters (such as endotoxin removal filters and charged filters), ultrafiltration, and columns (such as endotoxin adsorption affinity columns, gel filtration columns, and columns with ion exchange resins).
  • the endotoxin level can be confirmed by a known method, and can be measured by, for example, a method using Limulus reagent (LAL), a method using Endspecy (registered trademark) ES-24S set (Seikagaku Corporation), or the like. .
  • LAL Limulus reagent
  • Endspecy registered trademark
  • ES-24S set Seikagaku Corporation
  • the endotoxin treatment method to be used is not particularly limited.
  • the endotoxin content of alginic acids is 500 endotoxin units (EU) / g or less when the endotoxin measurement is performed with Limulus reagent (LAL).
  • LAL Limulus reagent
  • EU endotoxin units
  • Low endotoxin-treated sodium alginate can be obtained from commercially available products such as Sea Matrix (registered trademark) (Mochida Pharmaceutical Co., Ltd.), PRONOVA TM UP LVG (FMCBioPolymer), and the like.
  • alginic acid derivatives In the present specification, novel alginic acid derivatives are provided.
  • the alginic acid derivative includes a reactive group in a Huisgen reaction or a reactive group complementary to the reactive group via an amide bond and a divalent linker on any one or more carboxyl groups of alginic acid.
  • a plurality of (eg, 1 to 10, or 1 to 5) hydrogen atoms of —CH 2 — may be substituted with an oxo group ( ⁇ O), a C 1-6 alkyl group (eg, methyl Group, ethyl group, n-propyl group, iso-propyl group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), hydroxyl group (—OH), etc.
  • a plurality (for example, 1 to 10, or 1 to 5) which may be substituted with a selected group. .
  • alginic acid derivatives represented by formula (I) and formula (II), which are novel alginic acid derivatives in the present specification can be produced, for example, by the method of the following formula (for details, refer to the general production method described later). Is possible.
  • the weight average molecular weight of the alginic acid derivative represented by the formula (I) or the formula (II) in the present specification is 100,000 Da to 3 million Da, preferably 300,000 Da to 2.5 million Da, more preferably 50 10,000 Da to 2 million Da.
  • the molecular weight of both alginate derivatives can be determined by the method described later.
  • the Akn-L 1 —NH— group of the formula (I) does not have to be bonded to all the carboxyl groups of the alginic acid structural unit, and the N 3 -L 2 — of the formula (II) The NH group need not be attached to all carboxyl groups of the alginic acid building block.
  • the Akn-L 1 —NH— group of the formula (I) is referred to as a reactive group
  • the N 3 -L 2 —NH— group of the formula (II) is a complementary reactive group
  • the Akn-L 1 —NH— group of the formula (I) is a complementary reactive group.
  • the introduction ratio of the reactive group or complementary reactive group is 0.1% to 30% or 1% to 30%, respectively, preferably 2% to 20%, more preferably. Is from 3% to 10%.
  • the introduction rate of the reactive group or the complementary reactive group is expressed as a percentage of the number of uronic acid monosaccharide units into which each reactive group has been introduced among the uronic acid monosaccharide units which are repeating units of alginic acids. It is the value.
  • % used for the introduction rate of a reactive group or a complementary reactive group in an alginic acid derivative means mol%.
  • the introduction rate of each reactive group or complementary reactive group can be determined by the method described in the Examples described later.
  • the cyclic alkyne group (Akn) in the formula (I) and the azide group in the formula (II) form a triazole ring by the Huisgen reaction, thereby forming a bridge.
  • Huisgen reaction (1,3-dipolar cycloaddition reaction) is a condensation reaction between compounds having a terminal azide group and a terminal alkyne group as shown in the following formula.
  • a disubstituted 1,2,3-triazole ring is obtained in good yield, and no extra by-product is produced.
  • the Huisgen reaction includes an azide compound having a substituted primary azide, secondary azide, tertiary azide, aromatic azide, and the like, and a terminal or cyclic alkyne that is a complementary reactive group of the azide group.
  • a compound having a group can be used.
  • azide group and alkyne group react, so various functional groups (for example, ester group, carboxyl group, alkenyl group, hydroxyl group, amino group, etc.) are substituted in the reaction substrate. Is possible.
  • 1,2,3-triazole is produced in a short time, easily and efficiently without producing unwanted by-products and without using a copper catalyst to avoid copper-catalyzed cytotoxicity.
  • the alkyne group of the Huisgen reaction for example, the cyclic alkyne group (cyclooctyl group) described in the above embodiment [1] is used.
  • Cross-linked Alginic Acid is either (i) via a divalent metal ion bond, (ii) via a chemical bond, or (iii) via both a divalent metal ion bond and a chemical bond. There is something. Any cross-linked alginic acid has the property of forming a gel-like, semi-solid, and possibly sponge-like morphology.
  • Cross-linked alginic acid via a divalent metal ion bond proceeds at an ultra-high speed and is reversible, whereas cross-linked alginic acid via a chemical bond proceeds slowly under relatively mild conditions. And irreversible.
  • the physical properties of the crosslinked alginic acid are adjusted by, for example, changing the concentration of the aqueous solution containing the divalent metal ion to be used (for example, calcium chloride aqueous solution) or the introduction rate of the reactive group introduced into the alginic acid. Is possible.
  • a specific structure can be instantly made from an alginate solution by an ionic crosslinking reaction, and a cross-linking reaction by a chemical bond is used to strengthen the structure of the structure (for example, obtaining long-term stability). It is possible to do. Also, for example, in a crosslinked alginic acid structure via both divalent metal ion bonds and chemical bonds, the divalent metal ions incorporated by ionic crosslinking are reversibly released, leaving only the crosslinks due to chemical bonds. It is also possible to create a structure.
  • the crosslinked alginic acid of a certain aspect can be obtained by mixing the alginic acid derivatives of the above formula (I) and the above formula (II) and performing a Huisgen reaction.
  • crosslinked alginic acid form a three-dimensional network structure through chemical crosslinking (crosslinking by a triazole ring formed from an alkyne group and an azide group).
  • Preferred alginic acid derivatives are those with improved stability of crosslinked alginic acid after crosslinking.
  • the bridged alginic acid has the following formula (III-L) between any carboxyl group of the first alginic acid and any carboxyl group of the second alginic acid: [In the formula (III-L), —CONH— and —NHCO— at both ends represent an amide bond through an arbitrary carboxyl group of alginic acid; —L 1 —, —L 2 —, and X are 7 is the same as the definition in the embodiment 7].
  • the mixing ratio of the alginic acid derivative of formula (I) and the alginic acid derivative of formula (II) is the weight of the derivative of formula (I) and the derivative of formula (II). In ratio, for example, 1 to 1.5: 1, preferably 1.2 to 1.5: 1, or 1 to 1.2: 1, more preferably 1: 1.
  • the mixing ratio of the alginic acid derivative of formula (II) and the alginic acid derivative of formula (I) is the weight of the derivative of formula (II) and the formula (I) derivative.
  • ratio for example, 1 to 4.0: 1, preferably 1.5 to 4.0: 1, or 1.2 to 1.5: 1, or 1 to 1.2: 1, more preferably 1. : 1.
  • the mixing ratio of the alginic acid derivative of formula (I) to the alginic acid derivative of formula (II) in the preparation of the crosslinked alginic acid is more preferably the alginic acid derivative of formula (I) and the formula (II ) In the ratio of introduction of reactive groups (mol%) in the alginic acid derivative, for example, 1 to 1.5: 1, preferably 1.2 to 1.5: 1, or 1 to 1.2: 1. , More preferably 1: 1.
  • the mixing ratio of the alginic acid derivative of formula (II) and the alginic acid derivative of formula (I) in preparing the crosslinked alginic acid is more preferably the alginic acid derivative of formula (II) and the formula (I ) In the ratio of introduction of reactive groups (mol%) of the alginic acid derivative, for example, 1 to 4.0: 1, preferably 1.5 to 4.0: 1, or 1.2 to 1.5: 1, or 1 to 1.2: 1, more preferably 1: 1.
  • the alginic acid derivative of the formula (I) can be replaced with the alginic acid derivative of the formula (II), and the alginic acid derivative of the formula (II) can be replaced with the derivative of the formula (I).
  • the introduction rate of the crosslinking represented by the above formula (III-L) (also referred to as crosslinking rate) is, for example, 0.1 to 80%, 0.3 to 60%, 0.5 to 30%, or It is in the range of 1.0 to 10%.
  • the concentration of the alginic acid derivative of the formula (I) or the formula (II) in the Huisgen reaction for obtaining crosslinked alginic acid is usually 1 to 500 mg / mL, preferably 5 to 100 mg / mL.
  • the reaction temperature of the Huisgen reaction is usually an external temperature of 4 to 60 ° C., and preferably an external temperature of 15 to 40 ° C.
  • the stirring time for forming the crosslinked alginic acid (hydrogel) is, for example, several seconds to 24 hours, several seconds to 12 hours, several seconds to 30 minutes, or several seconds to 10 minutes.
  • the reaction solvent or reaction solution used for the Huisgen reaction is not particularly limited.
  • tap water pure water (for example, distilled water, ion exchange water, RO water, RO-EDI water, etc.), ultrapure water, cells
  • pure water for example, distilled water, ion exchange water, RO water, RO-EDI water, etc.
  • ultrapure water cells
  • culture medium for example, phosphate buffered saline (PBS), and physiological saline
  • PBS phosphate buffered saline
  • ultrapure water is preferable.
  • the crosslinked alginic acid of some embodiments is a crosslinked alginic acid including a chemical bridge by a triazole ring formed by a Huisgen reaction as a bridge and an ionic bridge partially formed by calcium ions.
  • a crosslinked alginic acid structure can be obtained by a method including subjecting the alginic acid derivative to a crosslinking reaction.
  • it can be prepared by the following method, but is not limited thereto.
  • a partially crosslinked specific structure is obtained, for example, by dropping a solution containing the alginic acid derivative of the formula (I) into a solution containing a divalent metal ion.
  • a solution containing the alginic acid derivative of the above formula (II) By adding the structure such as gel obtained above to a solution containing the alginic acid derivative of the above formula (II), the surface of the structure is subjected to further cross-linking reaction (Huisgen reaction).
  • a crosslinked alginic acid structure can be obtained. This method can also be carried out by replacing the alginic acid derivative of the formula (I) with the alginic acid derivative of the formula (II) and the alginic acid derivative of the formula (II) with the alginic acid derivative of the formula (I). .
  • the divalent metal ion used in the above method is not particularly limited, and examples thereof include calcium ion, magnesium ion, barium ion, strontium ion, zinc ion, and the like, preferably calcium ion.
  • the solution containing calcium ions used in the above method is not particularly limited, and examples thereof include aqueous solutions such as a calcium chloride aqueous solution, a calcium carbonate aqueous solution, and a calcium gluconate aqueous solution, and a calcium chloride aqueous solution is preferable.
  • the calcium ion concentration of the solution containing calcium ions used in the above method is not particularly limited, and examples thereof include 1 mM to 1 M, preferably 5 mM to 500 mM, and more preferably 10 mM to 300 mM.
  • the solvent or solution used in the above method is not particularly limited.
  • tap water for example, distilled water, ion exchange water, RO water, RO-EDI water, etc.
  • ultrapure water cell culture medium
  • PBS Phosphate buffered saline
  • physiological saline Phosphate buffered saline
  • crosslinked alginic acid structure examples include fibrous structures, fibers, beads, gels, and substantially spherical gels.
  • Preferred cross-linked alginate structures are those with improved stability.
  • the crosslinked alginic acid structure may have an ability to retain the content (content retention).
  • the physical properties of the alginate gel can be adjusted by physical properties such as hardness, elasticity, repulsive force, tearing force, stress at break.
  • biocompatibility of alginic acid derivative and photocrosslinked alginic acid derivative In the present specification, the alginic acid derivative or photocrosslinked alginic acid structure has biocompatibility.
  • biocompatibility means a biomaterial (here, an alginic acid derivative into which a photoreactive group represented by formula (I) has been introduced, and a photocrosslinked alginic acid structure produced using the alginic acid derivative).
  • Biocompatibility refers to a property that does not cause a reaction such as an interaction between a body and a living body, a local reaction of a tissue adjacent to the biomaterial, or a systemic reaction.
  • the biocompatibility of the alginic acid derivative or the photocrosslinked alginic acid structure is confirmed in the examples relating to biocompatibility described later.
  • Stability of Cross-Linked Alginic Acid Structure The stability of the cross-linked alginic acid structure can be confirmed by, for example, measuring gel stability and measuring permeability by measuring gel permeability.
  • Phosphate buffered saline PBS
  • concentration ⁇ g / mL
  • the value obtained by dividing the measured alginic acid concentration by the total alginic acid concentration obtained by decomposing the crosslinked alginic acid structure gel is shown as a disintegration rate.
  • the gel stability can be determined by the method described in Examples described later.
  • the gel disintegration rate of the crosslinked alginic acid structure is preferably 0% to 90%, more preferably 0% to 70%, and still more preferably 0% to 50%.
  • the stability of the crosslinked alginic acid structure means that the lower the concentration of alginic acid leaked into the aqueous solution, that is, the lower the gel disintegration rate, the higher the stability.
  • the gel permeation rate 24 hours after addition of the physiological saline of the crosslinked alginic acid is preferably 0% to 90%, more preferably 0% to 70%, for example, when dextran having a molecular weight of 2 million is included. Preferably, it is 0% to 50%.
  • dextran having a molecular weight of 150,000 is encapsulated, for example, if the purpose of use of the crosslinked alginate structure gel is to release or produce proteins or antibodies, it is preferably 1% to 100%, more preferably 10%. % To 100%, more preferably 30% to 100%.
  • the purpose of use is an immune septum, it is preferably 0% to 90%, more preferably 0% to 70%, still more preferably 0% to 50%.
  • the permeability of the cross-linked alginate structure means that the lower the permeability, the lower the permeability of the contents and the extra-gel substance.
  • the higher the permeability, the higher the permeability of the contents and the extra-gel substance. means.
  • the gel permeability can be adjusted by adjusting the molecular weight and concentration of alginic acid used, the type and introduction rate of cross-linking groups introduced into alginic acid, the type and concentration of divalent metal ions used for gelation, or a combination thereof. is there.
  • a crosslinked alginic acid structure gel encapsulating fluorescein isothiocyanate-dextran as a content can be prepared by the following method.
  • a solution of an alginic acid derivative represented by the formula (I) is mixed with a fluorescein isothiocyanate-dextran solution.
  • the alginic acid derivative solution represented by the formula (II) is mixed with the mixed solution obtained in (1).
  • formula (II) in (2) will be changed to formula (I)
  • the gel obtained by dropping the mixed solution obtained in (2) into a solution containing calcium ions forms a chemical bridge and an ionic bridge in the solution, whereby fluorescein isothiocyanate-dextran.
  • An encapsulated crosslinked alginate structure gel is obtained.
  • the alginic acid derivative represented by the formula (I) or the formula (II) is each represented by H 2 NL 1 -Akn (wherein L 1 and Akn are the same as the above-described embodiment [1 Or an amine derivative (AM-1) represented by H 2 NL 2 —N 3 (wherein L 2 is as defined in the above embodiment [4]).
  • the amine derivative (AM-2) represented by (A) can be produced by a condensation reaction with an arbitrary carboxyl group of alginic acids using a condensing agent.
  • the introduction rate of the amine of the formula (AM-1) or the formula (AM-2) should take into account the properties of the amine.
  • adjustment can be made by appropriately selecting and combining the following reaction conditions (i) to (v).
  • (I) increase / decrease of equivalent amount of condensing agent,
  • (ii) increase / decrease of reaction temperature,
  • (iii) increase / decrease of reaction time,
  • (iv) adjustment of concentration of alginic acid as reaction substrate,
  • formula (AM ⁇ 1) Add an organic solvent miscible with water to increase the solubility of the amine of formula (AM-2), etc.
  • R A C 1-6 alkyl group such as methyl group, ethyl group, etc .
  • P 1 represents —C (O) O-tertBu group, —C (O) O—Bn
  • P 2 is a —C (O) O-tertBu group, —C (O ) O—Bn group, —C (O) CH 3 group, —C (O) CF 3 group, —SO 2 Ph, —SO 2 PhMe group, —SO 2 Ph (NO 2 ) group, etc.
  • E leaving group such as halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), —OTs group, —OMs group, etc.
  • the protection / deprotection of the protecting groups P 1 and P 2 is carried out by methods known in the literature, for example, “Protective Groups in Organic Synthesis 4th Edition” In accordance with the deprotection method described in the fourth edition, 2007, John Wiley & Sons, Greene et al.
  • the compound of formula (SM-1) [the compound of formula (SM-1) is a commercially available compound or a compound that can be produced from a commercially available compound by a known production method in the literature] and the compound of formula (RG-1) [formula (RG- The compound of 1) is a commercially available compound or a compound that can be produced from a commercially available compound by a known production method; m1 is an integer of 2 to 6, and a known method such as “Carbohydrate Polymers, 169, P332-340, according to the method described in 2017 ", etc., (i) AgO 3 SCF 3 presence was substituted in a solvent which does not participate in the reaction such as toluene (RG-1), followed by (ii) an alkyne group formed by performing debromination reaction with DBU, Ami represented by the formula (AM-OL-1) by deprotecting further (iii) protecting group P 1 Compounds or can be prepared as a salt of formula (AM-OL-1).
  • Step 1 Compound of formula (SM-1) and compound of formula (RG-4)
  • a compound of formula (SM-3) is a commercially available compound or a compound that can be produced from a commercially available compound by a method known in the literature]
  • a method known in the literature for example, “Faming Zhuanli (I) In the presence of a base such as pyridine, H 2 NOH-HCl is reacted to form an oxime in a solvent that does not participate in the reaction such as ethanol in the presence of a base such as pyridine.
  • the formula (IM-5) is obtained by reacting in a solvent that does not participate in the reaction such as toluene in the presence of a base transfer agent such as sodium hydroxide and a phase transfer catalyst such as tetrabutylammonium bromide, the formula (IM-5) is obtained.
  • a base transfer agent such as sodium hydroxide
  • a phase transfer catalyst such as tetrabutylammonium bromide
  • SM-4 the compound of the formula (SM-4) is a commercially available compound or a compound that can be produced from a commercially available compound by a production method known in the literature
  • a method known in the literature for example, “Synthesis, (9), p1191-1194; 2002 ”and the like, after adding bromine, by performing a debromination reaction using tert-BuOK to form an alkyne group
  • IM-7 A compound represented by the formula (IM-7) can be produced.
  • a compound of formula (SM-5) is a commercially available compound or a compound that can be produced from a commercially available compound by a method known in the literature] a method known in the literature, for example, “US Patent In accordance with the method described in Japanese Patent Application Publication No. 2013-0137861, etc., p-nitrophenyl chloroformate is reacted in the presence or absence of a base such as pyridine in a solvent that does not participate in the reaction such as dichloromethane. Thus, a carbonate body is obtained.
  • a compound of formula (RG-9) in a N, N-dimethylformamide solvent in the presence of triethylamine is a commercially available compound or a compound that can be produced from a commercially available compound by a known production method in the literature. Yes; m4 is an integer of 1 to 6] to give a carbamoyl compound. Furthermore, it can be produced as an amine compound represented by the formula (AM-OL-9) or a salt of the formula (AM-OL-9) by deprotecting the protecting group P 1 .
  • the formula (IM-8) can be produced by carrying out the same condensation reaction as in [Method for producing alginic acid derivative of (I)].
  • ⁇ Process 2> [Production Method H] Using a compound of formula (IM-8) obtained in ⁇ Step 1>, a method known in the literature, for example, “Organometallics, 29 (23), p6619-6622; 2010”, etc.
  • the compound represented by the formula (AM-LK-1) is obtained by reacting NaN 3 in a solvent such as dimethyl sulfoxide and the like to introduce an azide group and then deprotecting the protecting group P 1. Or a salt of the formula (AM-LK-1).
  • SM-7 Compound of formula (SM-7)
  • a solvent such as methanol, ethanol, tetrahydrofuran, water or the like or a mixed solvent thereof in the presence of a base such as sodium hydroxide to give a compound of formula (IM-9 ) Can be produced.
  • a compound of formula (SM-8) is a commercially available compound or a compound that can be produced from a commercially available compound by a production method known in the literature
  • a method known in the literature for example, “International Publication In accordance with the method described in “2009/066763 pamphlet” and the like, bromine is added and then debrominated using LiN (i-Pr) 2 to obtain the compound of formula (IM-11). Can be manufactured.
  • the compound of formula (IM-11) obtained in ⁇ Step 1> and the compound of formula (RG-15) is a commercially available compound or a known compound from a commercially available compound. Is a compound that can be produced by a production method; m1 is an integer of 2 to 6, and the reaction is carried out in the presence of a base such as sodium hydride in a solvent that does not participate in the reaction such as tetrahydrofuran. The introduced compound is obtained. Subsequently, the protecting group P 1 can be deprotected to produce an amine compound represented by the formula (AM-OL-4) or a salt of the formula (AM-OL-4).
  • carboxylic acid represented by the formula (SM-M) is converted into a method known in the literature, for example, “Experimental Chemistry Course 5th edition 16, carboxylic acids and derivatives, acid halides, acid anhydrides, pages 99 to 118” In the presence of a base such as triethylamine or pyridine using a compound of the formula (RG-M-1), converted into an acid halide or acid anhydride according to the method described in “Maruzen, 2007”, etc.
  • a solvent selected from halogen solvents such as dichloromethane and chloroform, ether solvents such as diethyl ether and tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and benzene, polar solvents such as N, N-dimethylformamide, etc.
  • halogen solvents such as dichloromethane and chloroform
  • ether solvents such as diethyl ether and tetrahydrofuran
  • aromatic hydrocarbon solvents such as toluene and benzene
  • polar solvents such as N, N-dimethylformamide
  • ⁇ Process 2> [Production Method M] Using a compound of the formula (IM-M-1) obtained in ⁇ Step 1>, a method known in the literature, for example, “Protective Groups in Organic” by Greene et al. ⁇ Synthesis (Protective Groups in Organic Synthesis), 4th edition, 2007, John Wiley & Sons (John Wiley & Sons) ”by selecting the appropriate deprotection method depending on the type of protecting group. Can be produced as a compound represented by the formula (AM-LK-4) or a salt of the formula (AM-LK-4).
  • a compound of formula (SM-P) and a compound of formula (RG-P-1) [a compound of formula (SM-P) and a compound of formula (RG-P-1) are commercially available compounds or commercially known compounds prepared from literature
  • a base such as triethylamine, N, N-diisopropylethylamine, pyridine, halogen solvents such as dichloromethane and chloroform, ether solvents such as diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, and 1,4-dioxane Solvents that do not participate in the reaction, such as aromatic hydrocarbon solvents such as benzene and toluene, or mixed solvents At Te or without a solvent The solvent from -78 ° C. is carried out at a temperature of reflux, to produce a compound represented by the formula (IM-S-1).
  • a base such as triethylamine, N, N-diisopropylethylamine, pyridine
  • halogen solvents such as dichloromethane and chloroform
  • ether solvents such as diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, and
  • IM-S-1 chlorine, bromine, iodine
  • ⁇ E Chlorine>
  • chlorinating agents hydrogen chloride / zinc chloride (HCl / ZnCl 2 ), hydrogen chloride / hexamethyl phosphate triamide (HCl / HMPA), thionyl chloride (SOCl 2 ), carbon tetrachloride / triphenylphosphine (CCl 4 / PPh) 3 )
  • a reagent such as triphosgene / triphenylphosphine ((CCl 3 ) 2 CO / PPh 3 ), triphosgene / N, N-dimethylformamide (POCl 3 / DMF), etc.
  • ⁇ When X bromine> As brominating agents, 48% hydrobromic acid (48% HBr), 48% hydrobromic acid / sulfuric acid (48% HBr / H 2 SO 4 ), hydrogen bromide / lithium bromide (HBr / LiBr), odor
  • a reagent such as sodium chloride / sulfuric acid (NaBr / H 2 SO 4 ), phosphorus tribromide (PBr 3 )
  • a desired chlorinated product can be produced.
  • a desired iodinated product can be produced.
  • carboxylic acid represented by the formula (SM-M) is converted into a method known in the literature, for example, “Experimental Chemistry Course 5th edition 16, carboxylic acids and derivatives, acid halides, acid anhydrides, pages 99 to 118” In the presence of a base such as triethylamine or pyridine using a compound of formula (RG-T-1), converted into an acid halide or acid anhydride according to the method described in “Maruzen, 2007”, etc.
  • a solvent selected from halogen solvents such as dichloromethane and chloroform, ether solvents such as diethyl ether and tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and benzene, polar solvents such as N, N-dimethylformamide, etc.
  • halogen solvents such as dichloromethane and chloroform
  • ether solvents such as diethyl ether and tetrahydrofuran
  • aromatic hydrocarbon solvents such as toluene and benzene
  • polar solvents such as N, N-dimethylformamide
  • ⁇ Process 2> [Production Method T] Using a compound of the formula (IM-T-1) obtained in ⁇ Step 1>, a method known in the literature, for example, “Protective Groups in Organic” by Green et al. ⁇ Synthesis (Protective Groups in Organic Synthesis), 4th edition, 2007, John Wiley & Sons (John Wiley & Sons) ”by selecting the appropriate deprotection method depending on the type of protecting group. Can be produced as a compound represented by the formula (AM-LK-7) or a salt of the formula (AM-LK-7).
  • an amine compound represented by the formula (AM-1) or the formula (AM-2) (including a subordinate formula of each formula) is a pharmaceutically acceptable salt (for example, an acid addition salt). ) May be formed.
  • a salt is not particularly limited as long as it is a pharmaceutically acceptable salt, and examples thereof include a salt with an inorganic acid, a salt with an organic acid, and a salt with an acidic amino acid.
  • the salt with inorganic acid include salts with hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, phosphoric acid and the like.
  • the salt with an organic acid include, for example, formic acid, acetic acid, trifluoroacetic acid, propionic acid, butyric acid, valeric acid, enanthic acid, capric acid, myristic acid, palmitic acid, stearic acid, lactic acid, sorbic acid, Salts with aliphatic monocarboxylic acids such as mandelic acid, salts with aliphatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, malic acid, tartaric acid, and aliphatic tricarboxylic acids such as citric acid Salts with acids, salts with aromatic monocarboxylic acids such as benzoic acid and salicylic acid, salts of aromatic dicarboxylic acids such as phthalic acid, cinnamic acid, glycolic acid, pyruvic acid, oxylic acid, salicylic acid, N-acetylcysteine, etc.
  • Salt with organic carboxylic acid salt with organic sulfonic acid such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, aspartic acid, gluta Acid addition salts with acidic amino acids such as phosphate and the like.
  • Preferable examples of the salt with acidic amino acid include salts with aspartic acid, glutamic acid and the like. Of these, pharmaceutically acceptable salts are preferred.
  • the salt is formed by mixing the compound of the present invention with a solution containing an appropriate amount of acid or base to form the desired salt, and then separated by filtration, or the mixed solvent is distilled off.
  • a solution containing an appropriate amount of acid or base to form the desired salt
  • the mixed solvent is distilled off.
  • Handbook of Pharmaceutical Salts: Properties, Selection, and Use, Stahl & Wermuth (Wiley-VCH, 2002) are published as detailed reviews on salts, and are described in detail in this document.
  • an amine compound represented by formula (AM-1) or formula (AM-2) (including subordinate formulas of each formula) or a salt thereof is solvated with a solvent such as water, ethanol or glycerol.
  • a solvent such as water, ethanol or glycerol.
  • variable substituent when a cyclic group is substituted with a variable substituent, it means that the variable substituent is not bonded to a specific carbon atom of the cyclic group.
  • the variable substituent Rs in the following formula A means that it can be substituted on any of the carbon atoms i, ii, iii, iv or v in the formula A.
  • Alginic Acid derivatives can be used in place of conventional alginic acid in a wide range of fields such as food, medicine, cosmetics, fibers and papermaking. Specific uses of alginic acid derivatives or photocrosslinked alginic acid structures include medical treatments such as wound dressing materials, postoperative adhesion prevention materials, base materials for sustained drug release, base materials for cell culture, base materials for cell transplantation, etc. Materials.
  • Examples of the shape of the crosslinked alginic acid structure when used as a medical material include a tube shape, a fiber shape, a fiber, a bead, a gel, a substantially spherical gel, and the like. It is more preferable to use a substantially spherical gel.
  • JEOL JNM-ECX400 FT-NMR was used for nuclear magnetic resonance spectrum (NMR) measurement.
  • the liquid chromatography-mass spectrometry spectrum (LC-Mass) was measured by the following method.
  • [UPLC] Waters AQUITY UPLC system and BEH C18 column (2.1 mm ⁇ 50 mm, 1.7 ⁇ m) (Waters), acetonitrile: 0.05% trifluoroacetic acid aqueous solution 5: 95 (0 min) to 95: 5
  • Mobile phases and gradient conditions from (1.0 min) to 95: 5 (1.6 min) to 5:95 (2.0 min) were used.
  • M molecular weight
  • RT retention time
  • [M + H] + and [M + Na] + represent molecular ion peaks.
  • Root temperature in the examples generally indicates a temperature of about 0 ° C. to about 35 ° C.
  • Reactive substituent introduction ratios (mol%) in the examples were introduced relative to the number of moles of monosaccharide (guluronic acid and mannuronic acid) units constituting alginic acid calculated from 1 H-NMR (D 2 O). The ratio of the number of moles of reactive substituents shall be indicated.
  • sodium alginate having physical properties shown in Table 10 was used as sodium alginate before the introduction of a reactive group or a complementary reactive group.
  • Table 12 shows alginic acid derivatives (Example 1a, Example 1b, Example 1c, Example 1d, Example 1e) into which reactive groups were introduced, obtained in (Example 1) to (Example 15).
  • Example 1f Example 2
  • Example Physical properties of Example 7a, Example 7b, Example 8, Example 9a, Example 9b, Example 9c, Example 10, Example 11, Example 12, Example 13, Example 14 and Example 15 Specifically, reactive group introduction rate (mol%), molecular weight, and weight average molecular weight (10,000 Da)).
  • Example 1 Synthesis of dibenzocyclooctyne-amine group introduced alginate (Example 1a, Example 1b, Example 1c, Example 1d, Example 1e, Example 1f, and Example 1g):
  • Example 1a Synthesis of dibenzocyclooctyne-amine group-introduced alginic acid (EX1- (I) -A-2): 4- (4,6-dimethoxy-1,3,5-triazin-2-yl)-was added to an aqueous solution (43.6 mL) of sodium alginate (A-2) prepared to 1% by weight. 4-Methylmorpholinium chloride (DMT-MM) (111.65 mg), 1 molar concentration-sodium bicarbonate water (403.5 ⁇ L) was added.
  • DMT-MM 4-Methylmorpholinium chloride
  • the introduction rate of the reactive substituent was 6.9 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent was 6.5 mol% (NMR integration ratio).
  • Example 1c Synthesis of dibenzocyclooctyne-amine group introduced alginate (EX1- (I) -A-3): 4- (4,6-dimethoxy-1,3,5-triazin-2-yl)-in an aqueous solution (15.06 mL) of sodium alginate (Mochida Pharmaceutical Co., Ltd .: A-3) prepared to 1% by weight 4-Methylmorpholinium chloride (DMT-MM) (38.57 mg), 1 molar concentration-aqueous sodium bicarbonate (139.4 ⁇ L) were added.
  • DMT-MM 4-Methylmorpholinium chloride
  • the introduction rate of the reactive substituent was 6.6 mol% (NM R integral ratio).
  • Example 1d Synthesis of Dibenzocyclooctyne-Amine Group-Introduced Alginic Acid (EX1- (I) -B-2a): 4- (4,6-dimethoxy-1,3,5-triazin-2-yl)-in an aqueous solution (53.0 mL) of sodium alginate (B-2) prepared to 1% by weight 4-methylmorpholinium chloride (DMT-MM) (111.0 mg), dibenzocyclooctyne-amine [CAS: 1255942-06-3] (EX1-SM, 36.9 mg) in ethanol (5.3 mL) ) Solution, 1 molar concentration-aqueous sodium bicarbonate (113.7 ⁇ L) was added, and the mixture was stirred at 30 ° C.
  • DMT-MM 4-methylmorpholinium chloride
  • EX1-SM dibenzocyclooctyne-amine
  • the introduction rate of the reactive substituent was 4.9 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent was 0.8 mol% (NMR integration ratio).
  • Example 1f Synthesis of Dibenzocyclooctyne-Amine Group-Introduced Alginic Acid (EX1- (I) -B-2c): 4- (4,6-dimethoxy-1,3,5-triazin-2-yl)-in an aqueous solution (60.0 mL) of sodium alginate (B-2) prepared to 1% by weight 4-Methylmorpholinium chloride (DMT-MM) (67.0 mg), dibenzocyclooctyne-amine [CAS: 1255942-06-3] (EX1-SM, 16.7 mg), 1 molar concentration—aqueous sodium bicarbonate (60.5 ⁇ L) and ethanol (6.0 mL) were added, and the mixture was stirred at 30 ° C.
  • DMT-MM 4-Methylmorpholinium chloride
  • EX1-SM 16.7 mg
  • 1 molar concentration—aqueous sodium bicarbonate (60.5 ⁇ L) and ethanol (6.0 mL) were added,
  • the introduction rate of the reactive substituent was 1.9 mol% (NMR integration ratio).
  • Reactive substituent N- (1R, 8S, 9s) -bicyclo [6.1.0] non-4-in-9-ylmethoxycarbonyl-1,8-diamino-3,6-dioxaoctane group
  • the introduction rate of was 5.8 mol% (NMR integration ratio).
  • Example 3 4- (2-aminoethoxy) -N- (3-azidopropyl) benzamide group-introduced alginic acid (Example 3a, Example 3b, Example 3c, Example 3d, Example 3e, Example 3f) And synthesis of Example 3g):
  • reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (5% ethyl acetate / n-heptane to 40% ethyl acetate / n-heptane) to obtain a mixture of compound 1 and compound 2.
  • This mixture was dissolved in methyl tert-butyl ether (20 mL) and washed successively with 1N-aqueous sodium hydroxide solution (5 mL) twice and saturated brine (5 mL). The organic layer was dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain Compound EX3-IM-1 (0.45 g) as a pink oily substance.
  • Example 3 Lithium hydroxide monohydrate (0.25 g) was added to a solution of compound EX3-IM-1 (0.44 g) obtained in ⁇ Step 1> in methanol (4.4 mL). , And stirred at 60 degrees for 3 hours 30 minutes. 1N-hydrochloric acid (5 mL) was added to the reaction mixture, and the mixture was extracted 3 times with ethyl acetate (10 mL). The organic layer was washed successively with water (5 mL) and saturated brine (5 mL), dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the introduction rate of the reactive substituent (4- (2-aminoethoxy) -N- (3-azidopropyl) benzamide group) was 6.1 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent (4- (2-aminoethoxy) -N- (3-azidopropyl) benzamide group) was 9.4 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent (4- (2-aminoethoxy) -N- (3-azidopropyl) benzamide group) was 3.7 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent (4- (2-aminoethoxy) -N- (3-azidopropyl) benzamide group) was 0.6 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent (4- (2-aminoethoxy) -N- (3-azidopropyl) benzamide group) was 1.5 mol% (NMR integration ratio).
  • Lithium hydroxide monohydrate (1.06 g) was added to a methanol (15.6 mL) solution of the fraction (2.94 g) containing the compound EX4-IM-1 with stirring at room temperature. Stir at 0 ° C. for 3 hours. After cooling to room temperature, the solvent was distilled off under reduced pressure. Water (20 mL) was added to the residue, and extracted twice with methyl tert-butyl ether (20 mL). The aqueous layer was acidified with 1N hydrochloric acid (25 mL), extracted three times with ethyl acetate (20 mL), and washed successively with water (10 mL) and saturated brine (10 mL).
  • Example 4 Compound EX4-IM-2 (1 g) obtained in ⁇ Step 1>, commercially available 2- (2- (2-azidoethoxy) ethoxy) ethane-1-amine [CAS: 166388-57 -4] (0.62 g) and O- (7-azabenzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate (1.35 g) To the acetonitrile (20 mL) solution, N, N-diisopropylethylamine (1.24 mL) was added dropwise with stirring under ice cooling, and the mixture was stirred at room temperature for 1 hour.
  • 1,4-Dioxane (9.58 mL) was added to the fraction containing compound EX4-IM-3 (1.37 g).
  • 4N-hydrogen chloride / 1,4-dioxane (9.58 mL) was added with stirring under water cooling, and the mixture was stirred at room temperature for 1 hour.
  • diisopropyl ether 100 mL was added to the reaction solution, the suspension was stirred at room temperature for 1 hour.
  • the solvent was distilled off under reduced pressure, and the residue was triturated with ethyl acetate (20 mL) and methyl tert-butyl ether (10 mL). The obtained solid was filtered and dried under reduced pressure to obtain the title compound EX4-IM-4 (1.23 g) as a white solid.
  • Example 5 Synthesis of N- (2-aminoethyl) -4- (azidomethyl) benzamide group-introduced alginic acid (Example 5a, Example 5b and Example 5c):
  • EX5-SM (4- (chloromethyl) benzoyl chloride, [CAS: 876-08-4] (2.0 g) was dissolved in tetrahydrofuran (10.0 mL), and tert-butyl (2-aminoethyl) carbamate was dissolved.
  • Example 5 4N-hydrogen chloride / 1,4-dioxane (1.75 mL) was added to compound EX5-IM-2 (250 mg) obtained in ⁇ Step 2> under ice-water cooling, Stir at room temperature for 1 hour. Diisopropyl ether (5.25 mL) was added to the reaction mixture, and the resulting precipitate was collected by filtration, washed with diisopropyl ether and dried under reduced pressure to give the title compound EX5-IM-3 (192 mg) as a white solid. It was.
  • the introduction rate of the reactive substituent (N- (2-aminoethyl) -4- (azidomethyl) benzamide group) was 9.4 mol% (NMR integration ratio).
  • the introduction rate of the reactive group (N- (2-aminoethyl) -4- (azidomethyl) benzamide group) was 11 mol% (NMR integration ratio).
  • Example 6 To compound EX6-IM-1 (617 mg) obtained in ⁇ Step 1>, thionyl chloride (440 ⁇ L) and N, N-dimethylsulfoxide (2 ⁇ L) were added, and 1, The mixture was stirred for 5 hours, and the reaction solution was concentrated under reduced pressure. The remaining methylene chloride (1.0 mL) solution was synthesized from 5-dibenzosuberenone [CAS: 2222-33-5] according to the method described in [Production Method D] ⁇ Step 1> [EX6-SM2 [CAS].
  • the obtained residue was purified by silica gel column chromatography (heptane to 60% ethyl acetate / heptane), and the obtained solid was triturated with tert-butyl methyl methyl ether / heptane. The solid was filtered and washed with heptane to obtain the title compound EX6-IM-2 (840 mg) as a white solid.
  • Example 6 To a solution of compound EX6-IM-2 (700 mg) obtained in ⁇ Step 2> in methylene chloride (2.8 mL) was added pyridinium bromide perbromide (612 mg) under ice water cooling, After stirring at room temperature for 1.5 hours, pyridinium bromide perbromide (111 mg) was added, and the mixture was further stirred at room temperature for 1 hour. The reaction mixture was diluted with ethyl acetate (20 mL) and washed successively with 2N hydrochloric acid (10 mL) and saturated brine (5 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain the title crude compound EX6-IM-3 (1.03 g) as a yellow amorphous.
  • Example 6 To a tetrahydrofuran (1.5 mL) solution of the compound EX6-IM-3 (100 mg) obtained in ⁇ Step 3>, tert-butoxypotassium (100 mg) was added in a small amount with stirring at room temperature. This was added over 8 hours. The reaction solution was diluted with ethyl acetate (15 mL) and washed successively with water (3 mL) and saturated brine (2 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain the title crude compound EX6-IM-4 (58 mg) as a light brown gum.
  • Example 6 In a methanol (1.2 mL) solution of the compound EX6-IM-4 (58 mg) obtained in ⁇ Step 4>, a solution of potassium carbonate (40 mg) in water (0.25 mL) And stirred at room temperature for 23 hours. The reaction solution was concentrated, and ethyl acetate (10 mL), methylene chloride (1 mL), and half-saturated saline (2 mL) were added to separate the layers. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting gum was purified by silica gel chromatography (ethyl acetate to 50% methanol / ethyl acetate) to give the title compound EX6-IM-5 (22 mg) as a colorless gum.
  • silica gel chromatography ethyl acetate to 50% methanol / ethyl acetate
  • Example 7 Synthesis of N- (2-aminoethyl) -4-azidobenzamide group-introduced alginic acid (Example 7a, Example 7b, and Example 7c):
  • the reaction solution was diluted with tert-butyl methyl methyl ether (30 mL), water (10 mL), saturated multistory water (5 mL), 0.5 N-citric acid (2 ⁇ 5 mL), water (5 mL), saturated Washed sequentially with brine (5 mL).
  • the organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure.
  • the residue was triturated with tert-butyl methyl methyl ether / heptane, and the solid was filtered and washed with tert-butyl methyl methyl ether / heptane to give the title compound EX7-IM-1 (1.1 g) as a white solid. Obtained.
  • Example 7 The compound (EX7-IM-1, 500 mg) obtained in ⁇ Step 1> was suspended in 1,6-dioxane (1.5 mL). Under ice-cooling, 4 default-hydrogen chloride / dioxane solutions (3.5 mL) were added and stirred at room temperature for 1 hour. Diisopropyl ether (10.5 mL) was added to the reaction solution, and the mixture was stirred at room temperature for 50 minutes. The solid was filtered, washed with diisopropyl ether, and dried under reduced pressure to obtain the title compound EX7-IM-2 (365 mg) as a light beige solid.
  • the introduction rate of the reactive group was 5.1 mol% (NMR integration ratio).
  • the introduction rate of the reactive group was 2.0 mol% (NMR integration ratio).
  • Example 8 4N-hydrogen chloride was added to 1,4-dioxane solution (3.5 mL) of compound EX8-IM-1 (0.5 g) obtained in ⁇ Step 1> under water-cooling and stirring. / 1,4-dioxane (3.5 mL) was added, and the mixture was stirred at room temperature for 3 hours. Diisopropyl ether (40 mL) was added to the reaction solution, and the precipitate was filtered to obtain the title compound EX8-IM-2 (0.36 g) as a white solid.
  • Example 8 To a mixture of compound EX8-IM-3 (0.18 g) and methanol (1.8 mL) obtained in ⁇ Step 3>, potassium carbonate (0.126) was added under ice-cooling and stirring. g) An aqueous solution (0.9 mL) was added dropwise, and the mixture was stirred at room temperature for 17 hours and 30 minutes. Methanol was distilled off under reduced pressure and extracted three times with ethyl acetate (5 mL). The organic layer was washed with saturated brine (5 mL) and then dried over anhydrous sodium sulfate. After the organic layer was filtered, the solvent was distilled off under reduced pressure to obtain the title crude compound EX8-IM-4 (0.13 g) as a pale yellow oil.
  • the introduction rate of the reactive substituent (N- (4- (aminoethyl) benzyl) -2- (cyclooct-2-yne-1-yloxy) acetamide group) was 4.46 mol% (NMR integration ratio).
  • Example 9a To the compound EX9-IM-1 (0.50 g) obtained in ⁇ Step 1> was added formic acid (3.1 mL), and the mixture was stirred at room temperature for 22.5 hours. Formic acid was distilled off and azeotroped with toluene. Hydrogen chloride / methanol was added to the obtained oil and concentrated under reduced pressure. The mixture was sequentially azeotroped with ethyl acetate and tert-butyl methyl ether and then dried under reduced pressure to obtain the title crude compound EX9-IM-2 (0.35 g) as a colorless oil.
  • Example 9a To a solution of compound EX9-IM-3 (103 mg) obtained in ⁇ Step 3> in methanol (1.55 mL) was added a solution of potassium carbonate (89 mg) in water (515 ⁇ L), Stir at room temperature for 6 hours. Methanol was distilled off under reduced pressure, water (2 mL) was added, and then saturated with sodium chloride. Extraction with ethyl acetate (15 mL, 10 mL ⁇ 5), drying over anhydrous sodium sulfate, and evaporation of the solvent under reduced pressure gave the title compound EX9-IM-4 (75 mg) as a colorless oil. Obtained.
  • Example 9a The compound EX9-IM-1 (0.50 g) obtained in ⁇ Step 1> was suspended in 1,4-dioxane (3.0 mL). Under ice-water cooling, 4default-hydrogen chloride / 1,4-dioxane (7.0 mL) was added, and the mixture was stirred at room temperature for 3 hours. Diisopropyl ether (30.0 mL) was added to the reaction solution, and the mixture was stirred at room temperature for 50 minutes. The solid was collected by filtration, washed with diisopropyl ether, and dried under reduced pressure to obtain the title compound EX9-IM-2 (0.70 g) as a white solid.
  • the introduction rate of the reactive substituent was 2.1 mol% (NMR integration ratio).
  • EX5-SM (4- (chloromethyl) benzoyl chloride, 0.50 g) was dissolved in tetrahydrofuran (5.0 mL), and tert-butyl (2- (2-aminoethoxy) ethyl) carbamate (0.54 g) was dissolved.
  • tert-butyl (2- (2-aminoethoxy) ethyl) carbamate (0.54 g) was dissolved.
  • [CAS: 127828-22-2]) and diisopropylethylamine (0.92 mL) in tetrahydrofuran (5.0 mL) were added, and the mixture was stirred at room temperature for 3 hours.
  • Ethyl acetate (25 mL) and water (10 mL) were added to the reaction solution to separate it.
  • Example 10 4N-hydrogen chloride / 1,4-dioxane (2.8 mL) was added to compound EX10-IM-2 (400 mg) obtained in ⁇ Step 2> under ice-water cooling, Stir at room temperature for 1.75 hours. Diisopropyl ether (8.4 mL) was added to the reaction solution to obtain a gum. The supernatant was removed by decantation, washed with decantant with diisopropyl ether and dried under reduced pressure to obtain the title compound EX10-IM-3 (298 mg) as a beige solid.
  • EX5-SM (4- (chloromethyl) benzoyl chloride, 0.50 g) was dissolved in tetrahydrofuran (5.0 mL), and tert-butyl (2- (2- (2-aminoethoxy) ethoxy) ethyl) carbamate was dissolved. (0.66 g) and a solution of diisopropylethylamine (0.92 mL) in tetrahydrofuran (5.0 mL) were added dropwise and stirred at room temperature for 4.7 hours. Ethyl acetate (25 mL) and water (10 mL) were added to the reaction solution to separate it.
  • Example 11 To a solution of compound EX11-IM-1 (0.82 g) obtained in ⁇ Step 1> in dimethyl sulfoxide (11.7 mL), sodium azide (152 mg) was added, and the mixture was stirred at room temperature. Stir for 5 hours. Water (23 mL) was added to the reaction solution under ice water cooling, and the mixture was stirred at the same temperature for 30 minutes. Extraction was performed with ethyl acetate (30 mL, 10 mL), and the organic layer was washed successively with water (10 mL ⁇ 3) and saturated brine (5 mL). The organic layer was dried over anhydrous sodium sulfate, and the precipitated solid was filtered and dried under reduced pressure to obtain the title compound EX11-IM-2 (0.80 g) as a colorless oil.
  • Example 11 To the compound EX11-IM-2 (0.80 g) obtained in ⁇ Step 2> was added 4N-hydrogen chloride / 1,4-dioxane (5.3 mL) under ice water cooling. In addition, the mixture was stirred at room temperature for 1.75 hours. Diisopropyl ether (16.0 mL) was added to the reaction solution, and the mixture was stirred for 30 minutes. The solvent was removed by decanting and the residue was washed with diisopropyl ether. The obtained residue was dried under reduced pressure to give the title compound EX11-IM-3 (0.73 g) as a colorless gum.
  • Example 12 1 molar concentration-lithium hydroxide monohydrate with respect to a mixture of compound EX12-IM-1 (0.342 g) and methanol (6.84 mL) obtained in ⁇ Step 1> (5.34 mL) was added at room temperature, and the mixture was stirred at the same temperature for 30 minutes. After completion of the reaction, acetic acid (0.41 mL) was added, and the reaction solution was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-heptane / ethyl acetate to ethyl acetate / methanol) to obtain the title compound EX12-IM-2 (0.28 g) as a pale yellow amorphous.
  • Example 12 Compound 12-IM-2 (100 mg) obtained in ⁇ Step 2>, commercially available N- (tert-butoxycarbonyl) -2- (2-aminoethoxy) ethylamine [CAS: 127828-22 -2] (108.07 ⁇ L) and acetonitrile (2000 ⁇ L) were mixed with O- (7-azabenzotriazol-1-yl) -N, N, N ′, N′-tetra under stirring with ice cooling. Methyluronium hexafluorophosphate (213.43 mg) and triethylamine (156.48 ⁇ L) were added, and the mixture was stirred at room temperature for 1 hour and 45 minutes.
  • N- (tert-butoxycarbonyl) -2- (2-aminoethoxy) ethylamine (54 ⁇ L) and O- (7-azabenzotriazol-1-yl) -N, N, N ′, N'-tetramethyluronium hexafluorophosphate (106.7 mg) was added, and the mixture was stirred at the same temperature for 17 hours.
  • Water (5 mL) was added to stop the reaction, and ethyl acetate (10 mL) was added.
  • the aqueous layer was extracted three times with ethyl acetate (10 mL) and dried over anhydrous sodium sulfate.
  • the organic layer was filtered and then concentrated under reduced pressure to obtain a crude product.
  • the crude product was purified by silica gel column chromatography (n-heptane / ethyl acetate) to obtain the title compound EX12-IM-3 (187 mg) as a colorless oily compound.
  • Example 12 With respect to a mixture of the compound EX12-IM-3 (0.187 g) obtained in ⁇ Step 3> and a 1,4-dioxane solution (1.31 mL), 4N Hydrogen chloride / 1,4-dioxane (1.31 mL) was added, and the mixture was stirred at room temperature for 3 hours. Diisopropyl ether (20 mL) was added to the reaction solution, and the precipitate was filtered to obtain the title compound EX12-IM-4 (0.16 g) as an off-white solid.
  • Example 13 To a compound EX13-IM-1, 670 mg) obtained in ⁇ Step 1>, 4 default-hydrogen chloride / 1,4-dioxane (4.7 mL) was added under ice-water cooling, and room temperature For 2 hours. Diisopropyl ether (14.0 mL) was added to the reaction solution, and the mixture was stirred for 30 minutes. The obtained solid was collected by filtration, washed with diisopropyl ether, and dried under reduced pressure to give the title compound EX13-IM-2 (604 mg) as a pale beige solid.
  • the introduction rate of the reactive group (N- (2- (2-aminoethoxy) ethyl) -4-azidobenzamide group) was 3.9 mol% (NMR integration ratio).
  • Example 14 To a compound (EX14-IM-1, 600 mg) obtained in ⁇ Step 1>, 4 default-hydrogen chloride / 1,4-dioxane solution (4.2 mL) was added under ice-water cooling. And stirred at room temperature for 2 hours. Diisopropyl ether (12.0 mL) was added to the reaction solution, and the mixture was stirred at room temperature for 30 minutes. The solvent was removed by decanting and the residue was washed with diisopropyl ether. The obtained residue was dried under reduced pressure to give the title compound EX14-IM-2 (596 mg) as a beige gum.
  • Example 15 To a compound EX15-IM-1 (1.5 g) obtained in ⁇ Step 1> was added 4 default-hydrogen chloride / 1,4-dioxane solution (10.3 mL) under ice water cooling. The mixture was further stirred at room temperature for 1 hour. Diisopropyl ether (30 mL) was added to the reaction solution, and the mixture was stirred for 30 minutes at room temperature. The solvent was distilled off under reduced pressure, azeotroped with diisopropyl ether, and then dried under reduced pressure to obtain the title compound EX15-IM-2 (1.3 g) as a colorless oil.
  • Example 15 To a solution of compound EX15-IM-3 (220 mg) obtained in ⁇ Step 3> in methanol (3.0 mL), a solution of potassium carbonate (103 mg) in water (0.99 mL) was added. The mixture was further stirred at room temperature for 4.5 hours. Methanol was distilled off under reduced pressure, water (2 mL) was added, and then saturated with sodium chloride. After extracting with ethyl acetate (15 mL, 10 mL ⁇ 4) and drying over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate (10 mL), the insoluble material was removed by filtration, and the filtrate was concentrated under reduced pressure to give the title crude compound EX15-IM-4 (140 mg) as a pale yellow gum.
  • the reactive group or complementary reactive group introduction rate means a value expressed as a percentage of the number of reactive groups or complementary reactive groups introduced per uronic acid monosaccharide unit which is a repeating unit of alginic acid.
  • the introduction ratio of reactive groups or complementary reactive groups (mol%) was calculated by the integration ratio of 1 H-NMR.
  • the amount of alginic acid required for calculating the introduction rate is measured by the carbazole sulfate method using a calibration curve, and the amount of the reactive group or complementary reactive group is measured by the absorbance measurement method using the calibration curve. You can also
  • the molecular weight of alginic acid into which a reactive group or a complementary reactive group has been introduced is as follows: blue dextran (molecular weight 2 million Da, SIGMA), thyroglobulin (molecular weight 66.9 million Da, GE Healthcare Science) ferritin (molecular weight) 440,000 Da, GE Healthcare Science) Aldolase (molecular weight 1580,000, GE Healthcare Science), Conalbumin (molecular weight 75,000 Da, GE Healthcare Science), Ovalbumin (molecular weight 4.4) 10,000 Da, GE Healthcare Science), Ribonuclease A (Molecular weight: 137,000 Da, GE Healthcare Science) and Aprotinin (Molecular weight: 6500 Da, GE Healthcare Science) are used as standard products, reactive groups or complementary Gel under the same conditions as alginic acid with various reactive groups Over the performed to determine the eluate of each component at Unicorn software.
  • the amount of eluate of each component was plotted on the horizontal axis and the logarithmic value of molecular weight was plotted on the vertical axis, and linear regression was performed to create a calibration curve.
  • Two calibration curves were prepared, from blue dextran to ferritin and from ferritin to aprotinin.
  • the molecular weight (Mi) at the elution time i of the previously obtained chromatogram was calculated.
  • the absorbance at elution time i was read and taken as Hi. From these data, the weight average molecular weight (Mw) was determined from the following equation.
  • Equal amounts of (Alginic acid aqueous solution 1-1) and (Alginic acid aqueous solution 2-1) are mixed, and the mixed aqueous solution is put into a syringe equipped with an 18 gauge needle, and this syringe is set at a flow rate of 1 mL / min.
  • the alginate gel was obtained by dropping in a calcium chloride solution having a concentration of 30 mmol / L for 30 seconds and stirring for 5 minutes. The gel was washed once with 10 mL of phosphate buffered saline (PBS), and then allowed to stand at 37 ° C.
  • PBS phosphate buffered saline
  • the concentration of alginic acid in the recovered aqueous solution was measured by the carbazole sulfate method, and the values corrected for the alginic acid concentration in the aqueous solution at each time point with the alginic acid concentration already recovered were calculated from the alginic acid concentration at all time points and the alginic acid concentration after the end of the test. A value obtained by dividing the value by the alginic acid concentration as a percentage was taken as the disintegration rate, and was used as an index of gel stability. Similarly, alginic acid (A-2), (EX1- (I) -A-2) and (A-2), (A-2) and (EX3- (II) -A-2) were used as controls. Then, a crosslinked alginate gel (bead) was prepared, and each disintegration rate was measured.
  • the decay rate on the vertical axis in FIG. 1 means the relative decay rate (%).
  • the maximum value of the measured decay rate (alginic acid gel prepared with only (A-2): the measured value after 8 hours) was corrected to 100%, and the decay rate at each point was relative to the maximum value. Yes.
  • an equivalent mixed solution of an alginic acid aqueous solution (1d-1) and an alginic acid aqueous solution (3d-1), an equivalent mixed solution of an alginic acid aqueous solution (1d-1) and an alginic acid aqueous solution (7a-1), an alginic acid aqueous solution (8a- 1) Prepare an equal mixed solution of alginic acid aqueous solution (3d-1), and an equivalent mixed solution of alginic acid aqueous solution (8a-1) and alginic acid aqueous solution (7a-1).
  • alginate gel (bead) production method alginate gel (bead) (A1, B1, C1, D1) subjected to chemical crosslinking and ion crosslinking was obtained (see Table 13).
  • Alginic acid gel (bead) preparation method The mixed solution prepared above is put into a syringe barrel equipped with an 18 gauge needle, and this syringe barrel is set in a syringe pump set at a flow rate of 1 mL / min, so that the calcium chloride solution has a concentration of 30 mmol / L. Add dropwise for 30 seconds and stir for 5 minutes to obtain alginate gel (beads). This gel was washed once with 10 mL of phosphate buffered saline (PBS), and then allowed to stand at 37 ° C. for 10 minutes in pure water to perform chemical cross-linking. (Bead) is obtained.
  • PBS phosphate buffered saline
  • the concentration of alginic acid in the recovered aqueous solution was measured by the carbazole sulfate method, and the value obtained by dividing the alginic acid concentration in the aqueous solution at each time point by the total alginic acid concentration calculated from the alginic acid concentration at all time points and the alginic acid concentration after completion of the test was expressed as a percentage. The obtained value was taken as the disintegration rate and used as an index of gel stability.
  • an alginic acid gel (bead) (REF) was prepared according to the above method using alginic acid (B-2) into which no reactive group had been introduced, and the disintegration rate was measured.
  • alginate lyase (Creative Enzymes, NATE 1563) was added to the test solution, and the gel was disrupted by shaking overnight at 37 ° C., and the aqueous solution was recovered.
  • the concentration of alginic acid in the recovered aqueous solution was measured by the carbazole sulfate method, and the value obtained by dividing the alginic acid concentration in the aqueous solution after 24 hours by the total alginic acid concentration calculated from the alginic acid concentration after 24 hours and the alginic acid concentration after completion of the test as a percentage. The value expressed by is used as the index of gel stability.
  • an alginate gel (bead) (REF2) was prepared using alginic acid (B-2) into which no reactive group was introduced as a control, and the decay rate was measured.
  • the results in Table 14 were obtained.
  • the cross-linked alginate gel (beads) (REF2) obtained by treating EDTA with an alginate gel prepared using alginate (B-2) without a reactive group introduced as a control was 100% disintegrated in 24 hours, whereas Obtained using each alginate derivative (EX1- (I) -B-2a, EX3- (II) -B-2a, EX7- (II) -B-2a, and EX8- (I) -B-2)
  • the crosslinked alginate gel (beads) (A2 to D2) obtained by subjecting the crosslinked alginate gel (beads) (A1 to D1) to EDTA treatment did not disintegrate even after 24 hours, and the stability of the gel was further improved. That is, it was suggested that the structure of the produced (bead) structure was maintained over a long period of time even when there was no ionic crosslinking by calcium ions due to the formation of chemical crosslinking by
  • the concentration of alginic acid in the recovered aqueous solution was measured by the carbazole sulfate method, and the values corrected for the alginic acid concentration in the aqueous solution at each time point with the alginic acid concentration already recovered were calculated from the alginic acid concentration at all time points and the alginic acid concentration after the end of the test.
  • a value obtained by dividing the value by the alginic acid concentration as a percentage was taken as the disintegration rate, and was used as an index of gel stability.
  • Measurement of gel stability (5) Measurement of stability in the presence of gel EDTA (Example 1g) Reactive substituent-introduced alginic acid (EX1- (I) -A-2b), (Example 3g) Reactive Substituent-Introduced Alginic Acid (EX3- (II) -A-2b) obtained in (Example 5c), (Ex. 5-c) The reactive substituent introduced alginic acid (EX7- (II) -A-2) obtained in 7c) and the reactive substituent introduced alginic acid (EX9- (I) -A-2) obtained in (Example 9a) were used.
  • Aqueous alginate aqueous solutions (1g-1), (3g-1), (5c-1), (7c-1), and (9a-1) were prepared by dissolving in water.
  • the alginic acid aqueous solution was added to (9a-1) and (5c-1), (9a-1) and (7c-1), (9a-1) and (3g-1), (1g-1) and (3g-1). ), And put each mixed solution into a syringe equipped with a separate 18-gauge syringe needle, and place the syringe in a syringe pump set at a flow rate of 1 mL / min.
  • Each alginic acid gel was obtained by dropping into a 30 mmol / L calcium chloride solution for 30 seconds and stirring for 5 minutes.
  • Each obtained gel was washed once with 10 mL of PBS, and allowed to stand at 37 ° C. for 10 minutes in PBS for chemical crosslinking to obtain a chemically crosslinked alginate gel.
  • 19.5 mL of 5 mM ethylenediaminetetraacetic acid dipotassium salt dihydrate (EDTA ⁇ 2K) / saline is added to each gel and shaken at 37 ° C., and the aqueous solution is recovered over time. The same amount of 5 mM EDTA ⁇ 2K / saline was supplemented.
  • FIG. 9 The result of FIG. 9 was obtained.
  • the crosslinked alginate gel (beads) did not collapse even after 24 hours, and the stability of the gel could be confirmed. That is, it was suggested that the structure of the produced (bead) structure is maintained over a long period of time due to the formation of chemical cross-linking by the Huisgen reaction.
  • the alginic acid aqueous solution was added to (1g-1) and (5c-1), (1g-1) and (7c-1), (8b-1) and (5c-1), (8b-1) and (7c-1). ), (8b-1) and (3g-1), (1g-1) and (3g-1) in equal amounts, and each mixed solution is a syringe equipped with a separate 18 gauge needle
  • Each mixed solution is placed in a syringe equipped with a separate 18-gauge needle, and the syringe is placed in a syringe pump set at a flow rate of 1 mL / min.
  • Each of the chlorides has a concentration of 30 mmol / L.
  • the concentration of alginic acid in the collected aqueous solution was measured by the carbazole sulfate method, and the amount of alginic acid eluted until each time point was divided by the total amount of alginic acid calculated from the alginic acid concentration at all time points and the alginic acid concentration after completion of the test, expressed as a percentage. The obtained value was taken as the disintegration rate and used as an index of gel stability.
  • the alginic acid aqueous solution was added to (1g-1) and (5c-1), (1g-1) and (7c-1), (8b-1) and (5c-1), (8b-1) and (7c-1). ), (8b-1) and (3g-1), (1g-1) and (3g-1) in equal amounts, and each mixed solution is a syringe equipped with a separate 18 gauge needle
  • Each mixed solution is placed in a syringe equipped with a separate 18-gauge needle, and the syringe is placed in a syringe pump set at a flow rate of 1 mL / min.
  • Each of the chlorides has a concentration of 30 mmol / L.
  • the concentration of alginic acid in the collected aqueous solution was measured by the carbazole sulfate method, and the amount of alginic acid eluted until each time point was divided by the total amount of alginic acid calculated from the alginic acid concentration at all time points and the alginic acid concentration after completion of the test, expressed as a percentage. The obtained value was taken as the disintegration rate and used as an index of gel stability.
  • FIG. 11 The result of FIG. 11 was obtained.
  • the crosslinked alginate gel (beads) did not collapse even after 24 hours, and the stability of the gel could be confirmed. That is, it was suggested that the structure of the produced (bead) structure is maintained over a long period of time due to the formation of chemical cross-linking by the Huisgen reaction.
  • 1g-1), (3g-1), (10-1), (11-1), (12-1), (13-1), (14-1), and (15-1) were prepared. .
  • each syringe placed in a syringe equipped with a separate 18 gauge needle, place each mixed solution in a syringe equipped with a separate 18 gauge needle, and place the syringe in a syringe pump set at a flow rate of 1 mL / min. Then, each was dropped into a calcium chloride solution having a concentration of 30 mmol / L for 30 seconds and stirred for 5 minutes to obtain each alginate gel. This gel was washed once with 10 mL of PBS, and allowed to stand at 37 ° C. for 10 minutes in PBS for chemical crosslinking to obtain a chemically crosslinked alginate gel.
  • the concentration of alginic acid in the collected aqueous solution was measured by the carbazole sulfate method, and the amount of alginic acid eluted until each time point was divided by the total amount of alginic acid calculated from the alginic acid concentration at all time points and the alginic acid concentration after completion of the test, expressed as a percentage. The obtained value was taken as the disintegration rate and used as an index of gel stability.
  • the concentration of alginic acid in the collected aqueous solution was measured by the carbazole sulfate method, and the amount of alginic acid eluted until each time point was divided by the total amount of alginic acid calculated from the alginic acid concentration at all time points and the alginic acid concentration after completion of the test, expressed as a percentage. The obtained value was taken as the disintegration rate and used as an index of gel stability.
  • FIG. 13 The result of FIG. 13 was obtained.
  • the crosslinked alginate gel (beads) did not collapse even after 24 hours, and the stability of the gel could be confirmed. That is, it was suggested that the structure of the produced (bead) structure is maintained over a long period of time due to the formation of chemical cross-linking by the Huisgen reaction.
  • fluorescein isothiocyanate-dextran (Sigma Aldrich, FD2000S) having a molecular weight of 2 million or fluorescein isothiocyanate-dextran (Sigma Aldrich, FD150S) having a molecular weight of 150,000 prepared to 1 mg / mL in (alginic acid aqueous solution 1-2).
  • An equal amount was added to obtain (Alginic acid aqueous solution 3) or (Alginic acid aqueous solution 4).
  • an equal amount of physiological saline was added to (alginic acid aqueous solution 2-2) to obtain (alginic acid aqueous solution 5).
  • Alginic acid aqueous solution 3 and (alginic acid aqueous solution 5) are mixed in equal amounts, and the mixed aqueous solution is placed in a syringe equipped with an 18-gauge injection needle.
  • the syringe is placed in a syringe pump set at a flow rate of 1 mL / min. It was placed, dropped into a calcium chloride solution having a concentration of 30 mmol / L for 30 seconds, and stirred for about 20 minutes to obtain an alginate gel.
  • This gel was washed once with 10 mL of physiological saline to obtain fluorescein isothiocyanate (molecular weight: 2 million) -dextran-encapsulated chemically crosslinked alginate gel (beads). Further, equal amounts of (alginic acid aqueous solution 4) and (alginic acid aqueous solution 5) were mixed, and a fluorescein isothiocyanate (molecular weight 150,000) -dextran-encapsulated chemically crosslinked alginate gel (beads) was obtained by the same method as described above.
  • fluorescein isothiocyanate-dextran (Sigma Aldrich, FD2000S) having a molecular weight of 2 million or fluorescein isothiocyanate-dextran (Sigma Aldrich, FD150S) having a molecular weight of 2 million prepared to 1 mg / mL was added to (Alginate aqueous solution 3d-2).
  • fluorescein isothiocyanate-dextran Sigma Aldrich, FD150S
  • fluorescein isothiocyanate-dextran (Sigma Aldrich, FD2000S) having a molecular weight of 2 million or fluorescein isothiocyanate-dextran having a molecular weight of 150,000 (Sigma-Aldrich, FD150S) was prepared to 1 mg / mL. To obtain (Alginic acid aqueous solution 7a-2-A) or (Alginic acid aqueous solution 7a-2-B).
  • aqueous solutions were mixed in the combinations shown in Table 15 so that the final concentration of alginic acid was 1.0 w / w% and the final concentration of fluorescein isothiocyanate-dextran was 100 ⁇ g / mL.
  • This mixed aqueous solution is put into a syringe barrel equipped with an 18-gauge syringe needle, this syringe barrel is placed in a syringe pump set at a flow rate of 1 mL / min, and dropped into a calcium chloride solution having a concentration of 30 mmol / L for 30 seconds. And stirred for 5 minutes to obtain an alginate gel.
  • This gel was washed once with 10 mL of phosphate buffered saline (PBS) and then allowed to stand at 37 ° C. for 10 minutes in pure water for chemical crosslinking to give fluorescein isothiocyanate (molecular weight 2 million) ⁇ Dextran-encapsulated chemically crosslinked alginate gels (beads) and fluorescein isothiocyanate (molecular weight 150,000) -dextran-encapsulated chemically crosslinked alginate gels (beads) (gels a to h) were obtained.
  • PBS phosphate buffered saline
  • the concentration of dextran in the collected aqueous solution was measured by a fluorometric method (excitation light: 485 nm, fluorescence: 535 nm), and the dextran concentration at each time point was the total dextran concentration calculated from the dextran concentration at all time points and the dextran concentration after completion of the test.
  • the value obtained by dividing the value by percentage was defined as the transmittance.
  • fluorescein isothiocyanate-dextran (Sigma Aldrich, FD150S) having a molecular weight of 150,000 adjusted to 2/5 volume of 1 mg / mL, and 3/5 volume of water, and 0.2 mg / mL fluorescein isothiocyanate was added.
  • a 1.0% aqueous alginate solution (3g-2), (5c-2), and (7c-2) containing nato-dextran was prepared.
  • the reactive substituent-introduced alginic acid (EX1- (I) -A-2b) obtained in (Example 1g) and the reactive substituent-introduced alginic acid (EX9- (I)-) obtained in (Example 9a) are used.
  • A-2) was dissolved in water to a concentration of 1.0% to prepare aqueous alginic acid solutions (1g-1) and (9a-1), respectively.
  • the alginate aqueous solution was added to (9a-1) and (5c-2), (9a-1) and (7c-2), (9a-1) and (3g-2), (1g-1) and (3g-2).
  • the result of FIG. 14 was obtained.
  • the transmittance after 3 hours was about 30%.
  • the transmittance after 24 hours was about 40%.
  • fluorescein isothiocyanate-dextran (Sigma Aldrich, FD150S) having a molecular weight of 150,000 adjusted to 2/5 volume of 1 mg / mL, and 3/5 volume of water, and 0.2 mg / mL fluorescein isothiocyanate was added.
  • a 1.0% aqueous alginate solution (3g-2), (5c-2), and (7c-2) containing nato-dextran was prepared.
  • the reactive substituent introduced alginic acid (EX1- (I) -A-2b) obtained in (Example 1g) and the reactive substituent introduced alginic acid (EX8- (I)-) obtained in (Example 8b) A-2) was dissolved in water to a concentration of 1.0% to prepare aqueous alginic acid solutions (1g-1) and (8b-1), respectively. These are (1g-1) and (5c-2), (1g-1) and (7c-2), (8b-1) and (5c-2), (8b-1) and (7c-2), respectively. ), (8b-1) and (3g-2), (1g-1) and (3g-2) in equal amounts, and 40 mL of calcium chloride solution with a concentration of 30 mmol / L is added.
  • the alginate gel was obtained by stirring for a minute. This gel was washed once with 10 mL of physiological saline, and allowed to stand at 37 ° C. for 10 minutes in physiological saline for chemical crosslinking to obtain fluorescein isothiocyanate-dextran-encapsulated chemically crosslinked alginate gel. 19.5 mL of physiological saline was added to each gel, shaken at 37 ° C., the aqueous solution was collected over time, and the same amount of physiological saline was replenished.
  • the result of FIG. 15 was obtained.
  • the transmittance after 3 hours was about 35%.
  • the transmittance after 24 hours was about 45%.
  • the concentration of dextran in the collected aqueous solution was measured by a fluorometric method (excitation light: 485 nm, fluorescence: 535 nm), and the value obtained by dividing the dextran concentration at each time point by the dextran concentration after completion of the test was expressed as a percentage. It was.
  • the result of FIG. 16 was obtained.
  • the transmittance after 3 hours was about 17 to about 28%.
  • the transmittance after 24 hours was about 25 to about 35%.
  • aqueous solutions were mixed in the combinations shown in Table 16 so that the final concentration of alginic acid was 1.0 w / w% and the final concentration of CHO cells was 5.0 ⁇ 10 6 cells / mL.
  • This mixed aqueous solution is put into a syringe barrel equipped with an 18-gauge syringe needle, this syringe barrel is placed in a syringe pump set at a flow rate of 1 mL / min, and dropped into a calcium chloride solution having a concentration of 50 mmol / L for 30 seconds.
  • the mixture was stirred for 5 minutes and then washed once with 10 mL of phosphate buffered saline (PBS) to obtain CHO cell-encapsulated alginate gels (beads) (gel CHO-1 to gel CHO-4).
  • PBS phosphate buffered saline
  • the number of viable cells in the collected medium is measured by trypan blue staining, and the value obtained by dividing the number of viable cells by the sum of the number of viable cells and the number of dead cells as a percentage is the cell viability, and the biocompatibility of the gel It was used as an index.
  • a CHO cell-encapsulated alginate gel (bead) (REF-CHO) was prepared using alginic acid (B-2) into which no reactive group had been introduced as a control, and the cell viability was measured.
  • the results are shown in FIG.
  • the cell viability in the alginate gel ((gel CHO-1) to (gel CHO-4)) obtained by the combination of each alginic acid derivative shown in Table 16 was 87.2% to 89.0%. there were.
  • the cell survival rate in an alginate gel (REF-CHO) prepared using alginic acid (B-2) without a reactive group introduced as a control was 90.5%.
  • the alginic acid derivative having a reactive group introduced and the alginic acid structure (bead) having a chemical cross-link formed by the Huisgen reaction have the same high biocompatibility as alginic acid to which no reactive group has been introduced. It was suggested to have.
  • FIG. 17 The result of FIG. 17 was obtained.
  • the ATP activity was confirmed in all the crosslinked alginate gels, suggesting that the crosslinked alginate gel is not cytotoxic, and the alginate structures (beads) in which chemical crosslinking is formed by the Huisgen reaction are biocompatible. It was suggested to have

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Materials For Medical Uses (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明により、式(I)及び式(II)で表わされるアルギン酸誘導体、及び式(I)のアルギン酸誘導体及び式(II)のアルギン酸誘導体を用いてHuisgen反応を行うことで得られる新規な架橋アルギン酸が提供される。これにより、新規なアルギン酸誘導体および新規な架橋アルギン酸が提供される。

Description

新規な架橋アルギン酸
 本発明は、新規なアルギン酸誘導体、新規な架橋アルギン酸、それらの製造方法などに関する。
 アルギン酸は、レッソニア、マクロシスティス、ラミナリア、アスコフィラム、ダービリア、カジカ、アラメ、コンブ等の天然の褐藻類の細胞壁から抽出される高分子酸性多糖分子であり、β-D-マンヌロン酸(M成分)とそのC‐5エピマーであるα-L-グルロン酸(G成分)の2種類のウロン酸が1-4結合した直鎖状のヘテロポリマーである。具体的に、その化学構造は、マンヌロン酸のホモポリマーブロック(MM)、グルロン酸のホモポリマーブロック(GG)、及びマンヌロン酸とグルロン酸がランダムに配列したブロック(MG)が任意の順列及び割合で複雑に結合したブロック共重合体である。アルギン酸は、医療、バイオテクノロジー、化粧品、繊維、製紙、食品、等の分野において幅広く利用されている。
 アルギン酸の1価塩のアルギン酸アルカリ金属塩類(例えば、アルギン酸ナトリウム、等)は水溶性であるが、2価塩のアルギン酸アルカリ土類金属塩類(例えば、アルギン酸カルシウム、等)は、金属イオンにより架橋されゲル化(不溶化)する性質を有しており、その性質を利用して各種用途に適したものに改変又は成形する試みが行われている。
 多糖類(例えば、ヒアルロン酸、コンドロイチン硫酸、アルギン酸等)の各種材料への改変又は成形の可能性及びその物性(例えば、強度、膨潤性、等)の改良を探るべく、例えば、共有結合により架橋した架橋多糖に関する研究等が、これ迄に種々行われている。
 架橋多糖を得る方法として、具体的には、(1)ホルムアルデヒド等のアルデヒド架橋剤を用いる架橋法(特許文献1:国際公開第2011/028031号パンフレット)、(2)多糖中のカルボキシ基及び水酸基による自己架橋法(特許文献2:国際公開第1989/10941号パンフレット)、(3)ホモ二官能性架橋剤(ジエポキシド、ジビニルスルホン、ジアミン、又はジヒドラジド等)又はヘテロ二官能性架橋剤(エピハロヒドリン等)を用いる架橋法(特許文献3:国際公開第2009/073437号パンフレット)が知られている。
 又、(4)光反応性基(ケイ皮酸、置換ケイ皮酸、アクリル酸、マレイン酸、フマル酸、フリルアクリル酸、チオフェンアクリル酸、シンナミリデン酢酸、ソルビン酸、チミン、又はクマリン等)を導入した後に光照射することによる架橋法(特許文献4、5:国際公開第2005/026214号パンフレット、特開平09-87236号公報)、及び(5)チオール基が導入された多糖同士をジスルフィド結合で架橋する架橋法及びチオール基が導入された多糖類及びマレイミド基が導入された多糖類と用いてマイケル付加反応させることによる架橋法(特許文献6:国際公開第2008/071058号パンフレット)、等が知られている。
 更に、多糖類を共有結合により架橋する方法として、(6)アルキン基が導入された多糖類及びアジド基が導入された多糖類と用いてHuisgen反応(1,3-双極子付加環化反応)させることによる架橋法が知られている。
 多糖類をHuisgen反応で架橋させた架橋多糖が、(i)国際公開第2008/031525号パンフレット(特許文献7)、(ii)国際公開第2012/165462号パンフレット(特許文献8)、(iii)国際公開第2015/020206号パンフレット(特許文献9)、及び(iv)中国特許出願公開第106140040号明細書(特許文献10)等に開示されている。
 しかし、(i)特許文献7は、第1の多糖をヒアルロン酸、第2の多糖をコンドロイチン、硫酸化デルマタン、アルギン酸又はその塩、等から選ばれる多糖として、各多糖にリンカーを介して導入された鎖状のアルキン基及びアジド基を、銅触媒存在下にHuisgen反応させることで得られた架橋多糖に関するものであり、後述の新規架橋アルギン酸は開示されていない。
 又、(ii)特許文献8は、第1の多糖及び第2の多糖をヒアルロン酸、カルボキシメチルデキストラン、セルロース誘導体、及びキトサンから選ばれる多糖(第1の多糖及び第2の多糖が同種であっても異種であっても良い)として、各多糖にリンカー(多糖とリンカーはエステル結合である)を介して導入された環状アルキン基及びアジド基をHuisgen反応させることで得られた架橋多糖に関するものであるが、後述の新規架橋アルギン酸は開示されていない。
 又、(iii)特許文献9は、第1の多糖をヒアルロン酸、第2の多糖をコンドロイチン硫酸として、各多糖にリンカーを介して導入された環状アルキン基及びアジド基をHuisgen反応させることで得られた架橋多糖に関するものであるが、後述の新規架橋アルギン酸は開示されていない。
 更に、(iv)特許文献10は、第1の多糖をキトサン、第2の多糖をアルギン酸ナトリウムとして、各多糖にリンカー(多糖とリンカーはエステル結合である)を介して導入された環状アルキン基及びアジド基をHuisgen反応させることで得られた架橋多糖に関するものであるが、後述の新規架橋アルギン酸は開示されていない。
 (v)特許文献11は、糖類に8員シクロアルキン基を結合させる、糖類を誘導体化する方法に関するものであるが、糖類が非天然の糖類(ストレプトコッカス・アガラクチエ由来の莢膜糖類)であって、アルギン酸ではなく、又、結合させる8員シクロアルキン基の末端を糖類のカルボキシル基に対してアミド結合させるものでもないことから、後述の新規アルギン酸誘導体及びその製造方法と異なる。
 (vi)非特許文献1は、側鎖にシクロオクチン側鎖が導入された分岐型アルギン酸(bAlg-DBCO)が記載されているが、アルギン酸と分岐型ポリエチレングリコール(4-arm PEG-NH2)から合成した分岐型アルギン酸(Branched alginic acid:bAlg)に、アミノ化シクロオクチン(DBCO-PEG-amine)を反応させて得られたものであり、後述の新規アルギン酸誘導体と構造が異なり、その使用目的も異なる。
国際公開第2011/028031号パンフレット 国際公開第1989/10941号パンフレット 国際公開第2009/073437号パンフレット 国際公開第2005/026214号パンフレット 特開平09-87236号公報 国際公開第2008/071058号パンフレット 国際公開第2008/031525号パンフレット 国際公開第2012/165462号パンフレット 国際公開第2015/020206号パンフレット 中国特許出願公開第106140040号明細書 国際公開第2014/111344号パンフレット
Nat Commun.9(1),p2195-,2018年.
 前記の状況において、新規なアルギン酸誘導体又は新規な架橋アルギン酸の入手が求められていた。また、それらの製造方法も求められていた。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、式(I)又は式(II)で表わされる新規なアルギン酸誘導体を各々見出した。更に、式(I)及び式(II)の新規なアルギン酸誘導体をHuisgen反応に付すことで得られる新規な架橋アルギン酸を用いて、架橋アルギン酸構造体の1つであるビーズ(色素含有ビーズ)を成形したところ、当該ビーズが高い安定性有すること、又従来のゲルと比較して目的に応じた透過率を有するゲルに調整できること等を見出し、本発明を完成するに至った。
 ここで提供される新規なアルギン酸誘導体(式(I)及び式(II))は、例えば、化学架橋形成に使用することができるものであり、即ち、化学架橋形成に用いることができる反応性基又は当該反応性基の相補的な反応性基が導入されたものである。
 前記化学架橋形成は、例えば、Huisgen反応(1,3-双極子付加環化反応)による架橋反応にて行われ、例えば、式(I)及び式(II)のアルギン酸誘導体間で行われても良く、又は、例えば、式(I)のアルギン酸誘導体とアジド基を有する他の分子間で行われても良く、又は、式(II)のアルギン酸誘導体とアルキン基を有する他の分子間で行われても良い。
 末端アルキン基及び末端アジド基によるHuisgen反応は、一般に100℃ 以上の加熱を必要とするため、生体分子の化学修飾に本反応を用いることは適していなかった。しかし、当該反応において銅触媒(例えば、Cu(I))を共存させることにより、室温にてほぼ100%の収率で環化付加体(トリアゾール環)が形成される反応条件が見出され(Angew.Chem.Int.Ed.Engl.,14,p2596-2599,2002年;J.Org.Chem.,9,p3057-3064,2002年)、生体分子の化学修飾へ利用することが可能となった。一方、前記銅触媒存在下のHuisgen反応にて架橋アルギン酸を得ようとする場合、当該架橋アルギン酸中に微量の銅触媒が残存する可能性があり、架橋アルギン酸若しくは架橋アルギン酸構造体において銅由来の細胞毒性が発現する懸念が生じる。
 好ましい態様では、架橋アルギン酸において銅由来の細胞毒性の発現回避の為に、銅触媒不要のHuisgen反応を利用して、架橋アルギン酸を得る。具体的には、アルギン酸誘導体に導入されるアルキン基にシクロオクチン誘導体(高歪みの環状アルキン基)を用いることで、100℃以上の高温条件並びに銅触媒を必要とせず、反応させることができた。従って、好ましい態様の新規な架橋アルギン酸は、銅触媒が含有されていないことから、最終形体物(架橋アルギン酸構造体)へ成形した場合でも、銅由来の毒性が発現することがないという観点においても優れている。
 ここでは、以下の態様に示されるアルギン酸の任意の1つ以上のカルボキシル基に、アミド結合及び2価のリンカーを介して環状アルキン基又はアジド基が導入された式(I)又は式(II)のアルギン酸誘導体、式(I)及び式(II)のアルギン酸誘導体用いてHuisgen反応(1,3-双極子付加環化反応)を行うことで得られる新規な架橋アルギン酸、及び前記各アルギン酸誘導体並びに架橋アルギン酸の製造方法が提供される。すなわち、例示的な態様は、以下の〔1〕~〔17〕の通りであり得る。
〔1〕アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、環状アルキン基(Akn)が導入された、下記式(I):
Figure JPOXMLDOC01-appb-C000010
[式(I)中、(ALG)、-L-、Aknの定義は、後述する第1の態様中の定義と同じである]で表されるアルギン酸誘導体。
〔2〕Akn-L-NH基(Akn、及び-L-は、後述する第1の態様中の定義と同じである)の導入率が、0.1%~30%である、〔1〕に記載の式(I)で表わされるアルギン酸誘導体。
〔3〕アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量が、10万Da~300万Daである、〔1〕に記載の式(I)で表わされるアルギン酸誘導体。
〔4〕アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、アジド基が導入された、下記式(II):
Figure JPOXMLDOC01-appb-C000011
[式(II)中、(ALG)、-L-の定義は、後述する第4の態様中の定義と同じである]で表されるアルギン酸誘導体。
〔5〕N-L-NH基(-L-は、後述する第4の態様中の定義と同じである)の導入率が、0.1%~30%である、〔4〕に記載の式(II)で表わされるアルギン酸誘導体。
〔6〕アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量が、10万Da~300万Daである、〔4〕に記載の式(II)で表わされるアルギン酸誘導体。
〔7〕第1のアルギン酸の任意のカルボキシル基と、第2のアルギン酸の任意のカルボキシル基が、下記式(III-L):
Figure JPOXMLDOC01-appb-C000012
[式(III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-、-L-、及びXは、後述する第7の態様中の定義と同じである]を介して結合した架橋アルギン酸。
〔8〕前記〔1〕~〔3〕のいずれか1項に記載の式(I)のアルギン酸誘導体と前記〔4〕~〔6〕のいずれか1項に記載の式(II)のアルギン酸誘導体とを混合してHuisgen反応を行うことで前記〔7〕に記載の架橋アルギン酸を得ることを含む、架橋アルギン酸を製造する方法。
〔8-1〕架橋としてHuisgen反応により形成されるトリアゾール環による化学架橋、及びカルシウムイオンにより部分的に形成されるイオン架橋を含む、架橋アルギン酸。
〔9〕前記〔1〕~〔3〕のいずれか1項に記載の式(I)のアルギン酸誘導体及び前記〔4〕~〔6〕のいずれか1項に記載の式(II)のアルギン酸誘導体を混合したアルギン酸誘導体の混合溶液を、塩化カルシウム溶液中に滴下することで得られる架橋アルギン酸構造体。
〔10〕架橋としてHuisgen反応により形成されるトリアゾール環による化学架橋、及びカルシウムイオンにより部分的に形成されるイオン架橋を含む、前記〔9〕に記載の架橋アルギン酸構造体。
〔11〕前記〔1〕~〔3〕のいずれか1項に記載の式(I)のアルギン酸誘導体と前記〔4〕~〔6〕のいずれか1項に記載の式(II)のアルギン酸誘導体を混合したアルギン酸誘導体の混合溶液を、塩化カルシウム溶液中に滴下して、前記〔9〕又は〔10〕に記載の架橋アルギン酸構造体を得ることを含む、架橋アルギン酸構造体を製造する方法。
〔12〕ビーズ又は略球形のゲルである、前記〔9〕又は〔10〕に記載の架橋アルギン酸構造体。
〔13〕前記〔9〕又は〔10〕に記載の架橋アルギン酸構造体を含む医療用材料。
〔14〕ビーズ又は略球形のゲルである、前記〔13〕に記載の医療用材料。
〔15〕生体適合性がある、前記〔1〕~〔6〕のいずれか1項に記載のアルギン酸誘導体、前記〔7〕又は〔8-1〕に記載の架橋アルギン酸、及び前記〔9〕、〔10〕および〔12〕のいずれか1項に記載の架橋アルギン酸構造体。
〔16〕下記式(AM-1):
Figure JPOXMLDOC01-appb-C000013
[式(AM-1)中、-L-、及びAknの定義は、後述する第16の態様中の定義と同じである]で表されるアミノ化合物、又は製薬学的に許容されるその塩、又はそれらの溶媒和物。
〔17〕下記式(AM-2):
Figure JPOXMLDOC01-appb-C000014
[式(II)中、-L-の定義は、後述する第17の態様中の定義と同じである]で表されるアミノ化合物、又は製薬学的に許容されるその塩、又はそれらの溶媒和物。
 本発明は、例えば化学架橋形成に使用することができる新規なアルギン酸誘導体、新規な架橋アルギン酸などを提供する。
 好ましくは、アルギン酸誘導体は、生体にない反応基を導入したもので、未反応の基が残っていても、細胞等の生体成分との架橋反応が進行する恐れがない生体生物にとって、安全性が期待されるものである。また、好ましくは、架橋反応は、金属触媒を用いることなく、常温で反応が完結するため、安全で容易に使用することができる。
 いくつかの態様の架橋アルギン酸は、Huisgen反応(1,3-双極子付加環化反応)にて化学架橋されたものである。化学架橋と例えばカルシウムイオンを利用した2価金属金イオンを利用した架橋とを組み合わせて用いることができ、反応条件を調整することにより、好ましくはその安定性が非架橋アルギン酸又は非化学架橋アルギン酸(例えば、カルシウムイオン架橋された架橋アルギン酸)と比較して改善したものである。
 また、好ましくは、架橋体のゲル物性を調整することができ、物質透過性を調整することもできる。
 本発明は、少なくともこれらの効果の1つ以上を有するものである。
架橋アルギン酸構造体のゲルの安定性の評価を示す図である。 架橋アルギン酸構造体のゲルの透過率の評価を示す図である。 架橋アルギン酸構造体のゲルの透過率の評価を示す図である。 架橋アルギン酸構造体のゲルの安定性の評価を示す図である。 架橋アルギン酸構造体のゲルの透過率の評価を示す図である。 架橋アルギン酸構造体のゲルの透過率の評価を示す図である。 架橋アルギン酸誘導体のゲルの生体適合性評価を示す図である。 架橋アルギン酸構造体のゲルの安定性の評価を示す図である。 架橋アルギン酸構造体のEDTA下のゲルの安定性の評価を示す図である。 架橋アルギン酸構造体のゲルの安定性の評価を示す図である。 架橋アルギン酸構造体EDTA下のゲルの安定性の評価を示す図である。 架橋アルギン酸構造体のゲルの安定性の評価を示す図である。 架橋アルギン酸構造体EDTA下のゲルの安定性の評価を示す図である 架橋アルギン酸構造体のゲルの透過率の評価を示す図である。 架橋アルギン酸構造体のゲルの透過率の評価を示す図である。 架橋アルギン酸構造体のゲルの透過率の評価を示す図である。 架橋アルギン酸誘導体のゲルの生体適合性評価を示す図である。
[具体的な態様]
 以下の態様[1]~[17]が含まれうる。
[1]第1の態様は、次の通りである。アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、環状アルキン基(Akn)が導入された、下記式(I):
Figure JPOXMLDOC01-appb-C000015
[式(I)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000016
の群から選択される2価のリンカーを表わし;
Aknは、下記部分構造式[各式中、波線右側は含まない]:
Figure JPOXMLDOC01-appb-C000017
の群から選択される環状アルキン基を表わし、星印はキラル中心を表す]で表わされるアルギン酸誘導体。
[1-1]前記態様[1]の前記式(I)のアルギン酸誘導体において、-L-は、好ましくは、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000018
の群から選択される2価のリンカーであり;
 より好ましくは、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000019
の群から選択される2価のリンカーであり;
 更に好ましくは、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000020
の群から選択される2価のリンカーである。
[1-2]前記態様[1]の前記式(I)のアルギン酸誘導体において、
Aknは、好ましくは、下記部分構造式[各式中、波線右側は含まない]:
Figure JPOXMLDOC01-appb-C000021
の群から選択される環状アルキン基であり;
 より好ましくは、下記部分構造式[各式中、波線右側は含まない]:
Figure JPOXMLDOC01-appb-C000022
の群から選択される環状アルキン基である。
[1-3]前記態様[1]の前記式(I)のアルギン酸誘導体において、Akn及び-L-の組み合わせは、好ましくは、下記部分構造式[各式中、波線右側(イミノ基側)は含まない]:
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
の群から選択される基で示される通りであり;
 より好ましくは、下記部分構造式[各式中、波線右側(イミノ基側)は含まない]:
Figure JPOXMLDOC01-appb-C000025
の群から選択される基で示される通りであり;
 更に好ましくは、下記部分構造式[各式中、波線右側(イミノ基側)は含まない]:
Figure JPOXMLDOC01-appb-C000026
の群から選択される基で示される通りである。
[1-1a]前記態様[1]の前記式(I)のアルギン酸誘導体において、-L-は、好ましくは、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000027
の群から選択される2価のリンカーであり;
 より好ましくは、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000028
の群から選択される2価のリンカーであり;
 更に好ましくは、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000029
の群から選択される2価のリンカーである。
[1-2a]前記態様[1]の前記式(I)のアルギン酸誘導体において、Aknは、好ましくは、下記部分構造式[各式中、波線右側は含まない]:
Figure JPOXMLDOC01-appb-C000030
の群から選択される環状アルキン基であり;
 より好ましくは、下記部分構造式[各式中、波線右側は含まない]:
Figure JPOXMLDOC01-appb-C000031
の群から選択される環状アルキン基である。
[1-3a]前記態様[1]の前記式(I)のアルギン酸誘導体において、Akn及び-L-の組み合わせは、好ましくは、下記部分構造式[各式中、波線右側(イミノ基側)は含まない]:
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
の群から選択される基で示される通りであり;
 より好ましくは、下記部分構造式[各式中、波線右側(イミノ基側)は含まない]:
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
の群から選択される基で示される通りであり;
 更に好ましくは、下記部分構造式[各式中、波線右側(イミノ基側)は含まない]:
Figure JPOXMLDOC01-appb-C000036
の群から選択される基で示される通りである。
[1-1b]前記態様[1]の前記式(I)のアルギン酸誘導体において、-L-は、好ましくは、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000037
の群から選択される2価のリンカーであり;
 より好ましくは、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000038
の群から選択される2価のリンカーであり;
 更に好ましくは、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000039
の群から選択される2価のリンカーである。
[1-2b]前記態様[1]の前記式(I)のアルギン酸誘導体において、Aknは、好ましくは、下記部分構造式[各式中、波線右側は含まない]:
Figure JPOXMLDOC01-appb-C000040
の群から選択される環状アルキン基であり;
 より好ましくは、下記部分構造式[各式中、波線右側は含まない]:
Figure JPOXMLDOC01-appb-C000041
の群から選択される環状アルキン基である。
[1-3b]前記態様[1]の前記式(I)のアルギン酸誘導体において、Akn及び-L-の組み合わせは、好ましくは、下表:
Figure JPOXMLDOC01-appb-T000042
のいずれかの組み合わせ(表中の-L-又はAknの各式は前記態様[1]、[1-1]、[1-1a]、[1-2]、[1-2a]、及び[1-1b]に記載の通りである)、又は、下記式の群から選択される基[各式中、波線右側(イミノ基側)は含まない]で示される通りであり;
Figure JPOXMLDOC01-appb-C000043
より好ましくは、下表:
Figure JPOXMLDOC01-appb-T000044
のいずれかの組み合わせ(表中の-L-又はAknの各式は前記態様[1]、[1-1]、[1-1a]、[1-2]、[1-2a]、及び[1-1b]に記載の通りである)で示される通りであり;
 更に好ましくは、下表:
Figure JPOXMLDOC01-appb-T000045
のいずれかの組み合わせ(表中の-L-又はAknの各式は前記態様[1]、[1-1]、[1-1a]、[1-2]、[1-2a]、及び[1-1b]に記載の通りである)で示される通りであり;
特に好ましくは、下記部分構造式[各式中、波線右側(イミノ基側)は含まない]:
Figure JPOXMLDOC01-appb-C000046
の群から選択される基で示される通りである。
 前記態様[1]の好ましい態様、更にはAkn、及び-L-の定義を適宜組み合わせることにより、前記態様[1]の前記式(I)で表されるアルギン酸誘導体の好ましい態様を任意に形成し得る。
[2]第2の態様は、次の通りである。Akn-L-NH基(Akn、及び-L-は、前記態様[1]中の定義と同じである)の導入率が、0.1%~30%である、前記態様[1]に記載の式(I)のアルギン酸誘導体。
[2-1]前記態様[2]において、Akn-L-NH基の導入率は、好ましくは、2%~20%であり;より好ましくは、3~10%である。
[2-1a]前記態様[2]において、Akn-L-NH基の導入率は、好ましくは、0.3%~20%であり;より好ましくは、0.5~10%である。
[3]第3の態様は、次の通りである。アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量が、10万Da~300万Daである、前記態様[1]に記載の式(I)のアルギン酸誘導体。
[3-1]前記態様[3]において、アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量が、好ましくは30万Da~250万Daであり、より好ましくは50万Da~200万Daである。
[3-1a]前記態様[3]において、アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量が、好ましくは30万Da~250万Daであり、より好ましくは100万Da~200万Daである。
[4]第4の態様は、次の通りである。アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、アジド基が導入された、下記式(II):
Figure JPOXMLDOC01-appb-C000047
[式(II)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000048
の群から選択される2価のリンカーを表わす]で表わされるアルギン酸誘導体。
[4-1]前記態様[4]の前記式(II)のアルギン酸誘導体において、-L-は、好ましくは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000049
の群から選択されるリンカーであり[各式中、両端の波線外側は含まない];
 より好ましくは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000050
の群から選択されるリンカーである。
[4-1a]前記態様[4]の前記式(II)のアルギン酸誘導体において、-L-は、好ましくは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000051
の群から選択されるリンカーであり[各式中、両端の波線外側は含まない];
 より好ましくは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000052
の群から選択されるリンカーである。
[4-1b]前記態様[4]の前記式(II)のアルギン酸誘導体において、-L-は、好ましくは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000053
の群から選択されるリンカーであり[各式中、両端の波線外側は含まない];
 より好ましくは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000054
の群から選択されるリンカーである[各式中、両端の波線外側は含まない]。
 前記態様[4]の好ましい態様、更にはアジド基、及び-L-の定義を適宜組み合わせることにより、前記態様[4]の前記式(II)で表されるアルギン酸誘導体の好ましい態様を任意に形成し得る。
[5]第5の態様は、次の通りである。N-L-NH基(-L-は、前記態様[4]中の定義と同じである)の導入率が、0.1%~30%である、前記態様[4]に記載の式(II)のアルギン酸誘導体。
[5-1]前記態様[5]において、N-L-NH基の導入率は、好ましくは、2%~20%であり;より好ましくは、3~10%である。
[5-1a]前記態様[5]において、N-L-NH基の導入率は、好ましくは、0.3%~20%であり;より好ましくは、0.5~15%である。
[6]第6の態様は、次の通りである。アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量が、10万Da~300万Daである、前記態様[4]に記載の式(II)のアルギン酸誘導体。
[6-1]前記態様[6]において、式(II)のアルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量は、好ましくは30万Da~250万Daであり、より好ましくは50万Da~200万Daである。
[6-1a]前記態様[6]において、式(II)のアルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量は、好ましくは30万Da~250万Daであり、より好ましくは100万Da~200万Daである。
[7]第7の態様は、次の通りである。第1のアルギン酸の任意のカルボキシル基と、第2のアルギン酸の任意のカルボキシル基が、下記式(III-L):
Figure JPOXMLDOC01-appb-C000055
[式(III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;
-L-は、前記態様[1]中の定義と同じであり;
-L-は、前記態様[4]中の定義と同じであり;
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000056
の群から選択される環状基であり(各式中、両端の波線外側は含まない)、星印はキラル中心を表す]を介して結合した架橋アルギン酸。
[7-1]前記態様[7]の前記式(III-L)において、好ましくは、-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000057
の群から選択される2価のリンカーであり;
-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000058
の群から選択される2価のリンカーであり[各式中、両端の波線外側は含まない];
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000059
の群から選択される環状基である(各式中、両端の波線外側は含まない)]である。
[7-2]前記態様[7]の前記式(III-L)において、より好ましくは、-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000060
の群から選択される2価のリンカーであり;
-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000061
の群から選択される2価のリンカーであり[各式中、両端の波線外側は含まない];
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000062
の群から選択される環状基である(各式中、両端の波線外側は含まない)]である。
[7-3]前記態様[7]の前記式(III-L)において、更に好ましくは、-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000063
の群から選択される2価のリンカーであり;
-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000064
の群から選択される2価のリンカーであり(各式中、両端の波線外側は含まない);
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000065
の群から選択される環状基である(各式中、両端の波線外側は含まない)。
[7-3-1]前記態様[7]の前記式(III-L)において、特に好ましくは、-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000066
の2価のリンカーであり(式中、両端の波線外側は含まない);
-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000067
の2価のリンカーであり(式中、両端の波線外側は含まない);
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000068
のいずれかの環状基である(各式中、両端の波線外側は含まない)。
[7-4]前記態様[7]の前記式(III-L)において、好ましくは、-L-X-L-の組み合わせは、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000069
の群から選択される部分構造で示される通りであり;
 より好ましくは、-L-X-L-の組み合わせは、下記部分構造式[式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000070
のいずれかで示される通りである。
[7-1a]前記態様[7]の前記式(III-L)において、好ましくは、-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000071
の群から選択される2価のリンカーであり;
-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000072
の群から選択される2価のリンカーであり[各式中、両端の波線外側は含まない];
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000073
の群から選択される環状基である(各式中、両端の波線外側は含まない)]である。
[7-2a]前記態様[7]の前記式(III-L)において、より好ましくは、-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000074
の群から選択される2価のリンカーであり;
-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000075
の群から選択される2価のリンカーであり[各式中、両端の波線外側は含まない];
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000076
の群から選択される環状基である(各式中、両端の波線外側は含まない)]である。
[7-3a]前記態様[7]の前記式(III-L)において、更に好ましくは、-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000077
の群から選択される2価のリンカーであり;
-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000078
の群から選択される2価のリンカーであり(各式中、両端の波線外側は含まない);
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000079
の群から選択される環状基である(各式中、両端の波線外側は含まない)。
[7-3a-1]前記態様[7]の前記式(III-L)において、特に好ましくは、-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000080
の群から選択される2価のリンカーであり(式中、両端の波線外側は含まない);
-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000081
の群から選択される2価のリンカーであり(式中、両端の波線外側は含まない);
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000082
の群から選択される環状基である(各式中、両端の波線外側は含まない)。
[7-4a]前記態様[7]の前記式(III-L)において、好ましくは、-L-X-L-の組み合わせは、下表の式:
Figure JPOXMLDOC01-appb-T000083
の群から選択される部分構造で示される通りであり(表中の-L-、-L-又は-X-の各式は前記態様[1]、[1-1]、[1-1a]、[1-1b]、[4]、[4-1]、[4-1a]、[4-1b]、[7]、[7-1]、[7-2]、[7-3]、[7-3-1]、[7-1a]、[7-2a]、[7-3a]、及び[7-3a-1]に記載の通りである);
 より好ましくは、-L-X-L-の組み合わせは、下記部分構造式[式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000084
の群から選択される部分構造で示される通りである。
[7-1b]前記態様[7]の前記式(III-L)において、好ましくは、-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000085
の群から選択される2価のリンカーであり;
-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000086
の群から選択される2価のリンカーであり[各式中、両端の波線外側は含まない];
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000087
の群から選択される環状基である(各式中、両端の波線外側は含まない)]である。
[7-2b]前記態様[7]の前記式(III-L)において、より好ましくは、-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000088
の群から選択される2価のリンカーであり;
-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000089
の群から選択される2価のリンカーであり[各式中、両端の波線外側は含まない];
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000090
の群から選択される環状基である(各式中、両端の波線外側は含まない)]である。
[7-3b]前記態様[7]の前記式(III-L)において、更に好ましくは、-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000091
の群から選択される2価のリンカーであり;
-L-は、下記部分構造式:
Figure JPOXMLDOC01-appb-C000092
の群から選択される2価のリンカーであり(各式中、両端の波線外側は含まない);
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000093
の群から選択される環状基である(各式中、両端の波線外側は含まない)。
[7-4b]前記態様[7]の前記式(III-L)において、好ましくは、-L-X-L-の組み合わせは、下表の式:
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000096
の組合わせの群から選択される部分構造で示される通りであり(表中の-L-、-L-又は-X-の各式は前記態様[1]、[1-1]、[1-1a]、[1-1b]、[1-1b]、[4]、[4-1]、[4-1a]、[4-1b]、[7][7-1]、[7-2]、[7-3]、[7-3-1]、[7-1a]、[7-2a]、[7-3a]、[7-3a-1]、[7-1b]、[7-2b]、及び[7-3b]に記載の通りである);
 より好ましくは、-L-X-L-の組み合わせは、下記部分構造式[式中、両端の波線外側は含まない]:
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
の群から選択される部分構造で示される通りである。
 態様[7]の好ましい態様、更には-L-、-L-、及びXの定義を適宜組み合わせることにより、前記態様[7]の架橋アルギン酸誘導体の好ましい態様を任意に形成し得る。
[8]第8の態様は、次の通りである。前記態様[1]に記載の式(I)のアルギン酸誘導体と前記態様[4]に記載の式(II)のアルギン酸誘導体とを混合してHuisgen反応を行うことで、前記態様[7]に記載の架橋アルギン酸を得ることを含む、架橋アルギン酸を製造する方法。
[8-1]第8-1の態様は、次の通りである。架橋としてHuisgen反応により形成されるトリアゾール環による化学架橋、及びカルシウムイオンにより部分的に形成されるイオン架橋を含む、架橋アルギン酸。
[9]第9の態様は、次の通りである。前記態様[1]に記載の式(I)のアルギン酸誘導体及び前記態様[4]に記載の式(II)のアルギン酸誘導体を混合したアルギン酸誘導体の混合溶液を、塩化カルシウム溶液中に滴下することで得られる架橋アルギン酸構造体。
[10]第10の態様は、次の通りである。架橋としてHuisgen反応により形成されるトリアゾール環による化学架橋、及びカルシウムイオンにより部分的に形成されるイオン架橋を含む、前記態様[9]に記載の架橋アルギン酸構造体。
[11]第11の態様は、次の通りである。前記態様[1]に記載の式(I)のアルギン酸誘導体と前記態様[4]に記載の式(II)のアルギン酸誘導体とを混合したアルギン酸誘導体の混合溶液を、塩化カルシウム溶液中に滴下して、前記態様[9]又は[10]に記載の架橋アルギン酸構造体を得ることを含む、架橋アルギン酸構造体を製造する方法。
[12]第12の態様は、次の通りである。ビーズ又は略球形のゲルである、前記態様[9]又は[10]に記載の架橋アルギン酸構造体。
[13]第13の態様は、次の通りである。前記態様[9]、[10]および[12]のいずれか1項に記載の架橋アルギン酸構造体を含む医療用材料。
[14]第14の態様は、次の通りである。ビーズ又は略球形のゲルである、前記態様[13]に記載の医療用材料。
[15]第15の態様は、次の通りである。生体適合性がある、前記態様[1]~[6]のいずれか1項に記載のアルギン酸誘導体、前記態様[7]又は[8-1]に記載の架橋アルギン酸、及び前記態様[9]、[10]および[12]のいずれか1項に記載の架橋アルギン酸構造体。
[16]第16の態様は、次の通りである。下記式(AM-1):
Figure JPOXMLDOC01-appb-C000099
[式(AM-1)中、-L-及びAknの組み合わせが、下表:
Figure JPOXMLDOC01-appb-T000100
Figure JPOXMLDOC01-appb-T000101
のいずれかの組み合わせである(各式は前記態様[1]の定義と同じである)]で表されるアミノ化合物、又は製薬学的に許容されるその塩、又はそれらの溶媒和物。
[16-1]前記態様[16]の前記式(AM-1)において、好ましくは、Akn-L-の組み合わせは、下表:
Figure JPOXMLDOC01-appb-T000102
のいずれかの組み合わせであり(各式は前記態様[1-1]、[1-2]、[1-1a]、[1-2a]、[1-1b]、及び[1-2b]に記載の通りである);
 より好ましくは、下表:
Figure JPOXMLDOC01-appb-T000103
のいずれかの組み合わせであり(各式は前記態様[1-1]、[1-2]、[1-1a]、[1-2a]、[1-1b]、及び[1-2b]の定義と同じである);
 更に好ましくは、下表:
Figure JPOXMLDOC01-appb-T000104
のいずれかの組み合わせであり(各式は前記態様[1-1]、[1-2]、[1-1a]、[1-2a]、[1-1b]、及び[1-2b]の定義と同じである);
 例えば、下記構造式:
Figure JPOXMLDOC01-appb-C000105
でのいずれかの構造式で示される通りである。
 態様[16]の好ましい態様、更にはAkn、及び-L-の定義を適宜組み合わせることにより、前記態様[16]の架橋アルギン酸誘導体の好ましい態様を任意に形成し得る。
[17]第17の態様は次の通りである。下記式(AM-2):
Figure JPOXMLDOC01-appb-C000106
[式(II)中、-L-は、式(LK-1)(但し、式中フェニル環の置換様式がp置換であり、n1=1及びn2=3は除く)、式(LK-2)、式(LK-3)、式(LK-4)(但し、式中フェニル環の置換様式がm置換であり、n7=3、及び式中フェニル環の置換様式がp置換であり、n7=2、3、4、6は除く)、式(LK-5)(但し、式中フェニル環の置換様式がp置換であり、n8=1及びn9=2は除く)、式(LK-6)、及び式(LK-7)である[各式は前記態様[4]の定義と同じである]]で表されるアミノ化合物、又は製薬学的に許容されるその塩、又はそれらの溶媒和物。
[17-1]前記態様[17]の前記式(AM-2)において、好ましくは、-L-は、式(LK-1-1)(但し、式中n1=1及びn2=3は除く)、式(LK-2-1)、式(LK-3-1)、式(LK-4-1)(但し、n7=2、3、4、6は除く)、式(LK-5-1)(但し、式中n8=1及びn9=2は除く)、式(LK-6-1)、及び式(LK-7-1)[各式は前記態様[4-1]、[4-1a]又は[4-1b]の定義と同じである]であり;
 より好ましくは、式(LK-1-1-a)、式(LK-2-1-a)、式(LK-3-1-a)、式(LK-5-1-a)、式(LK-6-1-a)、式(LK-7-1-a)及び式(LK-7-1-b)[各式は前記態様[4-1]、[4-1a]又は[4-1b]の定義と同じである]である。
 態様[17]の好ましい態様、更にはアジド基及び-L-の定義を適宜組み合わせることにより、前記態様[17]の架橋アルギン酸誘導体の好ましい態様を任意に形成し得る。
 以下、各態様についてより詳細に説明する。
1.アルギン酸
 本明細書中、アルギン酸と記載する場合、アルギン酸、アルギン酸エステル、及びそれらの塩(例えば、アルギン酸ナトリウム)からなる群から選択される少なくとも1種のアルギン酸(「アルギン酸類」という場合がある)を意味する。用いられるアルギン酸は、天然由来でも合成物であってもよいが、天然由来であるのが好ましい。好ましく用いられるアルギン酸類は、レッソニア、マクロシスティス、ラミナリア、アスコフィラム、ダービリア、カジカ、アラメ、コンブなどの褐藻類から抽出される生体内吸収性の多糖類であって、D-マンヌロン酸(M)とL-グルロン酸(G)という2種類のウロン酸が直鎖状に重合したポリマーである。より具体的には、D-マンヌロン酸のホモポリマー画分(MM画分)、L-グルロン酸のホモポリマー画分(GG画分)、およびD-マンヌロン酸とL-グルロン酸がランダムに配列した画分(M/G画分)が任意に結合したブロック共重合体である。
 本明細書中、アルギン酸は、アルギン酸を(ALG)として、アルギン酸の任意のカルボキシル基の1つを-COOHとして、(ALG)-COOHと表記する場合がある。
 いくつかの態様では、アルギン酸は、アルギン酸ナトリウムである。アルギン酸ナトリウムは、市販品のアルギン酸ナトリウムを用いることができる。ここで、後述の実施例では、アルギン酸ナトリウムは、下表に記載したA-1、A-2、A-3、B-1、B-2、及びB-3のアルギン酸ナトリウム(発売元 持田製薬株式会社)を用いている。各アルギン酸ナトリウムの1w/w%の水溶液の粘度、重量平均分子量及びM/G灯を下記の表に示す。
Figure JPOXMLDOC01-appb-T000107
 前記アルギン酸ナトリウムA-1、A-2、A-3、B-1、B-2、及びB-3の各物性値は、下記の各種方法により測定した。測定方法は、当該方法に限定されるものではないが、測定方法により各物性値が上記のものと異なる場合がある。
[アルギン酸ナトリウムの粘度測定]
 日本薬局方(第16版)の粘度測定法に従い、回転粘度計法(コーンプレート型回転粘度計)を用いて測定した。具体的な測定条件は以下のとおりである。試料溶液の調製は、MilliQ水を用いて行った。測定機器は、コーンプレート型回転粘度計(粘度粘弾性測定装置レオストレスRS600(Thermo Haake GmbH)センサー:35/1)を用いた。回転数は、1w/w%アルギン酸ナトリウム溶液測定時は1rpmとした。読み取り時間は、2分間測定し、開始1分から2分までの平均値とした。3回の測定の平均値を測定値とした。測定温度は20℃とした。
[アルギン酸ナトリウムの重量平均分子量測定]
(1)ゲル浸透クロマトグラフィー(GPC)と、(2)GPC-MALSの2種類の測定法で測定した。測定条件は以下のとおりである。
[前処理方法]
 試料に溶離液を加え溶解後、0.45μmメンブランフィルターろ過したものを測定溶液とした。
(1)ゲル浸透クロマトグラフィー(GPC)測定
[測定条件(相対分子量分布測定)]
 カラム:TSKgel GMPW-XL×2+G2500PW-XL(7.8mm I.D.×300mm×3本)
  溶離液:200mM硝酸ナトリウム水溶液
  流量:1.0mL/min
  濃度:0.05%
  検出器:RI検出器
  カラム温度:40℃
  注入量:200μL
  分子量標準:標準プルラン、グルコース
(2)GPC-MALS測定
[屈折率増分(dn/dc)測定(測定条件)]
 示差屈折率計:Optilab T-rEX
 測定波長:658nm
 測定温度:40℃
 溶媒:200mM硝酸ナトリウム水溶液
 試料濃度:0.5~2.5mg/mL(5濃度)
[測定条件(絶対分子量分布測定)]
 カラム:TSKgel GMPW-XL×2+G2500PW-XL(7.8mm I.D.×300mm×3本)
  溶離液:200mM硝酸ナトリウム水溶液
  流量:1.0mL/min
  濃度:0.05%
  検出器:RI検出器、光散乱検出器(MALS)
  カラム温度:40℃
  注入量:200μL
 本明細書中、アルギン酸、アルギン酸誘導体、架橋アルギン酸、及び架橋アルギン酸の分子量において、単位としてDa(ダルトン)を付記する場合がある。
 アルギン酸類のD-マンヌロン酸とL-グルロン酸の構成比(M/G比)は、主に海藻等の由来となる生物の種類によって異なり、また、その生物の生育場所や季節による影響を受け、M/G比が約0.2の高G型からM/G比が約5の高M型まで高範囲にわたる。アルギン酸類のゲル化能力および生成したゲルの性質は、M/G比によって影響を受け、一般的に、G比率が高い場合にはゲル強度が高くなることが知られている。M/G比は、その他にも、ゲルの硬さ、もろさ、吸水性、柔軟性などにも影響を与える。用いるアルギン酸類および/またはその塩のM/G比は、通常、0.2~4.0であり、より好ましくは、0.4~3.0、さらに好ましくは0.5~3.0である。
 本明細書中、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 本明細書中、用いられる「アルギン酸エステル」、「アルギン酸塩」とは、特に限定されないが、架橋剤と反応させるため、架橋反応を阻害する官能基を有していないことが必要である。アルギン酸エステルとしては、好ましくは、アルギン酸プロピレングリコール、等が挙げられる。
 本明細書中、アルギン酸塩としては、例えば、アルギン酸の1価の塩、アルギン酸の2価の塩が挙げられる。アルギン酸の1価の塩としては、好ましくは、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウム、等が挙げられ、より好ましくは、アルギン酸ナトリウムまたはアルギン酸カリウムであり、特に好ましくは、アルギン酸ナトリウムである。アルギン酸の2価の塩としては、好ましくは、アルギン酸カルシウム、アルギン酸マグネシウム、アルギン酸バリウム、アルギン酸ストロンチウム、等が挙げられる。
 アルギン酸は、高分子多糖類であり、分子量を正確に定めることは困難であるが、一般的に重量平均分子量で1000~1000万、好ましくは1万~800万、より好ましくは2万~300万の範囲である。天然物由来の高分子物質の分子量測定では、測定方法により値に違いが生じうることが知られている。
 例えば、ゲル浸透クロマトグラフィー(GPC)又はゲルろ過クロマトグラフィー(これらを合わせてサイズ排除クロマトグラフィーともいう)により測定した重量平均分子量は、好ましくは10万以上、より好ましくは50万以上であり、また好ましくは、500万以下、より好ましくは300万以下である。その好ましい範囲は、10万~500万であり、より好ましくは15万~300万である。
 また、例えば、GPC-MALS法によれば、絶対重量平均分子量を測定することができる。GPC-MALS法により測定した重量平均分子量(絶対分子量)は、好ましくは1万以上、より好ましくは5万以上、さらに好ましくは6万以上であり、また好ましくは、100万以下、より好ましくは80万以下、さらに好ましくは70万以下、とりわけ好ましくは50万以下である。その好ましい範囲は、1万~100万であり、より好ましくは5万~80万であり、さらに好ましくは6万~70万、とりわけ好ましくは6万~50万である。
 通常、高分子多糖類の分子量を上記のような手法で算出する場合、10%~20%の測定誤差を生じうる。例えば、40万であれば32万~48万、50万であれば40万~60万、100万であれば80万~120万程度の範囲で値の変動が生じうる。
アルギン酸類の分子量の測定は、常法に従い測定することができる。
 分子量測定にゲルろ過クロマトグラフィーを用いる場合の代表的な条件は、後述の本明細書の実施例に記載のとおりである。カラムは、例えば、Superose6 Increase10/300 GLカラム(GEヘルスケアサイエンス社)を用いることができ、展開溶媒として、例えば、0.15mol/L NaClを含む10mmol/Lリン酸緩衝液(pH7.4)を使用することができ、分子量標準としてブルーデキストラン、チログロブリン、フェリチン、アルドラーゼ、コンアルブミン、オブアルブミン、リボヌクレアーゼAおよびアプロチニンを用いることができる。
 本明細書中で用いられるアルギン酸の粘度は、特に限定されないが、1w/w%のアルギン酸類の水溶液として粘度を測定した場合、好ましくは、10mPa・s~1000mPa・s、より好ましくは、50mPa・s~800mPa・sである。
 アルギン酸の水溶液の粘度の測定は、常法に従い測定することができる。例えば、回転粘度計法の、共軸二重円筒形回転粘度計、単一円筒形回転粘度計(ブルックフィールド型粘度計)、円すい-平板形回転粘度計(コーンプレート型粘度計)等を用いて測定することができる。好ましくは、日本薬局方(第16版)の粘度測定法に従うことが望ましい。より好ましくは、コーンプレート型粘度計を用いる。
 アルギン酸類は、褐藻類から抽出された当初は、分子量が大きく、粘度が高めだが、熱による乾燥、精製などの過程で、分子量が小さくなり、粘度は低めとなる。製造工程の温度等の条件管理、原料とする褐藻類の選択、製造工程における分子量の分画などの手法により分子量の異なるアルギン酸類を製造することができる。さらに、異なる分子量あるいは粘度を持つ別ロットのアルギン酸類と混合することにより、目的とする分子量を有するアルギン酸類とすることも可能である。
 本明細書中で用いられるアルギン酸は、いくつかの態様においては、低エンドトキシン処理されていないアルギン酸あり、又は別のいくつかの態様においては、低エンドトキシン処理されたアルギン酸である。低エンドトキシンとは、実質的に炎症、または発熱を惹起しない程度にまでエンドトキシンレベルが低いことをいう。より好ましくは、低エンドトキシン処理されたアルギン酸類であることが望ましい。
 低エンドトキシン処理は、公知の方法またはそれに準じる方法によって行うことができる。例えば、ヒアルロン酸ナトリウムを精製する、菅らの方法(例えば、特開平9-324001号公報など参照)、β1,3-グルカンを精製する、吉田らの方法(例えば、特開平8-269102号公報など参照)、アルギネート、ゲランガム等の生体高分子塩を精製する、ウィリアムらの方法(例えば、特表2002-530440号公報など参照)、ポリサッカライドを精製する、ジェームスらの方法(例えば、国際公開第93/13136号パンフレットなど参照)、ルイスらの方法(例えば、米国特許第5589591号明細書など参照)、アルギネートを精製する、ハーマンフランクらの方法(例えば、Appl  Microbiol  Biotechnol(1994)40:638-643など参照)等またはこれらに準じる方法によって実施することができる。低エンドトキシン処理は、それらに限らず、洗浄、フィルター(エンドトキシン除去フィルターや帯電したフィルターなど)によるろ過、限外ろ過、カラム(エンドトキシン吸着アフィニティーカラム、ゲルろ過カラム、イオン交換樹脂によるカラムなど)を用いた精製、疎水性物質、樹脂または活性炭などへの吸着、有機溶媒処理(有機溶媒による抽出、有機溶剤添加による析出・沈降など)、界面活性剤処理(例えば、特開2005-036036号公報など参照)など公知の方法によって、あるいはこれらを適宜組合せて実施することができる。これらの処理の工程に、遠心分離など公知の方法を適宜組み合わせてもよい。アルギン酸の種類に合わせて適宜選択するのが望ましい。
 エンドトキシンレベルは、公知の方法で確認することができ、例えば、リムルス試薬(LAL)による方法、エンドスペシー(登録商標)ES-24Sセット(生化学工業株式会社)を用いる方法などによって測定することができる。
 用いられるエンドトキシンの処理方法は特に限定されないが、その結果として、アルギン酸類のエンドトキシン含有量が、リムルス試薬(LAL)によるエンドトキシン測定を行った場合に、500エンドトキシン単位(EU)/g以下であることが好ましく、さらに好ましくは、100EU/g以下、とりわけ好ましくは、50EU/g以下、特に好ましくは、30EU/g以下である。低エンドトキシン処理されたアルギン酸ナトリウムは、例えば、Sea Matrix(登録商標)(持田製薬株式会社)、PRONOVATM UP LVG(FMCBioPolymer)など市販品により入手可能である。
2.アルギン酸誘導体
 本明細書中、新規なアルギン酸誘導体が提供される。本明細書中、アルギン酸誘導体としては、アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカーを介して、Huisgen反応における反応性基又は当該反応性基の相補的な反応性基が導入されたものである。
 より具体的には、下記式(I):
Figure JPOXMLDOC01-appb-C000108
[式(I)中、(ALG)、-L-、Aknの定義は、前述の第1の態様中の定義と同じである]で表されるアルギン酸誘導体、及び下記式(II):
Figure JPOXMLDOC01-appb-C000109
[式(II)中、(ALG)、-L-の定義は、前述の第4の態様中の定義と同じである]で表されるアルギン酸誘導体である。
 前記の2価のリンカー(-L-又は-L-)は、反応性基と当該反応性基と相補的な反応性基との反応を阻害しない限り、任意の直鎖状基の使用が可能である。具体的には、直鎖のアルキレン基(-(CH-、n=1~30)(当該基中の-CH-は、-C(=O)-、-CONH-、-O-、-NH-、-S-、ベンゼン環、複素環(ピリジン環、ピペリジン環、ピペラジン環、等の5~6員芳香族複素環又は5~6員非芳香族複素環)、等の基で複数個(例えば、1~10個、又は1~5個)置き換えられても良く、当該-CH-の水素原子は、オキソ基(=O)、C1-6アルキル基(例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、等の基)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、等)、水酸基(-OH)、等の基から選択される基で複数個(例えば、1~10個、又は1~5個)置換されていても良い)が挙げられる。
 本明細書における新規なアルギン酸誘導体である式(I)及び式(II)で表わされるアルギン酸誘導体は、例えば、下記式の方法(詳細は、後述の一般的製造方法を参照)により製造することが可能である。
Figure JPOXMLDOC01-appb-C000110
 本明細書の式(I)又は式(II)で表わされるアルギン酸誘導体の重量平均分子量は、10万Da~300万Daであり、好ましくは30万Da~250万Daであり、より好ましくは50万Da~200万Daである。当該両アルギン酸誘導体の分子量は、後述する方法により求めることができる。
 本明細書中、式(I)のAkn-L-NH-基は、アルギン酸構成単位の全てのカルボキシル基に結合している必要はなく、又、式(II)のN-L-NH-基は、アルギン酸構成単位の全てのカルボキシル基に結合している必要はない。
 本明細書中、式(I)のAkn-L-NH-基を反応性基と言う場合、式(II)のN-L-NH-基が相補的な反応性基となる。又、逆に式(II)のN-L-NH-基を反応性基と言う場合、式(I)のAkn-L-NH-基が相補的な反応性基となる。
 本明細書中、反応性基又は相補的な反応性基の導入率は、各々、0.1%~30%又は1%~30%であり、好ましくは2%~20%であり、より好ましくは3%~10%である。
 前記反応性基又は相補的な反応性基の導入率は、アルギン酸類の繰り返し単位であるウロン酸単糖単位のうち、各反応性基が導入されたウロン酸単糖単位の数を百分率で表した値である。本明細書中、特に断らない限り、アルギン酸誘導体(式(I)または式(II))における反応性基又は相補的な反応性基の導入率に用いられる%は、mol%を意味する。各反応性基又は相補的な反応性基の導入率は、後述の実施例に記載の方法により求めることができる。
 本明細書中、式(I)中の環状アルキン基(Akn)及び式(II)中のアジド基が、Huisgen反応によりトリアゾール環を形成し、これにより架橋が形成される。
3.Huisgen反応
 Huisgen反応(1,3-双極子付加環化反応)は、下記式に示される様に末端アジド基及び末端アルキン基を有する化合物間の縮合反応である。反応の結果、二置換1,2,3-トリアゾール環が収率良く得られ、余計な副生成物が生じないという特徴を有している。当該反応は、1,4-又は1,5-二置換トリアゾール環が生成し得ると考えられるが、銅触媒を用いることで位置選択的にトリアゾール環を得ることが可能である。
Figure JPOXMLDOC01-appb-C000111
 又、銅触媒を用いないHuisgen反応がWittigとKrebsにより報告がなされている。即ち、シクロオクチンとフェニルアジドを混合するだけで環化付加体が得られる反応である(下記式中、R=フェニルである)。本反応は、シクロオクチンの三重結合が大きく歪んでいるため、フェニルアジドとの反応による歪みの解消が駆動力となり、反応が自発的に進行することにより、触媒が不要となった。
Figure JPOXMLDOC01-appb-C000112
 以上の様に、Huisgen反応は、置換された1級アジド、2級アジド、3級アジド、芳香族アジド、等を有するアジド化合物、及びアジド基の相補的な反応性基である末端又は環状アルキン基を有する化合物を用いることができる。又、Huisgen反応では、ほぼアジド基及びアルキン基のみが反応することから、反応基質中に種々の官能基(例えば、エステル基、カルボキシル基、アルケニル基、水酸基、アミノ基、等)を置換させることが可能である。
 いくつかの態様では、望ましくない副生成物を生じさせず、銅触媒による細胞毒性を回避させる為に銅触媒を用いずに、短時間、容易に、且つ効率的に1,2,3-トリアゾール環による架橋をアルギン酸分子間に形成させる為に、Huisgen反応のアルキン基としては、例えば、前記態様[1]に記載した環状アルキン基(シクロオクチル基)を用いる。
 好ましい態様のアルギン酸誘導体の架橋方法においては、当該反応(Huisgen反応)にて望ましくない副生成物がほとんど形成されない。この場合、アルギン酸を用いた新規な形態の生体適合性材料の作製、及びアルギン酸ヒドロゲルの形成において、種々の生物活性分子を取込むこと、又、再建外科用又は遺伝子療法用のアルギン酸ヒドロゲルにて、細胞物質を取込むことが可能となる。
4.架橋アルギン酸
 架橋アルギン酸は、(i)2価の金属イオン結合を介したものと、(ii)化学結合を介したものと、又は(iii)2価の金属イオン結合及び化学結合の両方を介したものがある。何れの架橋アルギン酸は、ゲル状から半固体、場合によってはスポンジ様の形態を形成する特性を有している。
 2価の金属イオン結合を介した架橋アルギン酸は、超高速にて反応が進行し、可逆的であるのに対して、化学結合を介した架橋アルギン酸は、比較的温和な条件でゆっくり反応が進行し、非可逆的である。架橋アルギン酸の物性は、例えば、使用する2価金属イオンが含まれる水溶液(例えば、塩化カルシウム水溶液)の濃度、若しくは、アルギン酸に導入された反応性基の導入率を変化させる等の方法で、調整が可能である。
 前記の架橋反応を利用することで、種々のアルギン酸構造体を作成することが可能となる。例えば、イオン架橋反応により、アルギン酸溶液から瞬時に特定の構造体を作ることができ、当該構造体の構造強化(例えば、長期安定性の獲得、等)の為に、化学結合による架橋反応を利用すること可能である。又、例えば、2価の金属イオン結合及び化学結合の両方を介した架橋アルギン酸構造体において、イオン架橋により取り込まれた2価金属イオンは可逆的に放出されて、化学結合による架橋のみが残った構造体を作ることも可能である。
 ある態様の架橋アルギン酸は、前記式(I)及び前記式(II)のアルギン酸誘導体を混合してHuisgen反応を行うことにより、得ることができる。
 ある態様の架橋アルギン酸は、化学架橋(アルキン基及びアジド基から形成されるトリアゾール環による架橋)を介して三次元の網目構造を形成する。好ましいアルギン酸誘導体は、架橋後の架橋アルギン酸の安定性が改善したものである。
 いくつかの態様の架橋アルギン酸は、第1のアルギン酸の任意のカルボキシル基と第2のアルギン酸の任意のカルボキシル基間が下記式(III-L):
Figure JPOXMLDOC01-appb-C000113
[式(III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-、-L-、及びXは、前記第7の態様中の定義と同じである]を介してアミド結合した架橋アルギン酸である。
 いくつかの態様にて、架橋アルギン酸を調製する際の、式(I)のアルギン酸誘導体と、式(II)のアルギン酸誘導体の混合比は、式(I)の誘導体と式(II)誘導体の重量比にて、例えば、1~1.5:1、好ましくは、1.2~1.5:1、または1~1.2:1、より好ましくは1:1である。
 いくつかの態様にて、架橋アルギン酸を調製する際の、式(II)のアルギン酸誘導体と、式(I)のアルギン酸誘導体の混合比は、式(II)の誘導体と式(I)誘導体の重量比にて、例えば、1~4.0:1、好ましくは1.5~4.0:1、または1.2~1.5:1、または1~1.2:1、より好ましくは1:1である。
 いくつかの態様にて、架橋アルギン酸を調製する際の、式(I)のアルギン酸誘導体と、式(II)のアルギン酸誘導体の混合比は、より好ましくは式(I)のアルギン酸誘導体と式(II)のアルギン酸誘導体の反応性基の導入率(mol%)比にて、例えば、1~1.5:1、好ましくは、1.2~1.5:1、または1~1.2:1、より好ましくは1:1である。
 いくつかの態様にて、架橋アルギン酸を調製する際の、式(II)のアルギン酸誘導体と、式(I)のアルギン酸誘導体の混合比は、より好ましくは式(II)のアルギン酸誘導体と式(I)のアルギン酸誘導体の反応性基の導入率(mol%)比にて、例えば、1~4.0:1、好ましくは1.5~4.0:1、または1.2~1.5:1、または1~1.2:1、より好ましくは1:1である。
 尚、前記混合比において、式(I)のアルギン酸誘導体を式(II)のアルギン酸誘導体に、式(II)のアルギン酸誘導体を式(I)の誘導体に、それぞれ置き換えることも可能である。
 架橋アルギン酸は、アルギン酸の構成単位の全てのカルボキシル基が上記式(III-L)の架橋を有している必要はない。架橋アルギン酸における、上記式(III-L)で表わされる架橋の導入率(架橋率とも言う)は、例えば、0.1~80%、0.3~60%、0.5~30%、または1.0~10%の範囲である。
 架橋アルギン酸を得るためのHuisgen反応における式(I)又は式(II)のアルギン酸誘導体の濃度は、通常1~500mg/mLであり、好ましくは5~100mg/mLの範囲である。
 Huisgen反応の反応温度は、通常、外温4~60℃であり、好ましくは外温15~40℃の範囲である。
 架橋アルギン酸(ヒドロゲル)を形成させる為の撹拌時間は、例えば、数秒~24時間、数秒~12時間、数秒~30分間、又は、数秒~10分間である。
 Huisgen反応に用いる反応溶媒又は反応溶液は、特に限定はされないが、例えば、水道水、純水(例えば、蒸留水、イオン交換水、RO水、RO-EDI水、等)、超純水、細胞培養用培地、リン酸緩衝生理食塩水(PBS)、及び生理食塩水等が挙げられ、好ましくは超純水である。
 いくつかの態様の架橋アルギン酸は、架橋としてHuisgen反応により形成されるトリアゾール環による化学架橋、及びカルシウムイオンにより部分的に形成されるイオン架橋を含む、架橋アルギン酸である。
5.架橋アルギン酸構造体
 架橋アルギン酸構造体は、前記アルギン酸誘導体に架橋反応を施すことを含む方法により得ることができる。例えば、以下の方法によって調製することが可能だが、これらに限定されるものでない。
[混和法]
 式(I)のアルギン酸誘導体及び式(II)のアルギン酸誘導体を混和して得られるアルギン酸誘導体の混合溶液を、2価金属イオンを含む溶液中に滴下することで、化学架橋(Huisgen反応によりアルキン基及びアジド基から形成されるトリアゾール環による架橋)及びイオン架橋(2価金属イオンにより部分的に形成される架橋)が形成された、特定の構造体である、架橋アルギン酸構造体を得ることができる。
[コーティング法]
 式(I)のアルギン酸誘導体を含む溶液を、2価金属イオンを含む溶液中に滴下する等して部分的に架橋された特定の構造体が得られる。前記で得られた、例えばゲル等の構造体を、前述の式(II)のアルギン酸誘導体を含む溶液に添加することにより、前記構造体の表面等にさらなる架橋反応(Huisgen反応)を施すことにより、架橋アルギン酸構造体を得ることができる。尚、この方法は、式(I)のアルギン酸誘導体を式(II)のアルギン酸誘導体に、式(II)のアルギン酸誘導体を式(I)のアルギン酸誘導体に、それぞれ置き換えて実施することも可能である。
 前記方法にて用いる2価金属イオンとしては、特に限定されないが、例えば、カルシウムイオン、マグネシウムイオン、バリウムイオン、ストロンチウムイオン、亜鉛イオン等が挙げられ、好ましくはカルシウムイオンである。
 前記方法にて用いるカルシウムイオンを含む溶液としては、特に限定されないが、例えば、塩化カルシウム水溶液、炭酸カルシウム水溶液、グルコン酸カルシウム水溶液、等の水溶液が挙げられ、好ましくは塩化カルシウム水溶液である。
 前記方法にて用いるカルシウムイオンを含む溶液のカルシウムイオン濃度は、特に限定されないが、例えば、1mM~1Mが挙げられ、好ましくは、5mM~500mMであり、より好ましくは、10mM~300mMである。
 前記方法にて用いる溶媒または溶液も特に限定されないが、例えば、水道水、純水(例えば、蒸留水、イオン交換水、RO水、RO-EDI水、等)、超純水、細胞培養用培地、リン酸緩衝生理食塩水(PBS)、及び生理食塩水等が挙げられ、好ましくは超純水である。
 特定の架橋アルギン酸構造体としては、例えば、繊維状構造体、ファイバー、ビーズ、ゲル、略球形のゲル、等が挙げられる。好ましい架橋アルギン酸構造体は、安定性が改善したものである。又、架橋アルギン酸構造体は、その内部に内容物を保持する能力(内容物保持性)を有していてもよい。
 アルギン酸ゲルの物性は、硬さ、弾性、反発力、断裂力、破断時応力、等の物性値により調節することが可能である。
6. アルギン酸誘導体、光架橋アルギン酸誘導体の生体適合性
 本明細書において、アルギン酸誘導体、又は光架橋アルギン酸構造体は、生体適合性を有する。本明細書において、生体適合性とは、生体用材料(ここでは、式(I)で表わされる光反応性基が導入されたアルギン酸誘導体、及び当該アルギン酸誘導体を用いて製造された光架橋アルギン酸構造体のことを言う)と生体間の相互作用、前記生体用材料に隣接する組織の局所的反応、又は全身的反応等の反応を引き起こさない性質を、生体適合性(biocompatibility)を有するという。
 本明細書において、アルギン酸誘導体、又は光架橋アルギン酸構造体の生体適合性に関しては、後述する生体適合性に関する実施例にて確認する。
7.架橋アルギン酸構造体の安定性
 架橋アルギン酸構造体の安定性は、例えば、ゲル安定性を測定すること、透過性はゲル透過率を測定することなどで確認することができる。
[ゲル安定性の測定法]
 容器に入れた架橋アルギン酸構造体ゲルにリン酸緩衝生理食塩水(PBS)を添加し、PBS中に漏出したアルギン酸の濃度(μg/mL)を測定する。測定したアルギン酸濃度を、架橋アルギン酸構造体ゲルを分解することで得た全アルギン酸濃度で除した値を百分率で示した値を、崩壊率とする。ゲル安定性は、具体的には、後述の実施例に記載の方法により求めることができる。
 本明細書中、架橋アルギン酸構造体のゲル崩壊率は、好ましくは0%~90%であり、より好ましくは0%~70%であり、更に好ましくは0%~50%である。架橋アルギン酸構造体の安定性は、水溶液中に漏出するアルギン酸の濃度が低いほど、すなわちゲル崩壊率が低いほど、安定性が高いことを意味する。
[ゲル透過率の測定法]
 フルオレセインイソチオシアナート-デキストランを内包した架橋アルギン酸構造体ゲルを作製し、容器に入れた前記ゲルに生理食塩水を添加し、生理食塩水中に漏出したデキストラン濃度を測定する。測定したデキストランの濃度を、フルオレセインイソチオシアネート-デキストラン内包架橋アルギン酸構造体ゲルを分解することで得た全デキストラン濃度で除した値を百分率で示した値がゲル透過率である。ゲル透過率は、具体的には、後述の実施例に記載の方法により求めることができる。
 架橋アルギン酸の生理食塩水添加24時間後のゲル透過率は、例えば、分子量200万のデキストランを内包した場合、好ましくは0%~90%であり、より好ましくは0%~70%であり、更に好ましくは0%~50%である。又、分子量15万のデキストランを内包した場合、例えば、当該架橋アルギン酸構造体ゲルの使用目的がたんぱく質や抗体の放出・産生であるならば、好ましくは1%~100%であり、より好ましくは10%~100%であり、更に好ましくは30%~100%である。又、使用目的が免疫隔壁であるならば、好ましくは0%~90%であり、より好ましくは0%~70%であり、更に好ましくは0%~50%である。
 架橋アルギン酸構造体の透過性は、透過率が低いほど、内容物やゲル外物質の透過性が低いことを意味し、透過率が高いほど、内容物やゲル外物質の透過性が高いことを意味する。
 ゲルの透過率は、使用するアルギン酸の分子量、濃度、アルギン酸に導入する架橋基の種類や導入率、ゲル化に用いる2価金属イオンの種類や濃度、またはこれらの組み合わせによって調整することが可能である。
[内容物が内包した架橋アルギン酸構造体ゲルの調製方法]
 例えば、内容物としてフルオレセインイソチオシアナート-デキストランを内包した架橋アルギン酸構造体ゲルは以下の方法にて調製できる。
(1)式(I)で表わされるアルギン酸誘導体の溶液とフルオレセインイソチオシアナート-デキストラン溶液を混和する。
(2)(1)で得られた混合溶液に、式(II)で表わされるアルギン酸誘導体の溶液を混和する。
((1)の式(I)を式(II)に変更する場合、(2)の式(II)は式(I)に変更することになる)
(3)(2)で得られた混合溶液を、カルシウムイオンを含む溶液中に滴下し得られたゲルが、溶液中で、化学架橋及びイオン架橋を形成することにより、フルオレセインイソチオシアナート-デキストラン内包の架橋アルギン酸構造体ゲルが得られる。
8.アルギン酸誘導体の合成方法
 本明細書において、式(I)又は式(II)で表わされるアルギン酸誘導体は、各々、HN-L-Akn(式中、L及びAknは、前記態様[1]中の定義と同じである)で表わされるアミン誘導体(AM-1)、又は、HN-L-N(式中、Lは、前記態様[4]中の定義と同じである)で表わされるアミン誘導体(AM-2)を、アルギン酸類の任意のカルボキシル基とを、縮合剤を用いる縮合反応により製造することができる。
Figure JPOXMLDOC01-appb-C000114
[式(I)のアルギン酸誘導体の製法]
 0.5重量%~1重量%のアルギン酸水溶液及び式(AM-1)で表わされるアミンを用いて、文献公知の方法、例えば、『実験化学講座 第5版 16、有機化合物の合成IV、カルボン酸および誘導体、エステル類、p35-70、酸アミドおよび酸イミド、p118-154、アミノ酸・ペプチド、p258-283、2007年、丸善』等に記載された方法に準じて、1,3-ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC・HCl)、ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスフェイト(BOP試薬)、ビス(2-オキソ-3-オキサゾリジニル)ホスフィニッククロリド(BOP-Cl)、2-クロロ-1,3-ジメチルイミダゾリニウムヘキサフルオロホスフェイト(CIP)、又は4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)、等から選択される縮合剤の存在下、アルギン酸が析出しない程度の、テトラヒドロフラン、1、4-ジオキサン等のエーテル系溶媒、メタノール、エタノール、2-プロパノール、等のアルコール系溶媒、N,N-ジメチルホルムアミド等の極性溶媒等から選択される溶媒と水との混合溶媒中、炭酸水素ナトリウム、炭酸ナトリウム等の無機塩基、又はトリエチルアミン、ピリジン等の有機塩基の存在下又は非存在下にて、0℃から50℃間の温度で縮合反応を行うことにより、式(I)のアルギン酸誘導体を製造することができる。
[式(II)のアルギン酸誘導体の製法]
 0.5重量%~1重量%のアルギン酸水溶液及び式(AM-2)で表わされるアミンを用いて、前述の[式(I)のアルギン酸誘導体の製法]に準じて反応をおこなうことにより、式(II)のアルギン酸誘導体を製造することができる。
 前記、式(I)のアルギン酸誘導体又は式(II)のアルギン酸誘導体の製法において、式(AM-1)又は式(AM-2)のアミンの導入率は、当該アミンの性質等を考慮することで、下記(i)~(v)等の反応条件を適宜選択して組み合わせることにより調節が可能になる。(i)縮合剤の等量の増減、(ii)反応温度の上昇・下降、(iii)反応時間の延長・短縮、(iv)反応基質のアルギン酸の濃度の調整、(v)式(AM-1)又は式(AM-2)のアミンの溶解度を上げる為に水に混和する有機溶媒を添加する、等。
 以下に、式(AM-1)又は式(AM-2)で表わされるアミンのうち、より具体的なアミンの製造方法を示す。
 尚、以下の各製造方法中、R=メチル基、エチル基、等のC1~6アルキル基であり;Pは-C(O)O-tertBu基、-C(O)O-Bn基、-C(O)CH基、-C(O)CF基、等から選択されるアミノ基の保護基であり; Pは-C(O)O-tertBu基、-C(O)O-Bn基、-C(O)CH基、-C(O)CF基、-SOPh、-SOPhMe基、-SOPh(NO)基、等から選択されるアミノ基の保護基であり;E=ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子、等)、-OTs基、-OMs基、等の脱離基である。
 又、以下の各製造方法中、保護基P及びPの保護・脱保護は、文献公知の方法、例えば、『プロテクティブ・グループス・イン・オーガニック・シンセシス(Protective Groups in Organic Synthesis 4thEdition) 第4版、2007年、ジョン ウィリー アンド サンズ(John Wiley & Sons)、グリーン(Greene)ら』の成書に記載された脱保護の方法に準じて、保護・脱保護を行うことができる。
[製造方法A]
 式(AM-OL-1)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000115
 式(SM-1)の化合物[式(SM-1)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物である]及び式(RG-1)の化合物[式(RG-1)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;m1=2~6の整数である]を用いて、文献公知の方法、例えば、『Carbohydrate Polymers、169、p332-340、2017年』等に記載された方法に準じて、(i)AgOSCF存在下トルエン等の反応に関与しない溶媒中(RG-1)を置換させ、続いて(ii)DBUを用いて脱臭素化反応を行うことでアルキン基を形成し、更に(iii)保護基Pを脱保護することにより式(AM-OL-1)で表されるアミン化合物、又は式(AM-OL-1)の塩として製造することができる。
[製造方法B]
 式(AM-OL-2)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000116
<工程1>
 式(SM-2)の化合物[式(SM-2)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物である]及び式(RG-2)[式(RG-2)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物である]の化合物を用いて、文献公知の方法、例えば、『European Journal of Organic Chemistry, 2014(6), p1280-1286; 2014年』等に記載された方法に準じて、(i)PPh、及びN(COCHMeの試薬存在下、テトラヒドロフラン等の反応に関与しない溶媒中、光延反応を行い、続いて(ii)水酸化ナトリウム等の塩基存在下、メタノール、エタノール、テトラヒドロフラン、水等の反応に関与しない溶媒若しくはそれらの混合溶媒中、加水分解を行うことにより式(IM-1)で表される化合物を製造することができる。
<工程2>
 [製造方法B]<工程1>により得られる式(IM-1)の化合物及び式(RG-3)[式(RG-3)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;m5=2~6の整数である]の化合物を用いて、(iii)前記[式(I)のアルギン酸誘導体の製法]と同様な縮合反応を行い、続いて(iv)保護基Pを脱保護することにより式(AM-OL-2)で表されるアミン化合物、又は式(AM-OL-2)の塩として製造することができる。
[製造方法C]
 式(AM-OL-3)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000117
<工程1>
 式(SM-1)の化合物及び式(RG-4)の化合物[式(RG-4)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;m8=1~6の整数である]を用いて、文献公知の方法、例えば、『Journal of the American Chemical Society、126(46)、p15046-15047、2004年』等に記載された方法に準じて、(i)AgClO存在下、トルエン等の反応に関与しない溶媒中、式(RG-4)の化合物を置換させ、続いて(ii)NaOMeを用いて脱臭素化反応を行うことによりアルキン基を形成し、(iii)水酸化リチウム、水酸化ナトリウム等の塩基存在下、メタノール、エタノール、テトラヒドロフラン、水等の反応に関与しない溶媒若しくはそれらの混合溶媒中、加水分解を行うことにより式(IM-2)で表される化合物を製造することができる。
<工程2>
 [製造方法C]<工程1>により得られる式(IM-2)の化合物及び式(RG-5)の化合物[式(RG-5)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;m9=2~6の整数である]を用いて、前記[式(I)のアルギン酸誘導体の製法]と同様な縮合反応を行い、続いて保護基Pを脱保護することにより式(AM-OL-3)で表されるアミン化合物、又は式(AM-OL-3)の塩として製造することができる。
[製造方法D]
 式(AM-OL-5)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000118
<工程1>
 式(SM-3)の化合物[式(SM-3)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり]を用いて、文献公知の方法、例えば、『Faming Zhuanli Shenqing, 104529898, 22 Apr 2015年』等に記載された方法に準じて、(i)ピリジン等の塩基存在下、エタノール等の反応に関与しない溶媒中、HNOH-HClを反応させオキシムを形成させ、続いて(ii)P, メタンスルホン酸中、五酸化二リンを反応させ、ベックマン転移を行うことにより8員環ラクタムを形成させる、続いて(iii)ジエチルエーテール等の反応に関与しない溶媒中、BH、LiAlH等の還元剤を用いてアミド基の還元を行ことにより、式(IM-3)で表される化合物を製造することができる。
<工程2>
 [製造方法D]<工程1>により得られる式(IM-3)及び式(RG-6)[式(RG-6)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;m3=1~6の整数である]の化合物を用いて、(iv)前記[式(I)のアルギン酸誘導体の製法]と同様な縮合反応を行い縮合体が得られる、続いて(v)臭素を付加させて後、tert-BuOKを用いて脱臭素化反応を行うことによりアルキン基を形成し、続いて(vi)保護基Pを脱保護することにより式(AM-OL-5)で表されるアミン化合物、又は式(AM-OL-5)の塩として製造することができる。  
[製造方法E]
 式(AM-OL-6)及び式(AM-OL-7)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000119
<工程1>
 [製造方法D]<工程1>の(ii)で得られる式(IM-4)の化合物及び式(RG-7)の化合物[式(RG-7)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;m2’=2~6の整数である]を用いて、文献公知の方法、例えば、『Synthesis、46(5)、p669-677、2014年』等に記載された方法に準じて、水酸化ナトリウム等の塩基及びテトラブチルアンモニウムブロマイド等の相間移動触媒の存在下、トルエン等の反応に関与しない溶媒中で、反応することにより式(IM-5)で表される化合物を製造することができる。
<工程2>
 [製造方法E]<工程1>で得られる式(IM-5)の化合物に、臭素を付加させて後、tert-BuOK等の塩基を用いて脱臭素化反応を行うことによりアルキン基を形成し、続いて保護基Pを脱保護することにより式(AM-OL-6)で表されるアミン化合物、又は式(AM-OL-6)の塩として製造することができる。
<工程3>
 [製造方法E]<工程1>で得られる式(IM-5)の化合物を用いて、[製造方法D]<工程1>の(iii)の還元法に準じて反応を行うことで、式(IM-6)の化合物を製造することができる。
<工程4>
 [製造方法E]<工程3>で得られる式(IM-6)の化合物を用いて[製造方法E]<工程2>と同様に反応を行うことにより式(AM-OL-7)で表されるアミン化合物、又は式(AM-OL-7)の塩として製造することができる。
[製造方法F]
 式(AM-OL-8)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000120
<工程1>
 式(SM-4)の化合物[式(SM-4)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり]を用いて、文献公知の方法、例えば、『Synthesis, (9), p1191-1194; 2002年』等に記載された方法に準じて、臭素を付加させた後、tert-BuOKを用いて脱臭素化反応を行うことによりアルキン基を形成することで、式(IM-7)で表される化合物を製造することができる。
<工程2>
 [製造方法F]<工程1>で得られる式(IM-7)の化合物及び式(RG-8)の化合物[式(RG-8)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり(詳細は後述の製造方法Hを参照);m6=1~6の整数であり;m7=2~6の整数である]を用いて、文献公知の方法、例えば、『Journal.American.Chemical.Society.,126、p15046-15047、2004年』又は『Chem.Ber.,94、p3260-3275、1961年』等に記載された方法に準じて、Huisgen反応を行い、続いて保護基Pを脱保護することにより式(AM-OL-8)で表されるアミン化合物、又は式(AM-OL-8)の塩として製造することができる。
[製造方法G]
 式(AM-OL-9)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000121
 式(SM-5)の化合物[式(SM-5)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり]を用いて、文献公知の方法、例えば、『米国特許出願公開2013-0137861号明細書』等に記載された方法に準じて、ジクロロメタン等の反応に関与しない溶媒中で、ピリジン等の塩基存在下/非存在下、クロロギ酸p-ニトロフェニルを反応させることでカーボネート体が得られる。続いて、トリエチルアミン存在下、N、N-ジメチルホルムアミド溶媒中、式(RG-9)の化合物[式(RG-9)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;m4=1~6の整数である]を反応させることでカルバモイル体が得られる。更に、保護基Pを脱保護することにより式(AM-OL-9)で表されるアミン化合物、又は式(AM-OL-9)の塩として製造することができる。
[製造方法H]
 式(AM-LK-1)で表されるアミンの製造方法[式(AM-LK-1)のうち、n1=1,n2=3のp置換アミンは、国際公開第2016/152980号パンフレット等に記載された方法に準じて、製造することもできる。]:
Figure JPOXMLDOC01-appb-C000122
<工程1>
 式(SM-6)の化合物[式(SM-6)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;n1=1~6の整数である]及び式(RG-10)の化合物[式(RG-10)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;n2=2~6の整数である]を用いて、前記[式(I)のアルギン酸誘導体の製法]と同様な縮合反応を行うことにより式(IM-8)を製造することができる。
<工程2>
 [製造方法H]<工程1>で得られる式(IM-8)の化合物を用いて、文献公知の方法、例えば、『Organometallics,29(23),p6619-6622;2010年』等に記載された方法に準じて、ジメチルスルホキシド等の反応に関与しない溶媒中、NaNを反応させアジド基を導入した後、保護基Pを脱保護することにより式(AM-LK-1)で表されるアミン化合物、又は式(AM-LK-1)の塩として製造することができる。
[製造方法J]
 式(AM-LK-2)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000123
<工程1>
 式(SM-7)の化合物[式(SM-7)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物である]及び式(RG-11)の化合物[式(RG-11)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;n4=2~6の整数である]を用いて、[製造方法B]<工程1>に準じる光延反応を行い、続いて水酸化ナトリウム等の塩基存在下、メタノール、エタノール、テトラヒドロフラン、水等の反応に関与しない溶媒若しくはそれらの混合溶媒中、エステル基の加水分解を行うことにより、式(IM-9)で表される化合物を製造することができる。
<工程2>
 [製造方法J]<工程1>で得られる式(IM-9)の化合物及び式(RG-12)[式(RG-12)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;n3=2~6の整数である]の化合物を用いて、前記[式(I)のアルギン酸誘導体の製法]と同様な縮合反応を行うことにより縮合体が得られ、続いて保護基Pを脱保護することにより式(AM-LK-2)で表されるアミン化合物、又は式(AM-LK-2)の塩として製造することができる。
[製造方法K]
 式(AM-LK-3)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000124
<工程1>
 [製造方法J]<工程1>の式(SM-7)の化合物及び式(RG-13)の化合物[式(RG-13)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;n6=2~6の整数である]を用いて、[製造方法B]<工程1>に準じる光延反応を行い、続いて水酸化ナトリウム等の塩基存在下、メタノール、エタノール、テトラヒドロフラン、水等の反応に関与しない溶媒若しくはそれらの混合溶媒中、エステル基の加水分解を行うことにより、式(IM-10)で表される化合物を製造することができる。
<工程2>
 [製造方法K]<工程1>で得られる式(IM-10)の化合物及び式(RG-14)[式(RG-14)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;n5=1~6の整数である]の化合物を用いて、前記[式(I)のアルギン酸誘導体の製法]と同様な縮合反応を行うことにより縮合体が得られ、続いて保護基Pを脱保護することにより式(AM-LK-3)で表されるアミン化合物、又は式(AM-LK-3)の塩として製造することができる。
[製造方法L]
 式(AM-OL-4)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000125
<工程1>
 式(SM-8)の化合物[式(SM-8)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり]を用いて、文献公知の方法、例えば、『国際公開第2009/067663号パンフレット』等に記載された方法に準じて、臭素を付加させて後、LiN(i-Pr)を用いて脱臭素化を行うことで式(IM-11)の化合物を製造することができる。
<工程2>
 [製造方法L]<工程1>で得られる式(IM-11)の化合物及び式(RG-15)で表わされる化合物[式(RG-15)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;m1=2~6の整数である]を用いて、水素化ナトリウム等の塩基存在下、テトラヒドロフラン等の反応に関与しない溶媒中で反応させることで、側鎖が導入された化合物が得られる。続いて保護基Pを脱保護することにより、式(AM-OL-4)で表されるアミン化合物、又は式(AM-OL-4)の塩として製造することができる。
[製造方法M]
 式(AM-LK-4)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000126
<工程1>
 式(SM-M)の化合物及び式(RG-M-1)の化合物[式(SM-M)の化合物及び式(RG-M-1)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;n7=2~6の整数である]を用いて、前記[式(I)のアルギン酸誘導体の製法]と同様な縮合反応を行うことにより式(IM-M-1)で表わされる化合物を製造することができる。
 また、式(SM-M)で表されるカルボン酸を、文献公知の方法、例えば、『実験化学講座 第5版 16、カルボン酸および誘導体、酸ハロゲン化物、酸無水物、99-118頁、2007年、丸善』、等に記載された方法に準じて、酸ハロゲン化物や酸無水物に変換し、式(RG-M-1)の化合物を用いて、トリエチルアミン、ピリジン等の塩基の存在下、ジクロロメタン、クロロホルム等のハロゲン系溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、トルエン、ベンゼン等の芳香族炭化水素系溶媒、N,N-ジメチルホルムアミド等の極性溶媒等から選択される溶媒中、0℃から溶媒が還流する温度で反応させることにより、式(IM-M-1)の化合物を同様に製造することができる。
<工程2>
 [製造方法M]<工程1>で得られる式(IM-M-1)の化合物を用いて、文献公知の方法、例えば、『グリーン(Greene)らの『プロテクティブ・グループス・イン・オルガニック・シンセシス(Protective Groups in Organic Synthesis) 第4版、2007年、ジョン ウィリー アンド サンズ(John Wiley & Sons)』の成書に記載の方法により、保護基の種類により適宜脱保護法を選択して反応を行うことで、式(AM-LK-4)で表わされる化合物、又は式(AM-LK-4)の塩として製造することができる。
[製造方法N]
 式(AM-OL-17)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000127
<工程1>
 式(SM-N)の化合物及び式(RG-N-1)の化合物[式(SM-N)の化合物及び式(RG-N-1)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;m10=1~4、m11=1~6、m12=1~6の整数である]を用いて、前記[製造方法M]<工程1>と同様な縮合反応を行うことにより式(IM-N-1)で表わされる化合物を製造することができる。
<工程2>
 [製造方法N]<工程1>で得られる式(IM-N-1)の化合物を用いて、文献公知の方法、例えば、『グリーン(Greene)らの『プロテクティブ・グループス・イン・オルガニック・シンセシス(Protective Groups in Organic Synthesis) 第4版、2007年、ジョン ウィリー アンド サンズ(John Wiley & Sons)』の成書に記載の方法により、保護基の種類により適宜脱保護法を選択して反応を行うことで、式(AM-OL-17)で表わされる化合物、又は式(AM-OL-17)の塩として製造することができる。
[製造方法P]
 式(AM-OL-18)で表されるアミンの製造方法[式(AM-OL-18)のうち、m13=1、m14=2のアミンは、国際公開第2015/143092号パンフレット等に記載された方法に準じて、製造することもできる。]:
Figure JPOXMLDOC01-appb-C000128
<工程1>
 式(SM-P)の化合物及び式(RG-P-1)の化合物[式(SM-P)の化合物及び式(RG-P-1)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;m13=1~4、m14=2~6の整数である]を用いて、前記[製造方法M]<工程1>と同様な縮合反応を行うことにより式(IM-P-1)で表わされる化合物を製造することができる。
<工程2>
 [製造方法P]<工程1>で得られる式(IM-P-1)の化合物を用いて、文献公知の方法、例えば、『グリーン(Greene)らの『プロテクティブ・グループス・イン・オルガニック・シンセシス(Protective Groups in Organic Synthesis) 第4版、2007年、ジョン ウィリー アンド サンズ(John Wiley & Sons)』の成書に記載の方法により、保護基の種類により適宜脱保護法を選択して反応を行うことで、式(AM-OL-18)で表わされる化合物、又は式(AM-OL-18)の塩として製造することができる。
[製造方法Q]
 式(AM-OL-19)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000129
<工程1>
 式(SM-Q)の化合物及び式(RG-Q-1)の化合物[式(SM-Q)の化合物及び式(RG-Q-1)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;m15=1~4、m16=1~6の整数である]を用いて、前記[製造方法M]<工程1>と同様な縮合反応を行うことにより式(IM-Q-1)で表わされる化合物を製造することができる。
<工程2>
 [製造方法Q]<工程1>で得られる式(IM-Q-1)の化合物を用いて、文献公知の方法、例えば、『グリーン(Greene)らの『プロテクティブ・グループス・イン・オルガニック・シンセシス(Protective Groups in Organic Synthesis) 第4版、2007年、ジョン ウィリー アンド サンズ(John Wiley & Sons)』の成書に記載の方法により、保護基の種類により適宜脱保護法を選択して反応を行うことで、式(AM-OL-19)で表わされる化合物、又は式(AM-OL-19)の塩として製造することができる。
[製造方法R]
 式(AM-LK-5)で表されるアミンの製造方法[式(AM-LK-5)のうち、n8=1、n9=2のアミンは、国際公開第2016/152980号パンフレット等に記載された方法に準じて、製造することもできる。]:
Figure JPOXMLDOC01-appb-C000130
<工程1>
 式(SM-R)の化合物[式(SM-R)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;n8=1~4の整数である]及び式(RG-R-1)の化合物[式(RG-R-1)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;n9=1~6の整数である]を用いて、前記[製造方法M]<工程1>と同様な縮合反応を行うことにより式(IM-R-1)で表わされる化合物を製造することができる。
<工程2>
 [製造方法R]<工程1>で得られる式(IM-R-1)の化合物を用いて、前記[製造方法H]<工程2>と同様にNaNを反応させアジド基を導入した後、保護基Pを脱保護することにより式(AM-LK-5)で表されるアミン化合物、又は式(AM-LK-5)の塩として製造することができる。
[製造方法S]
 式(AM-LK-6)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000131
<工程1>
[E=OTs基又はOMs基の場合]:
 式(SM-S)の化合物[式(SM-S)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;n10=1~4の整数である]及びメタンスルホン酸クロライド、トシル酸クロライド、無水トシル酸等の試薬を用いて、文献公知の方法、例えば、『Journal of the American Chemical Society、136(29)、p10450-10459、2014年』等に記載された方法に準じて、トリエチルアミン、N,N-ジイソプロピルエチルアミン、ピリジン等の塩基存在下、ジクロロメタン、クロロホルム等のハロゲン系溶媒、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン等のエーテル系溶媒、ベンゼン、トルエン等の芳香族炭化水素系溶媒など反応に関与しない溶媒、もしくはこれらの混合溶媒を用いて又は無溶媒にて、-78℃から溶媒が還流する温度で反応を行い、式(IM-S-1)で表される化合物を製造することができる。
[E=ハロゲン(塩素、臭素、ヨウ素の場合)]:
 式(SM-S)の化合物を用い、文献公知の方法、例えば、『実験化学講座 第4版 19、有機合成I、炭化水素・ハロゲン化合物、363-482頁、1992年、丸善』等に記載された方法に準じて、下記に示す各種ハロゲン化剤(塩素化剤、臭素化剤、ヨウ素化剤)及び反応に関与しない溶媒を適宜選択し、0℃から溶媒が還流する温度で反応を行うことで、式(IM-S-1)で表わされるハロゲン化化合物(E=塩素、臭素、ヨウ素)を製造することができる。
<E=塩素の場合>
 塩素化剤として、塩化水素/塩化亜鉛(HCl/ZnCl)、塩化水素/ヘキサメチルリン酸トリアミド(HCl/HMPA)、塩化チオニル(SOCl)、四塩化炭素/トリフェニルホスフィン(CCl/PPh)、トリホスゲン/トリフェニルホスフィン((CClCO/PPh)、トリホスゲン/N,N-ジメチルホルムアミド(POCl/DMF)等の試薬を用いることで、所望の塩素化物を製造することができる。
<X=臭素の場合>
 臭素化剤として、48%臭化水素酸(48%HBr)、48%臭化水素酸/硫酸(48%HBr/HSO)、臭化水素/臭化リチウム(HBr/LiBr)、臭化ナトリウム/硫酸(NaBr/HSO)、三臭化リン(PBr)等の試薬を用いることで、所望の塩素化物を製造することができる。また、式(IM-S-1)において、E=OTs又はOMsの化合物に、臭化ナトリウム(NaBr)を反応させることでも、所望の臭素化物を製造することができる。
<X=ヨウ素の場合>
 ヨウ素化剤として、ヨウ化水素酸(HI)、ヨウ素/トリフェニルホスフィン(I/PPh)等の試薬を用いることで、所望のヨウ素化物を製造することができる。また、 式(IM-S-1)において、E=OTs又はOMsの化合物に、ヨウ化ナトリウム(NaI)を反応させることでも、所望のヨウ素化物を製造することができる。
<工程2>
[製造方法S]<工程1>で得られる式(IM-S-1)の化合物を用いて、前記[製造方法H]<工程2>と同様にNaNを反応させることで、式(IM-S-2)の化合物を製造することができる。
<工程3>
[製造方法S]<工程2>で得られる式(IM-S-2)の化合物を用いて、前記[製造方法B]<工程1>のエステル基の加水分解反応と同様にして、加水分解を行うことで、式(IM-S-3)の化合物を製造することができる。
<工程4>
[製造方法S]<工程3>で得られる式(IM-S-3)及び式(RG-S-1)の化合物[式(RG-S-1)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;n11=1~6の整数である]を用いて、前記[製造方法M]<工程1>と同様な縮合反応を行うことにより式(IM-S-4)で表わされる化合物を製造することができる。
<工程5>
[製造方法S]<工程4>で得られる式(IM-S-4)の化合物の保護基Pを脱保護することにより式(AM-LK-6)で表されるアミン化合物、又は式(AM-LK-6)の塩として製造することができる。
[製造方法T]
 式(AM-LK-7)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000132
<工程1>
 式(SM-M)の化合物及び式(RG-T-1)の化合物[式(SM-M)の化合物及び式(RG-T-1)の化合物は市販化合物又は市販化合物から文献公知の製造方法により製造できる化合物であり;n12=1~6の整数である]を用いて、前記[製造方法M]<工程1>と同様な縮合反応を行うことにより式(IM-T-1)で表わされる化合物を製造することができる。
 また、式(SM-M)で表されるカルボン酸を、文献公知の方法、例えば、『実験化学講座 第5版 16、カルボン酸および誘導体、酸ハロゲン化物、酸無水物、99-118頁、2007年、丸善』、等に記載された方法に準じて、酸ハロゲン化物や酸無水物に変換し、式(RG-T-1)の化合物を用いて、トリエチルアミン、ピリジン等の塩基の存在下、ジクロロメタン、クロロホルム等のハロゲン系溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、トルエン、ベンゼン等の芳香族炭化水素系溶媒、N,N-ジメチルホルムアミド等の極性溶媒等から選択される溶媒中、0℃から溶媒が還流する温度で反応させることにより、式(IM-T-1)の化合物を同様に製造することができる。
<工程2>
 [製造方法T]<工程1>で得られる式(IM-T-1)の化合物を用いて、文献公知の方法、例えば、『グリーン(Greene)らの『プロテクティブ・グループス・イン・オルガニック・シンセシス(Protective Groups in Organic Synthesis) 第4版、2007年、ジョン ウィリー アンド サンズ(John Wiley & Sons)』の成書に記載の方法により、保護基の種類により適宜脱保護法を選択して反応を行うことで、式(AM-LK-7)で表わされる化合物、又は式(AM-LK-7)の塩として製造することができる。
 式(I)又は式(II)で表わされるアルギン酸誘導体を製造する為に用いられる、アルキン基が導入されたアミン(Akn-L-NH)又はアジド基が導入されたアミン(N-L-NH)については、前記[製造方法A]~[製造方法N]及び[製造方法P]~[製造方法T]に記載される各反応、文献公知の方法、例えば、『実験化学講座 第5版、各本、2007年、丸善』、『Comprehensive Organic Transformations, A Guide to Functional Group Preparations, 3rd Edition (Edited by Richard C. Larock), 2018年』、『Strategic Applications of Named Reactions in Organic Synthesis, (Edited by Laszlo Kurti, Barbara Czako), Academic Press, 2005年』等に記載の方法を適宜組み合わせることにより、所望のアミンを製造することができる。なお、下記の表中のアミンについては、表中に記載の先行技術文献に記載の方法によっても、製造することができる。
Figure JPOXMLDOC01-appb-T000133
 本明細書中、式(AM-1)又は式(AM-2)で表わされるアミン化合物(各々の式の下位の式も含む)は、製薬学的に許容される塩(例えば、酸付加塩)を形成する場合がある。かかる塩としては、製薬学的に許容し得る塩であれば特に限定されないが、例えば、無機酸との塩、有機酸との塩、酸性アミノ酸との塩などが挙げられる。無機酸との塩の好適な例としては、例えば、塩酸、臭化水素酸、よう化水素酸、硝酸、硫酸、リン酸等との塩が挙げられる。有機酸との塩の好適な例としては、例えば、ギ酸、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸、吉草酸、エナント酸、カプリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、乳酸、ソルビン酸、マンデル酸等の脂肪族モノカルボン酸等との塩、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、リンゴ酸、酒石酸等の脂肪族ジカルボン酸との塩、クエン酸等の脂肪族トリカルボン酸との塩、安息香酸、サリチル酸等の芳香族モノカルボン酸との塩、フタル酸等の芳香族ジカルボン酸の塩、桂皮酸、グリコール酸、ピルビン酸、オキシル酸、サリチル酸、N-アセチルシステイン等の有機カルボン酸との塩、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機スルホン酸との塩、アスパラギン酸、グルタミン酸等の酸性アミノ酸類との酸付加塩が挙げられる。酸性アミノ酸との塩の好適な例としては、例えば、アスパラギン酸、グルタミン酸などとの塩が挙げられる。このうち、薬学的に許容し得る塩が好ましい。
 前記塩は、常法に従い、例えば、本発明の化合物と適量の酸もしくは塩基を含む溶液を混合することにより目的の塩を形成させた後に分別濾取するか、もしくは該混合溶媒を留去することにより得ることができる。塩に関する総説として、Handbook of Pharmaceutical Salts:Properties, Selection, and Use、Stahl&Wermuth(Wiley-VCH、2002)が出版されており、本書に詳細な記載がなされている。
 本明細書中、式(AM-1)又は式(AM-2)で表わされるアミン化合物(各々の式の下位の式も含む)又はその塩は、水、エタノール、グリセロール等の溶媒と溶媒和物を形成し得る。
 本明細書中、特に断りのない限り、環状基に可変置換基が置換している場合、該可変置換基は環状基の特定の炭素原子に結合されていない事を意味する。例えば、下記式Aにおける可変置換基Rsは、該式Aにおける炭素原子i、ii、iii、iv又はvの何れかに置換する事ができる事を意味する。
Figure JPOXMLDOC01-appb-C000134
9.アルギン酸誘導体、架橋アルギン酸構造体の用途
 アルギン酸誘導体は、食品、医療、化粧品、繊維、製紙などの幅広い分野で、従来のアルギン酸の代わりに用いることができる。アルギン酸誘導体または光架橋アルギン酸構造体の好ましい用途としては、具体的には、創傷被覆材、術後癒着防止材、薬剤徐放用基材、細胞培養用基材、細胞移植用基材等の医療用材料が挙げられる。
 医療用材料として用いる場合の架橋アルギン酸構造体の形状として、チューブ状、繊維状、ファイバー、ビーズ、ゲル、略球形のゲル等が挙げられ、ビーズ、ゲルまたは略球形のゲルとすることが好ましく、略球形のゲルとすることがより好ましい。
 なお、本明細書に記載した全ての文献及び刊行物は、その目的にかかわらず参照によりその全体を本明細書に組み込むものとする。
 また、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を実施できる。発明を実施するための最良の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図ならびに範囲内で、本明細書の記載に基づき、様々に修飾ができることは、当業者にとって明らかである。
 次に、本発明をさらに詳細に説明するために実施例、試験例をあげるが、これらの例は単なる実施例、試験例であって、本発明を限定するものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。
 核磁気共鳴スペクトル(NMR)の測定には、JEOL JNM-ECX400 FT-NMR(日本電子)を用いた。液体クロマトグラフィー-質量分析スペクトル(LC-Mass)は以下の方法で測定した。[UPLC]Waters AQUITY UPLCシステムおよびBEH C18カラム(2.1mm×50mm、1.7μm)(Waters)を用い、アセトニトリル:0.05%トリフルオロ酢酸水溶液=5:95(0分)~95:5(1.0分)~95:5(1.6分)~5:95(2.0分)の移動相およびグラジエント条件を用いた。
 H-NMRデータ中、NMRシグナルのパターンで、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、mはマルチプレット、brはブロード、Jはカップリング定数、Hzはヘルツ、CDCl3は重クロロホルム、DMSO-D6は重ジメチルスルホキシド、D2Oは重水を意味する。H-NMRデータ中、水酸基(OH)、アミノ基(NH)、カルボキシル基(COOH)のプロトン等、ブロードバンドであるため確認ができないシグナルについては、データに記載していない。
 LC-Massデータ中、Mは分子量、RTは保持時間、[M+H],[M+Na]は分子イオンピークを意味する。
 実施例中の「室温」は、通常約0℃から約35℃の温度を示すものとする。
 実施例中の反応性置換基導入率(モル%)は、H-NMR(DO)から算出されたアルギン酸を構成する単糖(グルロン酸およびマンヌロン酸)単位のモル数に対する導入された反応性置換基のモル数の割合を示すものとする。
 実施例において、反応性基又は相補的な反応性基が導入される前のアルギン酸ナトリウムは、前記表10に記される物性値を示すアルギン酸ナトリウムを用いた。
 表12には、(実施例1)~(実施例15)で得られた、反応性基が導入されたアルギン酸誘導体(実施例1a、実施例1b、実施例1c、実施例1d、実施例1e、実施例1f、実施例2、実施例3a、実施例3b、実施例3c、実施例3d、実施例3e、実施例3f、実施例4、実施例5a、実施例5b、実施例6、実施例7a、実施例7b、実施例8、実施例9a、実施例9b、実施例9c、実施例10、実施例11、実施例12、実施例13、実施例14及び実施例15の、物性値(具体的には、反応性基導入率(mol%)、分子量、及び重量平均分子量(万Da))を示す。
(実施例1)
 ジベンゾシクロオクチン-アミン基導入アルギン酸(実施例1a、実施例1b、実施例1c、実施例1d、実施例1e、実施例1f、及び実施例1g)の合成:
Figure JPOXMLDOC01-appb-C000135
(実施例1a)ジベンゾシクロオクチン-アミン基導入アルギン酸(EX1-(I)-A-2)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(43.6 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(111.65 mg)、1モル濃度-重曹水(403.5 μL)を加えた。この溶液に、市販のジベンゾシクロオクチン-アミン[CAS:1255942-06-3](EX1-SM、83.62 mg)のエタノール溶液(2 mL)を滴下し、室温で18時間攪拌した。塩化ナトリウム(400 mg)を加えた後、エタノール(87.2 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX1-(I)-A-2(376 mg)を淡黄色固体として得た。
 反応性置換基(ジベンゾシクロオクチン-アミノ基)の導入率は6.9mol%(NMR積分比)であった。
(実施例1b)ジベンゾシクロオクチン-アミン基導入アルギン酸(EX1-(I)-A-1)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-1)水溶液(19.32 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(49.47 mg)、1モル濃度-重曹水(178.8 μL)を加えた。この溶液に、市販のジベンゾシクロオクチン-アミン[CAS:1255942-06-3](EX1-SM、37.05 mg)のエタノール溶液(4 mL)を滴下し、室温で20時間攪拌した。塩化ナトリウム(200 mg)を加えた後、エタノール(38.64 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX1-(I)-A-1(184 mg)を淡黄色固体として得た。
 反応性置換基(ジベンゾシクロオクチン-アミノ基)の導入率は6.5mol%(NMR積分比)であった。
(実施例1c)ジベンゾシクロオクチン-アミン基導入アルギン酸(EX1-(I)-A-3)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-3)水溶液(15.06 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(38.57 mg)、1モル濃度-重曹水(139.4 μL)を加えた。この溶液に、市販のジベンゾシクロオクチン-アミン[CAS:1255942-06-3](EX1-SM、28.88 mg)のエタノール溶液(2 mL)を滴下し、室温で23時間攪拌した。塩化ナトリウム(150 mg)を加えた後、エタノール(60.24 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX1-(I)-A-3(164 mg)を淡黄色固体として得た。
 反応性置換基(ジベンゾシクロオクチン-アミノ基)の導入率は6.6モル%(NM
R積分比)であった。
(実施例1d)ジベンゾシクロオクチン-アミン基導入アルギン酸(EX1-(I)-B-2a)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液(53.0 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(111.0 mg)、ジベンゾシクロオクチン-アミン[CAS:1255942-06-3](EX1-SM、36.9 mg)のエタノール(5.3 mL)溶液、1モル濃度-重曹水(113.7 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(530 mg)を加えた後、エタノール(101 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX-(I)-B-2a(465 mg)を白色固体として得た。
 反応性置換基(ジベンゾシクロオクチン-アミノ基)の導入率は4.9mol%(NMR積分比)であった。
(実施例1e)ジベンゾシクロオクチン-アミン基導入アルギン酸(EX1-(I)-B-2b)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液(35.0 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(14.7 mg)、ジベンゾシクロオクチン-アミン[CAS:1255942-06-3](EX1-SM、4.9 mg)、1モル濃度-重曹水(17.7 μL)、エタノール(3.5 mL)を加え、30℃で3.5時間攪拌した。塩化ナトリウム(350 mg)を加えた後、エタノール(70 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX-(I)-B-2(329 mg)を白色固体として得た。
 反応性置換基(ジベンゾシクロオクチン-アミノ基)の導入率は0.8mol%(NMR積分比)であった。
(実施例1f)ジベンゾシクロオクチン-アミン基導入アルギン酸(EX1-(I)-B-2c)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液(60.0 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(67.0 mg)、ジベンゾシクロオクチン-アミン[CAS:1255942-06-3](EX1-SM、16.7 mg)、1モル濃度-重曹水(60.5 μL)、エタノール(6.0 mL)を加え、30℃で3時間攪拌した。塩化ナトリウム(600 mg)を加えた後、エタノール(120 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX-(I)-B-2c(558 mg)を白色固体として得た。
 反応性置換基(ジベンゾシクロオクチン-アミノ基)の導入率は1.9mol%(NMR積分比)であった。
(実施例1g)ジベンゾシクロオクチン-アミン基導入アルギン酸(EX1-(I)-A-2b)の合成:
(実施例1a)と同様の方法にて、反応性置換基の導入率(NMR積分比)=4.9 mol%の標記化合物(EX1-(I)-A-2b)を得た。
(実施例2)N-(1R,8S,9s)-ビシクロ[6.1.0]ノン-4-イン-9-イルメトキシカルボニル-1,8-ジアミノ-3,6-ジオキサオクタン基導入アルギン酸(化合物EX2-(I)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000136
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(10.9 mL)に、室温で、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(27.91 mg)、1モル濃度-重曹水(100.9 μL)を加えた。この溶液に、市販のN-(1R,8S,9s)-ビシクロ[6.1.0]ノン-4-イン-9-イルメトキシカルボニル-1,8-ジアミノ-3,6-ジオキサオクタン[CAS1263166-93-3](EX-2-SM、24.54 mg)のエタノール(2 mL)及び水(1 mL)溶液を、室温で滴下し、同温度で21時間攪拌した。塩化ナトリウム(100 mg)を加えた後、エタノール(21.8 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX2-(I)-A-2(100 mg)を淡黄色固体として得た。
 反応性置換基(N-(1R,8S,9s)-ビシクロ[6.1.0]ノン-4-イン-9-イルメトキシカルボニル-1,8-ジアミノ-3,6-ジオキサオクタン基)の導入率は5.8mol%(NMR積分比)であった。
(実施例3) 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(実施例3a、実施例3b、実施例3c、実施例3d、実施例3e、実施例3f、及び実施例3g)の合成:
Figure JPOXMLDOC01-appb-C000137
<工程1>メチル 4-(2-((tert-ブトキシカルボニル)アミノ)エトキシ)ベンゾエート(化合物EX3-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000138
 トリフェニルホスフィン(0.96 g)のテトラヒドロフラン(2.59 mL)溶液に、氷冷撹拌下、アゾジカルボン酸ジエチル(40%トルエン溶液,1.92 mL)溶液を加え、室温で20分間撹拌した。この溶液に対し、氷冷撹拌下、市販の4-ヒドロキシ安息香酸 メチル[CAS:99-76-3](化合物EX3-SM、0.37 g)及び2-(tert-ブトキシカルボニル)エタノールアミン[CAS:26690-80-2](0.39 g)のテトラヒドロフラン(1.1 mL)溶液を加え、室温で17時間撹拌した。反応液を減圧下濃縮し、残留物をシリカゲルカラムクロマトグラフィー(5%酢酸エチル/n-ヘプタン~40%酢酸エチル/n-ヘプタン)により精製し、化合物1と化合物2の混合物を得た。この混合物をメチル tert-ブチルエーテル(20 mL)に溶解させ、1規定-水酸化ナトリウム水溶液(5 mL)で2回、飽和食塩水(5 mL)で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥させた後、減圧下で溶媒を留去し、化合物EX3-IM-1(0.45 g)をピンク色のオイル状物質として得た。
NMRデータ(CDCl)(δ:ppm):7.98 (2H, d, J = 8.8 Hz), 6.90 (2H, d, J = 8.8 Hz), 4.97 (1H, br s), 4.07 (2H, t, J = 5.2 Hz), 3.88 (3H, s), 3.56 (2H, q, J = 5.2 Hz), 1.45 (9H, s)
<工程2>4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド塩酸塩(化合物EX3-IM-3)の合成:
Figure JPOXMLDOC01-appb-C000139
 (実施例3)<工程1>で得られた化合物EX3-IM-1(0.44 g)のメタノール(4.4 mL)溶液に水酸化リチウム一水和物(0.25 g)を加え、60度で3時間30分撹拌した。反応液に1規定-塩酸(5 mL)を加え、酢酸エチル(10 mL)で3回抽出した。有機層を水(5 mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥させ、減圧下で溶媒を留去した。残留物をアセトニトリル(4.4 mL)に溶解させ、3-アジドプロパン-1-アミン[CAS:88192-19-2](0.15 g)とO-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(0.57 g)を加えた。続いて、氷冷撹拌下、N,N-ジイソプロピルエチルアミン(0.52 mL)を加え、室温で5時間撹拌した。反応液に対し水(10 mL)を加え、酢酸エチル(15 mL)で3回抽出し、有機層を無水硫酸ナトリウムで乾燥させ、減圧下で溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(16%酢酸エチル/n-ヘプタン~100%酢酸エチル)により精製し、化合物EX3-IM-2(0.71 g)を含む画分を得た。
 化合物EX3-IM-2を含む画分(0.71 g)に対し、4規定-塩化水素/1,4-ジオキサン(4.9 mL)を加え、室温で20分間撹拌した。反応液にジイソプロピルエーテルを加えた後、析出物を濾過することで、標記化合物EX3-IM-3(0.49 g)を白色固体として得た。
NMRデータ(CDCl)(δ:ppm):7.60 (2H, d, J = 8.8 Hz), 6.93 (2H, d, J = 8.8 Hz), 4.19 (2H, t, J = 4.8 Hz), 3.31-3.29 (6H, m), 1.77-1.71 (2H, m).LC-MS:M(free amine)=263、RT=0.54(分)、[M+H]=264
(実施例3a) 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(化合物EX3-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000140
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(19.6 mL)に、氷冷撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(50.19 mg)、(実施例3)<工程2>で得られた化合物EX3-IM-3(54.37 mg)、1モル濃度-重曹水(181.4 μL)を加え、室温で5時間攪拌した。塩化ナトリウム(200 mg)を加えた後、エタノール(39.2 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX3-(II)-A-2(198 mg)を白色固体として得た。
 反応性置換基(4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基)の導入率は6.1mol%(NMR積分比)であった。
(実施例3b) 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(化合物EX3-(II)-A-1)の合成:
Figure JPOXMLDOC01-appb-C000141
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-1)水溶液(19.32 mL)に、氷冷撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(49.47 mg)、(実施例3)<工程2>で得られた化合物EX3-IM-3(53.39 mg)、1モル濃度-重曹水(178.8 μL)を加え、室温で20時間攪拌した。塩化ナトリウム(200 mg)を加えた後、エタノール(38.64 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、化合物EX-(II)-A-1(221 mg)を白色固体として得た。
 反応性置換基(4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基)の導入率は9.4mol%(NMR積分比)であった。
(実施例3c) 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(化合物EX3-(II)-A-3)の合成:
Figure JPOXMLDOC01-appb-C000142
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-3)水溶液(15.06 mL)に、氷冷撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(38.57 mg)、(実施例3)<工程2>で得られた化合物EX3-IM-3(41.78 mg)、1モル濃度-重曹水(139.4 μL)を加え、室温で5時間攪拌した。塩化ナトリウム(150 mg)を加えた後、エタノール(60.24 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、化合物EX3-(II)-A-3(155 mg)を白色固体として得た。
反応性置換基(4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基)の導入率は6.9mol%(NMR積分比)であった。
(実施例3d) 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(化合物EX3-(II)-B-2a)の合成:
Figure JPOXMLDOC01-appb-C000143
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液(60.0 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(125.6 mg)、(実施例3)<工程2>で得られた化合物EX3-IM-3(45.4 mg)、1モル濃度-重曹水(211.8 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(600 mg)を加えた後、エタノール(120 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX3-(II)-A-2(553 mg)を白色固体として得た。
 反応性置換基(4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基)の導入率は、3.7mol%(NMR積分比)であった。
(実施例3e) 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(化合物EX3-(II)-B-2b)の合成:
Figure JPOXMLDOC01-appb-C000144
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液(35.0 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(14.7 mg)、(実施例3)<工程2>で得られた化合物EX3-IM-3(5.3 mg)、1モル濃度-重曹水(26.5 μL)を加え、30℃で3.5時間攪拌した。塩化ナトリウム(350 mg)を加えた後、エタノール(70 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX3-(II)-A-2(304 mg)を白色固体として得た。
 反応性置換基(4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基)の導入率は、0.6モル%(NMR積分比)であった。
(実施例3f) 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(化合物EX3-(II)-B-2c)の合成:
Figure JPOXMLDOC01-appb-C000145
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液(60.0 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(67.0 mg)、(実施例3)<工程2>で得られた化合物EX3-IM-3(18.1 mg)、1モル濃度-重曹水(90.8 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(600 mg)を加えた後、エタノール(120 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX3-(II)-A-2(568 mg)を白色固体として得た。
 反応性置換基(4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基)の導入率は、1.5mol%(NMR積分比)であった。
(実施例3g)4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(EX3-(II)-A-2b)の合成:
 (実施例3a)と同様の方法にて、反応性置換基の導入率(NMR積分比)=4.3 mol%の標記化合物(EX3-(II)-A-2b)を得た。
 (実施例4)4-(3-アミノプロポキシ)-N-(2-(2-(2-アジドエトキシ)エトキシ)エチル)ベンズアミド基導入アルギン酸(化合物EX4-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000146
<工程1> 4-(3-((tert-ブトキシカルボニル)アミノ)プロポキシ)安息香酸(化合物EX4-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000147
 トリフェニルホスフィン(2.07 g)のテトラヒドロフラン(7 mL)溶液に、アゾジカルボン酸ジイソプロピル (40%トルエン溶液,4.15 mL)を加え、析出物が形成するまで撹拌した。更に1時間撹拌後、市販のtert-ブチル(3-ヒドロキシプロピル)カルバマート[CAS:58885-58-8](1.15 g)及び4-ヒドロキシ安息香酸メチルエステル[CAS:99-76-3](化合物EX4-SM、1 g)のテトラヒドロフラン(3 mL)溶液を加え、3時間撹拌した。反応液を減圧下濃縮し、残留物をシリカゲルカラムクロマトグラフィー(8%酢酸エチル/n-ヘプタン~66%酢酸エチル/n-ヘプタン)により精製した。この精製物をメチル tert-ブチルエーテル(20 mL)に溶解させ、1規定-水酸化ナトリウム水溶液(5 mL)で2回、飽和食塩水(5 mL)で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥させた後、減圧下で溶媒を留去し、化合物EX4-IM-1(2.94 g)を含む画分を白色固体として得た。
 化合物EX4-IM-1を含む画分(2.94 g)のメタノール(15.6 mL)溶液に対し、室温撹拌下、水酸化リチウム・一水和物(1.06 g)を加え、60℃で3時間撹拌した。室温に冷却後、減圧下で溶媒を留去した。この残留物に対し、水(20 mL)を加え、メチル tert-ブチルエーテル(20 mL)で2回抽出した。水層を1規定-塩酸(25 mL)を用い酸性にし、酢酸エチル(20 mL)で3回抽出し、水(10 mL)及び飽和食塩水(10 mL)で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥させた後、減圧下で溶媒を留去した。残留物にメチル tert-ブチルエーテル(30 mL)及び1規定-水酸化ナトリウム水溶液(20 m)を加え、メチル tert-ブチルエーテル(20 mL)で2回抽出した。水層を1規定-塩酸(20 mL)を用い酸性にし、酢酸エチル(20 mL)で2回抽出した。有機層を無水硫酸ナトリウムで乾燥させた後、減圧下で溶媒を留去し、化合物4-3(1.4 g)を白色固体として得た。
NMRデータ(CDCl)(δ:ppm):8.03 (2H, d, J = 7.6 Hz), 6.92 (2H, d, J = 8.8 Hz), 4.73 (1H, br s), 4.09 (2H, t, J = 6.0 Hz), 3.34 (2H, q, J = 6.3 Hz), 2.05-1.98 (2H, m), 1.45 (9H, s)
<工程2> 4-(3-アミノプロポキシ)-N-(2-(2-(2-アジドエトキシ)エトキシ)エチル)ベンズアミド塩酸塩(化合物EX4-IM-4)の合成:
Figure JPOXMLDOC01-appb-C000148
 (実施例4)<工程1>で得られた化合物EX4-IM-2(1 g)、市販の2-(2-(2-アジドエトキシ)エトキシ)エタン-1-アミン[CAS:166388-57-4](0.62 g)及びO-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(1.35 g)のアセトニトリル(20 mL)溶液に対し、氷冷撹拌下、N,N-ジイソプロピルエチルアミン(1.24 mL)を滴下し、室温で1時間撹拌した。反応液に対し水(20 mL)を加え、酢酸エチル(20 mL)で3回抽出し、水(10 mL)及び飽和食塩水(10 mL)で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥させ、減圧下で溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(16%酢酸エチル/n-ヘプタン~100%酢酸エチル)により精製し、化合物EX4-IM-3(1.37 g)を含む画分を得た。
 化合物EX4-IM-3を含む画分(1.37 g)に対し、1,4-ジオキサン(9.58 mL)を加えた。この溶液に対し、水冷撹拌下、4規定-塩化水素/1,4-ジオキサン(9.58 mL)を加え、室温で1時間撹拌した。反応液にジイソプロピルエーテル(100 mL)を加えた後、懸濁液を室温で1時間撹拌した。溶媒を減圧下で留去し、残留物を酢酸エチル(20 mL)及びメチル tert-ブチルエーテル(10 mL)でトリチュレートした。得られた固体を濾過し、減圧下乾燥することで、標記化合物EX4-IM-4(1.23 g)を白色固体として得た。
NMRデータ(DO)(δ:ppm):7.66-7.64 (2H, m), 6.98-6.94 (2H, m), 4.12 (2H, t, J = 5.6 Hz), 3.66-3.57 (6H, m), 3.57-3.52 (2H, m), 3.47 (2H, t, J = 5.2 Hz), 3.29 (2H, t, J = 4.8 Hz), 3.12 (2H, t, J = 7.2 Hz), 2.10-2.04 (2H, m)、LC-MS:M(free amine)=351、RT=0.57(分)、[M+H]=352
<工程3> 4-(3-アミノプロポキシ)-N-(2-(2-(2-アジドエトキシ)エトキシ)エチル)ベンズアミド基導入アルギン酸(化合物EX4-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000149
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(19.6 mL)に、氷冷撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(50.19 mg)、(実施例4)<工程2>で得られた化合物EX4-IM-4(70.35 mg)、1モル濃度-重曹水(181.4 μL)を加え、室温で5時間攪拌した。塩化ナトリウム(200 mg)を加えた後、エタノール(39.2 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX4-(II)-A-2(199 mg)を白色固体として得た。
 反応性置換基(4-(3-アミノプロポキシ)-N-(2-(2-(2-アジドエトキシ)エトキシ)エチル)ベンズアミド基)の導入率は4.3mol%(NMR積分比)であった。
(実施例5)N-(2-アミノエチル)-4-(アジドメチル)ベンズアミド基導入アルギン酸(実施例5a、、実施例5b及び実施例5c)の合成:
Figure JPOXMLDOC01-appb-C000150
<工程1> tert-ブチル(2-(4-(クロロメチル)ベンザミド)エチル)カルバメート(化合物EX5-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000151
 EX5-SM(4-(クロロメチル)ベンゾイル クロリド、[CAS:876-08-4](2.0 g)をテトラヒドロフラン(10.0 mL)に溶解し、tert-ブチル(2-アミノエチル)カルバメート[CAS:57260-73-8](1.7 g)とN,N‘-ジイソプロピルエチルアミン(3.7 mL)のテトラヒドロフラン(10.0 mL)溶液を、氷水冷下滴下し、室温で1.5時間攪拌した。反応液に、酢酸エチル(30 mL)と水(10 mL)を加え、分液した。有機層を半飽和重曹水(10 mL)、水(10 mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をtert-ブチルメチルエーテルでトリチュレートした後、得られた固体をろ取し、tert-ブチルメチルエーテルで洗浄して、標記化合物EX5-IM-1(2.9 g)を白色固体として得た。
NMRデータ(CDCl)(δ:ppm): 7.81(2H、d、J = 8 Hz)、7.44(2H、d、J = 8 Hz)、7.24(1H、brs)、4.96(1H、brs)、4.60(2H、s)、3.56(2H、q、J = 5 Hz)、3.45-3.38(2H、m)、1.43(9H、s)
<工程2> tert-ブチル(2-(4-(アジドメチル)ベンザミド)エチル)カルバメート(EX-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000152
 アジ化ナトリウム(100 mg)をジメチルスルホキシド(6.0 mL)に溶かし、(実施例5)<工程1>で得られた化合物EX5-IM-1(400 mg)を加え、室温で2.5時間撹拌した。反応液に、氷水冷下、水(12 mL)を加え、析出した固体をろ過し、水洗した。得られた固体を、50℃で減圧乾燥して、標記化合物EX5-IM-2(380 mg)を白色固体として得た。
NMRデータ(CDCl)(δ:ppm): 7.84(2H、d、J = 8 Hz)、7.37(2H、d、J = 8 Hz)、7.22(1H、brs)、4.95(1H、brs)、4.39(2H、s)、3.56(2H、q、J = 5 Hz)、3.45-3.38(2H、m)、1.43(9H、s)
<工程3> N-(2-アミノエチル)-4-(アジドメチル)ベンズアミド 塩酸塩(化合物EX5-IM-3)の合成:
Figure JPOXMLDOC01-appb-C000153
 (実施例5)<工程2>で得られた化合物EX5-IM-2(250 mg)に、氷水冷下で、4規定-塩化水素/1,4-ジオキサン(1.75 mL)を加え、室温で1時間攪拌した。反応液にジイソプロピルエーテル(5.25 mL)を加え、得られた沈殿をろ取し、ジイソプロピルエーテルで洗浄後、減圧乾燥して、標記化合物EX5-IM-3(192 mg)を白色固体として得た。
NMRデータ(DMSO-d)(δ:ppm): 8.68(1H、t、J = 6 Hz)、7.91(2H、d、J = 8 Hz)、7.80(3H、brs)、7.47(2H、d、J = 8 Hz)、4.53(2H、s)、3.51(2H、q、J = 6 Hz)、2.98(2H、t、J = 6 Hz)、LC-MS:M(free amine)=219、RT=0.56(分)、[M+H]=220
<工程4-1>(実施例5a)N-(2-アミノエチル)-4-(アジドメチル)ベンズアミド基導入アルギン酸(化合物EX5-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000154
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(20 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(84 mg)、(実施例5)<工程3>で得られた化合物EX5-IM-3(52 mg)、1モル濃度-重曹水(252 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(200 mg)を加えた後、エタノール(40 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX5-(II)-A-2(185 mg)を白色固体として得た。
 反応性置換基(N-(2-アミノエチル)-4-(アジドメチル)ベンズアミド基)の導入率は9.4mol%(NMR積分比)であった。
<工程4-2>(実施例5b) N-(2-アミノエチル)-4-(アジドメチル)ベンズアミド基導入アルギン酸(化合物EX5-(II)-B-2)の合成:
Figure JPOXMLDOC01-appb-C000155
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液(20 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(84 mg)、(実施例5)<工程3>で得られた化合物EX5-IM-3(26 mg)、1モル濃度-重曹水(151 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(200 mg)を加えた後、エタノール(40 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX5-(II)-B-2(187 mg)を白色固体として得た。
 反応性基(N-(2-アミノエチル)-4-(アジドメチル)ベンズアミド基)の導入率は、11 mol%(NMR積分比)であった。
(実施例5c)N-(2-アミノエチル)-4-(アジドメチル)ベンズアミド基導入アルギン酸(EX5-(II)-A-2b)の合成:
 (実施例5a)と同様の方法にて、反応性置換基の導入率(NMR積分比)=4.9 mol%の標記化合物(EX5-(II)-A-2b)を得た。
(実施例6) N-(3-アミノペンチニル)-5,6-ジヒドロ-11,12-ジデヒドロジベンゾ[b,f]アゾシン基(ADIBO-C3-アミン)導入アルギン酸(化合物EX6-(I)-B-2)の合成:
Figure JPOXMLDOC01-appb-C000156
<工程1> N-トリフルオロアセチル-5-アミノペンタン酸(EX6-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000157
 5-アミノペンタン酸(EX6-SM1、[CAS:660-88-8]2.0 g)、トリフルオロ酢酸 エチルエステル(3.1mL)、トリエチルアミン(3.6 mL)をメタノール(90.0 mL)に溶解し、40℃で5時間攪拌した。反応液を減圧濃縮し、残さにエタノール(10 mL)を加え減圧濃縮する操作を2回行った。濃縮残さを酢酸エチル(200 mL)に溶解し、0,1モル濃度のリン酸2水素ナトリウム水溶液(70 mL)で3回、飽和食塩水(50mL)で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮後、減圧乾燥して、標記化合物EX6-IM-1(1.8 g)を白色固体として得た。
NMRデータ(DMSO-d)(δ:ppm): 12.04(1H、brs)、9.43(1H、brs)、3.17(2H、q、J = 6 Hz)、2.22(2H、H、tt、J = 7、2 Hz)、1.51-1.46(4H、m)
<工程2> (Z)-N-(5-(ジベンゾ[b、f]アゾシン-5(6H)-イル)-5-オキソペンチル-トリフルオロアセタミド(化合物EX6-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000158
 (実施例6)<工程1>で得られた化合物EX6-IM-1(617 mg)に、塩化チオニル(440 μL)とN,N-ジメチルスルホキシド(2 μL)を加え、80℃で1,5時間撹拌し、反応液を減圧濃縮した。残さの塩化メチレン(1.0 mL)溶液を、[製造法D]<工程1>記載の方法に従い,5-ジベンゾスベレノン[CAS:2222-33-5]から合成した化合物EX6-SM2[CAS:23294-93-6](500 mg)、ピリジン(585 μL)の塩化メチレン(5.0 mL)溶液に氷水冷下で加え、室温で30分間撹拌した。反応液をtert-ブチルメチルメチルエーテル(20 mL)で希釈し、水(10 mL)、1規定-塩酸(10 mL)、水(10 mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られた残さを、シリカゲルカラムクロマトグラフィー(ヘプタン~60%酢酸エチル/ヘプタン)で精製した後、得られた固体をtert-ブチルメチルメチルエーテル/ヘプタンでトリチュレートした。固体をろ過後、ヘプタンで洗浄して、標記化合物EX6-IM-2(840 mg)を白色固体として得た。
NMRデータ(CDCl)(δ:ppm): 7.37-7.27(4H、m)、7.22-7.14(4H、m)、7.08(1H、brs)、6.76(1H、d、J = 13 Hz)、6.57(1H、d、J = 13 Hz)、5.43(1H、d、J = 15 Hz)、4.17(1H、d、J = 15 Hz)、3.22(1H、dt、J = 13、6 Hz)、2.83(1H、dt、J = 13、6 Hz)、2.22-2.12(1H、m)、1.87(1H、dq、J = 16、5 Hz)、1.68-1.58(1H、m)、1.52-1.36(2H、m)、1.28-1.16(1H,m)、LC-MS:M=402、RT=1.05(分)、[M+H]=403
<工程3> N-(5-(11,12-ジブロモ-11,12-ジヒドロジベンゾ[b、f]アゾシン-5(6H)-イル)-5-オキソペンチル-トリフルオロアセタミド(化合物EX6-IM-3)の合成:
Figure JPOXMLDOC01-appb-C000159
(実施例6)<工程2>で得られた化合物EX6-IM-2(700 mg)の塩化メチレン(2.8 mL)溶液に、ピリジニウムブロミドペルブロミド(612 mg)を氷水冷下で加え、室温で1.5時間撹拌した後、ピリジニウムブロミドペルブロミド(111 mg)を加え、室温でさらに1時間撹拌した。反応液を酢酸エチル(20 mL)で希釈し、2規定-塩酸(10 mL)、飽和食塩水(5mL)で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮して、標記粗化合物EX6-IM-3(1.03 g)を黄色アモルファスとして得た。
LC-MS:M=562、RT=1.10(分)、[M+H]=563(561:563:565=1:2:1)
<工程4>N-(3-アミノペンチニル)-5,6-ジヒドロ-11,12-ジデヒドロジベンゾ[b、f]アゾシン-トリフルオロアセタミド(EX6-IM-4)の合成:
Figure JPOXMLDOC01-appb-C000160
 (実施例6)<工程3>で得られた租化合物EX6-IM-3(100 mg)のテトラヒドロフラン(1.5 mL)溶液に、tert-ブトキシカリウム(100 mg)を、室温撹拌下、少量ずつ、8時間かけて加えた。反応液を酢酸エチル(15 mL)で希釈し、水(3 mL)、飽和食塩水(2 mL)で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮して、標記粗化合物EX6-IM-4(58 mg)を淡茶色ガム状物質として得た。
NMRデータ(CDCl)(δ:ppm): 7.69(1H、d、J = 7 Hz)、7.44-7.23(7H、m)、5.17(1H、d、J = 14 Hz)、3.70(1H、d、J = 14 Hz)、3.21(1H、dt、J = 13、6 Hz)、2.57(1H、dq、J = 19、5 Hz)、2.36-2.28(1H、m)、1.82(1H、dq、J = 16、5 Hz)、1.46-1.34(2H、m)、1.29-1.24(1H,m)、1.15-1.05(1H,m)、LC-MS:M=400、RT=1.08(分)、[M+H]=401、[M+Na]=423
<工程5> N-(3-アミノペンチニル)-5,6-ジヒドロ-11,12-ジデヒドロジベンゾ[b、f]アゾシン(化合物EX6-IM-5)の合成:
Figure JPOXMLDOC01-appb-C000161
 (実施例6)<工程4>で得られた租化合物EX6-IM-4(58 mg)のメタノール(1.2 mL)溶液に、炭酸カリウム(40 mg)の水(0.25 mL)溶液を加え、室温で23時間撹拌した。反応液を濃縮し、酢酸エチル(10 mL)、塩化メチレン(1mL)、半飽和食塩水(2 mL)を加え、分液した。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。得られたガムをシリカゲルクロマトグラフィー(酢酸エチル~50%メタノール/酢酸エチル)で精製して、標記化合物EX6-IM-5(22 mg)を無色ガム状物質として得た。
NMRデータ(CDCl)(δ:ppm): 7.70(1H、d、J = 8 Hz)、7.43-7.23(7H、m)、5.18(1H、d、J = 14 Hz)、3.65(1H、d、J = 14 Hz)、2.45(2H、t、J = 7 Hz)、2.24-2.16(1H、m)、1.96-1.89(1H、m)、1.48-1.38(2H、m)、1.21-1.10(2H,m)、LC-MS:M=304、RT=0.76(分)、[M+H]=305
<工程6> N-(3-アミノペンチニル)-5,6-ジヒドロ-11,12-ジデヒドロジベンゾ[b,f]アゾシン(ADIBO-C3-アミノ)基導入アルギン酸(EX6-(I)-B-2)の合成:
Figure JPOXMLDOC01-appb-C000162
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液(28.5 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(60 mg)、(実施例6)<工程5>で得られた化合物EX6-IM-5(22 mg)のエタノール(2.9 mL)溶液、1モル濃度-重曹水(72 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(285 mg)を加えた後、エタノール(57 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX5-(II)-B-2(277 mg)を白色固体として得た。
 反応性基(N-(3-アミノペンチニル)-5,6-ジヒドロ-11,12-ジデヒドロジベンゾ[b,f]アゾシン(ADIBO-C3-アミノ)基)の導入率は、2.7 mol%(NMR積分比)であった。
(実施例7) N-(2-アミノエチル)-4-アジドベンザミド基導入アルギン酸(実施例7a、実施例7b、及び実施例7c)の合成:
Figure JPOXMLDOC01-appb-C000163
<工程1> tert-ブチル(2-(4-アジドベンザミド)エチル)カルバメート(化合物EX7-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000164
 4-アジド安息香酸(EX7-SM、[CAS:6427-66-3]700 mg)に、塩化チオニル(783 μL)、N,N-ジメチルスルホキシド(3 μL)を加え、70℃で1時間攪拌した。反応液を減圧濃縮し、残さに塩化メチレン(1 mL)をtert-ブチル(2-アミノエチル)カルバメート[CAS:57260-73-8](825 mg)、ピリジン(1.04 mL)の塩化メチレン(7.0 mL)溶液に氷水冷下で加え、室温で1時間撹拌した。反応液をtert-ブチルメチルメチルエーテル(30 mL)で希釈し、水(10mL)、飽和重層水(5 mL)、0.5規定-クエン酸(5mLで2回)、水(5mL)、飽和食塩水(5 mL)で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮した。残さをtert-ブチルメチルメチルエーテル/ヘプタンでトリチュレートし、固体をろ過した後、tert-ブチルメチルメチルエーテル/ヘプタンで洗浄して、標記化合物EX7-IM-1(1.1 g)を白色固体として得た。
NMRデータ(CDCl)(δ:ppm): 7.83(2H、d、J = 8 Hz)、7.26(1H、brs)、7.05(2H、d、J = 8 Hz)、4.97(1H、brs)、3.55(2H、q、J = 5 Hz)、3.45-3.37(2H、m)、1.43(9H、s)、LC-MS:M=305、RT=0.90(分)、[M+H]=306、[M+Na]=328
<工程2>N-(2-アミノエチル)-4-アジドベンザミド 塩酸塩(化合物EX7-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000165
 (実施例7)<工程1>で得られた化合物(EX7-IM-1、500 mg)を、1,6-ジオキサン(1.5 mL)に懸濁した。氷水冷下4既定-塩化水素/ジオキサン溶液(3.5 mL)を加え、室温で1時間攪拌した。反応液にジイソプロピルエーテル(10.5 mL)を加え、室温で50分間撹拌した。固体をろ過し、ジイソプロピルエーテルで洗浄後、減圧乾燥して、標記化合物EX7-IM-2(365 mg)を淡ベージュ色固体として得た。
NMRデータ(DMSO-d)(δ:ppm): 8.68(1H、t、J = 6 Hz)、7.93(2H、d、J = 9 Hz)、7.82(1H、brs)、7.22(2H、d、J = 9 Hz)、3.49(2H、q、J = 6 Hz)、2.97(2H、t、J = 6 Hz)、LC-MS:M(free amine)=205、RT=0.56(分)、[M+H]=206
<工程3-1>(実施例7a) N-(2-アミノエチル)-4-アジドベンザミド基導入アルギン酸(EX7-(II)-B-2a)の合成:
Figure JPOXMLDOC01-appb-C000166
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液(30.0 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(63 mg)、(実施例7)<工程2>で得られた化合物EX7-IM-2(18 mg)、1モル濃度-重曹水(114 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(300 mg)を加えた後、エタノール(60 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX7-(II)-B-2a(282 mg)を白色固体として得た。
 反応性基(N-(2-アミノエチル)-4-アジドベンザミド基)の導入率は、5.1 mol%(NMR積分比)であった。
<工程3-2>(実施例7b) N-(2-アミノエチル)-4-アジドベンザミド基導入アルギン酸(EX7-(II)-B-2b)の合成:
Figure JPOXMLDOC01-appb-C000167
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液(60.0 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(67 mg)、(実施例7)<工程2>で得られた化合物EX7-IM-2(15 mg)、1モル濃度-重曹水(91 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(600 mg)を加えた後、エタノール(120 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX7-(II)-B-2b(560 mg)を白色固体として得た。
 反応性基(N-(2-アミノエチル)-4-アジドベンザミド基)の導入率は、2.0 mol%(NMR積分比)であった。
(実施例7c) N-(2-アミノエチル)-4-アジドベンザミド基導入アルギン酸(EX7-(II)-A-2)の合成:
アルギン酸をA-2に変えて(実施例7a)と同様の方法にて、反応性置換基の導入率(NMR積分比)=5.0 mol%の標記化合物(EX7-(II)-A-2)を得た。
(実施例8)N-(4-(アミノエチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(EX8-(I)-B-2)の合成:
Figure JPOXMLDOC01-appb-C000168
<工程1> tert-ブチル(4-(4((2,2,2-トリフルオロアセトアミド)メチル)ベンジル)カルバメート(化合物EX8-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000169
 文献公知の方法(Bioorganic & Medicinal Chemistry(2003)11:4189-4206)を参考に,1,4-ビス(アミノメチル)ベンゼン[CAS:539-48-0]から合成したtert-ブチル(4-(アミノエチル)ベンジル)カルバメート[CAS:108468-80-4](EX8-SM1、0.67 g)、トリエチルアミン(0.39 mL)及びメタノール(6.67 mL)の混合物に対し、氷冷撹拌下、トリフルオロ酢酸エチル(0.44 mL)を滴下した。反応混合物を室温に昇温し、同温で5時間撹拌した。反応を水(10 mL)で停止し、酢酸エチル(10mL)で3回抽出した。回収した有機層を飽和食塩水(5 mL)で洗浄し、無水硫酸ナトリウムで乾燥させた。乾燥させた有機層を濾過後、濃縮し、標記粗化合物EX8-IM-1(0.671 g)を淡黄色アモルファスとして得た。
NMRデータ(CDCl)(δ:ppm):δ: 7.29 (2H, d, J = 8.4 Hz), 7.25 (2H, d, J = 7.6 Hz), 6.51 (1H, br s), 4.86 (1H, br s), 4.51 (2H, d, J = 5.2 Hz), 4.31 (2H, d, J = 6.0 Hz), 1.46 (9H, s).LC-MS:M=332,RT=0.97(分),[M+Na]+=355.
<工程2> N-(4-(アミノエチル)ベンジル)-2,2,2-トリフルオロアセトアミド塩酸塩(化合物EX8-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000170
 (実施例8)<工程1>で得られた化合物EX8-IM-1(0.5 g)の1,4-ジオキサン溶液(3.5 mL)に対し、水冷撹拌下、4規定-塩化水素/1,4-ジオキサン(3.5 mL)を加え、室温で3時間撹拌した。反応液にジイソプロピルエーテル(40 mL)を加えた後、析出物を濾過することで、標記化合物EX8-IM-2(0.36 g)を白色固体として得た。
NMRデータ(DO)(δ:ppm):δ: 7.29 (2H, d, J = 8.0 Hz), 7.25 (2H, d, J = 8.4 Hz), 4.38 (2H, s), 4.02 (2H, s).LC-MS:M(free amine)=232,RT=0.53(分),[M+H]+=233.
<工程3> N-(4-((2-(シクロオクト-2-イン-1-イロキシ)アセトアミド)メチル)ベンジル)-2,2,2-トリフルオロアセトアミド(化合物EX8-IM-3)の合成:
Figure JPOXMLDOC01-appb-C000171
 文献公知の方法(Org. Process Res. Dev.(2018)22:108-110)に従い、シクロヘプテン[CAS:628-92-2]から合成したカルボン酸[CAS:917756-42-4](EX8-SM2、0.17 g)及びO-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(0.26 g)のアセトニトリル(1.7 mL)溶液に対し、氷冷撹拌下、(実施例8)<工程2>で得られたEX8-IM-2(0.26 g)及びN,N-ジイソプロピルエチルアミン(0.51 mL)を滴下し、室温で1時間30分撹拌した。水(5 mL)を加え反応を停止させた後、酢酸エチル(5 mL)で3回抽出した。有機層を飽和食塩水(3 mL)で洗浄した後、無水硫酸ナトリウムで乾燥させた。乾燥させた有機層を濾過後、減圧下で溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(12%酢酸エチル/n-ヘプタン~100%酢酸エチル)により精製し、標記化合物EX8-IM-3(0.189 g)を白色アモルファスとして得た。
NMRデータ(CDCl)(δ:ppm):δ: 7.31 (2H, d, J = 8.4 Hz), 7.26 (2H, d, J = 8.0 Hz, Overlapped with solvent peak.), 6.84 (1H, br s), 6.52 (1H, br s), 4.52 (2H, d, J = 6.0 Hz), 4.49 (2H, d, J = 6.4 Hz), 4.26-4.23 (1H, m), 4.11 (1H, d, J = 15.2 Hz), 3.94 (1H, d, J = 15.2 Hz), 2.26-2.09 (3H, m), 2.00-1.58 (6H, m), 1.48-1.44 (1H, m).LC-MS:M=396,RT=0.99(分),[M+H]+=397.
<工程4> N-(4-(アミノメチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド(化合物EX8-IM-4)の合成:
Figure JPOXMLDOC01-appb-C000172
 (実施例8)<工程3>で得られた化合物EX8-IM-3(0.18 g)及びメタノール(1.8 mL)の混合物に対して、氷冷撹拌下、炭酸カリウム(0.126 g)水溶液(0.9 mL)を滴下し、室温で17時間30分撹拌した。メタノールを減圧下で留去し、酢酸エチル(5 mL)で3回抽出した。有機層を飽和食塩水(5 mL)で洗浄後、無水硫酸ナトリウムで乾燥させた。有機層を濾過後、減圧下で溶媒を留去し、標記粗化合物EX8-IM-4(0.13 g)を淡黄色油状物として得た。
NMRデータ(CDCl)(δ:ppm):δ: 7.28-7.28 (4H, m), 6.80 (1H, br s), 4.48 (2H, d, J = 6.0 Hz), 4.26-4.21 (1H, m), 4.11 (1H, d, J = 15.2 Hz), 3.93 (1H, d, J = 15.2 Hz), 3.86 (2H, s), 2.28-2.07 (3H, m), 1.99-1.40 (7H, m, Overlapped with solvent peak.).LC-MS:M=300,RT=0.68(分),[M+H]+=301.
<工程5> N-(4-(アミノエチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(EX8-(I)-B-2)の合成:
Figure JPOXMLDOC01-appb-C000173
 1重量%に調整したアルギン酸ナトリウム(持田製薬株式会社製、B-2)水溶液(50.86 mL)に、室温撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(0.118 g)を加えた。続いて、(実施例8)<工程4>で得られた化合物EX8-IM-4(0.035 g)のエタノール(3 mL)溶液を同温で滴下し、40度で4時間攪拌した。室温に冷却後、塩化ナトリウム(500 mg)を加えた後、エタノール(101.72 mL)を加え、30分間攪拌した。得られた沈殿をろ取し、エタノール(2 mL)で3回洗浄後、減圧下乾燥し、標記化合物EX8-(I)-B-2(521 mg)を白色固体として得た。
 反応性置換基(N-(4-(アミノエチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基)の導入率は4.46mol%(NMR積分比)であった。
(実施例8b)N-(4-(アミノエチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(EX8-(I)-A-2)の合成:
 アルギン酸をA-2に変えて(実施例8)と同様の方法にて、反応性置換基の導入率(NMR積分比)=4.4 mol%の標記化合物(EX8-(I)-A-2)を得た。
(実施例9)N-(2-アミノエチル)-2-(シクロオクト-2-イン-1-オキシ)アセトアミド基導入アルギン酸(9a、9b、9c)の合成:
Figure JPOXMLDOC01-appb-C000174
(実施例9a)N-(2-アミノエチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(EX9-(I)-A-2)の合成:
<工程1> tert-ブチル(2-(2,2,2-トリフルオロアセトアミド)カルバメート(EX9-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000175
 市販のtert-ブチル(2-アミノエチル)カルバメート(EX9-SM1、3.00 g、[CAS:57260-73-8])のテトラヒドロフラン(12.0 mL)溶液に、トリフルオロ酢酸エチル(2.24 mL)を滴下した。反応混合物を、室温で14.5時間撹拌した。反応液を減圧下濃縮し、残渣にtert-ブチルメチルエーテル(5 mL)とヘプタン(25 mL)を加え、トリチュレートした。固体を濾過後、ヘプタンで洗浄して、標記化合物EX9-IM-1(4.36 g)を白色固体として得た。
NMRデータ(CDCl)(δ:ppm): 7.80(1H,brs)、4.93(1H,brs)、3.45(2H、q、J = 5 Hz)、3.41-3.34(2H、m)、1.44(9H、s)
<工程2> N-(2-アミノエチル)-2,2,2-トリフルオロアセトアミド 塩酸塩(EX9-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000176
 (実施例9a)<工程1>で得られた化合物EX9-IM-1(0.50 g)に、ギ酸(3.1 mL)を加え、室温で22.5時間撹拌した。ギ酸を留去し、トルエンで共沸した。得られた油状物に塩化水素/メタノールを加え、減圧濃縮した。酢酸エチル、tert-ブチルメチルエーテルで順次共沸した後、減圧乾燥して、標記粗化合物EX9-IM-2(0.35 g)を無色油状物として得た。
NMRデータ(DMSO-d)(δ:ppm): 3.42(2H、d、J = 6 Hz)、2.92(2H、d、J = 6 Hz)
<工程3> N-(2-(2-(シクロオクト-2-イン-1-イロキシ)アセトアミド)エチル)-2,2,2-トリフルオロアセトアミド(EX9-IM-3)の合成:
Figure JPOXMLDOC01-appb-C000177
 文献公知の方法(Org. Process Res. Dev.(2018)22:108-110)に従い合成したカルボン酸(EX8-SM2、100 mg)にエタノール(1.0 mL)、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(304 mg)、(実施例9a)<工程2>で得られた化合物EX9-IM-2(159 mg)、トリエチルアミン(153 μL)を加え、室温で3.5時間撹拌した。水(4 mL)を加え、酢酸エチル(15 mL、5 mL)で抽出した。有機層を、0.5規定-クエン酸(5 mL)、水(5 mL×2)、飽和食塩水(3 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(10%酢酸エチル/n-ヘプタン~60%酢酸エチル/n-ヘプタン)で精製して、標記化合物EX9-IM-3(103 mg)を白色固体として得た。
NMRデータ(DMSO-d)(δ:ppm): 9.42(1H、brs)、7.83(1H、brs)、4.29-4.24(1H、m)、3.87(2H、d、J = 15 Hz)、3.73(1H、d、J = 15 Hz)、3.28-3.20(4H、 m)、2.27-2.04(3H、m)、1.96-1.70(4H、m)、1.67-1.50(2H、m)、1.43-1.34(1H、m)
<工程4> N-(2-アミノエチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド(EX9-IM-4)の合成:
Figure JPOXMLDOC01-appb-C000178
 (実施例9a)<工程3>で得られた化合物EX9-IM-3(103 mg)のメタノール(1.55 mL)溶液に、炭酸カリウム(89 mg)の水(515 μL)溶液を加え、室温で6時間撹拌した。メタノールを減圧下で留去し、水(2 mL)を加えた後、塩化ナトリウムで飽和させた。酢酸エチル(15 mL、10 mL×5)で抽出し、無水硫酸ナトリウムで乾燥させた後、減圧下で溶媒を留去して、標記化合物EX9-IM-4(75 mg)を無色油状物として得た。
NMRデータ(CDCl)(δ:ppm): 6.83(1H、brs)、4.28-4.22(1H、m)、4.06(1H、d、J = 15 Hz)、3.90(1H、d、J = 15 Hz)、3.42-3.30(2H、m)、2.86(2H、t、J = 6 Hz)、2.31-2.12(3H、m)、2.04-1.78(4H,m)、1.75-1.57(2H、m)、1.51-1.43(1H、m)
<工程5> N-(2-アミノエチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(EX9-(I)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000179
 1重量%に調整したアルギン酸ナトリウム(持田製薬株式会社製、A-2)水溶液(30 mL)に、室温撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(84 mg)、(実施例9a)<工程4>で得られた化合物EX9-IM-4(17 mg)のエタノール(3 mL)溶液、1モル%重層水(76 μL)を順次加え、30度で3時間攪拌した。反応液に、塩化ナトリウム(0.3 g)を加えた後、エタノール(60 mL)を加え、1.5時間攪拌した。得られた沈殿をろ取し、エタノール(10 mL×5)で洗浄後、減圧乾燥して、標記化合物EX9-(I)-A-2(290 mg)を白色固体として得た。
 反応性置換基(N-(2-アミノエチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基)の導入率は4.3mol%(NMR積分比)であった。
(実施例9b)N-(2-アミノエチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(EX9-(I)-B-2a)の合成:
<工程1> N-(2-アミノエチル)-2,2,2-トリフルオロアセトアミド 塩酸塩(EX9-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000180
 (実施例9a)<工程1>で得られた化合物EX9-IM-1(0.50 g)を、1,4-ジオキサン(3.0 mL)に懸濁した。氷水冷下、4既定-塩化水素/1,4-ジオキサン(7.0 mL)を加え、室温で3時間撹拌した。反応液に、ジイソプロピルエーテル(30.0 mL)を加え、室温で50分間撹拌した。固体をろ取し、ジイソプロピルエーテルで洗浄後、減圧乾燥して、標記化合物EX9-IM-2(0.70 g)を白色固体として得た。
NMRデータ(DMSO-d)(δ:ppm): 9.56(1H、brs)、8.00(3H、brs)、3.45(2H、d、J = 6 Hz)、2.95(2H、d、J = 6 Hz)
<工程2> N-(2-(2-(シクロオクト-2-イン-1-イロキシ)アセトアミド)エチル)-2,2,2-トリフルオロアセトアミド(EX9-IM-3)の合成:
Figure JPOXMLDOC01-appb-C000181
 文献公知の方法(Org. Process Res. Dev.(2018)22:108-110)に従い合成したカルボン酸(EX8-SM2、300 mg)と(実施例9b)<工程1>で得られた化合物EX9-IM-2(380 mg)を用い、(実施例9a)<工程3>と同様の操作を行い、標記化合物EX9-IM-3(322 mg)を白色固体として得た。
NMRデータ(CDCl)(δ:ppm): 7.95(1H、brs)、6.95(1H、brs)、4.28-4.23(1H、m)、4.08(2H、d、J = 15 Hz)、3.91(1H、d、J = 15 Hz)、3.56-3.50(4H、 m)、2.31-2.12(3H、m)、2.03-1.78(4H、m)、1.75-1.61(2H、m)、1.52-1.42(1H、m)
<工程3> N-(2-アミノエチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド(EX9-IM-4)の合成:
Figure JPOXMLDOC01-appb-C000182
 (実施例9b)<工程2>で得られた化合物EX9-IM-3(322 mg)を(実施例9b)<工程4>と同様の操作を行い、標記化合物EX9-IM-4(238 mg)を無色油状物として得た。
NMRデータ(CDCl)(δ:ppm): 6.82(1H、brs)、4.28-4.22(1H、m)、4.06(1H、d、J = 15 Hz)、3.90(1H、d、J = 15 Hz)、3.40-3.31(2H、m)、2.86(2H、t、J = 6 Hz)、2.31-2.12(3H、m)、2.02-1.78(4H,m)、1.75-1.57(2H、m)、1.52-1.41(1H、m)
<工程4> N-(2-アミノエチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(EX9-(I)-B-2a)の合成:
Figure JPOXMLDOC01-appb-C000183
 1重量%に調整したアルギン酸ナトリウム(持田製薬株式会社製、B-2)水溶液(120 mL)に、室温撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(335 mg)、(実施例9b)<工程3>で得られた化合物EX9-IM-4(68 mg)のエタノール(12 mL)溶液、1モル%重層水(303 μL)を順次加え、30度で3時間攪拌した。反応液に、塩化ナトリウム(1.2 g)を加えた後、エタノール(240 mL)を加え、1.5時間攪拌した。得られた沈殿をろ取し、エタノール(20 mL×5)で洗浄後、減圧乾燥して、標記化合物EX9-(I)-B-2a(1.16 g)を白色固体として得た。
 反応性置換基(N-(2-アミノエチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基)の導入率は4.2mol%(NMR積分比)であった。
(実施例9c)N-(2-アミノエチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(EX9-(I)-B-2b)の合成:
Figure JPOXMLDOC01-appb-C000184
 1重量%に調整したアルギン酸ナトリウム(持田製薬株式会社製、B-2)水溶液(120 mL)に、室温撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(167 mg)、(実施例9b)<工程3>で得られた化合物EX9-IM-4(34 mg)のエタノール(12 mL)溶液、1モル%重層水(151 μL)を順次加え、30度で3時間攪拌した。反応液に、塩化ナトリウム(1.2 g)を加えた後、エタノール(240 mL)を加え、1.5時間攪拌した。得られた沈殿をろ取し、エタノール(20 mL×5)で洗浄後、減圧乾燥して、標記化合物EX9-(I)-B-2b(1.12 g)を白色固体として得た。
 反応性置換基(N-(2-アミノエチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基)の導入率は2.1mol%(NMR積分比)であった。
(実施例10)N-(2-(2-アミノエトキシ)エチル)-4-(アジドメチル)ベンズアミド基導入アルギン酸(EX10-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000185
<工程1> tert-ブチル(2-(2-(4-(クロロメチル)ベンザミド)エトキシ)エチル)カルバメート(EX10-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000186
 EX5-SM(4-(クロロメチル)ベンゾイル クロリド、0.50 g)をテトラヒドロフラン(5.0 mL)に溶解し、tert-ブチル(2-(2-アミノエトキシ)エチル)カルバメート(0.54 g、[CAS:127828-22-2])とジイソプロピルエチルアミン(0.92 mL)のテトラヒドロフラン(5.0 mL)溶液を加え、室温で3時間攪拌した。反応液に、酢酸エチル(25 mL)と水(10 mL)を加え、分液した。有機層を、水(5 mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をtert-ブチルメチルエーテル/n-ヘプタンの混合溶媒でトリチュレートした後、得られた固体をろ取し、n-ヘプタンで洗浄して、標記化合物EX10-IM-1(0.79 g)を白色固体として得た。
NMRデータ(CDCl)(δ:ppm): 7.79(2H、d、J = 8 Hz)、7.46(2H、d、J = 8 Hz)、6.62(1H、brs)、4.83(1H、brs)、4.61(2H、s)、3.68-3.62(4H、m)、3.55(2H、t、J = 5 Hz)、3.33(2H、t、J = 5 Hz)、1.42(9H、s)
<工程2>tert-ブチル(2-(2-(4-(アジドメチル)ベンザミド)エトキシ)エチル)カルバメート(EX10-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000187
 アジ化ナトリウム(109 mg)をジメチルスルホキシド(7.5 mL)に溶かし、(実施例10)<工程1>で得られた化合物EX10-IM-1(500 mg)を加え、室温で3時間撹拌した。反応液に、氷水冷下、水(15 mL)を加え、析出した固体をろ過し、水洗した。得られた固体を乾燥して、標記化合物EX10-IM-2(478 mg)を白色固体として得た。
NMRデータ(CDCl)(δ:ppm): 7.82(2H、d、J = 8 Hz)、7.39(2H、d、J = 8 Hz)、6.63(1H、brs)、4.83(1H、brs)、4.40(2H、s)、3.68-3.62(4H、m)、3.55(2H、t、J = 5 Hz)、3.33(2H、q、J = 5 Hz)、1.42(9H、s)
<工程3>N-(2-(2-アミノエトキシ)エチル)-4-(アジドメチル)ベンズアミド 塩酸塩(EX10-IM-3)の合成:
Figure JPOXMLDOC01-appb-C000188
 (実施例10)<工程2>で得られた化合物EX10-IM-2(400 mg)に、氷水冷下で、4規定-塩化水素/1,4-ジオキサン(2.8 mL)を加え、室温で1.75時間攪拌した。反応液にジイソプロピルエーテル(8.4 mL)を加え、ガム状物を得た。上清をデカントにて除き、ジイソプロピルエーテルでデカント洗浄後、減圧乾燥して、標記化合物EX10-IM-3(298 mg)をベージュ色固体として得た。
NMRデータ(DMSO-d)(δ:ppm): 8.60(1H、t、J = 6 Hz)、7.89(2H、d、J = 8 Hz)、7.90(3H、brs)、7.45(2H、d、J = 8 Hz)、4.52(2H、s)、3.62(2H、t、J = 5 Hz)、3.58(2H、t、J = 6 Hz)、3.47(2H、q、J = 6 Hz)、2.98(2H、t、J = 5 Hz)、LC-MS(free amine):RT=0.58(分)、[M+H]=264
<工程4>N-(2-(2-アミノエトキシ)エチル)-4-(アジドメチル)ベンズアミド基導入アルギン酸(EX10-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000189
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(40 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(112 mg)、(実施例10)<工程3>で得られた化合物EX10-IM-3(30 mg)、1モル濃度-重曹水(151 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(400 mg)を加えた後、エタノール(80 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX10-(II)-A-2(408 mg)を白色固体として得た。
 反応性置換基(N-(2-(2-アミノエトキシ)エチル)-4-(アジドメチル)ベンズアミド基)の導入率は4.7mol%(NMR積分比)であった。
(実施例11)N-(2-(2-(2-アミノエトキシ)エトキシ)エチル)-4-(アジドメチル)ベンズアミド基導入アルギン酸(EX11-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000190
<工程1>tert-ブチル(2-(2-(2-(4-(クロロメチル)ベンザミド)エトキシ)エトキシ)エチル)カルバメート(EX11-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000191
 EX5-SM(4-(クロロメチル)ベンゾイル クロリド、0.50 g)をテトラヒドロフラン(5.0 mL)に溶解し、tert-ブチル(2-(2-(2-アミノエトキシ)エトキシ)エチル)カルバメート(0.66 g)とジイソプロピルエチルアミン(0.92 mL)のテトラヒドロフラン(5.0 mL)溶液を滴下し、室温で4.7時間攪拌した。反応液に、酢酸エチル(25 mL)と水(10 mL)を加え、分液した。有機層を半飽和重曹水(10 mL)、水(10 mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣にtert-ブチルメチルエーテルを加え、固体をろ過にて除いた。得られたろ液を減圧濃縮し、シリカゲルカラムクロマトグラフィー(20%酢酸エチル/n-ヘプタン~酢酸エチル)で精製して、標記化合物EX11-IM-1(0.82 g)を無色油状物として得た。
NMRデータ(CDCl)(δ:ppm): 7.79(2H、d、J = 8 Hz)、7.45(2H、d、J = 8 Hz)、6.71(1H、brs)、4.97(1H、brs)、4.60(2H、s)、3.70-3.60(8H、m)、3.55(2H、t、J = 5 Hz)、3.31(2H、q、J = 6 Hz)、1.43(9H、s)
<工程2>tert-ブチル(2-(2-(2-(4-(アジドメチル)ベンザミド)エトキシ)エトキシ)エチル)カルバメート(EX11-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000192
 (実施例11)<工程1>で得られた化合物EX11-IM-1(0.82 g)のジメチルスルホキシド(11.7 mL)溶液に、アジ化ナトリウム(152 mg)を加え、室温で3.5時間撹拌した。反応液に、氷水冷下、水(23 mL)を加え、同温にて30分撹拌した。酢酸エチル(30 mL、10 mL)で抽出し、有機層を水(10 mL×3)、飽和食塩水(5 mL)で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥後、析出した固体をろ過し、減圧乾燥して、標記化合物EX11-IM-2(0.80 g)を無色油状物として得た。
NMRデータ(CDCl)(δ:ppm): 7.81(2H、d、J = 8 Hz)、7.39(2H、d、J = 8 Hz)、6.73(1H、brs)、4.97(1H、brs)、4.40(2H、s)、3.72-3.60(8H、m)、3.55(2H、t、J = 5 Hz)、3.31(2H、q、J = 5 Hz)、1.43(9H、s)
<工程3> N-(2-(2-(2-アミノエトキシ)エトキシ)エチル)-4-(アジドメチル)ベンズアミド 塩酸塩(EX11-IM-3)の合成:
Figure JPOXMLDOC01-appb-C000193
 (実施例11)<工程2>で得られた化合物EX11-IM-2(0.80 g)に、氷水冷下で、4規定-塩化水素/1,4-ジオキサン(5.3 mL)を加え、室温で1.75時間攪拌した。反応液にジイソプロピルエーテル(16.0 mL)を加え、30分間撹拌した。溶媒をデカントにより除き、残渣をジイソプロピルエーテルで洗浄した。得られた残渣を減圧乾燥して、標記化合物EX11-IM-3(0.73 g)を無色ガム状物として得た。
NMRデータ(DMSO-d)(δ:ppm): 8.62(1H、t、J = 6 Hz)、7.95(3H、brs)、7.88(2H、d、J = 8 Hz)、7.45(2H、d、J = 8 Hz)、4.52(2H、s)、3.62-3.52(8H、m)、3.43(2H、q、J = 6 Hz)、2.98-2.89(2H、m)、LC-MS(free amine):RT=0.59(分)、[M+H]=308
<工程4> N-(2-(2-(2-アミノエトキシ)エトキシ)エチル)-4-(アジドメチル)ベンズアミド基導入アルギン酸(EX11-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000194
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(40 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(112 mg)、(実施例11)<工程3>で得られた化合物EX11-IM-3(38 mg)のエタノール(4.0 mL)溶液、1モル濃度-重曹水(151 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(0.4 g)を加えた後、エタノール(80 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX11-(II)-A-2(416 mg)を白色固体として得た。
 反応性置換基(N-(2-(2-(2-アミノエトキシ)エトキシ)エチル)-4-(アジドメチル)ベンズアミド基)の導入率は4.2mol%(NMR積分比)であった。
(実施例12)N-(2-(2-アミノエトキシ)エチル)-6-(アジドメチル)ニコチンアミド基導入アルギン酸(EX12-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000195
<工程1> メチル 6-(アジドメチル)ニコチナート(EX12-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000196
 文献公知の方法(Angew. Chem. Int. Ed.(2012)51:5852-5856)を参考に、市販のメチル 6-(ヒドロキシメチル)ニコチナート[CAS:56026-36-9](EX12-SM1、0.5 g)及びテトラヒドロフラン(5 mL)の混合物に対し、氷冷撹拌下、p-トルエンスルホニルクロリド(0.68 g)及びトリエチルアミン(0.63 mL)を加えた。この反応混合物を室温で20時間30分撹拌した後、同温で、アジ化ナトリウム(0.29 g)を加え、室温で4時間撹拌した。反応終了後、酢酸エチル(10 mL)及び水(10 mL)を加え、反応液を希釈した後、水層を酢酸エチル(10 mL)で3回抽出した。合わせた有機層を水(5 mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥させた。有機層を濾過後、減圧下で濃縮することで粗生成物を得た。この粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘプタン/酢酸エチル)で生成することで、標記化合物EX12-IM-1(0.34 g)を淡黄色アモルファスとして得た。
NMRデータ(CDCl)(δ:ppm):9.18(1H、d、J = 2.0 Hz)、8.33(1H、dd、J = 8.0、2.0 Hz)、7.45(1H、d、J = 8.0 Hz)、4.57(2H、s)、3.96(3H、s).LC-MS:M=192,RT=0.78(分),[M+H]+=193.
<工程2>6-(アジドメチル)ニコチン酸(EX12-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000197
 (実施例12)<工程1>で得られた化合物EX12-IM-1(0.342 g)及びメタノール(6.84 mL)の混合物に対し、1モル濃度-水酸化リチウム・一水和物(5.34 mL)を室温で加え、同温で30分撹拌した。反応終了後、酢酸(0.41 mL)を加え、反応液を減圧下で濃縮した。残留物をシリカゲルカラムクロマトグラフィー(n-ヘプタン/酢酸エチル~酢酸エチル/メタノール)で精製し、標記化合物EX12-IM-2(0.28 g)を淡黄色アモルファスとして得た。
NMRデータ(CDOD)(δ:ppm):9.09(1H、d、J = 2.4 Hz)、8.38(1H、dd、J = 8.0、2.4 Hz)、7.56(1H、d、J = 8.0 Hz)、4.57(2H、s).LC-MS:M=178,RT=0.60(分),[M+H]+=179.
<工程3> tert-ブチル (2-(2-(6-(アジドメチル)ニコチンアミド)エトキシ)エチル)カルバマート(EX12-IM-3)の合成:
Figure JPOXMLDOC01-appb-C000198
 (実施例12)<工程2>で得られた化合物12-IM-2(100 mg)、市販のN-(tert-ブトキシカルボニル)-2-(2-アミノエトキシ)エチルアミン[CAS:127828-22-2](108.07 μL)及びアセトニトリル(2000 μL)の混合物に対し、氷冷撹拌下、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(213.43 mg)及びトリエチルアミン(156.48 μL)を加え、室温で1時間45分撹拌した。その後、室温撹拌下、N-(tert-ブトキシカルボニル)-2-(2-アミノエトキシ)エチルアミン(54 μL)及びO-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(106.7 mg)を加え、同温にて17時間撹拌した。水(5 mL)を加え反応を停止させ、酢酸エチル(10 mL)を加えた。水層を酢酸エチル(10 mL)で3回抽出し、無水硫酸ナトリウムで乾燥させた。有機層を濾過後、減圧下で濃縮することで、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘプタン/酢酸エチル)で精製し、標記化合物EX12-IM-3(187 mg)を無色油状化合物として得た。
NMRデータ(CDCl)(δ:ppm):9.00(1H、d、J = 2.0 Hz)、8.18(1H、dd、J = 8.0、 2.0 Hz)、7.43(1H、d、J = 8.0 Hz)、6.83(1H、br s)、4.82(1H、br s)、4.55(2H、s)、3.69-3.65(4H、m)、3.56(2H、t、J = 5.2 Hz)、3.34(1H、d、J = 5.6 Hz)、3.32(1H、d、J = 5.6 Hz)、1.41(9H、s).LC-MS:M=364,RT=0.78(分),[M+H]+=365.
<工程4> N-(2-(2-アミノエトキシ)エチル)6-(アジドメチル)ニコチンアミド 2塩酸塩(EX12-IM-4)の合成:
Figure JPOXMLDOC01-appb-C000199
 (実施例12)<工程3>で得られた化合物EX12-IM-3(0.187 g)及び1,4-ジオキサン溶液(1.31 mL)の混合物に対し、水冷撹拌下、4規定-塩化水素/1,4-ジオキサン(1.31 mL)を加え、室温で3時間撹拌した。反応液にジイソプロピルエーテル(20 mL)を加えた後、析出物を濾過することで、標記化合物EX12-IM-4(0.16 g)をオフホワイト色固体として得た。
NMRデータ(DMSO-d)(δ:ppm):9.02-9.02(1H、m)、8.80(1H、br s)、8.27-8.25(1H、m)、7.89(3H、br s)、7.54(1H、d、J = 8.4 Hz)、4.59(2H、s)、3.64-3.57(4H、m)、3.51-3.47(2H、m)、3.01-2.97(2H、m).LC-MS(free amine):M=264,RT=0.49(分),[M+H]+=265.
<工程5> N-(2-(2-アミノエトキシ)エチル)-6-(アジドメチル)ニコチンアミド基導入アルギン酸の合成(EX12-(II)-A-2):
Figure JPOXMLDOC01-appb-C000200
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(39.55 mL)に、室温撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(91.52 mg)及び1モル濃度-重曹水(183 μL)を加えた。続いて、(実施例12)<工程4>で得られた化合物EX12-IM-4(30 mg)、水(1 mL)及びエタノール(1 mL)の混合物を同温で加え、40℃で4時間攪拌した。塩化ナトリウム(400 mg)を加えた後、エタノール(79.1 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX12-(II)-A-2(378 mg)を白色固体として得た。
 反応性基N-(2-(2-アミノエトキシ)エチル)-6-(アジドメチル)ニコチンアミド基の導入率は、4.8 mol%(NMR積分比)であった。
(実施例13)N-(2-(2-アミノエトキシ)エチル)-4-アジドベンズアミド基導入アルギン酸(EX13-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000201
<工程1> tert-ブチル(2-(2-(4-アジドベンザミド)エトキシ)エチル)カルバメート(EX13-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000202
 4-アジド安息香酸(EX7-SM、300 mg)、tert-ブチル(2-(2-アミノエトキシ)エチル)カルバメート[CAS:127828-22-2](376 mg)をアセトニトリル(6.0 mL)に溶解した。O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(0.77 g)、ジイソpロピルエチルアミン(707 μL)を加え、室温で16時間撹拌した。反応液に、酢酸エチル(20 mL)、水(10 mL)を加え、分液した。有機層を、水(10mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残さを、シリカゲルカラムクロマトグラフィー(20%酢酸エチル/n-ヘプタン~70%酢酸エチル/n-ヘプタン)で精製して、標記化合物EX13-IM-1(673 mg)を淡黄色ガム状物として得た。
NMRデータ(CDCl)(δ:ppm): 7.83(2H、d、J = 9 Hz)、7.08(2H、d、J = 9 Hz)、6.61(1H、brs)、4.84(1H、brs)、3.68-3.64(4H、m)、3.56(2H、t、J = 5 Hz)、3.34(2H、q、J = 5 Hz)、1.44(9H、s)
<工程2> N-(2-(2-アミノエトキシ)エチル)-4-アジドベンザミド 塩酸塩(EX13-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000203
 (実施例13)<工程1>で得られた化合物EX13-IM-1、670 mg)に、氷水冷下、4既定-塩化水素/1,4-ジオキサン(4.7 mL)を加え、室温で2時間撹拌した。反応液にジイソプロピルエーテル(14.0 mL)を加え、30分間撹拌した。得られた固体をろ取し、ジイソプロピルエーテルで洗浄後、減圧乾燥して、標記化合物EX13-IM-2(604 mg)を淡ベージュ色固体として得た。
NMRデータ(DMSO-d)(δ:ppm): 8.61(1H、t、J = 6 Hz)、7.95(3H、brs)、7.93(2H、d、J = 9 Hz)、7.20(2H、d、J = 9 Hz)、3.62(2H、t、J = 5 Hz)、3.57(2H、t、J = 6 Hz)、3.46(2H、q、J = 6 Hz)、3.02-2.93(2H、m)、LC-MS(free amine):RT=0.57(分)、[M+H]=250
<工程3> N-(2-(2-アミノエトキシ)エチル)-4-アジドベンザミド基導入アルギン酸(EX13-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000204
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(40 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(112 mg)、(実施例13)<工程2>で得られた化合物EX13-IM-2(31 mg)、1モル濃度-重曹水(151 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(0.4 g)を加えた後、エタノール(80 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX13-(II)-A-2(400 mg)を白色固体として得た。
 反応性基(N-(2-(2-アミノエトキシ)エチル)-4-アジドベンザミド基)の導入率は、3.9 mol%(NMR積分比)であった。
(実施例14)N-(2-(2-(2-アミノエトキシ)エトキシ)エチル)-4-アジドベンズアミド基導入アルギン酸(EX14-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000205
 <工程1> tert-ブチル(2-(2-(2-(4-アジドベンザミド)エトキシ)エトキシ)エチル)カルバメート(EX14-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000206
 4-アジド安息香酸(EX7-SM、300 mg)、tert-ブチル(2-(2-(2-アミノエトキシ)エトキシ)エチル)カルバメート(457 mg)をアセトニトリル(6.0 mL)に溶解した。O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(0.77 g)、ジイソpロピルエチルアミン(707 μL)を加え、室温で16時間撹拌した。反応液に、酢酸エチル(20 mL)、水(10 mL)を加え、分液した。有機層を、水(10mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残さを、シリカゲルカラムクロマトグラフィー(40%酢酸エチル/n-ヘプタン~90%酢酸エチル/n-ヘプタン)で精製して、標記化合物EX14-IM-1(603 mg)を淡黄色油状物として得た。
NMRデータ(DMSO-d)(δ:ppm): 8.53(1H、t、J = 6 Hz)、7.89(2H、d、J = 9 Hz)、7.19(2H、d、J = 9 Hz)、6.76(1H、t、J = 5 Hz)、3.55-3.47(6H、m)、3.42-3.33(4H、m)、3.04(2H、q、J = 6 Hz)、1.36(9H、s)
<工程2> N-(2-(2-(2-アミノエトキシ)エトキシ)エチル)-4-アジドベンザミド 塩酸塩(EX14-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000207
 (実施例14)<工程1>で得られた化合物(EX14-IM-1、600 mg)に、氷水冷下、4既定-塩化水素/1,4-ジオキサン溶液(4.2 mL)を加え、室温で2時間攪拌した。反応液にジイソプロピルエーテル(12.0 mL)を加え、室温で30分間撹拌した。溶媒をデカントにより除き、残渣をジイソプロピルエーテルで洗浄した。得られた残渣を減圧乾燥して、標記化合物EX14-IM-2(596 mg)をベージュ色ガム状物として得た。
NMRデータ(DMSO-d)(δ:ppm): 8.62(1H、t、J = 6 Hz)、7.97(3H、brs)、7.91(2H、d、J = 9 Hz)、7.20(2H、d、J = 9 Hz)、3.62-3.51(8H、m)、3.42(2H、q、J = 6 Hz)、2.97-2.89(2H、m)、LC-MS(free amine):RT=0.58(分)、[M+H]=294
<工程3> N-(2-(2-(2-アミノエトキシ)エトキシ)エチル)-4-アジドベンザミド基導入アルギン酸(EX14-(II)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000208
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(40 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(112 mg)、(実施例14)<工程2>で得られた化合物EX14-IM-2(45 mg)のエタノール(4.0 mL)溶液、1モル濃度-重曹水(151 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(0.4 g)を加えた後、エタノール(80 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX14-(II)-A-2(408 mg)を白色固体として得た。
 反応性基(N-(2-(2-(2-アミノエトキシ)エトキシ)エチル)-4-アジドベンザミド基)の導入率は、4.2 mol%(NMR積分比)であった。
(実施例15)N-(2-(2-アミノエトキシ)エチル)-2-(シクロオクト-2-イン-1-オキシ)アセトアミド基導入アルギン酸(EX15-(I)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000209
<工程1> tert-ブチル(2-(2-(2,2,2-トリフルオロアセトアミド)エトキシ)エチルカルバメート(EX15-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000210
 tert-ブチル(2-アミノエチル)カルバメート(EX9-SM1、1.0 g、[CAS:57260-73-8])のテトラヒドロフラン(4.0 mL)溶液に、トリフルオロ酢酸エチル(0.6 mL)を滴下した。反応混合物を室温で、3.5時間撹拌した。反応液を、減圧下濃縮して、標記粗化合物EX15-IM-1(1.5 g)を無色油状物として得た。
NMRデータ(CDCl)(δ:ppm): 7.01(1H,brs)、4.84 (1H,brs)、3.62-3.51(6H、m)、3.31(2H、q、J = 5 Hz)、1.45(9H、s)
<工程2> N-(2-(2-アミノエトキシ)エチル)-2,2,2-トリフルオロアセトアミド 塩酸塩(EX15-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000211
 (実施例15)<工程1>で得られた化合物EX15-IM-1(1.5 g)に、氷水冷下、4既定-塩化水素/1,4-ジオキサン溶液(10.3 mL)を加え、室温で1時間撹拌した。反応液に、ジイソプロピルエーテル(30 mL)を加え、30分間室温で撹拌した。減圧下、溶媒を留去し、ジイソプロピルエーテルで共沸した後、減圧乾燥して、標記化合物EX15-IM-2(1.3 g)を無色油状物として得た。
NMRデータ(DMSO-d)(δ:ppm): 9.55(1H、brs)、8.05(3H、brs)、3.61(2H、d、J = 5 Hz)、3.54(2H、t、J = 6 Hz)、3.39(2H、q、J = 6Hz)、3.00-2.91(2H、m)
<工程3> N-(2-(2-(2-(シクロオクト-2-イン-1-イロキシ)アセトアミド)エトキシ)エチル)-2,2,2-トリフルオロアセトアミド(EX15-IM-3)の合成: 
Figure JPOXMLDOC01-appb-C000212
 文献公知の方法(Org. Process Res. Dev.(2018)22:108-110)に従い合成したカルボン酸(EX8-SM2、300 mg)、(実施例14)<工程2>で得られた化合物(443 mg)をアセトニトリル(6.0 mL)に溶解した。O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(0.75 g)、ジイソプロピルエチルアミン(920 μL)を加え、室温で2.5時間撹拌した。反応液に、酢酸エチル(20 mL)、水(10 mL)を加え、分液した。有機層を、水(10mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(50%酢酸エチル/n-ヘプタン~70%酢酸エチル/n-ヘプタン)で精製して、標記化合物EX15-IM-3(469 mg)を無色ガム状物として得た。
NMRデータ(DMSO-d)(δ:ppm): 9.45(1H、brs)、7.61(1H、t、J = 6 Hz)、4.29-4.25(1H、m)、3.87(2H、d、J = 15 Hz)、3.75(1H、d、J = 15 Hz)、3.50(2H、t、J = 6 Hz)、3.43(2H、t、J = 6 Hz)、3.37-3.31(2H、m)、3.24(2H、q、J = 6 Hz)、2.27-2.03(3H、m)、1.96-1.69(4H、m)、1.67-1.50(2H、m)、1.43-1.35(1H、m)
<工程4> N-(2-(2-アミノエトキシ)エチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド(EX15-IM-4)の合成: 
Figure JPOXMLDOC01-appb-C000213
 (実施例15)<工程3>で得られた化合物EX15-IM-3(220 mg)のメタノール(3.0 mL)溶液に、炭酸カリウム(103 mg)の水(0.99 mL)溶液を加え、室温で4.5時間撹拌した。メタノールを減圧下で留去し、水(2 mL)を加えた後、食塩で飽和させた。酢酸エチル(15 mL、10 mL×4)抽出し、無水硫酸ナトリウムで乾燥させた後、減圧下で溶媒を留去した。残渣を酢酸エチル(10 mL)に溶かし、不溶物をろ過して除いた後、減圧濃縮して、標記粗化合物EX15-IM-4(140 mg)を淡黄色ガム状物として得た。
NMRデータ(CDCl)(δ:ppm): 6.89(1H、brs)、4.27-4.22(1H、m)、4.07(1H、d、J = 15 Hz)、3.88(1H、d、J = 15 Hz)、3.58-3.47(6H、m)、2.87(2H、t、J = 5 Hz)、2.31-2.10(3H、m)、2.03-1.77(4H,m)、1.73-1.59(2H、m)、1.51-1.43(1H、m)、LC-MS:RT=0.60(分)、[M+H]=269
<工程5> N-(2-(2-アミノエトキシ)エチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(EX15-(I)-A-2)の合成:
Figure JPOXMLDOC01-appb-C000214
 1重量%に調整したアルギン酸ナトリウム(持田製薬株式会社製、A-2)水溶液(40 mL)に、室温撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(112 mg)、(実施例15)<工程4>で得られた化合物EX15-IM-4(30 mg)のエタノール(4,0 mL)溶液、1モル%重層水(101 μL)を順次加え、30℃で3時間攪拌した。反応液に、塩化ナトリウム(0.4 g)を加えた後、エタノール(80 mL)を加え、30分間攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX15-(I)-A-2(410 mg)を白色固体として得た。
 反応性置換基(N-(2-(2-アミノエトキシ)エチル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基)の導入率は3.2mol%(NMR積分比)であった。
Figure JPOXMLDOC01-appb-T000215
[反応性基又は相補的な反応性基の導入率測定]
 反応性基又は相補的な反応性基導入率は、アルギン酸の繰り返し単位であるウロン酸単糖単位あたりに導入された反応性基又は相補的な反応性基の数を百分率で表した値を意味する。
 本実施例においては、反応性基又は相補的な反応性基導入率(mol%)は、H-NMRの積分比による計算した。又、導入率の算出に必要なアルギン酸の量は、検量線を利用したカルバゾール硫酸法により測定し、反応性基又は相補的な反応性基の量は、検量線を利用した吸光度測定法により測定することもできる。
[分子量の測定]
 実施例で得られた反応性基又は相補的な反応性基が導入されたアルギン酸固体を0.15 mol/LのNaClを含む10mmol/Lリン酸緩衝液(pH7.4)に溶解し0.1%又は0.2%溶液を調製し、孔径0.22μmのポリエーテルスルフォン製ろ過フィルター(Minisart High Flow Filter、Sartorius社)を通し不溶物を除いた後、ゲルろ過用サンプルとした。各サンプルのスペクトルを分光光度計DU-800(Beckman-Coulter社)により測定し、各化合物のゲルろ過における測定波長を決定した。特異的な吸収波長を持たない化合物に関しては、示差屈折計を用いた。
 ゲルろ過用サンプルの200μLをSuperose6 Increase10/300 GLカラム(GEヘルスケアサイエンス社)に供した。ゲルろ過は、クロマトグラフ装置としてAKTA Explorer 10Sを、展開溶媒として0.15 mol/L NaClを含む10mmol/Lリン酸緩衝液(pH7.4)を使用し、室温で流速0.8mL/mimの条件で実施した。サンプルの溶出プロファイルは、各化合物で決定した波長の吸収をモニターし作製した。得られたクロマトグラムは、Unicorn5.31ソフトウエア(GEヘルスケアサイエンス社)にて解析し、ピーク範囲を決定した。
 反応性基又は相補的な反応性基が導入されたアルギン酸の分子量は、ブルーデキストラン(分子量200万Da、 SIGMA社)、チログロブリン(分子量66.9万Da、GEヘルスケアサイエンス社)フェリチン(分子量44万Da、GEヘルスケアサイエンス社)アルドラーゼ(分子量15.8万Da、GEヘルスケアサイエンス社)、コンアルブミン(分子量7.5万Da、GEヘルスケアサイエンス社)、オブアルブミン(分子量4.4万Da、GEヘルスケアサイエンス社)、リボヌクレアーゼA(分子量1.37万Da、GEヘルスケアサイエンス社)及びアプロチニン(分子量6500Da、GEヘルスケアサイエンス社)を標準品として用い、反応性基又は相補的な反応性基が導入されたアルギン酸と同じ条件でゲルろ過を行い、各成分の溶出液量をUnicornソフトウエアにて決定した。この各成分の溶出液量を横軸に、分子量の対数値を縦軸にそれぞれプロットし、直線回帰し、検量線を作成した。検量線は、ブルーデキストランからフェリチンまで、フェリチンからアプロチニンまでの2種類を作成した。
 この検量線を用いて、先に得られたクロマトグラムの溶出時間iにおける分子量(Mi)を計算した。次いで、溶出時間iにおける吸光度を読み取りHiとした。これらのデータから重量平均分子量(Mw)を以下の式から求めた。
Figure JPOXMLDOC01-appb-M000216
[ゲル安定性の測定]
(ゲル安定性の測定(1))
 (実施例1a)で得られたアルギン酸誘導体(EX1-(I)-A-2)、及び(実施例3a)で得られたアルギン酸誘導体(EX3-(II)-A-2)を、それぞれ濃度が1重量%となるよう水に溶かして(アルギン酸水溶液1-1)及び(アルギン酸水溶液2-1)を得た。(アルギン酸水溶液1-1)及び(アルギン酸水溶液2-1)を等量混和し、この混和した水溶液を18ゲージの注射針を装着した注射筒に入れ、この注射筒を流速1 mL/分に設定したシリンジポンプに設置し、濃度が30 mmol/Lの塩化カルシウム溶液に30秒間滴下し、5分間撹拌してアルギン酸ゲルを得た。このゲルを10 mLのリン酸緩衝生理食塩水(PBS)で1度洗浄した後、PBS中、37℃で10分間静置して化学架橋を行い、化学架橋及びイオン架橋がされたアルギン酸ゲルを得た。このゲルに20 mLのPBSを添加し、37℃で振盪して、経時的に水溶液を回収し、回収した量と同量のPBSを補充した。試験終了後、試験溶液にアルギン酸リアーゼ(ニッポンジーン、319-08261)を5 μL添加し、37℃で2時間振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のアルギン酸濃度をカルバゾール硫酸法により測定し、各時点の水溶液中アルギン酸濃度を既に回収したアルギン酸濃度で補正した値を、全時点のアルギン酸濃度および試験終了後のアルギン酸濃度から算出した全アルギン酸濃度で除した値を百分率で表した値を崩壊率とし、ゲル安定性の指標とした。同様にして、対照としてアルギン酸(A-2)、(EX1-(I)-A-2)及び(A-2)、(A-2)及び(EX3-(II)-A-2)を用いて架橋アルギン酸ゲル(ビーズ)を調製し、各崩壊率を測定した。
 結果を図1に示した。対照として用いた(A-2)、(EX1-(I)-A-2)及び(A-2)、(A-2)及び(EX3-(II)-A-2)を用いて調製した架橋アルギン酸ゲルが4時間でほぼ溶解したのに対し、(EX1-(I)-A-2)及び(EX3-(II)-A-2)の各アルギン酸誘導体を用いて得られた架橋アルギン酸は、144時間を経過しても崩壊せず、ゲルの安定性がより向上した。すなわち、Huisgen反応による架橋形成がなされることにより、作成された構造体は、カルシウムイオンのない溶液(生体にとっての生理的濃度以下)条件下でも、長期に渡り構造が維持されることが示唆された。
 尚、図1の縦軸の崩壊率は、相対崩壊率(%)を意味する。崩壊率の実測値の最大値((A-2)のみで調製されたアルギン酸ゲル:8時間後の実測値)を100%に補正し、各点の崩壊率を当該最大値との相対値としている。
(ゲル安定性の測定(2))
 (実施例1d)で得られたアルギン酸誘導体(EX1-(I)-B-2a)、(実施例3d)で得られたアルギン酸誘導体(EX3-(II)-B-2a)、(実施例7a)で得られたアルギン酸誘導体(EX7-(II)-B-2a)、(実施例8)で得られたアルギン酸誘導体(EX8-(I)-B-2)を、それぞれ濃度が1.0w/w%となるよう水に溶かしてアルギン酸水溶液(1d-1)、(3d-1)、(7a-1)、及び(8a-1)を得た。次に、アルギン酸水溶液(1d-1)及びアルギン酸水溶液(3d-1)の等量混和溶液、アルギン酸水溶液(1d-1)及びアルギン酸水溶液(7a-1)の等量混和溶液、アルギン酸水溶液(8a-1)及びアルギン酸水溶液(3d-1)の等量混和溶液、及びアルギン酸水溶液(8a-1)及びアルギン酸水溶液(7a-1)の等量混和溶液を調整し、各混和溶液を用いて、下記のアルギン酸ゲル(ビーズ)作成方法に従い、化学架橋及びイオン架橋がされたアルギン酸ゲル(ビーズ)(A1、B1、C1、D1)を得た(表13参照)。
〔アルギン酸ゲル(ビーズ)作成方法〕
 前記で調製された混和溶液を18ゲージの注射針を装着した注射筒に入れ、この注射筒を流速1 mL/分に設定したシリンジポンプに設置し、濃度が30 mmol/Lの塩化カルシウム溶液に30秒間滴下し、5分間撹拌してアルギン酸ゲル(ビーズ)を得る。このゲルを10 mLのリン酸緩衝生理食塩水(PBS)で1度洗浄した後、純水中、37℃で10分間静置して化学架橋を行い、化学架橋及びイオン架橋がされたアルギン酸ゲル(ビーズ)を得る。
Figure JPOXMLDOC01-appb-T000217
〔アルギン酸ゲル(A1~D1)の安定性測定〕
 前記で得られた、化学架橋及びイオン架橋がされた各アルギン酸ゲル(ビーズ)(A1~D1)に19.5 mLのPBSを添加し、37℃で振盪して、1、2、4、8、24、48、72、144時間後に水溶液を回収し、回収した量と同量のPBSを補充した。試験終了後、試験溶液にアルギン酸リアーゼ(CreativeEnzymes、 NATE-1563)を20 μL添加し、37℃で終夜振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のアルギン酸濃度をカルバゾール硫酸法により測定し、各時点の水溶液中アルギン酸濃度を、全時点のアルギン酸濃度および試験終了後のアルギン酸濃度から算出した全アルギン酸濃度で除した値を百分率で表した値を崩壊率とし、ゲル安定性の指標とした。対照として反応性基が導入されていないアルギン酸(B-2)を用いて、前記の方法に従いアルギン酸ゲル(ビーズ)(REF)を調製し、崩壊率を測定した。
 結果を図4に示した。対照として用いた反応性基が導入されていないアルギン酸(B-2)を用いて作製したアルギン酸ゲル(ゲルREF)が144時間で90%以上崩壊したのに対し、各アルギン酸誘導体(EX1-(I)-B-2a、EX3-(II)-B-2a、EX7-(II)-B-2a、及びEX8-(I)-B-2)を用いて得られた前記架橋アルギン酸ゲル(ビーズ)(A1~D1)は、144時間を経過しても崩壊せず、ゲルの安定性がより向上した。すなわち、Huisgen反応による架橋形成が生じたことにより、作製された構造体は、カルシウムイオンのない溶液(生体にとっての生理的濃度以下)条件下でも、長期に渡り構造が維持されることが示唆された。
 (ゲル安定性の測定(3):ゲルEDTA存在下での安定性の測定)
 前記ゲル安定性の測定(2)の方法で得られた化学架橋及びイオン架橋がされた各アルギン酸ゲル(ビーズ)(A1~D1)に19.5 mLの5 mMエチレンジアミン四酢酸二カリウム塩二水和物(EDTA・2K)/PBS溶液を添加し、37℃で振盪して24時間後に水溶液を回収し、EDTA処理した架橋アルギン酸ゲル(ビーズ)(A2~D2)とした。試験終了後、試験溶液にアルギン酸リアーゼ(CreativeEnzymes、 NATE-1563)を10 μL添加し、37℃で終夜振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のアルギン酸濃度をカルバゾール硫酸法により測定し、24時間後の水溶液中アルギン酸濃度を、24時間後のアルギン酸濃度および試験終了後のアルギン酸濃度から算出した全アルギン酸濃度で除した値を百分率で表した値を崩壊率とし、ゲル安定性の指標とした。同様にして、対照として反応性基が導入されていないアルギン酸(B-2)を用いてアルギン酸ゲル(ビーズ)(REF2)を作製し、崩壊率を測定した。
Figure JPOXMLDOC01-appb-T000218
 表14の結果が得られた。対照として用いた反応性基が導入されていないアルギン酸(B-2)を用いて作製したアルギン酸ゲルをEDTA処理した架橋アルギン酸ゲル(ビーズ)(REF2)が24時間で100%崩壊したのに対し、各アルギン酸誘導体(EX1-(I)-B-2a、EX3-(II)-B-2a、EX7-(II)-B-2a、及びEX8-(I)-B-2)を用いて得られた前記架橋アルギン酸ゲル(ビーズ)(A1~D1)をEDTA処理した架橋アルギン酸ゲル(ビーズ)(A2~D2)は、24時間を経過しても崩壊せず、ゲルの安定性がより向上した。すなわち、Huisgen反応による化学架橋が形成されたことにより、作製された(ビーズ)構造体は、カルシウムイオンによるイオン架橋が存在しなくとも、長期に渡りその構造が維持されることが示唆された。
 
(ゲル安定性の測定(4))
 (実施例1g)で得た反応性置換基導入アルギン酸(EX1-(I)-A-2b)、(実施例3g)で得た反応性置換基導入アルギン酸(EX3-(II)-A-2b)、(実施例5c)で得た反応性置換基導入アルギン酸(EX5-(II)-A-2b)、(実施例7c)で得た反応性置換基導入アルギン酸(EX7-(II)-A-2)、及び(実施例9a)で得た反応性置換基導入アルギン酸(EX9-(I)-A-2)を、水に溶解して1.0%濃度のアルギン酸水溶液(1g-1)、(3g‐1)、(5c-1)、(7c-1)、及び(9a-1)を調製した。前記アルギン酸水溶液を(9a-1)と(5c-1)、(9a-1)と(7c-1)、(9a-1)と(3g‐1)、(1g-1)と(3g‐1)の組み合わせで等量混和し、各々の混合溶液を別個の18ゲージの注射針を装着した注射筒に入れ、注射筒を流速1 mL/分に設定したシリンジポンプに設置し、各々、濃度が30 mmol/Lの塩化カルシウム溶液に30秒間滴下し、5分間撹拌して各アルギン酸ゲルを得た。得られた各ゲルを10 mLのPBSで1度洗浄し、PBS中、37℃で10分間静置して化学架橋を行い、化学架橋アルギン酸ゲルを得た。前記各ゲルに19.5 mLのPBSを添加し、37℃で振盪して、経時的に水溶液を回収し、回収した量と同量のPBSを補充した。試験終了後、試験溶液にアルギン酸リアーゼ(ニッポンジーン、319-08261)を10 μL添加し、37℃で終夜振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のアルギン酸濃度をカルバゾール硫酸法により測定し、各時点の水溶液中アルギン酸濃度を既に回収したアルギン酸濃度で補正した値を、全時点のアルギン酸濃度および試験終了後のアルギン酸濃度から算出した全アルギン酸濃度で除した値を百分率で表した値を崩壊率とし、ゲル安定性の指標とした。
 結果を図8に示した。前記各架橋アルギン酸ゲル(ビーズ)は、96時間後の安定性が0.3~4.8%であり、長期に渡り構造が維持されることが示唆された((実施例1g)及び(実施例3g)で作成したゲルをコントロールとしている。96時間で0.3%)。
ゲル安定性の測定(5):ゲルEDTA存在下での安定性の測定
 (実施例1g)で得た反応性置換基導入アルギン酸(EX1-(I)-A-2b)、(実施例3g)で得た反応性置換基導入アルギン酸(EX3-(II)-A-2b)、(実施例5c)で得た反応性置換基導入アルギン酸(EX5-(II)-A-2b)、(実施例7c)で得た反応性置換基導入アルギン酸(EX7-(II)-A-2)、及び(実施例9a)で得た反応性置換基導入アルギン酸(EX9-(I)-A-2)を、水に溶解して1.0%濃度のアルギン酸水溶液(1g-1)、(3g‐1)、(5c-1)、(7c-1)、及び(9a-1)を調製した。前記アルギン酸水溶液を(9a-1)と(5c-1)、(9a-1)と(7c-1)、(9a-1)と(3g‐1)、(1g-1)と(3g‐1)の組み合わせで等量混和し、各々の混合溶液を別個の18ゲージの注射針を装着した注射筒に入れ、注射筒を流速1 mL/分に設定したシリンジポンプに設置し、各々、濃度が30 mmol/Lの塩化カルシウム溶液に30秒間滴下し、5分間撹拌して各アルギン酸ゲルを得た。得られた各ゲルを10 mLのPBSで1度洗浄し、PBS中、37℃で10分間静置して化学架橋を行い、化学架橋アルギン酸ゲルを得た。
前記各ゲルに19.5 mLの5 mMエチレンジアミン四酢酸二カリウム塩二水和物(EDTA・2K)/生理食塩水を添加し、37℃で振盪して、経時的に水溶液を回収し、回収した量と同量の5 mM EDTA・2K/生理食塩水を補充した。試験終了後(24時間後)、試験溶液にアルギン酸リアーゼ(ニッポンジーン、319-08261)を30 μL添加し、37℃で終夜振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のアルギン酸濃度をカルバゾール硫酸法により測定し、各時点の水溶液中アルギン酸濃度を既に回収したアルギン酸濃度で補正した値を、全時点のアルギン酸濃度および試験終了後のアルギン酸濃度から算出した全アルギン酸濃度で除した値を百分率で表した値を崩壊率とし、ゲル安定性の指標とした。
 図9の結果が得られた。前記架橋アルギン酸ゲル(ビーズ)は、24時間を経過しても崩壊せず、ゲルの安定性が確認できた。すなわち、Huisgen反応による化学架橋が形成されたことにより、作製された(ビーズ)構造体は、長期に渡りその構造が維持されることが示唆された。
(ゲル安定性の測定(6))
 (実施例1g)で得た反応性置換基導入アルギン酸(EX1-(I)-A-2b)、(実施例3g)で得た反応性置換基導入アルギン酸(EX3-(II)-A-2b)、(実施例5c)で得た反応性置換基導入アルギン酸(EX5-(II)-A-2b)、(実施例7c)で得た反応性置換基導入アルギン酸(EX7-(II)-A-2)、及び(実施例8b)で得た反応性置換基導入アルギン酸(EX8-(I)-A-2)を水に溶解して1.0%濃度のアルギン酸水溶液(1g-1)、(3g‐1)、(5c-1)、(7c-1)、及び(8b-1)を調製した。前記アルギン酸水溶液を(1g-1)と(5c-1)、(1g-1)と(7c-1)、(8b-1)と(5c-1)、(8b-1)と(7c-1)、(8b-1)と(3g‐1)、(1g-1)と(3g‐1)の組み合わせで等量混和し、各々の混合溶液を別個の18ゲージの注射針を装着した注射筒に入れ、各々の混合溶液を別個の18ゲージの注射針を装着した注射筒に入れ、注射筒を流速1 mL/分に設定したシリンジポンプに設置し、各々、濃度が30 mmol/Lの塩化カルシウム溶液に30秒間滴下し、5分間撹拌して各アルギン酸ゲルを得た。得られた各ゲルを10 mLのPBSで1度洗浄し、PBS中、37℃で10分間静置して化学架橋を行い、化学架橋アルギン酸ゲルを得た。このゲルに19.5 mLのPBSを添加し、37℃で振盪して、経時的に水溶液を回収し、回収した量と同量のPBSを補充した。試験終了後、試験溶液にアルギン酸リアーゼ(ニッポンジーン、319-08261)を10 μL添加し、37℃で終夜振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のアルギン酸濃度をカルバゾール硫酸法により測定し、各時点までの溶出アルギン酸量を、全時点のアルギン酸濃度および試験終了後のアルギン酸濃度から算出した総アルギン酸量で除した値を百分率で表した値を崩壊率とし、ゲル安定性の指標とした。
 結果を図10に示した。前記各架橋アルギン酸ゲル(ビーズ)は、96時間後の安定性が約20%程度であり、長期に渡り構造が維持されることが示唆された(コントロールである(実施例1g)及び(実施例3g)で作成したゲルの安定性が、96時間で20.4%である)。
(ゲル安定性の測定(7):ゲルEDTA存在下での安定性の測定)
 (実施例1g)で得た反応性置換基導入アルギン酸(EX1-(I)-A-2b)、(実施例3g)で得た反応性置換基導入アルギン酸(EX3-(II)-A-2b)、(実施例5c)で得た反応性置換基導入アルギン酸(EX5-(II)-A-2b)、(実施例7c)で得た反応性置換基導入アルギン酸(EX7-(II)-A-2)、及び(実施例8b)で得た反応性置換基導入アルギン酸(EX8-(I)-A-2)を水に溶解して1.0%濃度のアルギン酸水溶液(1g-1)、(3g‐1)、(5c-1)、(7c-1)、及び(8b-1)を調製した。前記アルギン酸水溶液を(1g-1)と(5c-1)、(1g-1)と(7c-1)、(8b-1)と(5c-1)、(8b-1)と(7c-1)、(8b-1)と(3g‐1)、(1g-1)と(3g‐1)の組み合わせで等量混和し、各々の混合溶液を別個の18ゲージの注射針を装着した注射筒に入れ、各々の混合溶液を別個の18ゲージの注射針を装着した注射筒に入れ、注射筒を流速1 mL/分に設定したシリンジポンプに設置し、各々、濃度が30 mmol/Lの塩化カルシウム溶液に30秒間滴下し、5分間撹拌して各アルギン酸ゲルを得た。このゲルに19.5 mLの5 mMエチレンジアミン四酢酸二カリウム塩二水和物(EDTA・2K)/生理食塩水を添加し、37℃で振盪して、経時的に水溶液を回収し、回収した量と同量の5 mM EDTA・2K/生理食塩水を補充した。試験終了後(24時間後)、試験溶液にアルギン酸リアーゼ(ニッポンジーン、319-08261)を30 μL添加し、37℃で終夜振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のアルギン酸濃度をカルバゾール硫酸法により測定し、各時点までの溶出アルギン酸量を、全時点のアルギン酸濃度および試験終了後のアルギン酸濃度から算出した総アルギン酸量で除した値を百分率で表した値を崩壊率とし、ゲル安定性の指標とした。
 図11の結果が得られた。前記架橋アルギン酸ゲル(ビーズ)は、24時間を経過しても崩壊せず、ゲルの安定性が確認できた。すなわち、Huisgen反応による化学架橋が形成されたことにより、作製された(ビーズ)構造体は、長期に渡りその構造が維持されることが示唆された。
(ゲル安定性の測定(8))
 (実施例1g)で得た反応性置換基導入アルギン酸(EX1-(I)-A-2b)、(実施例3g)で得た反応性置換基導入アルギン酸(EX3-(II)-A-2b)、(実施例10)で得た反応性置換基導入アルギン酸(EX10-(II)-A-2)、(実施例11)で得た反応性置換基導入アルギン酸(EX11-(II)-A-2)、(実施例12)で得た反応性置換基導入アルギン酸(EX12-(II)-A-2)、(実施例13)で得た反応性置換基導入アルギン酸(EX13-(II)-A-2)、(実施例14)で得た反応性置換基導入アルギン酸(EX14-(II)-A-2)、及び(実施例15)で得た反応性置換基導入アルギン酸(EX15-(I)-A-2)を水に溶解して1.0%濃度のアルギン酸水溶液(1g-1)、(3g‐1)、(10-1)、(11-1)、(12-1)、(13-1)、(14-1)、及び(15-1)を調製した。前記アルギン酸水溶液を(3g-1)と(15-1)、(1g-1)と(10-1)、(1g-1)と(11-1)、(1g-1)と(12-1)、(1g-1)と(13-1)、(1g-1)と(14-1)、(1g-1)と(3g‐1)の組み合わせで等量混和し、各々の混合溶液を別個の18ゲージの注射針を装着した注射筒に入れ、各々の混合溶液を別個の18ゲージの注射針を装着した注射筒に入れ、注射筒を流速1 mL/分に設定したシリンジポンプに設置し、各々、濃度が30 mmol/Lの塩化カルシウム溶液に30秒間滴下し、5分間撹拌して各アルギン酸ゲルを得た。このゲルを10 mLのPBSで1度洗浄し、PBS中、37℃で10分間静置して化学架橋を行い、化学架橋アルギン酸ゲルを得た。このゲルに19.5 mLのPBSを添加し、37℃で振盪して、経時的に水溶液を回収し、回収した量と同量のPBSを補充した。試験終了後、試験溶液にアルギン酸リアーゼ(ニッポンジーン、319-08261)を10 μL添加し、37℃で終夜振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のアルギン酸濃度をカルバゾール硫酸法により測定し、各時点までの溶出アルギン酸量を、全時点のアルギン酸濃度および試験終了後のアルギン酸濃度から算出した総アルギン酸量で除した値を百分率で表した値を崩壊率とし、ゲル安定性の指標とした。
 結果を図12に示した。前記各架橋アルギン酸ゲル(ビーズ)は、96時間後の安定性が0.5%以下であり、長期に渡り構造が維持されることが示唆された(コントロールである(実施例1g)及び(実施例3g)で作成したゲルの安定性が、96時間で0.3%である)。
 (ゲル安定性の測定(9):ゲルEDTA存在下での安定性の測定
 (実施例1g)で得た反応性置換基導入アルギン酸(EX1-(I)-A-2b)、(実施例3g)で得た反応性置換基導入アルギン酸(EX3-(II)-A-2b)、(実施例10)で得た反応性置換基導入アルギン酸(EX10-(II)-A-2)、(実施例11)で得た反応性置換基導入アルギン酸(EX11-(II)-A-2)、(実施例12)で得た反応性置換基導入アルギン酸(EX12-(II)-A-2)、(実施例13)で得た反応性置換基導入アルギン酸(EX13-(II)-A-2)、(実施例14)で得た反応性置換基導入アルギン酸(EX14-(II)-A-2)、及び(実施例15)で得た反応性置換基導入アルギン酸(EX15-(I)-A-2)を水に溶解して1.0%濃度のアルギン酸水溶液(1g-1)、(3g‐1)、(10-1)、(11-1)、(12-1)、(13-1)、(14-1)、及び(15-1)を調製した。前記アルギン酸水溶液を(3g-1)と(15-1)、(1g-1)と(10-1)、(1g-1)と(11-1)、(1g-1)と(12-1)、(1g-1)と(13-1)、(1g-1)と(14-1)、(1g-1)と(3g‐1)の組み合わせで等量混和し、各々の混合溶液を別個の18ゲージの注射針を装着した注射筒に入れ、各々の混合溶液を別個の18ゲージの注射針を装着した注射筒に入れ、注射筒を流速1 mL/分に設定したシリンジポンプに設置し、各々、濃度が30 mmol/Lの塩化カルシウム溶液に30秒間滴下し、5分間撹拌して各アルギン酸ゲルを得た。
 各ゲルに19.5 mLの5 mMエチレンジアミン四酢酸二カリウム塩二水和物(EDTA・2K)/生理食塩水を添加し、37℃で振盪して、経時的に水溶液を回収し、回収した量と同量の5 mM EDTA・2K/生理食塩水を補充した。試験終了後(24時間後)、試験溶液にアルギン酸リアーゼ(ニッポンジーン、319-08261)を30 μL添加し、37℃で終夜振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のアルギン酸濃度をカルバゾール硫酸法により測定し、各時点までの溶出アルギン酸量を、全時点のアルギン酸濃度および試験終了後のアルギン酸濃度から算出した総アルギン酸量で除した値を百分率で表した値を崩壊率とし、ゲル安定性の指標とした。
 図13の結果が得られた。前記架橋アルギン酸ゲル(ビーズ)は、24時間を経過しても崩壊せず、ゲルの安定性が確認できた。すなわち、Huisgen反応による化学架橋が形成されたことにより、作製された(ビーズ)構造体は、長期に渡りその構造が維持されることが示唆された。
[ゲル透過性の測定]
(ゲル透過性の測定(1))
 (実施例1a)で得られたアルギン酸誘導体(EX1-(I)-A-2)、及び(実施例3a)で得られたアルギン酸誘導体(EX3-(II)-A-2)を、濃度が2%となるよう水に溶かして、(アルギン酸水溶液1-2)及び(アルギン酸水溶液2-2)を得た。さらに(アルギン酸水溶液1-2)に1 mg/mLに調製した分子量200万のフルオレセインイソチオシアナート-デキストラン(シグマアルドリッチ、FD2000S)若しくは分子量15万のフルオレセインイソチオシアナート-デキストラン(シグマアルドリッチ、FD150S)を等量加え、(アルギン酸水溶液3)又は(アルギン酸水溶液4)を得た。また(アルギン酸水溶液2-2)に生理食塩水を等量加え、(アルギン酸水溶液5)を得た。
 (アルギン酸水溶液3)及び(アルギン酸水溶液5)を等量混和し、この混和した水溶液を18ゲージの注射針を装着した注射筒に入れ、この注射筒を流速1 mL/分に設定したシリンジポンプに設置し、濃度が30 mmol/Lの塩化カルシウム溶液に30秒間滴下し、約20分間撹拌してアルギン酸ゲルを得た。このゲルを10 mLの生理食塩水で1度洗浄し、フルオレセインイソチオシアナート(分子量200万)-デキストラン内包化学架橋アルギン酸ゲル(ビーズ)を得た。又、(アルギン酸水溶液4)及び(アルギン酸水溶液5)を等量混和し、前記と同様の方法にてフルオレセインイソチオシアナート(分子量15万)-デキストラン内包化学架橋アルギン酸ゲル(ビーズ)を得た。
 得られたゲル(ビーズ)に20 mLの生理食塩水を添加し、37℃で振盪して、経時的に水溶液を回収した。試験終了後、試験溶液にアルギン酸リアーゼ(ニッポンジーン、319-08261)を10 μL添加し、37℃で2時間振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のデキストラン濃度を蛍光定量法(励起光:485nm、蛍光:535nm)により測定し、各時点のデキストラン濃度を試験終了後のデキストラン濃度で除した値を百分率で表した値を透過率とした。
 (アルギン酸水溶液3)及び(アルギン酸水溶液5)を等量混和して得られたゲル(EX1-(I)-A-2/EX3-(II)-A-2/デキストラン(分子量:200万))の結果を図2に示した。24時間で6.4%の透過が認められた。
 (アルギン酸水溶液4)及び(アルギン酸水溶液5)を等量混和して得られたゲル(EX1-(I)-A-2/EX3-(II)-A-2/デキストラン(分子量:15万))の結果を図3に示した。3時間で23.6%、24時間で31.9%漏出の透過が認められた。
(ゲル透過性の測定(2))
 (実施例1d)で得られたアルギン酸誘導体(EX1-(I)-B-2a)、(実施例3d)で得られたアルギン酸誘導体(EX3-(II)-B-2a)、(実施例7a)で得られたアルギン酸誘導体(EX7-(II)-B-2a)、(実施例8)で得られたアルギン酸誘導体(EX8-(I)-B-2)を、それぞれ濃度が1.5 w/w%となるよう水に溶かしてアルギン酸水溶液(1d-2)、(3d-2)、(7a-2)、及び(8a-2)を得た。更に(アルギン酸水溶液3d-2)に、1 mg/mLに調製した分子量200万のフルオレセインイソチオシアナート-デキストラン(シグマアルドリッチ、FD2000S)若しくは分子量15万のフルオレセインイソチオシアナート-デキストラン(シグマアルドリッチ、FD150S)を加え、(アルギン酸水溶液3d-2-A)又は(アルギン酸水溶液3d-2-B)を得た。同様に(アルギン酸水溶液7a-2)に、1 mg/mLに調製した分子量200万のフルオレセインイソチオシアナート-デキストラン(シグマアルドリッチ、FD2000S)若しくは分子量15万のフルオレセインイソチオシアナート-デキストラン(シグマアルドリッチ、FD150S)を加え、(アルギン酸水溶液7a-2-A)又は(アルギン酸水溶液7a-2-B)を得た。
 これらの水溶液を表15の組み合わせで、アルギン酸の終濃度1.0 w/w%、フルオレセインイソチオシアナート-デキストランの終濃度100 μg/mLとなるように混和した。この混和した水溶液を18ゲージの注射針を装着した注射筒に入れ、この注射筒を流速1 mL/分に設定したシリンジポンプに設置し、濃度が30 mmol/Lの塩化カルシウム溶液に30秒間滴下し、5分間撹拌してアルギン酸ゲルを得た。このゲルを10 mLのリン酸緩衝生理食塩水(PBS)で1度洗浄した後、純水中、37℃で10分間静置して化学架橋を行い、フルオレセインイソチオシアナート(分子量200万)-デキストラン内包化学架橋アルギン酸ゲル(ビーズ)及びフルオレセインイソチオシアナート(分子量15万)-デキストラン内包化学架橋アルギン酸ゲル(ビーズ)(ゲルa~h)を得た。
Figure JPOXMLDOC01-appb-T000219
 ゲルa~hの各ゲルに19.5 mLの生理食塩水を添加し、37℃で振盪して、3、24時間後に水溶液を回収し、回収した量と同量の生理食塩水を補充した。試験終了後、試験溶液にアルギン酸リアーゼ(CreativeEnzymes、NATE-1563)を20 μL添加し、37℃で終夜振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のデキストラン濃度を蛍光定量法(励起光:485nm、蛍光:535nm)により測定し、各時点のデキストラン濃度を全時点のデキストラン濃度および試験終了後のデキストラン濃度から算出した全デキストラン濃度で除した値を百分率で表した値を透過率とした。
(アルギン酸水溶液3d-2-A)及び(アルギン酸水溶液7a-2-A)に対し、(アルギン酸水溶液1d-2)、(アルギン酸水溶液8a-2)をそれぞれ混和して得られたゲル(表15のゲルa、ゲルb、ゲルc、及びゲルd)の結果を図5に示した。3時間、及び24時間での透過率はいずれも0%であった。(アルギン酸水溶液3d-2-B)及び(アルギン酸水溶液7a-2-B)に対し、(アルギン酸水溶液1d-2)、(アルギン酸水溶液8a-2)をそれぞれ混和して得られたゲル(表15のゲルe、ゲルf、ゲルg、及びゲルh)の結果を図6に示した。3時間での透過率は2.5%~4.6%、24時間での透過率は6.8%~8.6%であった。
(ゲル透過性の測定(3))
 (実施例3g)で得た反応性置換基導入アルギン酸(EX3-(II)-A-2b)、(実施例5c)で得た反応性置換基導入アルギン酸(EX5-(II)-A-2b)、及び(実施例7c)で得た反応性置換基導入アルギン酸(EX7-(II)-A-2)を
濃度が2.0%となるよう水に溶かしてアルギン酸水溶液を調製し、このアルギン酸水溶液に2/5容量の1 mg/mLに調製した分子量15万のフルオレセインイソチオシアナート-デキストラン(シグマアルドリッチ、FD150S)、及び3/5容量の水を加え、0.2 mg/mLフルオレセインイソチオシアナート-デキストラン含有1.0%アルギン酸水溶液(3g‐2)、(5c-2)、及び(7c-2)を調製した。さらに、(実施例1g)で得た反応性置換基導入アルギン酸(EX1-(I)-A-2b)、及び(実施例9a)で得た反応性置換基導入アルギン酸(EX9-(I)-A-2)を濃度が1.0%となるよう水に溶かしてそれぞれアルギン酸水溶液(1g-1)、及び(9a‐1)を調製した。前記アルギン酸水溶液を(9a‐1)と(5c-2)、(9a‐1)と(7c-2)、(9a‐1)と(3g‐2)、(1g-1)と(3g‐2)の組み合わせで等量混和し、濃度が30 mmol/Lの塩化カルシウム溶液を40 mL添加し、5分間撹拌してアルギン酸ゲルを得た。このゲルを10 mLの生理食塩水で1度洗浄し、生理食塩水中、37℃で10分間静置して化学架橋を行い、フルオレセインイソチオシアナート-デキストラン内包化学架橋アルギン酸ゲルを各々得た。各ゲルに19.5 mLの生理食塩水を添加し、37℃で振盪して、経時的に水溶液を回収し、回収した量と同量の生理食塩水を補充した。試験終了後(24時間後)、試験溶液にアルギン酸リアーゼ(ニッポンジーン、319-08261)を10 μL添加し、37℃で3時間以上振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のデキストラン濃度を蛍光定量法(励起光:485nm、蛍光:535nm)により測定し、各時点のデキストラン濃度を試験終了後のデキストラン濃度で除した値を百分率で表した値を透過率とした。
 図14の結果が得られた。3時間後の透過率はいずれも約30%程度であった。又、24時間後の透過率はいずれも約40%程度であった。
(ゲル透過性の測定(4))
 (実施例3g)で得た反応性置換基導入アルギン酸(EX3-(II)-A-2b)、(実施例5c)で得た反応性置換基導入アルギン酸(EX5-(II)-A-2b)、及び(実施例7c)で得た反応性置換基導入アルギン酸(EX7-(II)-A-2)を
濃度が2.0%となるよう水に溶かしてアルギン酸水溶液を調製し、このアルギン酸水溶液に2/5容量の1 mg/mLに調製した分子量15万のフルオレセインイソチオシアナート-デキストラン(シグマアルドリッチ、FD150S)、及び3/5容量の水を加え、0.2 mg/mLフルオレセインイソチオシアナート-デキストラン含有1.0%アルギン酸水溶液(3g‐2)、(5c-2)、及び(7c-2)を調製した。さらに、(実施例1g)で得た反応性置換基導入アルギン酸(EX1-(I)-A-2b)、及び(実施例8b)で得た反応性置換基導入アルギン酸(EX8-(I)-A-2)を濃度が1.0%となるよう水に溶かしてそれぞれアルギン酸水溶液(1g-1)、及び(8b‐1)を調製した。これらをそれぞれ、(1g-1)と(5c-2)、(1g-1)と(7c-2)、(8b‐1)と(5c-2)、(8b‐1)と(7c-2)、(8b‐1)と(3g‐2)、(1g-1)と(3g‐2)の組み合わせで等量混和し、濃度が30 mmol/Lの塩化カルシウム溶液を40 mL添加し、5分間撹拌してアルギン酸ゲルを得た。このゲルを10 mLの生理食塩水で1度洗浄し、生理食塩水中、37℃で10分間静置して化学架橋を行い、フルオレセインイソチオシアナート-デキストラン内包化学架橋アルギン酸ゲルを各々得た。各ゲルに19.5 mLの生理食塩水を添加し、37℃で振盪して、経時的に水溶液を回収し、回収した量と同量の生理食塩水を補充した。試験終了後(24時間後)、試験溶液にアルギン酸リアーゼ(ニッポンジーン、319-08261)を10 μL添加し、37℃で3時間以上振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のデキストラン濃度を蛍光定量法(励起光:485nm、蛍光:535nm)により測定し、各時点のデキストラン濃度を試験終了後のデキストラン濃度で除した値を百分率で表した値を透過率とした。
 図15の結果が得られた。3時間後の透過率はいずれも約35%程度であった。又、24時間後の透過率はいずれも約45%程度であった。
(ゲル透過性の測定(5))
 (実施例3g)で得た反応性置換基導入アルギン酸(EX3-(II)-A-2b)、(実施例10)で得た反応性置換基導入アルギン酸(EX10-(II)-A-2)、(実施例11)で得た反応性置換基導入アルギン酸(EX11-(II)-A-2)、(実施例12)で得た反応性置換基導入アルギン酸(EX12-(II)-A-2)、(実施例13)で得た反応性置換基導入アルギン酸(EX13-(II)-A-2)、及び(実施例14)で得た反応性置換基導入アルギン酸(EX14-(II)-A-2)、を、濃度が2.0%となるよう水に溶かしてアルギン酸水溶液を調製し、このアルギン酸水溶液に2/5容量の1 mg/mLに調製した分子量15万のフルオレセインイソチオシアナート-デキストラン(シグマアルドリッチ、FD150S)、及び3/5容量の水を加え、0.2 mg/mLフルオレセインイソチオシアナート-デキストラン含有1.0%アルギン酸水溶液(3g‐2)、(10-2)、(11-2)、(12-2)、(13-2)、及び(14-2)を調製した。さらに、(実施例1g)で得た反応性置換基導入アルギン酸(EX1-(I)-A-2b)、及び(実施例15)で得た反応性置換基導入アルギン酸(EX15-(I)-A-2)を、濃度が1.0%となるよう水に溶かしてそれぞれアルギン酸水溶液(1g-1)、及び(15‐1)を調製した。これらをそれぞれ、(15-1)と(3g‐2)、(1g-1)と(10-2)、(1g-1)と(11-2)、(1g-1)と(12-2)、(1g-1)と(13-2)、(1g-1)と(14-2)、(1g-1)と(3g‐2)の組み合わせで等量混和し、濃度が30 mmol/Lの塩化カルシウム溶液を40 mL添加し、5分間撹拌してアルギン酸ゲルを得た。このゲルを10 mLの生理食塩水で1度洗浄し、生理食塩水中、37℃で10分間静置して化学架橋を行い、フルオレセインイソチオシアナート-デキストラン内包化学架橋アルギン酸ゲルを各々得た。各ゲルに19.5 mLの生理食塩水を添加し、37℃で振盪して、経時的に水溶液を回収し、回収した量と同量の生理食塩水を補充した。試験終了後(24時間後)、試験溶液にアルギン酸リアーゼ(ニッポンジーン、319-08261)を10 μL添加し、37℃で3時間以上振盪させてゲルを全て崩壊させ、水溶液を回収した。回収した水溶液中のデキストラン濃度を蛍光定量法(励起光:485nm、蛍光:535nm)により測定し、各時点のデキストラン濃度を試験終了後のデキストラン濃度で除した値を百分率で表した値を透過率とした。
 図16の結果が得られた。3時間後の透過率は、約17~約28%程度であった。又、24時間後の透過率は、約25~約35%程度であった。
[架橋アルギン酸誘導体(ゲル)の生体適合性評価]
 (実施例1d)と同様の方法で製造した導入率(NMR積分比)=0.9 mol%のアルギン酸誘導体(EX1-(I)-B-2-L)、(実施例3d)と同様の方法で製造した導入率(NMR積分比)=0.6 mol%のアルギン酸誘導体(EX3-(II)-B-2-L)、(実施例7a)と同様の方法で製造した導入率(NMR積分比)=0.9 mol%のアルギン酸誘導体(EX7-(II)-B-2-L)、(実施例8)と同様の方法で製造した導入率(NMR積分比)=0.3 mol%のアルギン酸誘導体(EX8-(I)-B-2-L)を、それぞれ濃度が1.5 w/w%となるよう生理食塩水に溶かしてアルギン酸水溶液(1d-L)、(3d-L)、(7a-L)、(8a-L)を得た。
 さらに(アルギン酸水溶液3d-L)、(アルギン酸水溶液7a-L)に、1.5×10 cells/mLに調製したCHO細胞のPBS懸濁液をそれぞれ加え、(アルギン酸水溶液3d-LC)又は(アルギン酸水溶液7a-LC)を得た。
 これらの水溶液を表16の組み合わせで、アルギン酸の終濃度1.0 w/w%、CHO細胞の終濃度5.0×10 cells/mLとなるように混和した。この混和した水溶液を18ゲージの注射針を装着した注射筒に入れ、この注射筒を流速1 mL/分に設定したシリンジポンプに設置し、濃度が50 mmol/Lの塩化カルシウム溶液に30秒間滴下し、5分間撹拌した後、10 mLのリン酸緩衝生理食塩水(PBS)で1度洗浄し、CHO細胞内包アルギン酸ゲル(ビーズ)(ゲルCHO-1~ゲルCHO-4)を得た。
Figure JPOXMLDOC01-appb-T000220
 (ゲルCHO-1)~(ゲルCHO-4)を6ウェルプレート(FALCON、 Cat#351146)に播種し、下記表17の組成である培地を5 mL/ウェルで添加し、ゲルを含浸させた後、37℃、5%COインキュベータ内で125 rpmで振とうしながら培養を2日間実施した。試験終了後ゲルを回収し、新しい培地5mLに再含浸させた後、アルギン酸リアーゼ(CreativeEnzymes、 NATE-1563)を50 μL添加し、37℃で1時間振盪させてゲルを全て崩壊させ、培地を回収した。回収した培地中の生死細胞数をトリパンブルー染色により計測し、生細胞数を生細胞数と死細胞数の和で除した値を百分率で表した値を細胞生存率とし、ゲルの生体適合性の指標とした。同様にして、対照として反応性基が導入されていないアルギン酸(B-2)を用いてCHO細胞内包アルギン酸ゲル(ビーズ)(REF-CHO)を作製し、細胞生存率を測定した。
Figure JPOXMLDOC01-appb-T000221
 結果を図7に示した。前記表16に記載の各アルギン酸誘導体の組み合わせで得られたアルギン酸ゲル((ゲルCHO-1)~(ゲルCHO-4))中での細胞生存率は、87.2%~89.0%であった。また、対照として用いた反応性基が導入されていないアルギン酸(B-2)を用いて作製したアルギン酸ゲル(REF-CHO)中での細胞生存率は90.5%であった。当該結果より、反応性基が導入されたアルギン酸誘導体、及びHuisgen反応により化学架橋が形成されたアルギン酸構造体(ビーズ)が、反応性基が導入されていないアルギン酸と同程度の高い生体適合性を有していることが示唆された。
[架橋アルギン酸誘導体(ゲル)の生体適合性評価(2)] 
 (実施例1g)で得た反応性置換基導入アルギン酸(EX1-(I)-A-2b)、(実施例3g)で得た反応性置換基導入アルギン酸(EX3-(II)-A-2b)、(実施例5c)で得た反応性置換基導入アルギン酸(EX5-(II)-A-2b)、(実施例7c)で得た反応性置換基導入アルギン酸(EX7-(II)-A-2)、及び(実施例8b)で得た反応性置換基導入アルギン酸(EX8-(I)-A-2)、(実施例9a)で得た反応性置換基導入アルギン酸(EX9-(I)-A-2)、(実施例10)で得た反応性置換基導入アルギン酸(EX10-(II)-A-2)、(実施例11)で得た反応性置換基導入アルギン酸(EX11-(II)-A-2)、(実施例12)で得た反応性置換基導入アルギン酸(EX12-(II)-A-2)、(実施例13)で得た反応性置換基導入アルギン酸(EX13-(II)-A-2)、(実施例14)で得た反応性置換基導入アルギン酸(EX14-(II)-A-2)、及び(実施例15)で得た反応性置換基導入アルギン酸(EX15-(I)-A-2)を水に溶かして架橋基導入アルギン酸溶液とした。これをミニザルトハイフロー(ザルトリウス、16532GUK)で濾過滅菌した後、1.0%架橋基導入アルギン酸/生理食塩水溶液を調製した。細胞濃度5×10^3 cells/wellとなるよう96wellプレートに播種した後1日培養したHeLa細胞に、1.0%架橋基架橋基導入アルギン酸/生理食塩水溶液を(実施例1g)、(実施例8b)、(実施例9a)、又は(実施例15)と(実施例3g)の組み合わせ、および(実施例1g)と(実施例5c)、(実施例7c)、(実施例10)、(実施例11)、(実施例12)、(実施例13)、又は(実施例14)の組み合わせで終濃度0.1%となるよう添加し、1日培養後に細胞毒性の指標としてATP活性をCellTiter-Glo Luminescent Cell Viability Assay(Promega、G7571)で評価した。
 図17の結果が得られた。前記全ての架橋アルギン酸ゲルにおいてATP活性が確認できたことより、架橋アルギン酸ゲルに細胞毒性が無いことが示唆されており、Huisgen反応により化学架橋が形成されたアルギン酸構造体(ビーズ)が生体適合性を有していることが示唆された。

Claims (18)

  1.  アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、環状アルキン基(Akn)が導入された、下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
    Figure JPOXMLDOC01-appb-C000002
    の群から選択される2価のリンカーを表わし;Aknは、下記部分構造式[各式中、波線右側は含まない]:
    Figure JPOXMLDOC01-appb-C000003
    の群から選択される環状アルキン基を表わし、星印はキラル中心を表す]で表わされるアルギン酸誘導体。
  2.  Akn-L-NH基(Akn、及び-L-は、請求項1中の定義と同じである)の導入率が、0.1%~30%である、請求項1の式(I)のアルギン酸誘導体。
  3.  アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量が、10万Da~300万Daである、請求項1の式(I)のアルギン酸誘導体。
  4.  アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、アジド基が導入された、下記式(II):
    Figure JPOXMLDOC01-appb-C000004
    [式(II)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記部分構造式[各式中、両端の波線外側は含まない]:
    Figure JPOXMLDOC01-appb-C000005
    の群から選択される2価のリンカーを表わす]で表わされるアルギン酸誘導体。
  5.  N-L-NH基(-L-は、請求項4中の定義と同じである)の導入率が、0.1%~30%である、請求項4の式(II)のアルギン酸誘導体。
  6.  アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量が、10万Da~300万Daである、請求項4の式(II)のアルギン酸誘導体。
  7.  第1のアルギン酸の任意のカルボキシル基と、第2のアルギン酸の任意のカルボキシル基が、下記式(III-L):
    Figure JPOXMLDOC01-appb-C000006
    [式(III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、請求項1中の定義と同じであり;-L-は、請求項4中の定義と同じであり;Xは、下記部分構造式:
    Figure JPOXMLDOC01-appb-C000007
    の群から選択される環状基であり(各式中、両端の波線外側は含まない)、星印はキラル中心を表す]を介して結合する架橋アルギン酸。
  8.  請求項1~3のいずれか1項に記載の式(I)のアルギン酸誘導体及び請求項4~6のいずれか1項に記載の式(II)のアルギン酸誘導体を混合してHuisgen反応を行うことで請求項7に記載の架橋アルギン酸を得ることを含む、架橋アルギン酸を製造する方法。
  9.  架橋としてHuisgen反応により形成されるトリアゾール環による化学架橋、及びカルシウムイオンにより部分的に形成されるイオン架橋を含む、架橋アルギン酸。
  10.  請求項1~3のいずれか1項に記載の式(I)のアルギン酸誘導体及び請求項4~6のいずれか1項に記載の式(II)のアルギン酸誘導体を混合したアルギン酸誘導体の混合溶液を、塩化カルシウム溶液中に滴下することで得られる架橋アルギン酸構造体。
  11.  架橋としてHuisgen反応により形成されるトリアゾール環による化学架橋、及びカルシウムイオンにより部分的に形成されるイオン架橋を含む、請求項10の架橋アルギン酸構造体。
  12.  請求項1~3のいずれか1項に記載の式(I)のアルギン酸誘導体及び請求項4~6のいずれか1項に記載の式(II)のアルギン酸誘導体を混合したアルギン酸誘導体の混合溶液を、塩化カルシウム溶液中に滴下して、請求項10又は11に記載の架橋アルギン酸構造体を得ることを含む、架橋アルギン酸構造体を製造する方法。
  13.  ビーズ又は略球形のゲルである、請求項10又は11に記載の架橋アルギン酸構造体。
  14.  請求項10、11および13のいずれか1項に記載の架橋アルギン酸構造体を含む医療用材料。
  15.  ビーズ又は略球形のゲルである、請求項14に記載の医療用材料。
  16.  生体適合性がある、請求項1~請求項6のいずれか1項に記載のアルギン酸誘導体、請求項7又は請求項9に記載の架橋アルギン酸、及び請求項10、11および13のいずれか1項に記載の架橋アルギン酸構造体。
  17.  下記式(AM-1):
    Figure JPOXMLDOC01-appb-C000008
    [式(AM-1)中、Akn及び-L-の組み合わせが、(Akn,-L-)=(AK-1,LN-1(但し、m1=2を除く))、(AK-1,LN-2)、(AK-1,LN-3)、(AK-1,LN-4(但し、m4=2,3を除く))、(AK-1,LN-5)、(AK-1,LN-6)、(AK-1,LN-7)、(AK-1,LN-8)、(AK-1,LN-9)、(AK-1,LN-10)、(AK-1,LN-11)、(AK-2,LN-1(但し、m1=2を除く))、(AK-2,LN-2)、(AK-2,LN-3(但し、m3=2を除く))、(AK-2,LN-4(但し、m4=2,4を除く))、(AK-2,LN-5)、(AK-2,LN-6)、(AK-2,LN-7)、(AK-2,LN-8)、(AK-2,LN-9)、(AK-2,LN-10(但し、m13=1,m14=2を除く))、(AK-2,LN-11(但し、m15=1,m16=2を除く))、(AK-3,LN-2)、(AK-3,LN-3(但し、m3=1,2,3,5を除く))、(AK-3,LN-6)、(AK-3,LN-8)、(AK-4,LN-2)、(AK-4,LN-3(但し、m3=1を除く))、(AK-4,LN-6)、(AK-4,LN-8)、(AK-5,LN-2)、(AK-5,LN-3)、(AK-5,LN-6)、(AK-5,LN-8)、(AK-6,LN-1)、(AK-6,LN-2)、(AK-6,LN-3)、(AK-6,LN-4(但し、m4=2,3,4を除く))、(AK-6,LN-5)、(AK-6,LN-6)、(AK-6,LN-7)、(AK-6,LN-8)、(AK-6,LN-9)、(AK-6,LN-10)、(AK-6,LN-11)、(AK-7,LN-1(但し、m1=2を除く))、(AK-7,LN-2)、(AK-7,LN-3)、(AK-7,LN-4)、(AK-7,LN-5)、(AK-7,LN-6)、(AK-7,LN-7)、(AK-7,LN-8)、(AK-7,LN-9)、(AK-7,LN-10)、(AK-7,LN-11)、(AK-8,LN-1)、(AK-8,LN-2)、(AK-8,LN-3)、(AK-8,LN-4)、(AK-8,LN-5)、(AK-8,LN-6)、(AK-8,LN-7)、(AK-8,LN-8)、(AK-8,LN-9)、(AK-8,LN-10)、(AK-8,LN-11)、(AK-9,LN-1)、(AK-9,LN-2)、(AK-9,LN-3)、(AK-9,LN-4)、(AK-9,LN-5)、(AK-9,LN-6)、(AK-9,LN-7)、(AK-9,LN-9)、(AK-9,LN-10)、(AK-9,LN-11)、(AK-10,LN-1)、(AK-10,LN-2)、(AK-10,LN-3)、(AK-10,LN-4)、(AK-10,LN-5)、(AK-10,LN-6(但し、p置換、m6=1,m7=2を除く))、(AK-10,LN-7)、(AK-10,LN-8)、(AK-10,LN-9)、(AK-10,LN-10)、(AK-10,LN-11)、(AK-11,LN-2)、(AK-11,LN-3(但し、m3=1を除く))、(AK-11,LN-6)、(AK-11,LN-8)、(AK-12,LN-1)、(AK-12,LN-2(但し、m2=1を除く))、(AK-12,LN-3)、(AK-12,LN-4)、(AK-12,LN-5)、(AK-12,LN-6)、(AK-12,LN-7)、(AK-12,LN-8)、(AK-12,LN-9)、(AK-12,LN-10)、又は(AK-12,LN-11)の各式の組み合わせである(各式は請求項1中の定義と同じである)]で表されるアミノ化合物、又は製薬学的に許容されるその塩、又はそれらの溶媒和物。
  18.  下記式(AM-2):
    Figure JPOXMLDOC01-appb-C000009
    [式(II)中、-L-は、式(LK-1)(但し、式中フェニル環の置換様式がp置換であり、n1=1及びn2=3は除く)、式(LK-2)、式(LK-3)、式(LK-4)(但し、式中フェニル環の置換様式がm置換であり、n7=3、及び式中フェニル環の置換様式がp置換であり、n7=2、3、4、6は除く)、式(LK-5)(但し、式中フェニル環の置換様式がp置換であり、n8=1及びn9=2は除く)、式(LK-6)、又は式(LK-7)である(各式は請求項4中の定義と同じである)]で表されるアミノ化合物、又は製薬学的に許容されるその塩、又はそれらの溶媒和物。
     
     
PCT/JP2019/023478 2018-06-14 2019-06-13 新規な架橋アルギン酸 WO2019240219A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020207035554A KR20210019441A (ko) 2018-06-14 2019-06-13 신규 가교 알긴산
JP2020525652A JP6815561B2 (ja) 2018-06-14 2019-06-13 新規な架橋アルギン酸
CN201980038664.8A CN112236457B (zh) 2018-06-14 2019-06-13 新型交联海藻酸
CN202310971621.3A CN116874636A (zh) 2018-06-14 2019-06-13 新型交联海藻酸
CA3103227A CA3103227A1 (en) 2018-06-14 2019-06-13 Novel crosslinked alginic acid
EP19819436.7A EP3808783A4 (en) 2018-06-14 2019-06-13 NOVEL LINKED ALGIC ACID
US17/119,681 US11932708B2 (en) 2018-06-14 2020-12-11 Crosslinked alginic acid
US18/428,348 US20240174772A1 (en) 2018-06-14 2024-01-31 Novel crosslinked alginic acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-113767 2018-06-14
JP2018113767 2018-06-14
JP2018-205668 2018-10-31
JP2018205668 2018-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/119,681 Continuation-In-Part US11932708B2 (en) 2018-06-14 2020-12-11 Crosslinked alginic acid

Publications (1)

Publication Number Publication Date
WO2019240219A1 true WO2019240219A1 (ja) 2019-12-19

Family

ID=68842583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023478 WO2019240219A1 (ja) 2018-06-14 2019-06-13 新規な架橋アルギン酸

Country Status (7)

Country Link
US (2) US11932708B2 (ja)
EP (1) EP3808783A4 (ja)
JP (4) JP6815561B2 (ja)
KR (1) KR20210019441A (ja)
CN (2) CN116874636A (ja)
CA (1) CA3103227A1 (ja)
WO (1) WO2019240219A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125279A1 (ja) * 2019-12-18 2021-06-24 持田製薬株式会社 化学架橋アルギン酸ゲルファイバ
WO2021125255A1 (ja) 2019-12-18 2021-06-24 持田製薬株式会社 新規な架橋アルギン酸
WO2022145420A1 (ja) 2020-12-28 2022-07-07 持田製薬株式会社 新規な多層ポリマーコーティング架橋アルギン酸ゲルファイバ
WO2022145419A1 (ja) 2020-12-28 2022-07-07 持田製薬株式会社 化学架橋アルギン酸を用いた多層構造体
WO2022270549A1 (ja) 2021-06-23 2022-12-29 持田製薬株式会社 新規なポリマーコーティング架橋アルギン酸ゲルファイバ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116003651B (zh) * 2023-01-09 2024-02-13 青岛大学 一种内酰胺荧光物质接枝的海藻酸钠荧光衍生物及其制备方法

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010941A1 (en) 1988-05-13 1989-11-16 Fidia S.P.A. Cross-linked carboxy polysaccharides
WO1993013136A1 (en) 1991-12-20 1993-07-08 Howmedica Inc. Ultra-pure polysaccharide materials for medical use
JPH08260102A (ja) 1994-03-19 1996-10-08 Sanyo Special Steel Co Ltd 被削性に優れたオーステナイト系ステンレス鋼
US5589591A (en) 1986-07-03 1996-12-31 Advanced Magnetics, Inc. Endotoxin-free polysaccharides
JPH0987236A (ja) 1995-09-20 1997-03-31 Seikagaku Kogyo Co Ltd 桂皮酸誘導体
JPH09324001A (ja) 1996-04-02 1997-12-16 Kyowa Hakko Kogyo Co Ltd ヒアルロン酸ナトリウムの精製法
JP2002530440A (ja) 1998-11-13 2002-09-17 シーピー ケルコ ユー.エス.インク. エンドトキシンレベルが低い生体高分子塩、その生体高分子組成物およびこれを製造する方法
JP2005036036A (ja) 2003-07-16 2005-02-10 Tanabe Seiyaku Co Ltd エンドトキシン除去方法
WO2005026214A1 (ja) 2003-09-12 2005-03-24 Seikagaku Corporation 多糖擬スポンジ
WO2008031525A1 (en) 2006-09-11 2008-03-20 Fidia Farmaceutici S.P.A. Hyaluronic acid derivatives obtained via 'click chemistry' crosslinking
WO2008071058A1 (fr) 2006-12-11 2008-06-19 Bioregen Biomedical (Changzhou) Co., Ltd Dérivé macromoléculaire modifié par un groupe mercapto et matériau réticulé
WO2009067663A1 (en) 2007-11-21 2009-05-28 University Of Georgia Research Foundation, Inc. Alkynes and methods of reacting alkynes with 1,3-dipole-functional compounds
WO2009073437A1 (en) 2007-11-30 2009-06-11 Allergan, Inc. Polysaccharide gel formulation
WO2011028031A2 (en) 2009-09-04 2011-03-10 Ajou University Industry-Academic Cooperation Foundation In situ-forming hydrogel for tissue adhesives and biomedical use thereof
US20120095203A1 (en) * 2009-03-18 2012-04-19 Commissariat A L'energie Atomique Et Aux Ene Alt Novel silane compounds having a cyclic carbon chain including an alkyne function for functionalising solid substrates and immobilising biological molecules on said substrates
WO2012165462A1 (ja) 2011-05-31 2012-12-06 国立大学法人 東京大学 ハイドロゲル及びその製造方法
US20130137861A1 (en) 2011-11-30 2013-05-30 Agilent Technologies, Inc. Novel methods for the synthesis and purification of oligomers
JP2013525425A (ja) * 2010-04-27 2013-06-20 シンアフィックス ビー.ブイ. 縮合シクロオクチン化合物及び無金属クリック反応におけるそれらの使用
WO2014111344A1 (en) 2013-01-15 2014-07-24 Novartis Ag Cycloalkyne derivatized saccharides
WO2015020206A1 (ja) 2013-08-08 2015-02-12 生化学工業株式会社 組織膨隆材
US20150125904A1 (en) * 2012-03-30 2015-05-07 Massachusetts Institute Of Technology Probe incorporation mediated by enzymes
WO2015143092A1 (en) 2014-03-18 2015-09-24 The Research Foundation For The State University Of New York Therapeutic agent for treating tumors
US20160280723A1 (en) * 2013-10-31 2016-09-29 Arizona Board Of Regents On Behalf Of Arizona State University Chemical reagents for attaching affinity molecules on surfaces
WO2016152980A1 (ja) 2015-03-24 2016-09-29 国立大学法人岐阜大学 オリゴヌクレオチド誘導体及びそれを用いたオリゴヌクレオチド構築物並びにそれらの製造方法
CN106140040A (zh) 2015-04-17 2016-11-23 南京理工大学 一种无铜点击交联多聚糖微球的制备方法
WO2017165389A2 (en) * 2016-03-24 2017-09-28 Millennium Pharmaceuticals, Inc. Alginate hydrogel compositions

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO171069C (no) 1990-05-29 1993-01-20 Protan Biopolymer As Kovalent tverrbundne, sterkt svellende alkalimetall- og ammonium-alginatgeler, samt fremgangsmaate for fremstilling derav
CA2162957C (en) 1994-11-17 2011-08-02 Michinori Waki Cinnamic acid derivative
EP3354665B9 (en) * 2011-06-02 2022-08-03 Massachusetts Institute of Technology Modified alginates for cell encapsulation and cell therapy
CN102408496B (zh) * 2011-09-13 2013-02-06 武汉理工大学 一种原位交联海藻酸钠水凝胶及其制备方法
CN102408498A (zh) 2011-09-16 2012-04-11 大连大学 一种透明质酸键合聚乙烯亚胺共聚物、其制备方法及应用
WO2013181697A1 (en) 2012-06-05 2013-12-12 The University Of Melbourne Bicyclo[6.1.0]non-4-yne compounds suitable for use as linkers in biological applications
BR202013028685U2 (pt) 2013-11-07 2015-10-20 Tecnident Equipamentos Ortodônticos Ltda disposição construtiva aplicada em bráquete autoligado
CN105713108A (zh) 2014-12-05 2016-06-29 陈华 一种从橘皮中提取果胶的制备方法
CN105713106B (zh) * 2015-12-31 2018-02-27 华南理工大学 一种海藻酸钠双交联水凝胶及其制备方法与应用
US10614039B2 (en) 2017-04-04 2020-04-07 International Business Machines Corporation Testing of lock managers in computing environments

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589591A (en) 1986-07-03 1996-12-31 Advanced Magnetics, Inc. Endotoxin-free polysaccharides
WO1989010941A1 (en) 1988-05-13 1989-11-16 Fidia S.P.A. Cross-linked carboxy polysaccharides
WO1993013136A1 (en) 1991-12-20 1993-07-08 Howmedica Inc. Ultra-pure polysaccharide materials for medical use
JPH08260102A (ja) 1994-03-19 1996-10-08 Sanyo Special Steel Co Ltd 被削性に優れたオーステナイト系ステンレス鋼
JPH0987236A (ja) 1995-09-20 1997-03-31 Seikagaku Kogyo Co Ltd 桂皮酸誘導体
JPH09324001A (ja) 1996-04-02 1997-12-16 Kyowa Hakko Kogyo Co Ltd ヒアルロン酸ナトリウムの精製法
JP2002530440A (ja) 1998-11-13 2002-09-17 シーピー ケルコ ユー.エス.インク. エンドトキシンレベルが低い生体高分子塩、その生体高分子組成物およびこれを製造する方法
JP2005036036A (ja) 2003-07-16 2005-02-10 Tanabe Seiyaku Co Ltd エンドトキシン除去方法
WO2005026214A1 (ja) 2003-09-12 2005-03-24 Seikagaku Corporation 多糖擬スポンジ
WO2008031525A1 (en) 2006-09-11 2008-03-20 Fidia Farmaceutici S.P.A. Hyaluronic acid derivatives obtained via 'click chemistry' crosslinking
WO2008071058A1 (fr) 2006-12-11 2008-06-19 Bioregen Biomedical (Changzhou) Co., Ltd Dérivé macromoléculaire modifié par un groupe mercapto et matériau réticulé
WO2009067663A1 (en) 2007-11-21 2009-05-28 University Of Georgia Research Foundation, Inc. Alkynes and methods of reacting alkynes with 1,3-dipole-functional compounds
JP2011504507A (ja) * 2007-11-21 2011-02-10 ユニバーシティ・オブ・ジョージア・リサーチ・ファウンデイション・インコーポレイテッド アルキン類及び1,3−双極子機能性化合物とアルキン類を反応させる方法
WO2009073437A1 (en) 2007-11-30 2009-06-11 Allergan, Inc. Polysaccharide gel formulation
US20120095203A1 (en) * 2009-03-18 2012-04-19 Commissariat A L'energie Atomique Et Aux Ene Alt Novel silane compounds having a cyclic carbon chain including an alkyne function for functionalising solid substrates and immobilising biological molecules on said substrates
WO2011028031A2 (en) 2009-09-04 2011-03-10 Ajou University Industry-Academic Cooperation Foundation In situ-forming hydrogel for tissue adhesives and biomedical use thereof
JP2013525425A (ja) * 2010-04-27 2013-06-20 シンアフィックス ビー.ブイ. 縮合シクロオクチン化合物及び無金属クリック反応におけるそれらの使用
WO2012165462A1 (ja) 2011-05-31 2012-12-06 国立大学法人 東京大学 ハイドロゲル及びその製造方法
US20130137861A1 (en) 2011-11-30 2013-05-30 Agilent Technologies, Inc. Novel methods for the synthesis and purification of oligomers
US20150125904A1 (en) * 2012-03-30 2015-05-07 Massachusetts Institute Of Technology Probe incorporation mediated by enzymes
WO2014111344A1 (en) 2013-01-15 2014-07-24 Novartis Ag Cycloalkyne derivatized saccharides
WO2015020206A1 (ja) 2013-08-08 2015-02-12 生化学工業株式会社 組織膨隆材
US20160280723A1 (en) * 2013-10-31 2016-09-29 Arizona Board Of Regents On Behalf Of Arizona State University Chemical reagents for attaching affinity molecules on surfaces
WO2015143092A1 (en) 2014-03-18 2015-09-24 The Research Foundation For The State University Of New York Therapeutic agent for treating tumors
WO2016152980A1 (ja) 2015-03-24 2016-09-29 国立大学法人岐阜大学 オリゴヌクレオチド誘導体及びそれを用いたオリゴヌクレオチド構築物並びにそれらの製造方法
CN106140040A (zh) 2015-04-17 2016-11-23 南京理工大学 一种无铜点击交联多聚糖微球的制备方法
WO2017165389A2 (en) * 2016-03-24 2017-09-28 Millennium Pharmaceuticals, Inc. Alginate hydrogel compositions

Non-Patent Citations (28)

* Cited by examiner, † Cited by third party
Title
"Experimental Chemistry Course 4th Edition", ORGANIC SYNTHESIS I: HYDROCARBONS AND HALIDE COMPOUNDS, vol. 19, 1992, pages 363 - 482
"Experimental Chemistry Course 5th Edition", SYNTHESIS OF ORGANIC COMPOUNDS IV: CARBOXYLIC ACIDS, DERIVATIVES AND ESTERS, vol. 16, pages 35 - 70
"Strategic Applications of Named Reactions in Organic Synthesis", 2005, ACADEMIC PRESS
ACID AMIDES AND ACID IMIDES, pages 118 - 154
AMINO ACIDS AND PEPTIDES, 2007, pages 258 - 283
ANGEW. CHEM. INT. ED. ENGL., vol. 14, 2002, pages 2596 - 2599
ANGEW. CHEM. INT. ED., vol. 51, 2012, pages 5852 - 5856
APPL. MICROBIOL. BIOTECHNOL., vol. 40, 1994, pages 638 - 643
BIOORGANIC & MEDICINAL CHEMISTRY, vol. 11, 2003, pages 4189 - 4206
CARBOHYDRATE POLYMERS, vol. 169, 2017, pages 332 - 340
CAS, no. 1255942-06-3
CHEM. BER., vol. 94, 1961, pages 3260 - 3275
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 6, 2014, pages 1280 - 1286
EVANS, H. L. ET AL.: "Copper-free click - a promising tool for pre-targeted PET imaging", CHEMICAL COMMUNICATIONS, vol. 48, no. 7, 18 November 2011 (2011-11-18) - 25 January 2012 (2012-01-25), Cambridge, United Kingdom, pages 991 - 993, XP055663415 *
J. ORG. CHEM., vol. 9, 2002, pages 3057 - 3064
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, no. 46, 2004, pages 15046 - 15047
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 136, no. 29, 2014, pages 10450 - 10459
KOJI NAGAHAMA , JUNJI KAWAKAMI , AYAKA TAKEMOTO: "3M04: Development of cell cross-linked hydrogels and quest of their characteristic functions", POLYMER PREPRINT, vol. 66, no. 2, 1 January 2017 (2017-01-01), Japan, pages 1 - 4, XP009524672 *
MARUZEN, EXPERIMENTAL CHEMISTRY COURSE 5TH EDITION, vol. 16, 2007, pages 99 - 118
MARUZEN, EXPERIMENTAL CHEMISTRY COURSE 5TH EDITION, vol. 2007
MARUZEN: "Experimental Chemistry Course 5th Edition", CARBOXYLIC ACIDS AND DERIVATIVES, ACID HALIDES AND ACID ANHYDRIDES, vol. 16, 2007, pages 99 - 118
NAT. COMMUN., vol. 9, no. 1, 2018, pages 2195
ORG. PROCESS RES. DEV., vol. 22, 2018, pages 108 - 110
ORGANOMETALLICS, vol. 29, no. 23, 2010, pages 6619 - 6622
RAJIV M DESAI; SANDEEP T KOSHY; SCOTT A HILDERBRAND; DAVID J MOONEY; NEEL S JOSHI: "Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry", BIOMATERIALS, vol. 50, 14 February 2015 (2015-02-14), pages 30 - 37, XP055319420, ISSN: 0142-9612, DOI: 10.1016/j.biomaterials.2015.01.048 *
STAHLWERMUTH: "Handbook of Pharmaceutical Salts: Properties, Selection and Use", 2002, WILEY-VCH
SYNTHESIS, vol. 46, no. 5, 2014, pages 669 - 677
SYNTHESIS, vol. 9, 2002, pages 1191 - 1194

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125279A1 (ja) * 2019-12-18 2021-06-24 持田製薬株式会社 化学架橋アルギン酸ゲルファイバ
WO2021125255A1 (ja) 2019-12-18 2021-06-24 持田製薬株式会社 新規な架橋アルギン酸
WO2022145420A1 (ja) 2020-12-28 2022-07-07 持田製薬株式会社 新規な多層ポリマーコーティング架橋アルギン酸ゲルファイバ
WO2022145419A1 (ja) 2020-12-28 2022-07-07 持田製薬株式会社 化学架橋アルギン酸を用いた多層構造体
KR20230127997A (ko) 2020-12-28 2023-09-01 모찌다 세이야쿠 가부시끼가이샤 신규의 다층 폴리머 코팅 가교 알긴산 겔 파이버
WO2022270549A1 (ja) 2021-06-23 2022-12-29 持田製薬株式会社 新規なポリマーコーティング架橋アルギン酸ゲルファイバ
JPWO2022270549A1 (ja) * 2021-06-23 2022-12-29
KR20240024839A (ko) 2021-06-23 2024-02-26 모찌다 세이야쿠 가부시끼가이샤 신규의 폴리머 코팅 가교 알긴산 겔 파이버
JP7450793B2 (ja) 2021-06-23 2024-03-15 持田製薬株式会社 新規なポリマーコーティング架橋アルギン酸ゲルファイバ

Also Published As

Publication number Publication date
JPWO2019240219A1 (ja) 2021-01-07
JP2022126716A (ja) 2022-08-30
EP3808783A1 (en) 2021-04-21
US11932708B2 (en) 2024-03-19
CN116874636A (zh) 2023-10-13
JP2021055106A (ja) 2021-04-08
JP6815561B2 (ja) 2021-01-20
KR20210019441A (ko) 2021-02-22
US20240174772A1 (en) 2024-05-30
JP7090146B2 (ja) 2022-06-23
JP7350940B2 (ja) 2023-09-26
US20210095053A1 (en) 2021-04-01
CN112236457B (zh) 2023-08-29
EP3808783A4 (en) 2022-03-16
CA3103227A1 (en) 2019-12-19
JP2023179471A (ja) 2023-12-19
CN112236457A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2019240219A1 (ja) 新規な架橋アルギン酸
WO2021125255A1 (ja) 新規な架橋アルギン酸
AU2007296939B9 (en) Hyaluronic acid derivatives obtained via "click chemistry" crosslinking
US20130142763A1 (en) Crosslinked cellulosic polymers
AU2001252180B2 (en) Clathrate complexes formed by hyaluronic acid derivatives and use thereof as pharmaceuticals
WO2020262642A1 (ja) 化学架橋アルギン酸を用いた移植用デバイス
JP2015517016A (ja) 架橋ヒアルロナン誘導体,その調製法,前記誘導体をベースとするハイドロゲル及びマイクロファイバー
WO2014190849A1 (zh) 阿霉素前药及其制备方法和可注射的组合物
Zolotarskaya et al. Synthesis and characterization of clickable cytocompatible poly (ethylene glycol)-grafted polyoxetane brush polymers
JP2022072261A (ja) 会合性高分子材料
WO2021125279A1 (ja) 化学架橋アルギン酸ゲルファイバ
WO2022145419A1 (ja) 化学架橋アルギン酸を用いた多層構造体
Tong et al. In situ forming and reversibly cross-linkable hydrogels based on copolypept (o) ides and polysaccharides
JP7346380B2 (ja) 新規光架橋性アルギン酸誘導体
Farhan et al. Synthesis and characterization of cellulose grafted maleic anhydride and substituted it with amoxicillin
WO2024030660A2 (en) Cholesterol-modified hyaluronic acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525652

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3103227

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019819436

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019819436

Country of ref document: EP

Effective date: 20210114