WO2022145420A1 - 新規な多層ポリマーコーティング架橋アルギン酸ゲルファイバ - Google Patents

新規な多層ポリマーコーティング架橋アルギン酸ゲルファイバ Download PDF

Info

Publication number
WO2022145420A1
WO2022145420A1 PCT/JP2021/048567 JP2021048567W WO2022145420A1 WO 2022145420 A1 WO2022145420 A1 WO 2022145420A1 JP 2021048567 W JP2021048567 W JP 2021048567W WO 2022145420 A1 WO2022145420 A1 WO 2022145420A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
alginic acid
formula
producing
polymer
Prior art date
Application number
PCT/JP2021/048567
Other languages
English (en)
French (fr)
Inventor
正司 古迫
直人 津田
勉 佐藤
智裕 鳴海
愼吾 佐藤
Original Assignee
持田製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 持田製薬株式会社 filed Critical 持田製薬株式会社
Priority to US18/269,705 priority Critical patent/US20240132854A1/en
Priority to CA3203302A priority patent/CA3203302A1/en
Priority to CN202180087547.8A priority patent/CN116710110A/zh
Priority to EP21915279.0A priority patent/EP4268857A1/en
Priority to JP2022573085A priority patent/JPWO2022145420A1/ja
Priority to KR1020237021149A priority patent/KR20230127997A/ko
Priority to AU2021414759A priority patent/AU2021414759A1/en
Priority to JP2022568561A priority patent/JPWO2022270549A1/ja
Priority to AU2022298245A priority patent/AU2022298245A1/en
Priority to CN202280044010.8A priority patent/CN117529547A/zh
Priority to KR1020237044096A priority patent/KR20240024839A/ko
Priority to EP22828465.9A priority patent/EP4361249A1/en
Priority to PCT/JP2022/024935 priority patent/WO2022270549A1/ja
Priority to CA3223483A priority patent/CA3223483A1/en
Publication of WO2022145420A1 publication Critical patent/WO2022145420A1/ja
Priority to JP2023194056A priority patent/JP7450793B2/ja
Priority to US18/392,583 priority patent/US20240174959A1/en
Priority to JP2024031804A priority patent/JP2024063159A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/10Hollow fibers or tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/10Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0681Cells of the genital tract; Non-germinal cells from gonads
    • C12N5/0682Cells of the female genital tract, e.g. endometrium; Non-germinal cells from ovaries, e.g. ovarian follicle cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/62Encapsulated active agents, e.g. emulsified droplets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/64Animal cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • C12N2533/32Polylysine, polyornithine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/74Alginate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2537/00Supports and/or coatings for cell culture characterised by physical or chemical treatment
    • C12N2537/10Cross-linking

Definitions

  • the present invention relates to a polymer-coated crosslinked alginate gel fiber for producing an antibody, a physiologically active substance, etc., a method for producing the fiber, and a method for producing an antibody, a physiologically active substance, etc. using the fiber.
  • the present invention also relates to a multilayer polymer-coated crosslinked alginate gel fiber for producing an antibody, a physiologically active substance, etc., a method for producing the fiber, and a method for producing an antibody, a physiologically active substance, etc. using the fiber.
  • antibodies by culture using animal cells.
  • physiologically active substances eg, interferon, erythropoietin, IL-2 (interleukin-2), CSF (colony stimulating factor), TNF (tumor necrosis factor), etc.
  • IL-2 interleukin-2
  • CSF colony stimulating factor
  • TNF tumor necrosis factor
  • CHO cells derived from Chinese hamster ovary
  • Sp2 / 0 cells, NS0 cells and the like are used as host cells, and in particular, CHO cells are cells capable of suspension culture.
  • CHO cells are cells capable of suspension culture.
  • the cell proliferation rate is high and it is easy to mass-produce the target protein by mass-culturing CHO cells, it is frequently used in the production of antibodies.
  • the antibody-producing cell line is expanded and cultured while controlling the culture conditions such as medium composition, temperature, stirring conditions, gas exchange, and pH, and finally. Culturing is carried out in a large-scale production culture tank with a scale of several thousand to 10,000 L.
  • Patent Document 1 International Publication No. 2011/046105
  • Patent Document 2 Special Patent Document 2: Kai 2016-77229 (Ab.).
  • Patent Document 3 International Publication No. 2020/032221 pamphlet.
  • Patent Document 4 International Publication No. 2015/178427 Pamphlet
  • Patent Document 5 Patent No. 6601931
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2014-236698).
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2014-136128.
  • a cell structure eg, sheet-like in which a mixture containing adherent cells (specifically, C2C12 cells), microcarriers, and gel-like polysaccharides (specifically, alginate gel) is coated with polyamino acids.
  • adherent cells specifically, C2C12 cells
  • microcarriers specifically, microcarriers
  • gel-like polysaccharides specifically, alginate gel
  • Non-Patent Document 1 PA. -Lab Chip, 2008, 8, p1255-1257).
  • Patent Document 11 International Publication No. 2019
  • Patent Document 12 International Publication No. 2021/125255 Pamphlet
  • Patent Documents 1 to 13 and Non-Patent Document 1 describe polymer-coated crosslinked alginate gel fibers or multilayer polymer-coated crosslinked alginate gel fibers for the production of the antibodies, physiologically active substances, etc. of the present invention, methods for producing each gel fiber, and each. A method for producing an antibody or the like using a gel fiber is not disclosed or suggested.
  • Alginate gel fiber containing cells capable of producing antibodies, physiologically active substances, etc., in particular, cell culture can be performed for a long period of time (for example, 7 days or more, 14 days or more, 28 days or more) without decomposition of the fiber.
  • a long period of time for example, 7 days or more, 14 days or more, 28 days or more
  • a novel polymer-coated cross-linked alginate gel fiber for the production of antibodies, physiologically active substances, etc. which is formed by coating a cross-linked alginate gel obtained by performing a cross-linking reaction with an alginic acid derivative with a cationic polymer, and a cross-linked alginate gel fiber thereof. I found a manufacturing method. Further, when cells producing antibodies, physiologically active substances, etc.
  • the crosslinked alginate gel obtained by performing a crosslinking reaction using the chemically modified alginic acid derivatives represented by the formulas (I) and the formula (II) described in the later aspect [1B] is coated with a cationic polymer.
  • Polymer coating for the production of antibodies, physiologically active substances, etc. which is formed by coating a crosslinked alginate gel fiber with an anionic polymer, which is a novel multilayer polymer coating for the production of antibodies, physiologically active substances, etc.
  • a crosslinked alginate gel fiber and a method for producing the same have been found. Further, when the antibody-producing cells were cultured using the multi-layer polymer-coated cross-linked alginate gel fiber, it was found that the multi-layer polymer-coated cross-linked alginate gel fiber could continuously produce antibodies and the like for a long period of time without decomposition. ..
  • the present invention provides a novel polymer-coated crosslinked alginate gel fiber and a method for producing an antibody, a physiologically active substance, or the like using the gel fiber.
  • a mixed solution containing a cell capable of producing an antibody, a physiologically active substance, or the like, a chemically modified alginic acid derivative represented by the formulas (I) and the formula (II) described in the following embodiment [1], and the like is prepared.
  • a polymer-coated crosslinked alginate gel fiber capable of continuously producing an antibody, a physiologically active substance, or the like for a long period of time is provided.
  • the present invention also provides a novel multilayer polymer-coated crosslinked alginate gel fiber and a method for producing an antibody, a physiologically active substance, or the like using the gel fiber.
  • a mixed solution containing a cell capable of producing an antibody, a physiologically active substance or the like, a chemically modified alginic acid derivative represented by the formulas (I) and the formula (II) described in the following embodiment [1B], and the like is prepared.
  • Polymer coating obtained by coating the cross-linked alginic acid gel produced using the above with a cationic polymer By coating the cross-linked alginate gel fiber with an anionic polymer, antibodies, physiologically active substances, etc. can be continuously produced for a long period of time.
  • Multilayer polymer coated crosslinked alginate gel fibers are provided.
  • a cross-linked alginate gel (also referred to as a core layer) formed by using a mixed solution containing a chemically modified alginic acid derivative or the like is obtained from poly-L-ornithine, polyallylamine, polyethyleneimine, or polymethylene-CO-guanidine (PMCG).
  • a polymer-coated crosslinked alginate gel fiber By coating with a cationic polymer (also referred to as a cationic polymer layer), a polymer-coated crosslinked alginate gel fiber can be produced, and when cultured using the fiber, a long period of time (up to 47 in the examples described later) is obtained. It was found that antibodies or insulin could be produced continuously (for days).
  • the polymer-coated crosslinked alginate gel fiber of the present invention provides an environment suitable for cells capable of producing antibodies, physiologically active substances, etc., and the antibodies, physiologically active substances, etc. produced in the core layer of the fiber are the core layer. , Has the characteristic of continuously permeating the cationic polymer layer and being released out of the fiber.
  • the outside of the cationic polymer layer of the polymer-coated crosslinked alginic acid gel fiber containing the tosirizumab-producing CHO cells in the core layer is designated as an anionic polymer (also referred to as an anionic polymer layer), alginic acid, formula.
  • an anionic polymer also referred to as an anionic polymer layer
  • alginic acid formula.
  • the multilayer polymer-coated cross-linked alginate gel fiber of the present invention provides an environment suitable for cells capable of producing antibodies, physiologically active substances, etc., like the above-mentioned polymer-coated cross-linked alginate gel fiber, and is used in the core layer of the fiber.
  • the produced antibody, physiologically active substance, or the like has a characteristic that it continuously permeates the core layer, the cationic polymer layer, and the anionic polymer layer and is released to the outside of the fiber.
  • the polymer-coated crosslinked alginate gel fiber and the multilayer polymer-coated crosslinked alginate gel fiber of the present invention provide an environment suitable for the production of antibodies, physiologically active substances and the like. There is little physical stress on the cells producing antibodies, bioactive substances, etc. encapsulated in the core layer, and it is expected that the encapsulated cells will continue to produce antibodies, bioactive substances, etc. for a long period of time. Therefore, a method for producing an antibody, a physiologically active substance, or the like using such a fiber can be expected to dramatically improve the production efficiency of the antibody, the physiologically active substance, or the like.
  • antibody production unlike the suspension culture of an antibody that requires a large-scale culture tank, it is expected that the antibody will be produced in a small-scale production facility. It is also expected to be a continuous production technology for next-generation antibody drugs suitable for the production of small-quantity and various items of antibody drugs.
  • FIG. 1 It is a schematic diagram explaining one aspect of the manufacturing process of a multilayer polymer coated crosslinked alginate gel fiber. It is a cross section of a multilayer polymer coated crosslinked alginate gel fiber. It is a schematic diagram explaining that the metabolites and waste products such as an antibody, a physiologically active substance, etc. produced in a core layer, and a culture solution (nutrient source) and oxygen permeate through a cationic polymer layer and an anionic polymer layer. It is a photograph before culturing of the polymer-coated crosslinked alginate gel fiber (FB9-3-c3) of (Example F9).
  • FB9-3-c3 polymer-coated crosslinked alginate gel fiber
  • the first aspect is as follows.
  • [Chemically modified alginic acid derivative represented by the formula (I)] The following formula (I): [In formula (I), (ALG) represents alginic acid; -NHCO- represents an amide bond via any carboxyl group of alginic acid; Akn - L1- (Akn represents a cyclic alkyne group;- L1- is a divalent linker that binds to a cyclic alkyne group (Akn)).
  • [Chemically modified alginic acid derivative represented by formula (II)] The following formula (II): [In formula (II), (ALG) represents alginic acid; -NHCO- represents an amide bond via any carboxyl group of alginic acid; -L 2- represents the table below: A chemically modified alginic acid derivative represented by [representing a linker selected from the group consisting of the partial structural formulas (in each formula, the outside of the broken line at both ends is not included)].
  • the first aspect is as follows.
  • a polymer-coated crosslinked alginate gel fiber comprising a core layer and a cationic polymer layer arranged outside the core layer, wherein the core layer is a cell capable of producing an antibody, a physiologically active substance, or the like and formula (I).
  • a polymer-coated crosslinked alginic acid gel fiber comprising a crosslinked alginic acid gel in which a crosslink is formed using a chemically modified alginic acid derivative represented by the formula (II), wherein the cationic polymer layer is a cationic polymer.
  • the chemically modified alginic acid derivative represented by the formula (I) and the formula (II) is the same as that defined in the above aspect [1].
  • the chemically modified alginic acid derivative represented by the formula (I), Akn - L1- is preferably described in the following table: It is a group selected from the group consisting of the partial structural formulas described in (the right side of the broken line is not included in each formula).
  • the chemically modified alginic acid derivative represented by the formula (I), Akn - L1- is more preferably described in the following table: It is a group selected from the group consisting of the partial structural formulas described in (the right side of the broken line is not included in each formula).
  • the chemically modified alginic acid derivative Akn—L1 ⁇ represented by the formula ( I ) is more preferably the following partial structural formula (in each formula). , Does not include the right side of the dashed line): It is a group selected from the group consisting of.
  • Akn-L1- of the chemically modified alginic acid derivative represented by the formula (I) is particularly preferably the following partial structural formula (in each formula). , Does not include the right side of the dashed line): It is a group selected from.
  • Akn-L1- of the chemically modified alginic acid derivative represented by the formula (I) is shown in the following table: It is a group selected from the group consisting of the partial structural formulas described in (the right side of the broken line is not included in each formula); Preferably, the table below: It is a group selected from the group consisting of the partial structural formulas described in (the right side of the broken line is not included in each formula); More preferably, the table below: It is a group selected from the group consisting of the partial structural formulas described in (the right side of the broken line is not included in each formula); More preferably, the following partial structural formula (in each formula, the right side of the broken line is not included): It is a group selected from.
  • the chemically modified alginic acid derivative —L2- represented by the formula ( II ) is preferably described in the following table: It is a group selected from the group consisting of the partial structural formulas described in (the outside of the broken line at both ends is not included in each formula).
  • the chemically modified alginic acid derivative —L2- represented by the formula ( II ) is more preferably described in the following table: It is a group selected from the group consisting of the partial structural formulas described in (the outside of the broken line at both ends is not included in each formula).
  • the chemically modified alginic acid derivative —L2- represented by the formula ( II ) is more preferably the following partial structural formula (in each formula, The outside of the broken line at both ends is not included): It is a group selected from the group consisting of.
  • the chemically modified alginic acid derivative —L2- represented by the formula ( II ) is particularly preferably the following partial structural formula (in each formula, The outside of the broken line at both ends is not included): It is a group selected from the group consisting of.
  • the chemically modified alginic acid derivative ⁇ L2- represented by the formula ( II ) is represented by the following table: It is a group selected from the group consisting of the partial structural formulas described in (the outside of the broken line at both ends is not included in each formula); Preferably, the following partial structural formula (in each formula, the right side of the broken line is not included): It is a group selected from the group consisting of the partial structural formulas described in (the outside of the broken line at both ends is not included in each formula); More preferably, the following partial structural formula (in each formula, the right side of the broken line is not included): It is a group selected from the group consisting of the partial structural formulas described in (the outside of the broken line at both ends is not included in each formula); More preferably, the following partial structural formula (in each formula, the outside of the broken line at both ends is not included): It is a group selected from the group consisting of.
  • [1-2A] Represented by the formulas (I) and (II) in which the definitions of Akn, -L 1- , and -L 2- described in the above embodiments [1] to [1-2-5] are appropriately combined.
  • the chemically modified alginic acid derivative By using the chemically modified alginic acid derivative, a preferred embodiment of the crosslinked alginate gel in the core layer of the polymer-coated crosslinked alginate gel fiber of the present invention can be arbitrarily formed.
  • the cells capable of producing an antibody, a physiologically active substance, etc. contained in the core layer of a polymer-coated crosslinked alginate gel fiber are, for example, an antibody (human antibody, humanized). Selected from the group consisting of cells producing various monoclonal antibodies such as antibodies, chimeric antibodies, mouse antibodies, etc., cells producing physiologically active substances, and cells capable of producing various useful substances useful as raw materials for pharmaceuticals, chemical raw materials, food raw materials, etc. It is a cell.
  • the cells capable of producing an antibody (also referred to as antibody-producing cells) contained in the core layer of the polymer-coated crosslinked alginate gel fiber are hybrid dormas or antibody expression vectors.
  • the cultured cells (host cells) used as the host thereof are, for example, CHO cells, CHO cell substrains, COS cells, Sp2 / 0 cells, NS0 cells, SP2 cells, PERC6 cells, and the like.
  • the antibody-producing cells contained in the core layer of the polymer-coated crosslinked alginate gel fiber are preferably host cells such as CHO cells and CHO cell substrains. , COS cells, Sp2 / 0 cells, NS0 cells, SP2 cells, and PERC6 cells; more preferably from CHO cells, CHO cell substrains, Sp2 / 0 cells, and NS0 cells. Cells selected from the group; more preferably CHO cells or CHO cell substrains.
  • the antibody-producing cell contained in the core layer of the polymer-coated crosslinked alginate gel fiber is, for example, an antibody-producing CHO cell whose host cell is a CHO cell.
  • an antibody-producing CHO cell whose host cell is a CHO cell.
  • muromonab-CD3-producing CHO cells trussumab-producing CHO cells, rituximab-producing CHO cells, paribismab-producing CHO cells, infliximab-producing CHO cells, baciliximab-producing CHO cells, tosirizumab-producing CHO cells, gemtuzumab-producing CHO cells, bebasimab-producing CHO cells.
  • Ibritumomab-producing CHO cells Ibritumomab-producing CHO cells, adalimumab-producing CHO cells, setuximab-producing CHO cells, ranibizmab-producing CHO cells, omalizumab-producing CHO cells, eculizumab-producing CHO cells, panitzummab-producing CHO cells, ustequinumab-producing CHO cells, golimumab-producing CHO cells, kana , Denosumab-producing CHO cells, Mogamurizumab-producing CHO cells, Celtrizumab-producing CHO cells, Ofatumumab-producing CHO cells, Pertuzumab-producing CHO cells, Brentuccimab-producing CHO cells, Natalizumab-producing CHO cells, Nivormab-producing CHO cells, Alemtuzumab-producing CHO cells, Alemtuzumab-producing CHO cells CHO cells, rams
  • CHO cells selected from the group consisting of HO cells; for example, tocilizumab-producing CHO cells or anti-GPVI antibody-producing CHO cells.
  • the cell capable of producing a physiologically active substance contained in the core layer of the polymer-coated crosslinked alginate gel fiber is, for example, Insulin-secreting cells, pancreatic islets, pancreatic islets cells, dopamine-secreting cells, pituitary cells, growth hormone-secreting cells, parathyroid cells, nerve growth factor-secreting cells, blood coagulation factor-secreting cells, hepatocytes, epithelial body cells, erythropoetin-secreting cells , A cell selected from the group consisting of norepinephrine-secreting cells and the like.
  • the physiologically active substance-producing cells contained in the core layer of the polymer-coated crosslinked islet gel fiber are preferably from insulin-secreting cells, pancreatic islets, and pancreatic islet cells.
  • the components that can be additionally contained in the core layer of the polymer-coated crosslinked alginate gel fiber include, for example, an alginic acid solution, an alginate gel, a medium, a culture solution, and collagen. It is a component selected from the group consisting of solutions, methylcellulose, sucrose solutions and the like.
  • the components that can be additionally contained in the core layer of the polymer-coated crosslinked alginic acid gel fiber are preferably an alginic acid solution, an alginic acid gel, a medium, and an alginic acid solution. It is a component selected from the group consisting of culture medium.
  • the introduction rate of the group (Akn-L 1 -NH 2 groups: Akn-L 1 -is the same as the definition in the above embodiment [1]) is, for example, in the range of about 0.1 to about 30 mol%. It is preferably in the range of about 0.3 to about 20 mol%; more preferably in the range of about 0.5 to about 10 mol%.
  • the introduction rate of the groups (N 3 -L 2 -NH 2 groups: -L 2- is the same as the definition in the above embodiment [1]) is, for example, in the range of about 0.1 to about 30 mol%. It is preferably in the range of about 0.3 to about 20 mol%; more preferably in the range of about 0.5 to about 15 mol%.
  • [1-9] In the above embodiment [1] or [1A], it is used for preparing an alginic acid solution that can be additionally contained in the core layer of a polymer-coated crosslinked alginic acid gel fiber, or an alginic acid solution used for forming an alginic acid gel.
  • the weight average molecular weight of alginic acid eg, sodium alginate, etc.
  • GPC method gel filtration chromatography
  • the weight average molecular weight of the alginic acid used is, for example, in the range of about 150,000 Da to about 2.5 million Da; preferably. Range from about 300,000 Da to about 2.5 million Da; more preferably from about 700,000 Da to about 1,400,000 Da, from about 800,000 Da to about 1,500,000 Da, from about 1,400,000 Da. It is a range selected from 2,000,000 Da, or about 1,500,000 to about 2,500,000.
  • the chemically modified alginate derivative represented by the formula (I) used for forming the crosslinked alginate gel contained in the core layer of the polymer-coated crosslinked alginate gel fiber is, for example, in the range of about 0.01 to about 1.5% by weight; preferably in the range of about 0.05 to about 1.0% by weight; more preferably about 0.08. It is in the range of about 0.75% by weight.
  • the concentration of the solution is, for example, in the range of about 0.01 to about 1.5% by weight; preferably in the range of about 0.05 to about 1.0% by weight; more preferably about 0.08. It is in the range of about 0.75% by weight.
  • the chemically modified alginic acid derivative represented by the formula (I) used for forming the crosslinked alginic acid gel contained in the core layer of the polymer-coated crosslinked alginic acid gel fiber is, for example, in the range of about 0.02 to about 2.0% by weight; preferably about 0.1 to about 2.0% by weight. %; More preferably, it is in the range of about 0.15 to about 1.5% by weight.
  • the concentration of the alginic acid solution that can be additionally contained in the core layer of the polymer-coated crosslinked alginic acid gel fiber or the alginic acid solution used for forming the alginic acid gel is for example, it is in the range of 0 to about 1.98% by weight; preferably in the range of 0 to about 1.8% by weight; more preferably in the range of 0 to about 1.7% by weight.
  • the crosslinked alginate gel contained in the core layer of the polymer-coated crosslinked alginate gel fiber includes an alginate solution or an alginate gel formed from the alginic acid solution.
  • the total concentration of the mixed solution containing the chemically modified arginic acid derivatives represented by the formulas (I) and (II) used for forming the core layer and the concentration of the arginic acid solution is preferably about 0.5 to about 2. It is 0.0% by weight; more preferably, it is a concentration selected from about 1.0% by weight, about 1.5% by weight and about 2.0% by weight.
  • the crosslinked alginate gel contained in the core layer of the polymer-coated crosslinked alginate gel fiber includes an alginate solution or an alginate gel formed from the alginic acid solution.
  • concentration of the mixed solution containing the chemically modified arginic acid derivatives represented by the formulas (I) and the formula (II) used for forming the core layer C1 (% by weight)
  • concentration of the arginic acid solution C2 (% by weight)
  • (C1: C2) (about 0.2: about 1.3), (about 0.5: about 1.0), (about 1.0: about 0.5), ( It is a combination selected from the group consisting of (about 1.5: 0), (about 0.66: about 1.34), and (about 0.34: about 0.66).
  • the cross-linked alginic acid gel contained in the core layer of the polymer-coated cross-linked alginic acid gel fiber includes an alginic acid solution or an alginic acid gel formed from the alginic acid solution.
  • concentration of the solution of the chemically modified alginic acid derivative represented by the formula (I) used for forming the core layer C1A (% by weight)
  • concentration of the solution of the chemically modified alginic acid derivative represented by the formula (II) C1N (C1N (%)).
  • the cross-linked alginic acid gel contained in the core layer of the polymer-coated cross-linked alginic acid gel fiber includes an alginic acid solution or an alginic acid gel formed from the alginic acid solution.
  • the crosslinked alginate gel contained in the core layer of the polymer-coated crosslinked alginate gel fiber has the following formula (III-L): [In formula (III-L), -CONH- and -NHCO- at both ends represent an amide bond mediated by any carboxyl group of alginic acid; -X- is the table below: It is a cyclic group selected from the group of partial structural formulas described in (in each formula, the outside of the broken line at both ends is not included); -L 1- is the table below when -X- is (CL-1) or (CL-1-r).
  • -L 1- is the table below when -X- is (CL-2) or (CL-2-r). It is a divalent linker selected from the group of substructural formulas described in (in each formula, the outside of the broken line at both ends is not included); -L 2 --includes a chemical cross-linking via a group represented by [the same as the definition of formula (II) in the above aspect [1]].
  • the preferred combination of ⁇ L2 - X—L1 ⁇ of the group represented by the formula (III-L) is the formula in the following table: As shown by the partial structure selected from the group of (-L 1 -in the table is the same as the definition of preferred -L 1- described in the above embodiment [1-12-1];-L 2 -Is the same as the definition of preferred -L 2- " described in the above aspect [1-2-1]; -X-is as described in the above aspect [1-12]).
  • the combination of -L 2 -X-L 1- is based on the formula in the table below: As shown by the partial structure selected from the group of (-L 1 -in the table is the same as the more preferred definition of -L 1- described in the above aspect [1-12-1]; 2 -is the same as the more preferred definition of -L2- described in the above aspect [1-2-2]; -X-is as described in the above aspect [1-12]);
  • the combination of -L 2 -X-L 1- is based on the formula in the table below: As shown by the partial structure selected from the group of (-L 1 -in the table is the same as the more preferred definition of -L 1- described in the above aspect [1-12-1]; 2 -is the same as the more preferred definition of -L 2 --described in the embodiment [1-2-3]; -X-is as described in the embodiment [1-12]).
  • the combination of -L 2 -X-L 1- is based on the formula in the table below: As shown by the partial structure selected from the group of (-L 1 -in the table is the same as the definition of particularly preferred -L 1- described in the above embodiment [1-12-1]; 2 -is the same as the definition of particularly preferred -L 2- " described in the above aspect [1-2-4]; -X-is as described in the above aspect [1-12]).
  • the crosslinked alginate gel contained in the core layer of the polymer-coated crosslinked alginate gel fiber is the formula (III-L) [1-12] described in the above aspect [1-12].
  • formula (III-L) -CONH- and -NHCO-, -X- at both ends are the same as the definitions in the above embodiment [1-12]; -1) or (CL-1-r) is the same as the group represented by the partial structural formula (LK-1a) according to the above aspect [1-12]; -X- is (CL-2).
  • (CL- 2 -r) is the same as the group represented by the partial structural formula (LK-2-1) described in the above aspect [1-12]; It is the same as the group selected from the partial structural formulas (LN-1), (LN-3) and (LN-5) described in [1]].
  • —X— is (CL-1) or (CL-1-r)
  • preferred, more preferred, and even more preferred —L1 ⁇ are each.
  • preferable, more preferable, and even more preferable ⁇ L 1 ⁇ are the partial structural formulas (LK-2) according to the above aspect [1-12], respectively.
  • -L 2- is preferably the portion according to the above aspect [1-2-1].
  • the crosslinked alginate gel contained in the core layer is contained in the formulas (III-L) [formula (III-L) of the above-mentioned embodiment [1-12], respectively.
  • the definition is the same as the definition of aspect [1-12]] or in the formulas (III-L) [formula (III-L)] of the aspect [1-12A], each definition is the same as the definition of mode [1-12A]. It is the same as the definition of], and includes chemical cross-linking via a group and ionic cross-linking via a divalent metal ion.
  • the divalent metal ion used for forming an ionic bridge in the crosslinked alginate gel contained in the core layer of the polymer-coated crosslinked alginate gel fiber is preferably calcium ion.
  • Magnesium ion, barium ion, strontium ion and zinc ion more preferably calcium ion, barium ion or strontium ion; more preferably calcium ion or barium ion.
  • the aqueous solution of the crosslinked alginate gel contained in the core layer of the polymer-coated crosslinked alginate gel fiber containing the divalent metal ion used for forming an ion bridge is calcium chloride.
  • An aqueous solution containing a divalent metal ion selected from the group consisting of an aqueous solution, an aqueous solution of calcium carbonate, an aqueous solution of calcium gluconate, an aqueous solution of barium chloride, an aqueous solution of strontium chloride and the like can be used as a source; preferably an aqueous solution of calcium chloride or an aqueous solution of chloride. It is an aqueous solution of barium.
  • the cationic polymer of the cationic polymer layer of the polymer-coated crosslinked alginate gel fiber comprises polyamino acids, basic polysaccharides, basic polymers and the like. It is a cationic polymer selected from the group.
  • the cationic polymer of the cationic polymer layer of the polymer-coated crosslinked arginine gel fiber is preferably poly-L-ornithine (PLO), which is a polyamino acid.
  • Poly-D-ornithine PDO
  • poly-DL-ornithine poly-DL-ornithine
  • poly-D-lysine poly-L-lysine
  • PLA Poly-L-arginine
  • PDA Poly-D-Arginine
  • PHA Poly-DL-Arginine
  • PDHA Poly-L-Homoarginine
  • PDHA Poly-D-Homoarginine
  • Poly-DL-Homoarginine Poly-L-Histidine
  • PH Poly-D-arginine
  • PH Poly-DL-histidine
  • a cationic polymer selected from the group more preferably poly-L-arginine or poly-L-lysine; still more preferably. It is poly-L-ornithine.
  • the cationic polymer of the cationic polymer layer of the polymer-coated crosslinked alginate gel fiber is chitosan.
  • the cationic polymer of the cationic polymer layer of the polymer-coated crosslinked alginate gel fiber is polymethylene-CO-guanidine (PMCG), polyallylamine (PAA), and the like.
  • the outer diameter of the polymer-coated crosslinked alginate gel fiber is, for example, in the range of about 0.1 to about 2000 ⁇ m.
  • the polymer of the above embodiment is used.
  • a preferred embodiment of the crosslinked alginate gel in the core layer of the coated crosslinked alginate gel fiber may be optionally formed.
  • the polymer-coated cross-linked alginic acid gel fiber of the above-mentioned embodiment [1] or [1A] is preferably an alginic acid derivative represented by the formula (I) used for forming the cross-linked alginic acid gel.
  • 1-1-1] is selected from the alginic acid derivative or the preferred alginic acid derivative of the above aspect [1-1-5], and the alginic acid derivative represented by the formula (II) is in the above aspect [1-2-1].
  • the cationic polymer layer is a polymer-coated crosslinked alginate gel fiber selected from the cationic polymers according to the above aspect [1-15-1].
  • the polymer-coated cross-linked alginic acid gel fiber of the above-mentioned embodiment [1] or [1A] is preferably an alginic acid derivative represented by the formula (I) used for forming the cross-linked alginic acid gel.
  • 1-1-1] is selected from the alginic acid derivative or the preferred alginic acid derivative of the above aspect [1-1-5], and the alginic acid derivative represented by the formula (II) is in the above aspect [1-2-1].
  • the cationic polymer layer is a polymer-coated crosslinked alginate gel fiber selected from the cationic polymers according to the above aspect [1-15-1].
  • the polymer-coated cross-linked alginic acid gel fiber of the above-mentioned embodiment [1] or [1A] is more preferably the alginic acid derivative represented by the formula (I) used for forming the cross-linked alginic acid gel.
  • the alginic acid derivative selected from the alginic acid derivative described in [1-1-2] or the more preferable alginic acid derivative of the above embodiment [1-1-5] and represented by the formula (II) is the alginic acid derivative of the above embodiment [1-2-2]. ].
  • the alginic acid derivative described in [1-2-5] or the more preferable alginic acid derivative of the above aspect [1-2-5]; the antibody-producing cells are the cells according to the above aspects [1-3-2] to [1-3-3].
  • the cationic polymer layer is a polymer-coated crosslinked alginate gel fiber selected from the cationic polymers according to the above embodiments [1-15-2] to [1-15-4].
  • the polymer-coated cross-linked alginic acid gel fiber of the above-mentioned embodiment [1] or [1A] is more preferably the alginic acid derivative represented by the formula (I) used for forming the cross-linked alginic acid gel.
  • the alginic acid derivative selected from the alginic acid derivative described in [1-1-2] or the more preferable alginic acid derivative of the above embodiment [1-1-5] and represented by the formula (II) is the alginic acid derivative of the above embodiment [1-2-2]. ].
  • the polymer-coated cross-linked alginic acid gel fiber of the above-mentioned embodiment [1] or [1A] is more preferably the alginic acid derivative represented by the formula (I) used for forming the cross-linked alginic acid gel.
  • the alginic acid derivative represented by the formula (II) is selected from the alginic acid derivative described in [1-1-3], and the alginic acid derivative represented by the formula (II) is selected from the alginic acid derivative described in the above aspect [1-2-3]; the antibody-producing cell is described above. Selected from the cells according to embodiments [1-3-2] to [1-3-3]; the cationic polymer layer is described in embodiments [1-15-2] or [1-15-4].
  • the polymer-coated cross-linked alginic acid gel fiber of the above-mentioned embodiment [1] or [1A] is more preferably the alginic acid derivative represented by the formula (I) used for forming the cross-linked alginic acid gel.
  • the alginic acid derivative represented by the formula (II) is selected from the alginic acid derivative described in [1-1-3], and the alginic acid derivative represented by the formula (II) is selected from the alginic acid derivative described in the above aspect [1-2-3]; the antibody-producing cell is the embodiment.
  • the cationic polymer layer is the cation according to the above-mentioned embodiment [1-15-2] or [1-15-4].
  • a polymer-coated crosslinked alginate gel fiber selected from sex polymers.
  • the polymer-coated cross-linked alginic acid gel fiber of the above-mentioned embodiment [1] or [1A] is particularly preferably the alginic acid derivative represented by the formula (I) used for forming the cross-linked alginic acid gel.
  • the alginic acid derivative represented by the formula (II) is selected from the alginic acid derivative described in [1-1-4], and the alginic acid derivative represented by the formula (II) is selected from the alginic acid derivative described in the above aspect [1-2-4]; the antibody-producing cell is an antibody.
  • Producing CHO cells polymer-coated crosslinks in which the cationic polymer layer is selected from poly-L-ornithine, polyallylamine (PAA), polyethyleneimine, or polymethylene-CO-guanidine (PMCG). It is an alginate gel fiber.
  • PAA polyallylamine
  • PMCG polymethylene-CO-guanidine
  • the crosslinked alginate gel of the polymer-coated crosslinked alginate gel fiber is the above-mentioned embodiments [1-4] to [1-4]. It contains any of the components that can be added as described in -1].
  • cells capable of producing antibodies, physiologically active substances and the like, and chemically modified alginic acid derivatives represented by the formulas (I) and (II) used for forming the crosslinked alginic acid gel By combining each element of the cationic polymer (cationic polymer layer), a preferred embodiment of the method for producing a polymer-coated crosslinked alginate gel fiber can be arbitrarily formed.
  • the first aspect is as follows.
  • a multilayer polymer-coated crosslinked alginate gel fiber comprising a cationic polymer layer (cationic polymer) covering the core layer and an anionic polymer layer (anionic polymer) covering the cationic polymer layer.
  • the chemically modified alginic acid derivative represented by the formula (I) and the formula (II) is the same as that defined in the above aspect [1].
  • the aspect of the first C is as follows.
  • the chemically modified alginic acid derivative represented by the formula (I) and the formula (II) is the same as that defined in the above aspect [1].
  • the first aspect is as follows.
  • a multilayer polymer-coated crosslinked alginate gel fiber comprising a core layer, a cationic polymer layer disposed outside the core layer, and an anionic polymer layer disposed outside the cationic polymer layer, wherein the core layer.
  • Gel fiber The chemically modified alginic acid derivative represented by the formula (I) and the formula (II) is the same as that defined in the above aspect [1].
  • Akn - L1-1 of the chemically modified alginic acid derivative represented by the formula (I) is preferably the above-mentioned embodiment [1-1-1]. It is the same as the definition described in; more preferably the same as the definition described in the above aspect [1-1-2]; still more preferably described in the above aspect [1-1-3]. Same as the definition; particularly preferably the same as the definition described in the above aspect [1-1-4]; most preferably the following partial structural formula (in each formula, the right side of the broken line is not included): It is a group represented by.
  • the chemically modified alginic acid derivative ⁇ L2- represented by the formula ( II ) is preferably the above-mentioned embodiment [1-2-1].
  • the antibody and the physiologically active substance contained in the core layer of the polymer-coated cross-linked alginate gel fiber or the multilayer polymer-coated cross-linked alginate gel fiber are, for example, various monoclonal antibodies such as human antibody, humanized antibody, chimeric antibody, mouse antibody or various modifications such as bispecific antibody thereof, low molecular weight antibody, sugar chain modified antibody and the like.
  • Examples include cells producing (type antibodies), cells producing physiologically active substances (enzymes, cytokines, hormones, blood coagulation factors, vaccines, etc.), cells capable of producing various useful substances useful as pharmaceutical raw materials, chemical raw materials, food raw materials, etc. ; Preferably antibody-producing cells or physiologically active substance-producing cells.
  • the antibody can be encapsulated in the core layer of a polymer-coated cross-linked alginate gel fiber or a multilayer polymer-coated cross-linked alginate gel fiber.
  • the antibody-producing cells are hybridomas (antibody-producing hybridomas) obtained from B cells that produce antibodies or cultured cells (antibody-producing recombinant cells) transformed with an antibody expression vector.
  • antibody-producing cells that can be encapsulated in the core layer of a polymer-coated crosslinked alginate gel fiber or a multilayer polymer-coated crosslinked alginate gel fiber.
  • the animal cell used as a host is a CHO cell, a CHO cell substrain (CHO-K1 cell, CHO-DG44 cell, CHO-DXB11 cell, or CHO cells transformed to modify sugar chains, etc.), COS cells, Sp2 / 0 cells, NS0 cells, SP2 cells, PERC6 cells, YB2 / 0 cells, YE2 / 0 cells, 1R983F cells, Namalwa cells, Will.
  • CHO cell a CHO cell substrain (CHO-K1 cell, CHO-DG44 cell, CHO-DXB11 cell, or CHO cells transformed to modify sugar chains, etc.)
  • COS cells COS cells
  • Sp2 / 0 cells NS0 cells
  • SP2 cells SP2 cells
  • PERC6 cells YB2 / 0 cells
  • YE2 / 0 cells YE2 / 0 cells
  • 1R983F cells Namalwa cells, Will.
  • -2 cells Jurkat cells, Vero cells, Molt-4 cells, HEK293 cells, BHK cells, HT-1080 cells, KGH6 cells, P3X63Ag8.653 cells, C127 cells, JC cells, LA7 cells, ZR-45-30 cells, A cell selected from hTERT cells, NM2C5 cells, or UACC-812 cells.
  • the animal cells used as a host are preferably CHO cells, CHO cell substrains, COS cells, Sp2 / 0 cells, NS0 cells, SP2 cells. , PERC6 cells, HEK293 cells, BHK cells, HT-1080 cells, or C127 cells; more preferably, CHO cells, CHO cell substrains, Sp2 / 0 cells, NS0 cells, HEK293 cells, or A cell selected from BHK cells; more preferably a CHO cell or a CHO cell substrain.
  • the antibody-producing cells that can be encapsulated in the core layer of the polymer-coated cross-linked alginate gel fiber or the multilayer polymer-coated cross-linked alginate gel fiber are ,
  • the host cell is a cell selected from CHO cells, CHO cell substrains, Sp2 / 0 cells, or NS0 cells; more preferably, CHO cells or CHO cell substrains.
  • the antibody-producing cells that can be encapsulated in the core layer of the polymer-coated crosslinked alginate gel fiber or the multilayer polymer-coated crosslinked alginate gel fiber are , Biopharmacy or cells producing antibodies used as biopharmacy raw materials.
  • the antibody-producing cells that can be encapsulated in the core layer of the polymer-coated cross-linked alginate gel fiber or the multilayer polymer-coated cross-linked alginate gel fiber are ⁇ -CD3 ⁇ , Brentuximab, Inotsumab, Polatsuzumab, Enholtumab, Sashitsuzumab, Verantamab, Roncastuzumab, Chisotumab, Datopotamab, Patritumab and other antibody-producing cells; Cells; cells that produce low molecular weight antibodies consisting of antibody fragments such as ranibizmab, idalcizumab, brinatsumomab, brolcizumab, absiximab, couplersizumab, and sertrizumab.
  • the antibody-producing cells that can be encapsulated in the core layer of the polymer-coated cross-linked alginate gel fiber or the multilayer polymer-coated cross-linked alginate gel fiber are , Antibody-producing animal cells, preferably antibody-producing CHO cells, antibody-producing Sp2 / 0 cells or antibody-producing NS0 cells, and more preferably antibody-producing CHO cells.
  • the antibody-producing cells that can be encapsulated in the core layer of the polymer-coated cross-linked alginate gel fiber or the multilayer polymer-coated cross-linked alginate gel fiber are Preferably, there are antibody-producing CHO cells whose host cells are CHO cells, such as muromonab-CD3-producing CHO cells, trussumab-producing CHO cells, rituximab-producing CHO cells, paribizmab-producing CHO cells, infriximab-producing CHO cells, and basiliximab-producing CHO cells.
  • CHO cells such as muromonab-CD3-producing CHO cells, trussumab-producing CHO cells, rituximab-producing CHO cells, paribizmab-producing CHO cells, infriximab-producing CHO cells, and basiliximab-producing CHO cells.
  • tosirizumab-producing CHO cells gemtuzumab-producing CHO cells, bebashizumab-producing CHO cells, ibritsumomab-producing CHO cells, adalimumab-producing CHO cells, setuximab-producing CHO cells, ranibizmab-producing CHO cells, omalizumab-producing CHO cells, ecrizumab-producing CHO cells, ecrizumab-producing CHO cells Cells, Ustekinumab-producing CHO cells, Golimumab-producing CHO cells, Kanakinumab-producing CHO cells, Denosumab-producing CHO cells, Mogamurizumab-producing CHO cells, Celtrizumab-producing CHO cells, Ofatumumab-producing CHO cells, Peltzzumab-producing CHO cells, Kunststoffuccimab-producing CHO cells, Producing CHO cells, nibolumab-producing CHO cells, alemtu
  • the cells are the same as the physiologically active substance-producing cells described in the above aspect [1-3-4].
  • the cell is a cell selected from the group consisting of insulin secreting cells, islets, islet cells, or MIN6 cells derived from pancreatic ⁇ cells.
  • the cells are cultured cells (physiologically active substance-producing gene recombinant cells) transformed with a physiologically active substance expression vector.
  • production of a physiologically active substance that can be encapsulated in the core layer of a polymer-coated crosslinked alginate gel fiber or a multilayer polymer-coated crosslinked alginate gel fiber.
  • the cell is a recombinant animal cell that produces a physiologically active substance.
  • the animal cells used as a host include CHO cells, CHO cell substrains, COS cells, Sp2 / 0 cells, NS0 cells, SP2 cells, or Cells selected from PERC6 cells, HEK293 cells, BHK cells, HT-1080 cells, or C127 cells; preferably CHO cells, CHO cell substrains, Sp2 / 0 cells, and NS0 cells, HEK293 cells, or BHK.
  • the cell is preferably a cell whose host cell is selected from CHO cells, CHO cell substrains, HEK293 cells, or BHK cells; more preferably CHO cells, or CHO cell substrains.
  • a cell is a cell that produces a biopharmaceutical or a physiologically active substance used as a raw material for a biopharmaceutical.
  • the cells are interferonase, interferonase, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, interferon, inter
  • Cells Protein-producing cells; insulin, insulin lispro, insulin aspart, insulin glargine, insulin detemil, insulin glulysine, insulin degludec, somatropin, somapcitan, mechacermin, carperitide, bosolitide, glucagon, holitropin, coriogonadotropin, duraglutide, liglutide, , Teriparatide, cells producing hormones such as metrereptin; cells producing interferon such as interferon alpha-2a, interferon alpha-2b, interferon beta-1a, interferon beta-1b, interferon gamma-1a; cells producing epoetin, darbepoetin, lomiprostim, etc.
  • Cells that produce hematopoietic factors include cells that produce hematopoietic factors; cells that produce cytokines and their receptors such as Philgrastim, Lenograstim, Teseloykin, Trafermin, Belfermin, Etanelcept, Afribelcept, Deniloukin diphthitox; Cell surface antigens such as Avatacept, A cell selected from cells that produce cell surface receptors and their ligands.
  • the cell is a bioactive substance-producing animal cell, preferably a bioactive substance-producing CHO cell, a bioactive substance-producing HEK293 cell, or a bioactive substance-producing BHK cell, and more preferably a bioactive substance-producing CHO cell. ..
  • the cell is preferably a physiologically active substance-producing cell CHO cell whose host cell is a CHO cell, for example, an alteplase-producing CHO cell, an alglucosidase-producing CHO cell, a rulioctocog-producing CHO cell, a duraglutide-producing CHO cell, an interferon beta-. 1a-producing CHO cells, darbepoetin-producing CHO cells, etanercept-producing CHO cells, afribercept-producing CHO cells, or avatarcept-producing CHO cells.
  • the components that can be additionally contained in the core layer of the multilayer polymer-coated crosslinked alginate gel fiber are the same as the components described in the above-mentioned aspect [1-4].
  • the preferred component is the same as the component described in the above aspect [1-4-1].
  • the concentration of the alginic acid solution that can be additionally contained in the core layer of the multilayer polymer-coated crosslinked alginic acid gel fiber, or the concentration of the alginic acid solution used for forming the alginic acid gel. Is the same as the concentration range described in the above aspect [1-10-4].
  • the crosslinked alginate gel contained in the core layer of the multilayer polymer-coated crosslinked alginate gel fiber contains an alginate solution or an alginate gel formed from the alginic acid solution.
  • the total concentration of the mixed solution containing the chemically modified arginic acid derivatives represented by the formulas (I) and (II) used for forming the core layer and the concentration of the arginic acid solution is preferably about 0.5 to about. 2.0% by weight; more preferably a concentration selected from about 1.0% by weight, about 1.5% by weight and about 2.0% by weight; even more preferably at about 1.5% by weight. be.
  • the crosslinked alginic acid gel contained in the core layer of the multilayer polymer-coated crosslinked alginic acid gel fiber contains an alginic acid solution or an alginic acid gel formed from the alginic acid solution. If so, the concentration of the solution of the chemically modified alginic acid derivative represented by the formula (I) used for forming the core layer (C1A (% by weight)), the concentration of the solution of the chemically modified alginic acid derivative represented by the formula (II) (C1N).
  • the chemically modified alginic acid represented by the formula (I) used for forming the crosslinked alginic acid gel contained in the core layer of the multilayer polymer-coated crosslinked alginic acid gel fiber used for forming the crosslinked alginic acid gel contained in the core layer of the multilayer polymer-coated crosslinked alginic acid gel fiber.
  • the crosslinked alginic acid gel contained in the core layer of the multilayer polymer-coated crosslinked alginic acid gel fiber contains an alginic acid solution or an alginic acid gel formed from the alginic acid solution. If so, the solution of each solution in a mixed solution of a chemically modified alginic acid derivative represented by the formula (I), a chemically modified alginic acid derivative solution represented by the formula (II), and an alginic acid solution used for forming the core layer.
  • the crosslinked alginate gel contained in the core layer of the multilayer polymer-coated crosslinked alginate gel fiber is the formula (III-L) described in the above aspect [1-12]. ) (The definition in the formula is the same as the definition in the above-mentioned embodiment [1-12]).
  • the crosslinked alginate gel contained in the core layer of the multilayer polymer-coated crosslinked alginate gel fiber is the formula (III-L) according to the embodiment [1-12A].
  • Each definition in formula (III-L) comprises a group-mediated chemical cross-linking represented by the above-mentioned embodiment [1-12A].
  • the crosslinked alginate gel contained in the core layer of the multilayer polymer-coated crosslinked alginate gel fiber is the formula (III-L) [formula] of the embodiment [1-12].
  • each definition is the same as the definition of the above-mentioned embodiment [1-12]] or each of the above-mentioned embodiments [1B-12A] in the formulas (III-L) [formula (III-L)].
  • the definition is the same as the definition of aspect [1B-12A]] and includes chemical cross-linking via a group and ionic cross-linking via a divalent metal ion.
  • the divalent metal ion used for forming an ionic crosslink in the crosslinked alginate gel contained in the core layer is the divalent metal ion described in the above aspect [1-13A]. It is the same as the valence metal ion.
  • the cationic polymer of the cationic polymer layer of the multilayer polymer-coated crosslinked alginate gel fiber is the cation described in the above-mentioned embodiment [1-15-1]. Same as sex polymer.
  • the cationic polymer of the cationic polymer layer of the multilayer polymer coated crosslinked alginate gel fiber is chitosan.
  • the cationic polymer of the multilayer polymer-coated crosslinked alginate gel fiber is the same as the cationic polymer described in the above-mentioned embodiment [1-15-4]. be.
  • the anionic polymer layer of the multilayer polymer-coated crosslinked alginate gel fiber is an anionic polysaccharide, a sulfated polysaccharide, a synthetic polymer, an anionic polyamino acid, and the like.
  • An anionic polymer selected from the group consisting of chemically modified products, crosslinked products thereof, mixtures thereof, and the like.
  • the anionic polymer layer of the multilayer polymer-coated crosslinked alginic acid gel fiber is, for example, alginic acid, hyaluronic acid, capolic galacturonic acid, laginan, succinoglucan, and the like.
  • the anionic polymer layer of the multilayer polymer coated crosslinked alginic acid gel fiber is alginic acid.
  • the anionic polymer layer of the multilayer polymer-coated crosslinked alginate gel fiber is the formula (I) of the above-mentioned embodiment [1] or [1-1-5].
  • the anionic polymer layer of the multilayer polymer-coated crosslinked alginic acid gel fiber is alginic acid, and the formula (1B-16-4) of the above-mentioned embodiment [1] or [1-1-5] is used.
  • It consists of a crosslinked product formed from a chemically modified alginic acid derivative represented by the formula (I) and a chemically modified alginic acid derivative represented by the formula (II) of the above embodiment [1] or [1-2-5], and a mixture thereof.
  • An anionic polymer selected from the group.
  • the anionic polymer layer of the multilayer polymer-coated crosslinked alginate gel fiber is, for example, chondroitin sulfate, dextran sulfate, heparan sulfate, dermatan sulfate, fucoidan, keratane sulfate. , Or an anionic polymer selected from the group consisting of sulfated polysaccharides such as heparan, chemically modified products thereof, crosslinked products thereof, mixtures thereof, and the like.
  • the anionic polymer layer of the multilayer polymer-coated crosslinked alginate gel fiber is synthesized from, for example, acrylic acid, methacrylic acid, ethyl acrylic acid, polystyrene sulfonic acid and the like.
  • An anionic polymer selected from the group consisting of polymers, chemically modified products thereof, crosslinked products thereof, mixtures thereof, and the like.
  • the anionic polymer layer of the multilayer polymer-coated crosslinked alginate gel fiber is, for example, anionic polyamino acids such as polyglutamic acid and polyaspartic acid, and their chemistry.
  • the outer diameter of the multilayer polymer-coated crosslinked alginate gel fiber is, for example, in the range of about 0.1 to about 2000 ⁇ m.
  • the multilayer of the above embodiment is used.
  • a preferred embodiment of the crosslinked alginate gel in the core layer of the polymer coated crosslinked alginate gel fiber may be optionally formed.
  • the multilayer polymer-coated cross-linked alginic acid gel fiber of the above-mentioned embodiments [1B] to [1D] is preferably an alginic acid derivative represented by the formula (I) used for forming the cross-linked alginic acid gel.
  • the alginic acid derivative selected from the alginic acid derivative according to [1-1-1] or the preferred alginic acid derivative according to the above aspect [1-1-5] and represented by the formula (II) is the alginic acid derivative according to the above aspect [1-2-1].
  • the alginic acid derivative according to the above or the preferred alginic acid derivative according to the above embodiment [1-2-5]; the antibody-producing cells are selected from the cells according to the above embodiments [1B-3-1] to [1B-3-9]. Selected; the cationic polymer layer is selected from the cationic polymer according to the above embodiment [1-15-1]; the anionic polymer layer is selected from the above embodiments [1B-16] to [1B-16-7].
  • a multilayer polymer coated crosslinked alginate gel fiber selected from the anionic polymers described.
  • the multilayer polymer-coated cross-linked alginic acid gel fiber of the above-described embodiments [1B] to [1D] is more preferably the alginic acid derivative represented by the formula (I) used for forming the cross-linked alginic acid gel.
  • the alginic acid derivative selected from the alginic acid derivative according to the embodiment [1-1-2] or the more preferable alginic acid derivative according to the above embodiment [1-1-5] and represented by the formula (II) is the alginic acid derivative according to the embodiment [1-2-2].
  • -1] is a multilayer polymer-coated crosslinked alginate gel fiber selected from the anionic polymers described in -1].
  • the multilayer polymer-coated cross-linked alginic acid gel fiber of the above-described embodiments [1B] to [1D] is more preferably the alginic acid derivative represented by the formula (I) used for forming the cross-linked alginic acid gel.
  • the alginic acid derivative represented by the formula (II) is selected from the alginic acid derivative according to the embodiment [1-1-3], and the alginic acid derivative represented by the formula (II) is selected from the alginic acid derivative according to the embodiment [1-2-3]; Selected from the cells according to the embodiments [1B-3-3] to [1B-3-9]; the cationic polymer layer is described in the embodiments [1-15-2] or [1-15-4].
  • the anionic polymer layer is selected from the anionic polymers according to the above embodiments [1B-16-2] to [1B-16-4-4]; the multilayer polymer coated crosslinked alginate gel. It is a fiber.
  • the multilayer polymer-coated cross-linked alginic acid gel fiber of the above-described embodiments [1B] to [1D] is particularly preferably the alginic acid derivative represented by the formula (I) used for forming the cross-linked alginic acid gel.
  • the alginic acid derivative represented by the formula (II) is selected from the alginic acid derivative described in the embodiment [1-1-4], and the alginic acid derivative represented by the formula (II) is selected from the alginic acid derivative described in the above aspect [1-2-4]; Selected from the cells according to the embodiments [1B-3-6] to [1B-3-9]; the cationic polymer layer is poly-L-alginic acid, polyallylamine (PAA), polyethyleneimine, or polymethylene-CO. -Selected from guanidine (PMCG); the anionic polymer layer is alginic acid, formula (I) according to the above embodiments [1-1-1] to [1-1-4], [1-2-5].
  • -2-4 a multilayer polymer-coated cross-alginic acid gel fiber selected from cross-linked bodies formed from the alginic acid derivative represented by the formula (II) described in [1-2-4].
  • the multilayer polymer-coated crosslinked alginic acid gel fiber according to the above-described embodiments [1B] to [1D] is most preferably the alginic acid derivative represented by the formula (I) used for forming the crosslinked alginic acid gel.
  • the following partial structural formula as Akn-L 1- (in each formula, the right side of the broken line is not included): It has a group represented by; the alginic acid derivative represented by the formula ( II ) is ⁇ L2-.
  • the antibody-producing cells are selected from the cells according to the above aspect [1B-3-5], preferably the antibody-producing cells are antibody-producing CHO cells; the cationic polymer layer is , Poly-L-ornithine, polyallylamine (PAA), polyethyleneimine, or polymethylene-CO-guanidine (PMCG);
  • the anionic polymer layer is alginic acid, Akn-L 1- as the following partial structural formula (in each formula, the right side of the broken line is not included):
  • the alginic acid derivative represented by the formula (I), ⁇ L2- As the alginic acid derivative represented by the formula (I), ⁇ L2- , the following partial structural formula (in each formula, the outside of the broken line at both ends is not included):
  • An alginic acid derivative represented by the formula (II) and an alginic acid represented by the formula (I) having the partial structural formula (ALK-1a-3a) or (ALK-2-3) as Akn - L1-.
  • a multilayer polymer coated cross-linked alginate gel fiber selected from cross-linked bodies.
  • the crosslinked alginate gel of the multilayer polymer coated crosslinked alginate gel fiber is the above-mentioned embodiments [1-4] to [1-].
  • 4-1] contains any of the addable components described in.
  • a preferred embodiment of the method for producing a multilayer polymer-coated crosslinked alginate gel fiber can be arbitrarily formed.
  • the second aspect is as follows. Performing a cross-linking reaction using a cell capable of producing an antibody, a physiologically active substance, etc., a chemically modified alginic acid derivative represented by the formula (I) and a chemically modified alginic acid derivative represented by the formula (II) according to the above embodiment [1].
  • a method for producing a polymer-coated cross-linked alginic acid gel fiber formed by coating a core layer containing the cross-linked alginic acid gel obtained in the above with a cationic polymer.
  • Step (1) A divalent metal containing a cell capable of producing an antibody, a physiologically active substance, or the like, and a chemically modified alginic acid derivative represented by the formulas (I) and (II) described in the above embodiment [1].
  • Step (2) A cation by contacting a crosslinked alginate gel fiber (CLA) containing cells capable of producing the antibody, physiologically active substance, etc. obtained in the step (1) in a core layer with a solution containing a cationic polymer.
  • the production method comprises the steps of obtaining a polymer-coated crosslinked alginate gel fiber (CFB) coated with a sex polymer layer.
  • the polymer-coated crosslinked alginate gel fiber according to the above aspect [2] is the polymer-coated crosslinked alginate gel fiber according to any one of the above aspects ([1] to [1-17-5]).
  • the cells capable of producing the antibody, the physiologically active substance, etc. used for producing the polymer-coated crosslinked alginate gel fiber are the cells described in the above aspects [1-3] to [1-3-5]. It is the same as the cell capable of producing the antibody, the physiologically active substance, etc. according to any one of the above items.
  • cells capable of producing an antibody, a physiologically active substance, etc. used for producing a polymer-coated crosslinked alginate gel fiber are the cells described in the above aspects [1B-3] to [1B-3-]. It is the same as the cell capable of producing the antibody, physiologically active substance, etc. according to any one of 19].
  • the weight average molecular weight measured by the gel filtration chromatography method of the chemically modified alginic acid derivative represented by the formula (I) used for producing the polymer-coated crosslinked alginic acid gel fiber is, for example, It ranges from about 100,000 Da to about 3,000,000 Da; preferably in the range of about 300,000 Da to about 2,500,000 Da, more preferably in the range of about 500,000 Da to about 2,000,000 Da. Is.
  • the weight average molecular weight measured by the gel filtration chromatography method of the chemically modified alginic acid derivative represented by the formula (II) used for producing the polymer-coated crosslinked alginic acid gel fiber is, for example, It ranges from about 100,000 Da to about 3,000,000 Da; preferably in the range of about 300,000 Da to about 2,500,000 Da, more preferably in the range of about 500,000 Da to about 2,000,000 Da. Is.
  • L1 ⁇ is the same as the definition in the above embodiments [ 1 ] to [1-1-4]), for example, the introduction rate is in the range of about 0.1 to about 30 mol%; preferably about. It is in the range of 0.3 to about 20 mol%; more preferably in the range of about 0.5 to about 10 mol%.
  • the reactive group of the chemically modified alginate derivative represented by the formula (II) used in the production of the polymer-coated crosslinked alginate gel fiber N3- L2-NH 2 groups ( -).
  • L2- has the same definition as in the above embodiments [ 1 ], [1-2-1] to [1-2-4]), and the introduction rate is, for example, about 0.1 to about 30 mol%. It is in the range; preferably in the range of about 0.3 to about 20 mol%; more preferably in the range of about 0.5 to about 15 mol%.
  • it is a component selected from the group consisting of an alginic acid solution, a medium, a culture solution, a collagen solution, methyl cellulose, a sucrose solution, or a mixture thereof; preferably, an alginic acid solution, a medium, a culture solution, or a mixture thereof, etc. It is a component selected from the group consisting of.
  • the weight average molecular weight of alginic acid used in (eg, sodium alginate, etc.) measured by gel filtration chromatography (GPC method) is, for example, in the range of about 150,000 Da to about 2.5 million Da; preferably. It ranges from about 300,000 Da to about 2,000,000 Da, more preferably from about 700,000 Da to about 1,500,000 Da.
  • the weight average molecular weight of alginic acid (eg, sodium alginate, etc.) used to prepare an alginic acid solution that can be added to the solution as measured by a gel filtration chromatography method (GPC method) is, for example, about 150,000 Da to about 2,500, It is in the range of 000 Da; preferably in the range of about 300,000 Da to about 2.5 million Da; more preferably in the range of about 700,000 Da to about 1.400,000 Da, about 800,000 Da to about 1.5 million Da. , About 1,400,000 to about 2,000,000 Da, or about 1,500,000 to about 2,500,000.
  • the concentration of the solution of the chemically modified alginate derivative represented by the formula (I) used for producing the polymer-coated crosslinked alginate gel fiber is, for example, about 0.01 to about 1. It is in the range of 5% by weight; preferably in the range of about 0.05 to about 1.0% by weight; more preferably in the range of about 0.08 to about 0.75% by weight.
  • the concentration of the solution of the chemically modified alginate derivative represented by the formula (II) used for producing the polymer-coated crosslinked alginate gel fiber is, for example, about 0.01 to about 1. It is in the range of 5% by weight; preferably in the range of about 0.05 to about 1.0% by weight; more preferably in the range of about 0.08 to about 0.75% by weight.
  • a mixed solution of a chemically modified arginic acid derivative represented by the formula (I) and a chemically modified arginic acid derivative represented by the formula (II) used for producing a polymer-coated crosslinked arginic acid gel fiber is, for example, in the range of about 0.02 to about 2.0% by weight; preferably in the range of about 0.1 to about 2.0% by weight; more preferably about 0.15 to about 1%. It is in the range of 5.5% by weight.
  • the concentration of the alginic acid solution that can be added to the mixed solution containing the cells capable of producing an antibody, a physiologically active substance and the like and the chemically modified alginic acid derivatives represented by the formulas (I) and (II). Is, for example, in the range of 0 to about 1.98% by weight; preferably in the range of 0 to about 1.8% by weight; more preferably in the range of 0 to about 1.7% by weight.
  • the alginic acid solution is added to a mixed solution containing cells capable of producing an antibody, a physiologically active substance, etc. and a chemically modified alginic acid derivative represented by the formulas (I) and (II).
  • the total concentration of the mixed solution containing the chemically modified alginic acid derivative represented by the formula (I) and the formula (II) and the concentration of the alginic acid solution is preferably about 0.5 to about 2.0% by weight. Yes; more preferably, the concentration is selected from about 1.0% by weight, about 1.5% by weight and about 2.0% by weight.
  • the alginic acid solution is added to a mixed solution containing cells capable of producing an antibody, a physiologically active substance, etc. and a chemically modified alginic acid derivative represented by the formulas (I) and (II).
  • the combination of the concentration (C1 (% by weight)) of the mixed solution containing the chemically modified alginic acid derivative represented by the formulas (I) and (II) and the concentration of the alginic acid solution (C2 (% by weight)) is preferable.
  • (C1: C2) (about 0.2: about 1.3), (about 0.5: about 1.0), (about 1.0: about 0.5), (about 1.5: It is a combination selected from the group consisting of 0), (about 0.66: about 1.34), and (about 0.34: about 0.66).
  • the alginic acid solution is added to a mixed solution containing cells capable of producing an antibody, a physiologically active substance, etc. and a chemically modified alginic acid derivative represented by the formulas (I) and (II).
  • cells capable of producing an antibody, a physiologically active substance, etc. used for forming a core layer of a polymer-coated crosslinked alginate gel fiber and represented by formulas (I) and (II).
  • the alginic acid solution is added to the mixed solution containing the chemically modified alginic acid derivative
  • the volume (v1) of the chemically modified alginic acid derivative represented by the formula (I) in the mixed solution to which the alginic acid solution is added is represented by the formula (II).
  • a mixed solution containing a cell capable of producing an antibody, a physiologically active substance, etc. and a chemically modified alginic acid derivative represented by the formulas (I) and (II) is injected into the solution.
  • the divalent metal ion contained is a divalent metal ion selected from the group of calcium ion, magnesium ion, barium ion, strontium ion, zinc ion and the like; preferably calcium ion, barium ion or strontium ion. More preferably, it is calcium ion or barium ion.
  • the solution for injecting a mixed solution containing cells capable of producing an antibody, a physiologically active substance, etc. and a chemically modified alginic acid derivative represented by the formulas (I) and (II) is a solution.
  • the concentration of the divalent metal ion is, for example, in the range of about 1 mM to about 1 M, or about 10 to about 500 mM; preferably. It is about 10 to about 100 mM.
  • the mixed solution containing the cells capable of producing an antibody, a physiologically active substance, etc. and the chemically modified alginic acid derivative represented by the formulas (I) and (II) is, for example, FIG.
  • the mixed solution can be introduced from the introduction port 1 of the device XX and ejected from the discharge port 2 of the device XX.
  • the mixed solution containing the cells capable of producing an antibody, a physiologically active substance, etc. and the chemically modified alginic acid derivative represented by the formulas (I) and (II) For example, the ejection can be performed from the discharge port 2 of the apparatus XX using an extrusion cylinder YY or the like as shown in FIG.
  • an injection cylinder can be used as a combination of the apparatus XX and the extruder YY.
  • a glass or plastic syringe barrel can be used as the syringe barrel.
  • [2-18] In the above-mentioned embodiments [2], [2-16-1] and [2-16-2], cells capable of producing an antibody, a physiologically active substance and the like, and represented by the formulas (I) and (II).
  • the injection rate (flow velocity) of the mixed solution containing the chemically modified alginic acid derivative is, for example, in the range of about 100 to about 10000 ⁇ L / min.
  • the solution containing the cationic polymer to be contacted with the crosslinked alginate gel fiber (CLA) containing cells capable of producing an antibody, a physiologically active substance, etc. is a polyamino acid (basic amino acid).
  • Polymer a basic polysaccharide, a basic polymer, a solution containing a cationic polymer selected from the group consisting of salts thereof and the like.
  • the solution containing a cationic polymer to be contacted with a crosslinked ornithine gel fiber (CLA) containing cells capable of producing an antibody, a physiologically active substance, or the like is preferably a polyamino acid.
  • the solution containing a cationic polymer to be contacted with a crosslinked alginate gel fiber (CLA) containing cells capable of producing an antibody, a physiologically active substance, etc. is, for example, a basic polysaccharide.
  • the solution containing the cationic polymer to be contacted with the crosslinked alginate gel fiber (CLA) containing cells capable of producing an antibody, a physiologically active substance, etc. is, for example, a basic polymer.
  • a basic polymer Select from the group consisting of certain polymethylene-CO-guanidine (PMCG), polyallylamine (PAA), polyvinylamine (PVA), polyethyleneimine, allylamine-diallylamine copolymers, allylamine-maleic acid copolymers, and salts thereof. It is a solution containing a cationic polymer to be used.
  • the solution containing the cationic polymer is polyallylamine (PAA), polyethyleneimine, polymethylene-CO-guanidine (PMCG) and them.
  • PAA polyallylamine
  • PMCG polymethylene-CO-guanidine
  • the solution containing a cationic polymer to be contacted with a crosslinked alginate gel fiber (CLA) containing cells capable of producing an antibody, a physiologically active substance, etc. is a calcium chloride solution, a buffer solution, or the like.
  • the temperature during production of the polymer-coated crosslinked alginate gel fiber is, for example, in the range of about 4 to about 37 ° C.
  • a preferred embodiment of the method for producing a polymer-coated crosslinked alginate gel fiber can be arbitrarily formed.
  • a cross-linking reaction is carried out using a cell capable of producing an antibody, a physiologically active substance or the like, a chemically modified arginic acid derivative represented by the formula (I) and a chemically modified arginic acid derivative represented by the formula (II) according to the above embodiment [1].
  • a method for producing a multilayer polymer-coated crosslinked alginate gel fiber formed by sequentially coating a core layer containing a crosslinked alginate gel obtained in the above step with a cationic polymer and an anionic polymer.
  • Step (1) A mixture containing cells capable of producing an antibody, a physiologically active substance, etc., and a chemically modified alginic acid derivative represented by the formula (I) and a chemically modified alginic acid derivative represented by the formula (II) according to the above embodiment [1].
  • Step (2) A cross-linked alginate gel fiber (CLA) containing a cell capable of producing an antibody, a physiologically active substance, etc.
  • a step of obtaining a polymer-coated crosslinked alginate gel fiber (CFB) coated with a sex polymer layer Step (3): The polymer-coated crosslinked alginate gel fiber (CFB) obtained in step (2) is brought into contact with a solution containing an anionic polymer to obtain a multilayer polymer-coated crosslinked alginate gel coated with an anionic polymer layer.
  • the process of obtaining fiber (ACFB), It is a manufacturing method characterized by containing.
  • the multilayer polymer-coated crosslinked alginate gel fiber according to the embodiment [2B] is the multilayer polymer-coated crosslinked alginate gel fiber according to any one of the above embodiments ([1B] to [1B-18-6]).
  • cells capable of producing an antibody, a physiologically active substance, etc. used for producing a fiber are the cells of the above aspect [1-3] to [1-3-5], [1B]. -3] It is the same as the cell capable of producing the antibody, physiologically active substance, etc. according to any one of [1B-3-19].
  • the introduction rate of the two units (Akn-L 1 -is the same as the definition in the above-mentioned embodiment [1], [1B-1-1] or [1B-1-2]) is the introduction rate of the above-mentioned embodiment [2-4]. ] Is the same as the range of introduction rate described in.
  • the weight average molecular weight of alginic acid (for example, sodium alginate, etc.) used in the preparation as measured by the gel filtration chromatography method (GPC method) is the same as the molecular weight described in the above aspect [2-7A].
  • a cell capable of producing an antibody, a physiologically active substance, etc. and a chemically modified alginic acid derivative represented by the formulas (I) and (II) are included in the fiber manufacturing step (1).
  • the concentration of the alginic acid solution that can be added to the mixed solution is the same as the concentration range described in the above aspect [2-11].
  • the alginic acid solution is added to the mixed solution containing, the total concentration of the mixed solution containing the chemically modified alginic acid derivative represented by the formulas (I) and (II) and the concentration of the alginic acid solution is the above-mentioned embodiment [2-. It is the same as the concentration range described in 11-1]; more preferably, it is about 1.5% by weight.
  • the combination of% by weight)) is the same as the concentration range described in the above aspect [2-11-2].
  • the concentration (C1A (% by weight)) of the solution of the chemically modified alginic acid derivative represented by the formula (I) is added to the mixed solution containing the above, the concentration (C1A (% by weight)) of the solution of the chemically modified alginic acid derivative represented by the formula (I), and the solution of the chemically modified alginic acid derivative represented by the formula (II).
  • the combination of the concentration (C1N (% by weight)) and the concentration of the alginic acid solution (C2 (% by weight)) is the same as the range of the concentration described in the above aspect [2-11-3].
  • (v1: v2) (7.5: 7.5).
  • the alginic acid solution is added to the mixed solution containing, the volume (v1) of the chemically modified alginic acid derivative represented by the formula (I) and the chemically modified alginic acid derivative represented by the formula (II) in the mixed solution to which the alginic acid solution is added.
  • the volume ratio of the volume of the solution (v2) and the volume of the alginic acid solution (v3) is the same as the combination described in the above aspect [2-12-2].
  • a cell capable of producing an antibody, a physiologically active substance, etc. and a chemically modified alginic acid derivative represented by the formulas (I) and (II) are included.
  • the divalent metal ion contained in the solution for injecting the mixed solution is the same as the divalent metal ion described in the above aspect [2-13].
  • the concentration of the divalent metal ion used in the fiber manufacturing step (1) is, for example, in the range of about 1 mM to about 1 M, or about 10 to about. It is in the range of 500 mM; preferably about 10 to about 100 mM.
  • the mixed solution containing the cells capable of producing an antibody, a physiologically active substance, etc. and the chemically modified alginic acid derivative represented by the formulas (I) and (II) is, for example, FIG.
  • the mixed solution can be introduced from the introduction port 1 of the device XX and ejected from the discharge port 2 of the device XX.
  • the mixed solution containing the cells capable of producing an antibody, a physiologically active substance, etc. and the chemically modified alginic acid derivatives represented by the formulas (I) and (II) For example, the ejection can be performed from the discharge port 2 of the apparatus XX using an extrusion cylinder YY or the like as shown in FIG.
  • an injection cylinder can be used as a combination of the apparatus XX and the extrusion cylinder YY.
  • a glass or plastic syringe barrel can be used as the syringe barrel.
  • [2B-18] In the above-mentioned embodiments [2B], [2B-16-1] and [2B-16-2], cells capable of producing an antibody, a physiologically active substance and the like, and represented by formulas (I) and (II).
  • the injection rate (flow velocity) of the mixed solution containing the chemically modified alginic acid derivative is, for example, in the range of about 100 to about 10000 ⁇ L / min.
  • the fiber manufacturing step (2) comprises a cationic polymer to be contacted with a crosslinked alginate gel fiber (CLA) containing cells capable of producing an antibody, a physiologically active substance, or the like.
  • CLA crosslinked alginate gel fiber
  • a crosslinked alginate gel fiber (CLA) containing cells capable of producing an antibody, a physiologically active substance, or the like is contacted, which is preferable and more preferable.
  • the solutions containing the more preferred cationic polymers are the same as the solutions described in the above-mentioned embodiment [2-19-2], respectively.
  • the fiber manufacturing step (2) comprises a cationic polymer to be contacted with a crosslinked alginate gel fiber (CLA) containing cells capable of producing an antibody, a physiologically active substance, or the like.
  • the solution is, for example, a solution containing a cationic polymer selected from the group consisting of the basic polysaccharide chitosan or a salt thereof.
  • the fiber manufacturing step (2) comprises a cationic polymer to be contacted with a crosslinked alginate gel fiber (CLA) containing cells capable of producing an antibody, a physiologically active substance, or the like.
  • CLA crosslinked alginate gel fiber
  • the solution containing a cationic polymer to be contacted with a crosslinked alginate gel fiber (CLA) containing cells capable of producing an antibody, a physiologically active substance, or the like is used.
  • CLA crosslinked alginate gel fiber
  • Calcium chloride solution, buffer solution and the like can be contained.
  • the temperature during production of the multilayer polymer coated crosslinked alginate gel fiber is, for example, in the range of about 4 to about 37 ° C.
  • the solution containing the anionic polymer to be contacted with the polymer-coated crosslinked alginate gel fiber (CFB) is an anionic polysaccharide or a sulfated polysaccharide.
  • the solution containing the anionic polymer to be contacted with the polymer-coated crosslinked alginate gel fiber (CFB) in the fiber manufacturing step (3) is alginic acid, according to the above aspect [1].
  • an anionic polymer selected from the group consisting of a crosslinked product formed from a chemically modified alginic acid derivative and / or a chemically modified alginic acid derivative represented by the formula (II), salts thereof, and a mixture thereof.
  • the solution containing the anionic polymer to be contacted with the polymer-coated crosslinked alginate gel fiber is, for example, alginic acid, hyaluronic acid, capoli.
  • Anionic polysaccharides such as galacturonic acid, laginan, succinoglucan, gum arabic, xanthan gum, alginic acid, pectin, pectinic acid, carboxymethyl cellulose, agar, their chemically modified products, their bridges, their salts, and theirs.
  • a solution containing an anionic polymer selected from the group consisting of mixtures.
  • the solution containing the anionic polymer to be contacted with the polymer-coated crosslinked arginate gel fiber (CFB) is, for example, chondroitin sulfate, dextran sulfate, heparan.
  • cationic polymers selected from the group consisting of sulfated polysaccharides such as sulfuric acid, dermatan sulfate, fucoidan, keratane sulfate, or heparin, their chemical modifications, crosslinked products thereof, salts thereof, and mixtures thereof. It is a solution.
  • the solution containing the anionic polymer to be contacted with the polymer-coated crosslinked alginate gel fiber (CFB) is, for example, acrylic acid, methacrylic acid, ethyl.
  • the solution containing the anionic polymer to be contacted with the polymer-coated crosslinked alginate gel fiber (CFB) is, for example, polyglutamic acid, polyaspartic acid or the like.
  • a preferred embodiment of the method for producing a multilayer polymer-coated crosslinked alginate gel fiber can be arbitrarily formed.
  • the third aspect is as follows. Performing a cross-linking reaction using a cell capable of producing an antibody, a physiologically active substance, etc., a chemically modified alginic acid derivative represented by the formula (I) and a chemically modified alginic acid derivative represented by the formula (II) according to the above embodiment [1].
  • This is a method for producing an antibody, a physiologically active substance, or the like using a polymer-coated cross-linked alginic acid gel fiber formed by coating a core layer containing the cross-linked alginic acid gel obtained in the above method with a cationic polymer.
  • the polymer-coated crosslinked alginate gel fiber is placed in a culture vessel, a medium is added to impregnate the polymer-coated crosslinked alginate gel fiber, and the culture is carried out to obtain an antibody, a physiologically active substance, or the like. It is a manufacturing method.
  • the polymer-coated crosslinked alginate gel fiber according to the above aspect [3] is the polymer-coated crosslinked alginate gel fiber according to any one of the above aspects ([1] to [1-17-5]).
  • the culture vessel is a vessel selected from the group consisting of, for example, a tissue culture plate, a triangular flask, a T-flask, a spinner flask, a culture bag, an animal cell culture tank, and the like. Yes; preferably a triangular flask or an animal cell culture tank.
  • any method such as static culture or shaking culture may be selected, and any method such as batch culture (batch culture), feed culture (fed batch culture), or continuous culture may be used. It is good, but feeding culture or continuous culture is preferable.
  • the temperature during culturing is, for example, in the range of about 28 ° C to about 39 ° C, for example, about 30 ° C to about. It is in the range of 37 ° C.
  • the stirring speed during culturing is, for example, about 50 to about 250 rpm, for example, about 125 rpm.
  • the culture conditions are, for example, a culture temperature in the range of about 28 ° C to about 39 ° C and a 5% CO 2 atmosphere. Incubate in a culture device at a stirring speed of about 125 rpm.
  • the culture period is, for example, 7 days, 14 days, 28 days, or 42 days. Or 56 days, or 70 days.
  • the culture temperature when described as "about", it may include values up to ⁇ 10% of the value, and in some embodiments up to ⁇ 20% of the value.
  • the cells capable of producing an antibody, a physiologically active substance, etc. contained in the core layer of the polymer-coated crosslinked alginate gel fiber are the cells described in the above aspects [1-3] to [1-3-5]. ], Which is the same as the cell capable of producing the antibody, physiologically active substance, etc. according to any one of the above items.
  • the cells capable of producing an antibody, a physiologically active substance, etc. contained in the core layer of the polymer-coated crosslinked alginate gel fiber are the cells described in the above aspects [1B-3] to [1B-3]. -19] The same as the cells capable of producing the antibody, physiologically active substance, etc. according to any one of the above items.
  • [3-7] A method for producing an antibody, a physiologically active substance, or the like, which comprises adding a cell proliferation inhibitor in any one of the above embodiments [3] to [3-5].
  • the third aspect is as follows. Performing a cross-linking reaction using a cell capable of producing an antibody, a physiologically active substance, etc., a chemically modified alginic acid derivative represented by the formula (I) and a chemically modified alginic acid derivative represented by the formula (II) according to the above embodiment [1].
  • This is a method for producing an antibody, a physiologically active substance, or the like using a multilayer polymer-coated crosslinked alginate gel fiber formed by sequentially coating a core layer containing the crosslinked alginate gel obtained in the above step with a cationic polymer and an anionic polymer.
  • an antibody and a physiologically active substance are obtained by placing the multilayer polymer-coated crosslinked alginate gel fiber in a culture vessel, adding a medium, impregnating the multilayer polymer-coated crosslinked alginate gel fiber, and culturing.
  • Etc. is a manufacturing method.
  • the multilayer polymer-coated crosslinked alginate gel fiber according to the embodiment [3B] is the multilayer polymer-coated crosslinked alginate gel fiber according to any one of the above embodiments ([1B] to [1B-18-6]).
  • the temperature at the time of culturing is, for example, in the range of about 28 ° C to about 39 ° C, for example, about 30 ° C to about. It is in the range of 37 ° C.
  • the stirring speed during culturing is, for example, about 50 to about 250 rpm, for example, about 125 rpm.
  • the culture conditions are, for example, a culture temperature in the range of about 28 ° C to about 39 ° C and a 5% CO 2 atmosphere. Incubate in a culture device at a stirring rate of about 125 rpm.
  • the culture period is, for example, 7 days, 14 days, 28 days, or 42 days. Or 56 days, or 70 days.
  • the cells capable of producing the antibody, bioactive substance, etc. contained in the core layer of the multilayer polymer-coated crosslinked alginate gel fiber are the cells of the embodiments [1-3] to [1-3-]. 5], the same as the cell capable of producing the antibody, bioactive substance, etc. according to any one of [1B-3] to [1B-3-19].
  • [3B-7] A method for producing an antibody, a physiologically active substance, or the like, which comprises adding a cell proliferation inhibitor in any one of the above embodiments [3B] to [3B-5].
  • a preferred embodiment of the method for producing an antibody, a physiologically active substance, etc. can be arbitrarily formed. ..
  • the fourth aspect is the cationicity produced in the core layer of the polymer-coated crosslinked alginate gel fiber obtained by the method for producing an antibody according to any one of the above aspects [3] to [3-7].
  • the antibody that permeates the polymer layer is an antibody having an isotype selected from the group consisting of, for example, IgG, IgA, IgM, IgD, IgE, and the like.
  • a fourth B aspect is a cationic polymer layer and an anionic polymer produced in the core layer of a multilayer polymer-coated crosslinked alginate gel fiber in the method for producing an antibody according to the above-mentioned aspects [3B] to [3B-7].
  • the antibody that permeates the layer is an antibody having an isotype selected from the group consisting of, for example, IgG, IgA, IgM, IgD, IgE, and the like.
  • the fifth aspect is the cationicity produced in the core layer of the polymer-coated crosslinked alginate gel fiber obtained by the method for producing an antibody according to any one of the above aspects [3] to [3-7].
  • the molecular weight of the antibody permeating the polymer layer is, for example, about 45,000 to about 1,000,000 Da, about 3,000 to about 1,000,000 Da, about 20,000 to about 1,000,000 Da, about 20.
  • a fifth B aspect is produced in the core layer of a multilayer polymer coated crosslinked alginate gel fiber in the antibody production method according to the above aspects [3B] to [3B-7], and is a cationic polymer layer and anionic.
  • the molecular weight of the antibody that permeates the polymer layer is, for example, about 3,000 to about 1,000,000 Da, about 20,000 to about 1,000,000 Da, about 45,000 to about 1,000,000 Da, and about 20.
  • the molecular weight of insulin produced using MIN6 cells by the production method according to any one of the above aspects [3] to [3-7] is, for example, about 5. Insulin in the range of 000 to 10,000.
  • the sixth aspect of the sixth B is the physiology produced by using the bioactive substance-producing cells by the production method according to the above-mentioned aspects [3] to [3-7] and [3B] to [3B-7].
  • the molecular weight of the active substance is, for example, about 3,000 to about 1,000,000 Da, about 20,000 to about 1,000,000 Da, about 45,000 to about 1,000,000 Da, about 20,000. It is a bioactive substance in the range of about 400,000 Da, about 45,000 to about 400,000 Da, about 20,000 to about 200,000 Da, and about 45,000 to about 200,000 Da.
  • the antibody obtained in the method for producing an antibody according to any one of the above aspects [3] to [3-7] is, for example, muromonab using muromonab-CD3-producing CHO cells.
  • Arilokumab ixekizumab-producing CHO cells, ixekizumab, brodalmab-producing CHO cells, brodalmab, idalcizumab-producing CHO cells, idalcizumab, erotuzumab-producing CHO cells, erotuzumab, pembu Pembrolizumab using lorizumab-producing CHO cells, salilumab using salilumab-producing CHO cells, bezlotoxmab using bezlotoxmab-producing CHO cells, berimumab using berimmab-producing CHO cells, and dalatumumab using daratumumab-producing CHO cells.
  • the antibodies obtained in the antibody production method according to the above aspects [3] to [3-7] and [3B] to [3B-7] are muromonab-CD3, trussumab, and rituximab.
  • Antibodies such as enholtumab, sashitsuzumab, verantamab, roncastuximab, chisotumab, datpotamab, patritumab; antibodies with modified sugar chains such as mogamurizumab, benlarizumab, obinutsuzumab, inebirizumab, inebirizumab, It is a small molecule antibody composed of an antibody fragment such as.
  • the antibody obtained in the method for producing the antibody according to the above aspects [3] to [3-7] and [3B] to [3B-7] is a muromonab-CD3 producing CHO cell.
  • the antibodies obtained in the method for producing the antibodies according to the above embodiments [3] to [3-7] and [3B] to [3B-7] are muromonab-CD3 producing CHO cells and trussumab producing CHO cells.
  • Lithuximab-producing CHO cells Lithuximab-producing CHO cells, paribismab-producing CHO cells, infliximab-producing CHO cells, basiliximab-producing CHO cells, tosirizumab-producing CHO cells, gemtuzumab-producing CHO cells, bebashizumab-producing CHO cells, ibritsumomab-producing CHO cells, adalimumab-producing CHO cells, adalimumab-producing CHO cells , Ranibizumab-producing CHO cells, omalizumab-producing CHO cells, eculizumab-producing CHO cells, panitumumab-producing CHO cells, ustequinumab-producing CHO cells, golimumab-producing CHO cells, canaquinumab-producing CHO cells, denosumab-producing CHO cells, mogamurizumab-producing CHO cells, mogamurizumab-
  • CHO cells dinutuximab-producing CHO cells, fremanezumab-producing CHO cells, elenumab-producing CHO cells, kasiribimab-producing CHO Cells, imdevimab-producing CHO cells, aniflorumab-producing CHO cells, sotrobimab-producing CHO cells, ocrylizumab-producing CHO cells, naxistamab-producing CHO cells, aducanumab-producing CHO cells, tafacitamab-producing CHO cells, marjetuximab-producing CHO cells, poratsumab-producing CHO cells, poratsumab-producing CHO cells Producing CHO cells, Sashitsuzumab-producing CHO cells, Verantamab-producing CHO cells, Roncastsumib-producing CHO cells, Chisotsumab-producing CHO cells, Inevirizumab-producing CHO cells, Brinatsumomab-producing CHO cells,
  • the antibodies obtained in the method for producing an antibody according to the above-described embodiments [3] to [3-7] and [3B] to [3B-7] are: trussumab-producing CHO cells, rituximab-producing CHO cells, and infliximab.
  • Antibodies produced from CHO cells such as producing CHO cells, tosirizumab-producing CHO cells, adalimmab-producing CHO cells, nivormab-producing CHO cells, and anti-GPVI antibody-producing CHO cells; or tosirizumab-producing CHO cells or anti-GPVI antibody-producing CHO cells. It is an antibody produced from; or an antibody produced from tosirizumab-producing CHO cells.
  • alginic acid as a raw material for synthesizing chemically modified alginic acid derivatives represented by the formulas (I) and (II), alginic acid as a raw material for an alginic acid solution or an alginic acid gel that can be contained in the core layer, and anionic.
  • the alginic acid used to form the polymer layer will be described below.
  • the term alginic acid means at least one alginic acid (sometimes referred to as "alginic acids") selected from the group consisting of alginic acid, alginic acid esters, and salts thereof (for example, sodium alginate). do.
  • the alginic acid used may be of natural origin or synthetic, but is preferably of natural origin.
  • Preferred alginic acids are bioabsorbable polysaccharides extracted from brown algae such as Lessonia, Macrocystis, Laminaria, Ascophyllum, Derbilia, Ecklonia cava, Arame, Combu and D-mannuronic acid (M).
  • It is a polymer in which two kinds of uronic acids, L-gluuronic acid (G) and L-gluuronic acid (G), are linearly polymerized. More specifically, the homopolymer fraction of D-mannuronic acid (MM fraction), the homopolymer fraction of L-gluuronic acid (GG fraction), and the random arrangement of D-mannuronic acid and L-gluuronic acid.
  • MM fraction homopolymer fraction of D-mannuronic acid
  • GG fraction homopolymer fraction of L-gluuronic acid
  • It is a block copolymer in which the resulting fractions (M / G fractions
  • Alginic acid is a kind of natural polysaccharide produced by extracting from seaweed of brown algae and purifying it, and is a polymer obtained by polymerizing D-mannuronic acid (M) and L-gluuronic acid (G).
  • the composition ratio (M / G ratio) of alginic acid D-mannuronic acid and L-gluuronic acid, that is, the gel strength, differs mainly depending on the type of organism from which seaweeds are derived, and also depends on the place of growth and season of the organism. Affected, it ranges from a high G type with an M / G ratio of about 0.2 to a high M type with an M / G ratio of about 5.
  • the physicochemical properties of alginic acid may differ depending on the M / G ratio of alginic acid, the arrangement of M and G, and the like, and the preferred uses may differ. It is known that the gelling ability of alginic acids and the properties of the produced gel are affected by the M / G ratio, and generally, the gel strength increases when the G ratio is high. The M / G ratio also affects the hardness, brittleness, water absorption, flexibility, etc. of the gel. Therefore, the alginic acid used in the present invention should have an appropriate M / G ratio and an appropriate viscosity depending on the final intended use.
  • the industrial production method of alginic acid includes an acid method and a calcium method, but in the present invention, any method produced by any of the production methods can be used.
  • the quantitative value by the HPLC method is preferably contained in the range of 80 to 120% by mass, more preferably contained in the range of 90 to 110% by mass, and contained in the range of 95 to 105% by mass. More preferred.
  • those whose quantitative values by the HPLC method are included in the above range are referred to as high-purity alginic acid.
  • the alginic acid or a salt thereof used in the present invention is preferably high-purity alginic acid.
  • a commercial product for example, as the Kimika algin series, a product sold by Kimika Co., Ltd., preferably a high-purity food / pharmaceutical grade product can be purchased and used. Commercially available products can be further purified and used as appropriate. For example, low endotoxin treatment is preferred. As the purification method or the low endotoxin treatment method, for example, the method described in JP-A-2007-7425 can be adopted. In the present specification, the term "mass%" means w / w% or w / v%.
  • the salt of alginic acid in "alginic acid” used in the present invention is "monovalent metal salt of alginic acid", and hydrogen ions of D-mannuronic acid of alginic acid or carboxylic acid of L-gluuronic acid can be used as Na + or K +. It is a salt produced by ion exchange with monovalent metal ions such as. Specific examples of the monovalent metal salt of alginic acid include sodium alginate and potassium alginate, but sodium alginate is particularly preferable.
  • alginic acid may be referred to as (ALG) -COOH, with alginic acid as (ALG) and one of any carboxyl groups of alginic acid as -COOH.
  • the alginic acid used in the present invention has an appropriate weight average molecular weight according to its final intended use.
  • the weight average molecular weight (GPC) of alginic acid used in the present invention is, for example, 10,000 to 10 million; preferably 100,000 to 5 million; more preferably 150,000 to 3 million.
  • the alginate is sodium alginate.
  • the sodium alginate commercially available sodium alginate can be used.
  • the sodium alginate used in the examples described later is the sodium alginate of A-1, A-2, A-3, B-1, B-2, and B-3 described in the table below (sold by Mochida). Selected from (Pharmaceutical Co., Ltd.). The viscosity, weight average molecular weight and M / G ratio of each 1 w / w% aqueous solution of sodium alginate are shown in the table below.
  • the physical property values of the sodium alginate A-1, A-2, A-3, B-1, B-2, and B-3 were measured by the following various methods.
  • the measuring method is not limited to the method, but each physical property value may differ from the above depending on the measuring method.
  • Pretreatment method An eluent was added to the sample to dissolve it, and then filtered through a 0.45 ⁇ m membrane filter to obtain a measurement solution.
  • Da (Dalton) may be added as a unit in the molecular weights of alginic acid, alginic acid derivatives, crosslinked alginic acid, and crosslinked alginic acid.
  • the composition ratio (M / G ratio) of D-mannuronic acid and L-gluuronic acid of alginic acids differs mainly depending on the type of organism from which seaweeds are derived, and is also affected by the habitat and season of the organism. , From a high G type with an M / G ratio of about 0.2 to a high M type with an M / G ratio of about 5. It is known that the gelling ability of alginic acids and the properties of the produced gel are affected by the M / G ratio, and generally, the gel strength increases when the G ratio is high. The M / G ratio also affects the hardness, brittleness, water absorption, flexibility, etc. of the gel.
  • the M / G ratio of the alginic acids and / or salts thereof used is usually 0.1 to 4.0, in some embodiments 0.1 to 3.0, and in some embodiments 0.1 to 2. It is 0.0, 0.5 to 1.8 in some embodiments, and 0.8 to 1.2 in some embodiments. In another aspect, it is 0.1 to 0.5.
  • alginic acid used in the present invention should have an appropriate viscosity and an appropriate M / G ratio according to the final intended use.
  • the numerical range indicated by using “-” indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • alginic acid ester and “alginate” used in the present specification are not particularly limited, but in order to react with a cross-linking agent, it is necessary that they do not have a functional group that inhibits the cross-linking reaction.
  • Preferred examples of the alginic acid ester include propylene glycol alginate.
  • Alginic acid can be in the form of, for example, a monovalent salt of alginic acid or a divalent salt of alginic acid.
  • the monovalent salt of alginic acid include sodium alginate, potassium alginate, ammonium alginate, and the like, preferably sodium alginate or potassium alginate, and more preferably sodium alginate.
  • the divalent salt of alginic acid include calcium alginate, magnesium alginate, barium alginate, strontium alginate, and the like.
  • Alginic acid is a high molecular weight polysaccharide and it is difficult to accurately determine its molecular weight, but it generally has a weight average molecular weight of 10 to 10 million, preferably 10,000 to 8 million, and more preferably 20,000 to. It is 3 million. It is known that in the measurement of the molecular weight of a polymer substance derived from a natural product, the value may differ depending on the measurement method.
  • the molecular weight of the alginic acid derivative of the present invention or alginic acid or a salt thereof is specified, it is the weight average molecular weight calculated by size exclusion chromatography (SEC) unless otherwise specified.
  • SEC size exclusion chromatography
  • the alginic acid or a salt thereof used in the present invention it is desirable to use one having an appropriate molecular weight distribution according to the final intended use.
  • the temperature is preferably 100,000 to 5 million. Yes, more preferably 150,000 to 3 million. In some embodiments, it is 500,000 to 3 million, more preferably 1 million to 2.5 million, and even more preferably 1 million to 2 million.
  • the absolute weight average molecular weight can be measured.
  • the weight average molecular weight (absolute molecular weight) measured by the GPC-MALS method is preferably 10,000 or more, more preferably 50,000 or more, still more preferably 60,000 or more, and preferably 1 million or less, more preferably 80. It is 10,000 or less, more preferably 700,000 or less, and particularly preferably 500,000 or less. The preferred range is 10,000 to 1,000,000, more preferably 50,000 to 800,000, and even more preferably 60,000 to 500,000.
  • a measurement error of about 10% to about 30% can occur. For example, if it is 500,000, the value may fluctuate in the range of 350,000 to 650,000, and if it is 1 million, the value may fluctuate in the range of 700,000 to 1.3 million. In the present specification, when "about” is described in the description of molecular weight measurement, a value up to ⁇ 10% of the value, and in some embodiments up to ⁇ 20% of the value may be included.
  • a polymer substance derived from a natural product does not have a single molecular weight, but is an aggregate of molecules having various molecular weights, so that it is measured as a molecular weight distribution having a certain width.
  • a typical measurement method is gel filtration chromatography.
  • Typical information on the molecular weight distribution obtained by gel filtration chromatography includes weight average molecular weight (Mw), number average molecular weight (Mn), and dispersion ratio (Mw / Mn).
  • the weight average molecular weight emphasizes the contribution to the average molecular weight of a polymer having a large molecular weight, and is expressed by the following formula.
  • the number average molecular weight is calculated by dividing the total weight of the macromolecules by the total number of macromolecules.
  • W is the total weight of the polymer
  • Wi is the weight of the i-th polymer
  • Mi is the molecular weight at the i-th elution time
  • Ni is the number of molecular weight Mi
  • Hi is the height at the i-th elution time. ..
  • the weight average molecular weight is a value calculated by a calibration curve using pullulan as a standard material after measuring the molecular weight by, for example, size exclusion chromatography (SEC) by a conventional method as shown in the above literature. can do.
  • the weight average molecular weight can be an absolute molecular weight measured by, for example, size exclusion chromatography (SEC) -MALS by a conventional method as shown in the above-mentioned literature.
  • the molecular weight of alginic acids can be measured according to a conventional method.
  • the molecular weight of alginic acid or a salt thereof in the present specification is a weight average molecular weight calculated by gel filtration chromatography unless otherwise specified.
  • a typical condition when gel filtration chromatography is used for molecular weight measurement for example, the condition of this example described later can be adopted.
  • the column for example, Superose6 Increase10 / 300 GL column (GE Healthcare Science Co., Ltd.) can be used, and as a developing solvent, for example, a 10 mmol / L phosphate buffer solution (pH 7.4) containing 0.15 mol / L NaCl.
  • bluedextran, tyroglobulin, ferritin, aldolase, conalbumin, obalbumin, ribonuclease A and aprotinin can be used as molecular weight standards.
  • the viscosity of alginic acid used in the present specification is not particularly limited, but when the viscosity is measured as an aqueous solution of 1 w / w% alginic acid, it is preferably 10 mPa ⁇ s to 1000 mPa ⁇ s, more preferably 50 mPa ⁇ s. It is s to 800 mPa ⁇ s.
  • the viscosity of the aqueous solution of alginic acid can be measured according to a conventional method.
  • a co-axis double-cylindrical rotational viscometer, a single cylindrical rotational viscometer (Brookfield type viscometer), a cone-plate type rotational viscometer (cone plate type viscometer), etc. of the rotational viscometer method are used. Can be measured. It is preferable to follow the viscosity measurement method of the Japanese Pharmacopoeia (16th edition). More preferably, a cone plate type viscometer is used.
  • Alginic acids initially have a large molecular weight and high viscosity when extracted from brown algae, but in the process of drying and refining by heat, the molecular weight becomes small and the viscosity becomes low.
  • Alginic acids having different molecular weights can be produced by methods such as controlling conditions such as temperature in the production process, selecting brown algae as raw materials, and fractionating the molecular weight in the production process. Further, it is also possible to obtain alginic acid having a desired molecular weight by mixing with another lot of alginic acid having a different molecular weight or viscosity.
  • the alginic acid used herein is alginic acid that has not been treated with low endotoxin in some embodiments, or alginic acid that has been treated with low endotoxin in some other embodiments.
  • Low endotoxin means that the endotoxin level is low enough not to cause inflammation or fever. More preferably, it is alginic acid treated with low endotoxin.
  • the low endotoxin treatment can be performed by a known method or a method similar thereto.
  • the method of Suga et al. For purifying sodium hyaluronate see, for example, JP-A-9-324001
  • the method of Yoshida et al. For purifying ⁇ 1,3-glucan (eg, JP-A-8-269102).
  • William et al.'S method for purifying biopolymer salts such as alginate and gellan gum (see, eg, JP-A-2002-530440)
  • James et al.'S method for purifying polysaccharides eg, international publication.
  • Low endotoxin treatment is not limited to these, but for cleaning, filtration with filters (endotoxin removal filter, charged filter, etc.), ultrafiltration, columns (endotoxin adsorption affinity column, gel filtration column, column with ion exchange resin, etc.).
  • the endotoxin level can be confirmed by a known method, and can be measured by, for example, a method using Limulus reagent (LAL), a method using Endospecy (registered trademark) ES-24S set (Seikagaku Corporation), or the like. ..
  • LAL Limulus reagent
  • Endospecy registered trademark
  • ES-24S set Seikagaku Corporation
  • the endotoxin content of the alginic acids should be 500 endotoxin units (EU) / g or less when the endotoxin is measured by the Limulus reagent (LAL). Is more preferable, and more preferably 100 EU / g or less, particularly preferably 50 EU / g or less, and particularly preferably 30 EU / g or less.
  • EU endotoxin units
  • substantially free of endotoxin means that the endotoxin value measured by the Japanese Pharmacopoeia endotoxin test is within the above numerical range.
  • Sodium alginate treated with low endotoxin can be obtained from commercial products such as Sea Matrix (registered trademark) (Mochida Pharmaceutical Co., Ltd.) and PRONOVA TM UP LVG (FMCBioPolymer).
  • sodium alginate as a raw material for synthesizing the chemically modified alginic acid derivatives represented by the formulas (I) and (II) in the present specification, and an alginic acid solution or alginic acid that can be contained in the core layer.
  • the sodium alginate used as a raw material for the gel is not particularly limited, but is, for example, sodium alginate A-1, A-2, A-3, B-1, B-2, or B shown in Table 8 above. It is possible to select from -3.
  • the sodium alginate used as a raw material for the alginate solution that can be used for the anionic polymer layer is not particularly limited, and is, for example, the sodium alginate A-1 shown in Table 8 above. It is possible to select from A-2, A-3, B-1, B-2, or B-3.
  • the concentration of the alginic acid solution (also referred to as sodium alginate solution) prepared using the sodium alginate is, for example, in the range of about 0.1 to about 3.3% by weight.
  • the sodium alginate used as a raw material for synthesizing the chemically modified alginic acid derivatives represented by the formulas (I) and (II) is preferably A-2, A-3, B-2 shown in Table 8 above. Or B-3, more preferably A-2 or A-3.
  • the concentration of the sodium alginate solution used in the synthesis of the chemically modified alginic acid derivative represented by the formulas (I) and (II) is preferably in the range of 1.5 to 2.0% by weight.
  • the alginate solution that can be contained in the core layer of the polymer-coated cross-linked alginate gel fiber and the multilayer polymer-coated cross-linked alginate gel fiber, or the sodium alginate used for preparing the alginic acid solution used for forming the alginate gel is preferable.
  • the concentration of the alginic acid solution prepared using the sodium alginate is preferably in the range of about 0.3 to about 1.5% by weight.
  • the sodium alginate used for preparing an alginic acid solution that can be used for forming an anionic polymer layer of a multilayer polymer-coated crosslinked alginate gel fiber is preferably A-2 or B- shown in Table 8 above. It is 2.
  • the concentration of the alginic acid solution prepared using the sodium alginate is, for example, about 0.01 to about 5.0% by weight, about 0.05 to about 1.0% by weight, and about 0.1 to about 0. The concentration is in the range of 5% by weight, about 0.15 to about 0.4% by weight, and the like.
  • the alginic acid solution means a solution in which alginic acid is dissolved in a solvent.
  • the solvent is not particularly limited, and examples thereof include a medium, a cell culture medium, a culture solution, an isotonic buffer solution, water, a phosphate buffered saline (PBS), and a physiological saline solution.
  • PBS phosphate buffered saline
  • sodium alginate solution When sodium alginate is dissolved in a solvent, it is called a sodium alginate solution.
  • the solution of the chemically modified alginic acid derivatives represented by the formulas (I) and (II) used for forming the core layer of the polymer-coated cross-linked alginic acid gel fiber and the multilayer polymer-coated cross-linked alginic acid gel fiber, the alginic acid solution is also possible to mix a collagen solution, a medium, a culture solution and the like.
  • the solution of the chemically modified alginic acid derivative represented by the formula (I) or the formula (II) and the solvent used for preparing the alginic acid solution are as described below.
  • the chemically modified alginate derivatives herein are reactive in the Huisgen reaction described below via an amide bond and a divalent linker to any one or more carboxyl groups of the alginic acid.
  • a group or a reactive group complementary to the reactive group has been introduced. More specifically, the following formula (I): [Definition of (ALG), Akn-L 1- , and -NH-CO- in formula (I) is the same as the definition in the first aspect described above], and the alginic acid derivative represented by the following. Equation (II): It is an alginic acid derivative represented by [the definitions of (ALG), -L2-, and -NH-CO- in the formula ( II ) are the same as the definitions in the first aspect described above].
  • the divalent linker (-L 1- or -L 2- ) can be specifically selected and used from the divalent linkers described in the above embodiments.
  • the hydrogen atom of the imino group (-NH-) is replaced with a methyl group -N (Me) -CO-. It is possible to base it.
  • the bonding mode between the linker (-L 1- , -L 2- ) and alginic acid is -NH-CO- bonding or -N (Me). ) -CO-bonds; preferably -NH-CO- bonds.
  • the -NH-CO- bond or the -CO- of the -N (Me) -CO- bond is derived from the carboxyl group of alginic acid.
  • the chemically modified alginic acid derivative represented by the formula (I) or the formula (II) can be produced, for example, by the method for synthesizing the chemically modified alginic acid derivative described later.
  • the weight average molecular weight of the chemically modified alginic acid derivative represented by the formula (I) of the present specification measured by the gel filtration chromatography method is in the range of about 100,000 Da to about 3 million Da; preferably about 300,000 Da to. It is in the range of about 2.5 million Da, more preferably in the range of about 500,000 Da to about 2 million Da. Further, the weight average molecular weight of the chemically modified alginic acid derivative represented by the formula (II) measured by the gel filtration chromatography method is in the range of about 100,000 Da to about 3 million Da; preferably about 300,000 Da to about 250. It is in the range of 10,000 Da, more preferably in the range of about 500,000 Da to about 2 million Da.
  • the Akn-L 1 -NH-group of the formula (I) need not be bound to all the carboxyl groups of the alginic acid constituent unit, and the N 3 -L 2- of the formula (II).
  • the NH-group does not have to be attached to all the carboxyl groups of the alginic acid building block.
  • the N3-L2-NH-group of the formula (II) is a complementary reactive group.
  • the Akn - L1 - NH-group of the formula (I) is a complementary reactive group.
  • the introduction rate of the reactive group of the chemically modified alginic acid derivative represented by the formula (I) is, for example, in the range of about 0.1 to about 30 mol%; preferably about 0.3 to about 20 mol. %; More preferably, it is in the range of about 0.5 to about 10 mol%.
  • the introduction rate of the reactive group of the chemically modified alginic acid derivative represented by the formula (II) is, for example, in the range of about 0.1 to about 30 mol%; preferably in the range of about 0.3 to about 20 mol%. More preferably, it is in the range of about 0.5 to about 15 mol%.
  • the introduction rate of the reactive group or the complementary reactive group is expressed as a percentage of the number of uronic acid monosaccharide units into which each reactive group is introduced among the uronic acid monosaccharide units which are the repeating units of alginic acid. The value.
  • the introduction rate of each reactive group or complementary reactive group can be determined by the method described in Examples described later.
  • the cyclic alkyne group (Akn) in the formula (I) and the azide group in the formula (II) form a triazole ring by the Huisgen reaction, thereby forming a crosslink.
  • the chemically modified alginic acid derivative represented by the formula (I) or the formula (II) forms a monovalent salt (for example, sodium salt, etc.) at any carboxyl group in the molecule. Things are also included.
  • the chemically modified alginic acid derivatives represented by the formulas (I) and (II) are used for forming the crosslinked alginate gel contained in the core layer of the polymer-coated crosslinked alginate gel fiber and the multilayer polymer-coated crosslinked alginate gel fiber. It can also be used to form an anionic polymer layer in a multi-layer polymer coated crosslinked alginate gel fiber.
  • the Huisgen reaction (1,3-dipolar addition cyclization reaction) is a condensation reaction between compounds having a terminal azide group and a terminal alkyne group as shown in the following formula.
  • a disubstituted 1,2,3-triazole ring is obtained in good yield, and it has a feature that no extra by-product is generated. It is considered that a 1,4- or 1,5-disubstituted triazole ring can be formed in the reaction, but a regioselective triazole ring can be obtained by using a copper catalyst (Cu catalyst).
  • Cu catalyst copper catalyst
  • the Huisgen reaction is an azide compound having substituted primary azide, secondary azide, tertiary azide, aromatic azide, etc., and a terminal or cyclic alkyne which is a complementary reactive group of the azide group.
  • a compound having a group can be used.
  • various functional groups for example, ester group, carboxyl group, alkenyl group, hydroxyl group, amino group, etc. should be substituted in the reaction substrate. Is possible.
  • 1,2,3-triazoles are short-term, easily, and efficiently without the use of copper catalysts to produce unwanted by-products and avoid copper-catalyzed cytotoxicity.
  • the cyclic alkyne group (cyclooctyl group) according to the above embodiment [1] is used as the alkyne group of the Huisgen reaction.
  • the chemically modified alginic acid derivative represented by the formula (I) or the formula (II) is represented by the following reaction formula (AM-1) (Akn-L 1 ).
  • the amine represented by the formula (AM-2) N 3 -L 2 -NH 2 : -L 2 ).
  • -Is the same as the definition in the above aspect [1]) can be produced by a condensation reaction using an arbitrary carboxyl group of alginic acid and an arbitrary condensing agent.
  • the detailed conditions for each reaction are the same as those described in International Publication No. 2019/240219.
  • the introduction rate of the amine represented by the formula (AM-1) or the formula (AM-2) (the formula (in the above embodiment).
  • (I) or the introduction rate of the reactive group of the chemically modified alginic acid derivative represented by the formula (II) has the same meaning), by considering the properties of the amine and the like, the following (i) to (v) and the like can be obtained. Adjustment is possible by appropriately selecting and combining reaction conditions.
  • the following shows a more specific method for producing an amine used in the present specification among the amines represented by the formula (AM-1) or the formula (AM-2).
  • Z6, x7a, y7a, z7a, v7a, x7b, y7b, z7b, v7b, a1, b1, a2, b2, a3, b3, a4, b4, a5 and a6 are defined in the above embodiment [1].
  • RA C 1 to 6 alkyl groups such as methyl group, ethyl group, etc .
  • P 1 is -C (O) O-tertBu group, -C (O) O-Bn group,- It is a protective group for an amino group selected from 3 C (O) CH groups, 3 -C (O) CF groups, -SO 2 Ph, -SO 2 PhMe group, -SO 2 Ph (NO 2 ) group, and the like.
  • the protecting / deprotecting of the protecting group P1 is carried out by a method known in the literature, for example, "Protective Groups in Organic Synthesis 4th Edition", 4th edition. In 2007, protection / deprotection can be performed according to the deprotection method described in the textbook of John Wiley & Sons, Greene et al.
  • condensation reaction when described as a condensation reaction, it means a reaction similar to the above-mentioned condensation reaction.
  • a condensate is obtained by carrying out a condensation reaction using a compound of the formula (SM-A) and a compound of the formula (RG-A1). Subsequently, after addition of bromine, an alkyne group is formed by performing a debromination reaction using a base such as tert-BuOK. Subsequently, by deprotecting the protecting group P 1 , the amine represented by the formula (AM-1-1A) or a salt thereof can be produced.
  • Step 2> A condensation reaction is carried out using the compound of the formula (SM-A2) and the compound of the formula (RG-A2) obtained by the same method as in [Production Method A] ⁇ Step 1>, followed by protection. By deprotecting the group P 1 , the amine represented by the formula (AM-1-1B) or a salt thereof can be produced.
  • a condensate is obtained by carrying out a condensation reaction using the compound of the formula (SM-B) and the compound of the formula (RG-B1). Subsequently, by deprotecting the protecting group P1, the amine represented by the formula (AM- 1-2 ) or a salt thereof can be produced.
  • a condensation reaction is carried out using the compound of the formula (SM-D) and the compound of the formula (RG-D1) to obtain a condensed product. Subsequently, by deprotecting the protecting group P1, the amine represented by the formula (AM- 1 -D) or a salt thereof can be produced.
  • ⁇ Step 1> Using the compound of the formula (SM-F) and the compound of the formula (RG-F1), a condensation reaction is carried out to obtain a condensed product. Subsequently, by deprotecting the protecting group P1, the amine represented by the formula (AM- 1 -F) or a salt thereof can be produced.
  • ⁇ Step 2> Using the compound of the formula (SM-F) and the compound of the formula (RG-F2), a condensation reaction is carried out to obtain a condensed product. Subsequently, in the presence of a base such as sodium hydroxide, the ester group is hydrolyzed in a solvent such as methanol, ethanol, tetrahydrofuran, water, etc.
  • ⁇ Step 1> Using the compound of the formula (SM-G1) and the compound of the formula (RG-G1-1), a condensation reaction is carried out to obtain a condensed product. Subsequently, by deprotecting the protecting group P1, the amine represented by the formula (AM- 1 -G1) or a salt thereof can be produced.
  • ⁇ Step 2> Using the compound of the formula (SM-G1) and the compound of the formula (RG-G1-2), a condensation reaction is carried out to obtain a condensed product. Subsequently, the carboxylic acid represented by the formula (IM-G1) or a salt thereof can be produced by hydrolyzing the ester group.
  • ⁇ Step 3> [Production Method G] Using the compound of the compound of the formula (IM-G1) and the compound of the formula (RG-G1-3) obtained in ⁇ Step 2>, a condensation reaction is carried out to obtain a condensed product. .. Subsequently, by deprotecting the protecting group P1, the amine represented by the formula (AM- 1 -G1) or a salt thereof can be produced. ⁇ Step 4> Using the compound of the formula (SM-G2) and the compound of the formula (RG-G2-1), a condensation reaction is carried out to obtain a condensed product. Subsequently, by deprotecting the protecting group P1, the amine represented by the formula (AM- 1 -G2) or a salt thereof can be produced.
  • ⁇ Step 5> Using the compound of the formula (SM-G2) and the compound of the formula (RG-G2-2), a condensation reaction is carried out to obtain a condensate. Subsequently, the carboxylic acid represented by the formula (IM-G2) or a salt thereof (for example, a lithium salt, a sodium salt, a potassium salt, etc.) can be produced by hydrolyzing the ester group.
  • ⁇ Step 6> [Production Method G] Using the compound of the compound of the formula (IM-G2) and the compound of the formula (RG-G2-3) obtained in ⁇ Step 5>, a condensation reaction is carried out to obtain a condensed product. .. Subsequently, by deprotecting the protecting group P1, the amine represented by the formula (AM- 1 -G2) or a salt thereof can be produced.
  • ⁇ Step 1> Using the compound of the formula (SM-H) and the compound of the formula (RG-H1), a method known in the literature, for example, "European Journal of Organic Chemistry, 2014 (6), p1280-1286; 2014”. ], Etc., in the presence of (i) PPh 3 and N 2 (CO 2 CHMe 2 ) 2 reagents in a solvent that does not participate in the reaction, such as tetrahydrofuran, followed by a Mitsunobu reaction [ Production Method F] Similar to the method described in ⁇ Step 2>, a compound represented by the formula (IM-H1) or a salt thereof (for example, a lithium salt, a sodium salt, a potassium salt, etc.) is subjected to hydrolysis. ) Can be manufactured.
  • ⁇ Step 2> [Production Method H] A condensation reaction is carried out using the compound of the formula (IM-H1) and the compound of the formula (RG-H2) obtained in ⁇ Step 1> to obtain a condensed product. Subsequently, by deprotecting the protecting group P1, the amine represented by the formula (AM- 2 -H) or a salt thereof can be produced.
  • ⁇ Step 1A> [Production Method H] A condensation reaction is carried out using the compound of the formula (IM-H1) and the compound of the formula (RG-I1) obtained in ⁇ Step 1> to obtain a condensed product. Subsequently, by deprotecting the protecting group P1, the amine represented by the formula (AM-2- I ) or a salt thereof can be produced.
  • the formula (IM-J1) can be produced by carrying out a condensation reaction using the compound of the formula (SM-J) and the compound of the formula (RG-J1).
  • ⁇ Step 2> [Production Method J] Using the compound of the formula (IM-J1) obtained by ⁇ Step 1>, a method known in the literature, for example, "Organometrics, 29 (23), p6619-6622; 2010". Etc., according to the method described in the above, the formula (AM-2-J) is obtained by reacting NaN 3 in a solvent not involved in the reaction such as dimethyl sulfoxide to introduce an azide group, and then deprotecting the protecting group P1. ), Or a salt thereof.
  • ⁇ Step 1> The formula (IM-K) can be produced by carrying out a condensation reaction using the compound of the formula (SM-K) and the compound of the formula (RG-K).
  • ⁇ Step 2> [Manufacturing method K] Using the compound of the formula (IM-K) obtained by ⁇ Step 1>, the same reaction as in [Manufacturing method J] ⁇ Step 2 > and the deprotection of the protecting group P1 can be performed. By doing so, an amine represented by the formula (AM-2-K) or a salt thereof can be produced.
  • a condensation reaction is carried out using the compound of the formula (SM-L) and the compound of the formula (RG-L1) to obtain a condensed product. Subsequently, by deprotecting the protecting group P1, the amine represented by the formula (AM- 2 -L) or a salt thereof can be produced.
  • a condensation reaction is carried out using the compound of the formula (SM-L) and the compound of the formula (RG-M) to obtain a condensed product. Subsequently, by deprotecting the protecting group P1, the amine represented by the formula (AM- 2 -M) or a salt thereof can be produced.
  • C ( O)-, -CONH-, -O-, -NH-, -S-, cycloalkyl ring having 3 to 8 carbon atoms, benzene ring, heterocyclic ring (pyridine ring, piperidine ring, piperazine ring, etc.) 5-6 membered aromatic heterocycle or 5-6 membered non-aromatic heterocyclic ring), etc. may be replaced by a plurality of groups (for example, 1 to 10 or 1 to 5); the straight chain.
  • Halogen atom eg, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
  • a method known in the literature for example, "Experimental Chemistry Course 5th Edition, Each Book, 2007, Maruzen”, “Comprehensive Organic Transformations, A Guide to Functional Group Preparations, 3rd” Edition (Edited by Richard C. Larock), 2018 ”,“ Strategic Applications of Named Reactions in Organic Synthesis, (Edited by Laszlo Kurti, Barbara Czako), Academic Press, 2005 ”, etc. Allows the desired amine to be produced.
  • the amine represented by the formula (AM-1) or the formula (AM-2) (including the lower formula of each formula) is a pharmaceutically acceptable salt (for example, an acid addition salt; For example, hydrochloride, hydrobromide, sulfate, acetate, trifluoroacetate, p-toluenesulfonate, etc.) may be formed.
  • a pharmaceutically acceptable salt for example, an acid addition salt; For example, hydrochloride, hydrobromide, sulfate, acetate, trifluoroacetate, p-toluenesulfonate, etc.
  • the compounds in the present specification can form salts, and according to a conventional method, for example, a solution containing an appropriate amount of acid or base is mixed to form a desired salt, and then the salt is separated and collected by filtration. It can be obtained by distilling off the mixed solvent.
  • a solution containing an appropriate amount of acid or base is mixed to form a desired salt, and then the salt is separated and collected by filtration. It can be obtained by distilling off the mixed solvent.
  • the amine represented by the formula (AM-1) or the formula (AM-2) (including the lower formulas of each formula) or a salt thereof is a solvate with a solvent such as water, ethanol, glycerol and the like.
  • a solvent such as water, ethanol, glycerol and the like.
  • variable substituent when a variable substituent is substituted on a cyclic group, it means that the variable substituent is not bonded to a specific carbon atom of the cyclic group.
  • the variable substituent Rs in the following formula A means that it can be substituted with any of the carbon atoms i, ii, iii, iv or v in the formula A.
  • cross-linked alginate gel In the present specification, the cross-linked alginate gel contained in the core layer of the polymer-coated cross-linked alginate gel fiber and the multilayer polymer-coated cross-linked alginate gel fiber is the chemically modified alginate described in the above-mentioned "2. Chemically modified alginate derivative".
  • cross-linked alginic acid gels with cross-linking also referred to as cross-linked alginic acid or chemically cross-linked alginic acid).
  • the crosslinked alginate gel contained in the core layer of each of the fibers is allowed to coexist with a chemical crosslink by a triazole ring formed by performing a Huisgen reaction (crosslinking reaction) as a crosslink, and a divalent metal ion (for example, calcium ion or the like). It is a crosslinked alginate gel containing both of the ionic crosslinks formed thereby.
  • the crosslinked alginate gel contained in the core layer of each of the fibers is a crosslinked alginate gel containing a chemical crosslink by a triazole ring formed by performing a Huisgen reaction (crosslinking reaction) as a crosslink.
  • the crosslinked alginate gel contained in the core layer of the polymer-coated crosslinked alginate gel fiber and the multilayer polymer-coated crosslinked alginate gel fiber is a chemically modified alginate derivative represented by the above formula (I) and the above formula (II). It is obtained by carrying out a Huisgen reaction (crosslinking reaction) in which a chemical crosslink is formed between the derivatives. Alternatively, it can be obtained by allowing a divalent metal ion to coexist with the chemically modified alginic acid derivative represented by the formula (I) and the formula (II) to form an ion crosslink between the derivatives.
  • the Huisgen reaction (crosslinking reaction) is carried out using the chemically modified alginic acid derivatives represented by the formulas (I) and (II) to form chemical crosslinks between the derivatives, and further divalent metal ions.
  • the cross-linking is formed means the chemically modified alginic acid derivative represented by the above formula (I) and the above-mentioned formula (II).
  • a chemical bridge chemical bond
  • the chemically modified alginic acid derivatives represented by the formulas (I) and (II) are coexisting the divalent metal ion with the chemically modified alginic acid derivative represented by the formula (II).
  • an ion bridge (ion bond) is formed between the derivatives, or both a chemical bridge by the Huisgen reaction and an ion bridge by a divalent metal ion are formed. It also means that an ionic crosslink is formed in alginic acid by coexisting divalent metal ions with alginic acid (sodium alginate or the like).
  • an ion crosslink is formed, and the time for forming an ion-crosslinked alginate gel is, for example, instantaneous (for example). 1 to 5 seconds) to several hours (for example, 1 to 3 hours). Further, the time for the Huisugen reaction to proceed between the chemically modified alginate derivatives represented by the formula (I) and the formula (II) to form a chemical crosslink and become a chemically crosslinked alginate gel is, for example, several seconds to 24. Hours, seconds to 12 hours, or seconds to 30 minutes.
  • the divalent metal ion used to obtain the crosslinked alginate gel is not particularly limited, and examples thereof include calcium ion, magnesium ion, barium ion, strontium ion, zinc ion and the like, and calcium ion and barium ion are preferable. Alternatively, it is a strontium ion, more preferably a calcium ion or a barium ion.
  • the solution containing divalent metal ions is not particularly limited, but for example, a solution containing calcium ions (for example, an aqueous solution such as a calcium chloride aqueous solution, a calcium carbonate aqueous solution, a calcium gluconate aqueous solution, etc.) and a solution containing barium ions (for example).
  • a solution containing calcium ions for example, an aqueous solution such as a calcium chloride aqueous solution, a calcium carbonate aqueous solution, a calcium gluconate aqueous solution, etc.
  • a solution containing barium ions for example.
  • An aqueous solution such as a barium chloride aqueous solution
  • a solution containing strontium ions for example, an aqueous solution such as a strontium chloride aqueous solution
  • the divalent metal ion concentration (for example, calcium ion or barium ion concentration) of the solution containing the divalent metal ion is not particularly limited, but is, for example, in the range of about 1 mM to about 1 M, or in the range of about 10 to about 500 mM. It is preferably about 10 to about 100 mM.
  • the solvent used when preparing a solution containing divalent metal ions is not particularly limited, but for example, tap water, pure water (for example, distilled water, ion-exchanged water, RO water, RO-EDI water, etc.), and the like.
  • Examples thereof include ultrapure water (MilliQ water), medium, cell culture medium, culture solution, phosphate buffered physiological saline (PBS), physiological saline and the like; preferably physiological saline or ultrapure water.
  • the reaction of ionic cross-linking is instantaneous and reversible, whereas the reaction of chemical cross-linking is a relatively mild condition. The reaction proceeds slowly and is irreversible.
  • the cross-linked alginate gel of the present invention can be efficiently produced. For example, using the apparatus XX in "11.
  • a mixed solution of chemically modified alginic acid derivatives represented by the formulas (I) and (II) is mixed with a divalent metal ion.
  • ionic cross-linking is formed, and a fiber-shaped cross-linked alginate gel can be instantly produced.
  • a Huisgen reaction crosslinking reaction
  • a (fiber) shaped crosslinked alginate gel can be obtained.
  • the physical characteristics of the crosslinked alginate gel are, for example, changing the concentration of the aqueous solution containing the divalent metal ion to be used (for example, calcium chloride aqueous solution) or the introduction rate of the reactive group introduced into the chemically modified alginate derivative. It can be adjusted by the method.
  • the chemically modified alginic acid derivatives represented by the formulas (I) and (II) are contained in the core layer of the polymer-coated cross-linked alginate gel fiber and the multilayer polymer-coated cross-linked alginate gel fiber of the present invention.
  • the crosslinked alginate gel can be produced in the form of a fiber (fiber) (also referred to as “crosslinked alginate gel fiber”).
  • fiber also referred to as “crosslinked alginate gel fiber”.
  • an alginic acid (for example, sodium alginate) solution is added to a mixed solution of chemically modified alginic acid derivatives represented by the formulas (I) and (II). Can be done.
  • chemical cross-linking (Huisugen reaction) is used as one of the methods for strengthening the fiber structure (for example, obtaining long-term stability, etc.).
  • a cross-linked alginate gel fiber having both ionic cross-linking and chemical cross-linking prepared as described above the divalent metal ions forming the ionic cross-linking gradually and reversibly. It becomes a cross-linked alginate gel fiber that is released and only the chemical cross-linking remains, but the gel structure is maintained by the irreversible chemical cross-linking, and stable and continuous culture is possible.
  • the crosslinked alginic acid gel formed by performing a crosslinking reaction using the chemically modified alginic acid derivatives represented by the formulas (I) and (II) of the present invention is not particularly limited, and is, for example, a collagen solution, a collagen gel, and the like.
  • Other components such as a medium, a medium for cell culture, a culture solution, methyl cellulose, a sucrose solution, an alginic acid solution, an alginate gel, and the like can be contained.
  • alginate gel means an alginate gel in which an ion crosslink is formed by coexisting divalent metal ions with alginic acid (for example, sodium alginate) or a solution thereof. ..
  • the cross-linked alginate gel can be obtained by mixing the chemically modified alginic acid derivatives represented by the formulas (I) and (II) and carrying out a Huisgen reaction. ..
  • the crosslinked alginate gel forms a three-dimensional network structure via chemical crosslinking (crosslinking by a triazole ring formed from an alkyne group and an azido group).
  • Preferred chemically modified alginate derivatives are those that improve the stability of the crosslinked alginate gel after crosslinking.
  • the physical characteristics of the crosslinked alginic acid gel can be adjusted, for example, by the introduction rate of each reactive group in the chemically modified alginic acid represented by the formula (I) or the formula (II) as a raw material.
  • the cross-linked alginate gel of some embodiments is described in the following formula (III-L): [In formula (III-L), -CONH- and -NHCO- at both ends represent amide bonds via any carboxyl group of alginic acid; -L 1- , -L 2- , and -X- represent. It is a cross-linked alginate gel cross-linked via a group represented by [the same as the definition in the above aspect [1-12]].
  • the mixing ratio of the chemically modified arginic acid derivative represented by the formula (I) to the chemically modified arginic acid derivative represented by the formula (II) in producing the crosslinked arginic acid gel is the formula (I).
  • the weight ratio of the chemically modified alginic acid derivative represented by the formula (II) to, for example, 1: 1.0 to 4.0 or 1: 1.0 to 3.0. , Or 1: 1.0 to 2.0, or 1: 1.0 to 1.5, or 1: 1; preferably 1: 1.0 to 3.0.
  • the mixing ratio of the chemically modified arginic acid derivative represented by the formula (II) to the chemically modified arginic acid derivative represented by the formula (I) in producing a crosslinked arginic acid gel is the formula (II).
  • the weight ratio of the chemically modified alginic acid derivative represented by the formula (I) to, for example, 1: 1.0 to 4.0 or 1: 1.0 to 3.0. , Or 1: 1.0 to 2.0, or 1: 1.0 to 1.5, or 1: 1.
  • the mixing ratio of the chemically modified arginic acid derivative represented by the formula (I) to the chemically modified arginic acid derivative represented by the formula (II) in preparing the crosslinked arginic acid gel is more preferable.
  • the ratio of the introduction rate (mol%) of the reactive group of the chemically modified alginic acid derivative represented by the formula (I) to the chemically modified alginic acid derivative represented by the formula (II) is, for example, 1: 1.0 to 4. 0, or 1: 1.0 to 3.0, or 1: 1.0 to 2.0, or 1: 1.0 to 1.5, or 1: 1; preferably 1: 1.0 to 1. It is 3.0.
  • the mixing ratio of the chemically modified arginic acid derivative represented by the formula (II) to the chemically modified arginic acid derivative represented by the formula (I) in preparing the crosslinked arginic acid gel is more preferable.
  • the ratio of the introduction rate (mol%) of the reactive group of the chemically modified alginic acid derivative represented by the formula (II) to the chemically modified alginic acid derivative represented by the formula (I) is, for example, 1: 1.0 to 4. It is 0, or 1: 1.0 to 3.0, or 1: 1.0 to 2.0, or 1: 1.0 to 1.5, or 1: 1.
  • the crosslinked alginic acid gel does not need to have all the carboxyl groups of the constituent units of alginic acid having the crosslink of the above formula (III-L).
  • the introduction rate (also referred to as the crosslinking rate) of the crosslinking represented by the above formula (III-L) is, for example, about 0.1 to about 80%, about 0.3 to about 60%, and about 0. It ranges from 5 to about 30%, or about 1.0 to about 10%.
  • the solution of the alginic acid derivative represented by the above formula (I) or the formula (II) in the Huisgen reaction for obtaining the crosslinked alginic acid gel contained in the core layer of the polymer-coated crosslinked alginic acid gel fiber and the multilayer polymer-coated crosslinked alginic acid gel fiber of the present invention.
  • the concentration of is, for example, in the range of about 0.01 to about 1.5% by weight; preferably in the range of about 0.05 to about 1.0% by weight; more preferably about 0.08 to about 0.08% by weight. It is in the range of about 0.75% by weight.
  • the concentration of the alginic acid solution is, for example, in the range of 0% to about 1.98% by weight. Yes; preferably in the range of 0% to about 1.8% by weight; more preferably in the range of 0% to about 1.7% by weight.
  • the reaction temperature of the Huisgen reaction (crosslinked alginate gel, temperature at the time of producing the crosslinked alginate gel fiber) is usually an outside temperature of about 4 to about 60 ° C., preferably an outside temperature of about 15 to about 37 ° C. ..
  • the polymer-coated cross-linked alginate gel fiber contains cells capable of producing antibodies, physiologically active substances, etc., and chemically modified alginic acid derivatives represented by the above formulas (I) and (II). It means a fibrous (fibrous) structure obtained by coating a core layer containing a crosslinked alginate gel obtained by carrying out a crosslinking reaction with a cationic polymer (cationic polymer layer). The method for producing the coated crosslinked alginate gel fiber will be described later).
  • the polymer-coated crosslinked alginate gel fiber is a fiber-like (fibrous) structure including a core layer and a cationic polymer layer arranged outside the core layer.
  • the core layer contains cells capable of producing antibodies, physiologically active substances and the like, and a crosslinked alginic acid gel in which crosslinks are formed using the chemically modified alginic acid derivatives represented by the formulas (I) and (II).
  • the cationic polymer layer is a cationic polymer.
  • the polymer-coated crosslinked alginate gel fiber is a fiber-like (fibrous) structure including a core layer and a cationic polymer layer arranged outside the core layer.
  • the core layer contains cells capable of producing antibodies, physiologically active substances and the like, and a crosslinked alginate gel, and the crosslinked alginate gel uses chemically modified alginic acid derivatives represented by the formulas (I) and (II).
  • the cationic polymer layer is a cationic polymer, which comprises cross-linking obtained by carrying out a cross-linking reaction.
  • FIG. 1 shows a cross-sectional view of an example of a polymer-coated crosslinked alginate gel fiber formed by coating a crosslinked alginate gel fiber with a cationic polymer.
  • This polymer-coated crosslinked alginate gel fiber has an outer diameter of c and includes a core layer 5 having a diameter a and a cationic polymer layer 4 having a thickness b, and the core layer 5 produces an antibody, a physiologically active substance, and the like. It contains a cross-linked alginate gel containing cells 6.
  • the cross-linked alginic acid gel of the core layer 5 is a cross-linked alginic acid gel formed by performing a cross-linking reaction using chemically modified alginic acid derivatives represented by the formulas (I) and (II).
  • the core layer of the polymer-coated crosslinked arginic acid gel fiber of some embodiments is formed by carrying out a crosslinking reaction using the chemically modified alginic acid derivatives represented by the formulas (I) and (II) described in the above embodiment [1].
  • the crosslinked alginic acid gel there is no particular limitation as long as it does not have cytotoxicity, but it is not particularly limited, but collagen solution, collagen gel, medium, cell culture medium, culture solution, methyl cellulose, sucrose solution, alginic acid solution, alginate gel. , Etc.; preferably, a component selected from the group consisting of an alginic acid solution, an alginate gel, a medium, and a culture solution.
  • the "polymer-coated crosslinked alginic acid gel fiber” is a fibrous structure in which the outer diameter (c in FIG. 2) of the fiber is, for example, about 0.1 to about 2000 ⁇ m. Sometimes called "microfiber”.
  • the cross-sectional shape of the polymer-coated crosslinked alginate gel fiber in the direction perpendicular to the central axis is not limited to a circle, but may be an asymmetric structure or a deformed shape.
  • the cross-sectional shape may be circular, elliptical, or polygonal. It may have various shapes such as (for example, a triangle, a quadrangle, a pentagon, etc.), and is preferably a circular cross-sectional shape as shown in FIG.
  • the outer diameter of the polymer-coated crosslinked alginate gel fiber (in the case of non-circular shape, the major axis or the maximum diameter is regarded as the outer diameter) is, for example, about 0.1 to about 2000 ⁇ m, about 0.2 ⁇ m to about 2000 ⁇ m, and about 1 to about.
  • the range is 1000 ⁇ m, about 2 to about 500 ⁇ m, about 2 to about 200 ⁇ m, and the like.
  • the diameter of the core layer of the polymer-coated crosslinked alginate gel fiber is, for example, about 0.1 to about 2000 ⁇ m, about 0.2 ⁇ m to about 2000 ⁇ m, about 1 to about 1000 ⁇ m, about 2 to about 500 ⁇ m, about 2 to about 200 ⁇ m, and the like. It is a range.
  • the diameter of the cross section of the core layer is preferably less than the diameter of the fiber cross section and preferably 50% or more.
  • the thickness of the polymer layer is, for example, about 0.1 to about 200 ⁇ m, about 1 to about 200 ⁇ m, about 5 ⁇ m to about 200 ⁇ m, and the like.
  • the values of the diameter, outer diameter, and inner diameter of the core layer of the polymer-coated crosslinked alginate gel fiber are determined by, for example, preparing a fiber using a cationic polymer that develops fluorescent color in the polymer layer and using a retardation optical microscope. It is possible to measure from the image. It is expressed as the average value of the measured values at several points of the polymer-coated crosslinked alginate gel fiber.
  • the core layer and the polymer layer of the polymer-coated crosslinked alginate gel fiber usually have a substantially uniform thickness, and preferably each layer has a thickness uniformity within the range of ⁇ 10%.
  • the length of the polymer-coated crosslinked alginate gel fiber is not particularly limited, but is, for example, about 0.01 to about 100 m, or about 0.1 to about 75 m, or about 0.3 to about 50 m. ..
  • the core layer of the polymer-coated crosslinked alginate gel fiber of some embodiments contains a cell capable of producing an antibody, a physiologically active substance, or the like, and is chemically modified by the formulas (I) and (II). It can be formed using a mixed solution of alginic acid derivatives.
  • the concentration of the solution of the chemically modified alginic acid derivative represented by the formula (I) or the formula (II) is, for example, in the range of about 0.01 to about 1.5% by weight, respectively; preferably about 0. It ranges from 0.05 to about 1.0% by weight; more preferably from about 0.08 to about 0.75% by weight.
  • the concentration of the mixed solution of the chemically modified alginic acid derivatives represented by the formulas (I) and (II) is, for example, in the range of about 0.02 to about 2.0% by weight; preferably about 0.1. It is in the range of about 2.0% by weight; more preferably in the range of about 0.15 to about 1.5% by weight.
  • the concentration of the alginic acid is, for example, 0 to about 1.98% by weight. It is in the range; preferably in the range of 0 to about 1.8% by weight; more preferably in the range of 0 to about 1.7% by weight.
  • the chemically modified alginic acid derivatives represented by the formulas (I) and (II) containing cells capable of producing an antibody, a physiologically active substance, etc. used for forming the core layer of the polymer-coated crosslinked alginate gel fiber.
  • the chemically modified alginic acid derivatives represented by the formulas (I) and (II) containing cells capable of producing an antibody, a physiologically active substance, etc. used for forming the core layer of the polymer-coated crosslinked alginic acid gel fiber.
  • a mixed solution containing a cell capable of producing an antibody, a physiologically active substance, etc. used for forming a core layer of a polymer-coated crosslinked alginate gel fiber and a chemically modified alginic acid derivative represented by the formulas (I) and (II).
  • a mixed solution containing cells capable of producing an antibody, a physiologically active substance, etc. used for forming the core layer of a polymer-coated crosslinked arginic acid gel fiber and chemically modified arginic acid derivatives represented by the formulas (I) and (II).
  • the alginic acid solution is added to the mixture, the volume of the chemically modified alginic acid derivative represented by the formula (I) (v1) and the volume of the chemically modified alginic acid derivative represented by the formula (II) in the mixed solution to which the alginic acid solution is added.
  • chemically modified alginic acid derivatives represented by the formulas (I) and (II) containing cells capable of producing an antibody, a physiologically active substance, etc. used for forming the core layer of a polymer-coated crosslinked alginic acid gel fiber used for forming the core layer of a polymer-coated crosslinked alginic acid gel fiber.
  • the molecular weight of alginic acid (for example, sodium alginate, etc.) used for preparing the alginic acid solution is not particularly limited, but is measured by a gel filtration chromatography method (GPC method).
  • the weight average molecular weight obtained is, for example, in the range of about 150,000 Da to about 2,500,000 Da, in the range of about 300,000 Da to about 2,000,000 Da, in the range of about 700,000 Da to about 2,000,000 Da, and the like. Is.
  • chemically modified alginic acid derivatives represented by the formulas (I) and (II) containing cells capable of producing an antibody, a physiologically active substance, etc. used for forming the core layer of a polymer-coated crosslinked alginic acid gel fiber used for forming the core layer of a polymer-coated crosslinked alginic acid gel fiber.
  • the molecular weight of alginic acid (for example, sodium alginate, etc.) used for preparing the alginic acid solution is not particularly limited, but is measured by a gel filtration chromatography method (GPC method).
  • the weight average molecular weight is, for example, in the range of about 150,000 Da to about 2.5 million Da, in the range of about 300,000 Da to about 2.5 million Da, from about 700,000 Da to about 1.400,000 Da, about 800. It ranges from 000 Da to about 1,500,000 Da, about 1,400,000 to about 2,000,000 Da, about 1,500,000 to about 2,500,000, and the like.
  • the solvent used when preparing the solution of the chemically modified alginic acid derivative represented by the formula (I) or the formula (II), the alginic acid solution, etc. used when producing the core layer of the polymer-coated crosslinked alginic acid gel fiber is particularly limited.
  • examples thereof include media, cell culture media, culture media, isotonic buffers, phosphate buffered physiological saline (PBS), physiological saline and the like; preferably media, cell culture media, cultures and the like.
  • PBS phosphate buffered physiological saline
  • a solution, physiological saline or isotonic buffer phosphate buffered physiological saline or isotonic buffer.
  • Cationic polymer A polycation means a compound having two or more cationic groups in one molecule, and a cationic group means a cationic group or a group that can be induced by a cationic group.
  • a cationic group include an amino group; a monoalkylamino group such as a methylamino group and an ethylamino group; a dialkylamino group such as a dimethylamino group and a diethylamino group; an imino group; a guanidino group and the like.
  • the amino group may be a -NH 3+ group to which a proton is coordinated .
  • the cationic polymer means a polymer having two or more cationic groups in one molecule.
  • the cationic polymer include those obtained by polymerizing a monomer having a cationic group.
  • the cationic polymer preferably has a hydrophilicity that can be dissolved in water and has a property of being positively charged by dissociation of the cationic group in water.
  • a polymer having two or more amino groups in one molecule is particularly preferable.
  • the cationic polymer is formed by carrying out a cross-linking reaction using chemically modified alginic acid derivatives represented by the formulas (I) and (II), which include cells capable of producing an antibody, a physiologically active substance and the like.
  • the carboxyl group of the crosslinked alginate gel fiber and the cationic group of the cationic polymer interact electrostatically, and the surface of the crosslinked alginate gel fiber is coated with the cationic polymer.
  • the material is capable of increasing the strength of the crosslinked alginate gel fiber (see FIG. 2).
  • the cationic polymer the antibody, the physiologically active substance, etc.
  • the cationic polymer (polymer layer) covering the core layer It is preferably a substance that can be released to the outside of the polymer-coated crosslinked alginate gel fiber.
  • examples of the cationic polymer include polyamino acids (polymers of basic amino acids), basic polysaccharides (eg, chitosan, etc.), basic polymers (polymethylene-CO-guanidine (PMCG), polyallylamine).
  • PAA polyvinylamine
  • PVA polyethyleneimine
  • allylamine-diallylamine copolymer polyallylamine-maleic acid copolymer
  • cationic polymers are mentioned, and poly-L-ornithin (poly-L-ornithin) which is a polyamino acid is preferable.
  • PLO poly-D-ornithine
  • PDO poly-DL-ornithin
  • PDL poly-D-lysine
  • PLL poly-L-lysine
  • PLM poly-DL-lysine
  • PPA poly-L-arginine
  • Poly-D-Arginine (PDA), Poly-DL-Arginin, Poly-L-Homoarginine (PLHA), Poly-D-Homoarginine (PDHA), Poly-DL-Homoarginine, Poly-L-Histidine (PLH) ), Poly-D-histidine (PDH), and a cationic polymer selected from the group consisting of poly-DL-histidine; more preferably poly-L-ornithine, poly-L-lysine or polyallylamine; More preferably, it is poly-L-ornithine.
  • examples of the cationic polymer used when preparing a solution containing a cationic polymer include the polyamino acid, a basic polysaccharide, a basic polymer, and salts thereof (salt, hydrobromide). Etc.).
  • a commercially available product or a product prepared from a commercially available product can be used.
  • the degree of polymerization of the cationic polymer is not particularly limited, and examples thereof include a degree of polymerization of 50 to 6,000, a degree of polymerization of 50 to 2,000, and a degree of polymerization of 100 to 1,500. Be done.
  • the degree of polymerization is 130 to 1,300
  • the degree of polymerization is 50 to 1,800
  • chitosan for example, 60 to 6,000. Degree of polymerization.
  • the weight average molecular weight (Mw) of the cationic polymer is not particularly limited, but is, for example, in the range of 500 to 1,000,000, in the range of 1,000 to 500,000, and from 3,000 to. Within the range of 300,000, within the range of 5,000 to 100,000, within the range of 10,000 to 50,000, and the like.
  • the weight average molecular weight (Mw) of the cationic polymer can be measured by gel permeation chromatography (GPC).
  • poly-L-ornithin a commercially available poly-L-ornithine hydrobromide [for example, molecular weight: 70,000 to 150,000 (Fuji Film-manufactured by Wako Pure Chemical Industries, Ltd.), molecular weight: 15,000. ⁇ 30,000 to 30,000 to 70,000, 5,000 to 15,000 (manufactured by Sigma-Aldrich), etc.] can be used; for example, in the case of polyallylamine, a commercially available polyallylamine [eg, for example.
  • Chitosan one of the cationic polymers, is a deacetylase of chitin, and from the viewpoint of its water solubility, the degree of deacetylation thereof is, for example, in the range of 40 to 100% and in the range of 45 to 90%. , Or those in the range of 50 to 80% can be used.
  • the concentration of the solution containing the cationic polymer is not particularly limited, but may be any concentration as long as it can uniformly coat the surface of the alginate gel fiber, for example, about 0.01 to about 10.0% by weight, about 0. Concentrations of 0.01 to about 5.0% by weight and about 0.02 to about 1.0% by weight are mentioned, preferably from about 0.02 to about 5.0% by weight, more preferably from about 0.05 to about 0.05% by weight. The concentration is about 1.0% by weight.
  • the viscosity of the solution containing the cationic polymer is not particularly limited, but is, for example, in the range of 10.0 to 500.0 mPa ⁇ s, in the range of 20.0 to 300.0 mPa ⁇ s, and 50.0 to 200.0 mPa. ⁇ It is within the range of s.
  • the solvent of the solution containing the cationic polymer is not particularly limited as long as it can dissolve the cationic polymer, but for example, water (tap water, pure water (for example, distilled water, ion-exchanged water, RO water, RO). -EDI water, etc.), ultra-pure water (MilliQ water)), aqueous solutions of inorganic salts (phosphate buffered physiological saline (PBS), physiological saline, etc.), etc., and the amount of charge of the cationic polymer is increased. Ultra-pure water, water or physiological saline is preferable.
  • the multilayer polymer coated crosslinked alginate gel fiber is the cationic polymer layer of the polymer coated crosslinked alginate gel fiber described in "6.
  • Polymer coated crosslinked alginate gel fiber described above. It means a fibrous (fibrous) structure obtained by coating the outside of the above with an anionic polymer (anionic polymer layer). That is, a core containing a cell capable of producing an antibody, a physiologically active substance, or the like and a crosslinked alginic acid gel obtained by performing a crosslinking reaction using the chemically modified alginic acid derivatives represented by the formulas (I) and (II).
  • Polymer-coated crosslinked alginic acid obtained by coating the layer with a cationic polymer A fibrous structure obtained by coating the outside of the cationic polymer layer of the gel fiber with anionic kapolymer (multilayer polymer-coated crosslinked alginic acid). The method for manufacturing the gel fiber will be described later).
  • the multilayer polymer-coated crosslinked alginate gel fiber is fibrous (fibrous) including a core layer, a cationic polymer layer arranged outside the core layer, and an anionic polymer layer arranged outside the cationic polymer layer.
  • the core layer contains cells capable of producing antibodies, physiologically active substances and the like, and a crosslinked alginic acid gel in which crosslinks are formed using the chemically modified alginic acid derivatives represented by the formulas (I) and (II).
  • the cationic polymer layer is a cationic polymer
  • the anionic polymer layer is an anionic polymer.
  • the multilayer polymer-coated crosslinked alginate gel fiber is fibrous (fibrous) including a core layer, a cationic polymer layer arranged outside the core layer, and an anionic polymer layer arranged outside the cationic polymer layer.
  • the core layer contains cells capable of producing an antibody, a physiologically active substance, etc., and a crosslinked alginate gel, and the crosslinked alginate gel uses chemically modified alginate derivatives represented by the formulas (I) and (II).
  • the cationic polymer layer is a cationic polymer
  • the anionic polymer layer is an anionic polymer.
  • FIG. 8 shows a cross-sectional view of an example of a multilayer polymer coated crosslinked alginate gel fiber.
  • the multilayer polymer-coated crosslinked alginate gel fiber has an outer diameter of e and includes a core layer 5 having a diameter a, a cationic polymer layer 4 having a thickness b, and an anionic polymer layer 7 having a thickness d, and the core layer 5 has a core layer 5.
  • the cross-linked alginic acid gel of the core layer 5 is a cross-linked alginic acid gel formed by performing a cross-linking reaction using chemically modified alginic acid derivatives represented by the formulas (I) and (II).
  • the core layer of the multilayer polymer-coated crosslinked alginic acid gel fiber of some embodiments is subjected to a crosslinking reaction using the chemically modified alginic acid derivatives represented by the formulas (I) and (II) described in the above embodiment [1].
  • the formed crosslinked alginic acid gel there is no particular limitation as long as it does not have cytotoxicity, but it is not particularly limited, but collagen solution, collagen gel, medium, cell culture medium, culture solution, methyl cellulose, sucrose solution, alginic acid solution, alginic acid.
  • Other components such as gels can be included; preferably components selected from the group consisting of alginic acid solutions, alginate gels, media, culture solutions can be included.
  • the multilayer polymer-coated crosslinked alginate gel fiber is a fibrous structure in which the outer diameter (e in FIG. 8) of the fiber is, for example, about 0.1 to about 2000 ⁇ m. Sometimes called fiber.
  • the cross-sectional shape of the multilayer polymer-coated cross-linked alginate gel fiber in the direction perpendicular to the central axis is not limited to a circle, but may be an asymmetric structure or a deformed shape.
  • the cross-sectional shape may be circular, elliptical, or poly. It may have various shapes such as a polygon (for example, a triangle, a quadrangle, a pentagon, etc.), and is preferably a circular cross-sectional shape as shown in FIG.
  • the outer diameter of the multilayer polymer coated crosslinked alginate gel fiber (in the case of non-circular shape, the major axis or the maximum diameter is regarded as the outer diameter) is, for example, about 0.1 to about 2000 ⁇ m, about 0.2 ⁇ m to about 2000 ⁇ m, and about 1 to. The range is about 1000 ⁇ m, about 2 to about 500 ⁇ m, about 2 to about 200 ⁇ m, and the like.
  • the diameter of the core layer of the multilayer polymer coated crosslinked alginate gel fiber is, for example, about 0.1 to about 2000 ⁇ m, about 0.2 ⁇ m to about 2000 ⁇ m, about 1 to about 1000 ⁇ m, about 2 to about 500 ⁇ m, about 2 to about 200 ⁇ m, etc. Is the range of.
  • the diameter of the core layer is preferably less than the diameter of the fiber and preferably 50% or more.
  • the thickness of the cationic polymer layer (b) of the multilayer polymer-coated crosslinked alginate gel fiber can be determined by the method described in "6. Polymer-coated crosslinked alginate gel fiber" described above.
  • the thickness of the anionic polymer layer is, for example, about 0.1 to about 200 ⁇ m, about 1 to about 200 ⁇ m, about 5 ⁇ m to about 200 ⁇ m, and the like.
  • the values of the core layer diameter, outer diameter, inner diameter of the cationic polymer layer, and inner diameter of the anionic polymer layer of the above-mentioned multilayer polymer-coated crosslinked alginate gel fiber are determined, for example, by using a polymer that develops a fluorescent color in each polymer layer. It can be manufactured and measured from an image taken with a phase-difference optical microscope. It is expressed as the average value of the measured values at several points of the multilayer polymer coated crosslinked alginate gel fiber.
  • the core layer and polymer layer of the above multilayer polymer coated crosslinked alginate gel fiber usually have a substantially uniform thickness, preferably each layer has a thickness uniformity within the range of ⁇ 10%. ..
  • the length of the multilayer polymer coated crosslinked alginate gel fiber is not particularly limited, but is, for example, about 0.01 to about 100 m, or about 0.1 to about 75 m, or about 0.3 to about 50 m. be.
  • the core layer of the multilayer polymer-coated crosslinked alginate gel fiber of some embodiments contains cells capable of producing an antibody, a physiologically active substance, or the like, and is a chemistry represented by the formulas (I) and (II). It can be formed using a mixed solution of modified alginic acid derivatives. In that case, the concentration range of the solution of the chemically modified alginic acid derivative represented by the formula (I) or the formula (II) is the above-mentioned 6. Same as described for polymer coated crosslinked alginate gel fibers.
  • chemically modified alginic acid represented by the formulas (I) and (II) containing cells capable of producing an antibody, a physiologically active substance, etc. used for forming a core layer of a multilayer polymer-coated crosslinked alginic acid gel fiber.
  • concentration of the mixed solution containing the chemically modified alginic acid derivative represented by the formulas (I) and (II) the concentration of the alginic acid solution, the combination of concentrations, and the volume of each solution.
  • the ratio is the same as that described in "6. Polymer-coated crosslinked alginate gel fiber" described above.
  • the solvent used for preparing the solution of the chemically modified alginic acid derivative represented by the formula (I) or the formula (II), the alginic acid solution, etc. used for producing the core layer of the multilayer polymer-coated crosslinked alginic acid gel fiber is described above. It is the same as the solvent described in "6. Polymer-coated crosslinked alginate gel fiber".
  • Anionic polymer A polyanion is a compound having two or more anionic groups in one molecule, and an anionic group is an anionic group or a group that can be induced by an anionic group.
  • the anionic group include acidic functional groups such as a carboxyl group and a sulfuric acid group.
  • the anionic polymer layer is a layer that covers the outside of the cationic polymer layer by electrostatic interaction with the cationic polymer.
  • the anionic polymer forming the anionic polymer layer is not particularly limited as long as it can form a film by electrostatic interaction with the cationic polymer, but is not particularly limited, and is, for example, an acidic functional group such as a carboxyl group or a sulfuric acid group. Examples thereof include polymers having.
  • polysaccharides such as alginic acid, polygalacturonic acid, pectin, pectinic acid, carboxymethyl cellulose, carrageenan, hyaluronic acid and chondroitin sulfate
  • synthetic polymers such as polyacrylic acid and polystyrene sulfonic acid, and their chemistry. Modified products are mentioned, and these chemically crosslinked products are also included.
  • the anionic polymer may have a property of being able to form a film by electrostatic interaction with the cationic polymer, and may be a polymer showing neutrality as a whole.
  • the anionic polymer is a substance capable of coating the cationic polymer layer of the polymer-coated crosslinked alginate gel fiber as an anionic polymer layer and forming a multilayer polymer-coated crosslinked alginate gel fiber (see FIG. 9). It is preferable to have.
  • the anionic polymer is an anion in which an antibody, a physiologically active substance, or the like produced in the core layer of the multilayer polymer-coated crosslinked alginate gel fiber permeates the cationic polymer layer and then coats the cationic polymer layer. It is preferably a substance that can permeate the sex polymer layer and be released out of the fiber.
  • the anionic polymer layer is a group consisting of, for example, anionic polysaccharides, sulfated polysaccharides, synthetic polymers, anionic polyamino acids, chemically modified products thereof, crosslinked products thereof, mixtures thereof, and the like.
  • Anionic polymer selected from, specifically, anionic such as alginic acid, hyaluronic acid, polysaccharideuronic acid, carrageenan, succinoglucan, arabic rubber, xanthan gum, pectin, pectic acid, carboxymethyl cellulose, agar and the like.
  • the anionic polymer layer is, for example, alginic acid, a chemically modified alginic acid derivative represented by the above formula (I), a chemically modified alginic acid derivative represented by the formula (II), and a chemically modified formula (I).
  • Anionic polyamino acids such as polyaspartic acid, chemically modified products thereof, crosslinked products thereof, mixtures thereof, and the like, which are anionic polymers selected from the group.
  • the anionic polymer layer is preferably alginic acid, a chemically modified alginic acid derivative represented by the above formula (I), a chemically modified alginic acid derivative represented by the formula (II), and a chemistry represented by the formula (I).
  • An anionic polymer selected from the group consisting of a crosslinked product formed from a modified alginic acid derivative and / or a chemically modified alginic acid derivative represented by the formula (II), and a mixture thereof.
  • the solvent for preparing the solution containing the anionic polymer is not particularly limited as long as it can dissolve the anionic polymer, but for example, water (tap water, pure water (for example, distilled water, ion-exchanged water, RO). Water, RO-EDI water, etc.), ultrapure water (MilliQ water)), aqueous solution of inorganic salts (phosphate buffered physiological saline (PBS), physiological saline, etc.), and the like, preferably water or Physiological saline is used.
  • water tap water, pure water (for example, distilled water, ion-exchanged water, RO). Water, RO-EDI water, etc.), ultrapure water (MilliQ water)
  • aqueous solution of inorganic salts phosphate buffered physiological saline (PBS), physiological saline, etc.
  • PBS phosphate buffered physiological saline
  • physiological saline preferably water or Physiological saline
  • alginic acid a chemically modified alginic acid derivative represented by the formula (I) or the formula (II) is used as an anionic polymer
  • a solution containing a polyvalent (divalent, trivalent) metal ion that causes gelation Excludes.
  • the weight average molecular weight (Mw) of the anionic polymer is not particularly limited, but is, for example, in the range of about 500 to about 5,000,000, and in the range of about 300,000 to about 2,000,000. It ranges from about 150,000 to about 2.5 million and from about 100,000 to about 3,000,000.
  • the weight average molecular weight (Mw) of the anionic polymer can be measured by gel permeation chromatography (GPC).
  • alginic acid when used as the anionic polymer, its weight average molecular weight (Mw) is, for example, in the range of about 150,000 Da to about 2.5 million Da, and from about 150,000 Da to about 800,000 Da. Range, range from about 300,000 Da to about 700,000 Da, about 700,000 Da to about 1,400,000 Da, about 800,000 Da to about 1,500,000 Da, about 1,400,000 to about 2,000, It is in the range of 000 Da, about 1.5 million to about 2.5 million, and the like.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) thereof is, for example, about 100,000 to about 3,.
  • the range is in the range of ,000,000, in the range of about 300,000 Da to about 2,500,000, in the range of about 500,000 to about 2,000,000, and the like.
  • the concentration of the solution containing the anionic polymer is not particularly limited, but may be any concentration as long as it can uniformly coat the surface of the cationic polymer layer of the polymer-coated crosslinked alginate gel fiber, for example, about 0.01 to about. Concentrations in the range of 5.0% by weight, about 0.05 to about 1.0% by weight, about 0.1 to about 0.5% by weight, and about 0.15 to about 0.4% by weight. It is preferably 0.15% by weight.
  • the concentration of the solution is For example, about 0.01 to about 5.0% by weight, about 0.05 to about 1.0% by weight, about 0.1 to 0.5% by weight, about 0.15 to about 0.4% by weight.
  • the concentration in the range. Further, for example, the concentration is in the range of about 0.05 to about 0.15% by weight, about 0.075 to about 0.2% by weight, and about 0.15 to about 0.4% by weight.
  • the concentration of the solution is, for example, about 0. At concentrations ranging from 0.01 to about 5.0% by weight, about 0.05 to about 1.0% by weight, about 0.1 to about 0.5% by weight, and about 0.15 to about 0.4% by weight. be. Further, for example, the concentration is in the range of about 0.05 to about 0.15% by weight, about 0.075 to about 0.2% by weight, and about 0.15 to about 0.4% by weight.
  • the concentration of the solution is, for example, about 0.01 to about 5.0% by weight, about 0. Concentrations in the range of 05 to about 1.0% by weight, about 0.1 to about 0.5% by weight, and about 0.15 to about 0.4% by weight. Further, for example, the concentration is in the range of about 0.05 to about 0.15% by weight, about 0.075 to about 0.2% by weight, and about 0.15 to about 0.4% by weight.
  • a mixed solution containing a chemically modified alginic acid derivative represented by the formulas (I) and (II) is used for forming an anionic polymer layer of a multilayer polymer-coated crosslinked alginate gel fiber
  • a mixed solution thereof is used.
  • the concentration of is, for example, about 0.01 to about 5.0% by weight, about 0.05 to about 1.0% by weight, about 0.1 to about 0.5% by weight, and about 0.15 to about 0. Concentrations in the range of 4% by weight. It is preferably 0.15% by weight.
  • a mixed solution containing a chemically modified alginic acid derivative represented by the formulas (I) and (II) and alginic acid is used for forming an anionic polymer layer of a multilayer polymer-coated crosslinked alginic acid gel fiber, the mixture thereof.
  • the concentration of the solution is, for example, about 0.01 to about 5.0% by weight, about 0.05 to about 1.0% by weight, about 0.1 to about 0.5% by weight, about 0.15 to about 0.
  • the concentration is in the range of 0.4% by weight. It is preferably 0.15% by weight.
  • the mixed solution containing a chemically modified alginic acid derivative represented by the formulas (I) and (II) is used for forming an anionic polymer layer of a multilayer polymer-coated crosslinked alginic acid gel fiber
  • the mixed solution thereof is used.
  • a mixed solution containing a chemically modified alginic acid derivative represented by the formulas (I) and (II) and alginic acid is used for forming an anionic polymer layer of a multilayer polymer-coated crosslinked alginic acid gel fiber
  • a mixture thereof is used.
  • Chemically modified alginic acid derivatives represented by the formulas (I) and (II) when used for forming the anionic polymer layer of the multilayer polymer coated crosslinked alginate gel fiber, in the anionic polymer layer after coating. , Chemically modified alginic acid derivatives represented by the formulas (I) and (II) may form chemical crosslinks.
  • the chemical cross-linking is based on the following formula (III-LA): [In formula (III-LA), -CONH- and -NHCO- at both ends represent amide bonds via any carboxyl group of alginic acid; -L 1A- , -L 2A- , and -X A- , The corresponding -L 1- , -L 2- and -X- in the above-mentioned embodiment [1-12] are the same as the definition].
  • the cells that can be encapsulated in the core layer of the polymer-coated cross-linked alginate gel fiber and the multilayer polymer-coated cross-linked alginate gel fiber are not particularly limited, and are not particularly limited, and are, for example, antibodies (human antibody, humanized antibody). , Chimera antibody, various monoclonal antibodies such as mouse antibody or their bispecific antibody, low molecular weight antibody, various modified antibodies such as sugar chain modified antibody) producing cells, physiologically active substances (enzymes, cytokines, hormones, blood) Examples thereof include cells capable of producing various useful substances useful as coagulation factors, vaccines, etc.) producing cells, pharmaceutical raw materials, chemical raw materials, food raw materials, and the like. Preferably, it is an antibody-producing cell or a physiologically active substance-producing cell.
  • the antibody-producing cells that can be encapsulated in the core layer of the polymer-coated cross-linked alginate gel fiber and the multilayer polymer-coated cross-linked alginate gel fiber are hybridomas (antibody-producing hybridomas) obtained from B cells that produce antibodies, or antibodies. Examples thereof include cultured cells (antibody-producing gene recombinant cells) transformed with an expression vector.
  • the physiologically active substance-producing cells that can be encapsulated in the core layer of the polymer-coated cross-linked alginate gel fiber and the multilayer polymer-coated cross-linked alginate gel fiber are cultured cells transformed with a physiologically active substance expression vector (physiologically active substance production). Genetically modified cells).
  • the cultured cells used as a host for these gene recombination are not particularly limited, and examples thereof include microorganisms such as bacteria and yeast, plant cells, insect cells, and animal cells.
  • microorganism used as a host examples include Escherichia coli, budding yeast, fission yeast, Pichia yeast and the like, and examples of insect cells used as a host include Sf9 cells, Sf21 cells, High five cells and the like.
  • Animal cells used as a host include, for example, CHO cells, CHO cell substrains (CHO-K1 cells, CHO-DG44 cells, CHO-DXB11 cells, CHO cells transformed to modify sugar chains, etc.). , COS cells, Sp2 / 0 cells, NS0 cells, SP2 cells, PERC6 cells, YB2 / 0 cells, YE2 / 0 cells, 1R983F cells, Namalwa cells, Will-2 cells, Jurkat cells, Vero cells, Molt-4 cells, HEK293 cells, BHK cells, HT-1080 cells, KGH6 cells, P3X63Ag8.653 cells, C127 cells, JC cells, LA7 cells, ZR-45-30 cells, hTERT cells, NM2C5 cells, UACC-812 cells, etc.
  • CHO cells CHO cell substrains (CHO-K1 cells, CHO-DG44 cells, CHO-DXB11 cells, CHO cells transformed to modify sugar chains
  • the cells can be appropriately selected from (some of which are described in the ATCC cell lineage catalog available from American Type Culture Collection). Unless otherwise specified, in the present specification, the term "CHO cell” means a cell including "CHO cell substrain", and other cells also include cells including each cell substrain. means.
  • the antibody-producing cells that can be encapsulated in the core layer of the polymer-coated crosslinked alginate gel fiber and the multilayer polymer-coated crosslinked alginate gel fiber are preferably animal cells transformed with an antibody expression vector, that is, an antibody. Is a transgenic animal cell that produces.
  • the physiologically active substance-producing cell that can be encapsulated in the core layer is preferably an animal cell transformed with a physiologically active substance expression vector, that is, a recombinant animal cell that produces a physiologically active substance.
  • animal cells used as their hosts include CHO cells, CHO cell substrains, COS cells, Sp2 / 0 cells, NS0 cells, SP2 cells, or PERC6 cells, HEK293 cells, BHK cells, and HT-. 1080 cells, or C127 cells; more preferably cells selected from the group consisting of CHO cells, CHO cell substrains, Sp2 / 0 cells, and NS0 cells, HEK293 cells, and BHK cells; more preferably. , CHO cells or CHO cell substrains.
  • the host cell for the antibody-producing cell is preferably a CHO cell, a CHO cell substrain, a Sp2 / 0 cell, or an NS0 cell; more preferably a CHO cell or a CHO cell substrain. ..
  • the host cell of the physiologically active substance-producing cell is preferably a CHO cell, a CHO cell substrain, a HEK293 cell, or a BHK cell; more preferably a CHO cell or a CHO cell substrain.
  • the antibody-producing cells that can be contained in the core layer of the polymer-coated crosslinked alginate gel fiber and the multilayer polymer-coated crosslinked alginate gel fiber are not particularly limited, but are used as biopharmaceuticals or biopharmaceutical raw materials. Examples include cells that produce the antibodies that are used.
  • the cells that produce a bioactive substance are not particularly limited, and examples thereof include cells that produce a biopharmacy or a biopharmaceutical raw material.
  • Biopharmaceuticals include, for example, various cancers, autoimmune and inflammatory diseases, eye diseases, blood diseases, neurological diseases, hereditary rare diseases, endocrine and metabolic diseases, cardiovascular diseases, respiratory diseases, digestive diseases, etc.
  • Examples include pharmaceuticals for various diseases such as skin diseases, muscle / bone diseases, and infectious diseases.
  • the specific target of the antibody drug is not particularly limited, but C5 (complement), CD3, CD19, CD20, CD22, CD25, CD30, CD33, CD38, CD52, CD79, IL-1 ⁇ , IL-4R, IL-5, IL-6, IL-6R, IL-12, IL-17, IL-17R, IL-23, IFNAR, PCSK9, CGRP, CGRPR, GD2 (ganglioside), HER2 , HER3, TROP2, BCMA, PD-1, PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, KIR, SLAMF7, RANKL, TNF- ⁇ , BLyS, EGFR, VEGF, VEGFR, FGF, Nectin , Integrin, EpCAM, CCR4, TfR, TF, FIXa, FX, GPVI, sclerostin, amyloid ⁇ , IgE, various viruses, etc.
  • the antibody-producing cells that can be contained in the core layer of the polymer-coated cross-linked alginate gel fiber and the multilayer polymer-coated cross-linked alginate gel fiber are not particularly limited, but specifically, Muromonab-CD3.
  • Idalcizumab Idalcizumab, brinatumomab, brolcizumab, absiximab, couplersizumab, sertrizumab and the like, and the like, cells producing low molecular weight antibodies consisting of antibody fragments.
  • the antibody-producing cells that can be contained in the core layer of the polymer-coated cross-linked alginate gel fiber and the multilayer polymer-coated cross-linked alginate gel fiber are not particularly limited, but specifically, antibody-producing animals.
  • Examples thereof include antibody-producing CHO cells, antibody-producing Sp2 / 0 cells or antibody-producing NS0 cells, and more preferably antibody-producing CHO cells.
  • the antibody-producing animal cells are not particularly limited, but for example, muromonab-CD3-producing CHO cells, trussumab-producing CHO cells, rituximab-producing CHO cells, paribizmab-producing NS0 cells, and paribizmab-producing CHO cells.
  • Infliximab-producing Sp2 / 0 cells Infliximab-producing CHO cells, Baciliximab-producing Sp2 / 0 cells, Baciliximab-producing CHO cells, Tosirizumab-producing CHO cells, Bebashizumab-producing CHO cells, Adalimmab-producing CHO cells, Setuximab-producing Sp2 / 0 cells, CHO cells, omalizumab-producing CHO cells, eculizumab-producing NS0 cells, eculizumab-producing CHO cells, panitzummab-producing CHO cells, ustequinumab-producing Sp2 / 0 cells, ustequinumab-producing CHO cells, gorimumab-producing Sp2 / 0 cells, golimumab-producing CHO cells, canaquinu / 0 cells, canaquinumab-producing CHO cells, denosumab-producing CHO cells
  • the antibody-producing CHO cells include muromonab-CD3-producing CHO cells, trastuzumab-producing CHO cells, rituximab-producing CHO cells, paribizmab-producing CHO cells, infliximab-producing CHO cells, baciliximab-producing CHO cells, tosirizumab-producing CHO cells, and gemtuzumab-producing CHO cells.
  • Cells bebashizumab-producing CHO cells, ibritsumomab-producing CHO cells, adalimumab-producing CHO cells, setuximab-producing CHO cells, ranibizmab-producing CHO cells, omalizumab-producing CHO cells, eclyzumab-producing CHO cells, panitzummab-producing CHO cells, ustequinumab-producing CHO cells, ustequinumab-producing CHO cells Cells, canaquinumab-producing CHO cells, denosumab-producing CHO cells, mogamurizumab-producing CHO cells, sertrizumab-producing CHO cells, ofatumumab-producing CHO cells, pertzzumab-producing CHO cells, brentuccimab-producing CHO cells, natalyzumab-producing CHO cells, nibolumab-producing CHO cells, Producing CHO cells, sekkinumab-producing CHO cells,
  • Examples thereof include cells, roncastuximab-producing CHO cells, thisotumab-producing CHO cells, rice bilizumab-producing CHO cells, brinatumomab-producing CHO cells, brolcizumab-producing CHO cells, absiximab-producing CHO cells, coupler ciszumab-producing CHO cells, and anti-GPVI antibody-producing CHO cells. ;
  • CHO cells selected from the group consisting of trussumab-producing CHO cells, rituximab-producing CHO cells, infliximab-producing CHO cells, tosirizumab-producing CHO cells, adalimumab-producing CHO cells, nivormab-producing CHO cells, and anti-GPVI antibody-producing CHO cells.
  • tosirizumab-producing CHO cells selected from the group consisting of trussumab-producing CHO cells, rituximab-producing CHO cells, infliximab-producing CHO cells, tosirizumab-producing CHO cells, adalimumab-producing CHO cells, nivormab-producing CHO cells, and anti-GPVI antibody-producing CHO cells.
  • tosirizumab-producing CHO cells for example, tosirizumab-producing CHO cells.
  • the antibody thus produced can be modified or modified after production, and specific examples thereof include PEGylation, drug binding modification, and radiolabeling. That is, in the production of modified antibodies such as PEGylated antibodies and antibody-drug conjugates, cells used for producing the raw material antibody (raw material antibody-producing cells) can be mentioned as cells that can be encapsulated in the core layer.
  • the raw material antibody-producing cell is not particularly limited, and examples of the raw material antibody-producing cell for the PEGylated antibody include cells that produce a raw material antibody fragment of celltrizumab pegol, specifically, celltrizumab-producing CHO cells and the like.
  • the raw material antibody-producing cells of the antibody-drug complex for example, gemtuzumab ozogamycin, ibritsumomab chiuxetan, trusszumab emtancin, trusszumab derkustecan, brentuximab vedotin, inotsumab ozogamycin, inotsumob ozobamycin, setuximab salotalobin.
  • Examples thereof include cells producing raw material antibodies such as verantamab mahodotin, roncastuximab tesillin, thisotumab vedotin, datpotamab derkustecan, patritumab derkustecan, and specific examples thereof include gemtuzumab-producing NS0 cells, ibritsumomab-producing CHO cells, and trussumab-producing CHO cells.
  • Tuximab-producing CHO cells inotsumab-producing CHO cells, setuximab-producing Sp2 / 0 cells, poratuzumab-producing CHO cells, enholtumab-producing CHO cells, sashitsuzumab-producing CHO cells, verantamab-producing CHO cells, Roncus tsuximab-producing CHO cells, chisotumab-producing CHO cells and the like can be mentioned.
  • cells producing a fusion protein of an antibody or antibody fragment and another protein or peptide can also be contained in the core layer, and examples thereof include pavinafspalpha-producing CHO cells and bintrafuspalpha-producing CHO cells. Be done.
  • Antibody will be described in detail in "14. Classification of antibody” and “15. Production and purification method of antibody / physiologically active substance”.
  • the physiologically active substance means a substance and a group of compounds that exert a physiological action or a pharmacological action on an organism.
  • Substances and compound groups that exhibit physiological and pharmacological effects on living organisms include, for example, enzymes, insulin, alkaloids, cytokines (interferon, interleukin, chemokine, tumor necrosis factor, etc.), plant hormones, neurotransmitters, and pheromones. , Hormones (animal hormones), growth factors, growth regulators, growth inhibitors, activators, hematopoietic factors, blood coagulation factors, vaccines (attenuated vaccines, inactivated vaccines, protein vaccines, etc.) and the like.
  • receptors for these substances are also substances that exhibit physiological and pharmacological actions, and are included in physiologically active substances.
  • substances that modify or modify the bioactive substances in addition to the bioactive substances originally possessed by the living body, substances that modify or modify the bioactive substances, substances that activate or inhibit the bioactivity, multiple bioactive substances or fusion proteins that combine some regions or fragments thereof.
  • the physiologically active substance is preferably a proteinaceous physiologically active substance, that is, a physiologically active substance composed of a protein or a peptide.
  • the physiologically active substance-producing cells that can be contained in the core layer of the polymer-coated cross-linked alginate gel fiber and the multilayer polymer-coated cross-linked alginate gel fiber are not particularly limited, but as described above, they are biopharmaceuticals. Alternatively, cells producing a physiologically active substance used as a raw material for biopharmaceuticals can be mentioned.
  • the physiologically active substance used as a biopharmaceutical is not particularly limited, but for example, t-PA, glucocerebrosidase, galactosidase, hyaluronidase, islonidase, glucosidase, sulfatase, uric acid oxidase, DNA degrading enzyme, adenosindeaminase, etc.
  • Enzymes such as trypeptidylpeptidase, hyaluronidase, phenylalanine ammonia lyase, alkaline phosphatase; blood coagulation factors such as FVIIa, FVIII, FIX, FXIII, thrombomodulin, antithrombin, albumin and blood-related proteins; insulin, growth hormone, diuretic peptide, gonads Stimulator hormones, GLP-1, GLP-2, parathyroid hormones, leptin and other hormones; interferons such as IFN- ⁇ , IFN- ⁇ , IFN- ⁇ ; hematopoietic factors such as erythropoetin and thrombopoetin; G-CSF, IL-2 , IL-10, IL-2R, IL-4R, IL-5R, IL-6R, IL-17R, TNFR, EGF, EGFR, FGF, VEGF, VEGFR, PDGF, PDGFR
  • Receptors Cell surface antigens such as CTLA-4, cell surface receptors and their ligands; vaccines such as hepatitis B virus-derived antigens, papillomavirus-derived antigens, varicella-zhelvous virus-derived antigens, and SARS-CoV-2-derived antigens. Examples thereof include proteins and peptides for use, and these subtypes, subunits, and active fragments are also mentioned, and cells producing these physiologically active substances can be contained in the core layer.
  • the physiologically active substance includes a substance having a structural modification, and examples thereof include a substance having an amino acid sequence modification that changes the activity of the substance, and specific examples thereof include insulin analogs and GLP.
  • a substance having an amino acid sequence modification that changes the activity of the substance and specific examples thereof include insulin analogs and GLP.
  • insulin analogs and GLP include insulin analogs and GLP.
  • -1 Analog, erythropoetin analog, etc. may be mentioned. It also includes a substance consisting of the amino acid sequences of some regions or fragments of the original substance, and may be a substance in which a plurality of amino acid sequences of those partial regions or fragments are combined; specifically, insulin analogs. Examples include FVIII analogs and parathyroid hormone analogs.
  • fusion proteins that combine two or more substances and some regions or fragments thereof are also included, for example, fusion proteins of enzymes and antibodies, fusion proteins of cytokine receptors and antibody Fc moieties, cell surface antigen extracellular domains. And the fusion protein of the antibody Fc portion, the fusion protein of the blood coagulation system factor and the antibody Fc portion, the fusion protein of the blood coagulation system factor and the plasma protein, and the like.
  • the core layer can contain cells that produce these structurally modified bioactive substances.
  • the physiologically active substance thus produced can be modified or modified after production, and specific examples thereof include PEGylation, sugar chain modification, drug binding modification, and radiolabeling. That is, it can be used for the production of a protein / peptide as a raw material in the production of modified proteins / peptides such as PEGylated protein and fatty acid-added peptide.
  • modified proteins / peptides such as PEGylated protein and fatty acid-added peptide.
  • PEGylated FVIII, PEGylated erythropoetin, and fatty acid-added insulin analog examples thereof include cells that produce raw material proteins / peptides such as, and cells that produce physiologically active substances as raw materials (raw material physiologically active substance-producing cells) can be included in the core layer.
  • the physiologically active substance-producing cells that can be contained in the core layer of the polymer-coated cross-linked alginate gel fiber and the multilayer polymer-coated cross-linked alginate gel fiber are not particularly limited, but specifically, interferonase. , Monteplase, imiglucerase, veraglucerase, agarcidase, laronidase, alglucosidase, avalglucosidase, idursulfase, galsulfase, erosulfase, lasbricase, dornase, cellliponase, glucarpidase, hyaluronidase, ashotase, etc.
  • interferonase Monteplase, imiglucerase, veraglucerase, agarcidase, laronidase, alglucosidase, avalglucosidase, idursulfase, galsulfas
  • Octocog Lurioctocog, Turoctocog, Ronoctocog, Damoctocog, Simoctocog, Nonacog, Arbutrepenonacog, Catridecacog, Efraloctocog, Eftrenonacog, Thrombomodulin, Antithrombin, Bonicog, Albumin and other blood coagulation factors Cells; insulin, insulin lispro, insulin asparto, insulin glargine, insulin detemil, insulin glulysine, insulin degludec, somatropin, somapcitan, mechaselmin, carperitide, bosolitide, glucagon, holitropin, coriogonadotropin, duraglutide, coriogonadotropin, duraglutide, lylaglutide, lylaglutide Cells that produce hormones such as; cells that produce interferon such as interferon alpha-2a, interferon alpha-2b, inter
  • the physiologically active substance-producing cells that can be contained in the core layer of the polymer-coated cross-linked alginate gel fiber and the multilayer polymer-coated cross-linked alginate gel fiber are not particularly limited, but specifically, physiological.
  • examples thereof include active substance-producing animal cells, preferably physiologically active substance-producing CHO cells, physiologically active substance-producing HEK293 cells, or physiologically active substance-producing BHK cells, and more preferably physiologically active substance-producing CHO cells.
  • physiologically active substance-producing animal cells are not particularly limited, but for example, alteplase-producing CHO cells, imiglucerase-producing CHO cells, agarsidase-producing CHO cells, laronidase-producing CHO cells, and alglucosidase-producing cells.
  • CHO cells aval glucosidase-producing CHO cells, idulsulfase-producing CHO cells, galsulfase-producing CHO cells, erosulfase-producing CHO cells, dronase-producing CHO cells, cell liponase-producing CHO cells, hyaluronidase-producing CHO cells, ashotase-producing CHO cells , Lurioctocog-producing CHO cells, Turoctocog-producing CHO cells, Ronoctocog-producing CHO cells, Nonacog-producing CHO cells, Arbutrepenonacog-producing CHO cells, Thrombomodulin-producing CHO cells, Anti-thrombin-producing CHO cells, Bonikog-producing CHO cells, Holitropin-producing CHO cells, coriogonadotropin-producing CHO cells, duraglutide-producing CHO cells, interferon beta-1a-producing CHO cells, epoetin
  • the physiologically active substance-producing CHO cells include alteplase-producing CHO cells, alglucosidase-producing CHO cells, rulioctocog-producing CHO cells, duraglutide-producing CHO cells, interferon beta-1a-producing CHO cells, darbepoetin-producing CHO cells, and etanelcept-producing CHO cells. , Afribelcept-producing CHO cells, avatarcept-producing CHO cells and the like.
  • the bioactive substances listed here may have the names of substances that have been modified or modified after production as described above, but they are based on the cells that produce the bioactive substances that are the raw materials. Can be included in the layer.
  • PEGylated physiologically active substances such as belfermin
  • cells producing the physiologically active substances as raw materials thereof can be contained in the core layer.
  • cells capable of producing physiologically active substances include natural cells and cells that have been artificially modified, and are cell clusters composed of a plurality of cells. Also included, for example, insulin secretory cells, pancreatic islets, pancreatic islet cells, dopamine secretory cells, pituitary cells, growth hormone secretory cells, parathyroid cells, nerve growth factor secretory cells, blood coagulation factor secretory cells, hepatocytes, small epithelium. Examples thereof include somatic cells, erythropoetin-secreting cells, norepinephrine-secreting cells and the like.
  • the cells producing the physiologically active substance are, in some embodiments, insulin-secreting cells, islets or islet cells, or MIN6 cells derived from pancreatic ⁇ -cells.
  • the "insulin-secreting cell” means a cell having a function of secreting insulin, and for example, in the cells constituting the pancreatic islet, it means a ⁇ cell secreting insulin.
  • the "insulin-secreting cell” may be a cell having an insulin-secreting function due to differentiation, maturation, modification, or the like, and may be, for example, an iPS cell, an ES cell, or a somatic stem cell (for example, a mesenchymal system).
  • Cells having an insulin secretory function obtained by differentiating stem cells such as stem cells) cells having an insulin secretory function obtained by maturing immature cells and precursor cells, and cells having an insulin secretory function obtained by gene recombination. Can also contain cells.
  • the differentiation or maturation of the cell includes culturing the cell, that is, the cell obtained by differentiation or maturation may include the cell obtained by culturing.
  • the “islets”, also known as Langerhans islets, are cell masses composed of an average of about 2000 islet cells. Pancreatic islands are 5 cells that secrete glucagon, ⁇ cells that secrete insulin, ⁇ cells that secrete somatostatin, ⁇ cells that secrete grelin, and PP (pancreatic polypeptide) cells that secrete pancreatic polypeptide. Consists of seed cells.
  • the "islet cell” may be any cell containing at least one of the five types of cells constituting the above-mentioned islets, but preferably contains at least ⁇ cells.
  • the islet cells may be a mixture containing all of ⁇ cells, ⁇ cells, delta cells, ⁇ cells, and PP cells, or may be in a state contained in islets.
  • the “islet cells” may be those that have become islet cells due to differentiation, maturation, modification, or the like.
  • the “pancreatic islet cell” includes, for example, pancreatic islet cells obtained by differentiating stem cells such as iPS cells, ES cells, and somatic stem cells (for example, mesenchymal stem cells), and immature cells and progenitor cells. It may also contain pancreatic islet cells obtained by maturing.
  • Insulin-secreting cells or “islets (including islet cells)" when used for transplantation, have viability and function to the extent that the patient's pathological condition can be recovered when transplanted into the patient. It is preferable to have.
  • Functions of insulin-secreting cells, islets or islets cells include, for example, secreting insulin, and it is preferable that glucose responsiveness is maintained even after transplantation.
  • Donors of "insulin-secreting cells”, “islets” or “islets cells” are animals, preferably vertebrates, more preferably mammals, and specifically include humans, pigs, monkeys, rats or mice. More preferably, it is human or porcine. Donors of "insulin-secreting cells”, “islets” or “islets” are, in some embodiments, pigs in terms of resolving the donor shortage.
  • the "insulin-secreting cell”, “islet” or “islet cell” may be any of pancreatic islets or islet cells obtained from a donor animal, or insulin-secreting cells or pancreatic islet cells obtained from a donor-derived cell. For example, insulin-secreting cells or islet cells differentiated from human-derived ES cells or iPS cells may be used.
  • insulin-secreting cells When “insulin-secreting cells”, “islets” or “islets” are derived from pigs, they are obtained from adult porcine islets, or embryonic, neonatal or perinatal porcine islets, or the islets. Insulin-secreting cells or pancreatic islet cells.
  • the pancreatic islets may be appropriately cultured before use, or pancreatic islets matured from embryonic, neonatal, or perinatal porcine islets may be used.
  • blood coagulation factor secreting cells examples include factor VIII secreting cells and factor IX secreting cells.
  • Method for Producing Polymer-Coated Crosslinked Alginic Acid Gel Fiber a cross-linking reaction is carried out using chemically modified alginic acid derivatives represented by the formulas (I) and (II), which contain cells capable of producing antibodies, physiologically active substances and the like.
  • a method for producing a polymer-coated crosslinked alginate gel fiber in which the crosslinked alginate gel (core layer) formed by the above is coated with a cationic polymer (cationic polymer layer).
  • a method for manufacturing the fiber is provided, which comprises using the apparatus XX shown in FIG.
  • the method for producing the polymer-coated crosslinked alginate gel fiber is not particularly limited, but for example, it is carried out using the apparatus XX shown in FIG.
  • the device XX here is a device preferably used for producing a polymer-coated crosslinked alginate gel fiber.
  • the device XX is, for example, as shown in FIG. 3, a device capable of creating a microchannel having one introduction port and one discharge port, and introduces a solution from the introduction port to an appropriate speed.
  • the solution becomes fibrous (fibrous) and is discharged from the discharge port.
  • the device XX is, for example, a cell capable of producing an antibody, a physiologically active substance, etc. introduced from the introduction port of the device XX using an extrusion tube YY or the like as shown in FIG. 3, and formulas (I) and (II).
  • the mixed solution By extruding the mixed solution containing the chemically modified alginic acid derivative represented by the above, the mixed solution can be ejected from the outlet of the apparatus XX.
  • an injection tube can be used as a device provided with the device XX and the extruder YY.
  • the device XX becomes an outer cylinder
  • the extrusion cylinder YY for extruding the solution introduced into the device XX from the discharge port becomes an inner cylinder.
  • a glass or plastic syringe can be used.
  • a container DD such as a beaker containing a solution containing divalent metal ions is used as a container for receiving the fibrous substance discharged from the discharge port 2 of the apparatus XX.
  • a container EE such as a beaker containing a solution containing the cationic polymer is used as a container for coating the surface of the crosslinked alginate gel fiber CLA with a cationic polymer.
  • FIG. 3 is a schematic diagram illustrating one aspect of the manufacturing process of the polymer-coated crosslinked alginate gel fiber.
  • a production method using a mixed solution of a chemically modified alginic acid derivative represented by the formulas (I) and (II) containing cells (cells capable of producing an antibody, a physiologically active substance, etc.) will be described.
  • the polymer-coated crosslinked alginate gel fiber can be produced, for example, by a method including the following steps (S) to (2).
  • Step (S) A step of introducing a mixed solution containing a cell capable of producing an antibody, a physiologically active substance, etc. and a chemically modified alginic acid derivative represented by the formulas (I) and (II) from the introduction port 1 of the apparatus XX.
  • Step (1) A mixed solution containing cells capable of producing antibodies, physiologically active substances, etc. and chemically modified alginic acid derivatives represented by the formulas (I) and (II) from the outlet 2 of the apparatus XX, is a divalent metal.
  • a solution containing a chemically modified alginic acid derivative represented by the formulas (I) and the formula (II) is prepared for cells capable of producing an antibody, a physiologically active substance and the like described by the cells contained in the core layer described above. Suspended or dissolved in. At this time, in addition to cells capable of producing an antibody, a physiologically active substance, or the like, components such as an alginic acid solution, a medium, a culture solution, a collagen solution, methyl cellulose, and a sucrose solution can be added.
  • step (S) prepared in step (S) and chemically modified alginic acid derivatives represented by the formulas (I) and (II).
  • step (S) chemically modified alginic acid derivatives represented by the formulas (I) and (II).
  • the released solution is sequentially gelled, whereby a fibrous (fibrous) structure can be produced.
  • ionic cross-linking proceeds between the chemically modified alginic acid derivatives represented by the formulas (I) and (II), and at the same time, chemical cross-linking by the Huisgen reaction also proceeds, and a gel is prepared. can.
  • step (2) the crosslinked alginate gel fiber containing the cells capable of producing the antibody, the physiologically active substance, etc.
  • the polymer-coated crosslinked alginate gel fiber (CFB) of the present invention can be produced.
  • contact refers to a solution (eg, a solution of a chemically modified alginic acid derivative) or a gel (eg, a crosslinked alginate gel) to another solution (eg, a solution containing divalent metal ions, a cationic polymer). It means that it is immersed in or added to a solution containing, a solution containing an anionic polymer, and the like.
  • a solution eg, a solution of a chemically modified alginic acid derivative
  • a gel eg, a crosslinked alginate gel
  • another solution eg, a solution containing divalent metal ions, a cationic polymer
  • the flow velocity (injection rate) of the mixed solution containing the antibody, the cell capable of producing the physiologically active substance, etc. ejected from the outlet 2 of the apparatus XX and the chemically modified alginic acid derivative represented by the formulas (I) and (II) is, for example. , About 100 to about 10000 ⁇ L / min.
  • the flow velocity is, for example, 250 ⁇ L / min, 4 mL / min, 10 mL / min, and the like.
  • the flow velocity for producing a polymer-coated crosslinked alginate gel fiber containing MIN6 cells in the core layer is, for example, 125 ⁇ L / min.
  • the flow velocity (injection speed) can be adjusted using a syringe pump or the like, and fibers of various sizes can be manufactured. Further, by changing the size (diameter) of the discharge port 2 of the apparatus XX, it is possible to manufacture a fiber in which the diameter of the core layer can be adjusted.
  • a luer lock needle material such as metal
  • the mixed solution containing the cells capable of producing the antibody, the physiologically active substance, etc. introduced from the introduction port 1 of the apparatus XX and the chemically modified alginic acid derivatives represented by the formulas (I) and (II) is, for example, the above-mentioned embodiment [1].
  • the chemically modified alginic acid derivatives represented by the formulas (I) and (II) described in the above are used in a solvent (for example, medium, cell culture medium, culture solution, isotonic buffer solution, phosphate buffered physiological saline, and A predetermined concentration (for example, the concentration of the solution of each chemically modified alginic acid derivative is about 0.01 to about 1.5% by weight, expressed by the formulas (I) and (II)) by adding physiological saline or the like.
  • concentration of the mixed solution of the chemically modified alginic acid derivative is about 0.02 to about 2.0% by weight), and the mixed solution of the chemically modified alginic acid derivative represented by the formula (I) and the formula (II) is prepared.
  • the alginic acid solution When the alginic acid solution is added to a mixed solution containing a cell capable of producing an antibody, a physiologically active substance, etc. introduced from the introduction port 1 of the apparatus XX and a chemically modified alginic acid derivative represented by the formulas (I) and (II).
  • the total concentration of the mixed solution containing the chemically modified alginic acid derivative represented by the formula (I) and the formula (II) and the concentration of the alginic acid solution is prepared, for example, in the range of about 0.5 to about 2.0% by weight. To.
  • the alginic acid solution When the alginic acid solution is added to the mixed solution containing the cells capable of producing antibodies, physiologically active substances, etc. and the chemically modified alginic acid derivatives represented by the formulas (I) and (II) introduced from the introduction port 1 of the apparatus XX.
  • the combination of the concentration (C1 (% by weight)) of the mixed solution containing the chemically modified alginic acid derivative represented by the formulas (I) and (II) and the concentration of the alginic acid solution (C2 (% by weight)) is not particularly limited.
  • (C1: C2) (about 0.2: about 1.3), (about 0.5: about 1.0), (about 1.0: about 0.5), (about 1.5). : 0), (about 0.66: about 1.34), (about 0.34: about 0.66), (about 0.16: about 0.34) and the like.
  • the concentrations of C1 and C2 can be appropriately combined and prepared.
  • the alginic acid solution When the alginic acid solution is added to the mixed solution containing the cells capable of producing antibodies, physiologically active substances, etc. and the chemically modified alginic acid derivatives represented by the formulas (I) and (II) introduced from the introduction port 1 of the apparatus XX. Concentration of the solution of the chemically modified alginic acid derivative represented by the formula (I) (C1A (% by weight)), the concentration of the solution of the chemically modified alginic acid derivative represented by the formula (II) (C1N (% by weight)), and the concentration of the alginic acid solution.
  • the alginic acid solution When the alginic acid solution is added to the mixed solution containing the cells capable of producing antibodies, physiologically active substances, etc. and the chemically modified alginic acid derivatives represented by the formulas (I) and (II) introduced from the introduction port 1 of the apparatus XX.
  • the volume of the chemically modified alginic acid derivative represented by the formula (I) (v1), the volume of the chemically modified alginic acid derivative represented by the formula (II) (v2), and the volume of the alginic acid solution in the mixed solution to which the alginic acid solution is added (v1).
  • the outer diameter of the produced polymer-coated crosslinked alginate gel fiber CFB is not particularly limited, but is as described above, and is, for example, in the range of about 0.1 to about 200 ⁇ m.
  • the length of the polymer-coated crosslinked alginate gel fiber CFB is not particularly limited and is as described above, and may be, for example, about 0.3 to about 50 m.
  • the cross-sectional shape of the fiber is as described above, and examples thereof include a circle, an ellipse, a polygon such as a quadrangle and a pentagon, and the like.
  • the solution contained is as described in the above-mentioned "5-1.
  • Crosslinked alginate gel and examples thereof include a solution containing calcium ion, magnesium ion, barium ion, strontium ion, zinc ion and the like.
  • the divalent metal ion concentration of the solution containing the divalent metal ion is, for example, in the range of about 1 mM to about 1 M, or about 10 to about 500 mM; preferably about 10 to about 100 mM.
  • the solvent used when preparing the solution containing the divalent metal ion is as described in the above-mentioned "5-1.
  • Crosslinked alginate gel and examples thereof include water and physiological saline.
  • the contact time is, for example, about 1 minute to 60 minutes, 1 minute to 30 minutes, and the like.
  • the solution containing the cationic polymer to which the crosslinked alginate gel fiber CLA obtained in the step (2) of the method for producing the polymer-coated crosslinked alginate gel fiber is brought into contact is the cationicity described in the above-mentioned "7. Cationic polymer”. It is a solution containing a polymer, and examples thereof include a solution containing a polyamino acid, a basic polysaccharide, a basic polymer and the like.
  • the concentration of the solution containing the cationic polymer to be contacted with the crosslinked alginate gel fiber CLA is as described in "7. Cationic polymer" described above, for example, from about 0.02 to about 0.2% by weight. , About 0.05 to about 0.1% by weight, etc.
  • the solution containing the cationic polymer to which the crosslinked alginate gel fiber (CLA) is contacted is an aqueous solution of calcium chloride, an aqueous solution of sodium chloride, and a buffer solution for adjusting the pH of the solution (acetic acid, sodium acetate, sodium hydroxide, hydroxyethylpiperazine). It can contain components such as an aqueous solution of ethanesulfonic acid).
  • the time for contacting the crosslinked alginate gel fiber CLA with the solution containing the cationic polymer is, for example, about 1 minute to 60 minutes, 1 minute to 30 minutes, or the like.
  • the temperature during the process of producing the polymer coated crosslinked alginate gel fiber is, for example, in the range of about 4 to about 37 ° C.
  • a polymer-coated crosslinked alginate gel fiber having a core layer containing a certain number of cells capable of producing an antibody, a physiologically active substance, or the like can be easily obtained.
  • antibody-producing cells, physiologically active substance-producing cells, and the like can be cultured to produce antibodies, physiologically active substances, and the like.
  • the polymer-coated crosslinked alginate gel fiber can be continuously cultured for several weeks to several months, such as antibody-producing cells and physiologically active substance-producing cells, by appropriately exchanging the culture solution.
  • the strength of the polymer-coated crosslinked alginate gel fiber can be measured by a shaking disintegration test, a tensile strength test, or the like according to a method well known to those skilled in the art.
  • Method for Producing Multilayer Polymer-Coated Crosslinked Alginic Acid Gel Fiber a cross-linking reaction is carried out using chemically modified alginic acid derivatives represented by the formulas (I) and (II), which contain cells capable of producing antibodies, physiologically active substances and the like.
  • a method for producing a multilayer polymer coated crosslinked alginate gel fiber in which the crosslinked alginate gel (core layer) formed thereby is coated with a cationic polymer (cationic polymer layer) and an anionic polymer (anionic polymer layer).
  • Ru a method for producing a multilayer polymer coated crosslinked alginate gel fiber using a polymer coated crosslinked alginate gel fiber (CFB) obtained by using the apparatus XX shown in FIG. 3 or FIG. 10 is provided.
  • the multilayer polymer-coated crosslinked alginate gel fiber is manufactured by performing the following step (3) following the steps (S) to (2) described in the above "11. Method for manufacturing a polymer-coated crosslinked alginate gel fiber". can do.
  • Step (3) A step of contacting the polymer-coated crosslinked alginate gel fiber (CFB) obtained in the step (2) with a solution containing an anionic polymer and further coating with the anionic polymer.
  • step (3) the polymer-coated crosslinked alginate gel fiber (CFB) containing cells capable of producing the antibody, physiologically active substance, etc. obtained in step (2) is brought into contact with a solution containing an anionic polymer to obtain an antibody.
  • the surface of the polymer-coated crosslinked alginate gel fiber containing cells capable of producing physiologically active substances and the like is coated with an anionic polymer layer.
  • the multilayer polymer-coated crosslinked alginate gel fiber (ACFB) of the present invention can be produced.
  • a container FF such as a beaker containing a solution containing the anionic polymer shown in FIG. 10 is used.
  • the outer diameter of the produced multilayer polymer-coated crosslinked alginate gel fiber is not particularly limited, but is as described above, and is, for example, in the range of about 0.1 to about 200 ⁇ m.
  • the length of the multilayer polymer-coated crosslinked alginate gel fiber (ACFB) is not particularly limited and is as described above, and may be, for example, about 0.3 to about 50 m.
  • the cross-sectional shape of the fiber is as described above, and examples thereof include a circle, an ellipse, a polygon such as a quadrangle and a pentagon, and the like.
  • the anionic polymer to which the polymer-coated crosslinked alginate gel fiber (CFB) obtained in the step (2) is brought into contact is the anionic polymer described in the above-mentioned "9.
  • Anionic polymer and is preferably anionic poly.
  • Anionic polymers selected from the group consisting of saccharides, sulfated polysaccharides, synthetic polymers, anionic polyamino acids, chemically modified products thereof, crosslinked products thereof, mixtures thereof, and the like.
  • the polymer-coated crosslinked alginic acid gel fiber (CFB) obtained in the step (3) has alginic acid, a chemically modified alginic acid derivative represented by the above formula (I), and a chemically modified alginic acid derivative represented by the formula (II).
  • the surface of the polymer-coated crosslinked alginic acid gel fiber (CFB) coated with the cationic polymer is further coated with alginic acid, the chemically modified alginic acid derivative represented by the above formula (I), and the chemically modified alginic acid represented by the formula (II). It is coated with a derivative or the like.
  • the concentration of the solution containing the anionic polymer to which the polymer coated crosslinked alginate gel fiber (CFB) is contacted is as described in "9. Anionic Polymer" above, for example, from about 0.01 to about 5.
  • the concentration is in the range of 0.0% by weight, about 0.05 to about 1.0% by weight, about 0.1 to about 0.5% by weight, about 0.15 to about 0.4% by weight, and the like.
  • the time for contacting the polymer-coated crosslinked alginate gel fiber (CFB) with the solution containing the anionic polymer is, for example, about 1 minute to 60 minutes, 1 minute to 30 minutes, or the like.
  • the temperature during the process of manufacturing the multilayer polymer coated crosslinked alginate gel fiber is, for example, in the range of about 4 to about 37 ° C.
  • a multilayer polymer-coated crosslinked alginate gel fiber having a core layer containing a certain number of cells capable of producing an antibody, a physiologically active substance, or the like can be easily obtained.
  • multilayer polymer-coated crosslinked alginate gel fiber by culturing the multilayer polymer-coated crosslinked alginate gel fiber in a culture medium, antibody-producing cells, physiologically active substance-producing cells, and the like can be cultured to produce antibodies, physiologically active substances, and the like.
  • the multi-layer polymer-coated cross-linked alginate gel fiber enables continuous culture of antibody-producing cells, physiologically active substance-producing cells, and the like for several weeks to several months by appropriately exchanging the culture medium.
  • the strength of the multilayer polymer-coated crosslinked alginate gel fiber can be measured by a shaking disintegration test, a tensile strength test, or the like according to a method well known to those skilled in the art.
  • a method for producing an antibody, a physiologically active substance, or the like using an alginate gel fiber is provided.
  • the polymer-coated cross-linked alginate gel fiber or the multilayer polymer-coated cross-linked alginate gel fiber is placed in a culture vessel, and a medium is added to impregnate the polymer-coated cross-linked alginate gel fiber or the multilayer polymer-coated cross-linked alginate gel fiber for culturing.
  • a medium is added to impregnate the polymer-coated cross-linked alginate gel fiber or the multilayer polymer-coated cross-linked alginate gel fiber for culturing.
  • the method for culturing antibody-producing cells, physiologically active substance-producing cells, etc. in a preferred embodiment, after producing a polymer-coated crosslinked alginate gel fiber containing cells capable of producing antibodies, physiologically active substances, etc. in the core layer by the above-mentioned production method.
  • the cells can be infiltrated into the culture solution to start culturing antibody-producing cells, physiologically active substance-producing cells, and the like.
  • the culture solution (nutrient source) and oxygen can be immediately supplied to the core layer, that is, antibody-producing cells, bioactive substance-producing cells, etc. contained in the core layer.
  • the antibody, the bioactive substance and the like can be produced while sufficiently preventing necrosis of the antibody-producing cells, the bioactive substance-producing cells and the like in the core layer of the polymer-coated crosslinked alginate gel fiber.
  • a multilayer polymer-coated crosslinked alginate gel fiber containing cells capable of producing antibodies, physiologically active substances, etc. in the core layer was produced by the above-mentioned production method.
  • the cells can be infiltrated into the culture medium to start culturing the antibody-producing cells, the physiologically active substance-producing cells, and the like.
  • the culture solution (nutrient source) and oxygen can be immediately supplied to the core layer of the multilayer polymer-coated crosslinked alginate gel fiber, that is, the antibody contained in the core layer.
  • the antibody, the bioactive substance and the like can be produced while sufficiently preventing necrosis of the antibody-producing cells, the bioactive substance-producing cells and the like in the core layer of the multilayer polymer-coated crosslinked alginate gel fiber.
  • the polymer-coated cross-linked alginate gel fiber or multilayer polymer-coated cross-linked alginate gel fiber containing cells capable of producing the antibody, physiologically active substance, etc. of the present invention in the core layer is a culture solution (nutrient source) existing outside the fiber at the time of culturing. It has sufficient permeability to components such as oxygen.
  • a polymer-coated crosslinked alginate gel fiber having a core layer containing physiologically active substance-producing cells prepared by the above-mentioned production method is placed in a low-adhesion surface dish, and a medium (5 mL) having the composition shown in Table 35 described later is added. Then, incubate in an incubator at 37 ° C. in a 5% CO 2 atmosphere.
  • the culture is started while shaking under the conditions of the above, and after 5 days, the culture temperature is set to 30 ° C., and the culture is continued at the same temperature.
  • the culture period 1.8 mL of the culture medium is withdrawn once every 2 to 3 days, and 1.8 mL of the medium having the composition of Table XX or 1.8 mL of the feed solution (manufactured by Irvine, catalog number JX F003) is added. , Keep the total volume of medium at 30 mL. In addition, half the amount of the culture solution is exchanged once a week.
  • the technique for producing an antibody, a physiologically active substance, etc. using a polymer-coated cross-linked alginate gel fiber or a multilayer polymer-coated cross-linked alginate gel fiber according to a certain aspect includes a certain number of antibody-producing cells, physiologically active substance-producing cells, etc. contained in the core layer. Because it does not proliferate, there is less physical stress on the cells, so there is a possibility that the encapsulated antibody-producing cells, bioactive substance-producing cells, etc. will continue to produce antibodies, bioactive substances, etc. for a long period of time. It is excellent in that it is.
  • the production and purification efficiency of the antibody for example, by using the polymer-coated cross-linked alginate gel fiber or the multilayer polymer-coated cross-linked alginate gel fiber of the preferred embodiment, large-scale culture is performed. Unlike floating culture, which requires a tank, it is possible to cultivate antibodies in a small-scale production facility), as a continuous production technology for next-generation antibody drugs suitable for the production of small-quantity and various types of antibody drugs. You can expect it.
  • the culture-produced antibody eg, anti-GPVI antibody, tosirizumab-producing CHO cells
  • physiologically active substance eg, insulin
  • the culture-produced antibody eg, anti-GPVI antibody, tosirizumab-producing CHO cells
  • physiologically active substance eg, insulin
  • the antibody produced by the culture for example, tosirizumab-producing CHO cells
  • the physiologically active substance may be stored in the core layer of the multi-layer polymer-coated cross-linked alginate gel fiber, preferably the multi-layer polymer-coated cross-linked alginate gel fiber. It permeates the core layer, the cationic polymer layer and the anionic polymer layer and is stored in the culture solution outside the multilayer polymer coated crosslinked alginate gel fiber.
  • antibodies, bioactive substances and the like produced in the core layer of the polymer-coated crosslinked alginate gel fiber permeate the core layer and the cationic polymer layer and are sequentially released out of the fiber. Therefore, it is possible to form a cycle in which continuous culture of antibodies, bioactive substances, etc. is possible. At this time, metabolites and waste products may also be released to the outside of the fiber.
  • an antibody, a physiologically active substance, or the like produced in the core layer of the multilayer polymer-coated crosslinked alginate gel fiber permeates the core layer, the cationic polymer layer, and the anionic polymer layer. It will be sequentially released to the outside of the fiber, and a cycle capable of continuous culture of antibodies, physiologically active substances, etc. can be formed. At this time, metabolites and waste products may also be released to the outside of the fiber.
  • cells selected from anti-GPVI antibody-producing CHO cells, tosirizumab-producing CHO cells, or MIN6 cells are used as cells to be included in the core layer, and the formula used for forming the crosslinked alginate gel in the core layer (
  • a chemically modified alginic acid derivative of I) the following formula:
  • (ALG) represents alginic acid
  • -NHCO- represents an amide bond mediated by any carboxyl group of alginic acid
  • the chemically modified alginic acid derivative selected from the following is the chemically modified alginic acid of the formula (II).
  • (ALG) represents alginic acid; -NHCO- represents an amide bond mediated by any carboxyl group of alginic acid], using a chemically modified alginic acid derivative selected from the above, the cationicity of the cationic polymer layer.
  • Polymer-coated crosslinked alginate gel fibers were made using poly-L-ornithine, polyallylamine (PAA), polyethyleneimine or polymethylene-CO-guanidine (PMCG) as the polymer.
  • the outside of the cationic polymer layer of the polymer-coated crosslinked alginic acid gel fiber produced above is used as an anionic polymer, alginic acid, a chemically modified alginic acid derivative of the following formula (I):
  • (ALG) represents alginic acid; -NHCO- represents an amide bond mediated by any carboxyl group of alginic acid], a chemically modified alginic acid derivative selected from the following formula (II).
  • a crosslinked alginate gel fiber was prepared.
  • the produced antibody anti-GPVI antibody, tosirizumab
  • physiologically active substance insulin
  • Examples of the culture vessel for culturing a polymer-coated cross-linked alginate gel fiber or a multilayer polymer-coated cross-linked alginate gel fiber containing cells capable of producing antibodies, physiologically active substances, etc. in the core layer include a tissue culture plate, a triangular flask, and T-.
  • any method such as static culture, shaking / shaking culture or the like may be selected.
  • the culture temperature is, for example, in the range of about 28 to about 39 ° C., for example, in the range of about 30 ° C. to about 37 ° C. in some methods for producing an antibody, a physiologically active substance, or the like.
  • the culture temperature at the start of culturing is set to about 37 ° C, and the temperature can be changed to about 30 ° C after culturing for a certain period of time.
  • the culture period is, for example, 7 days or longer, 10 days or longer, 20 days or longer, or 30 days or longer. Or 40 days or more, 50 days or more, 60 days or more, or 70 days or more.
  • the culture period is, for example, 7 days, 14 days, 28 days, 35 days, or 42 days. Yes, or 49 days, or 56 days, or 63 days, or 70 days.
  • the cell growth inhibitor is an agent capable of suppressing excessive cell proliferation during the culture period, and for example, addition of dimethyl sulfoxide, sodium butyrate, valproic acid, lithium chloride, valeric acid, methotrexate (MTX) and the like. Agents are mentioned.
  • the timing of adding the cell proliferation inhibitor to the culture solution can be either at the start of the culture or during the culture period (when the cells can grow to the required number of cells). In the present specification, when culturing using anti-GPVI antibody-producing cells, methotrexate (MTX) is added.
  • the cell culture medium a commercially available medium base material, a prepared medium, or a self-made medium can be used. It is also possible to use a natural medium (for example, soybean-casein digest medium (SCD medium) or the like) or a synthetic medium (a medium in which all various nutrients necessary for growth are supplemented with chemicals).
  • the medium is not particularly limited, but may be a basic medium containing components necessary for cell survival and proliferation (inorganic salts, carbohydrates, hormones, essential amino acids, non-essential amino acids, vitamins, etc.).
  • DMEM Dulbecco's Modified Eagle Medium
  • MEM Minimum Essential Medium
  • BME Basic Medium Eagle
  • Dulbecco's Medium FiberMedium 12 Glassgo Medium Essential Medium
  • G016 medium G016 medium
  • DMEM High Glucose
  • the medium may further contain serum.
  • the serum is not particularly limited, and examples thereof include FBS / FCS (Fetal Bovine / Calf Serum), NCS (Newborn Calf serum), CS (Calf Serum), HS (Horse Serum) and the like.
  • the concentration of serum contained in the medium is, for example, 2% by weight or more and 10% by weight or less.
  • both ends of the crosslinked alginate gel fiber of the core layer of the polymer-coated crosslinked alginate gel fiber of the present invention are coated with a cationic polymer, antibody-producing cells and physiologically active substances contained in the core layer during the culture period are produced. This leads to prevention, suppression or reduction of a large amount of cells such as cells leaking out of the fiber (for example, 1 ⁇ 10 5 or more).
  • both ends of the crosslinked alginate gel fiber of the core layer of the crosslinked alginate gel fiber coated with the multilayer polymer of the present invention are coated with the cationic polymer and the anionic polymer, the antibody-producing cells contained in the core layer during the culture period. This leads to prevention, suppression or reduction of a large amount (for example, 1 ⁇ 10 5 or more) of cells such as physiologically active substance-producing cells leaking out of the fiber. 13-1.
  • Method for calculating the number of viable cells in the core layer The following is included in the core layer of a polymer-coated crosslinked alginate gel fiber or a multilayer polymer-coated crosslinked alginate gel fiber containing antibody-producing cells at the start of culture, during the culture period, or after culture.
  • Cross-linked alginate gel fiber containing antibody-producing cells, polymer-coated cross-linked alginate gel fiber, or multi-layer polymer-coated cross-linked alginate gel fiber (0.2 mL) in a 15 mL tube (esoteric tube (with print scale / bulk), model: 2325-015- Transfer to MYP) and add G016 medium (4.5 mL) having the composition shown in Table 31 described later up to about 4.5 mL on the scale of the tube.
  • antibody Antibodies are referred to as mouse antibodies, rat antibodies, rabbit antibodies, human antibodies and the like, depending on the immune animal species at the time of production.
  • Chimera antibodies and humanized antibodies are modified antibodies obtained by converting partial regions of antibodies derived from different species into human sequences in order to reduce immunogenicity when used in humans, and are used as biopharmacy.
  • an antibody produced from a human antibody gene using a mouse or the like in which a human antibody gene has been incorporated which is also referred to as a human antibody or simply a human antibody and is used as a biopharmacy.
  • next-generation antibodies various modified antibodies called next-generation antibodies have also been developed, and the modified antibodies are also included in the "antibodies" in the present specification.
  • a polyvalent antibody which is an antibody showing specificity to two or more antigens
  • an antibody showing particularly bispecificity is called a bispecific antibody and is one of highly functionalized antibodies.
  • a low-molecular-weight antibody which is an antibody in which the Fc site of the antibody is removed to reduce the molecular weight, and examples thereof include Fab, F (ab') 2 , scFv (single-chain Fv), VHH, etc., which are used as biopharmacy. ..
  • bispecific low molecular weight antibodies have also been produced, for example scFv-scFv being used as biopharmacy.
  • An antibody in which a mutation is added to an Fc region or the like so as to modify a sugar chain is also an example of a modified antibody.
  • a sugar chain-modified antibody can also be produced by pre-transforming a host cell so as to modify the sugar chain, and examples thereof include a fucose-removing antibody.
  • a fusion protein of an antibody or antibody fragment and another protein or peptide is also mentioned as an example of a modified antibody, that is, an antibody, but when it is a fusion protein with the above-mentioned physiologically active substance, it is physiological. It is also contained in active substances.
  • Antibodies are classified into classes (isotypes) and subclasses as shown in the table below, depending on the structural differences in the constant region.
  • the produced antibody is used as a biopharmacy, it is preferably an IgG antibody.
  • the molecular weight of the produced antibody that can permeate the cationic polymer layer and the anionic polymer layer is not particularly limited, but is, for example, an antibody in the range of about 45,000 to about 1,000,000 Da.
  • the molecular weight of the antibody capable of permeating the cationic polymer layer is, for example, about 3,000 to about 1,000,000 Da, about 20,000 to about 1,000,000 Da, and about 20,000 to about 400,000 Da.
  • the molecular weight of the physiologically active substance produced in the core layer of the above and capable of permeating the cationic polymer layer and the anionic polymer layer is not particularly limited, but is, for example, about 3,000 to about 1,000,000 Da.
  • 20,000 to about 1,000,000 Da is a physiologically active substance in the range of 000 Da, about 45,000 to about 200,000 Da.
  • an antibody corresponding to the antibody-producing cells used is produced.
  • muromonab-CD3 producing CHO cells muromonab-CD3 is produced as an antibody.
  • the physiologically active substance corresponding to the used physiologically active substance-producing cells is produced.
  • Examples of the antibody produced include mromonab-CD3 (IgG; 150,000) using mromonab-CD3-producing CHO cells, trusszumab (IgG; 148,000) using trussumab-producing CHO cells, and rituximab-producing CHO cells.
  • paribismab using paribismab-producing NS0 cells (IgG; 147,700), infliximab-producing Sp2 / 0 cells or infliximab-producing CHO cells using infliximab (IgG; 149,000), Baciliximab (IgG; 147,000) using basiliximab-producing Sp2 / 0 cells, tosirizumab (IgG; 148,000) using tosirizumab-producing CHO cells, gemtuzumab (IgG; 150,000) using gemtuzumab-producing CHO cells, Bebasizumab (IgG; 149,000) using bevasizumab-producing CHO cells, ibritsumomab (IgG; 148,000) using ibritsumomab-producing CHO cells, adalimumab (IgG; 148,000) using ad
  • Ecrizumab (IgG; 145,235) using Ecrizumab-producing NS0 cells
  • Panitumumab IgG; 147,000
  • Ustekinumab IgG; 148,079-
  • Ustekinumab-producing Sp2 / 0 cells Ustekinumab
  • golimumab IgG; 149,802 to 151,064
  • canaquinumab IgG; 148,000
  • canaquinumab-producing Sp2 / 0 cells denosumab-producing CHO cells.
  • Denosumab (IgG; 150,000), mogamurizumab (IgG; 149,000) using mogamurizumab-producing CHO cells, sertrizumab (IgG (Fab'); 50,000) using sertrizumab-producing CHO cells, OFATUMMB-producing NS0.
  • Ofatumumab (IgG; 149,000) using cells, peltuzumab (IgG; 148,000) using pertuzumab-producing CHO cells, blurring using lentuximab-producing CHO cells Ntuximab (IgG; 148,000), Natalizumab using Natalizumab-producing NS0 cells (IgG; 146,178), Nivolumab (IgG; 145,000) using nibolumab-producing CHO cells, Alemtuzumab using alemtuzumab-producing CHO cells (IgG; 145,000).
  • IgG; 150,000 sekkinumab (IgG; 151,000) using sekkinumab-producing CHO cells, ramsirumab (IgG; 147,000) using ramsylumab-producing NS0 cells, and ipilimumab (IgG; IgG;) using ipilimumab-producing CHO cells. 148,000), Eborokumab (IgG; 141,789) using Eborokumab-producing CHO cells, Mepolizumab (IgG; 149,000) using Mepolizumab-producing CHO cells, Arilokumab (IgG; 145892.) Using Allirokumab-producing CHO cells. 049.
  • Ixekizumab (IgG; 149,000) using Ixekizumab-producing CHO cells, Brodalmab (IgG; 147,000) using Brodalmab-producing CHO cells, and Idalcizumab (IgG (Fab); 47, using Idalsizumab-producing CHO cells. 782), erotuzumab (IgG; 148,000) using erotuzumab-producing NS0 cells, pembrolizumab (IgG; 149,000) using pembrolizumab-producing CHO cells, and salilumab (IgG; 150,000) using salilumab-producing CHO cells.
  • Bezlotoxmab (IgG; 148,000) using bezlotoxmab-producing CHO cells, berimumab (IgG; 147,000) using berimumab-producing NS0 cells, daratumumab (IgG; 148,000) using daratumumab-producing CHO cells, abelumab.
  • Avelumab (IgG; 147,000) using CHO cells producing, dupilumab (IgG; 152,000) using CHO cells producing dupyrumab, atezolizumab (IgG; 144,611) using CHO cells producing atezolizumab, CHOs producing benlarizumab.
  • Benralizumab (IgG; 148,000) using cells, inotzumab (IgG; 149000) using inotsumab-producing CHO cells, emicizumab (IgG; 148,000) using emicizumab-producing CHO cells, and guselkumab-producing CHO cells.
  • Gesselkmab (IgG; 146,000), Durvalumab (IgG; 149,000) using Durvalumab-producing CHO cells, Obinutsumab (IgG; 148,000-150,000) using Obinutsumab-producing CHO cells, Bedrizumab-producing CHO.
  • the antibody that can be obtained by the method for producing an antibody of the present invention is not particularly limited to the above-mentioned class (isotype) or subclass.
  • the produced antibody is purified, for example, through the following three steps.
  • Step 1 In order to substantially remove proteins and solids other than antibodies contained in the medium, centrifugation or filtration with a filter is performed.
  • Step 2 For example, the target antibody is taken out by chromatography such as affinity chromatography (in the case of an antibody, affinity chromatography using Protein A or Protein G) or ion exchange chromatography.
  • Step 3 In order to remove the contaminants mixed in the step 2, ion exchange chromatography, gel filtration chromatography, hydroxyapatite chromatography and the like are performed to purify the target antibody with high purity.
  • the produced physiologically active substance is purified, for example, by the same method as in the above step.
  • Affinity chromatography with Protein A or Protein G As a method for purifying IgG, for example, a method for purifying an antibody using Protein A or Protein G is known. As an example of the antibody purification method using Protein A, the following method can be mentioned. (1) Using a column filled with beads to which Protein A is fixed, IgG is added to the beads in the column by filtering the solution obtained by adding serum to the solution obtained by the method of the above [step 1]. And other serum components are spilled out of the column. (2) After that, by passing an acidic solution through the column, the IgG bound to the beads is cut off and eluted to the outside of the column to obtain IgG. Since the binding force of Ig to Protein A and Protein G differs depending on the animal species and subclass, Protein A or Protein G can be used properly depending on the purpose.
  • Ion exchange chromatography It is a method of separating proteins by utilizing the electrical properties (charges) of proteins.
  • a basic protein showing a positive charge is ionically bonded to a cation exchanger (carrier) having a negative charge, and an acidic protein showing a negative charge is bound to an anion exchanger having a positive charge, so that the protein is included.
  • the protein binds to the ion exchanger by passing the sample through a column packed with ion exchangers. After that, by increasing the salt concentration of the solvent passing through the column, the ionic bond between the protein and the ion exchanger becomes weaker, and the protein with the weakest binding force is sequentially removed from the ion exchanger and flows out of the column.
  • the selection of the cation exchanger or the anion exchanger shall be selected from the charge of the protein used as the sample.
  • Gel filtration chromatography This is a method for separating proteins by utilizing the difference in molecular weight of proteins.
  • the protein having a small molecular weight flows out while entering the small pores, and the protein having a large molecular weight flows out without entering the small pores. Therefore, the time for passing through the column is slow for proteins with a small molecular weight, and fast for proteins with a large molecular weight, so it is possible to separate proteins with a time lag.
  • Hydroxyapatite Chromatography Chromatography using hydroxyapatite, which is a kind of calcium phosphate. It is a method of separating proteins using multiple interactions, mainly based on metal affinity by calcium ions and cation exchange by phosphate groups. The carboxyl group and amino group of the amino acid are adsorbed by interacting with the carrier, respectively, and the target substance and the impurity are separated by flowing a solvent having a high concentration of phosphoric acid or a high salt concentration.
  • ⁇ Shaking Disintegration Test> The polymer-coated crosslinked alginate gel fiber or the multilayer polymer-coated crosslinked alginate gel fiber obtained by the above production method was suspended in phosphate-buffered physiological saline (PBS) and shaken for a certain period of time. Later, by confirming the susceptibility of the fiber to disintegrate (shaking disintegration degree), its physical strength can be measured. Specific test methods include, for example, the methods described in Examples described later.
  • ⁇ Tensile strength test> Using the polymer-coated crosslinked alginate gel fiber or the multilayer polymer-coated crosslinked alginate gel fiber obtained by the above manufacturing method, the breaking value (mN) is confirmed by using a tensile strength measuring device. , Its physical strength can be measured. Specific test methods include, for example, the methods described in Examples described later.
  • the strength of the polymer-coated cross-linked alginate gel fiber of the present invention is the static strength of the cross-linked alginate gel contained in the core layer constituting the fiber, and the cross-linked alginate gel formed between the core layer and the cationic polymer layer and the cationic polymer. This is due to the fact that the electrical action has optimum properties for the strength of the fibers of the present invention.
  • the strength of the multilayer polymer-coated crosslinked alginate gel fiber of the present invention is the crosslinked alginate gel contained in the core layer constituting the fiber, the crosslinked alginate gel formed between the core layer and the cationic polymer layer, and the static of the cationic polymer.
  • the electrical action and the electrostatic action of the cationic polymer and the anionic cationic polymer formed between the cationic polymer layer and the anionic polymer layer have the optimum properties for the strength of the fiber of the present invention. It is caused by the fact that it is.
  • the polymer-coated crosslinked alginate gel fiber or the multilayer polymer-coated crosslinked alginate gel fiber of the present invention has high physical stability, and the antibody, physiologically active substance, etc. produced in the core layer are released from the core layer, and further, the polymer layer is released. It also has appropriate permeability because it can permeate, and it is also a structure suitable for producing antibodies, physiologically active substances, and the like.
  • the reactive group or complementary reactive group introduction rate was introduced per uronic acid monosaccharide unit, which is a repeating unit of arginic acid. It means a value expressed as a percentage of the number of reactive groups or complementary reactive groups. In the examples below, the reactive group or complementary reactive group introduction rate (mol%) was calculated by the integral ratio of 1 H-NMR. The amount of alginic acid required to calculate the introduction rate is measured by the carbazole sulfate method using a calibration curve, and the amount of the reactive group or complementary reactive group is measured by the absorbance measurement method using a calibration curve. You can also do it.
  • the molecular weight of alginic acid into which a reactive group or a complementary reactive group has been introduced is bluedextran (molecular weight 2 million Da, SIGMA), tyroglobulin (molecular weight 66,900 Da, GE Healthcare Science), ferritin (molecular weight 2 million Da, SIGMA).
  • the amount of eluate of each component was plotted on the horizontal axis, and the logarithmic value of the molecular weight was plotted on the vertical axis, and linear regression was performed to create a calibration curve.
  • Two types of calibration curves were prepared, from blue dextran to ferritin and from ferritin to aprotinin.
  • the molecular weight (Mi) at the elution time i of the previously obtained chromatogram was calculated. Then, the absorbance at the elution time i was read and used as Hi. From these data, the weight average molecular weight (Mw) was calculated from the following formula.
  • the pattern of the NMR signal is s for singlet, d for doublet, t for triplet, q for quartet, m for multiplet, br for broad, J for coupling constant, Hz for hertz, CDCl 3 .
  • Means deuterated chloroform, DMSO - d 6 means deuterated dimethyl sulfoxide, and D2O means heavy water.
  • signals that cannot be confirmed because they are broadband, such as hydroxyl group (OH), amino group (NH 2 ), and carboxyl group (COOH) protons, are not described in the data.
  • M means molecular weight
  • RT means retention time
  • [M + H] + and [M + Na] + mean molecular ion peaks.
  • “Room temperature” or “rt” in the examples usually indicates a temperature of about 0 ° C to about 35 ° C.
  • “DMT-MM” in the examples is 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium chloride (CAS REGISTRY NO .: 3945-69-). It means 5), and a commercially available product or a product synthesized by a method known in the literature can be used.
  • the rate of introduction of reactive groups (mol%) in the examples is calculated from the integral ratio of 1 H - NMR (D2O) and is introduced with respect to the number of moles of monosaccharides (gluronic acid and mannuronic acid) constituting alginic acid. It shall indicate the ratio of the number of moles of the reactive group obtained.
  • sodium alginate (A-1 to A-3 or B-2 to B-3) showing the physical property values shown in Table 8 was used as the sodium alginate.
  • sodium alginate or various alginate derivatives were sterilized by filtration as needed.
  • Tables 24-1 to 24-2 show the physical property values (specifically, the introduction of the reactive group) of the alginic acid derivative into which the reactive group was introduced, which were obtained in (Example 1) to (Example 18). The rate (mol%), molecular weight, and weight average molecular weight (Da)) are shown.
  • Tables 25-1 to 25-3 show 1 H-NMR and LC-Mass data of each intermediate in the examples.
  • the compounds 1-A2, 1-A1, 1-A3, 1-B2, 1-B2b, 1-B2c, 1-A2b, 1-A2c and 1-A2d were synthesized under the following synthesis method and reaction conditions. .. [Synthesis method] 4- (4,6-dimethoxy-1,3,5-triazine-2-yl) -4-methylmorpholinium in an aqueous solution of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd.) prepared in 1% by weight or 2% by weight. Chloride (DMT-MM), 1 molar concentration-sodium alginate was added.
  • DMT-MM dichloride
  • tert-butyl (4- (2- (2,2,2-trifluoroacetamide) ethoxy) benzyl) carbamate (IM-5-1): Commercially available tert-butyl (4-hydroxybenzyl) carbamate (formula RG5-1, CAS REGISTRY NO.: 14955-94-2) (0.36 g), N obtained by synthesizing commercially available or by a method known in the literature.
  • -(2-Bromoethyl) -2,2,2-trifluoroacetamide (formula SM5, CAS REGISTRY NO .: 75915-38-7) (0.46 g), potassium iodide (0.35 g) and N.
  • ⁇ Step4> Synthesis of N- (4- (2-aminoethoxy) benzyl-2- (cyclooct-2-in-1-yloxy) acetamide (IM5-4): (Example 5) Potassium carbonate (64.17 mg) and water (495 ⁇ L) were added to the mixture of the compound (99 mg) of the formula IM5-3 and methanol (1485 ⁇ L) obtained in ⁇ Step 3> under water-cooled stirring. ) was added, and the mixture was stirred at room temperature for 15 hours. After completion of the reaction, methanol was concentrated under reduced pressure, and the resulting aqueous layer was extracted 3 times with ethyl acetate (5 mL).
  • the compounds of 6-A2, 6-B2 and 6-B2b were synthesized under the following synthesis method and reaction conditions.
  • Synthesis method N- (2-aminoethyl) -2- (2-cyclooctyne) obtained by DMT-MM, a method known in the literature, in an aqueous solution of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd.) prepared to 1% by weight under room temperature stirring.
  • -1-Iroxy) -Acetamide [CAS REGISTRY NO. : 1809789-76-1] (SM6) in ethanol (EtOH 1) and 1 molar aqueous sodium hydrogen carbonate were sequentially added and stirred.
  • ⁇ Step1> Synthesis of tert-butyl (2-oxo-2-((2- (2,2,2-trifluoroacetamide) ethyl) amino) ethyl) carbamate (IM8-1): N- (2-Aminoethyl) -2,2,2-trifluoroacetamide hydrochloride (formula SM8) obtained by a method known in the literature [CAS REGISTRY NO. : 496946-73-7] (100 mg) and N- (tert-butoxycarbonyl) glycine (formula RG8-1) [CAS REGISTRY NO. : 4530-20-5] (91 mg) was dissolved in acetonitrile (3.0 mL).
  • ⁇ Step3> Synthesis of N- (2- (2- (2- (cyclooct-2-in-1-yloxy) acetamide) ethyl) -2,2,2-trifluoroacetamide (IM8-3): 2- (2-Cyclooctyne-1-iroxy) -acetic acid (formula RG5-2) obtained by a method known in the literature [CAS REGISTRY NO. : 917756-42-4] (80 mg), (Example 8) The compound (110 mg) of the formula IM8-2 obtained in ⁇ Step 2>, ethanol (1.6 mL), DMT-MM (219 mg).
  • Triethylamine (67 ⁇ L) was added, and the mixture was stirred at room temperature for 3 hours.
  • Water (3.2 mL) was added to the reaction mixture, the mixture was stirred at room temperature for 30 minutes, the solid was filtered, and the mixture was washed with water.
  • ⁇ Step4> Synthesis of N- (2- (aminoethyl) -2- (2- (cyclooct-2-in-1-yloxy) acetamide) acetamide (IM8-4): (Example 8) A solution of potassium carbonate (59 mg) in water (0.3 mL) was added to a solution of the compound (60 mg) of the formula IM8-3 obtained in ⁇ Step 3> in methanol (1.8 mL). , Stirred at room temperature for 4 hours. The reaction mixture was concentrated under reduced pressure, water (2 mL) was added, and the mixture was saturated with sodium chloride.
  • ⁇ Step1> Synthesis of tert-butyl (3-oxo-3-((2- (2,2,2-trifluoroacetamide) ethyl) amino) propyl) carbamate (IM9-1): N- (2-aminoethyl) -2,2,2-trifluoroacetamide hydrochloride (formula SM8) (110 mg) and N- (tert-butoxycarbonyl) - ⁇ -alanine obtained by methods known in the literature. (Equation RG9-1) [CAS REGISTRY NO.
  • ⁇ Step2> Synthesis of 3-amino-N- (2- (2,2,2-trifluoroacetamide) ethyl) propanamide hydrochloride (IM9-2): (Example 9) After adding 4N hydrogen chloride / 1,4-dioxane (1.1 mL) under ice-water cooling to the compound (80 mg) of the formula IM9-1 obtained in ⁇ Step 1>, room temperature. Was stirred for 2 hours. Diisopropyl ether (3.4 mL) was added to the reaction mixture, and the mixture was stirred for 1.5 hours. The obtained solid was filtered to give the title compound (61 mg) as a white solid.
  • ⁇ Step3> Synthesis of 3- (2- (cyclooct-2-in-1-iroxy) acetamide) -N- (2- (2,2,2-trifluoroacetamide) ethyl) propanamide (IM9-3) : Ethanol (1.2 mL) was added to the compound of formula RG5-2 (44 mg) obtained by a method known in the literature and the compound of formula IM9-2 (61 mg) obtained by ⁇ Step 2> (Example 9). , DMT-MM (115 mg) and triethylamine (39 ⁇ L) were added, and the mixture was stirred at room temperature for 2 hours.
  • ⁇ Step4> Synthesis of N- (2- (aminoethyl) -3- (2- (cyclooct-2-in-1-yloxy) acetamide) propanamide (IM9-4): (Example 9) A solution of potassium carbonate (42 mg) in water (0.3 mL) is added to a solution of the compound (60 mg) of the formula IM9-3 obtained in ⁇ Step 3> in methanol (3.0 mL). After stirring at room temperature for 3 hours, a solution of potassium carbonate (42 mg) in water (0.3 mL) was further added, and the mixture was further stirred at room temperature for 16.5 hours.
  • ⁇ Step1> Synthesis of tert-butyl (2- (2- (3- (2,2,2-trifluoroacetamide) propanamide) ethoxy) ethyl) carbamate (IM10-1): A compound of formula SM10 obtained by a method known in the literature [CAS REGISTRY NO. : 50632-82-1] (400 mg), and a compound of formula RG10-1 obtained commercially available or by a method known in the literature (tert-butyl (2- (2-aminoethoxy) ethyl) carbamate, CAS REGISTRY NO.
  • ⁇ Step2> Synthesis of N- (2- (2-aminoethoxy) ethyl) -3- (2,2,2-trifluoroacetamide) propanamide hydrochloride (IM10-2): (Example 10) To the compound (451 mg) of the formula IM10-1 obtained in ⁇ Step 1>, 4N hydrogen chloride / 1,4-dioxane (3.16 mL) under ice-water cooling was added, and 3 at room temperature. Stir for hours. Diisopropyl ether (6.4 mL) was added to the reaction mixture, and the mixture was concentrated under reduced pressure to give the title compound (433 mg) as a colorless gum.
  • ⁇ Step4> Synthesis of 3-amino-N- (2- (2- (2- (cyclooct-2-in-1-yloxy) acetamide) ethoxy) ethyl) propanamide (IM10-4): (Example 10) To a solution of the compound (35 mg) of the formula IM10-3 obtained in ⁇ Step 3> in methanol (700 ⁇ L), a solution of potassium carbonate (33 mg) in water (175 ⁇ L) was added, and 16 at room temperature. . Stirred for 5 hours. The reaction mixture was concentrated under reduced pressure, water (2 mL) was added, and the mixture was saturated with sodium chloride.
  • ⁇ Step5> 3-Amino-N- (2- (2- (2- (cyclooct-2-in-1-yloxy) acetamide) ethoxy) ethyl) propanamide group-introduced alginic acid (10-A2) synthesis: DMT-MM (78 mg) in an aqueous solution (28 mL) of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd .: A-2) prepared to 1% by weight, (Example 10) Formula IM10-4 obtained by ⁇ Step 4>. A solution of the compound (24 mg) in ethanol (2.8 mL) and 1 molar concentration-sodium alginate (71 ⁇ L) was added.
  • Example 11a to l 4- (2-aminoethoxy) -N- (3-azidopropyl) benzamide group-introduced alginic acid (11-A2, 11-A1, 11-A3, 11-B2, 11-B2b, 11) -Synthesis of B2c, 11-A2b, 11-A2c, 11-B2d, 11-A2d, 11-A2e and 11-A3):
  • the compounds of 13-A2 and 13-A2b were synthesized by the following synthesis method and reaction conditions.
  • Synthesis method DMT-MM, a compound of formula SM13 synthesized by a method known in the literature (N- (2- (2-aminoethoxy) ethyl) -4, in an aqueous solution of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd.) prepared to 1% by weight.
  • -(Azidomethyl) benzamide hydrochloride; CAS REGISTRY NO .: 2401876-38-6) 1 molar concentration-hydrosodium aqueous solution was added and stirred.
  • the compounds of 14-A2, 14-B2 and 14-A2b were synthesized under the following synthesis method and reaction conditions.
  • DMT-MM a compound of formula SM14 synthesized by a method known in the literature (N- (2-aminoethyl) -4- (azidomethyl) benzamide) in an aqueous solution of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd.) prepared to 1% by weight.
  • Hydrochloride; CAS REGISTRY NO .: 2401876-25-1 1 molar concentration-sodium alginate was added and stirred. After adding sodium chloride, ethanol (EtOH 2) was added, and the mixture was stirred at room temperature.
  • Example 13-A2b the solid obtained by the above operation was dissolved in water and freeze-dried to obtain the title compound.
  • DMT-MM (112 mg) in an aqueous solution (40 mL) of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd .: A-2) prepared to 1% by weight, a compound of the formula SM15 synthesized by a method known in the literature (N- ( 2- (2- (2-Aminoethoxy) ethoxy) ethyl) -4- (azidomethyl) benzamide hydrochloride; CAS REGISTRY NO .: 2401876-41-1) (38 mg) in ethanol (4.0 mL), 1 molar concentration-bosodium solution (151 ⁇ L) was added, and the mixture was stirred at 30 ° C. for 3 hours.
  • the compounds of 16-A2 and 16-A2b were synthesized by the following synthesis method and reaction conditions.
  • Synthesis method DMT-MM, a compound of formula SM16 synthesized by a method known in the literature (N- (2- (2-aminoethoxy) ethyl) -4, in an aqueous solution of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd.) prepared to 1% by weight.
  • -Azidobenzamide hydrochloride CAS REGISTRY NO .: 2401876-47-7
  • 1 molar concentration-sodium alginate was added and stirred.
  • EtOH 2 ethanol
  • the obtained precipitate was collected by filtration, washed with ethanol, and dried under reduced pressure to give the title compound as a solid.
  • the solid obtained by the above operation was dissolved in water and freeze-dried to obtain the title compound.
  • the compounds of 17-B2, 17-B2b and 17-A2 were synthesized under the following synthesis method and reaction conditions.
  • DMT-MM a compound of formula SM17 synthesized by a method known in the literature (N- (2-aminoethyl) -4-azidobenzamide hydrochloride) in an aqueous solution of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd.) prepared to 1% by weight.
  • CAS REGISTRY NO .: 164013-00-7 1 molar concentration-sodium alginate was added and stirred. After adding sodium chloride, ethanol (EtOH 2) was added, and the mixture was stirred at room temperature.
  • Example 17c the solid obtained by the above operation was dissolved in water and freeze-dried to obtain the title compound.
  • DMT-MM (112 mg) in an aqueous solution (40 mL) of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd .: A-2) prepared to 1% by weight, a compound of formula SM18 synthesized by a method known in the literature (N- 2- (2- (2-Aminoethoxy) ethoxy) ethyl) -4-azidobenzamide hydrochloride; CAS REGISTRY NO .: 2401876-48-8) (45 mg) in ethanol (4.0 mL), 1 mol. Concentration-bosodium solution (151 ⁇ L) was added and stirred at 30 ° C. for 3 hours.
  • Example F1-A Preparation of crosslinked alginate gel fiber (1) 3 wt% aqueous alkin solution (alkyn solution) prepared from compound 4-A2d or 1-A2d and 3 wt% aqueous azide solution (azid solution) prepared from compound 11-A2d, compound 13-A2b or compound 16-A2b. ) was used to mix the Alkin solution and the azide solution in equal volumes in the combinations shown in Table 26 to prepare a chemically modified arginic acid mixed solution (F1A-M1).
  • Example F1-B Preparation of crosslinked alginate gel fiber (2) An equal volume of a 3 wt% aqueous solution of 3 wt% compound 4-A2d prepared from compound 4-A2d and an aqueous solution of 3 wt% compound 11-A2d prepared from compound 11-A2d were mixed to obtain a mixed solution of chemically modified alginic acid (F1B-M1). Was prepared. A 3 wt% sodium alginate aqueous solution prepared from the mixed solution F1B-M1 and sodium alginate (B-2) was mixed at a volume ratio of 1/2 to obtain a 3 wt% alginate mixed solution (F1B-M1B).
  • -BS The concentration of blue dextran and the concentration of sodium chloride are as shown in Table 27) were mixed at the volume ratio shown in Table 27 to obtain an alginic acid mixed solution (F1B-M3).
  • the blue dextran concentration (mg / mL) and sodium chloride concentration (mg / mL) in the mixed solution F1B-M3 were adjusted so that blue dextran was 10 mg / mL and sodium chloride was 9 mg / mL.
  • the mixed solution F1B-M3 was filled in a Hamilton syringe. Subsequently, a metal needle (Musashi Engineering, SNA-19GB), a silicon tube (AS ONE, ⁇ 1 ⁇ ⁇ 2) and a glass capillary (Narikige, G-1) were sequentially connected to the syringe and set in the syringe pump. The tip of the glass capillary was immersed in a beaker containing a 100 mmol / L calcium chloride aqueous solution and injected at a flow rate of 250 ⁇ L / min for 1 minute. The fibrous substance injected into the calcium chloride aqueous solution was obtained as a crosslinked alginate gel fiber (CLA-1B) by allowing it to stand for 30 minutes or more (see CLA-1B No. in Table 27).
  • CLA-1B crosslinked alginate gel fiber
  • Example F1-C Preparation of polymer-coated crosslinked alginate gel fiber (1)
  • the crosslinked alginate gel fiber in the calcium chloride aqueous solution obtained in the above (Example F1-A) or (Example F1-B) was filtered and separated using a cell strainer.
  • the separated cross-linked alginate gel fiber was added to an aqueous solution containing a cationic polymer having each composition shown in Table 28, and the mixture was shaken and stirred at 37 ° C. and 125 rpm for 20 minutes to polymer-coat the cross-linked alginate gel fiber.
  • the fibers in the aqueous solution are filtered and separated using a cell strainer, washed twice with 5 mL of physiological saline, and polymer-coated crosslinked alginate gel fiber (CFB-1) (CFB-1 No. in Table 29). .) was obtained.
  • Example F1-D Stability of Polymer-Coated Crosslinked Alginate Gel Fiber (1) EDTA Treatment of Fiber
  • the polymer-coated crosslinked alginate gel fiber (CFB-1) obtained in the above (Example F1-C) was prepared with 20 mM EDTA. It was added to 2Na / physiological saline (5 mL), and the mixture was shaken and stirred at 37 ° C. and 125 rpm for 20 minutes.
  • the chelated polymer-coated crosslinked alginate gel fiber was again filtered using a cell strainer, separated, and washed twice with 5 mL of physiological saline.
  • the obtained polymer-coated crosslinked alginate gel fiber was immersed in 5 mL of physiological saline until the stability evaluation test was performed.
  • Stability assessment 3: No fiber disintegration / dissolution / deformation / elution of blue dextran, etc. 2: Disintegration / dissolution / deformation / elution of blue dextran (cumulative less than 100 ⁇ g / mL), etc. are observed in a part of the fiber 1 : Clear disintegration / dissolution / deformation / elution of blue dextran (cumulative 100 ⁇ g / mL or more), etc. are observed in the fiber.
  • Example F2-A Preparation of crosslinked alginate gel fiber containing antibody-producing cells
  • a G016 medium having the composition shown in Table 31 below was prepared.
  • methotrexate hereinafter referred to as MTX
  • MTX methotrexate
  • AGS2A 3 wt% sodium alginate aqueous solution (containing 0.9% sodium chloride) (ALGS2) or sodium alginate (A-2) prepared from the mixed solution F2A-M1 and sodium alginate (B-2) and 0.9 wt% sodium chloride aqueous solution.
  • AGS2A 3 wt% sodium chloride aqueous solution (containing 0.9% sodium chloride) (ALGS2A) prepared from a 0.9 wt% sodium chloride aqueous solution were mixed at the ratios shown in Table 34, and the alginic acid mixed solution (F2A-M2) was mixed. And said.
  • an antibody-producing medium solution containing the mixed solution F2A-M2 and anti-GPVI antibody-producing cells (2 ⁇ 107 cells / mL) was mixed in equal volumes to prepare a mixed solution (F2A-M3).
  • the mixed solution F2A-M3 was filled in a Hamilton syringe, a luer lock needle (Kanto Chemical Co., Inc., 15/23 NL-F) was connected to the syringe, and the mixture was set in a syringe pump.
  • the tip of the needle was immersed in a beaker containing a 100 mmol / L calcium chloride aqueous solution, and the needle was injected into the calcium chloride aqueous solution at a flow rate of 250 ⁇ L / min for 2 minutes.
  • the fibrous substance injected into the calcium chloride aqueous solution was allowed to stand for 30 minutes or more to obtain a crosslinked alginate gel fiber (CLA-G) containing anti-GPVI antibody-producing cells (CLA- in Table 34). See G No.).
  • Example F2-B Preparation of crosslinked alginate gel fiber containing physiologically active substance-producing cells A complete medium having the composition shown in Table 35 below was prepared.
  • the alkyne aqueous solution of F2A1 and the azide aqueous solution of F2N2 shown in Tables 32 and 33 of (Example F2-A) were mixed in equal volumes to prepare a chemically modified alginic acid mixed solution (F2B-M1).
  • F2B-M1 a chemically modified alginic acid mixed solution
  • a 3 wt% alginic acid aqueous solution (containing 0.9% sodium chloride) prepared from the mixed solution F2B-M1 and sodium alginate (B-2) and a 0.9 wt% sodium chloride aqueous solution was mixed at a ratio of 1: 2.
  • Alginic acid mixed solution (F2B-M2) Alginic acid mixed solution
  • the complete medium of Table 35 containing the mixed solution F2B-M2 and MIN6 cells (1 ⁇ 107 cells / mL) was mixed in equal volumes to obtain a mixed solution F2B-M3.
  • the mixed solution F2B-M3 was filled in a Hamilton syringe, a luer lock needle (Kanto Chemical Co., Inc., 15/23 NL-F) was connected to the syringe, and the mixture was set in a syringe pump.
  • the tip of the needle was immersed in a beaker containing a 100 mmol / L calcium chloride aqueous solution, and the needle was injected into the calcium chloride aqueous solution at a flow rate of 125 ⁇ L / min for 2 minutes.
  • the fibrous substance injected into the calcium chloride aqueous solution was obtained as a crosslinked alginate gel fiber (CLA-M) (FB2-B-1) containing MIN6 cells by allowing it to stand for 30 minutes or more.
  • CLA-M crosslinked alginate gel fiber
  • Example F2-C Preparation of Cell-Containing Polymer-Coated Crosslinked Alginate Gel Fiber
  • Example F2-A The various cell-containing crosslinked alginate gel fibers obtained in the above (Example F2-A) or (Example F2-B) are shown in Table 36.
  • Polymer coating cross-linking is performed by coating with a solution containing a cationic polymer of each composition in the same manner as described above (Example F1-C) (shaking stirring time is 30 minutes).
  • Alginate gel fiber (CFB-S) (see CFB-S No. in Table 37) was obtained.
  • Example F3 Confirmation of coating of crosslinked alginate gel fiber with a cationic polymer (Example F1-A) No.
  • a crosslinked alginate gel fiber (FB1-A-6) prepared under the conditions shown in F1-A-6, the mixture was immersed in an aqueous solution containing 0.1% poly-L-lysine-FITC label / 100 mM calcium chloride. .. After performing the same operation as in (Example F1-C), the surface of the obtained fiber was observed using a fluorescence microscope.
  • Example F4-A Preparation of crosslinked alginate gel fiber (3)
  • a 3 wt% alginic acid aqueous solution (containing 0.9 wt% sodium chloride) (ALGS2) was prepared from sodium alginate (B-2) and physiological saline for injection (manufactured by Otsuka Pharmaceutical Factory) (INs). Subsequently, an alkyne aqueous solution and an azide aqueous solution were prepared according to the formulations shown in Tables 38 and 39 below.
  • the alkyne aqueous solution (F4A1, F4A2) and the azide aqueous solution (F4N1, F4N2 and F4N3) were mixed in equal volumes according to the combinations shown in the table below to obtain a chemically modified alginic acid mixed solution (F4A-M1).
  • the mixed solution F4A-M1 and ALGS2 were mixed at a ratio of 1: 2 to obtain an alginic acid mixed solution (F4A-M2).
  • the mixed solution F4A-M3 is filled in a Hamilton syringe, and the syringe is filled with a metal needle (Musashi Engineering, SNA-19GB), a silicon tube (AS ONE, ⁇ 1 ⁇ ⁇ 2) and a glass capillary (Narikige, G-1). They were connected in sequence and set in a syringe pump.
  • the tip of the glass capillary was immersed in a beaker containing a 100 mmol / L calcium chloride aqueous solution, and the glass capillary was injected into the calcium chloride aqueous solution at a flow rate of 250 ⁇ L / min for 1 minute.
  • the fibrous substance injected into the calcium chloride aqueous solution was allowed to stand for 30 minutes or more to obtain a crosslinked alginate gel fiber (CLA-X1) (see CLA-X1 No. in Table 40).
  • Example F4-B Preparation of crosslinked alginate gel fiber (4)
  • the alkyne aqueous solution (F4A1) and the azide aqueous solution (F4N1) described in (Example F4-A) were mixed in equal volumes to obtain a chemically modified alginic acid mixed solution (F4B-M1).
  • the mixed solution F4B-M1 and the ALGS2 were prepared according to the formulations shown in Table 41 below, and used as an alginic acid mixed solution (F4B-M2).
  • a mixed solution (F4B-M3) was prepared at the mixing ratio of the alginic acid mixed solution F4B-M2 and INs shown in Table 41 below.
  • the mixed solution F4B-M3 is filled in a Hamilton syringe, and the syringe is filled with a metal needle (Musashi Engineering, SNA-19GB), a silicon tube (AS ONE, ⁇ 1 ⁇ ⁇ 2) and a glass capillary (Narikige, G-1). They were connected in sequence and set in a syringe pump.
  • the tip of the glass capillary was immersed in a beaker containing a 100 mmol / L calcium chloride aqueous solution, and the glass capillary was injected into the calcium chloride aqueous solution at a flow rate of 250 ⁇ L / min for 1 minute.
  • the fibrous substance injected into the calcium chloride aqueous solution was allowed to stand for 30 minutes or more to obtain a crosslinked alginate gel fiber (CLA-X2) (see CLA-X2 No. in Table 41).
  • Example F4-C Preparation of polymer-coated crosslinked alginate gel fiber (2)
  • the crosslinked alginate gel fibers (CLA-X1 and CLA-X2) obtained in the above (Example F4-A) or (Example F4-B) in an aqueous calcium chloride solution were filtered and separated using a cell strainer. ..
  • the separated cross-linked alginate gel fiber is added to an aqueous solution of 0.1% poly-L-ornithine hydrobromide / 100 mM calcium chloride, shaken and stirred at 37 ° C. and 125 rpm for 30 minutes, and the cross-linked alginate gel fiber is stirred.
  • Example F4-C Preparation of polymer-coated crosslinked alginate gel fiber (2)
  • the fibers in the aqueous solution are filtered and fractionated using a cell strainer, washed twice with 5 mL of saline, and polymer coated crosslinked alginate gel fiber (CFB-X) (CFB-X No. in Table 42). .) was obtained.
  • Example F4-D Tensile test of polymer-coated cross-linked alginate gel fiber
  • the tensile test of the polymer-coated cross-linked alginate gel fiber (CFB-X) obtained in the above (Example F4-C) is a small tabletop gel strength measuring machine.
  • EZ-SX 5NC1 Shiadzu, No. I308256D0592
  • the fiber was set on a jig and measured in physiological saline for injection (manufactured by Otsuka Pharmaceutical Co., Ltd.). The measured values are shown in Table 43 in terms of the stress at the break of the fiber in MPa and the strain in%.
  • the culture was carried out for 14 or 20 days while shaking at rpm. Once every 2 to 3 days, 1.8 mL of the culture solution is withdrawn, 1.8 mL of the antibody-producing medium solution or 1.8 mL of the feed solution (Catalog No. JX F003, manufactured by Irvine) is added, and the total amount of the medium is 30. Keeped in mL. In addition, half of the culture solution was exchanged once a week. During the culture period, the IgG concentration of the culture medium was measured as a human IgG concentration by a Cedex Bio analyzer (Roche Diagnostics). In the culture using the cell-encapsulated polymer-coated crosslinked alginate gel fiber, the cumulative antibody amount during the culture period and the concentration of the anti-GPVI antibody-producing CHO cells detected in the culture medium were shown in Table 44.
  • a 60 mm ultra-low adhesive surface dish (Corning) is obtained by culturing a polymer-coated cross-linked alginate gel fiber containing MIN6 cells (Example F2-C). Incorporated, product number: 3261), the complete medium (5 mL) described in (Example F2-B) was added, and the mixture was allowed to stand in an incubator at 37 ° C. in a 5% CO 2 atmosphere for 3 days. Alternatively, it was cultured for 14 days.
  • MIN6 cell-encapsulated polymer-coated crosslinked alginate gel fiber was cultured in 10 mL of low glucose solution (2 mM glucose / KRBH / 0.1% BSA) for 2 hours and then in high glucose solution (20 mM glucose / KRBH / 0.1% BSA). After changing the solution to 10 mL, the cells were cultured for another 2 hours.
  • the solution was exchanged with 10 mL of low glucose solution again, and the cells were cultured for 2 hours.
  • the insulin concentration in solution at the end of each step was measured using an ultrasensitive mouse insulin measurement kit (manufactured by Morinaga Seigaku Kenkyusho). It was confirmed that insulin was released depending on the glucose concentration.
  • Example F5-A Preparation of crosslinked alginate gel fiber containing antibody-producing cells (Example F2-A) 3 of Compound 4-A2d and Compound 11-A2d in the same manner as in the formulations shown in Tables 32 and 33. After preparing a weight% aqueous solution (containing 0.9% by weight sodium chloride), each aqueous solution was mixed in equal volumes to prepare a chemically modified alginic acid mixed solution (F5A-M1).
  • alginic acid aqueous solution containing 0.9% sodium chloride
  • ALGS2 3 wt% alginic acid aqueous solution (containing 0.9% sodium chloride)
  • F5A-M1 3 wt% alginic acid aqueous solution (containing 0.9% sodium chloride)
  • F5A-M2 3 wt% alginic acid aqueous solution (containing 0.9% sodium chloride)
  • an equal volume of G016 medium having the composition described in (Example F2-A) containing the mixed solution F5A-M2 and tocilizumab-producing CHO cells (1 ⁇ 108 cells / mL) was mixed in equal volumes, and the cell-containing alginic acid mixed solution was mixed. It was designated as (F5A-M3).
  • the mixed solution F5A-M3 was filled in a Hamilton syringe, a luer lock needle (Kanto Chemical Co., Inc., 15/23 NL-F) was connected to the syringe, and the mixture was set in a syringe pump.
  • the tip of the needle is immersed in a beaker containing a 100 mmol / L calcium chloride aqueous solution or a 20 mmol / L barium chloride aqueous solution containing 0.9% sodium chloride, and in the calcium chloride or barium chloride aqueous solution at a flow rate of 250 ⁇ L / min.
  • a flow rate of 250 ⁇ L / min. was injected for 0.8 minutes.
  • the fibrous substance injected into the aqueous solution was allowed to stand for 30 minutes or more to obtain a crosslinked alginate gel fiber (CLA-G5) containing tocilizumab-producing CHO cells (CLA-G5 No. in Table 46). reference).
  • Example F5-B The composition of each of the antibody-producing cell-containing crosslinked alginate gel fibers (CLA-G5) obtained in the preparation of the antibody-producing cell-containing polymer-coated crosslinked alginate gel fiber (Example F5-A) is shown in Table 47.
  • Example F5-A The composition of each of the antibody-producing cell-containing crosslinked alginate gel fibers (CLA-G5) obtained in the preparation of the antibody-producing cell-containing polymer-coated crosslinked alginate gel fiber (Example F5-A) is shown in Table 47.
  • Table 47 was added to the cationic polymer-containing aqueous solution of the above, and the mixture was shaken and stirred at 37 ° C. and 125 rpm for 30 minutes to polymer-coat the cell-containing crosslinked alginate gel fiber.
  • the aqueous solution used for the polymer coating was 10 times the amount of the fiber to be coated.
  • Fibers in aqueous solution are filtered using a cell strainer, fractionated, washed twice with 5 mL of saline, and antibody-producing cell-containing polymer-coated cross-linked alginate gel fiber (CFB-S2) (in Table 48).
  • CFB-S2 No. was obtained.
  • Example FI-3 Culture of antibody-producing cell-containing polymer-coated cross-linked alginate gel fiber
  • FB5-B the antibody-producing cell-containing polymer-coated cross-linked alginate gel fiber obtained in (Example F5-B) (FB5).
  • the culture was started in the incubator while shaking at 125 rpm, and after 5 days, the culture temperature was set to 30 ° C., and the culture was continued at the same temperature. During this period, 1.8 mL of the culture medium is withdrawn once every 2 to 3 days, and 1.8 mL of the G016 medium or 1.8 mL of the feed solution (Catalog No. JX F003 manufactured by Irvine) is added to make the total amount of the medium 30. Keeped in mL. In addition, half of the culture solution was exchanged once a week. During the culture period, the IgG concentration of the culture medium was measured as a human IgG concentration by a Cedex Bio analyzer (Roche Diagnostics).
  • Table 49 shows the cumulative antibody concentration and the concentration of tosirizumab-producing CHO cells detected in the culture medium on each measurement day in the culture using the antibody-producing cell-encapsulated polymer-coated crosslinked alginate gel fiber. From the culture results, it was confirmed that the amount of antibody produced increased over time in the culture of each fiber.
  • Example F6 Preparation of antibody-producing cell-containing polymer-coated crosslinked alginate gel fiber
  • the description of Example F2-A which comprises tosirizumab-producing CHO cells (3 ⁇ 10 7 cells / mL or 1 ⁇ 10 8 cells / mL).
  • the G016 medium having the composition and the mixed solution F5A-M2 prepared in the above (Example F5-A) were mixed in equal volumes to obtain a cell-containing alginic acid mixed solution (F6A-M3).
  • the mixed solution F6A-M3 contained tocilizumab-producing CHO cells at the final concentrations of 0.5% by weight of the alkyne compound and the azide compound at the concentrations shown in Table 50.
  • the mixed solution F6A-M3 was filled in a Hamilton syringe, a luer lock needle (Kanto Chemical Co., Inc., 15/23 NL-F) was connected to the syringe, and the mixture was set in a syringe pump.
  • the tip of the needle was immersed in a beaker containing a 20 mmol / L barium chloride aqueous solution containing 0.9% sodium chloride, and injected into the aqueous solution at a flow rate of 250 ⁇ L / min for the time shown in Table 50.
  • the fibrous substance injected into the solution was allowed to stand for 30 minutes or more to obtain a crosslinked alginate gel fiber containing tocilizumab-producing CHO cells.
  • Example F5-B Subsequently described in (Example F5-B) above, using an aqueous solution containing 0.1% poly-L-alginate hydrobromide, 0.9% sodium chloride and 20 mM mmol / L barium chloride.
  • an antibody-producing cell-containing polymer-coated crosslinked alginate gel fiber (CFB-S3) (see CFB-S3 No. in Table 50) was obtained.
  • Example FI-4 Culture of antibody-producing cell-containing polymer-coated cross-linked alginate gel fiber
  • the antibody-producing cell-containing polymer-coated cross-linked alginate gel fiber obtained in (Example F6) (FB6-1) -C1, FB6--2-c1 or FB6-4-c1 is 1 bottle, FB6--3-c1 is 2 bottles), G016 medium having the composition described in (Example F2-A) is added, and a gel is added.
  • the total volume of the fiber and G016 medium was 30 mL, and the culture was started while shaking at 125 pm in the incubator under an atmosphere of 37 ° C.
  • the culture temperature was set to 30 ° C. and the culture was performed at the same temperature.
  • the culture temperature was set to 30 ° C. and the culture was performed at the same temperature.
  • 1.8 mL of the culture solution was withdrawn, 1.8 mL of the feed solution (Catalog No. JX F003 manufactured by Irvine) was added, and the total volume of the medium was kept at 30 mL. After that, half of the culture solution was exchanged once every 2 to 3 days.
  • the IgG concentration of the culture medium was measured as a human IgG concentration by a Cedex Bio analyzer (Roche Diagnostics).
  • Table 51 shows the cumulative antibody concentration and the concentration of tosirizumab-producing CHO cells detected in the culture medium on each measurement day in the culture using the antibody-producing cell-encapsulated polymer-coated crosslinked alginate gel fiber. From the culture results, it was confirmed that the amount of antibody produced increased over time in the culture of each fiber.
  • Example F7 Preparation of polymer-coated crosslinked alginate gel fiber containing antibody-producing cells
  • the mixed solution F5A-M2 prepared in Example F5-A) was mixed in equal volumes to obtain a cell-containing alginic acid mixed solution (F7A-M3).
  • the mixed solution F7A-M3 contained an alkyne compound and an azide compound at a final concentration of 0.5% by weight.
  • the mixed solution F7A-M3 was filled in a Hamilton syringe, a luer lock needle (Kanto Chemical Co., Inc., 15/23 NL-F) was connected to the syringe, and the mixture was set in a syringe pump.
  • the tip of the needle was immersed in a beaker containing a 20 mmol / L barium chloride aqueous solution containing 0.9% sodium chloride, and injected into the aqueous solution at a flow rate of 250 ⁇ L / min for the time shown in Table 52.
  • the fibrous substance injected into the aqueous solution was allowed to stand for 30 minutes or more to obtain a crosslinked alginate gel fiber containing anti-GPVI antibody-producing cells.
  • Example F5-B Subsequently described in (Example F5-B) above, using an aqueous solution containing 0.1% poly-L-alginate hydrobromide, 0.9% sodium chloride and 20 mM mmol / L barium chloride.
  • an antibody-producing cell-containing polymer-coated crosslinked alginate gel fiber (CFB-S4) (see CFB-S4 No. in Table 52) was obtained.
  • Example FI-5 Culture of antibody-producing cell-containing polymer-coated cross-linked alginate gel fiber
  • FB7-1 obtained in (Example F7) was placed.
  • -C1 or FB7-2-c1 is 1 bottle
  • FB7-3-c1 is 2 bottles
  • the antibody-producing medium solution described in (Example F2-A) is added to the gel fiber and antibody-producing medium solution.
  • the total volume was 30 mL, and the cells were cultured in an incubator at 37 ° C. under a 5% CO 2 atmosphere while shaking at 125 rpm.
  • Example F8 Preparation of polymer-coated cross-linked alginate gel fiber containing antibody-producing cells 3 wt% alginic acid aqueous solution (0.) From various sodium alginate and saline for injection (manufactured by Otsuka Pharmaceutical Factory) (INs) according to the formulation shown in Table 54 below. Contains 9 wt% sodium chloride). Subsequently, a 3 wt% alkyne aqueous solution and an azide aqueous solution (containing 0.9 wt% sodium chloride) were prepared according to the formulations shown in Table 55 below.
  • the 3 wt% alkyne aqueous solution and the azide aqueous solution (containing 0.9 wt% sodium chloride) shown in Tables 54 and 55 were mixed in equal volumes according to the formulation shown in Table 56 below, and the chemically modified arginic acid mixed solution (F8A-M1) was mixed.
  • the mixed solution F8A-M1 and the above-mentioned 3 wt% sodium alginate aqueous solution (containing 0.9 wt% sodium chloride) are mixed in the combination shown in Table 56 below so as to be 5:10, and the alginic acid mixed solution (F8A-M2) is mixed. ) Was prepared.
  • the G016 medium having the composition described in (Example F2-A) containing tosirizumab-producing CHO cells (1 ⁇ 10 8 cells / mL) and the mixed solution F8A-M2 were mixed in equal volumes, and the cell-containing alginic acid mixed solution was mixed. It was designated as (F8A-M3).
  • the mixed solution F8A-M3 contained an alkyne compound and an azide compound at a final concentration of 0.5% by weight.
  • the mixed solution F8A-M3 was filled in a Hamilton syringe, a luer lock needle (Kanto Chemical Co., Inc., 15/23 NL-F) was connected to the syringe, and the mixture was set in a syringe pump.
  • the tip of the needle was immersed in a beaker containing a 20 mmol / L barium chloride aqueous solution containing 0.9% sodium chloride, and injected at a flow rate of 250 ⁇ L / min for 0.8 minutes.
  • the fibrous substance injected into the aqueous solution was allowed to stand for 30 minutes or more to obtain a crosslinked alginate gel fiber containing tocilizumab-producing CHO cells.
  • Example FI-6 Culture of antibody-producing cell-containing polymer-coated cross-linked alginate gel fiber
  • the antibody-producing cell-containing polymer-coated cross-linked alginate gel fiber obtained in (Example F8) (FB8-1) -C1, FB8-2-c1, FB8-3-c1, FB8-4-c1 or FB8-5-c1) is added and a G016 medium (30 mL) having the composition described in (Example F2-A) is added.
  • the IgG concentration of the culture medium was measured as a human IgG concentration by a Cedex Bio analyzer (Roche Diagnostics).
  • Table 57 shows the cumulative antibody concentration and the concentration of tosirizumab-producing CHO cells detected in the culture medium on each measurement day in the culture using the antibody-producing cell-encapsulated polymer-coated crosslinked alginate gel fiber. From the culture results, it was confirmed that the amount of antibody produced increased over time in the culture of each fiber.
  • Example F9 Preparation of antibody-producing cell-containing polymer-coated crosslinked alginate gel fiber
  • the G016 medium having the composition according to (Example F2-A) containing tosirizumab-producing CHO cells (1 ⁇ 108 cells / mL) and the above (Example F9).
  • the alginic acid mixed solution F5A-M2 prepared in Example F5-A) was mixed in equal volumes to obtain a cell-containing alginic acid mixed solution (F9A-M3).
  • the final concentration of the alkyne compound and the azide compound was contained in the mixed solution F9A-M3 in an amount of 0.5% by weight.
  • the mixed solution F9A-M3 was filled in a Hamilton syringe, a luer lock needle (Kanto Chemical Co., Inc., 15/23 NL-F) was connected to the syringe, and the mixture was set in a syringe pump.
  • the tip of the needle was immersed in a beaker containing a 20 mmol / L barium chloride aqueous solution containing 0.9% sodium chloride, and injected into the aqueous solution at a flow rate of 250 ⁇ L / min for 0.8 minutes.
  • the fibrous substance injected into the solution was allowed to stand for 30 minutes or more to obtain a crosslinked alginate gel fiber containing tocilizumab-producing CHO cells.
  • the obtained cell-containing crosslinked alginate gel fiber is coated with the cationic polymer-containing aqueous solution having each composition shown in Table 58 in the same manner as described in the above (Example F5-B).
  • a polymer-coated crosslinked alginate gel fiber (CFB-S6) containing antibody-producing cells was obtained.
  • Example FI-7 Culture of antibody-producing cell-containing polymer-coated cross-linked alginate gel fiber
  • FB9- the antibody-producing cell-containing polymer-coated cross-linked alginate gel fiber obtained in the above (Example F9) (FB9-).
  • the culture was started while shaking at 125 pm in the incubator, and after 5 days, the culture temperature was set to 30 ° C., and the culture was continued at the same temperature. During this period, 1.8 mL of the culture solution is withdrawn once every 2 to 3 days, 1.8 mL of the G016 medium or 1.8 mL of the feed solution (Catalog No. JX F003 manufactured by Irvine) is added, or half of the culture solution is replaced. Was carried out. During the culture period, the IgG concentration of the culture medium was measured as a human IgG concentration by a Cedex Bio analyzer (Roche Diagnostics).
  • Table 60 shows the cumulative antibody concentration and the concentration of tosirizumab-producing CHO cells detected in the culture medium on each measurement day in the culture using the antibody-producing cell-encapsulated polymer-coated crosslinked alginate gel fiber. From the culture results, it was confirmed that the amount of antibody produced increased over time in the culture of the fibers of FB9-1-c1 and FB9-1-c3.
  • Example F10 Preparation of cross-linked alginate gel fiber coated with multilayer polymer ⁇ Step a> Preparation of cross-linked alginic acid gel fiber 1 and 20 mg / mL blue dextran (Cytiva, Blue Dextran 2000) prepared to 3.0% by weight of alginic acid aqueous solution, Blue Dextran 2000, Code No. 17036001) Equal amounts of 1.8 wt% saline containing were mixed and filled into a Hamilton syringe.
  • a metal needle (Musashi Engineering Metal Needle, SNA-19GB), a silicon tube (AS ONE, ⁇ 1 ⁇ ⁇ 2) and a glass capillary (Narikige, G-1) were sequentially connected to the syringe and set in the syringe pump.
  • the tip of the glass capillary was immersed in a 100 mmol / L calcium chloride aqueous solution, and the solution was sent at a flow rate of 250 ⁇ L / min for 1 minute.
  • the recovered crosslinked alginate gel fiber was allowed to stand in an aqueous solution of calcium chloride (10 mL) having the same concentration for 30 minutes.
  • the alginic acid aqueous solution 1 used in step a is an aqueous solution of sodium alginate (A-2) or a mixed solution of compound 4-A2c / compound 11-A2e.
  • ⁇ Step b> PLO coating (Example F10)
  • the crosslinked alginate gel fiber was separated from the calcium chloride aqueous solution containing the crosslinked alginate gel fiber obtained in ⁇ step a> using a cell strainer. Separated cross-linked alginate gel fiber prepared to 0.1% by weight of poly-L-ornithine (PLO) aqueous solution (5 mL) [0.1% poly-L-ornithine hydrochloride and 100 mmol / L calcium chloride is contained.
  • PLO poly-L-ornithine
  • Aqueous solution was added, and the mixture was shaken and stirred at 37 ° C. and 125 rpm for 20 minutes. Then, the cationic polymer-coated crosslinked alginate gel fiber was separated from the poly-L-ornithine aqueous solution using a cell strainer, and washed twice with 5 mL of physiological saline.
  • ⁇ Step c> Alginic acid coating (Example F10)
  • the PLO-coated cationic polymer-coated crosslinked alginic acid gel fiber obtained in ⁇ Step b> was added to alginic acid aqueous solution 2 (5 mL) prepared to 0.15% by weight, and 37 The mixture was shaken and stirred at 125 rpm for 20 minutes at ° C. Then, using a cell strainer, the multilayer polymer-coated crosslinked alginic acid gel fiber (CFB-10) (see CFB-10 No. in Table 61 below) was separated from the alginic acid aqueous solution, and twice using 5 mL of physiological saline. Washed.
  • the alginate aqueous solution 2 used in step c is an aqueous solution of sodium alginate (A-2) or a mixed solution of compound 4-A2c / compound 11-A2e.
  • Example F10B Preparation of Multilayer Polymer Coated Crosslinked Alginate Gel Fiber Using a 3% by weight aqueous solution of compound 4-A2d, a 3% by weight aqueous solution of compound 11-A2d, and an aqueous solution of sodium alginate (A-2), as shown in Table 62 below.
  • An alginic acid solution (F10B-M1) was prepared with the combination shown. Subsequently, a 1.8% aqueous sodium chloride solution containing 20 mg / mL blue dextran (Blue Dextran 2000, GE Healthcare Science, 17036001) and F10B-M1 were mixed in equal volumes to prepare an alginic acid mixed solution (F10B-M2).
  • the mixed solution F10B-M2 was contained so that the final concentration of the alkyne compound and the azide compound was 1.5% by weight or the final concentration of sodium alginate was 1.5% by weight.
  • the tip of the glass capillary was immersed in a beaker containing a 20 mmol / L barium chloride aqueous solution containing 0.9% sodium chloride, and injected into the solution at a flow rate of 250 ⁇ L / min for 1 minute.
  • the fibrous substance injected into the solution was allowed to stand in a solution of the same concentration for 30 minutes to obtain a crosslinked alginate gel fiber.
  • the solution containing the obtained crosslinked alginate gel fiber was filtered using a cell strainer, and the gel fiber was separated.
  • the separated gel fiber is added to a cationic polymer-containing aqueous solution (5 mL) containing 0.1% poly-L-alginic acid hydrochloride, 0.9% sodium chloride and 20 mM mmol / L barium chloride, and added to 37 ° C. , Shaking and stirring at 125 rpm for 20 minutes to obtain a cationic polymer coated crosslinked alginate gel fiber.
  • the obtained gel fiber was filtered again using a cell strainer and washed twice with 5 mL of physiological saline. Subsequently, sodium alginate (A-2) was dissolved in physiological saline to prepare a final concentration of 0.15% alginate solution (F10B-M3).
  • the washed cationic polymer-coated crosslinked alginate gel fiber was added to F10B-M3 (5 mL), and the mixture was shaken and stirred at 37 ° C. and 125 rpm for 20 minutes to obtain a multilayer polymer-coated crosslinked alginate gel fiber (CFB-10B) (Table 62 below).
  • CFB-10B multilayer polymer-coated crosslinked alginate gel fiber
  • Medium CFB-10B No. was obtained.
  • the obtained CFB-10B was filtered using a cell strainer and washed twice with 5 mL of physiological saline.
  • Example F11 Stability of Multilayer Polymer Coated Crosslinked Alginate Gel Fiber ⁇ Step d> Chelate Treatment (Example F10) Multilayer Polymer Coated Crosslinked Alginate Gel Fiber obtained in ⁇ Step c> (CFB-10 No. in Table 63 below) (See.) was added to 20 mM EDTA. 2K / physiological saline (5 mL), and the mixture was shaken and stirred at 37 ° C. and 125 rpm for 20 minutes. Then, the multilayer polymer-coated crosslinked alginate gel fiber was separated from EDTA.2K / saline using a cell strainer, and washed twice with 5 mL of saline.
  • the recovered multilayer polymer-coated crosslinked alginate gel fiber (see CFB-11 No. in Table 63 below) was immersed in 5 mL physiological saline until the stability evaluation test was performed.
  • ⁇ Step e> Stability evaluation (Example F11)
  • the multilayer polymer-coated crosslinked alginate gel fiber obtained in ⁇ Step d> was transferred to a 15 mL centrifuge tube containing 5 mL of PBS solution and shaken at 37 ° C. for 1 day (water bath). Shaker (manufactured by TAITEC, personal II), 180 rpm). The fiber was then transferred to a 25 mL centrifuge tube containing 10 mL of PBS solution and shaken at 37 ° C. for an additional hour.
  • the observation results are shown in Table 63 below.
  • Stability assessment (score): 3: No fiber disintegration / dissolution / deformation / elution of blue dextran, etc. 2: Disintegration / dissolution / deformation / elution of blue dextran, etc. are observed in a part of the fiber 1: Clear disintegration / dissolution in the fiber / Deformation / Elution of blue dextran, etc. is observed, and the function of the structure is not maintained.
  • Example F11B Stability of Multilayer Polymer Coated Crosslinked Alginate Gel Fiber (1) EDTA Treatment of Fiber Multilayer Polymer Coated Crosslinked Alginate Gel Fiber (CFB-10B) produced in the above (Example F10B) (CFB- in Table 64 below). By carrying out the same operation as in (Example F11) using 10B No.), a chelated multilayer polymer-coated crosslinked alginate gel fiber (CFB-11B) (CFB-11B No. in Table 64 below). See).
  • Example F12 Preparation of cross-linked alginic acid gel fiber coated with a multilayer polymer containing antibody-producing cells
  • Alginic acid mixed solution F5A-M2 prepared in the above example (Example F5-A) and saline solution for injection (manufactured by Otsuka Pharmaceutical Co., Ltd.) (INs) were mixed at a ratio of 1:19 to prepare an anionic polymer-containing aqueous solution (the anionic polymer-containing aqueous solution contained 0.15% by weight of F5A-M2).
  • the antibody-producing cell-containing cationic polymer-coated cross-linked alginate gel fiber (FB9-1-c1, FB9-2-c2 or FB9-3-c3) obtained by the method described in Example F9 was used as a fiber 10 It was immersed in a double amount of the anionic polymer-containing aqueous solution, stirred at 37 ° C. and 125 rpm for 20 minutes, and coated with the anionic polymer. Fibers in aqueous solution are filtered using a cell strainer, separated, washed 3 times with 7 mL of INs, and cross-linked alginate gel fiber (ACFB-S1) containing antibody-producing cells and coated with a multilayer polymer (ACFB- in Table 65). (See S1 No.) was obtained.
  • ACFB-S1 cross-linked alginate gel fiber
  • Example FI-8 Culturing of cross-linked alginate gel fiber coated with multi-layer polymer coated with antibody-producing cells
  • FB12 multi-layer polymer coated with antibody-producing cells
  • Example F13-A Preparation of cross-linked alginate gel fiber coated with cation polymer coated with antibody-producing cells Using tosirizumab-producing CHO cells, the same operations as described above (Example F5-A) and (Example F5-B) were carried out. By doing so, an antibody-producing cell-containing cationic polymer-coated crosslinked alginate gel fiber (CLA-G13) (see Table 67 CLA-G13 No. below) was prepared.
  • CLA-G13 contained tocilizumab-producing CHO cells at a final concentration of 5 ⁇ 107 cells / mL.
  • Example F13-B Preparation of multi-layer polymer-coated crosslinked alginate gel fiber containing antibody-producing cells
  • a 3 wt% alkyne aqueous solution and an azide aqueous solution (containing 0.9 wt% sodium chloride) were prepared according to the formulations shown in Tables 68 and 69 below. ..
  • sodium alginate (B-2) and physiological saline for injection were mixed, and a 3 wt% sodium alginate aqueous solution (containing 0.9% sodium chloride) (ALGS2) was added to sodium alginate (ALGS2).
  • A-2) and INs were mixed to prepare a 3 wt% sodium alginate aqueous solution (containing 0.9% sodium chloride) (ALGS2A).
  • the alkyne, azide, ALGS2, ALGS2A or INs were mixed in the combination shown in Table 70 to prepare an anionic polymer-containing aqueous solution.
  • the total concentration of alginic acid contained in the anionic polymer-containing aqueous solution was about 0.15% by weight, and the mixture was mixed so as to have the ratios shown in Table 70.
  • CLA-G13 cationic polymer-coated crosslinked alginate gel fiber
  • Example FI-9 Culturing of antibody-producing cell-containing multilayer polymer-coated cross-linked alginate gel fiber
  • Example F13-B Culturing of antibody-producing cell-containing multilayer polymer-coated cross-linked alginate gel fiber
  • FB13-B-1-ac1, FB13-B-2-ac2, FB13-B-3-ac2, FB13-B-4-ac2, FB13-B-5-ac2, FB13-B-6-ac2, FB13 -B-7-ac2 and FB13-B-8-ac2) were added, the G016 medium (30 mL) described in (Example F2-A) was added, and the temperature was 37 ° C. under a 5% CO 2 atmosphere.
  • the culture was started in the incubator while shaking at 125 rpm, and after 5 days, the culture temperature was set to 30 ° C., and the culture was continued at the same temperature.
  • 1.8 mL of the culture medium is withdrawn once every 2 to 3 days, and 1.8 mL of the G016 medium or 1.8 mL of the feed solution (Catalog No. JX F003 manufactured by Irvine) is added to make the total amount of the medium 30. Keeped in mL. In addition, half of the culture solution was exchanged once a week.
  • the IgG concentration of the culture medium was measured as a human IgG concentration by a Cedex Bio analyzer (Roche Diagnostics).
  • Table 71 shows the cumulative antibody concentration and the concentration of tosirizumab-producing CHO cells detected in the culture medium on each measurement day in the culture using the antibody-producing cell-containing polymer-coated crosslinked alginate gel fiber.
  • Example F14 Confirmation of coating of crosslinked alginate gel fiber with anionic polymer / cationic polymer 3 weights of alkyne compound 4-A2d and azide compound 11-A2d in the same manner as in the formulation described in (Example F2-A).
  • A% aqueous solution (containing 0.9% by weight sodium chloride) was prepared.
  • a chemically modified arginic acid mixed solution (F14A-M1) was prepared by equally mixing 3% by weight alkyne and an aqueous azide solution (containing 0.9% by weight sodium chloride).
  • a 3 wt% alginic acid aqueous solution (containing 0.9% sodium chloride) (ALGS2) prepared from the mixed solution F14A-M1 and sodium alginate (B-2) and saline for injection (manufactured by Otsuka Pharmaceutical Co., Ltd.) (INs).
  • the aqueous solution F14A-M3 was filled in a Hamilton syringe, a luer lock needle (Kanto Chemical Co., Inc., 15/23 NL-F) was connected to the syringe, and the mixture was set in a syringe pump.
  • the tip of the needle was immersed in a beaker containing a 20 mmol / L barium chloride aqueous solution containing 0.9% sodium chloride, and injected at a flow rate of 250 ⁇ L / min for 0.8 minutes.
  • the fibrous substance injected into the solution was allowed to stand for 30 minutes or more to obtain a crosslinked alginate gel fiber.
  • Example F9 the same operation as in (Example F9) (the aqueous solution used for coating was 2 mL) was carried out to obtain a cationic polymer-coated crosslinked alginate gel fiber.
  • the composition of the cationic polymer-containing aqueous solution used for coating is as shown in Table 72 below, and 2 mL was used for each fiber.
  • the fluorescently labeled alginic acid (LA) synthesized from sodium alginate (A-2) and fluorescein-5-thiosemicarbazide (CAS REGISTORY No .: 76863-28-0) was adjusted to a final concentration of 0.15% by weight.
  • LAPS anionic polymer-containing aqueous solution
  • the cationic polymer coated crosslinked alginate gel fiber was immersed in 2 mL of LAPS, stirred at 37 ° C. and 125 rpm for 20 minutes, and coated with an anionic polymer.
  • the fibers in aqueous solution are filtered using a cell strainer, fractionated, washed once with 8 mL of saline and anion-cationic polymer crosslinked alginate gel fiber (LCLA-G) (LCLA in Table 73). -G No.) was obtained.
  • the surface of the obtained fiber was observed using a fluorescence microscope. The observation results are shown in FIGS. 22 and 23. It was confirmed that the surface of the gel fiber was coated with LA (the color inverted in the background of FIGS. 22 and 23 is LA).
  • Example F15-A Preparation of polymer-coated crosslinked alginate gel fiber 3 wt% alginic acid aqueous solution (0.9 wt% chloride) from sodium alginate (B-2) and saline for injection (manufactured by Otsuka Pharmaceutical Factory) (INs) Sodium-containing) (ALGS2) was prepared. Subsequently, an alkyne aqueous solution and an azide aqueous solution were prepared according to the formulations shown in Table 74 below. F15A1, F15N1 and ALGS2 were mixed in the combinations and ratios shown in Table 75 below to prepare a 3 wt% alginic acid solution (F15A-M1).
  • a mixed solution (F15A-M2) was prepared by mixing F15A-M1 and INs in equal volumes.
  • the total concentration of alginic acid contained in F15A-M2 is 1.5% by weight.
  • the tip of the glass capillary was immersed in a beaker containing a 100 mmol / L calcium chloride aqueous solution and injected at a flow rate of 250 ⁇ L / min for 0.8 minutes.
  • the fibrous substance injected into the aqueous solution was allowed to stand for 30 minutes or more to obtain a crosslinked alginate gel fiber.
  • the obtained crosslinked alginate gel fiber was filtered using a cell strainer, separated, and added to an aqueous solution containing 0.1% poly-L-ornithine hydrobromide and 100 m mmol / L calcium chloride at 37 ° C.
  • the crosslinked alginate gel fiber was coated with a cationic polymer by shaking and stirring at 125 rpm for 30 minutes.
  • the aqueous solution used for the polymer coating was 10 times the amount of the fiber to be coated.
  • the fibers in the aqueous solution are filtered and separated using a cell strainer, washed 3 times with 7 mL of physiological saline, and polymer-coated crosslinked alginate gel fiber (CFB-G15A) (CFB-G15A No. in Table 75). .) was obtained.
  • Example F15-B Preparation of Multilayer Polymer Coated Crosslinked Alginic Acid Gel Fiber
  • the F15A-M1 was diluted with INs to a total alginic acid concentration of 0.15% by weight with the composition shown in Table 76 below, and an anion was added.
  • An aqueous solution containing a sex polymer was prepared.
  • the polymer-coated crosslinked alginate gel fiber (FB15-A-1-c1 or FB15-A-2-c1) obtained in Example F15-A was added to the anionic polymer-containing aqueous solution, and the same as in (Example F12).
  • a multilayer polymer-coated crosslinked alginate gel fiber (ACFB-G15B) (see ACFB-G15B No. in Table 76) was obtained by carrying out the coating operation of.
  • Example F15-C Tensile test of multilayer polymer coated crosslinked alginate gel fiber
  • the tensile test of the multilayer polymer coated crosslinked alginate gel fiber (CFB-G15B) obtained in the above (Example F15-B) is a small tabletop gel strength.
  • EZ-SX 5NC1 Shiadzu, No. I308256D0592
  • the measured values are shown in Table 77 as the stress at the break of the fiber in MPa and the strain in%.
  • a polymer-coated crosslinked alginate gel fiber in which a core layer containing cells capable of producing an antibody, a physiologically active substance, etc. and a crosslinked alginate gel is coated with a cationic polymer (cationic polymer layer) is provided. Further, it is possible to provide a method for producing the fiber and a method for culturing an antibody, a physiologically active substance, or the like using the fiber. Further, the core layer containing cells capable of producing antibodies, physiologically active substances, etc. and a crosslinked alginate gel is coated with a cationic polymer (cationic polymer layer) and an anionic polymer (anionic polymer layer). Gel fibers are provided. Further, it is possible to provide a method for producing the fiber and a method for culturing an antibody, a physiologically active substance, or the like using the fiber.
  • a Polymer-coated cross-linked arginate gel fiber or multilayer polymer-coated cross-linked arginate gel fiber core layer diameter
  • b Polymer-coated cross-linked arginate gel fiber or multi-layer polymer-coated cross-linked arginate gel fiber cationic polymer layer thickness
  • c Polymer-coated cross-linked Outer diameter of alginate gel fiber
  • d Multilayer polymer coating outer diameter
  • e Multilayer polymer coating
  • Crosslinked alginate gel fiber anionic polymer layer thickness 4 Cationic polymer layer 5: Core layer 6: Cell (antibody) , Cells that can produce physiologically active substances, etc.) 7: Anionic polymer layer
  • XX Equipment YY: Extruder cylinder 1: Introduction port 2: Discharge port
  • DD Container (for example, beaker) (divalent metal ion-containing solution)
  • EE Container (eg, beaker) (cationic polymer-containing solution)
  • FF Container (eg, bea

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Biology (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Sustainable Development (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Reproductive Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Materials Engineering (AREA)
  • Urology & Nephrology (AREA)
  • Botany (AREA)
  • Materials For Medical Uses (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

さらなる抗体の生産方法が求められていた。ここでは、抗体産生細胞(例えば、抗体産生CHO細胞)又は生理活性物質産生細胞(例えば、膵 β 細胞由来のMIN6細胞)と架橋アルギン酸ゲルとを含むコア層を、カチオン性ポリマーで被覆したポリマーコーティング架橋アルギン酸ゲルファイバ、および当該ファイバを用いる抗体、生理活性物質等の製造方法が提供される。

Description

新規な多層ポリマーコーティング架橋アルギン酸ゲルファイバ
 本発明は、抗体、生理活性物質等の生産用のポリマーコーティング架橋アルギン酸ゲルファイバ、当該ファイバの製造方法、及び当該ファイバを用いる抗体、生理活性物質等の製造方法に関する。また、本発明は、抗体、生理活性物質等の生産用の多層ポリマーコーティング架橋アルギン酸ゲルファイバ、当該ファイバの製造方法、及び当該ファイバを用いる抗体、生理活性物質等の製造方法に関する。
 これ迄に、動物細胞を用いた培養による、抗体、生理活性物質(例えば、インターフェロン、エリスロポエチン、IL-2(インターロイキン-2)、CSF(コロニー刺激因子)、TNF(腫瘍壊死因子)、等)等の種々の生産方法が知られていた。
 抗体生産の場合、抗体産生細胞としては、CHO細胞(チャイニーズハムスター卵巣由来)、Sp2/0細胞、NS0細胞等が宿主細胞として用いられ、とりわけ、CHO細胞は、浮遊培養が可能な細胞であり、又細胞の増殖速度が速く、CHO細胞の大量培養により、目的のタンパク質を大量生産することが容易なことから、抗体の製造に頻用されている。
 近年、抗体医薬品の開発・製造において、抗体医薬品の安定生産、低コスト化への取組みが求められており、それらを達成するべく、より生産性の高い効率的な生産システム(例えば、連続生産方法、小規模生産設備による必要な量の抗体産生の為の新規な培養技術、等)の開発が注目されている。
 抗体産生細胞の培養は、抗体産生細胞株をスピナーフラスコ等で細胞を起こした後に、培地組成・温度・攪拌条件・ガス交換・pH等の培養条件を制御しながら拡大培養を行い、最終的に数千から1万Lスケールの大規模な生産培養タンクにて培養が行われる。
 抗体産生細胞を高密度で連続培養する場合、(1)細胞と培養液の分離方法、(2)効果的な酸素の供給方法、等が問題になる場合がある。(1)および(2)について、種々の改善が図られているものの、抗体を効率的に生産させるためには、他の種々の問題を解決することが必要とされている。
 コア層に各種細胞が含まれ、シェル層がアルギン酸ゲルからなる、コア・シェル構造を有するアルギン酸ゲルファイバが知られている(特許文献1:国際公開第2011/046105号パンフレット、特許文献2:特開2016-77229号公報)。
 コア層に抗体産生細胞が含まれ、シェル層がアルギン酸ゲルからなる、コア・シェル構造を有するアルギン酸ゲルファイバが知られている(特許文献3:国際公開第2020/032221号パンフレット)。
 中空部に各種細胞が含まれ、外殻層がアルギン酸ゲルである、アルギン酸ゲル中空ファイバが知られている(特許文献4:国際公開第2015/178427号パンフレット、特許文献5:特許第6601931号公報、特許文献6:特開2014-236698号公報)。
 細胞(具体的には、ヒト皮膚線維芽細胞、HEK293T細胞)を含むアルギン酸ハイドロゲルファイバを、カチオン性水溶性ポリマーで表面が被覆されたナノ粒子を含む接着剤を用いて接着したバンドルが知られている(特許文献7:国際公開第2019/078251号パンフレット、特許文献8:国際公開第2019/123886号パンフレット)。
 神経幹細胞又は神経幹細胞を含むアルギン酸ハイドロゲルファイバを、キトサンを用いてバンドル化した移植用神経束が知られている(特許文献9:特開2014-136128号公報)。
 接着性細胞(具体的には、C2C12細胞)、マイクロキャリア、及びゲル状の多糖類(具体的には、アルギン酸ゲル)を含む混合物がポリアミノ酸で被覆されている細胞構造体(例えば、シート状(板状)、ファイバー状(繊維状)、球状等が挙げられる)が知られている(特許文献10:特開2019-075993号公報)。
 細胞(293/GFP細胞)が含まれるアルギン酸カルシウムマイクロファイバをポリ-L-リジンで被覆し、クエン酸ナトリウム溶液で溶解して得られた、管状ゲルが知られている(非特許文献1:PA-Lab Chip, 2008, 8, p1255-1257)。
 アルギン酸の任意の1つ以上のカルボキシル基に、アミド結合及び2価のリンカーを介して環状アルキン基又はアジド基が導入された化学修飾アルギン酸誘導体が知られている(特許文献11:国際公開第2019/240219号パンフレット、特許文献12:国際公開第2021/125255号パンフレット)。
 コア層に抗体産生細胞が含まれ、シェル層が化学修飾アルギン酸誘導体から形成される架橋アルギン酸ゲルからなる、コア・シェル構造を有するアルギン酸ゲルファイバが知られている(特許文献13:国際公開第2021/125279号パンフレット)。
 特許文献1~13及び非特許文献1には、本発明の抗体、生理活性物質等の生産用のポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバ、各ゲルファイバの製造方法、及び各ゲルファイバを用いる抗体等の製造方法が開示されていないし、示唆もされていない。
国際公開第2011/046105号パンフレット 特開2016-77229号公報 国際公開第2020/032221号パンフレット 国際公開第2015/178427号パンフレット 特許第6601931号公報 特開2014-236698号公報 国際公開第2019/078251号パンフレット 国際公開第2019/123886号パンフレット 特開2014-136128号公報 特開2019-075993号公報 国際公開第2019/240219号パンフレット 国際公開第2021/125255号パンフレット 国際公開第2021/125279号パンフレット
PA-Lab Chip, 2008, 8, p1255-1257
抗体、生理活性物質等を産生できる細胞を含んだアルギン酸ゲルファイバ、とりわけ、ファイバが分解することなく、長期間(例えば、7日以上、14日以上、28日以上等)に渡って細胞培養が可能となる、より実用的なアルギン酸ゲルファイバが求められていた。
 本発明者らは、鋭意研究を重ねた結果、抗体、生理活性物質等を産生できる細胞を含み、後述の態様[1]に記載の式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋アルギン酸ゲルを、カチオン性ポリマーで被覆することにより形成される、抗体、生理活性物質等の生産用の新規なポリマーコーティング架橋アルギン酸ゲルファイバおよびその製造方法を見出した。又、当該ポリマーコーティング架橋アルギン酸ゲルファイバを用いて、抗体、生理活性物質等の産生細胞の培養を行ったところ、ポリマーコーティング架橋アルギン酸ゲルファイバが分解することなく、抗体、生理活性物質等を長期間連続して産生できることを見出し本発明を完成するに至った。更に、後述の態様[1B]に記載の式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋アルギン酸ゲルを、カチオン性ポリマーで被覆することにより形成される、抗体、生理活性物質等の生産用のポリマーコーティング架橋アルギン酸ゲルファイバをアニオン性ポリマーで被覆することにより形成される、抗体、生理活性物質等の生産用の新規な多層ポリマーコーティング架橋アルギン酸ゲルファイバおよびその製造方法を見出した。又、当該多層ポリマーコーティング架橋アルギン酸ゲルファイバを用いて、抗体産生細胞の培養を行ったところ、多層ポリマーコーティング架橋アルギン酸ゲルファイバが分解することなく、抗体等を長期間連続して産生できることを見出した。
 本発明により、新規なポリマーコーティング架橋アルギン酸ゲルファイバ及び当該ゲルファイバを用いた、抗体、生理活性物質等の生産方法が提供される。いくつかの態様では、抗体、生理活性物質等を産生できる細胞、後述の態様[1]に記載の式(I)及び式(II)で表される化学修飾アルギン酸誘導体等が含まれる混合液を用いて作製される架橋アルギン酸ゲルを、カチオン性ポリマーで被覆することにより、長期間連続して抗体、生理活性物質等を産生できるポリマーコーティング架橋アルギン酸ゲルファイバが提供される。又、本発明により、新規な多層ポリマーコーティング架橋アルギン酸ゲルファイバ及び当該ゲルファイバを用いた、抗体、生理活性物質等の生産方法が提供される。いくつかの態様では、抗体、生理活性物質等を産生できる細胞、後述の態様[1B]に記載の式(I)及び式(II)で表される化学修飾アルギン酸誘導体等が含まれる混合液を用いて作製される架橋アルギン酸ゲルを、カチオン性ポリマーで被覆することにより得られるポリマーコーティング架橋アルギン酸ゲルファイバをアニオン性ポリマーで被覆することにより、長期間連続して抗体、生理活性物質等を産生できる多層ポリマーコーティング架橋アルギン酸ゲルファイバが提供される。
 後述の実施例から、抗体産生細胞(抗GPVI抗体産生CHO細胞、トシリズマブ産生CHO細胞)又は生理活性物質産生細胞(膵β細胞由来のMIN6細胞)、式(I)及び式(II)で表される化学修飾アルギン酸誘導体等が含まれる混合液を用いて形成される架橋アルギン酸ゲル(コア層とも言う)を、ポリ-L-オルニチン、ポリアリルアミン、ポリエチレンイミン、又はポリメチレン-CO-グアニジン(PMCG)のカチオン性ポリマー(カチオン性ポリマー層とも言う)で被覆することで、ポリマーコーティング架橋アルギン酸ゲルファイバを作製することができ、当該ファイバを用いて培養したところ、長期間(後述の実施例において、最大47日間)連続して、抗体またはインスリンが産生できることが分かった。本発明のポリマーコーティング架橋アルギン酸ゲルファイバは、抗体、生理活性物質等を産生できる細胞に適した環境を提供しており、当該ファイバのコア層で産生された抗体、生理活性物質等は、コア層、カチオン性ポリマー層を連続的に透過し、当該ファイバ外に放出される特徴を有する。
 更に、後述の実施例から、トシリズマブ産生CHO細胞がコア層に含まれる前記ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層の外側を、アニオン性ポリマー(アニオン性ポリマー層とも言う)として、アルギン酸、式(I)で表される化学修飾アルギン酸誘導体、及び式(II)で表される化学修飾アルギン酸誘導体を用いて被覆することで、多層ポリマーコーティング架橋アルギン酸ゲルファイバを作製できること、又当該ファイバを用いて培養することで、長期間(後述の実施例において、最大35日間)連続して、抗体が産生できることが分かった。本発明の多層ポリマーコーティング架橋アルギン酸ゲルファイバは、前述のポリマーコーティング架橋アルギン酸ゲルファイバと同様に、抗体、生理活性物質等を産生できる細胞に適した環境を提供しており、当該ファイバのコア層で産生された抗体、生理活性物質等が、コア層、カチオン性ポリマー層およびアニオン性ポリマー層を連続的に透過し、当該ファイバ外に放出される特徴を有する。
 本発明のポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバは、抗体、生理活性物質等の生産に適した環境を提供する。コア層に封入されている抗体、生理活性物質等の産生細胞への物理的ストレスが少なく、封入した当該細胞が長期間に渡り抗体、生理活性物質等を産生し続けることが期待される。従って、このようなファイバを用いた抗体、生理活性物質等の製造方法は、抗体、生理活性物質等の生産効率を飛躍的に向上させることが期待できる。例えば、抗体生産の場合、大規模な培養タンクを要する抗体の浮遊培養とは異なり、小規模の生産設備にて抗体を製造することも期待される。少量・多種品目の抗体医薬品製造にも適した次世代型抗体医薬品の連続生産技術としても期待される。
ポリマーコーティング架橋アルギン酸ゲルファイバの断面図である。 ポリマーコーティング架橋アルギン酸ゲルファイバのコア層とカチオン性ポリマー層との模式図である。 ポリマーコーティング架橋アルギン酸ゲルファイバの製造過程の1つの態様を説明する模式図である。 ポリマーコーティング架橋アルギン酸ゲルファイバの横断面である。コア層で産生された抗体、生理活性物質等、代謝物及び老廃物、並びに培養液(栄養源)及び酸素がカチオン性ポリマー層を透過することを説明する模式図である。 (実施例F2-C)のポリマーコーティング架橋アルギン酸ゲルファイバ(FB2-A-5-c1)の培養前の写真である。 (実施例F2-C)のポリマーコーティング架橋アルギン酸ゲルファイバ(FB2-A-5-c1)の培養後の写真である。 (実施例F3)で作製されたポリマーコーティング架橋アルギン酸ゲルファイバの蛍光顕微鏡での写真である。 多層ポリマーコーティング架橋アルギン酸ゲルファイバの断面図である。 多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層、カチオン性ポリマー層、およびアニオン性ポリマー層との模式図である。 多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造過程の1つの態様を説明する模式図である。 多層ポリマーコーティング架橋アルギン酸ゲルファイバの横断面である。コア層で産生された抗体、生理活性物質等、代謝物及び老廃物、並びに培養液(栄養源)及び酸素がカチオン性ポリマー層およびアニオン性ポリマー層を透過することを説明する模式図である。 (実施例F9)のポリマーコーティング架橋アルギン酸ゲルファイバ(FB9-3-c3)の培養前の写真である。 (実施例F9)のポリマーコーティング架橋アルギン酸ゲルファイバ(FB9-3-c3)の培養後の写真である。 (実施例F9)のポリマーコーティング架橋アルギン酸ゲルファイバ(FB9-2-c2)の培養前の写真である。 (実施例F9)のポリマーコーティング架橋アルギン酸ゲルファイバ(FB9-2-c2)の培養後の写真である。 (実施例F12)の多層ポリマーコーティング架橋アルギン酸ゲルファイバ(FB12-ac1)の培養前の写真である。 (実施例F12)の多層ポリマーコーティング架橋アルギン酸ゲルファイバ(FB12-ac1)の培養後の写真である。 (実施例F12)の多層ポリマーコーティング架橋アルギン酸ゲルファイバ(FB12-ac3)の培養前の写真である。 (実施例F12)の多層ポリマーコーティング架橋アルギン酸ゲルファイバ(FB12-ac3)の培養後の写真である。 (実施例F12)の多層ポリマーコーティング架橋アルギン酸ゲルファイバ(FB12-ac2)の培養前の写真である。 (実施例F12)の多層ポリマーコーティング架橋アルギン酸ゲルファイバ(FB12-ac2)の培養後の写真である。 (実施例F14)で作製された蛍光標識アルギン酸ゲルファイバ(FB14-c2-2)の蛍光顕微鏡での写真である。 (実施例F14)で作製された蛍光標識アルギン酸ゲルファイバ(FB14-c1-1)の蛍光顕微鏡での写真である。
[具体的態様]
 ここでは、ポリマーコーティング架橋アルギン酸ゲルファイバ、当該ファイバの製造方法、及び当該ファイバを用いる抗体、生理活性物質等の製造方法の具体的態様について説明する。又、多層ポリマーコーティング架橋アルギン酸ゲルファイバ、当該ファイバの製造方法、及び当該ファイバを用いる抗体、生理活性物質等の製造方法の具体的態様についても説明する。より具体的には、以下の態様[1]~[7C-2]に記載の通りである。
[1]第1の態様は、次の通りである。抗体、生理活性物質等を産生できる細胞と、下記式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋アルギン酸ゲルとを含むコア層を、カチオン性ポリマー(カチオン性ポリマー層)で被覆して得られる、ポリマーコーティング架橋アルギン酸ゲルファイバ。
[式(I)で表わされる化学修飾アルギン酸誘導体]
 下記式(I):
Figure JPOXMLDOC01-appb-C000006
[式(I)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;Akn-L-(Aknは環状アルキン基を表し;-L-は、環状アルキン基(Akn)と結合する2価のリンカーである)は、下記表:
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
に記載された部分構造式(各式中、破線右側は含まない)からなる群より選択される基である]で表される化学修飾アルギン酸誘導体。
[式(II)で表わされる化学修飾アルギン酸誘導体]
 下記式(II):
Figure JPOXMLDOC01-appb-C000009
[式(II)中、(ALG)はアルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記表:
Figure JPOXMLDOC01-appb-T000010
に記載された部分構造式(各式中、両端の破線外側は含まない)からなる群より選択されるリンカーを表わす]で表される化学修飾アルギン酸誘導体。
[1A]第1Aの態様は、次の通りである。コア層と、前記コア層の外側に配置されるカチオン性ポリマー層を含む、ポリマーコーティング架橋アルギン酸ゲルファイバであって、前記コア層は、抗体、生理活性物質等を産生できる細胞と式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋が形成された架橋アルギン酸ゲルとを含み、前記カチオン性ポリマー層は、カチオン性ポリマーである、ポリマーコーティング架橋アルギン酸ゲルファイバ。式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体は、前記態様[1]に定義されたものと同じである。
[1-1-1]前記態様[1]又は[1A]において、式(I)で表される化学修飾アルギン酸誘導体のAkn-L-は、好ましくは、下記表:
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
に記載された部分構造式(各式中、破線右側は含まない)からなる群より選択される基である。
[1-1-2]前記態様[1]又は[1A]において、式(I)で表される化学修飾アルギン酸誘導体のAkn-L-は、より好ましくは、下記表:
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
に記載された部分構造式(各式中、破線右側は含まない)からなる群より選択される基である。
[1-1-3]前記態様[1]又は[1A]において、式(I)で表される化学修飾アルギン酸誘導体のAkn-L-は、更に好ましくは、下記部分構造式(各式中、破線右側は含まない):
Figure JPOXMLDOC01-appb-C000015
からなる群より選択される基である。
[1-1-4]前記態様[1]又は[1A]において、式(I)で表される化学修飾アルギン酸誘導体のAkn-L-は、特に好ましくは、下記部分構造式(各式中、破線右側は含まない):
Figure JPOXMLDOC01-appb-C000016
から選択される基である。
[1-1-5]前記態様[1]又は[1A]において、式(I)で表される化学修飾アルギン酸誘導体のAkn-L-は、下記表:
Figure JPOXMLDOC01-appb-T000017
に記載された部分構造式(各式中、破線右側は含まない)からなる群より選択される基であり;
好ましくは、下記表:
Figure JPOXMLDOC01-appb-T000018
に記載された部分構造式(各式中、破線右側は含まない)からなる群より選択される基であり;
より好ましくは、下記表:
Figure JPOXMLDOC01-appb-T000019
に記載された部分構造式(各式中、破線右側は含まない)からなる群より選択される基であり;
更に好ましくは、下記部分構造式(各式中、破線右側は含まない):
Figure JPOXMLDOC01-appb-C000020
から選択される基である。
[1-2-1]前記態様[1]又は[1A]において、式(II)で表される化学修飾アルギン酸誘導体の-L-は、好ましくは、下記表:
Figure JPOXMLDOC01-appb-T000021
に記載された部分構造式(各式中、両端の破線外側は含まない)からなる群より選択される基である。
[1-2-2]前記態様[1]又は[1A]において、式(II)で表される化学修飾アルギン酸誘導体の-L-は、より好ましくは、下記表:
Figure JPOXMLDOC01-appb-T000022
に記載された部分構造式(各式中、両端の破線外側は含まない)からなる群より選択される基である。
[1-2-3]前記態様[1]又は[1A]において、式(II)で表される化学修飾アルギン酸誘導体の-L-は、更に好ましくは、下記部分構造式(各式中、両端の破線外側は含まない):
Figure JPOXMLDOC01-appb-C000023
からなる群より選択される基である。
[1-2-4]前記態様[1]又は[1A]において、式(II)で表される化学修飾アルギン酸誘導体の-L-は、特に好ましくは、下記部分構造式(各式中、両端の破線外側は含まない):
Figure JPOXMLDOC01-appb-C000024
からなる群より選択される基である。
[1-2-5]前記態様[1]又は[1A]において、式(II)で表される化学修飾アルギン酸誘導体の-L-は、下記表:
Figure JPOXMLDOC01-appb-T000025
に記載された部分構造式(各式中、両端の破線外側は含まない)からなる群より選択される基であり;
好ましくは、下記部分構造式(各式中、破線右側は含まない):
Figure JPOXMLDOC01-appb-T000026
に記載された部分構造式(各式中、両端の破線外側は含まない)からなる群より選択される基であり;
より好ましくは、下記部分構造式(各式中、破線右側は含まない):
Figure JPOXMLDOC01-appb-T000027
に記載された部分構造式(各式中、両端の破線外側は含まない)からなる群より選択される基であり;
更に好ましくは、下記部分構造式(各式中、両端の破線外側は含まない):
Figure JPOXMLDOC01-appb-C000028
からなる群より選択される基である。
[1-2A]前記態様[1]~[1-2-5]に記載されたAkn、-L-、-L-の定義を適宜組み合わせた式(I)および式(II)で表わされる化学修飾アルギン酸誘導体を用いることにより、本発明のポリマーコーティング架橋アルギン酸ゲルファイバのコア層における、架橋アルギン酸ゲルの好ましい態様を任意に形成し得る。
[1-3]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる、抗体、生理活性物質等を産生できる細胞は、例えば、抗体(ヒト抗体、ヒト化抗体、キメラ抗体、マウス抗体等の各種のモノクローナル抗体)産生細胞、生理活性物質産生細胞、及び医薬品原料、化学原料、食品原料等として有用な各種の有用物質を産生できる細胞からなる群より選択される細胞である。
[1-3-1]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる、抗体を産生できる細胞(抗体産生細胞とも言う)は、ハイブリドーマまたは抗体発現ベクターにより形質転換された培養細胞であり、その宿主として用いられる培養細胞(宿主細胞)が、例えば、CHO細胞、CHO細胞亜株、COS細胞、Sp2/0細胞、NS0細胞、SP2細胞、PERC6細胞、YB2/0細胞、YE2/0細胞、1R983F細胞、Namalwa細胞、Wil-2細胞、Jurkat細胞、Vero細胞、Molt-4細胞、HEK293細胞、BHK細胞、KGH6細胞、P3X63Ag8.653細胞、C127細胞、JC細胞、LA7細胞、ZR-45-30細胞、hTERT細胞、NM2C5細胞、UACC-812細胞等からなる群から選択される細胞である。
[1-3-2]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる抗体産生細胞は、好ましくは、その宿主細胞が、CHO細胞、CHO細胞亜株、COS細胞、Sp2/0細胞、NS0細胞、SP2細胞、及びPERC6細胞からなる群から選択される細胞であり;より好ましくは、CHO細胞、CHO細胞亜株、Sp2/0細胞、及びNS0細胞からなる群から選択される細胞であり;更に好ましくは、CHO細胞またはCHO細胞亜株である。
[1-3-3]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる抗体産生細胞は、例えば、その宿主細胞がCHO細胞である抗体産生CHO細胞であり、例えば、ムロモナブ-CD3産生CHO細胞、トラスツズマブ産生CHO細胞、リツキシマブ産生CHO細胞、パリビズマブ産生CHO細胞、インフリキシマブ産生CHO細胞、バシリキシマブ産生CHO細胞、トシリズマブ産生CHO細胞、ゲムツズマブ産生CHO細胞、ベバシズマブ産生CHO細胞、イブリツモマブ産生CHO細胞、アダリムマブ産生CHO細胞、セツキシマブ産生CHO細胞、ラニビズマブ産生CHO細胞、オマリズマブ産生CHO細胞、エクリズマブ産生CHO細胞、パニツムマブ産生CHO細胞、ウステキヌマブ産生CHO細胞、ゴリムマブ産生CHO細胞、カナキヌマブ産生CHO細胞、デノスマブ産生CHO細胞、モガムリズマブ産生CHO細胞、セルトリズマブ産生CHO細胞、オファツムマブ産生CHO細胞、ペルツズマブ産生CHO細胞、ブレンツキシマブ産生CHO細胞、ナタリズマブ産生CHO細胞、ニボルマブ産生CHO細胞、アレムツズマブ産生CHO細胞、セクキヌマブ産生CHO細胞、ラムシルマブ産生CHO細胞、イピリムマブ産生CHO細胞、エボロクマブ産生CHO細胞、メポリズマブ産生CHO細胞、アリロクマブ産生CHO細胞、イキセキズマブ産生CHO細胞、ブロダルマブ産生CHO細胞、イダルシズマブ産生CHO細胞、エロツズマブ産生CHO細胞、ペムブロリズマブ産生CHO細胞、サリルマブ産生CHO細胞、ベズロトクスマブ産生CHO細胞、ベリムマブ産生CHO細胞、ダラツムマブ産生CHO細胞、アベルマブ産生CHO細胞、デュピルマブ産生CHO細胞、アテゾリズマブ産生CHO細胞、ベンラリズマブ産生CHO細胞、イノツズマブ産生CHO細胞、エミシズマブ産生CHO細胞、グセルクマブ産生CHO細胞、デュルバルマブ産生CHO細胞、オビヌツズマブ産生CHO細胞、ベドリズマブ産生CHO細胞、抗GPVI抗体産生CHO細胞等からなる群から選択されるCHO細胞であり;例えば、トラスツズマブ産生CHO細胞、リツキシマブ産生CHO細胞、インフリキシマブ産生CHO細胞、トシリズマブ産生CHO細胞、アダリムマブ産生CHO細胞、ニボルマブ産生CHO細胞、及び抗GPVI抗体産生CHO細胞からなる群から選択されるCHO細胞であり;例えば、トシリズマブ産生CHO細胞又は抗GPVI抗体産生CHO細胞である。
[1-3-4]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる生理活性物質を産生できる細胞(生理活性物質産生細胞とも言う)は、例えば、インスリン分泌細胞、膵島、膵島細胞、ドーパミン分泌細胞、脳下垂体細胞、成長ホルモン分泌細胞、副甲状腺細胞、神経成長因子分泌細胞、血液凝固因子分泌細胞、肝細胞、上皮小体細胞、エリスロポエチン分泌細胞、ノルエピネフリン分泌細胞等からなる群から選択される細胞である。
[1-3-5]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる生理活性物質産生細胞は、好ましくは、インスリン分泌細胞、膵島、及び膵島細胞からなる群から選択される細胞であり;より好ましくは、膵β細胞由来のMIN6細胞である。
[1-4]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に追加で含むことができる成分としては、例えば、アルギン酸溶液、アルギン酸ゲル、培地、培養液、コラーゲン溶液、メチルセルロース、スクロース溶液等からなる群から選択される成分である。
[1-4-1]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に追加で含むことができる成分としては、好ましくは、アルギン酸溶液、アルギン酸ゲル、培地、及び培養液からなる群から選択される成分である。
[1-5]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる式(I)で表わされる化学修飾アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量は、例えば、約100,000Da~約3,000,000Daの範囲であり;好ましくは約300,000Da~約2,500,000Daの範囲であり、より好ましくは約500,000Da~約2,000,000Daの範囲である。
[1-6]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる式(II)で表わされる化学修飾アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量は、例えば、約100,000Da~約3,000,000Daの範囲であり;好ましくは約300,000Da~約2,500,000Daの範囲であり、より好ましくは約500,000Da~約2,000,000Daの範囲である。
[1-7]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる式(I)で表わされる化学修飾アルギン酸誘導体の反応性基(Akn-L-NH基:Akn-L-は、前記態様[1]中の定義と同じである)の導入率は、例えば、約0.1~約30mol%の範囲であり;好ましくは、約0.3~約20mol%の範囲であり;より好ましくは、約0.5~約10mol%の範囲である。
[1-8]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる式(II)で表わされる化学修飾アルギン酸誘導体の反応性基(N-L-NH基:-L-は、前記態様[1]中の定義と同じである)の導入率は、例えば、約0.1~約30mol%の範囲であり;好ましくは、約0.3~約20mol%の範囲であり;より好ましくは、約0.5~約15mol%の範囲である。
[1-9]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に追加で含むことができるアルギン酸溶液、又はアルギン酸ゲルの形成に用いられるアルギン酸溶液の調製に用いられるアルギン酸(例えば、アルギン酸ナトリウム、等)のゲルろ過クロマトグラフィー法(GPC法)により測定した重量平均分子量は、例えば、約150,000Da~約2,500,000Daの範囲であり;
好ましくは約300,000Da~約2,000,000Daの範囲であり、
より好ましくは約700,000Da~約2,000,000Daの範囲である。
[1-9-1]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に追加で含むことができるアルギン酸溶液、又はアルギン酸ゲルの形成に用いられるアルギン酸溶液の調製に用いられるアルギン酸(例えば、アルギン酸ナトリウム、等)のゲルろ過クロマトグラフィー法(GPC法)により測定した重量平均分子量は、例えば、約150,000Da~約2,500,000Daの範囲であり;好ましくは、約300,000Da~約2,500,000Daの範囲;より好ましくは、約700,000Da~約1,400,000Da、約800,000Da~約1,500,000Da、約1,400,000~約2,000,000Da、または約1,500,000~約2,500,000から選ばれる範囲である。
[1-10-1]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる式(I)で表わされる化学修飾アルギン酸誘導体の溶液の濃度は、例えば、約0.01~約1.5重量%の範囲であり;好ましくは、約0.05~約1.0重量%の範囲であり;より好ましくは、約0.08~約0.75重量%の範囲である。
[1-10-2]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる式(II)で表わされる化学修飾アルギン酸誘導体の溶液の濃度は、例えば、約0.01~約1.5重量%の範囲であり;好ましくは、約0.05~約1.0重量%の範囲であり;より好ましくは、約0.08~約0.75重量%の範囲である。
[1-10-3]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる、式(I)で表わされる化学修飾アルギン酸誘導体と式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液の濃度は、例えば、約0.02~約2.0重量%の範囲であり;好ましくは、約0.1~約2.0重量%の範囲であり;より好ましくは約0.15~約1.5重量%の範囲である。
[1-10-4]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に追加で含むことができるアルギン酸溶液、又はアルギン酸ゲルの形成に用いられるアルギン酸溶液の濃度は、例えば、0~約1.98重量%の範囲であり;好ましくは、0~約1.8重量%の範囲であり;より好ましくは、0~約1.7重量%の範囲である。
[1-11-1]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルに、アルギン酸溶液、又はアルギン酸溶液から形成されるアルギン酸ゲルが含まれる場合、コア層の形成に用いられる式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の濃度とアルギン酸溶液の濃度の総濃度は、好ましくは約0.5~約2.0重量%であり;より好ましくは、約1.0重量%、約1.5重量%及び約2.0重量%から選ばれる濃度である。
[1-11-2]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルに、アルギン酸溶液、又はアルギン酸溶液から形成されるアルギン酸ゲルが含まれる場合、コア層の形成に用いられる式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の濃度(C1(重量%))とアルギン酸溶液の濃度(C2(重量%))の組合せは、好ましくは、(C1:C2)=(約0.2:約1.3)、(約0.5:約1.0)、(約1.0:約0.5)、(約1.5:0)、(約0.66:約1.34)、および(約0.34:約0.66)からなる群から選ばれる組み合わせである。
[1-11-3]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルに、アルギン酸溶液、又はアルギン酸溶液から形成されるアルギン酸ゲルが含まれる場合、コア層の形成に用いられる式(I)で表わされる化学修飾アルギン酸誘導体の溶液の濃度(C1A(重量%))、式(II)で表わされる化学修飾アルギン酸誘導体の溶液の濃度(C1N(重量%))及びアルギン酸溶液の濃度(C2(重量%))の組合せは、好ましくは、(C1A:C1N:C2)=(約0.1:約0.1:約1.3)、(約0.25:約0.25:約1.0)、(約0.5:約0.5:約0.5)、(約0.75:約0.75:0)、(約0.33:約0.33:約1.34)、および(約0.17:約0.17:約0.66)からなる群から選ばれる組み合わせである。
[1-11-4]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる、式(I)で表わされる化学修飾アルギン酸誘導体の溶液および式(II)で表わされる化学修飾アルギン酸誘導体の溶液の混合溶液における、各誘導体の溶液の容量比(v1、v2)は、例えば、v1+v2=15の比率であり、例えば、(v1:v2)=(7.5:7.5)である。
[1-11-5]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルに、アルギン酸溶液、又はアルギン酸溶液から形成されるアルギン酸ゲルが含まれる場合、コア層の形成に用いられる式(I)で表わされる化学修飾アルギン酸誘導体の溶液、式(II)で表わされる化学修飾アルギン酸誘導体の溶液、およびアルギン酸溶液の混合溶液における、各々の溶液の容量(v1、v2、v3)の容量比は、例えば、v1+v2+v3=15の比率であり、例えば、(v1:v2:v3)=(5:5:5)、(2.5:2.5:10)、(1:1:13)等の組み合わせである。
[1-12]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルが、下記式(III-L):
Figure JPOXMLDOC01-appb-C000029
[式(III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;
-X-は、下記表: 
Figure JPOXMLDOC01-appb-T000030
に記載された部分構造式の群から選択される環状基であり(各式中、両端の破線外側は含まない);
-L-は、-X-が、(CL-1)または(CL-1-r)の場合、下記表:
Figure JPOXMLDOC01-appb-T000031
に記載された部分構造式の群から選択される2価のリンカーであり(各式中、両端の破線外側は含まない);
-L-は、-X-が、(CL-2)または(CL-2-r)の場合、下記表:
Figure JPOXMLDOC01-appb-T000032
に記載された部分構造式の群から選択される2価のリンカーであり(各式中、両端の破線外側は含まない);
-L-は、前記態様[1]中の式(II)の定義と同じである]で表わされる基を介した化学架橋を含むものである。
[1-12-1]前記態様[1-12]に記載の式(III-L)において、-L-は前記態様[1-12]であって、好ましくは、-X-が、(CL-1)または(CL-1-r)の場合、下記表:
Figure JPOXMLDOC01-appb-T000033
に記載された部分構造式の群から選択される2価のリンカーであり(各式中、両端の破線外側は含まない);
-X-が、(CL-2)または(CL-2-r)の場合、下記表:
Figure JPOXMLDOC01-appb-T000034
に記載された部分構造式の群から選択される2価のリンカーであり(各式中、両端の破線外側は含まない);
より好ましくは、-X-が、(CL-1)または(CL-1-r)の場合、下記表:
Figure JPOXMLDOC01-appb-T000035
に記載された部分構造式の群から選択される2価のリンカーであり(各式中、両端の破線外側は含まない);
-X-が、(CL-2)または(CL-2-r)の場合、下記表:
Figure JPOXMLDOC01-appb-T000036
に記載された部分構造式の群から選択される2価のリンカーであり(各式中、両端の破線外側は含まない);
更に好ましくは、-X-が、(CL-1)または(CL-1-r)の場合、下記部分構造式: 
Figure JPOXMLDOC01-appb-C000037
の群から選択される2価のリンカーであり(各式中、両端の破線外側は含まない);
-X-が、(CL-2)または(CL-2-r)の場合、下記部分構造式: 
Figure JPOXMLDOC01-appb-C000038
の群から選択される2価のリンカーであり(各式中、両端の破線外側は含まない);
特に好ましくは、-X-が、(CL-1)または(CL-1-r)の場合、下記部分構造式:
Figure JPOXMLDOC01-appb-C000039
の2価のリンカーであり(各式中、両端の破線外側は含まない);
-X-が、(CL-2)または(CL-2-r)の場合、下記部分構造式:
Figure JPOXMLDOC01-appb-C000040
の2価のリンカーである(各式中、両端の破線外側は含まない)。
[1-12-2]前記態様[1-12]に記載の式(III-L)において、好ましい、より好ましい、更に好ましい、特に好ましい-L-は、各々、前記態様[1-2-1]~[1-2-4]に記載された定義と同じである。
[1-12-3]前記態様[1-12]において、式(III-L)で表わされる基の-L-X-L-の好ましい組み合わせは、下記表の式:
Figure JPOXMLDOC01-appb-T000041
の群から選択される部分構造で示される通りであり(表中の-L-は前記態様[1-12-1]に記載の好ましい-L-の定義と同じであり;-L-は前記態様[1-2-1]に記載の好ましい-L-の定義と同じであり;-X-は前記態様[1-12]に記載の通りである);
より好ましくは、-L-X-L-の組み合わせは、下記表の式:
Figure JPOXMLDOC01-appb-T000042
の群から選択される部分構造で示される通りであり(表中の-L-は前記態様[1-12-1]に記載のより好ましい-L-の定義と同じであり;-L-は前記態様[1-2-2]に記載のより好ましい-L-の定義と同じであり;-X-は前記態様[1-12]に記載の通りである);
更に好ましくは、-L-X-L-の組み合わせは、下記表の式:
Figure JPOXMLDOC01-appb-T000043
の群から選択される部分構造で示される通りであり(表中の-L-は前記態様[1-12-1]に記載の更に好ましい-L-の定義と同じであり;-L-は前記態様[1-2-3]に記載の更に好ましい-L-の定義と同じであり;-X-は前記態様[1-12]に記載の通りである);
特に好ましくは、-L-X-L-の組み合わせは、下記表の式:
Figure JPOXMLDOC01-appb-T000044
の群から選択される部分構造で示される通りである(表中の-L-は前記態様[1-12-1]に記載の特に好ましい-L-の定義と同じであり;-L-は前記態様[1-2-4]に記載の特に好ましい-L-の定義と同じであり;-X-は前記態様[1-12]に記載の通りである)。
[1-12A]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルが、前記態様[1-12]に記載の式(III-L)[式(III-L)中、両端の-CONH-及び-NHCO-、-X-は、前記態様[1-12]中の定義と同じであり;-L-は、-X-が(CL-1)または(CL-1-r)の場合、前記態様[1-12]に記載の部分構造式(LK-1a)で表される基と同じであり;-X-が(CL-2)または(CL-2-r)の場合、前記態様[1-12]に記載の部分構造式(LK-2-1)で表される基と同じであり;-L-は、前記態様[1]に記載の部分構造式(LN-1)、(LN-3)及び(LN-5)から選ばれる基と同じである]で表わされる基を介した化学架橋を含むものである。
[1-12A-1]前記態様[1-12A]において、-X-が(CL-1)または(CL-1-r)の場合、好ましい、より好ましい、更に好ましい-L-は、各々、前記態様[1-12]に記載の部分構造式(LK-1a-1)、(LK-1a-2)、(LK-1a-3)で表される基と同じであり;-X-が、(CL-2)または(CL-2-r)の場合、好ましい、より好ましい、更に好ましい-L-は、各々、前記態様[1-12]に記載の部分構造式(LK-2-1)、(LK-2-2)、(LK-2-3)で表される基と同じであり;-L-は、好ましくは前記態様[1-2-1]に記載の部分構造式(LN-1-1)、(LN-3-1)、(LN-5-1)で表される基と同じであり、より好ましくは前記態様[1-2-2]に記載の部分構造式(LN-1-2)、(LN-3-2)、(LN-5-2)で表される基と同じである、更に好ましくは前記態様[1-2-3]に記載の部分構造式(LN-1-3)、(LN-3-3a)、(LN-5-3a)で表される基と同じである。
[1-12A-2]前記態様[1-12A]において、式(III-L)で表わされる基の-L-X-L-の好ましい、より好ましい、更に好ましい組み合わせは、下記表の式:
Figure JPOXMLDOC01-appb-T000045
の群から選択される部分構造で示される通りである(表中の-L-、-L-は、前記態様[1-12A-1]に記載の定義と同じであり;-X-は前記態様[1-12]に記載の通りである)。
[1-13]前記態様[1]又は[1A]において、コア層に含まれる架橋アルギン酸ゲルが、前記態様[1-12]の式(III-L)[式(III-L)中、各定義は、態様[1-12]の定義と同じである]又は前記態様[1-12A]の式(III-L)[式(III-L)中、各定義は、態様[1-12A]の定義と同じである]で表わされる基を介した化学架橋及び2価金属イオンを介したイオン架橋を含むものである。
[1-13A]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの、イオン架橋形成に用いられる2価金属イオンは、好ましくは、カルシウムイオン、マグネシウムイオン、バリウムイオン、ストロンチウムイオン及び亜鉛イオンの群から選択される2価金属イオンであり;より好ましくは、カルシウムイオン、バリウムイオン又はストロンチウムイオンであり;更に好ましくは、カルシウムイオン又はバリウムイオンである。
[1-14]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの、イオン架橋形成に用いられる2価金属イオンを含む水溶液は、塩化カルシウム水溶液、炭酸カルシウム水溶液、グルコン酸カルシウム水溶液、塩化バリウム水溶液、塩化ストロンチウム水溶液等からなる群から選択される2価金属イオンを含む水溶液を供給源とすることができ;好ましくは、塩化カルシウム水溶液又は塩化バリウム水溶液である。
[1-15-1]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層のカチオン性ポリマーは、ポリアミノ酸、塩基性多糖類、及び塩基性ポリマー等からなる群から選択されるカチオン性ポリマーである。
[1-15-2]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層のカチオン性ポリマーは、好ましくは、ポリアミノ酸である、ポリ-L-オルニチン(PLO)、ポリ-D-オルニチン(PDO)、ポリ-DL-オルニチン、ポリ-D-リジン(PDL)、ポリ-L-リジン(PLL)、ポリ-DL-リジン、ポリ-L-アルギニン(PLA)、ポリ-D-アルギニン(PDA)、ポリ-DL-アルギニン、ポリ-L-ホモアルギニン(PLHA)、ポリ-D-ホモアルギニン(PDHA)、ポリ-DL-ホモアルギニン、ポリ-L-ヒスチジン(PLH)、ポリ-D-ヒスチジン(PDH)およびポリ-DL-ヒスチジンからなる群から選択されるカチオン性ポリマーであり;より好ましくは、ポリ-L-オルニチンまたはポリ-L-リジンであり;更に好ましくは、ポリ-L-オルニチンである。
[1-15-3]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層のカチオン性ポリマーは、キトサンである。
[1-15-4]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層のカチオン性ポリマーは、ポリメチレン-CO-グアニジン(PMCG)、ポリアリルアミン(PAA)、ポリビニルアミン(PVA)、ポリエチレンイミン、アリルアミン-ジアリルアミン共重合体、およびアリルアミン-マレイン酸共重合体からなる群から選択されるカチオン性ポリマーであり;好ましくは、ポリアリルアミン(PAA)、ポリエチレンイミン、又はポリメチレン-CO-グアニジン(PMCG)である。
[1-16]前記態様[1]又は[1A]において、ポリマーコーティング架橋アルギン酸ゲルファイバの外径は、例えば、約0.1~約2000μmの範囲である。
 前記態様に記載されたAkn、-L-、-L-、Xの定義を適宜組み合わせた式(I)および式(II)で表わされる化学修飾アルギン酸誘導体を用いることにより、前記態様のポリマーコーティング架橋アルギン酸ゲルファイバのコア層における、架橋アルギン酸ゲルの好ましい態様を任意に形成し得る。
[1-17-1]前記態様[1]又は[1A]のポリマーコーティング架橋アルギン酸ゲルファイバは、好ましくは、架橋アルギン酸ゲルの形成に用いられる式(I)で表されるアルギン酸誘導体が前記態様[1-1-1]に記載のアルギン酸誘導体又は前記態様[1-1-5]の好ましいアルギン酸誘導体から選択され、式(II)で表されるアルギン酸誘導体が前記態様[1-2-1]に記載のアルギン酸誘導体又は前記態様[1-2-5]の好ましいアルギン酸誘導体から選択され;抗体産生細胞が、前記態様[1-3-1]~[1-3-3]に記載の細胞から選択され;カチオン性ポリマー層が、前記態様[1-15-1]に記載のカチオン性ポリマーから選択される、ポリマーコーティング架橋アルギン酸ゲルファイバである。
[1-17-1B]前記態様[1]又は[1A]のポリマーコーティング架橋アルギン酸ゲルファイバは、好ましくは、架橋アルギン酸ゲルの形成に用いられる式(I)で表されるアルギン酸誘導体が前記態様[1-1-1]に記載のアルギン酸誘導体又は前記態様[1-1-5]の好ましいアルギン酸誘導体から選択され、式(II)で表されるアルギン酸誘導体が前記態様[1-2-1]に記載のアルギン酸誘導体又は前記態様[1-2-5]の好ましいアルギン酸誘導体から選択され;抗体産生細胞が、態様[1B-3-1]~[1B-3-9]に記載の細胞から選択され;カチオン性ポリマー層が、前記態様[1-15-1]に記載のカチオン性ポリマーから選択される、ポリマーコーティング架橋アルギン酸ゲルファイバである。
[1-17-2]前記態様[1]又は[1A]のポリマーコーティング架橋アルギン酸ゲルファイバは、より好ましくは、架橋アルギン酸ゲルの形成に用いられる式(I)で表されるアルギン酸誘導体が前記態様[1-1-2]に記載のアルギン酸誘導体又は前記態様[1-1-5]のより好ましいアルギン酸誘導体から選択され、式(II)で表されるアルギン酸誘導体が前記態様[1-2-2]に記載のアルギン酸誘導体又は前記態様[1-2-5]のより好ましいアルギン酸誘導体から選択され;抗体産生細胞が前記態様[1-3-2]~[1-3-3]に記載の細胞から選択され;カチオン性ポリマー層が、前記態様[1-15-2]~[1-15-4]に記載のカチオン性ポリマーから選択される、ポリマーコーティング架橋アルギン酸ゲルファイバである。
[1-17-2B]前記態様[1]又は[1A]のポリマーコーティング架橋アルギン酸ゲルファイバは、より好ましくは、架橋アルギン酸ゲルの形成に用いられる式(I)で表されるアルギン酸誘導体が前記態様[1-1-2]に記載のアルギン酸誘導体又は前記態様[1-1-5]のより好ましいアルギン酸誘導体から選択され、式(II)で表されるアルギン酸誘導体が前記態様[1-2-2]に記載のアルギン酸誘導体又は前記態様[1-2-5]のより好ましいアルギン酸誘導体から選択され;抗体産生細胞が態様[1B-3-2]~[1B-3-9]に記載の細胞から選択され;カチオン性ポリマー層が、前記態様[1-15-2]~[1-15-4]に記載のカチオン性ポリマーから選択される、ポリマーコーティング架橋アルギン酸ゲルファイバである。
[1-17-3]前記態様[1]又は[1A]のポリマーコーティング架橋アルギン酸ゲルファイバは、更に好ましくは、架橋アルギン酸ゲルの形成に用いられる式(I)で表されるアルギン酸誘導体が前記態様[1-1-3]に記載のアルギン酸誘導体から選択され、式(II)で表されるアルギン酸誘導体が前記態様[1-2-3]に記載のアルギン酸誘導体から選択され;抗体産生細胞が前記態様[1-3-2]~[1-3-3]に記載の細胞から選択され;カチオン性ポリマー層が、前記態様[1-15-2]又は[1-15-4]に記載のカチオン性ポリマーから選択される、ポリマーコーティング架橋アルギン酸ゲルファイバである。
[1-17-3B]前記態様[1]又は[1A]のポリマーコーティング架橋アルギン酸ゲルファイバは、更に好ましくは、架橋アルギン酸ゲルの形成に用いられる式(I)で表されるアルギン酸誘導体が前記態様[1-1-3]に記載のアルギン酸誘導体から選択され、式(II)で表されるアルギン酸誘導体が前記態様[1-2-3]に記載のアルギン酸誘導体から選択され;抗体産生細胞が態様[1B-3-3]又は[1B-3-9]に記載の細胞から選択され;カチオン性ポリマー層が、前記態様[1-15-2]又は[1-15-4]に記載のカチオン性ポリマーから選択される、ポリマーコーティング架橋アルギン酸ゲルファイバである。
[1-17-4]前記態様[1]又は[1A]のポリマーコーティング架橋アルギン酸ゲルファイバは、特に好ましくは、架橋アルギン酸ゲルの形成に用いられる式(I)で表されるアルギン酸誘導体が前記態様[1-1-4]に記載のアルギン酸誘導体から選択され、式(II)で表されるアルギン酸誘導体が前記態様[1-2-4]に記載のアルギン酸誘導体から選択され;抗体産生細胞は抗体産生CHO細胞であり;カチオン性ポリマー層が、カチオン性ポリマー層が、ポリ-L-オルニチン、ポリアリルアミン(PAA)、ポリエチレンイミン、又はポリメチレン-CO-グアニジン(PMCG)から選択される、ポリマーコーティング架橋アルギン酸ゲルファイバである。
[1-17-5]前記態様[1-17-1]~[1-17-4]において、ポリマーコーティング架橋アルギン酸ゲルファイバの架橋アルギン酸ゲルは、前記態様[1-4]~[1-4-1]に記載されたいずれかの添加できる成分を含むものである。
 前記態様に記載されたポリマーコーティング架橋アルギン酸ゲルファイバにおける、抗体、生理活性物質等を産生できる細胞、架橋アルギン酸ゲルの形成に用いられる式(I)及び式(II)で表される化学修飾アルギン酸誘導体、カチオン性ポリマー(カチオン性ポリマー層)の各要素を組み合わせることで、ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法の好ましい態様を任意に形成し得る。
[1B]第1Bの態様は、次の通りである。式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋アルギン酸ゲルに包埋された抗体、生理活性物質等を産生できる細胞を含むコア層と、前記コア層を被覆するカチオン性ポリマー層(カチオン性ポリマー)と、前記カチオン性ポリマー層を被覆するアニオン性ポリマー層(アニオン性ポリマー)を含む多層ポリマーコーティング架橋アルギン酸ゲルファイバ。式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体は、前記態様[1]に定義されたものと同じである。
[1C]第1Cの態様は、次の通りである。抗体、生理活性物質等を産生できる細胞と、式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋アルギン酸ゲルとを含むコア層を、カチオン性ポリマー及びアニオン性ポリマーで被覆することにより得られる、多層ポリマーコーティング架橋アルギン酸ゲルファイバ。式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体は、前記態様[1]に定義されたものと同じである。
[1D]第1Dの態様は、次の通りである。コア層と、前記コア層の外側に配置されるカチオン性ポリマー層、前記カチオン性ポリマー層の外側に配置されるアニオン性ポリマー層を含む、多層ポリマーコーティング架橋アルギン酸ゲルファイバであって、前記コア層は、抗体、生理活性物質等を産生できる細胞と式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋が形成された架橋アルギン酸ゲルとを含む、多層ポリマーコーティング架橋アルギン酸ゲルファイバ。式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体は、前記態様[1]に定義されたものと同じである。
[1B-1-1]前記態様[1B]~[1D]において、式(I)で表される化学修飾アルギン酸誘導体のAkn-L-は、好ましくは、前記態様[1-1-1]に記載された定義と同じであり;より好ましくは、前記態様[1-1-2]に記載された定義と同じであり;更に好ましくは、前記態様[1-1-3]に記載された定義と同じであり;特に好ましくは、前記態様[1-1-4]に記載された定義と同じであり;最も好ましくは、下記部分構造式(各式中、破線右側は含まない):
Figure JPOXMLDOC01-appb-C000046
で表される基である。
[1B-1-2]前記態様前記態様[1B]~[1D]において、式(I)で表される化学修飾アルギン酸誘導体のAkn-L-は、前記態様[1-1-5]に記載された定義と同じであり; 好ましい、より好ましい、更に好ましいAkn-L-は、各々、前記態様[1-1-5]に記載された定義と同じであり;特に好ましくは、下記部分構造式(各式中、破線右側は含まない):
Figure JPOXMLDOC01-appb-C000047
で表される基である。
[1B-2-1]前記態様前記態様[1B]~[1D]において、式(II)で表される化学修飾アルギン酸誘導体の-L-は、好ましくは、前記態様[1-2-1]に記載された定義と同じであり;より好ましくは、前記態様[1-2-2]に記載された定義と同じであり;更に好ましくは、前記態様[1-2-3]に記載された定義と同じであり;特に好ましくは、前記態様[1-2-4]に記載された定義と同じであり;最も好ましくは、下記部分構造式(各式中、両端の破線外側は含まない):
Figure JPOXMLDOC01-appb-C000048
で表される基である。
[1B-2-2]前記態様前記態様[1B]~[1D]において、式(II)で表される化学修飾アルギン酸誘導体の-L-は、前記態様[1-2-5]に記載された定義と同じであり; 好ましい、より好ましい、更に好ましい-L-は、各々、前記態様[1-2-5]に記載された定義と同じであり;特に好ましくは、下記部分構造式(各式中、両端の破線外側は含まない):
Figure JPOXMLDOC01-appb-C000049
で表される基である。
[1B-2A]前記態様[1]、[1B-1-1]~[1B-2-2]に記載されたAkn、-L-、-L-の定義を適宜組み合わせた式(I)および式(II)で表わされる化学修飾アルギン酸誘導体を用いることにより、本発明の多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層における、架橋アルギン酸ゲルの好ましい態様を任意に形成し得る。
[1B-3]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる、抗体、生理活性物質等を産生できる細胞は、例えば、抗体(ヒト抗体、ヒト化抗体、キメラ抗体、マウス抗体等の各種のモノクローナル抗体又はそれらのバイスペシフィック抗体、低分子化抗体、糖鎖改変抗体等の各種の改変型抗体)産生細胞、生理活性物質(酵素、サイトカイン、ホルモン、血液凝固系因子、ワクチン等)産生細胞、医薬品原料、化学原料、食品原料等として有用な各種の有用物質を産生できる細胞が挙げられ;好ましくは、抗体産生細胞または生理活性物質産生細胞である。
[1B-3-1]前記態様[1]、[1A]、[1B]、[1C]又は[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる抗体産生細胞は、抗体を産生するB細胞から得られたハイブリドーマ(抗体産生ハイブリドーマ)又は抗体発現ベクターにより形質転換された培養細胞(抗体産生遺伝子組換え細胞)である。
[1B-3-2]前記態様[1]、[1A]、[1B]~[1D]において、、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる抗体産生細胞は、好ましくは、抗体を産生する遺伝子組換え動物細胞である。
[1B-3-3]前記態様[1B-3-2]において、宿主として用いられる動物細胞は、CHO細胞、CHO細胞亜株(CHO-K1細胞、CHO-DG44細胞、CHO-DXB11細胞、又は糖鎖を改変させるように形質転換されたCHO細胞等)、COS細胞、Sp2/0細胞、NS0細胞、SP2細胞、PERC6細胞、YB2/0細胞、YE2/0細胞、1R983F細胞、Namalwa細胞、Wil-2細胞、Jurkat細胞、Vero細胞、Molt-4細胞、HEK293細胞、BHK細胞、HT-1080細胞、KGH6細胞、P3X63Ag8.653細胞、C127細胞、JC細胞、LA7細胞、ZR-45-30細胞、hTERT細胞、NM2C5細胞、又はUACC-812細胞から選択される細胞である。
[1B-3-4]前記態様[1B-3-2]において、宿主として用いられる動物細胞は、好ましくは、CHO細胞、CHO細胞亜株、COS細胞、Sp2/0細胞、NS0細胞、SP2細胞、PERC6細胞、HEK293細胞、BHK細胞、HT-1080細胞、又はC127細胞から選択される細胞であり;より好ましくは、CHO細胞、CHO細胞亜株、Sp2/0細胞、NS0細胞、HEK293細胞、又はBHK細胞から選択される細胞であり;更に好ましくは、CHO細胞またはCHO細胞亜株である。
[1B-3-5]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる抗体産生細胞は、好ましくは、その宿主細胞がCHO細胞、CHO細胞亜株、Sp2/0細胞、又はNS0細胞から選択される細胞であり;より好ましくは、CHO細胞又はCHO細胞亜株である。
[1B-3-6]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる抗体産生細胞は、バイオ医薬品またはバイオ医薬品原料として用いられる抗体を産生する細胞である。
[1B-3-7]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる抗体産生細胞は、ムロモナブ-CD3、トラスツズマブ、リツキシマブ、パリビズマブ、インフリキシマブ、バシリキシマブ、トシリズマブ、ベバシズマブ、アダリムマブ、セツキシマブ、オマリズマブ、エクリズマブ、パニツムマブ、ウステキヌマブ、ゴリムマブ、カナキヌマブ、デノスマブ、オファツムマブ、ペルツズマブ、ナタリズマブ、ニボルマブ、アレムツズマブ、セクキヌマブ、ラムシルマブ、イピリムマブ、エボロクマブ、メポリズマブ、アリロクマブ、イキセキズマブ、ブロダルマブ、エロツズマブ、ペムブロリズマブ、サリルマブ、ベズロトクスマブ、ベリムマブ、ダラツムマブ、アベルマブ、デュピルマブ、アテゾリズマブ、エミシズマブ、グセルクマブ、デュルバルマブ、ベドリズマブ、ロモソズマブ、リサンキズマブ、ネシツムマブ、ラブリズマブ、ブロスマブ、イサツキシマブ、チルドラキズマブ、サトラリズマブ、ガルカネズマブ、ジヌツキシマブ、フレマネズマブ、エレヌマブ、カシリビマブ、イムデビマブ、アニフロルマブ、ソトロビマブ、オクレリズマブ、ナキシタマブ、アデュカヌマブ、タファシタマブ、マルジェツキシマブ、ガンテネルマブ、チラゴルマブ、クロバリマブ、ネモリズマブ、カツマクソマブ、プラモタマブ、ファリシマブ、ゲムツズマブ、イブリツモマブ、ブレンツキシマブ、イノツズマブ、ポラツズマブ、エンホルツマブ、サシツズマブ、ベランタマブ、ロンカスツキシマブ、チソツマブ、ダトポタマブ、パトリツマブ等の抗体を産生する細胞;モガムリズマブ、ベンラリズマブ、オビヌツズマブ、イネビリズマブ等の改変糖鎖を有する抗体を産生する細胞;ラニビズマブ、イダルシズマブ、ブリナツモマブ、ブロルシズマブ、アブシキシマブ、カプラシズマブ、セルトリズマブ等の抗体断片からなる低分子抗体を産生する細胞等から選択される細胞である。
[1B-3-8]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる抗体産生細胞は、抗体産生動物細胞であり、好ましくは、抗体産生CHO細胞、抗体産生Sp2/0細胞又は抗体産生NS0細胞であり、より好ましくは、抗体産生CHO細胞である。
[1B-3-9]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる抗体産生細胞は、好ましくは、その宿主細胞がCHO細胞である抗体産生CHO細胞あり、例えば、ムロモナブ-CD3産生CHO細胞、トラスツズマブ産生CHO細胞、リツキシマブ産生CHO細胞、パリビズマブ産生CHO細胞、インフリキシマブ産生CHO細胞、バシリキシマブ産生CHO細胞、トシリズマブ産生CHO細胞、ゲムツズマブ産生CHO細胞、ベバシズマブ産生CHO細胞、イブリツモマブ産生CHO細胞、アダリムマブ産生CHO細胞、セツキシマブ産生CHO細胞、ラニビズマブ産生CHO細胞、オマリズマブ産生CHO細胞、エクリズマブ産生CHO細胞、パニツムマブ産生CHO細胞、ウステキヌマブ産生CHO細胞、ゴリムマブ産生CHO細胞、カナキヌマブ産生CHO細胞、デノスマブ産生CHO細胞、モガムリズマブ産生CHO細胞、セルトリズマブ産生CHO細胞、オファツムマブ産生CHO細胞、ペルツズマブ産生CHO細胞、ブレンツキシマブ産生CHO細胞、ナタリズマブ産生CHO細胞、ニボルマブ産生CHO細胞、アレムツズマブ産生CHO細胞、セクキヌマブ産生CHO細胞、ラムシルマブ産生CHO細胞、イピリムマブ産生CHO細胞、エボロクマブ産生CHO細胞、メポリズマブ産生CHO細胞、アリロクマブ産生CHO細胞、イキセキズマブ産生CHO細胞、ブロダルマブ産生CHO細胞、イダルシズマブ産生CHO細胞、エロツズマブ産生CHO細胞、ペムブロリズマブ産生CHO細胞、サリルマブ産生CHO細胞、ベズロトクスマブ産生CHO細胞、ベリムマブ産生CHO細胞、ダラツムマブ産生CHO細胞、アベルマブ産生CHO細胞、デュピルマブ産生CHO細胞、アテゾリズマブ産生CHO細胞、ベンラリズマブ産生CHO細胞、イノツズマブ産生CHO細胞、エミシズマブ産生CHO細胞、グセルクマブ産生CHO細胞、デュルバルマブ産生CHO細胞、オビヌツズマブ産生CHO細胞、ベドリズマブ産生CHO細胞、ロモソズマブ産生CHO細胞、リサンキズマブ産生CHO細胞、ネシツムマブ産生CHO細胞、ラブリズマブ産生CHO細胞、ブロスマブ産生CHO細胞、イサツキシマブ産生CHO細胞、チルドラキズマブ産生CHO細胞、サトラリズマブ産生CHO細胞、ガルカネズマブ産生CHO細胞、ジヌツキシマブ産生CHO細胞、フレマネズマブ産生CHO細胞、エレヌマブ産生CHO細胞、カシリビマブ産生CHO細胞、イムデビマブ産生CHO細胞、アニフロルマブ産生CHO細胞、ソトロビマブ産生CHO細胞、オクレリズマブ産生CHO細胞、ナキシタマブ産生CHO細胞、アデュカヌマブ産生CHO細胞、タファシタマブ産生CHO細胞、マルジェツキシマブ産生CHO細胞、ポラツズマブ産生CHO細胞、エンホルツマブ産生CHO細胞、サシツズマブ産生CHO細胞、ベランタマブ産生CHO細胞、ロンカスツキシマブ産生CHO細胞、チソツマブ産生CHO細胞、イネビリズマブ産生CHO細胞、ブリナツモマブ産生CHO細胞、ブロルシズマブ産生CHO細胞、アブシキシマブ産生CHO細胞、カプラシズマブ産生CHO細胞、又は抗GPVI抗体産生CHO細胞から選択される細胞であり;トラスツズマブ産生CHO細胞、リツキシマブ産生CHO細胞、インフリキシマブ産生CHO細胞、トシリズマブ産生CHO細胞、アダリムマブ産生CHO細胞、ニボルマブ産生CHO細胞、又は抗GPVI抗体産生CHO細胞から選択される細胞である。
[1B-3-10]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる生理活性物質産生細胞は、前記態様[1-3-4]に記載された、生理活性物質産生細胞と同じである。
[1B-3-11]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる生理活性物質産生細胞は、インスリン分泌細胞、膵島、膵島細胞、又は膵β細胞由来のMIN6細胞からなる群から選択される細胞である。
[1B-3-12]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる生理活性物質産生細胞は、生理活性物質発現ベクターにより形質転換された培養細胞(生理活性物質産生遺伝子組換え細胞)である。
[1B-3-13]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる生理活性物質産生細胞は、生理活性物質を産生する遺伝子組換え動物細胞である。
[1B-3-14]前記態様[1B-3-13]において、宿主として用いられる動物細胞としては、CHO細胞、CHO細胞亜株、COS細胞、Sp2/0細胞、NS0細胞、SP2細胞、又はPERC6細胞、HEK293細胞、BHK細胞、HT-1080細胞、又はC127細胞から選択される細胞であり;好ましくは、CHO細胞、CHO細胞亜株、Sp2/0細胞、及びNS0細胞、HEK293細胞、又はBHK細胞から選択される細胞であり;より好ましくは、CHO細胞、又はCHO細胞亜株である。
[1B-3-15]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる生理活性物質産生細胞は、好ましくは、その宿主細胞がCHO細胞、CHO細胞亜株、HEK293細胞、又はBHK細胞から選択される細胞であり;より好ましくは、CHO細胞、又はCHO細胞亜株である。
[1B-3-16]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる生理活性物質産生細胞は、バイオ医薬品又はバイオ医薬品原料として用いられる生理活性物質を産生する細胞である。
[1B-3-17]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる生理活性物質産生細胞は、アルテプラーゼ、モンテプラーゼ、イミグルセラーゼ、ベラグルセラーゼ、アガルシダーゼ、ラロニダーゼ、アルグルコシダーゼ、アバルグルコシダーゼ、イデュルスルファーゼ、ガルスルファーゼ、エロスルファーゼ、ラスブリカーゼ、ドルナーゼ、セルリポナーゼ、グルカルピダーゼ、ヒアルロニダーゼ、アスホターゼ等の酵素を産生する細胞;エプタコグ、オクトコグ、ルリオクトコグ、ツロクトコグ、ロノクトコグ、ダモクトコグ、シモクトコグ、ノナコグ、アルブトレペノナコグ、カトリデカコグ、エフラロクトコグ、エフトレノナコグ、トロンボモデュリン、アンチトロンビン、ボニコグ、アルブミン等の血液凝固系因子及び血液関連蛋白を産生する細胞;インスリン、インスリン リスプロ、インスリン アスパルト、インスリン グラルギン、インスリン デテミル、インスリン グルリジン、インスリン デグルデク、ソマトロピン、ソマプシタン、メカセルミン、カルペリチド、ボソリチド、グルカゴン、ホリトロピン、コリオゴナドトロピン、デュラグルチド、リラグルチド、セマグルチド、テデュグルチド、テリパラチド、メトレレプチン等のホルモンを産生する細胞;インターフェロンアルファ-2a、インターフェロンアルファ-2b、インターフェロンベータ-1a、インターフェロンベータ-1b、インターフェロンガンマ-1a等のインターフェロンを産生する細胞;エポエチン、ダルベポエチン、ロミプロスチム等の造血因子を産生する細胞;フィルグラスチム、レノグラスチム、テセロイキン、トラフェルミン、ベルフェルミン、エタネルセプト、アフリベルセプト、デニロイキン ジフチトクス等のサイトカイン及びそれらの受容体を産生する細胞;アバタセプト等の細胞表面抗原、細胞表面受容体及びそれらのリガンドを産生する細胞から選択される細胞である。
[1B-3-18]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる生理活性物質産生細胞は、生理活性物質産生動物細胞であり、好ましくは、生理活性物質産生CHO細胞、生理活性物質産生HEK293細胞又は生理活性物質産生BHK細胞であり、より好ましくは、生理活性物質産生CHO細胞である。
[1B-3-19]前記態様[1]、[1A]、[1B]~[1D]において、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる生理活性物質産生細胞は、好ましくは、その宿主細胞がCHO細胞である生理活性物質産生細胞CHO細胞であり、例えば、アルテプラーゼ産生CHO細胞、アルグルコシダーゼ産生CHO細胞、ルリオクトコグ産生CHO細胞、デュラグルチド産生CHO細胞、インターフェロンベータ-1a産生CHO細胞、ダルベポエチン産生CHO細胞、エタネルセプト産生CHO細胞、アフリベルセプト産生CHO細胞又はアバタセプト産生CHO細胞から選択される細胞である。
[1B-4]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に追加で含むことができる成分は、前記態様[1-4]に記載された成分と同じであり;好ましい成分としては、前記態様[1-4-1]に記載された成分と同じである。
[1B-5]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる式(I)で表わされる化学修飾アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量は、前記態様[1-5]に記載された重量平均分子量の範囲と同じである。
[1B-6]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる式(II)で表わされる化学修飾アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量は、前記態様[1-6]に記載された重量平均分子量の範囲と同じである。
[1B-7]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる式(I)で表わされる化学修飾アルギン酸誘導体の反応性基(Akn-L-NH基:Akn-L-は、前記態様[1]、[1B-1-1]又は[1B-1-2]中の定義と同じである)の導入率は、前記態様[1-7]に記載された導入率の範囲と同じである。
[1B-8]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる式(II)で表わされる化学修飾アルギン酸誘導体の反応性基(N-L-NH基:-L-は、前記態様[1]、[1B-2-1]又は[1B-2-2]中の定義と同じである)の導入率は、前記態様[1-8]に記載された導入率の範囲と同じである。
[1B-9]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に追加で含むことができるアルギン酸溶液、又はアルギン酸ゲルの形成に用いられるアルギン酸溶液の調製に用いられるアルギン酸(例えば、アルギン酸ナトリウム、等)のゲルろ過クロマトグラフィー法(GPC法)により測定した重量平均分子量は、前記態様[1-9-1]に記載された重量平均分子量の範囲と同じである。
[1B-10-1]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる式(I)で表わされる化学修飾アルギン酸誘導体の溶液の濃度は、前記態様[1-10-1]に記載された濃度の範囲と同じである。
[1B-10-2]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる式(II)で表わされる化学修飾アルギン酸誘導体の溶液の濃度は、前記態様[1-10-2]に記載された濃度の範囲と同じである。
[1B-10-3]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる、式(I)で表わされる化学修飾アルギン酸誘導体と式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液の濃度は、前記態様[1-10-3]に記載された濃度の範囲と同じである。
[1B-10-4]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に追加で含むことができるアルギン酸溶液、又はアルギン酸ゲルの形成に用いられるアルギン酸溶液の濃度は、前記態様[1-10-4]に記載された濃度の範囲と同じである。
[1B-11-1]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルに、アルギン酸溶液、又はアルギン酸溶液から形成されるアルギン酸ゲルが含まれる場合、コア層の形成に用いられる式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の濃度とアルギン酸溶液の濃度の総濃度は、好ましくは約0.5~約2.0重量%であり;より好ましくは、約1.0重量%、約1.5重量%及び約2.0重量%から選ばれる濃度であり;更に好ましくは、約1.5重量%である。
[1B-11-2]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルに、アルギン酸溶液、又はアルギン酸溶液から形成されるアルギン酸ゲルが含まれる場合、コア層の形成に用いられる式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の濃度(C1(重量%))とアルギン酸溶液の濃度(C2(重量%))の組合せは、好ましくは、(C1:C2)=(約0.2:約1.3)、(約0.5:約1.0)、(約1.0:約0.5)、(約1.5:0)、(約0.66:約1.34)、および(約0.34:約0.66)からなる群から選ばれる組み合わせである。
[1B-11-3]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルに、アルギン酸溶液、又はアルギン酸溶液から形成されるアルギン酸ゲルが含まれる場合、コア層の形成に用いられる式(I)で表わされる化学修飾アルギン酸誘導体の溶液の濃度(C1A(重量%))、式(II)で表わされる化学修飾アルギン酸誘導体の溶液の濃度(C1N(重量%))及びアルギン酸溶液の濃度(C2(重量%))の組合せは、好ましくは、(C1A:C1N:C2)=(約0.1:約0.1:約1.3)、(約0.25:約0.25:約1.0)、(約0.5:約0.5:約0.5)、(約0.75:約0.75:0)、(約0.33:約0.33:約1.34)、および(約0.17:約0.17:約0.66)からなる群から選ばれる組み合わせである。
[1B-11-4]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いられる、式(I)で表わされる化学修飾アルギン酸誘導体の溶液および式(II)で表わされる化学修飾アルギン酸誘導体の溶液の混合溶液における、各誘導体の溶液の容量比(v1、v2)は、例えば、v1+v2=15の比率であり、例えば、(v1:v2)=(7.5:7.5)である。
[1B-11-5]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルに、アルギン酸溶液、又はアルギン酸溶液から形成されるアルギン酸ゲルが含まれる場合、コア層の形成に用いられる式(I)で表わされる化学修飾アルギン酸誘導体の溶液、式(II)で表わされる化学修飾アルギン酸誘導体の溶液、およびアルギン酸溶液の混合溶液における、各々の溶液の容量(v1、v2、v3)の容量比は、例えば、v1+v2+v3=15の比率であり、例えば、(v1:v2:v3)=(5:5:5)、(2.5:2.5:10)、(1:1:13)等の組み合わせである。
[1B-12]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルは、前記態様[1-12]に記載された式(III-L)(式中の定義は前記態様[1-12]中の定義と同じである)で表わされる基を介した化学架橋を含むものである。
[1B-12-1]前記態様[1B-12]の式(III-L)において、好ましい、より好ましい、更に好ましい、特に好ましい-L-は、各々、前記態様[1-12-1]に記載された定義と同じであり; 最も好ましくは、-X-が、(CL-2)または(CL-2-r)での、下記部分構造式:
Figure JPOXMLDOC01-appb-C000050
の2価のリンカーである(各式中、両端の破線外側は含まない)。
[1B-12-2]前記態様[1B-12]の式(III-L)において、好ましい、より好ましい、更に好ましい、特に好ましい-L-は、各々、前記態様[1-12-2]に記載された定義と同じであり;最も好ましくは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000051
の2価のリンカーである(各式中、両端の破線外側は含まない)。
[1B-12-3]前記態様[1B-12]において、好ましい、より好ましい、更に好ましい、特に好ましい式(III-L)で表わされる基の-L-X-L-の組み合わせは、各々、前記態様[1-12-3]に記載された定義と同じであり;最も好ましくは、-L-X-L-は、下記式:
Figure JPOXMLDOC01-appb-C000052
のいずれかである(各式中、両端の破線外側は含まない)。
[1B-12A]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルが、前記態様[1-12A]に記載の式(III-L)[式(III-L)中の各定義は、前記態様[1-12A]に記載された定義と同じである]で表わされる基を介した化学架橋を含むものである。
[1B-12A-1]前記態様[1B-12A]において、好ましい、より好ましい、更に好ましい-L-は、各々、前記態様[1-12A-1]に記載された基と同じであり;好ましい、より好ましい、更に好ましい-L-は、各々、前記態様[1-12A-1]に記載された基と同じである。
[1B-12A-2]前記態様[1B-12A]において、式(III-L)で表わされる基の-L-X-L-の好ましい、より好ましい、更に好ましい組み合わせは、[1-12A-2]に記載された組合せと同じであり;特に好ましい組み合わせは、下記式:
Figure JPOXMLDOC01-appb-C000053
のいずれかである(各式中、両端の破線外側は含まない)。
[1B-13]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルが、前記態様[1-12]の式(III-L)[式(III-L)中、各定義は、前記態様[1-12]の定義と同じである]又は前記態様[1B-12A]の式(III-L)[式(III-L)中、各定義は、態様[1B-12A]の定義と同じである]で表わされる基を介した化学架橋及び2価金属イオンを介したイオン架橋を含むものである。
[1B-13A]前記態様[1B]~[1D]において、コア層に含まれる架橋アルギン酸ゲルの、イオン架橋形成に用いられる2価金属イオンは、前記態様[1-13A]に記載された2価金属イオンと同じである。
[1B-14]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの、イオン架橋形成に用いられる2価金属イオンの供給源は、前記態様[1-14]に記載された2価金属イオンを含む水溶液と同じである。
[1B-15-1]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層のカチオン性ポリマーは、前記態様[1-15-1]に記載されたカチオン性ポリマーと同じである。
[1B-15-2]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層の、好ましい、より好ましい、更に好ましいカチオン性ポリマーは、各々、前記態様[1-15-2]に記載されたカチオン性ポリマーと同じである。
[1B-15-3]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層のカチオン性ポリマーは、キトサンである。
[1B-15-4]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマーは、前記態様[1-15-4]に記載されたカチオン性ポリマーと同じである。
[1B-16]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層は、アニオン性多糖類、硫酸化多糖類、合成ポリマー、アニオン性ポリアミノ酸、これらの化学修飾体、これらの架橋体、これらの混合物、等からなる群から選択されるアニオン性ポリマーである。
[1B-16-1]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層は、例えば、アルギン酸、ヒアルロン酸、カポリガラクツロン酸、ラギナン、サクシノグルカン、アラビアゴム、キサンタンガム、アルギン酸、ペクチン、ペクチン酸、カルボキシメチルセルロース、寒天等のアニオン性多糖類、これらの化学修飾体、これらの架橋体、これらの混合物、等からなる群から選択されるアニオン性ポリマーである。
[1B-16-2]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層は、アルギン酸である。
[1B-16-3]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層は、前記態様[1]又は[1-1-5]の式(I)で表わされる化学修飾アルギン酸誘導体、前記態様[1]又は[1-2-5]の式(II)で表わされる化学修飾アルギン酸誘導体、前記態様[1]又は[1-1-5]の式(I)で表わされる化学修飾アルギン酸誘導体および前記態様[1]又は[1-2-5]の式(II)で表わされる化学修飾アルギン酸誘導体から形成される架橋体、及びこれらの混合物からなる群から選択されるアニオン性ポリマーである。
[1B-16-4]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層は、アルギン酸、前記態様[1]又は[1-1-5]の式(I)で表わされる化学修飾アルギン酸誘導体、前記態様[1]又は[1-2-5]の式(II)で表わされる化学修飾アルギン酸誘導体、前記態様[1]又は[1-1-5]の式(I)で表わされる化学修飾アルギン酸誘導体および前記態様[1]又は[1-2-5]の式(II)で表わされる化学修飾アルギン酸誘導体から形成される架橋体、及びこれらの混合物からなる群から選択されるアニオン性ポリマーである。
[1B-16-4-1]前記態様[1B-16-3]または[1B-16-4]において、態様[1]の式(I)で表される化学修飾アルギン酸誘導体の好ましい、より好ましい、更に好ましい、特に好ましい誘導体は、各々、前記態様[1-1-1]、態様[1-1-2]、態様[1-1-3]、態様[1-1-4]に記載されたものと同じである。
[1B-16-4-2]前記態様[1B-16-3]または[1B-16-4]において、態様[1-1-5]の式(I)で表される化学修飾アルギン酸誘導体の、好ましい、より好ましい、更に好ましい誘導体は、各々、前記態様[1-1-5]に記載されたものと同じである。
[1B-16-4-3]前記態様[1B-16-3]または[1B-16-4]において、態様[1]の式(II)で表される化学修飾アルギン酸誘導体の好ましい、より好ましい、更に好ましい、特に好ましい誘導体は、各々、前記態様[1-2-1]、態様[1-2-2]、態様[1-2-3]、態様[1-2-4]に記載されたものと同じである。
[1B-16-4-4]前記態様[1B-16-3]または[1B-16-4]において、態様[1-2-5]の式(II)で表される化学修飾アルギン酸誘導体の、好ましい、より好ましい、更に好ましい誘導体は、各々、前記態様[1-2-5]に記載されたものと同じである。
[1B-16-5]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層は、例えば、コンドロイチン硫酸、デキストラン硫酸、ヘパラン硫酸、デルマタン硫酸、フコイダン、ケラタン硫酸、又はヘパリン等の硫酸化多糖類、これらの化学修飾体、これらの架橋体、これらの混合物、等からなる群から選択されるアニオン性ポリマーである。
[1B-16-6]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層は、例えば、アクリル酸、メタクリル酸、エチルアクリル酸、ポリスチレンスルホン酸等の合成ポリマー、これらの化学修飾体、これらの架橋体、これらの混合物、等からなる群から選択されるアニオン性ポリマーである。
[1B-16-7]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層は、例えば、ポリグルタミン酸、ポリアスパラギン酸等のアニオン性ポリアミノ酸、これらの化学修飾体、これらの架橋体、これらの混合物、等からなる群から選択されるアニオン性ポリマーである。
[1B-17]前記態様[1B]~[1D]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバの外径は、例えば、約0.1~約2000μmの範囲である。
 前記態様に記載されたAkn、-L-、-L-、Xの定義を適宜組み合わせた式(I)および式(II)で表わされる化学修飾アルギン酸誘導体を用いることにより、前記態様の多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層における、架橋アルギン酸ゲルの好ましい態様を任意に形成し得る。
[1B-18-1]前記態様[1B]~[1D]の多層ポリマーコーティング架橋アルギン酸ゲルファイバは、好ましくは、架橋アルギン酸ゲルの形成に用いられる式(I)で表されるアルギン酸誘導体が前記態様[1-1-1]に記載のアルギン酸誘導体又は前記態様[1-1-5]の好ましいアルギン酸誘導体から選択され、式(II)で表されるアルギン酸誘導体が前記態様[1-2-1]に記載のアルギン酸誘導体又は前記態様[1-2-5]の好ましいアルギン酸誘導体から選択され;抗体産生細胞が、前記態様[1B-3-1]~[1B-3-9]に記載の細胞から選択され;カチオン性ポリマー層が、前記態様[1-15-1]に記載のカチオン性ポリマーから選択され;アニオン性ポリマー層が、前記態様[1B-16]~[1B-16-7]に記載のアニオン性ポリマーから選択される、多層ポリマーコーティング架橋アルギン酸ゲルファイバである。
[1B-18-2]前記態様[1B]~[1D]の多層ポリマーコーティング架橋アルギン酸ゲルファイバは、より好ましくは、架橋アルギン酸ゲルの形成に用いられる式(I)で表されるアルギン酸誘導体が前記態様[1-1-2]に記載のアルギン酸誘導体又は前記態様[1-1-5]のより好ましいアルギン酸誘導体から選択され、式(II)で表されるアルギン酸誘導体が前記態様[1-2-2]に記載のアルギン酸誘導体又は前記態様[1-2-5]のより好ましいアルギン酸誘導体から選択され;抗体産生細胞が前記態様[1B-3-2]~[1B-3-9]に記載の細胞から選択され;カチオン性ポリマー層が、前記態様[1-15-2]~[1-15-4]に記載のカチオン性ポリマーから選択され;アニオン性ポリマー層が、前記態様[1B-16-1]に記載のアニオン性ポリマーから選択される、多層ポリマーコーティング架橋アルギン酸ゲルファイバである。
[1B-18-3]前記態様[1B]~[1D]の多層ポリマーコーティング架橋アルギン酸ゲルファイバは、更に好ましくは、架橋アルギン酸ゲルの形成に用いられる式(I)で表されるアルギン酸誘導体が前記態様[1-1-3]に記載のアルギン酸誘導体から選択され、式(II)で表されるアルギン酸誘導体が前記態様[1-2-3]に記載のアルギン酸誘導体から選択され;抗体産生細胞が前記態様[1B-3-3]~[1B-3-9]に記載の細胞から選択され;カチオン性ポリマー層が、前記態様[1-15-2]又は[1-15-4]に記載のカチオン性ポリマーから選択され;アニオン性ポリマー層が、前記態様[1B-16-2]~[1B-16-4-4]に記載のアニオン性ポリマーから選択される、多層ポリマーコーティング架橋アルギン酸ゲルファイバである。
[1B-18-4]前記態様[1B]~[1D]の多層ポリマーコーティング架橋アルギン酸ゲルファイバは、特に好ましくは、架橋アルギン酸ゲルの形成に用いられる式(I)で表されるアルギン酸誘導体が前記態様[1-1-4]に記載のアルギン酸誘導体から選択され、式(II)で表されるアルギン酸誘導体が前記態様[1-2-4]に記載のアルギン酸誘導体から選択され;抗体産生細胞が前記態様[1B-3-6]~[1B-3-9]に記載の細胞から選択され;カチオン性ポリマー層が、ポリ-L-オルニチン、ポリアリルアミン(PAA)、ポリエチレンイミン、又はポリメチレン-CO-グアニジン(PMCG)から選択され;アニオン性ポリマー層が、アルギン酸、前記態様[1-1-1]~[1-1-4]、[1-2-5]に記載された式(I)で表されるアルギン酸誘導体、前記態様[1-2-1]~[1-2-4]、[1-2-5]に記載された式(II)で表されるアルギン酸誘導体、及び前記態様[1-1-1]~[1-1-4]、[1-1-5]に記載された式(I)で表されるアルギン酸誘導体と前記態様[1-2-1]~[1-2-4]、[1-2-5]に記載された式(II)で表されるアルギン酸誘導体から形成される架橋体から選択される、多層ポリマーコーティング架橋アルギン酸ゲルファイバである。
[1B-18-5]前記態様[1B]~[1D]の多層ポリマーコーティング架橋アルギン酸ゲルファイバは、最も好ましくは、架橋アルギン酸ゲルの形成に用いられる式(I)で表されるアルギン酸誘導体が、Akn-L-として下記部分構造式(各式中、破線右側は含まない):
Figure JPOXMLDOC01-appb-C000054
で表される基を有するものであり;式(II)で表されるアルギン酸誘導体が、-L
として、下記部分構造式(各式中、両端の破線外側は含まない):
Figure JPOXMLDOC01-appb-C000055
で表される基を有するものであり;抗体産生細胞が前記態様[1B-3-5]に記載の細胞から選択され、好ましくは抗体産生細胞が抗体産生CHO細胞であり;カチオン性ポリマー層が、ポリ-L-オルニチン、ポリアリルアミン(PAA)、ポリエチレンイミン、又はポリメチレン-CO-グアニジン(PMCG)から選択され;
アニオン性ポリマー層が、アルギン酸、Akn-L-として下記部分構造式(各式中、破線右側は含まない): 
Figure JPOXMLDOC01-appb-C000056
を有する式(I)で表されるアルギン酸誘導体、-L-として、下記部分構造式(各式中、両端の破線外側は含まない):
Figure JPOXMLDOC01-appb-C000057
を有する式(II)で表されるアルギン酸誘導体、及びAkn-L-として前記部分構造式(ALK-1a-3a)又は(ALK-2-3)を有する式(I)で表されるアルギン酸誘導体と-L-として前記部分構造式(LN-1-3)、(LN-3-3a)又は(LN-5-3a)を有する式(II)で表されるアルギン酸誘導体から形成される架橋体から選択される、多層ポリマーコーティング架橋アルギン酸ゲルファイバである。
[1B-18-6]前記態様[1B-18-1]~[1B-18-5]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバの架橋アルギン酸ゲルは、前記態様[1-4]~[1-4-1]に記載されたいずれかの添加できる成分を含むものである。
 前記態様に記載された多層ポリマーコーティング架橋アルギン酸ゲルファイバにおける、抗体、生理活性物質等を産生できる細胞、架橋アルギン酸ゲルの形成に用いられる式(I)及び式(II)で表される化学修飾アルギン酸誘導体、カチオン性ポリマー(カチオン性ポリマー層)、アニオン性ポリマー(多層アニオン性ポリマー)の各要素を組み合わせることで、多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法の好ましい態様を任意に形成し得る。
[2]第2の態様は、次の通りである。抗体、生理活性物質等を産生できる細胞ならびに前記態様[1]に記載の式(I)で表わされる化学修飾アルギン酸誘導体及び式(II)で表わされる化学修飾アルギン酸誘導体を用いて架橋反応を行うことで得られる架橋アルギン酸ゲルを含むコア層を、カチオン性ポリマーで被覆して形成されるポリマーコーティング架橋アルギン酸ゲルファイバの製造方法であって、
工程(1):抗体、生理活性物質等を産生できる細胞ならびに前記態様[1]に記載の式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体が含まれる混合溶液を、2価金属イオンを含む溶液中に射出し、抗体、 生理活性物質等を産生できる細胞をコア層に含む架橋アルギン酸ゲルファイバ(CLA)を得る工程、
工程(2):工程(1)で得られた抗体、生理活性物質等を産生できる細胞をコア層に含む架橋アルギン酸ゲルファイバ(CLA)を、カチオン性ポリマーを含む溶液に接触させることで、カチオン性ポリマー層で被覆されたポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を得る工程、を含むことを特徴とする、製造方法である。
[2A]前記態様[2]におけるポリマーコーティング架橋アルギン酸ゲルファイバは、前記態様([1]~[1-17-5])のいずれかに記載のポリマーコーティング架橋アルギン酸ゲルファイバである。
[2-1]前記態様[2]において、ポリマーコーティング架橋アルギン酸ゲルファイバの製造に用いられる抗体、 生理活性物質等を産生できる細胞は、前記態様[1-3]~[1-3-5]のいずれか1項に記載の抗体、生理活性物質等を産生できる細胞と同じである。
[2-1-1]前記態様[2]において、ポリマーコーティング架橋アルギン酸ゲルファイバの製造に用いられる抗体、 生理活性物質等を産生できる細胞は、前記態様[1B-3]~[1B-3-19]のいずれか1項に記載の抗体、生理活性物質等を産生できる細胞と同じである。
[2-2]前記態様[2]において、ポリマーコーティング架橋アルギン酸ゲルファイバの製造に用いられる式(I)で表わされる化学修飾アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量は、例えば、約100,000Da~約3,000,000Daの範囲であり;好ましくは約300,000Da~約2,500,000Daの範囲であり、より好ましくは約500,000Da~約2,000,000Daの範囲である。
[2-3]前記態様[2]において、ポリマーコーティング架橋アルギン酸ゲルファイバの製造に用いられる式(II)で表わされる化学修飾アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量は、例えば、約100,000Da~約3,000,000Daの範囲であり;好ましくは約300,000Da~約2,500,000Daの範囲であり、より好ましくは約500,000Da~約2,000,000Daの範囲である。
[2-4]前記態様[2]において、ポリマーコーティング架橋アルギン酸ゲルファイバの製造に用いられる式(I)で表わされる化学修飾アルギン酸誘導体の反応性基:Akn-L-NH基(Akn-L-は、前記態様[1]~[1-1-4]中の定義と同じである)の導入率は、例えば、約0.1~約30mol%の範囲であり;好ましくは、約0.3~約20mol%の範囲であり;より好ましくは、約0.5~約10mol%の範囲である。
[2-5]前記態様[2]において、ポリマーコーティング架橋アルギン酸ゲルファイバの製造に用いられる式(II)で表わされる化学修飾アルギン酸誘導体の反応性基:N-L-NH基(-L-は、前記態様[1]、[1-2-1]~[1-2-4]中の定義と同じである)の導入率が、例えば、約0.1~約30mol%の範囲であり;好ましくは、約0.3~約20mol%の範囲であり;より好ましくは、約0.5~約15mol%の範囲である。
[2-6]前記態様[2]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液に添加できる成分としては、例えば、アルギン酸溶液、培地、培養液、コラーゲン溶液、メチルセルロース、スクロース溶液、又はそれらの混合物等からなる群から選択される成分であり;好ましくは、アルギン酸溶液、培地、培養液、又はそれらの混合物等からなる群から選択される成分である。
[2-7]前記態様[2]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液に添加できるアルギン酸溶液の調製に用いられるアルギン酸(例えば、アルギン酸ナトリウム、等)のゲルろ過クロマトグラフィー法(GPC法)により測定した重量平均分子量が、例えば、約150,000Da~約2,500,000Daの範囲であり;好ましくは約300,000Da~約2,000,000Daの範囲であり、より好ましくは約700,000Da~約1,500,000Daの範囲である。
[2-7A]前記態様[2]のファイバ製造の工程(1)で、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液に添加できるアルギン酸溶液の調製に用いられるアルギン酸(例えば、アルギン酸ナトリウム、等)のゲルろ過クロマトグラフィー法(GPC法)により測定した重量平均分子量が、例えば、約150,000Da~約2,500,000Daの範囲であり;好ましくは、約300,000Da~約2,500,000Daの範囲;より好ましくは、約700,000Da~約1,400,000Da、約800,000Da~約1,500,000Da、約1,400,000~約2,000,000Da、または約1,500,000~約2,500,000から選ばれる範囲である。
[2-8]前記態様[2]において、ポリマーコーティング架橋アルギン酸ゲルファイバの製造に用いられる式(I)で表わされる化学修飾アルギン酸誘導体の溶液の濃度は、例えば、約0.01~約1.5重量%の範囲であり;好ましくは、約0.05~約1.0重量%の範囲であり;より好ましくは、約0.08~約0.75重量%の範囲である。
 本明細書中、重量%と記載した場合、w/v%を意味するものとする。
[2-9]前記態様[2]において、ポリマーコーティング架橋アルギン酸ゲルファイバの製造に用いられる式(II)で表わされる化学修飾アルギン酸誘導体の溶液の濃度は、例えば、約0.01~約1.5重量%の範囲であり;好ましくは、約0.05~約1.0重量%の範囲であり;より好ましくは、約0.08~約0.75重量%の範囲である。
[2-10]前記態様[2]において、ポリマーコーティング架橋アルギン酸ゲルファイバの製造に用いられる式(I)で表わされる化学修飾アルギン酸誘導体と式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液の濃度は、例えば、約0.02~約2.0重量%の範囲であり;好ましくは、約0.1~約2.0重量%の範囲であり;より好ましくは約0.15~約1.5重量%の範囲である。
[2-11]前記態様[2]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液に添加できるアルギン酸溶液の濃度は、例えば、0~約1.98重量%の範囲であり;好ましくは、0~約1.8重量%の範囲であり;より好ましくは、0~約1.7重量%の範囲である。
[2-11-1]前記態様[2]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液にアルギン酸溶液を添加する場合、当該式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の濃度とアルギン酸溶液の濃度の総濃度は、好ましくは約0.5~約2.0重量%であり;より好ましくは、約1.0重量%、約1.5重量%及び約2.0重量%から選ばれる濃度である。
[2-11-2]前記態様[2]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液にアルギン酸溶液を添加する場合、当該式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の濃度(C1(重量%))とアルギン酸溶液の濃度(C2(重量%))の組合せは、好ましくは、(C1:C2)=(約0.2:約1.3)、(約0.5:約1.0)、(約1.0:約0.5)、(約1.5:0)、(約0.66:約1.34)、および(約0.34:約0.66)からなる群から選ばれる組み合わせである。
[2-11-3]前記態様[2]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液にアルギン酸溶液を添加する場合、当該式(I)で表わされる化学修飾アルギン酸誘導体の溶液の濃度(C1A(重量%))、式(II)で表わされる化学修飾アルギン酸誘導体の溶液の濃度(C1N(重量%))及びアルギン酸溶液の濃度(C2(重量%))の組合せは、好ましくは、(C1A:C1N:C2)=(約0.1:約0.1:約1.3)、(約0.25:約0.25:約1.0)、(約0.5:約0.5:約0.5)、(約0.75:約0.75:0)、(約0.33:約0.33:約1.34)、および(約0.17:約0.17:約0.66)からなる群から選ばれる組み合わせである。
[2-12-1]前記態様[2]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液中の、式(I)で表わされる化学修飾アルギン酸誘導体の溶液および式(II)で表わされる化学修飾アルギン酸誘導体の溶液の各容量比(v1、v2)は、例えば、v1+v2=15の比率であり、例えば、(v1:v2)=(7.5:7.5)である。
[2-12-2]前記態様[2]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の形成に用いる、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液に、アルギン酸溶液を添加する場合、アルギン酸溶液を添加した混合溶液における、式(I)で表わされる化学修飾アルギン酸誘導体の容量(v1)、式(II)で表わされる化学修飾アルギン酸誘導体の溶液の容量(v2)およびアルギン酸溶液の容量(v3)の容量比は、例えば、v1+v2+v3=15の比率であり、例えば、(v1:v2:v3)=(5:5:5)、(2.5:2.5:10)、(1:1:13)等の組み合わせである。
[2-13]前記態様[2]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体が含まれる混合溶液を射出させる溶液中に含まれる2価金属イオンとしては、カルシウムイオン、マグネシウムイオン、バリウムイオン、ストロンチウムイオン、亜鉛イオン等の群から選択される2価金属イオンであり;好ましくは、カルシウムイオン、バリウムイオン又はストロンチウムイオンであり;より好ましくは、カルシウムイオン又はバリウムイオンである。
[2-14]前記態様[2]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体が含まれる混合溶液を射出させる溶液は、塩化カルシウム水溶液、炭酸カルシウム水溶液、グルコン酸カルシウム水溶液、塩化バリウム水溶液、塩化ストロンチウム水溶液等からなる群から選択される2価金属イオンを含む水溶液であり;好ましくは、塩化カルシウム水溶液又は塩化バリウム水溶液である。
[2-15]前記態様[2]または[2-14]において、2価金属イオンの濃度は、例えば、約1mM~約1Mの範囲、又は約10~約500mMの範囲であり;好ましくは、約10~約100mMである。
[2-16-1]前記態様[2]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液は、例えば、図3に示されるような、導入口1および排出口2が備わる装置XX等を用い、装置XXの導入口1から当該混合溶液を導入し、装置XXの排出口2から、射出することができる。
[2-16-2]前記態様[2-16-1]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液は、例えば、図3に示されるような、押出筒YY等を用いて、装置XXの排出口2から、射出することができる。
[2-17]前記態様[2-16-2]において、装置XXと押出筒YYを合わせたものとして、例えば、注射筒を用いることができる。また、注射筒はガラス製またはプラスチック製の注射筒を用いることができる。
[2-18]前記態様[2]、[2-16-1]および[2-16-2]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の射出速度(流速)は、例えば、約100~約10000μL/分の範囲である。
[2-19-1]前記態様[2]において、抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバ(CLA)を接触させるカチオン性ポリマーを含む溶液は、ポリアミノ酸(塩基性アミノ酸の重合体)、塩基性多糖類、塩基性ポリマー、それらの塩等からなる群から選択されるカチオン性ポリマーを含む溶液である。
[2-19-2]前記態様[2]において、抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバ(CLA)を接触させるカチオン性ポリマーを含む溶液は好ましくは、ポリアミノ酸である、ポリ-L-オルニチン(PLO)、ポリ-D-オルニチン(PDO)、ポリ-DL-オルニチン、ポリ-D-リジン(PDL)、ポリ-L-リジン(PLL)、ポリ-DL-リジン、ポリ-L-アルギニン(PLA)、ポリ-D-アルギニン(PDA)、ポリ-DL-アルギニン、ポリ-L-ホモアルギニン(PLHA)、ポリ-D-ホモアルギニン(PDHA)、ポリ-DL-ホモアルギニン、ポリ-L-ヒスチジン(PLH)、ポリ-D-ヒスチジン(PDH)、ポリ-DL-ヒスチジンおよびそれらの塩からなるの群から選択されるカチオン性ポリマーを含む溶液であり;より好ましくは、ポリ-L-オルニチン、ポリ-L-リジンおよびそれらの塩からなる群から選ばれるカチオン性ポリマーを含む溶液であり;更に好ましくは、ポリ-L-オルニチンまたはその塩から選択されるカチオン性ポリマーを含む溶液である。
[2-19-3]前記態様[2]において、抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバ(CLA)を接触させるカチオン性ポリマーを含む溶液は、例えば、塩基性多糖類であるキトサンまたはその塩からなるの群から選択されるカチオン性ポリマーを含む溶液である。
[2-19-4]前記態様[2]において、抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバ(CLA)を接触させるカチオン性ポリマーを含む溶液は、例えば、塩基性ポリマーであるポリメチレン-CO-グアニジン(PMCG)、ポリアリルアミン(PAA)、ポリビニルアミン(PVA)、ポリエチレンイミン、アリルアミン-ジアリルアミン共重合体、アリルアミン-マレイン酸共重合体、およびそれらの塩からなるの群から選択されるカチオン性ポリマーを含む溶液である。
[2-19-4-1]前記態様[2-19-4]において、好ましくは、カチオン性ポリマーを含む溶液は、ポリアリルアミン(PAA)、ポリエチレンイミン、ポリメチレン-CO-グアニジン(PMCG)及びそれらの塩からなるの群から選択されるカチオン性ポリマーを含む溶液である。
[2-20]前記態様[2]において、抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバ(CLA)を接触させるカチオン性ポリマーを含む溶液は、塩化カルシウム溶液、緩衝液等の成分を含むことができる。
[2-21]前記態様[2]において、ポリマーコーティング架橋アルギン酸ゲルファイバの製造時の温度は、例えば、約4~約37℃の範囲である。
 前記態様に記載されたポリマーコーティング架橋アルギン酸ゲルファイバの製造方法および各要素を組み合わせることで、ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法の好ましい態様を任意に形成し得る。
[2B]第2Bの態様は、次の通りである。抗体、生理活性物質等を産生できる細胞ならびに前記態様[1]に記載の式(I)で表わされる化学修飾アルギン酸誘導体及び式(II)で表わされる化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋アルギン酸ゲルを含むコア層を、カチオン性ポリマー及びアニオン性ポリマーにて順次被覆することで形成される多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法であって、
工程(1):抗体、生理活性物質等を産生できる細胞ならびに前記態様[1]に記載の式(I)で表わされる化学修飾アルギン酸誘導体及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液を、2価金属イオンを含む溶液中に射出し、抗体、 生理活性物質等を産生できる細胞をコア層に含む架橋アルギン酸ゲルファイバ(CLA)を得る工程、
工程(2):工程(1)で得られた抗体、生理活性物質等を産生できる細胞をコア層に含む架橋アルギン酸ゲルファイバ(CLA)を、カチオン性ポリマーを含む溶液に接触させることで、カチオン性ポリマー層で被覆されたポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を得る工程、
工程(3):工程(2)で得られたポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を、アニオン性ポリマーを含む溶液に接触させることで、アニオン性ポリマー層で被覆された多層ポリマーコーティング架橋アルギン酸ゲルファイバ(ACFB)を得る工程、
を含むことを特徴とする、製造方法である。
[2C]前記態様[2B]における多層ポリマーコーティング架橋アルギン酸ゲルファイバは、前記態様([1B]~[1B-18-6])のいずれかに記載の多層ポリマーコーティング架橋アルギン酸ゲルファイバである。
[2B-1]前記態様[2B]において、ファイバの製造に用いられる抗体、生理活性物質等を産生できる細胞は、前記態様前記態様[1-3]~[1-3-5]、[1B-3]~[1B-3-19]のいずれか1項に記載の抗体、生理活性物質等を産生できる細胞と同じである。
[2B-2]前記態様[2B]において、ファイバの製造の工程(1)又は工程(3)で用いられる式(I)で表わされる化学修飾アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量は、前記態様[2-2]に記載された重量平均分子量の範囲と同じである。
[2B-3]前記態様[2B]において、ファイバの製造の工程(1)又は工程(3)で用いられる式(II)で表わされる化学修飾アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量は、前記態様[2-3]に記載された重量平均分子量の範囲と同じである。
[2B-4]前記態様[2B]において、ファイバの製造の工程(1)又は工程(3)で用いられる式(I)で表わされる化学修飾アルギン酸誘導体の反応性基:Akn-L-NH基(Akn-L-は、前記態様[1]、[1B-1-1]又は[1B-1-2]中の定義と同じである)の導入率は、前記態様[2-4]に記載された導入率の範囲と同じである。
[2B-5]前記態様[2B]において、ファイバの製造の工程(1)又は工程(3)で用いられる式(II)で表わされる化学修飾アルギン酸誘導体の反応性基:N-L-NH基(-L-は、前記態様[1]、[1B-2-1]又は[1B-2-2]中の定義と同じである)の導入率は、前記態様[2-5]に記載された導入率の範囲と同じである。
[2B-6]前記態様[2B]において、ファイバの製造の工程(1)で、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液に添加できる成分は、前記態様[2-6]に記載された成分と同じである。
[2B-7]前記態様[2B]のファイバ製造の工程(1)で、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液に添加できるアルギン酸溶液の調製に用いられるアルギン酸(例えば、アルギン酸ナトリウム、等)、又は前記態様[2B]のファイバ製造の工程(3)で、アニオン性ポリマーとしてアルギン酸を用いる場合に、その溶液の調製に用いられるアルギン酸(例えば、アルギン酸ナトリウム、等)のゲルろ過クロマトグラフィー法(GPC法)により測定した重量平均分子量は、前記態様[2-7A]に記載された分子量と同じである。
[2B-8]前記態様[2B]において、ファイバの製造の工程(1)で用いられる式(I)で表わされる化学修飾アルギン酸誘導体の溶液の濃度は、前記態様[2-8]に記載された濃度の範囲と同じである。
[2B-9]前記態様[2B]において、ファイバの製造の工程(1)で用いられる式(II)で表わされる化学修飾アルギン酸誘導体の溶液の濃度は、前記態様[2-9]に記載された濃度の範囲と同じである。
[2B-10]前記態様[2B]において、ファイバの製造の工程(1)で用いられる式(I)で表わされる化学修飾アルギン酸誘導体と式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液の濃度は、前記態様[2-10]に記載された濃度の範囲と同じである。
[2B-11]前記態様[2B]において、ファイバ製造の工程(1)で、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液に添加できるアルギン酸溶液の濃度は、前記態様[2-11]に記載された濃度の範囲と同じである。
[2B-11-1]前記態様[2B]において、ファイバ製造の工程(1)で、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液にアルギン酸溶液を添加する場合、当該式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の濃度とアルギン酸溶液の濃度の総濃度は、前記態様[2-11-1]に記載された濃度の範囲と同じであり; 更に好ましくは、約1.5重量%である。
[2B-11-2]前記態様[2B]において、ファイバ製造の工程(1)で、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液にアルギン酸溶液を添加する場合、当該式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の濃度(C1(重量%))とアルギン酸溶液の濃度(C2(重量%))の組合せは、前記態様[2-11-2]に記載された濃度の範囲と同じである。
[2B-11-3]前記態様[2B]において、ファイバ製造の工程(1)で、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液にアルギン酸溶液を添加する場合、当該式(I)で表わされる化学修飾アルギン酸誘導体の溶液の濃度(C1A(重量%))、式(II)で表わされる化学修飾アルギン酸誘導体の溶液の濃度(C1N(重量%))及びアルギン酸溶液の濃度(C2(重量%))の組合せは、前記態様[2-11-3]に記載された濃度の範囲と同じである。
[2B-12-1]前記態様[2B]において、ファイバ製造の工程(1)で、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液中の、式(I)で表わされる化学修飾アルギン酸誘導体の溶液および式(II)で表わされる化学修飾アルギン酸誘導体の溶液の各容量比(v1、v2)は、例えば、v1+v2=15の比率であり、例えば、(v1:v2)=(7.5:7.5)である。
[2B-12-2]前記態様[2B]において、ファイバ製造の工程(1)で、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液に、アルギン酸溶液を添加する場合、アルギン酸溶液を添加した混合溶液における、式(I)で表わされる化学修飾アルギン酸誘導体の容量(v1)、式(II)で表わされる化学修飾アルギン酸誘導体の溶液の容量(v2)およびアルギン酸溶液の容量(v3)の容量比は、前記態様[2-12-2]に記載された組合せと同じである。
[2B-13]前記態様[2B]において、ファイバ製造の工程(1)で、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体が含まれる混合溶液を射出させる溶液中に含まれる2価金属イオンは、前記態様[2-13]に記載された2価金属イオンと同じである。
[2B-14]前記態様[2B]において、ファイバ製造の工程(1)で、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体が含まれる混合溶液を射出させる溶液は、前記態様[2-14]に記載された2価金属イオンを含む水溶液と同じである。
[2B-15]前記態様[2B]または[2B-14]において、ファイバ製造の工程(1)で用いる2価金属イオンの濃度は、例えば、約1mM~約1Mの範囲、又は約10~約500mMの範囲であり;好ましくは、約10~約100mMである。
[2B-16-1]前記態様[2B]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液は、例えば、図10に示されるような、導入口1および排出口2が備わる装置XX等を用い、装置XXの導入口1から当該混合溶液を導入し、装置XXの排出口2から、射出することができる。
[2B-16-2]前記態様[2B-16-1]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液は、例えば、図10に示されるような、押出筒YY等を用いて、装置XXの排出口2から、射出することができる。
[2B-17]前記態様[2B-16-2]において、装置XXと押出筒YYを合わせたものとして、例えば、注射筒を用いることができる。また、注射筒はガラス製またはプラスチック製の注射筒を用いることができる。
[2B-18]前記態様[2B]、[2B-16-1]および[2B-16-2]において、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の射出速度(流速)は、例えば、約100~約10000μL/分の範囲である。
[2B-19-1]前記態様[2B]において、ファイバ製造の工程(2)で、抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバ(CLA)を接触させるカチオン性ポリマーを含む溶液は、前記態様[2-19-1]に記載された溶液と同じである。
[2B-19-2]前記態様[2B]において、ファイバ製造の工程(2)で、抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバ(CLA)を接触させる、好ましい、より好ましい、更に好ましいカチオン性ポリマーを含む溶液は、各々、前記態様[2-19-2]に記載された溶液と同じである。
[2B-19-3]前記態様[2B]において、ファイバ製造の工程(2)で、抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバ(CLA)を接触させるカチオン性ポリマーを含む溶液は、例えば、塩基性多糖類であるキトサンまたはその塩からなるの群から選択されるカチオン性ポリマーを含む溶液である。
[2B-19-4]前記態様[2B]において、ファイバ製造の工程(2)で、抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバ(CLA)を接触させるカチオン性ポリマーを含む溶液は、前記態様[2-19-4]に記載された溶液と同じである。
[2B-20]前記態様[2B]において、ファイバ製造の工程(2)で、抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバ(CLA)を接触させるカチオン性ポリマーを含む溶液は、塩化カルシウム溶液、緩衝液等の成分を含むことができる。
[2B-21]前記態様[2B]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造時の温度は、例えば、約4~約37℃の範囲である。
[2B-22]前記態様[2B]において、ファイバ製造の工程(3)で、ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を接触させるアニオン性ポリマーを含む溶液は、アニオン性多糖類、硫酸化多糖類、合成ポリマー、アニオン性ポリアミノ酸、これらの化学修飾体、これらの架橋体、それらの塩、及びこれらの混合物等からなる群から選択されるアニオン性ポリマーを含む溶液である。
[2B-23]前記態様[2B]において、ファイバ製造の工程(3)で、ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を接触させるアニオン性ポリマーを含む溶液は、アルギン酸、前記態様[1]に記載された式(I)で表わされる化学修飾アルギン酸誘導体、前記態様[1]に記載された式(II)で表わされる化学修飾アルギン酸誘導体、前記態様[1]に記載された式(I)で表わされる化学修飾アルギン酸誘導体および/又は式(II)で表わされる化学修飾アルギン酸誘導体から形成される架橋体、これらの塩、及びこれらの混合物からなる群から選択されるアニオン性ポリマーを含む溶液である。
[2B-24]前記態様[2B]において、ファイバ製造の工程(3)で、ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を接触させるアニオン性ポリマーを含む溶液は、例えば、アルギン酸、ヒアルロン酸、カポリガラクツロン酸、ラギナン、サクシノグルカン、アラビアゴム、キサンタンガム、アルギン酸、ペクチン、ペクチン酸、カルボキシメチルセルロース、寒天等のアニオン性多糖類、これらの化学修飾体、これらの架橋体、これらの塩、及びこれらの混合物からなる群から選択されるアニオン性ポリマーを含む溶液である。
[2B-25]前記態様[2B]において、ファイバ製造の工程(3)で、ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を接触させるアニオン性ポリマーを含む溶液は、例えば、コンドロイチン硫酸、デキストラン硫酸、ヘパラン硫酸、デルマタン硫酸、フコイダン、ケラタン硫酸、又はヘパリン等の硫酸化多糖類、これらの化学修飾体、これらの架橋体、これらの塩、及びこれらの混合物からなる群から選択されるカチオン性ポリマーを含む溶液である。
[2B-26]前記態様[2B]において、ファイバ製造の工程(3)で、ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を接触させるアニオン性ポリマーを含む溶液は、例えば、アクリル酸、メタクリル酸、エチルアクリル酸、ポリスチレンスルホン酸等の合成ポリマー、これらの化学修飾体、これらの架橋体、これらの塩、及びこれらの混合物からなる群から選択されるカチオン性ポリマーを含む溶液である。
[2B-27]前記態様[2B]において、ファイバ製造の工程(3)で、ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を接触させるアニオン性ポリマーを含む溶液は、例えば、ポリグルタミン酸、ポリアスパラギン酸等のアニオン性ポリアミノ酸、これらの化学修飾体、これらの架橋体、これらの塩、及びこれらの混合物からなる群から選択されるカチオン性ポリマーを含む溶液である。
 前記態様に記載された多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法及び各要素を組み合わせることで、多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法の好ましい態様を任意に形成し得る。
[3]第3の態様は、次の通りである。抗体、生理活性物質等を産生できる細胞ならびに前記態様[1]に記載の式(I)で表わされる化学修飾アルギン酸誘導体及び式(II)で表わされる化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋アルギン酸ゲルを含むコア層を、カチオン性ポリマーで被覆して形成されるポリマーコーティング架橋アルギン酸ゲルファイバを用いる抗体、生理活性物質等の製造方法である。一態様の前記製造方法は、前記ポリマーコーティング架橋アルギン酸ゲルファイバを培養容器に入れ、培地を添加して前記ポリマーコーティング架橋アルギン酸ゲルファイバを含浸させ、培養を行うことによる、抗体、生理活性物質等の製造方法である。
[3A]前記態様[3]におけるポリマーコーティング架橋アルギン酸ゲルファイバは、前記態様([1]~[1-17-5])のいずれかに記載のポリマーコーティング架橋アルギン酸ゲルファイバである。
[3-1]前記態様[3]において、培養容器は、例えば、組織培養用プレート、三角フラスコ、T-フラスコ、スピナーフラスコ、培養バッグ、動物細胞培養槽等からなる群から選択される容器であり;好ましくは三角フラスコ又は動物細胞培養槽である。培養は、例えば、静置培養または振とう培養などのいずれの方法を選択してもよく、回分培養(バッチ培養)、流加培養(フェドバッチ培養)、連続培養などのいずれの方法を用いてもよいが、流加培養または連続培養が好ましい。
[3-2]前記態様[3]~[3-1]のいずれか1つにおいて、培養時の温度は、例えば、約28℃~約39℃の範囲であり、例えば、約30℃~約37℃の範囲である。
[3-3]前記態様[3]~[3-2]のいずれか1つにおいて、培養時の攪拌速度は、例えば、約50~約250rpmであり、例えば、約125rpmである。
[3-4]前記態様[3]~[3-3]のいずれか1つにおいて、培養条件は、例えば、培養温度を約28℃~約39℃の範囲とし、5%CO雰囲気下に培養装置で、約125rpmの攪拌速度で培養をする。
[3-5]前記態様[3]~[3-4]のいずれか1つにおいて、培養する期間は、例えば、7日間であり、又は14日であり、又は28日であり、又は42日であり、又は56日であり、又は70日である。
 本明細書中、培養温度において、「約」と記載した場合、当該数値の±10%迄、ある態様では当該数値の±20%迄の値も含み得るものである。
[3-6]前記態様[3]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる抗体、生理活性物質等を産生できる細胞は、前記態様[1-3]~[1-3-5]のいずれか1項に記載の抗体、生理活性物質等を産生できる細胞と同じである。
[3-6-1]前記態様[3]において、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる抗体、生理活性物質等を産生できる細胞は、前記態様[1B-3]~[1B-3-19]のいずれか1項に記載の抗体、生理活性物質等を産生できる細胞と同じである。
[3-7]前記態様[3]~[3-5]のいずれか1つにおいて、細胞増殖抑制剤を添加することを含む、抗体、生理活性物質等の製造方法である。
 前記態様に記載されたポリマーコーティング架橋アルギン酸ゲルファイバを用いる抗体、生理活性物質等の製造方法及び各要素を組み合わせることで、抗体、生理活性物質等の製造方法の好ましい態様を任意に形成し得る。 
[3B]第3Bの態様は、次の通りである。抗体、生理活性物質等を産生できる細胞ならびに前記態様[1]に記載の式(I)で表わされる化学修飾アルギン酸誘導体及び式(II)で表わされる化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋アルギン酸ゲルを含むコア層を、カチオン性ポリマー及びアニオン性ポリマーにて順次被覆して形成される多層ポリマーコーティング架橋アルギン酸ゲルファイバを用いる抗体、生理活性物質等の製造方法である。一態様における前記製造方法は、前記多層ポリマーコーティング架橋アルギン酸ゲルファイバを培養容器に入れ、培地を添加し、前記多層ポリマーコーティング架橋アルギン酸ゲルファイバを含浸させ、培養を行うことによる、抗体、生理活性物質等の製造方法である。
[3C]前記態様[3B]における多層ポリマーコーティング架橋アルギン酸ゲルファイバは、前記態様([1B]~[1B-18-6])のいずれかに記載の多層ポリマーコーティング架橋アルギン酸ゲルファイバである。
[3B-1]前記態様[3B]において、培養容器及び培養は、前記態様[3-1]に記載されたものと同じである。
[3B-2]前記態様[3B]~[3B-1]のいずれか1つにおいて、培養時の温度は、例えば、約28℃~約39℃の範囲であり、例えば、約30℃~約37℃の範囲である。
[3B-3]前記態様[3B]~[3B-2]のいずれか1つにおいて、培養時の攪拌速度は、例えば、約50~約250rpmであり、例えば、約125rpmである。
[3B-4]前記態様[3]~[3B-3]のいずれか1つにおいて、培養条件は、例えば、培養温度を約28℃~約39℃の範囲とし、5%CO雰囲気下に培養装置で、約125rpmの攪拌速度で培養をする。
[3B-5]前記態様[3B]~[3B-4]のいずれか1つにおいて、培養する期間は、例えば、7日であり、又は14日であり、又は28日であり、又は42日であり、又は56日であり、又は70日である。
[3B-6]前記態様[3B]において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる抗体、生理活性物質等を産生できる細胞は、前記態様[1-3]~[1-3-5]、[1B-3]~[1B-3-19]のいずれか1項に記載の抗体、生理活性物質等を産生できる細胞と同じである。
[3B-7]前記態様[3B]~[3B-5]のいずれか1つにおいて、細胞増殖抑制剤を添加することを含む、抗体、生理活性物質等の製造方法である。
 前記態様に記載された多層ポリマーコーティング架橋アルギン酸ゲルファイバを用いる抗体、生理活性物質等の製造方法及び各要素を組み合わせることで、抗体、生理活性物質等の製造方法の好ましい態様を任意に形成し得る。
[4]第4の態様は、前記態様[3]~[3-7]のいずれか1つに記載の抗体の製造方法で得られるポリマーコーティング架橋アルギン酸ゲルファイバのコア層で産生されたカチオン性ポリマー層を透過する抗体が、例えば、IgG、IgA、IgM、IgD、及びIgE等からなる群から選択されるアイソタイプを有する抗体である。
[4B]第4Bの態様は、前記態様[3B]~[3B-7]に記載の抗体の製造方法において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層で産生されカチオン性ポリマー層およびアニオン性ポリマー層を透過する抗体が、例えば、IgG、IgA、IgM、IgD、及びIgE等からなる群から選択されるアイソタイプを有する抗体である。
[5]第5の態様は、前記態様[3]~[3-7]のいずれか1つに記載の抗体の製造方法で得られるポリマーコーティング架橋アルギン酸ゲルファイバのコア層で産生されたカチオン性ポリマー層を透過する抗体の分子量が、例えば、約45,000~約1,000,000Da、約3,000~約1,000,000Da、約20,000~約1,000,000Da、約20,000~約400,000Da、約45,000~約400,000Da、約20,000~約200,000Da、約45,000~約200,000Daの範囲である抗体である。
[5B]第5Bの態様は、前記態様[3B]~[3B-7]に記載の抗体の製造方法において、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層で産生され、カチオン性ポリマー層およびアニオン性ポリマー層を透過する抗体の分子量が、例えば、約3,000~約1,000,000Da、約20,000~約1,000,000Da、約45,000~約1,000,000Da、約20,000~約400,000Da、約45,000~約400,000Da、約20,000~約200,000Da、約45,000~約200,000Daの範囲である抗体である。
[6]第6の態様は、前記態様[3]~[3-7]のいずれか1つに記載の製造方法にて、MIN6細胞を用いて産生されたインスリンの分子量が、例えば、約5,000~10,000の範囲であるインスリンである。
[6B]第6Bの態様は、前記態様[3]~[3-7]、[3B]~[3B-7]に記載の製造方法にて、生理活性物質産生細胞を用いて産生された生理活性物質の分子量が、例えば、例えば、約3,000~約1,000,000Da、約20,000~約1,000,000Da、約45,000~約1,000,000Da、約20,000~約400,000Da、約45,000~約400,000Da、約20,000~約200,000Da、約45,000~約200,000Daの範囲である生理活性物質である。
[7]第7の態様は、前記態様[3]~[3-7]のいずれか1つに記載の抗体の製造方法において得られる抗体が、例えば、ムロモナブ-CD3産生CHO細胞を用いてムロモナブ-CD3、トラスツズマブ産生CHO細胞を用いてトラスツズマブ、リツキシマブ産生CHO細胞を用いてリツキシマブ、パリビズマブ産生CHO細胞を用いてパリビズマブ、インフリキシマブ産生CHO細胞を用いてインフリキシマブ、バシリキシマブ産生CHO細胞を用いてバシリキシマブ、トシリズマブ産生CHO細胞を用いてトシリズマブ、ゲムツズマブ産生CHO細胞を用いてゲムツズマブ、ベバシズマブ産生CHO細胞を用いてベバシズマブ、イブリツモマブ産生CHO細胞を用いてイブリツモマブ、アダリムマブ産生CHO細胞を用いてアダリムマブ、セツキシマブ産生CHO細胞を用いてセツキシマブ、ラニビズマブ産生CHO細胞を用いてラニビズマブ、オマリズマブ産生CHO細胞を用いてオマリズマブ、エクリズマブ産生CHO細胞を用いてエクリズマブ、パニツムマブ産生CHO細胞を用いてパニツムマブ、ウステキヌマブ産生CHO細胞を用いてウステキヌマブ、ゴリムマブ産生CHO細胞を用いてゴリムマブ、カナキヌマブ産生CHO細胞を用いてカナキヌマブ、デノスマブ産生CHO細胞を用いてデノスマブ、モガムリズマブ産生CHO細胞を用いてモガムリズマブ、セルトリズマブ産生CHO細胞を用いてセルトリズマブ、オファツムマブ産生CHO細胞を用いてオファツムマブ、ペルツズマブ産生CHO細胞を用いてペルツズマブ、ブレンツキシマブ産生CHO細胞を用いてブレンツキシマブ、ナタリズマブ産生CHO細胞を用いてナタリズマブ、ニボルマブ産生CHO細胞を用いてニボルマブ、アレムツズマブ産生CHO細胞を用いてアレムツズマブ、セクキヌマブ産生CHO細胞を用いてセクキヌマブ、ラムシルマブ産生CHO細胞を用いてラムシルマブ、イピリムマブ産生CHO細胞を用いてイピリムマブ、エボロクマブ産生CHO細胞を用いてエボロクマブ、メポリズマブ産生CHO細胞を用いてメポリズマブ、アリロクマブ産生CHO細胞を用いてアリロクマブ、イキセキズマブ産生CHO細胞を用いてイキセキズマブ、ブロダルマブ産生CHO細胞を用いてブロダルマブ、イダルシズマブ産生CHO細胞を用いてイダルシズマブ、エロツズマブ産生CHO細胞を用いてエロツズマブ、ペムブロリズマブ産生CHO細胞を用いてペムブロリズマブ、サリルマブ産生CHO細胞を用いてサリルマブ、ベズロトクスマブ産生CHO細胞を用いてベズロトクスマブ、ベリムマブ産生CHO細胞を用いてベリムマブ、ダラツムマブ産生CHO細胞を用いてダラツムマブ、アベルマブ産生CHO細胞を用いてアベルマブ、デュピルマブ産生CHO細胞を用いてデュピルマブ、アテゾリズマブ産生CHO細胞を用いてアテゾリズマブ、ベンラリズマブ産生CHO細胞を用いてベンラリズマブ、イノツズマブ産生CHO細胞を用いてイノツズマブ、エミシズマブ産生CHO細胞を用いてエミシズマブ、グセルクマブ産生CHO細胞を用いてグセルクマブ、デュルバルマブ産生CHO細胞を用いてデュルバルマブ、オビヌツズマブ産生CHO細胞を用いてオビヌツズマブ、ベドリズマブ産生CHO細胞、又は抗GPVI抗体産生CHO細胞を用いて抗GPVI抗体である。
[7-1]前記態様[3]~[3-7]のいずれか1つに記載の抗体の製造方法において、産生可能な抗体としては、例えば、トラスツズマブ産生CHO細胞を用いてトラスツズマブ、リツキシマブ産生CHO細胞を用いてリツキシマブ、インフリキシマブ産生CHO細胞を用いてインフリキシマブ、トシリズマブ産生CHO細胞を用いてトシリズマブ、アダリムマブ産生CHO細胞を用いてアダリムマブ、ニボルマブ産生CHO細胞を用いてニボルマブ又は抗GPVI抗体産生CHO細胞を用いて抗GPVI抗体であり;例えば、トシリズマブ産生CHO細胞を用いてトシリズマブ、又は抗GPVI抗体産生CHO細胞を用いて抗GPVI抗体である。
[7B]第7Bの態様は、前記態様[3]~[3-7]、[3B]~[3B-7]に記載の抗体の製造方法において得られる抗体が、ムロモナブ-CD3、トラスツズマブ、リツキシマブ、パリビズマブ、インフリキシマブ、バシリキシマブ、トシリズマブ、ベバシズマブ、アダリムマブ、セツキシマブ、オマリズマブ、エクリズマブ、パニツムマブ、ウステキヌマブ、ゴリムマブ、カナキヌマブ、デノスマブ、オファツムマブ、ペルツズマブ、ナタリズマブ、ニボルマブ、アレムツズマブ、セクキヌマブ、ラムシルマブ、イピリムマブ、エボロクマブ、メポリズマブ、アリロクマブ、イキセキズマブ、ブロダルマブ、エロツズマブ、ペムブロリズマブ、サリルマブ、ベズロトクスマブ、ベリムマブ、ダラツムマブ、アベルマブ、デュピルマブ、アテゾリズマブ、エミシズマブ、グセルクマブ、デュルバルマブ、ベドリズマブ、ロモソズマブ、リサンキズマブ、ネシツムマブ、ラブリズマブ、ブロスマブ、イサツキシマブ、チルドラキズマブ、サトラリズマブ、ガルカネズマブ、ジヌツキシマブ、フレマネズマブ、エレヌマブ、カシリビマブ、イムデビマブ、アニフロルマブ、ソトロビマブ、オクレリズマブ、ナキシタマブ、アデュカヌマブ、タファシタマブ、マルジェツキシマブ、ガンテネルマブ、チラゴルマブ、クロバリマブ、ネモリズマブ、カツマクソマブ、プラモタマブ、ファリシマブ、ゲムツズマブ、イブリツモマブ、ブレンツキシマブ、イノツズマブ、ポラツズマブ、エンホルツマブ、サシツズマブ、ベランタマブ、ロンカスツキシマブ、チソツマブ、ダトポタマブ、パトリツマブ等の抗体;モガムリズマブ、ベンラリズマブ、オビヌツズマブ、イネビリズマブ等の改変糖鎖を有する抗体;ラニビズマブ、イダルシズマブ、ブリナツモマブ、ブロルシズマブ、アブシキシマブ、カプラシズマブ、セルトリズマブ等の抗体断片からなる低分子抗体である。
[7C]第7Cの態様は、前記態様[3]~[3-7]、[3B]~[3B-7]に記載の抗体の製造方法において得られる抗体が、ムロモナブ-CD3産生CHO細胞、トラスツズマブ産生CHO細胞、リツキシマブ産生CHO細胞、パリビズマブ産生NS0細胞、パリビズマブ産生CHO細胞、インフリキシマブ産生Sp2/0細胞、インフリキシマブ産生CHO細胞、バシリキシマブ産生Sp2/0細胞、バシリキシマブ産生CHO細胞、トシリズマブ産生CHO細胞、ベバシズマブ産生CHO細胞、アダリムマブ産生CHO細胞、セツキシマブ産生Sp2/0細胞、セツキシマブ産生CHO細胞、オマリズマブ産生CHO細胞、エクリズマブ産生NS0細胞、エクリズマブ産生CHO細胞、パニツムマブ産生CHO細胞、ウステキヌマブ産生Sp2/0細胞、ウステキヌマブ産生CHO細胞、ゴリムマブ産生Sp2/0細胞、ゴリムマブ産生CHO細胞、カナキヌマブ産生Sp2/0細胞、カナキヌマブ産生CHO細胞、デノスマブ産生CHO細胞、オファツムマブ産生NS0細胞、オファツムマブ産生CHO細胞、ペルツズマブ産生CHO細胞、ナタリズマブ産生NS0細胞、ナタリズマブ産生CHO細胞、ニボルマブ産生CHO細胞、アレムツズマブ産生CHO細胞、セクキヌマブ産生CHO細胞、ラムシルマブ産生NS0細胞、ラムシルマブ産生CHO細胞、イピリムマブ産生CHO細胞、エボロクマブ産生CHO細胞、メポリズマブ産生CHO細胞、アリロクマブ産生CHO細胞、イキセキズマブ産生CHO細胞、ブロダルマブ産生CHO細胞、エロツズマブ産生NS0細胞、エロツズマブ産生CHO細胞、ペムブロリズマブ産生CHO細胞、サリルマブ産生CHO細胞、ベズロトクスマブ産生CHO細胞、ベリムマブ産生NS0細胞、ベリムマブ産生CHO細胞、ダラツムマブ産生CHO細胞、アベルマブ産生CHO細胞、デュピルマブ産生CHO細胞、アテゾリズマブ産生CHO細胞、エミシズマブ産生CHO細胞、グセルクマブ産生CHO細胞、デュルバルマブ産生CHO細胞、ベドリズマブ産生CHO細胞、ロモソズマブ産生CHO細胞、リサンキズマブ産生CHO細胞、ネシツムマブ産生NS0細胞、ネシツムマブ産生CHO細胞、ラブリズマブ産生CHO細胞、ブロスマブ産生CHO細胞、イサツキシマブ産生CHO細胞、チルドラキズマブ産生CHO細胞、サトラリズマブ産生CHO細胞、ガルカネズマブ産生CHO細胞、ジヌツキシマブ産生Sp2/0細胞、ジヌツキシマブ産生CHO細胞、フレマネズマブ産生CHO細胞、エレヌマブ産生CHO細胞、カシリビマブ産生CHO細胞、イムデビマブ産生CHO細胞、アニフロルマブ産生NS0細胞、アニフロルマブ産生CHO細胞、ソトロビマブ産生CHO細胞、オクレリズマブ産生CHO細胞、ナキシタマブ産生CHO細胞、アデュカヌマブ産生CHO細胞、タファシタマブ産生CHO細胞、マルジェツキシマブ産生CHO細胞、ゲムツズマブ産生NS0細胞、ゲムツズマブ産生CHO細胞、イブリツモマブ産生CHO細胞、ブレンツキシマブ産生CHO細胞、イノツズマブ産生CHO細胞、ポラツズマブ産生CHO細胞、エンホルツマブ産生CHO細胞、サシツズマブ産生Sp2/0細胞、サシツズマブ産生CHO細胞、ベランタマブ産生CHO細胞、ロンカスツキシマブ産生CHO細胞、チソツマブ産生CHO細胞、モガムリズマブ産生CHO細胞、ベンラリズマブ産生CHO細胞、オビヌツズマブ産生CHO細胞、イネビリズマブ産生CHO細胞、ラニビズマブ産生CHO細胞、イダルシズマブ産生CHO細胞、ブリナツモマブ産生CHO細胞、ブロルシズマブ産生CHO細胞、アブシキシマブ産生CHO細胞、カプラシズマブ産生CHO細胞、セルトリズマブ産生CHO細胞、抗GPVI抗体産生CHO細胞等のCHO細胞から産生される抗体である。
[7C-1]前記態様[3]~[3-7]、[3B]~[3B-7]に記載の抗体の製造方法において得られる抗体が、ムロモナブ-CD3産生CHO細胞、トラスツズマブ産生CHO細胞、リツキシマブ産生CHO細胞、パリビズマブ産生CHO細胞、インフリキシマブ産生CHO細胞、バシリキシマブ産生CHO細胞、トシリズマブ産生CHO細胞、ゲムツズマブ産生CHO細胞、ベバシズマブ産生CHO細胞、イブリツモマブ産生CHO細胞、アダリムマブ産生CHO細胞、セツキシマブ産生CHO細胞、ラニビズマブ産生CHO細胞、オマリズマブ産生CHO細胞、エクリズマブ産生CHO細胞、パニツムマブ産生CHO細胞、ウステキヌマブ産生CHO細胞、ゴリムマブ産生CHO細胞、カナキヌマブ産生CHO細胞、デノスマブ産生CHO細胞、モガムリズマブ産生CHO細胞、セルトリズマブ産生CHO細胞、オファツムマブ産生CHO細胞、ペルツズマブ産生CHO細胞、ブレンツキシマブ産生CHO細胞、ナタリズマブ産生CHO細胞、ニボルマブ産生CHO細胞、アレムツズマブ産生CHO細胞、セクキヌマブ産生CHO細胞、ラムシルマブ産生CHO細胞、イピリムマブ産生CHO細胞、エボロクマブ産生CHO細胞、メポリズマブ産生CHO細胞、アリロクマブ産生CHO細胞、イキセキズマブ産生CHO細胞、ブロダルマブ産生CHO細胞、イダルシズマブ産生CHO細胞、エロツズマブ産生CHO細胞、ペムブロリズマブ産生CHO細胞、サリルマブ産生CHO細胞、ベズロトクスマブ産生CHO細胞、ベリムマブ産生CHO細胞、ダラツムマブ産生CHO細胞、アベルマブ産生CHO細胞、デュピルマブ産生CHO細胞、アテゾリズマブ産生CHO細胞、ベンラリズマブ産生CHO細胞、イノツズマブ産生CHO細胞、エミシズマブ産生CHO細胞、グセルクマブ産生CHO細胞、デュルバルマブ産生CHO細胞、オビヌツズマブ産生CHO細胞、ベドリズマブ産生CHO細胞、ロモソズマブ産生CHO細胞、リサンキズマブ産生CHO細胞、ネシツムマブ産生CHO細胞、ラブリズマブ産生CHO細胞、ブロスマブ産生CHO細胞、イサツキシマブ産生CHO細胞、チルドラキズマブ産生CHO細胞、サトラリズマブ産生CHO細胞、ガルカネズマブ産生CHO細胞、ジヌツキシマブ産生CHO細胞、フレマネズマブ産生CHO細胞、エレヌマブ産生CHO細胞、カシリビマブ産生CHO細胞、イムデビマブ産生CHO細胞、アニフロルマブ産生CHO細胞、ソトロビマブ産生CHO細胞、オクレリズマブ産生CHO細胞、ナキシタマブ産生CHO細胞、アデュカヌマブ産生CHO細胞、タファシタマブ産生CHO細胞、マルジェツキシマブ産生CHO細胞、ポラツズマブ産生CHO細胞、エンホルツマブ産生CHO細胞、サシツズマブ産生CHO細胞、ベランタマブ産生CHO細胞、ロンカスツキシマブ産生CHO細胞、チソツマブ産生CHO細胞、イネビリズマブ産生CHO細胞、ブリナツモマブ産生CHO細胞、ブロルシズマブ産生CHO細胞、アブシキシマブ産生CHO細胞、カプラシズマブ産生CHO細胞、抗GPVI抗体産生CHO細胞等のCHO細胞から産生される抗体である。
[7C-2]前記態様[3]~[3-7]、[3B]~[3B-7]に記載の抗体の製造方法において得られる抗体が、トラスツズマブ産生CHO細胞、リツキシマブ産生CHO細胞、インフリキシマブ産生CHO細胞、トシリズマブ産生CHO細胞、アダリムマブ産生CHO細胞、ニボルマブ産生CHO細胞、及び抗GPVI抗体産生CHO細胞等のCHO細胞から産生される抗体であり;又はトシリズマブ産生CHO細胞又は抗GPVI抗体産生CHO細胞から産生される抗体であり; 又はトシリズマブ産生CHO細胞から産生される抗体である。
 以下、各態様についてより詳細に説明する。
1.アルギン酸(Alginic acid)
 本明細書中の、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の合成原料になるアルギン酸、コア層に含むことができるアルギン酸溶液又はアルギン酸ゲルの原料になるアルギン酸、及びアニオン性ポリマー層の形成に用られるアルギン酸について、以下説明する。
 本明細書中、アルギン酸と記載する場合、アルギン酸、アルギン酸エステル、及びそれらの塩(例えば、アルギン酸ナトリウム)からなる群から選択される少なくとも1種のアルギン酸(「アルギン酸類」という場合がある)を意味する。用いられるアルギン酸は、天然由来でも合成物であってもよいが、天然由来であるのが好ましい。好ましく用いられるアルギン酸類は、レッソニア、マクロシスティス、ラミナリア、アスコフィラム、ダービリア、カジメ、アラメ、コンブなどの褐藻類から抽出される生体内吸収性の多糖類であって、D-マンヌロン酸(M)とL-グルロン酸(G)という2種類のウロン酸が直鎖状に重合したポリマーである。より具体的には、D-マンヌロン酸のホモポリマー画分(MM画分)、L-グルロン酸のホモポリマー画分(GG画分)、およびD-マンヌロン酸とL-グルロン酸がランダムに配列した画分(M/G画分)が任意に結合したブロック共重合体である。
 アルギン酸は、褐藻類の海藻から抽出し、精製して製造される天然多糖類の一種であり、D-マンヌロン酸(M)とL-グルロン酸(G)が重合したポリマーである。アルギン酸のD-マンヌロン酸とL-グルロン酸の構成比(M/G比)、すなわちゲル強度は、主に海藻等の由来となる生物の種類によって異なり、また、その生物の生育場所や季節による影響を受け、M/G比が約0.2の高G型からM/G比が約5の高M型まで高範囲にわたる。アルギン酸のM/G比、MとGの配列の仕方等によってアルギン酸の物理化学的性質が異なり、また好ましい用途が異なる場合がある。アルギン酸類のゲル化能力および生成したゲルの性質は、M/G比によって影響を受け、一般的に、G比率が高い場合にはゲル強度が高くなることが知られている。M/G比は、その他にも、ゲルの硬さ、もろさ、吸水性、柔軟性などにも影響を与える。したがって、本発明で使用するアルギン酸は、その最終使用用途に応じて、適切なM/G比や適切な粘度のものを用いるのがよい。
 アルギン酸の工業的な製造方法には、酸法とカルシウム法などがあるが、本発明ではいずれの製法で製造されたものも使用することができる。精製により、HPLC法による定量値が80~120質量%の範囲に含まれるものが好ましく、90~110質量%の範囲に含まれるものがより好ましく、95~105質量%の範囲に含まれるものがさらに好ましい。本発明においては、HPLC法による定量値が前記の範囲に含まれるものを高純度のアルギン酸と称する。本発明で使用するアルギン酸又はその塩は、高純度アルギン酸であることが好ましい。市販品としては、例えば、キミカアルギンシリーズとして、(株)キミカより販売されているもの、好ましくは、高純度食品・医薬品用グレードのものを購入して使用することができる。市販品を、さらに適宜精製して使用することも可能である。例えば、低エンドトキシン処理することが好ましい。精製法や低エンドトキシン処理方法は、例えば特開2007-75425号公報に記載されている方法を採用することができる。本明細書中、質量%と記載した場合、w/w%又はw/v%を意味するものとする。
 本発明で使用する「アルギン酸」におけるアルギン酸の塩としては、「アルギン酸の1価金属塩」であり、アルギン酸のD-マンヌロン酸またはL-グルロン酸のカルボン酸の水素イオンを、Na+やK+などの1価金属イオンとイオン交換することでつくられる塩である。アルギン酸の1価金属塩としては、具体的には、アルギン酸ナトリウム、アルギン酸カリウムなどを挙げることができるが、特に、アルギン酸ナトリウムが好ましい。
 本明細書中、アルギン酸は、アルギン酸を(ALG)として、アルギン酸の任意のカルボキシル基の1つを-COOHとして、(ALG)-COOHと表記する場合がある。
 本発明で使用するアルギン酸は、その最終使用用途に応じて、適切な重量平均分子量を有するものを用いる。本発明で使用するアルギン酸の重量平均分子量(GPC)は、例えば、1万~1,000万であり;好ましくは10万~500万であり;より好ましくは15万~300万である。
 いくつかの態様では、アルギン酸は、アルギン酸ナトリウムである。アルギン酸ナトリウムは、市販品のアルギン酸ナトリウムを用いることができる。ここで、後述の実施例で用いられるアルギン酸ナトリウムは、下表に記載したA-1、A-2、A-3、B-1、B-2、及びB-3のアルギン酸ナトリウム(発売元 持田製薬株式会社)から選択される。各アルギン酸ナトリウムの1w/w%の水溶液の粘度、重量平均分子量及びM/G比を下記の表に示す。
Figure JPOXMLDOC01-appb-T000058
 前記アルギン酸ナトリウムA-1、A-2、A-3、B-1、B-2、及びB-3の各物性値は、下記の各種方法により測定した。測定方法は、当該方法に限定されるものではないが、測定方法により各物性値が上記のものと異なる場合がある。
[アルギン酸ナトリウムの粘度測定]
 日本薬局方(第16版)の粘度測定法に従い、回転粘度計法(コーンプレート型回転粘度計)を用いて測定した。具体的な測定条件は以下のとおりである。試料溶液の調製は、MilliQ水を用いて行った。測定機器は、コーンプレート型回転粘度計(粘度粘弾性測定装置レオストレスRS600(Thermo Haake GmbH)センサー:35/1)を用いた。回転数は、1w/w%アルギン酸ナトリウム溶液測定時は1rpmとした。読み取り時間は、2分間測定し、開始1分から2分までの平均値とした。3回の測定の平均値を測定値とした。測定温度は20℃とした。
[アルギン酸ナトリウムの重量平均分子量測定]
(1)ゲル浸透クロマトグラフィー(GPC)と、(2)GPC-MALSの2種類の測定法で測定した。測定条件は以下のとおりである。
[前処理方法]
 試料に溶離液を加え溶解後、0.45μmメンブランフィルターろ過したものを測定溶液とした。
(1)ゲル浸透クロマトグラフィー(GPC)測定
[測定条件(相対分子量分布測定)]
 カラム:TSKgel GMPW-XL×2+G2500PW-XL(7.8mm I.D.×300mm×3本)
  溶離液:200mM硝酸ナトリウム水溶液
  流量:1.0mL/min
  濃度:0.05%
  検出器:RI検出器
  カラム温度:40℃
  注入量:200μL
  分子量標準:標準プルラン、グルコース
(2)GPC-MALS測定
[屈折率増分(dn/dc)測定(測定条件)]
 示差屈折率計:Optilab T-rEX
 測定波長:658nm
 測定温度:40℃
 溶媒:200mM硝酸ナトリウム水溶液
 試料濃度:0.5~2.5mg/mL(5濃度)
[測定条件(絶対分子量分布測定)]
 カラム:TSKgel GMPW-XL×2+G2500PW-XL(7.8mm I.D.×300mm×3本)
  溶離液:200mM硝酸ナトリウム水溶液
  流量:1.0mL/min
  濃度:0.05%
  検出器:RI検出器、光散乱検出器(MALS)
  カラム温度:40℃
  注入量:200μL
 本明細書中、アルギン酸、アルギン酸誘導体、架橋アルギン酸、及び架橋アルギン酸の分子量において、単位としてDa(ダルトン)を付記する場合がある。
 アルギン酸類のD-マンヌロン酸とL-グルロン酸の構成比(M/G比)は、主に海藻等の由来となる生物の種類によって異なり、また、その生物の生育場所や季節による影響を受け、M/G比が約0.2の高G型からM/G比が約5の高M型まで高範囲にわたる。アルギン酸類のゲル化能力および生成したゲルの性質は、M/G比によって影響を受け、一般的に、G比率が高い場合にはゲル強度が高くなることが知られている。M/G比は、その他にも、ゲルの硬さ、もろさ、吸水性、柔軟性などにも影響を与える。用いるアルギン酸類および/またはその塩のM/G比は、通常、0.1~4.0であり、ある態様では、0.1~3.0であり、ある態様では、0.1~2.0であり、ある態様では0.5~1.8であり、ある態様では0.8~1.2である。又、別の態様では、0.1~0.5である。
 また、本発明で使用するアルギン酸は、その最終使用用途に応じて、適切な粘度や、適切なM/G比のものを用いるのがよい。
 本明細書中、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 本明細書中、用いられる「アルギン酸エステル」、「アルギン酸塩」とは、特に限定されないが、架橋剤と反応させるため、架橋反応を阻害する官能基を有していないことが必要である。アルギン酸エステルとしては、好ましくは、アルギン酸プロピレングリコール、等が挙げられる。
 アルギン酸は、例えば、アルギン酸の1価の塩、アルギン酸の2価の塩の形態をとることができる。アルギン酸の1価の塩としては、例えば、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウム、等が挙げられ、好ましくは、アルギン酸ナトリウムまたはアルギン酸カリウムであり、より好ましくは、アルギン酸ナトリウムである。アルギン酸の2価の塩としては、例えば、アルギン酸カルシウム、アルギン酸マグネシウム、アルギン酸バリウム、アルギン酸ストロンチウム、等が挙げられる。
 アルギン酸は、高分子多糖類であり、分子量を正確に定めることは困難であるが、一般的に重量平均分子量で1,000~1000万、好ましくは1万~800万、より好ましくは2万~300万である。天然物由来の高分子物質の分子量測定では、測定方法により値に違いが生じうることが知られている。
 本明細書において本発明のアルギン酸誘導体またはアルギン酸又はその塩の分子量を特定する場合は、特段のことわりがない限り、サイズ排除クロマトグラフィー(SEC)により算出される重量平均分子量である。本発明で使用するアルギン酸又はその塩としても、その最終使用用途に応じて、適切な分子量分布のものを用いることが望ましい。
 例えば、後記実施例に記載したゲル浸透クロマトグラフィー(GPC)又はゲルろ過クロマトグラフィー(これらを合わせてサイズ排除クロマトグラフィー(SEC)ともいう)の測定条件にて、好ましくは、10万~500万であり、より好ましくは15万~300万である。また、ある態様では、50万~300万であり、より好ましくは、100万~250万であり、さらに好ましくは、100万~200万である。
 また、例えば、GPC-MALS(SEC-MALS)法によれば、絶対重量平均分子量を測定することができる。GPC-MALS法により測定した重量平均分子量(絶対分子量)は、好ましくは1万以上、より好ましくは5万以上、さらに好ましくは6万以上であり、また好ましくは、100万以下、より好ましくは80万以下、さらに好ましくは70万以下、とりわけ好ましくは50万以下である。その好ましい範囲は、1万~100万であり、より好ましくは5万~80万であり、さらに好ましくは6万~50万である。
 通常、高分子多糖類の分子量を上記のようなSEC、SEC-MALSを用いた手法で算出する場合、約10%~約30%の測定誤差を生じうる。例えば、50万であれば35万~65万、100万であれば70万~130万程度の範囲で値の変動が生じうる。本明細書中、分子量測定の記載において「約」と記載した場合、当該数値の±10%迄、ある態様では当該数値の±20%迄の値も含み得るものである。
 ここで、一般に天然物由来の高分子物質は、単一の分子量を持つのではなく、種々の分子量を持つ分子の集合体であるため、ある一定の幅を持った分子量分布として測定される。代表的な測定手法はゲルろ過クロマトグラフィーである。ゲルろ過クロマトグラフィーにより得られる分子量分布の代表的な情報としては、重量平均分子量(Mw)、数平均分子量(Mn)、分散比(Mw/Mn)があげられる。
 分子量の大きい高分子の平均分子量への寄与を重視したのが重量平均分子量であり、下記式で表される。
  Mw=Σ(WiMi)/W=Σ(HiMi)/Σ(Hi)
 数平均分子量は、高分子の総重量を高分子の総数で除して算出される。
  Mn=W/ΣNi=Σ(MiNi)/ΣNi=Σ(Hi)/Σ(Hi/Mi)
 ここで、Wは高分子の総重量、Wiはi番目の高分子の重量、Miはi番目の溶出時間における分子量、Niは分子量Miの個数、Hiはi番目の溶出時間における高さである。
 天然物由来の高分子物質の分子量測定では、測定方法により値に違いが生じうることが知られている(ヒアルロン酸の例:Chikako YOMOTA et.al. Bull.Natl.Health Sci., Vol.117, pp135-139(1999)、Chikako YOMOTA et.al. Bull.Natl.Inst. Health Sci., Vol.121, pp30-33(2003))。アルギン酸の分子量測定については、固有粘度(Intrinsic viscosity)から算出する方法、SEC-MALLS(Size Exclusion Chromatography with Multiple Angle Laser Light Scattering Detection)により算出する方法が記載された文献がある(ASTM F2064-00(2006),ASTM International発行)。本発明においては、重量平均分子量は、上記文献に示されるような常法にて、例えばサイズ排除クロマトグラフィー(SEC)により分子量を測定し、プルランを標準物質として用いた較正曲線により算出した値とすることができる。
 又、本発明においては、重量平均分子量は、上記文献に示されるような常法にて、例えばサイズ排除クロマトグラフィー(SEC)―MALSにより測定した絶対分子量とすることができる。
 アルギン酸類の分子量の測定は、常法に従い測定することができる。
 本明細書中においてアルギン酸又はその塩の分子量を特定する場合は、特段のことわりがない限り、ゲルろ過クロマトグラフィーにより算出される重量平均分子量である。分子量測定にゲルろ過クロマトグラフィーを用いる場合の代表的な条件は、例えば、後述する本実施例の条件を採用することができる。カラムは、例えば、Superose6 Increase10/300 GLカラム(GEヘルスケアサイエンス社)を用いることができ、展開溶媒として、例えば、0.15mol/L NaClを含む10mmol/Lリン酸緩衝液(pH7.4)を使用することができ、分子量標準としてブルーデキストラン、チログロブリン、フェリチン、アルドラーゼ、コンアルブミン、オブアルブミン、リボヌクレアーゼAおよびアプロチニンを用いることができる。
 本明細書中で用いられるアルギン酸の粘度は、特に限定されないが、1w/w%のアルギン酸類の水溶液として粘度を測定した場合、好ましくは、10mPa・s~1000mPa・s、より好ましくは、50mPa・s~800mPa・sである。
 アルギン酸の水溶液の粘度の測定は、常法に従い測定することができる。例えば、回転粘度計法の、共軸二重円筒形回転粘度計、単一円筒形回転粘度計(ブルックフィールド型粘度計)、円すい-平板形回転粘度計(コーンプレート型粘度計)等を用いて測定することができる。好ましくは、日本薬局方(第16版)の粘度測定法に従うことが望ましい。より好ましくは、コーンプレート型粘度計を用いる。
 アルギン酸類は、褐藻類から抽出された当初は、分子量が大きく、粘度が高めだが、熱による乾燥、精製などの過程で、分子量が小さくなり、粘度は低めとなる。製造工程の温度等の条件管理、原料とする褐藻類の選択、製造工程における分子量の分画などの手法により分子量の異なるアルギン酸類を製造することができる。さらに、異なる分子量あるいは粘度を持つ別ロットのアルギン酸類と混合することにより、目的とする分子量を有するアルギン酸類とすることも可能である。
 本明細書中で用いられるアルギン酸は、いくつかの態様においては、低エンドトキシン処理されていないアルギン酸であり、又は別のいくつかの態様においては、低エンドトキシン処理されたアルギン酸である。低エンドトキシンとは、実質的に炎症、または発熱を惹起しない程度にまでエンドトキシンレベルが低いことをいう。より好ましくは、低エンドトキシン処理されたアルギン酸類であることが望ましい。
 低エンドトキシン処理は、公知の方法またはそれに準じる方法によって行うことができる。例えば、ヒアルロン酸ナトリウムを精製する、菅らの方法(例えば、特開平9-324001号公報など参照)、β1,3-グルカンを精製する、吉田らの方法(例えば、特開平8-269102号公報など参照)、アルギネート、ゲランガム等の生体高分子塩を精製する、ウィリアムらの方法(例えば、特表2002-530440号公報など参照)、ポリサッカライドを精製する、ジェームスらの方法(例えば、国際公開第93/13136号パンフレットなど参照)、ルイスらの方法(例えば、米国特許第5589591号明細書など参照)、アルギネートを精製する、ハーマンフランクらの方法(例えば、Appl  Microbiol  Biotechnol(1994)40:638-643など参照)等またはこれらに準じる方法によって実施することができる。低エンドトキシン処理は、それらに限らず、洗浄、フィルター(エンドトキシン除去フィルターや帯電したフィルターなど)によるろ過、限外ろ過、カラム(エンドトキシン吸着アフィニティーカラム、ゲルろ過カラム、イオン交換樹脂によるカラムなど)を用いた精製、疎水性物質、樹脂または活性炭などへの吸着、有機溶媒処理(有機溶媒による抽出、有機溶剤添加による析出・沈降など)、界面活性剤処理(例えば、特開2005-036036号公報など参照)など公知の方法によって、あるいはこれらを適宜組合せて実施することができる。これらの処理の工程に、遠心分離など公知の方法を適宜組み合わせてもよい。アルギン酸の種類に合わせて適宜選択するのが望ましい。
 エンドトキシンレベルは、公知の方法で確認することができ、例えば、リムルス試薬(LAL)による方法、エンドスペシー(登録商標)ES-24Sセット(生化学工業株式会社)を用いる方法などによって測定することができる。
 用いられるエンドトキシンの処理方法は特に限定されないが、その結果として、アルギン酸類のエンドトキシン含有量が、リムルス試薬(LAL)によるエンドトキシン測定を行った場合に、500エンドトキシン単位(EU)/g以下であることが好ましく、さらに好ましくは、100EU/g以下、とりわけ好ましくは、50EU/g以下、特に好ましくは、30EU/g以下である。本発明において、「実質的にエンドトキシンを含まない」とは、日局エンドトキシン試験により測定したエンドトキシン値が前記の数値範囲にあるものを意味する。低エンドトキシン処理されたアルギン酸ナトリウムは、例えば、Sea Matrix(登録商標)(持田製薬株式会社)、PRONOVATM UP LVG(FMCBioPolymer)など市販品により入手可能である。
 別のいくつかの態様において、本明細書中の、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の合成原料になるアルギン酸ナトリウム、及びコア層に含むことができるアルギン酸溶液又はアルギン酸ゲルの原料になるアルギン酸ナトリウムは、特に限定されることは無いが、例えば、前記表8に記載のアルギン酸ナトリウムA-1、A-2、A-3、B-1、B-2、又はB-3から選択することが可能である。
 別のいくつかの態様において、アニオン性ポリマー層に用いることができるアルギン酸溶液の原料になるアルギン酸ナトリウムは、特に限定されることは無いが、例えば、前記表8に記載のアルギン酸ナトリウムA-1、A-2、A-3、B-1、B-2、又はB-3から選択することが可能である。
 本明細書中、前記アルギン酸ナトリウムを用いて調製されたアルギン酸溶液(アルギン酸ナトリウム溶液ともいう)の濃度は、例えば、約0.1~約3.3重量%の範囲である。
 本明細書中、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の合成原料になるアルギン酸ナトリウムは、好ましくは、前記表8に記載のA-2、A-3、B-2又はB-3であり、より好ましくは、A-2又はA-3である。又、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の合成で用いられる当該アルギン酸ナトリウム溶液の濃度は、好ましくは、1.5~2.0重量%の範囲である。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含むことができるアルギン酸溶液、又はアルギン酸ゲルの形成に用いられるアルギン酸溶液の調製に用いられるアルギン酸ナトリウムは、好ましくは、前記表8に記載のA-2、A-3、B-2又はB-3であり、より好ましくは、A-2又はA-3である。又、当該アルギン酸ナトリウムを用いて調製したアルギン酸溶液の濃度は、好ましくは約0.3~約1.5重量%の範囲である。
 本明細書中、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層の形成に用いることができるアルギン酸溶液の調製に用いられるアルギン酸ナトリウムは、好ましくは、前記表8に記載のA-2又はB-2である。又、当該アルギン酸ナトリウムを用いて調製したアルギン酸溶液の濃度は、例えば、約0.01~約5.0重量%、約0.05~約1.0重量%、約0.1~約0.5重量%、約0.15~約0.4重量%等の範囲の濃度である。
 本明細書中、アルギン酸溶液とは、アルギン酸を溶媒に溶解させた溶液を意味する。当該溶媒としては、特に限定されないが、例えば、培地、細胞培養用培地、培養液、等張緩衝液、水、リン酸緩衝生理食塩水(PBS)、及び生理食塩水等が挙げられる。アルギン酸ナトリウムを溶媒に溶解した場合、アルギン酸ナトリウム溶液と言う。
 いくつかの態様において、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の形成に用いられる式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の溶液、アルギン酸溶液は、特に限定されることは無いが、コラーゲン溶液、培地、培養液等を、混合することも可能である。尚、式(I)又は式(II)で表わされる化学修飾アルギン酸誘導体の溶液、及びアルギン酸溶液の調製に用いられる溶媒は、後述の通りである。
2.化学修飾アルギン酸誘導体
 いくつかの態様において、本明細書中の化学修飾アルギン酸誘導体は、アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカーを介して、後述のHuisgen反応における反応性基、又は当該反応性基の相補的な反応性基が導入されたものである。より具体的には、下記式(I):
Figure JPOXMLDOC01-appb-C000059
[式(I)中、(ALG)、Akn-L-、及び-NH-CO-の定義は、前述の第1の態様中の定義と同じである]で表されるアルギン酸誘導体、及び下記式(II):
Figure JPOXMLDOC01-appb-C000060
[式(II)中、(ALG)、-L-、及び-NH-CO-の定義は、前述の第1の態様中の定義と同じである]で表されるアルギン酸誘導体である。
 2価のリンカー(-L-又は-L-)は、具体的には、前記態様中に記載される2価のリンカーから選択して用いることができる。
 いくつかの態様において、本明細書中の2価のリンカー(-L-又は-L-)は、環状アルキン基(Akn-)およびアジド基との反応(Huisgen反応)を阻害しない限り、任意のリンカーを使用することも可能である。具体的には、直鎖のアルキレン基(-(CH-、n=1~30)[当該基中の-CH-は、-C(=O)-、-CONH-、-O-、-NH-、-S-、炭素数が3~8のシクロアルキル環、ベンゼン環、複素環(ピリジン環、ピペリジン環、ピペラジン環、等の5~6員芳香族複素環又は5~6員非芳香族複素環)、等の基で複数個(例えば、1~10個、又は1~5個)置き換えられても良く;当該直鎖のアルキレン基(-CH-)の水素原子は、オキソ基(=O)、C1-6アルキル基(例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、等の基)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、等)、水酸基(-OH)、等の基から選択される基で複数個(例えば、1~10個、又は1~5個)置換されていても良い]が挙げられるが、これらに限定されるものではない。
 前記式(I)又は式(II)で表わされる化学修飾アルギン酸誘導体の-NH-CO-基における、イミノ基(-NH-)の水素原子をメチル基に置換し-N(Me)-CO-基することが可能である。
 前記式(I)又は式(II)で表わされる化学修飾アルギン酸誘導体における、リンカー(-L-、-L-)とアルギン酸の結合様式は、-NH-CO-結合、又は-N(Me)-CO-結合があり;好ましくは、-NH-CO-結合である。前記-NH-CO-結合、又は-N(Me)-CO-結合の-CO-はアルギン酸のカルボキシル基に由来するものである。
 本明細書中、式(I)又は式(II)で表わされる化学修飾アルギン酸誘導体は、例えば、後述の化学修飾アルギン酸誘導体の合成方法により製造することが可能である
 本明細書の式(I)で表わされる化学修飾アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量が、約10万Da~約300万Daの範囲であり;好ましくは約30万Da~約250万Daの範囲であり、より好ましくは約50万Da~約200万Daの範囲である。又、式(II)で表わされる化学修飾アルギン酸誘導体のゲルろ過クロマトグラフィー法により測定した重量平均分子量が、約10万Da~約300万Daの範囲であり;好ましくは約30万Da~約250万Daの範囲であり、より好ましくは約50万Da~約200万Daの範囲である。
 本明細書中、式(I)のAkn-L-NH-基は、アルギン酸構成単位の全てのカルボキシル基に結合している必要はなく、又、式(II)のN-L-NH-基は、アルギン酸構成単位の全てのカルボキシル基に結合している必要はない。
 本明細書中、式(I)のAkn-L-NH-基を反応性基と言う場合、式(II)のN-L-NH-基が相補的な反応性基となる。又、逆に式(II)のN-L-NH-基を反応性基と言う場合、式(I)のAkn-L-NH-基が相補的な反応性基となる。
 本明細書中、式(I)で表わされる化学修飾アルギン酸誘導体の反応性基の導入率は、例えば、約0.1~約30mol%の範囲であり;好ましくは、約0.3~約20mol%の範囲であり;より好ましくは、約0.5~約10mol%の範囲である。又、式(II)で表わされる化学修飾アルギン酸誘導体の反応性基の導入率は、例えば、約0.1~約30mol%の範囲であり;好ましくは、約0.3~約20mol%の範囲であり;より好ましくは、約0.5~約15mol%の範囲である。
 前記反応性基又は相補的な反応性基の導入率は、アルギン酸の繰り返し単位であるウロン酸単糖単位のうち、各反応性基が導入されたウロン酸単糖単位の数を百分率で表した値である。各反応性基又は相補的な反応性基の導入率は、後述の実施例に記載の方法により求めることができる。
 本明細書中、式(I)中の環状アルキン基(Akn)及び式(II)中のアジド基が、Huisgen反応によりトリアゾール環を形成し、これにより架橋が形成される。
 本明細書中、式(I)又は式(II)で表される化学修飾アルギン酸誘導体は、その分子内の任意のカルボキシル基にて1価の塩(例えば、ナトリウム塩等)を形成しているものも、含まれる。
 本明細書中、式(I)および式(II)で表される化学修飾アルギン酸誘導体は、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルの形成に用いることができ、又多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層の形成に用いることができる。
3.Huisgen反応
 Huisgen反応(1,3-双極子付加環化反応)は、下記式に示される様に末端アジド基及び末端アルキン基を有する化合物間の縮合反応である。反応の結果、二置換1,2,3-トリアゾール環が収率良く得られ、余計な副生成物が生じないという特徴を有している。当該反応は、1,4-又は1,5-二置換トリアゾール環が生成し得ると考えられるが、銅触媒(Cu catalyst)を用いることで位置選択的にトリアゾール環を得ることが可能である。
Figure JPOXMLDOC01-appb-C000061
 又、銅触媒を用いないHuisgen反応がWittigとKrebsにより報告がなされている。即ち、シクロオクチンとフェニルアジドを混合するだけで環化付加体が得られる反応である(下記式中、R=フェニルである)。本反応は、シクロオクチンの三重結合が大きく歪んでいるため、フェニルアジドとの反応による歪みの解消が駆動力となり、反応が自発的に進行することにより、触媒が不要となった。
Figure JPOXMLDOC01-appb-C000062
 以上の様に、Huisgen反応は、置換された1級アジド、2級アジド、3級アジド、芳香族アジド、等を有するアジド化合物、及びアジド基の相補的な反応性基である末端又は環状アルキン基を有する化合物を用いることができる。又、Huisgen反応では、ほぼアジド基及びアルキン基のみが反応することから、反応基質中に種々の官能基(例えば、エステル基、カルボキシル基、アルケニル基、水酸基、アミノ基、等)を置換させることが可能である。
 いくつかの態様では、望ましくない副生成物を生じさせず、銅触媒による細胞毒性を回避させる為に銅触媒を用いずに、短時間、容易に、且つ効率的に1,2,3-トリアゾール環による架橋をアルギン酸分子間に形成させる為に、Huisgen反応のアルキン基としては、例えば、前記態様[1]に記載の環状アルキン基(シクロオクチル基)を用いる。
 好ましい態様の化学修飾アルギン酸誘導体の架橋方法においては、当該反応(Huisgen反応)にて望ましくない副反応は起こらず、副生成物がほとんど形成されない。したがって、本発明のポリマーコーティング架橋アルギン酸ゲルファイバのコア層に、抗体、生理活性物質等を産生できる細胞を取込むことが可能となる。
4.化学修飾アルギン酸誘導体の製造方法
 本明細書中、式(I)又は式(II)で表わされる化学修飾アルギン酸誘導体は、下記反応式に示される様に、式(AM-1)(Akn-L-NH:Akn-L-は、前記態様[1]中の定義と同じである)で表わされるアミン、又は、式(AM-2)(N-L-NH:-L-は、前記態様[1]中の定義と同じである)で表わされるアミンを、アルギン酸の任意のカルボキシル基と、任意の縮合剤(condensing agent)を用いる縮合反応により製造することができる。各反応の詳細条件は、国際公開第2019/240219号パンフレットに記載された条件に準じる。
Figure JPOXMLDOC01-appb-C000063
 前記、式(I)又は式(II)で表わされる化学修飾アルギン酸誘導体の製造方法において、式(AM-1)又は式(AM-2)で表わされるアミンの導入率(前記態様中の式(I)又は式(II)で表わされる化学修飾アルギン酸誘導体の反応性基の導入率と同じ意味になる)は、当該アミンの性質等を考慮することで、下記(i)~(v)等の反応条件を適宜選択して組み合わせることにより調節が可能になる。(i)縮合剤の等量の増減、(ii)反応温度の上昇・下降、(iii)反応時間の延長・短縮、(iv)反応基質のアルギン酸の濃度の調整、(v)式(AM-1)又は式(AM-2)のアミンの溶解度を上げる為に水に混和する有機溶媒を添加する、等。
 以下に、式(AM-1)又は式(AM-2)で表わされるアミンのうち、本明細書中で用いられる、より具体的なアミンの製造方法を示す。
 以下の各製造方法において、x1a、x1b、y1b、x2、y2、z2、x3a、y3a、z3a、x3b、y3b、z3b、x4、y4、x5a、y5a、z5a、x5b、y5b、z5b、x6、y6、z6、x7a、y7a、z7a、v7a、x7b、y7b、z7b、v7b、a1、b1、a2、b2、a3、b3、a4、b4、a5及びa6の定義は前記態様[1]中の記載と同じ定義であり;R=メチル基、エチル基、等のC1~6アルキル基であり;Pは、-C(O)O-tertBu基、-C(O)O-Bn基、-C(O)CH基、-C(O)CF基、-SOPh、-SOPhMe基、-SOPh(NO)基、等から選択されるアミノ基の保護基であり;E=ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子、等)、-OTs基、-OMs基、等の脱離基であり、X=ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子、等)である。又、以下の各製造方法において、式(SM-A1)、式(SM-A2)、式(SM-B)、式(SM-C1)、式(SM-C2)、式(SM-D)、式(SM-E1)、式(SM-E2)、式(SM-F)、式(SM-G1)、式(SM-G2)、式(SM-H)、式(SM-J)、式(SM-K)、式(SM-L)、式(RG-A1)、式(RG-A2)、式(RG-B1)、式(RG-C1)、式(RG-C2)、式(RG-D1)、式(RG-E1)、式(RG-E2)、式(RG-F1)、式(RG-F2)、式(RG-F3)、式(RG-G1-1)、式(RG-G1-2)、式(RG-G1-3)、式(RG-G2-1)、式(RG-G2-2)、式(RG-G2-3)、式(RG-H1)、式(RG-H2)、式(RG-I1)、式(RG-J1)、式(RG-K)、式(RG-L1)及び式(RG-M)で表される化合物は市販化合物、又は市販化合物から文献公知の製造方法により製造できる化合物である。
 又、以下の各製造方法において、保護基Pの保護・脱保護は、文献公知の方法、例えば、『プロテクティブ・グループス・イン・オーガニック・シンセシス(Protective Groups in Organic Synthesis 4thEdition) 第4版、2007年、ジョン ウィリー アンド サンズ(John Wiley & Sons)、グリーン(Greene)ら』の成書に記載された脱保護の方法に準じて、保護・脱保護を行うことができる。
 又、以下の各製造方法において、縮合反応と記載した場合、前記の縮合反応と同様の反応を意味する。
[製造方法A]
 式(AM-1-1A)及び式(AM-1-1B)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000064
<Step 1> 式(SM-A)の化合物及び式(RG-A1)の化合物を用いて、縮合反応を行うことで縮合体を得る。続いて、臭素を付加させた後、tert-BuOK等の塩基を用いて脱臭素化反応を行うことによりアルキン基を形成させる。続いて、保護基Pを脱保護することにより式(AM-1-1A)で表されるアミン、又はその塩を製造することができる。
<Step 2> 前記[製造方法A]<Step 1>と同様な方法で得られる式(SM-A2)の化合物及び式(RG-A2)の化合物を用いて縮合反応を行い、続いて、保護基Pを脱保護することにより式(AM-1-1B)で表されるアミン、又はその塩を製造することができる。
[製造方法B]
 式(AM-1-2)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000065
 式(SM-B)の化合物及び式(RG-B1)の化合物を用いて縮合反応を行うことで縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-1-2)で表されるアミン、又はその塩を製造することができる。
[製造方法C]式(AM-1-3A)及び式(AM-1-3B)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000066
 式(SM-C1)の化合物及び式(RG-C1)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-1-3A)で表されるアミン、又はその塩を製造することができる。
 式(SM-C2)の化合物及び式(RG-C2)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-1-3B)で表されるアミン、又はその塩を製造することができる。
[製造方法D]式(AM-1-D)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000067
 式(SM-D)の化合物及び式(RG-D1)の化合物を用いて縮合反応を行い、縮合体を得る。続いて保護基Pを脱保護することにより式(AM-1-D)で表されるアミン、又はその塩を製造することができる。
[製造方法E]式(AM-1-E1)及び式(AM-1-E2)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000068
 式(SM-E1)の化合物及び式(RG-E1)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-1-E1)で表されるアミン、又はその塩を製造することができる。
式(SM-E2)の化合物及び式(RG-E2)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-1-E2)で表されるアミン、又はその塩を製造することができる。
[製造方法F]式(AM-1-F)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000069
<Step 1> 式(SM-F)の化合物の化合物及び式(RG-F1)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-1-F)で表されるアミン、又はその塩を製造することができる。
<Step 2> 式(SM-F)の化合物の化合物及び式(RG-F2)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、水酸化ナトリウム等の塩基存在下、メタノール、エタノール、テトラヒドロフラン、水等の反応に関与しない溶媒若しくはそれらの混合溶媒中で、エステル基を加水分解することにより式(IM-F1)で表されるカルボン酸、又はその塩を製造することができる。
<Step 3> [製造方法F]<Step 2>で得られた式(IM-F1)の化合物の化合物及び式(RG-F3)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-1-F)で表されるアミン、又はその塩を製造することができる。
[製造方法G]式(AM-1-G1)及び式(AM-1-G2)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000070
<Step 1> 式(SM-G1)の化合物の化合物及び式(RG-G1-1)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-1-G1)で表されるアミン、又はその塩を製造することができる。
<Step 2> 式(SM-G1)の化合物の化合物及び式(RG-G1-2)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、エステル基を加水分解することにより式(IM-G1)で表されるカルボン酸、又はその塩を製造することができる。
<Step 3> [製造方法G]<Step 2>で得られた式(IM-G1)の化合物の化合物及び式(RG-G1-3)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-1-G1)で表されるアミン、又はその塩を製造することができる。
<Step 4> 式(SM-G2)の化合物の化合物及び式(RG-G2-1)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-1-G2)で表されるアミン、又はその塩を製造することができる。
<Step 5> 式(SM-G2)の化合物の化合物及び式(RG-G2-2)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、エステル基を加水分解することにより式(IM-G2)で表されるカルボン酸、又はその塩(例えば、リチウム塩、ナトリウム塩、カリウム塩等)を製造することができる。
<Step 6> [製造方法G]<Step 5>で得られた式(IM-G2)の化合物の化合物及び式(RG-G2-3)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-1-G2)で表されるアミン、又はその塩を製造することができる。
[製造方法H]
 式(AM-2-H)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000071
<Step 1> 式(SM-H)の化合物及び式(RG-H1)の化合物を用いて、 文献公知の方法、例えば、『European Journal of Organic Chemistry, 2014(6), p1280-1286; 2014年』等に記載された方法に準じて、(i)PPh、及びN(COCHMeの試薬存在下、テトラヒドロフラン等の反応に関与しない溶媒中、光延反応を行い、続いて[製造方法F]<Step 2>に記載の方法と同様に、加水分解を行うことにより、式(IM-H1)で表される化合物、又はその塩(例えば、リチウム塩、ナトリウム塩、カリウム塩等)をを製造することができる。
<Step 2> [製造方法H]<Step 1>で得られた式(IM-H1)の化合物及び式(RG-H2)の化合物を用いて縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-2-H)で表されるアミン、又はその塩を製造することができる。
[製造方法I]
 式(AM-2-I)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000072
<Step 1A> [製造方法H]<Step 1>で得られた式(IM-H1)の化合物及び式(RG-I1)の化合物を用いて縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-2-I)で表されるアミン、又はその塩を製造することができる。
[製造方法J]
 式(AM-2-J)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000073
<Step 1> 式(SM-J)の化合物及び式(RG-J1)の化合物を用いて、縮合反応を行うことにより式(IM-J1)を製造することができる。
<Step 2>[製造方法J]<Step 1>で得られる式(IM-J1)の化合物を用いて、文献公知の方法、例えば、『Organometallics,29(23),p6619-6622;2010年』等に記載された方法に準じて、ジメチルスルホキシド等の反応に関与しない溶媒中、NaNを反応させアジド基を導入した後、保護基Pを脱保護することにより式(AM-2-J)で表されるアミン、又はその塩を製造することができる。
[製造方法K]
 式(AM-2-K)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000074
<Step 1> 式(SM-K)の化合物及び式(RG-K)の化合物を用いて縮合反応を行うことにより式(IM-K)を製造することができる。
<Step 2>[製造方法K]<Step 1>で得られる式(IM-K)の化合物を用いて、[製造方法J]<Step 2>と同様な反応、保護基Pの脱保護を行うことにより式(AM-2-K)で表されるアミン、又はその塩を製造することができる。
[製造方法L]
 式(AM-2-L)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000075
式(SM-L)の化合物及び式(RG-L1)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-2-L)で表されるアミン、又はその塩を製造することができる。 
[製造方法M]
 式(AM-2-M)で表されるアミンの製造方法:
Figure JPOXMLDOC01-appb-C000076
 式(SM-L)の化合物及び式(RG-M)の化合物を用いて、縮合反応を行い縮合体を得る。続いて、保護基Pを脱保護することにより式(AM-2-M)で表されるアミン、又はその塩を製造することができる。
 前記[製造方法A]~[製造方法M]で製造することができる式(AM-1)又は式(AM-2)で表わされるアミン以外のアミン、例えば、式(AM-1)のリンカー-L-又は式(AM-2)のリンカー-L-が、直鎖のアルキレン基(-(CH-、n=1~30)[当該基中の-CH-は、-C(=O)-、-CONH-、-O-、-NH-、-S-、炭素数が3~8のシクロアルキル環、ベンゼン環、複素環(ピリジン環、ピペリジン環、ピペラジン環、等の5~6員芳香族複素環又は5~6員非芳香族複素環)、等の基で複数個(例えば、1~10個、又は1~5個)置き換えられても良く;当該直鎖のアルキレン基(-CH-)の水素原子は、オキソ基(=O)、C1-6アルキル基(例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、等の基)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、等)、水酸基(-OH)、等の基から選択される基で複数個(例えば、1~10個、又は1~5個)置換されていても良い]である場合、文献公知の方法、例えば、『実験化学講座 第5版、各本、2007年、丸善』、『Comprehensive Organic Transformations, A Guide to Functional Group Preparations, 3rd Edition (Edited by Richard C. Larock), 2018年』、『Strategic Applications of Named Reactions in Organic Synthesis, (Edited by Laszlo Kurti, Barbara Czako), Academic Press, 2005年』等に記載の合成方法を適宜組み合わせることにより、所望のアミンを製造することができる。
 本明細書中、式(AM-1)又は式(AM-2)で表わされるアミン(各々の式の下位の式も含む)は、製薬学的に許容される塩(例えば、酸付加塩;例えば塩酸塩、臭化水素酸塩、硫酸塩、酢酸塩、トリフルオロ酢酸塩、p-トルエンスルホン酸塩等)を形成する場合がある。
 本明細書中の化合物は、塩を形成することができ、常法に従い、例えば、適量の酸もしくは塩基を含む溶液を混合することにより目的の塩を形成させた後に分別濾取するか、もしくは該混合溶媒を留去することにより得ることができる。塩に関する総説として、Handbook of Pharmaceutical Salts:Properties, Selection, and Use、Stahl&Wermuth(Wiley-VCH、2002)が出版されており、本書に詳細な記載がなされている。
 本明細書中、式(AM-1)又は式(AM-2)で表わされるアミン(各々の式の下位の式も含む)又はその塩は、水、エタノール、グリセロール等の溶媒と溶媒和物を形成し得る。
 本明細書中、特に断りのない限り、環状基に可変置換基が置換している場合、該可変置換基は環状基の特定の炭素原子に結合されていない事を意味する。例えば、下記式Aにおける可変置換基Rsは、該式Aにおける炭素原子i、ii、iii、iv又はvの何れかに置換する事ができる事を意味する。
Figure JPOXMLDOC01-appb-C000077
5-1.架橋アルギン酸ゲル
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルは、前記「2.化学修飾アルギン酸誘導体」の項に記載の化学修飾アルギン酸誘導体を用いて形成される、(i)2価の金属イオン結合を介した架橋、(ii)化学結合を介した架橋、又は(iii)2価の金属イオン結合及び化学結合の両方を介した架橋を有する架橋アルギン酸ゲル(架橋アルギン酸または化学架橋アルギン酸と言うこともできる)がある。前記各ファイバのコア層に含まれる架橋アルギン酸ゲルは、架橋としてHuisgen反応(架橋反応)を行うことにより形成されるトリアゾール環による化学架橋、及び2価金属イオン(例えば、カルシウムイオン等)を共存させることにより形成されるイオン架橋の両方を含む架橋アルギン酸ゲルである。又、前記各ファイバのコア層に含まれる架橋アルギン酸ゲルは、架橋としてHuisgen反応(架橋反応)を行うことにより形成されるトリアゾール環による化学架橋を含む、架橋アルギン酸ゲルである。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルは、前記式(I)及び前記式(II)で表される化学修飾アルギン酸誘導体を用いて、当該誘導体間に化学架橋を形成させるHuisgen反応(架橋反応)を行うことで得られる。又は、前記式(I)及び前記式(II)で表される化学修飾アルギン酸誘導体に2価の金属イオンを共存させることにより、当該誘導体間にイオン架橋を形成させることで得られる。又は、前記式(I)及び前記式(II)で表される化学修飾アルギン酸誘導体を用いて、Huisgen反応(架橋反応)を行い、当該誘導体間に化学架橋を形成させ、更に2価の金属イオンを共存させることにより、当該誘導体間にイオン架橋を形成させることでも得られる。
 本明細書中、「架橋が形成される」、「架橋が形成された」、又は「架橋反応を行う」とは、前記式(I)及び前記式(II)で表される化学修飾アルギン酸誘導体を用いて、Huisgen反応を行うことにより、当該式(I)及び式(II)で表される化学修飾アルギン酸誘導体間で化学架橋(化学結合)が形成されること、又は、前記式(I)及び前記式(II)で表される化学修飾アルギン酸誘導体に2価の金属イオンを共存させることにより当該式(I)の化学修飾アルギン酸誘導体及び式(II)で表される化学修飾アルギン酸誘導体の各誘導体間でイオン架橋(イオン結合)が形成されること、又は、前記Huisgen反応による化学架橋及び2価の金属イオンによるイオン架橋の両方が形成されることを意味する。また、アルギン酸(アルギン酸ナトリウム等)に2価の金属イオンを共存させることにより、アルギン酸にイオン架橋が形成されることも意味する。
 前記式(I)及び前記式(II)で表される化学修飾アルギン酸誘導体に2価金属イオンを接触させることにより、イオン架橋が形成され、イオン架橋アルギン酸ゲルになる時間は、例えば、瞬時(例えば、1~5秒)~数時間(例えば、1~3時間)である。又、前記式(I)及び前記式(II)で表される化学修飾アルギン酸誘導体間でHuisugen反応が進行して、化学架橋が形成され、化学架橋アルギン酸ゲルになる時間は、例えば、数秒~24時間、数秒~12時間、又は数秒~30分間である。
 前記架橋アルギン酸ゲルを得る為に用いられる2価金属イオンとしては、特に限定されないが、例えば、カルシウムイオン、マグネシウムイオン、バリウムイオン、ストロンチウムイオン、亜鉛イオン等が挙げられ、好ましくはカルシウムイオン、バリウムイオン又はストロンチウムイオンであり、より好ましくはカルシウムイオン又はバリウムイオンである。
 2価金属イオンを含む溶液としては、特に限定されないが、例えば、カルシウムイオンを含む溶液(例えば、塩化カルシウム水溶液、炭酸カルシウム水溶液、グルコン酸カルシウム水溶液、等の水溶液)、バリウムイオンを含む溶液(例えば、塩化バリウム水溶液等の水溶液)、ストロンチウムイオンを含む溶液(例えば、塩化ストロンチウム水溶液等の水溶液)が挙げられ、好ましくはカルシウムイオンを含む溶液又はバリウムイオンを含む溶液であり、より好ましくは、塩化カルシウム水溶液又は塩化バリウム水溶液である。
 2価金属イオンを含む溶液の2価金属イオン濃度(例えば、カルシウムイオン又はバリウムイオン濃度)は、特に限定されないが、例えば、約1mM~約1Mの範囲、又は約10~約500mMの範囲であり;好ましくは、約10~約100mMである。
 2価金属イオンを含む溶液等を調製する際に用いる溶媒は、特に限定されないが、例えば、水道水、純水(例えば、蒸留水、イオン交換水、RO水、RO-EDI水、等)、超純水(MilliQ水)、培地、細胞培養用培地、培養液、リン酸緩衝生理食塩水(PBS)、及び生理食塩水等が挙げられ;好ましくは生理食塩水又は超純水である。
 前記各ファイバのコア層に含まれる架橋アルギン酸ゲルにおいて、イオン架橋及び化学架橋がある場合、イオン架橋の反応は瞬時かつ可逆的であるのに対して、化学架橋の反応は、比較的温和な条件でゆっくり反応が進行して得られ、非可逆的である。この性質を利用して、化学架橋とイオン架橋を適切に組み合わせることにより、本発明の架橋アルギン酸ゲルを効率的に作製することが可能となる。例えば、後述の「11.ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法」における装置XXを用いて、式(I)及び式(II)で表される化学修飾アルギン酸誘導体の混合溶液を、2価金属イオンを含有する溶液の中に射出することにより、イオン架橋が形成され、瞬時にファイバ(繊維)形状の架橋アルギン酸ゲルを作製することができる。又、同時に式(I)及び式(II)で表される化学修飾アルギン酸誘導体間でHuisgen反応(架橋反応)が進行し化学架橋が形成されることで、イオン架橋および化学架橋の両方を含むファイバ(繊維)形状の架橋アルギン酸ゲルが得られる。架橋アルギン酸ゲルの物性は、例えば、使用する2価金属イオンが含まれる水溶液(例えば、塩化カルシウム水溶液)の濃度、若しくは、化学修飾アルギン酸誘導体に導入される反応性基の導入率を変化させる等の方法で、調整が可能である。
 前記の架橋反応を利用し、式(I)及び(II)で表わされる化学修飾アルギン酸誘導体を用いて、本発明のポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルをファイバ(繊維)形状(「架橋アルギン酸ゲルファイバ」ともいう)として作製することができる。尚、当該架橋アルギン酸ゲルファイバを作製する際に、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液に、アルギン酸(例えば、アルギン酸ナトリウム)溶液を添加して、作製することができる。
 本発明では、ファイバ構造を強化(例えば、長期安定性の獲得、等)する方法の1つとして、化学架橋(Huisugen反応)を利用している。前記の様に作製されたイオン架橋及び化学架橋の両方を有する架橋アルギン酸ゲルファイバを用いて、培養液中で培養を行う場合、イオン架橋を形成している2価金属イオンが徐々に可逆的に放出され、化学架橋のみが残った架橋アルギン酸ゲルファイバとなるが、非可逆的な化学架橋によりゲル構造が保たれ、安定に継続して培養することが可能である。
 本発明の、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより形成される架橋アルギン酸ゲルは、特に限定されないが、例えば、コラーゲン溶液、コラーゲンゲル、培地、細胞培養用培地、培養液、メチルセルロース、スクロース溶液、アルギン酸溶液、アルギン酸ゲル、等の他の成分を含むことができる。
 本明細書中、単純に「アルギン酸ゲル」と記載する場合、アルギン酸(例えば、アルギン酸ナトリウム)又はその溶液に2価の金属イオンを共存させることで、イオン架橋が形成された、アルギン酸ゲルを意味する。
5-2.架橋アルギン酸ゲルにおける化学架橋
 本明細書中、架橋アルギン酸ゲルは、前記式(I)及び前記式(II)で表される化学修飾アルギン酸誘導体を混合してHuisgen反応を行うことにより、得ることができる。
 本明細書中、架橋アルギン酸ゲルは、化学架橋(アルキン基及びアジド基から形成されるトリアゾール環による架橋)を介して三次元の網目構造を形成する。好ましい化学修飾アルギン酸誘導体は、架橋後の架橋アルギン酸ゲルの安定性を改善するものである。なお、架橋アルギン酸ゲルの物性は、例えば、原料である式(I)又は式(II)で表される化学修飾アルギン酸における各反応性基の導入率によって調整することが可能である。
 いくつかの態様の架橋アルギン酸ゲルは、下記式(III-L):
Figure JPOXMLDOC01-appb-C000078
[式(III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-、-L-、及び-X-は、前記態様[1-12]中の定義と同じである]で表わされる基を介して架橋された架橋アルギン酸ゲルである。
 いくつかの態様にて、架橋アルギン酸ゲルを作製する際の、式(I)で表される化学修飾アルギン酸誘導体と、式(II)で表される化学修飾アルギン酸誘導体の混合比は、式(I)で表される化学修飾アルギン酸誘導体と式(II)で表される化学修飾アルギン酸誘導体の重量比にて、例えば、1:1.0~4.0、又は1:1.0~3.0、又は1:1.0~2.0、又は1:1.0~1.5、又は1:1であり;好ましくは1:1.0~3.0である。
 いくつかの態様にて、架橋アルギン酸ゲルを作製する際の、式(II)で表される化学修飾アルギン酸誘導体と、式(I)で表される化学修飾アルギン酸誘導体の混合比は、式(II)で表される化学修飾アルギン酸誘導体と式(I)で表される化学修飾アルギン酸誘導体の重量比にて、例えば、1:1.0~4.0、又は1:1.0~3.0、又は1:1.0~2.0、又は1:1.0~1.5、又は1:1である。
 いくつかの態様にて、架橋アルギン酸ゲルを作製する際の、式(I)で表される化学修飾アルギン酸誘導体と、式(II)で表される化学修飾アルギン酸誘導体の混合比は、より好ましくは式(I)で表される化学修飾アルギン酸誘導体と式(II)で表される化学修飾アルギン酸誘導体の反応性基の導入率(mol%)比にて、例えば、1:1.0~4.0、又は1:1.0~3.0、又は1:1.0~2.0、又は1:1.0~1.5、又は1:1であり;好ましくは1:1.0~3.0である。
 いくつかの態様にて、架橋アルギン酸ゲルを作製する際の、式(II)で表される化学修飾アルギン酸誘導体と、式(I)で表される化学修飾アルギン酸誘導体の混合比は、より好ましくは式(II)で表される化学修飾アルギン酸誘導体と式(I)で表される化学修飾アルギン酸誘導体の反応性基の導入率(mol%)比にて、例えば、1:1.0~4.0、又は1:1.0~3.0、又は1:1.0~2.0、又は1:1.0~1.5、又は1:1である。
 架橋アルギン酸ゲルは、アルギン酸の構成単位の全てのカルボキシル基が上記式(III-L)の架橋を有している必要はない。架橋アルギン酸ゲルにおける、上記式(III-L)で表わされる架橋の導入率(架橋率とも言う)は、例えば、約0.1~約80%、約0.3~約60%、約0.5~約30%、または約1.0~約10%の範囲である。
 本発明のポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルを得るためのHuisgen反応における前記式(I)又は式(II)で表わされるアルギン酸誘導体の溶液の濃度は、例えば、約0.01~約1.5重量%の範囲であり;好ましくは、約0.05~約1.0重量%の範囲であり;より好ましくは、約0.08~約0.75重量%の範囲である。
 本発明のポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる架橋アルギン酸ゲルを得るための前記式(I)及び式(II)で表わされるアルギン酸誘導体を用いたHuisgen反応において、前記式(I)及び式(II)で表わされるアルギン酸誘導体の混合溶液に、アルギン酸溶液を添加する場合、当該アルギン酸溶液の濃度は、例えば、0%~約1.98重量%の範囲であり;好ましくは、0%~約1.8重量%の範囲であり;より好ましくは、0~約1.7重量%の範囲である。
 Huisgen反応の反応温度(架橋アルギン酸ゲル、架橋アルギン酸ゲルファイバを作製する際の温度)は、通常、外温約4~約60℃であり、好ましくは外温約15~約37℃の範囲である。
6.ポリマーコーティング架橋アルギン酸ゲルファイバ
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバは、抗体、生理活性物質等を産生できる細胞と、前記式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋アルギン酸ゲルとを含むコア層を、カチオン性ポリマー(カチオン性ポリマー層)で被覆して得られる、ファイバ状(繊維状)の構造体を意味する(ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法は後述する)。
 又、ポリマーコーティング架橋アルギン酸ゲルファイバは、コア層とコア層の外側に配置されるカチオン性ポリマー層を含む、ファイバ状(繊維状)の構造体である。前記コア層は、抗体、生理活性物質等を産生できる細胞と前記式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋が形成された架橋アルギン酸ゲルとを含み、前記カチオン性ポリマー層は、カチオン性ポリマーである。
 又、ポリマーコーティング架橋アルギン酸ゲルファイバは、コア層とコア層の外側に配置されるカチオン性ポリマー層を含む、ファイバ状(繊維状)の構造体である。前記コア層は、抗体、生理活性物質等を産生できる細胞と、架橋アルギン酸ゲルとを含み、前記架橋アルギン酸ゲルは、前記式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋を含み、前記カチオン性ポリマー層は、カチオン性ポリマーである。
 図1は、架橋アルギン酸ゲルファイバをカチオン性ポリマーで被覆することで形成されたポリマーコーティング架橋アルギン酸ゲルファイバの一例の断面図を示す。このポリマーコーティング架橋アルギン酸ゲルファイバは、その外径がcであり、直径aのコア層5と厚さbのカチオン性ポリマー層4を含み、コア層5は、抗体、生理活性物質等を産生する細胞6が含まれた架橋アルギン酸ゲルを含んでいる。当該、コア層5の架橋アルギン酸ゲルは、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより形成された架橋アルギン酸ゲルである。
 いくつかの態様のポリマーコーティング架橋アルギン酸ゲルファイバのコア層は、前記態様[1]に記載の式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより形成された架橋アルギン酸ゲルの他に、細胞毒性を有さないものであれば特に限定されないが、コラーゲン溶液、コラーゲンゲル、培地、細胞培養用培地、培養液、メチルセルロース、スクロース溶液、アルギン酸溶液、アルギン酸ゲル、等の他の成分を含むことができ;好ましくは、アルギン酸溶液、アルギン酸ゲル、培地、培養液からなる群から選択される成分を含むことができる。
 「ポリマーコーティング架橋アルギン酸ゲルファイバ」は、ファイバの外径(図2でのc)が、例えば、約0.1~約2000μm程度である繊維状の構造体であることから、「ポリマーコーティング架橋アルギン酸マイクロファイバ」と言うこともある。
 ポリマーコーティング架橋アルギン酸ゲルファイバの中心軸に対する垂直方向の断面形状は、円形に限定されるものではなく、非対称構造や変形させた形状でも良く、例えば、断面形状は、円形、楕円系、又は多角形(例えば、三角形、四角形、五角形等)等の多様な形状であっても良く、好ましくは、図2に示されるような円形の断面形状である。
 ポリマーコーティング架橋アルギン酸ゲルファイバの外径(非円形の場合は、長径又は最大径を外径とみなす)は、例えば、約0.1~約2000μm、約0.2μm~約2000μm、約1~約1000μm、約2~約500μm、約2~約200μm等の範囲である。
 ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の直径は、例えば、約0.1~約2000μm、約0.2μm~約2000μm、約1~約1000μm、約2~約500μm、約2~約200μm等の範囲である。コア層の断面の直径は、ファイバ断面の直径未満であって50%以上であることが好ましい。
 ポリマーコーティング架橋アルギン酸ゲルファイバのポリマー層(b)の厚さは、「(ポリマーコーティング架橋アルギン酸ゲルファイバの外径-コア層の直径)/2(図2でb=(c-a)/2)」により求めることができる。ポリマー層の厚さは、例えば、約0.1~約200μm、約1~約200μm、約5μm~約200μm等である。
 上記のポリマーコーティング架橋アルギン酸ゲルファイバのコア層の直径、外径、及びポリマー層の内径の値は、例えば、ポリマー層に蛍光発色するカチオン性ポリマーを用いてファイバを作製し、位相差光学顕微鏡による画像から計測することが可能である。当該ポリマーコーティング架橋アルギン酸ゲルファイバの数カ所における計測値の平均値として表される。上記のポリマーコーティング架橋アルギン酸ゲルファイバのコア層及びポリマー層は、通常、実質的に均一な厚みを有しており、好ましくは、各層は、±10%の範囲内の厚さ均一性を有する。
 ポリマーコーティング架橋アルギン酸ゲルファイバの長さは、特に限定はされないが、例えば、約0.01~約100mであり、又は約0.1~約75mであり、又は約0.3~約50mである。
 本明細書中、いくつかの態様のポリマーコーティング架橋アルギン酸ゲルファイバのコア層は、抗体、生理活性物質等を産生できる細胞を含ませた、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液を用いて形成することができる。その場合、式(I)又は式(II)で表わされる化学修飾アルギン酸誘導体の溶液の濃度は、例えば、各々、約0.01~約1.5重量%の範囲であり;好ましくは、約0.05~約1.0重量%の範囲であり;より好ましくは、約0.08~約0.75重量%の範囲である。又、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液の濃度は、例えば、約0.02~約2.0重量%の範囲であり;好ましくは、約0.1~約2.0重量%の範囲であり;より好ましくは約0.15~約1.5重量%の範囲である。又、前記、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液に、アルギン酸溶液を添加する場合の、当該アルギン酸の濃度は、例えば、0~約1.98重量%の範囲であり;好ましくは、0~約1.8重量%の範囲であり;より好ましくは、0~約1.7重量%の範囲である。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の形成に用いる、抗体、生理活性物質等を産生できる細胞を含ませた、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液に、アルギン酸溶液を添加する場合、当該式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の濃度(C1(重量%))とアルギン酸溶液の濃度(C2(重量%))の組合せは、特に限定されないが、例えば、(C1:C2)=(約0.2:約1.3)、(約0.5:約1.0)、(約1.0:約0.5)、(約1.5:0)、(約0.66:約1.34)、(約0.34:約0.66)、(約0.16:約0.34)等の組み合わせが挙げられる。これら濃度以外にも、C1およびC2の濃度を適宜組み合わせて調製することができる。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の形成に用いる、抗体、生理活性物質等を産生できる細胞を含ませた、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液に、アルギン酸溶液を添加する場合、当該式(I)で表わされる化学修飾アルギン酸誘導体の溶液の濃度(C1A(重量%))、式(II)で表わされる化学修飾アルギン酸誘導体の溶液の濃度(C1N(重量%))及びアルギン酸溶液の濃度(C2(重量%))の組合せは、特に限定されないが、例えば、(C1A:C1N:C2)=(約0.1:約0.1:約1.3)、(約0.25:約0.25:約1.0)、(約0.5:約0.5:約0.5)、(約0.75:約0.75:0)、(約0.33:約0.33:約1.34)、(約0.17:約0.17:約0.66)、(約0.08:約0.08:約0.34)等の組み合わせが挙げられる。これら濃度以外にも、C1A、C1N、C2の濃度を適宜組み合わせて調製することができる。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の形成に用いる、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液中の、式(I)で表わされる化学修飾アルギン酸誘導体の溶液および式(II)で表わされる化学修飾アルギン酸誘導体の溶液の各容量比(v1、v2)は、例えば、v1+v2=15の比率であり、例えば、(v1:v2)=(7.5:7.5)である。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の形成に用いる、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液に、アルギン酸溶液を添加する場合、アルギン酸溶液を添加した混合溶液における、式(I)で表わされる化学修飾アルギン酸誘導体の容量(v1)、式(II)で表わされる化学修飾アルギン酸誘導体の溶液の容量(v2)およびアルギン酸溶液の容量(v3)の容量比は、例えば、v1+v2+v3=15の比率であり、例えば、(v1:v2:v3)=(5:5:5)、(2.5:2.5:10)、(1:1:13)等の組み合わせである。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の形成に用いる、抗体、生理活性物質等を産生できる細胞を含ませた、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液に、アルギン酸溶液を添加する場合、当該アルギン酸溶液の調製に用いられるアルギン酸(例えば、アルギン酸ナトリウム、等)の分子量は、特に限定はされないが、ゲルろ過クロマトグラフィー法(GPC法)により測定した重量平均分子量が、例えば、約150,000Da~約2,500,000Daの範囲、約300,000Da~約2,000,000Daの範囲、約700,000Da~約2,000,000Da等の範囲である。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の形成に用いる、抗体、生理活性物質等を産生できる細胞を含ませた、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液に、アルギン酸溶液を添加する場合、当該アルギン酸溶液の調製に用いられるアルギン酸(例えば、アルギン酸ナトリウム、等)の分子量は、特に限定はされないが、ゲルろ過クロマトグラフィー法(GPC法)により測定した重量平均分子量が、例えば、約150,000Da~約2,500,000Daの範囲、約300,000Da~約2,500,000Daの範囲、約700,000Da~約1,400,000Da、約800,000Da~約1,500,000Da、約1,400,000~約2,000,000Da、約1,500,000~約2,500,000等の範囲である。
 ポリマーコーティング架橋アルギン酸ゲルファイバのコア層を作製する際に用いる、式(I)又は式(II)で表わされる化学修飾アルギン酸誘導体の溶液、アルギン酸溶液等を調製する際に用いる溶媒としては、特に限定されないが、例えば、培地、細胞培養用培地、培養液、等張緩衝液、リン酸緩衝生理食塩水(PBS)、及び生理食塩水等が挙げられ;好ましくは、培地、細胞培養用培地、培養液、生理食塩水または等張緩衝液である。
7.カチオン性ポリマー
 ポリカチオンとは、1分子中に2個以上のカチオン性基を有する化合物をいい、カチオン性基とは、カチオン基又はカチオン基に誘導され得る基をいう。カチオン性基としては、例えば、アミノ基;メチルアミノ基、エチルアミノ基等のモノアルキルアミノ基;ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミノ基;イミノ基;グアニジノ基、等の基が挙げられる。アミノ基はプロトンが配位結合した-NH 基であってもよい。
 本明細書中、カチオン性ポリマーとは、1分子中に2個以上のカチオン性基を有するポリマーをいう。カチオン性ポリマーとしては、カチオン性基を有するモノマーを重合させたものが挙げられる。また、カチオン性ポリマーは、水に溶解することが可能な親水性を有し、水中でカチオン性基が解離することにより正電荷を帯びるという特性を有するものが好ましい。カチオン性ポリマーとしては、特に1分子中に2個以上のアミノ基を有するポリマーが好ましい。
 本明細書中、カチオン性ポリマーとしては、抗体、生理活性物質等を産生できる細胞を含む、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより形成される架橋アルギン酸ゲルファイバの表面において、当該架橋アルギン酸ゲルファイバが有するカルボキシル基とカチオン性ポリマーのカチオン性基とが静電的相互作用により、当該架橋アルギン酸ゲルファイバの表面がカチオン性ポリマーにて被覆される(図2を参照)ことで、架橋アルギン酸ゲルファイバの強度を高めることができる物質であることが好ましい。また、カチオン性ポリマーは、コア層に含まれる、抗体、生理活性物質等を産生する細胞から産生された抗体、生理活性物質等が、コア層を被覆したカチオン性ポリマー(ポリマー層)を透過して、ポリマーコーティング架橋アルギン酸ゲルファイバの外に放出できる、物質であることが好ましい。
 本明細書中、カチオン性ポリマーとしては、例えば、ポリアミノ酸(塩基性アミノ酸の重合体)、塩基性多糖類(例えば、キトサン等)、塩基性ポリマー(ポリメチレン-CO-グアニジン(PMCG)、ポリアリルアミン(PAA)、ポリビニルアミン(PVA)、ポリエチレンイミン、アリルアミン-ジアリルアミン共重合体およびアリルアミン-マレイン酸共重合体等)のカチオン性ポリマーが挙げられ、好ましくは、ポリアミノ酸であるポリ-L-オルニチン(PLO)、ポリ-D-オルニチン(PDO)、ポリ-DL-オルニチン、ポリ-D-リジン(PDL)、ポリ-L-リジン(PLL)、ポリ-DL-リジン、ポリ-L-アルギニン(PLA)、ポリ-D-アルギニン(PDA)、ポリ-DL-アルギニン、ポリ-L-ホモアルギニン(PLHA)、ポリ-D-ホモアルギニン(PDHA)、ポリ-DL-ホモアルギニン、ポリ-L-ヒスチジン(PLH)、ポリ-D-ヒスチジン(PDH)、及びポリ-DL-ヒスチジンからなる群から選ばれるカチオン性ポリマーであり;より好ましくは、ポリ-L-オルニチン、ポリ-L-リジンまたはポリアリルアミンであり;更に好ましくは、ポリ-L-オルニチンである。
 本明細書中、カチオン性ポリマーを含む溶液を調製する際に用いるカチオン性ポリマーとしては、例えば、前記ポリアミノ酸、塩基性多糖類、塩基性ポリマー及びそれらの塩(塩酸塩、臭化水素酸塩等)が挙げられる。前記、カチオン性ポリマーは市販品または市販品から調整されたものを使用することが可能である。
 本明細書中、カチオン性ポリマーの重合度は、特に限定されないが、例えば、50~6,000の重合度、50~2,000の重合度、100~1,500の重合度等が、挙げられる。ポリ-L-オルニチンの場合、例えば、130~1,300の重合度であり、ポリアリルアミンの場合、例えば、50~1,800の重合度であり、キトサンの場合、例えば、60~6,000の重合度である。
 本明細書中、カチオン性ポリマーの重量平均分子量(Mw)は、特に限定されないが、例えば、500~1,000,000の範囲内、1,000~500,000の範囲内、3,000~300,000の範囲内、5,000~100,000の範囲内、10,000~50,000の範囲内、等が、挙げられる。カチオン性ポリマーの重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)によって測定することができる。
 例えば、ポリ-L-オルニチンの場合、市販品のポリ-L-オルニチン臭化水素酸塩[例えば、分子量:70,000~150,000(富士フィルム-和光純薬製)、分子量:15,000~30,000、30,000~70,000、5,000~15,000(Sigma-Aldrich製)等]を使用することができ;例えば、ポリアリルアミンの場合、市販品のポリアリルアミン[例えば、分子量:1,600、3,000、5,000、8,000、15,000、25,000(日東紡製)、~15,000、~65,000(Sigma-Aldrich製)等]、市販品のポリアリルアミン塩酸塩[例えば、分子量:1,600、3,000、5,000、15,000、100,000(日東紡製)、~17,500、50,000(Sigma-Aldrich製)等]を使用することができ;例えば、キトサンの場合、市販品のキトサン[例えば、分子量:~15,000(富士フィルム-和光純薬製)、5,000、50,000、100,000、160,000、180,000(Sigma-Aldrich製)等]を使用することができる。
 カチオン性ポリマーの1つであるキトサンは、キチンの脱アセチル化物であり、その水溶性の観点より、その脱アセチル化度が、例えば、40~100%の範囲内、45~90%の範囲内、または50~80%の範囲内等のものを用いることができる。
 カチオン性ポリマーを含む溶液の濃度は、特に限定されないが、アルギン酸ゲルファイバの表面を均一にコーティングすることができる濃度であればよく、例えば、約0.01~約10.0重量%、約0.01~約5.0重量%、約0.02~約1.0重量%の濃度が挙げられ、好ましくは、約0.02~約5.0重量%、より好ましくは約0.05~約1.0重量%の濃度である。
 カチオン性ポリマーを含む溶液の粘度は、特に限定されないが、例えば、10.0~500.0mPa・sの範囲内、20.0~300.0mPa・s の範囲内、50.0~200.0mPa・sの範囲内等である。
 カチオン性ポリマーを含む溶液には、2種類以上のカチオン性ポリマーを併用することが可能である。
 カチオン性ポリマーを含む溶液の溶媒としては、カチオン性ポリマーを溶解できるものであれば、特に限定されないが、例えば、水(水道水、純水(例えば、蒸留水、イオン交換水、RO水、RO-EDI水、等)、超純水(MilliQ水))、無機塩類の水溶液(リン酸緩衝生理食塩水(PBS)、生理食塩水等)等が挙げられ、カチオン性ポリマーの電荷量をより多くできる、超純水、水又は生理食塩水が好ましい。
8.多層ポリマーコーティング架橋アルギン酸ゲルファイバ
 本明細書中、多層ポリマーコーティング架橋アルギン酸ゲルファイバは、前述の「6.ポリマーコーティング架橋アルギン酸ゲルファイバ」に記載されている、ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層の外側を、アニオン性ポリマー(アニオン性ポリマー層)で被覆して得られる、ファイバ状(繊維状)の構造体を意味する。すなわち、抗体、生理活性物質等を産生できる細胞と、前記式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋アルギン酸ゲルとを含むコア層を、カチオン性ポリマーで被覆して得られるポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層の外側を、アニオン性カポリマーで被覆して得られる、ファイバ状の構造体である(多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法は後述する)。
 又、多層ポリマーコーティング架橋アルギン酸ゲルファイバは、コア層、コア層の外側に配置されるカチオン性ポリマー層、およびカチオン性ポリマー層の外側に配置されるアニオン性ポリマー層を含む、ファイバ状(繊維状)の構造体である。前記コア層は、抗体、生理活性物質等を産生できる細胞と前記式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋が形成された架橋アルギン酸ゲルとを含み、前記カチオン性ポリマー層は、カチオン性ポリマーであり、前記アニオン性ポリマー層は、アニオン性ポリマーである。
 又、多層ポリマーコーティング架橋アルギン酸ゲルファイバは、コア層、コア層の外側に配置されるカチオン性ポリマー層、およびカチオン性ポリマー層の外側に配置されるアニオン性ポリマー層を含む、ファイバ状(繊維状)の構造体である。前記コア層は、抗体、生理活性物質等を産生できる細胞と、架橋アルギン酸ゲルとを含み、前記架橋アルギン酸ゲルは、前記式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋を含み、前記カチオン性ポリマー層は、カチオン性ポリマーであり、前記アニオン性ポリマー層は、アニオン性ポリマーである。
 図8は、多層ポリマーコーティング架橋アルギン酸ゲルファイバの一例の断面図を示す。この多層ポリマーコーティング架橋アルギン酸ゲルファイバは、その外径がeであり、直径aのコア層5、厚さbのカチオン性ポリマー層4と厚さdのアニオン性ポリマー層7を含み、コア層5は、抗体、生理活性物質等を産生する細胞6が含まれた架橋アルギン酸ゲルを含んでいる。当該、コア層5の架橋アルギン酸ゲルは、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより形成された架橋アルギン酸ゲルである。
 いくつかの態様の多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層は、前記態様[1]に記載の式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより形成された架橋アルギン酸ゲルの他に、細胞毒性を有さないものであれば特に限定されないが、コラーゲン溶液、コラーゲンゲル、培地、細胞培養用培地、培養液、メチルセルロース、スクロース溶液、アルギン酸溶液、アルギン酸ゲル、等の他の成分を含むことができ;好ましくは、アルギン酸溶液、アルギン酸ゲル、培地、培養液からなる群から選択される成分を含むことができる。
 多層ポリマーコーティング架橋アルギン酸ゲルファイバは、ファイバの外径(図8でのe)が、例えば、約0.1~約2000μm程度である繊維状の構造体であることから、多層ポリマーコーティング架橋アルギン酸マイクロファイバと言うこともある。
 多層ポリマーコーティング架橋アルギン酸ゲルファイバの中心軸に対する垂直方向の断面形状は、円形に限定されるものではなく、非対称構造や変形させた形状でも良く、例えば、断面形状は、円形、楕円系、又は多角形(例えば、三角形、四角形、五角形等)等の多様な形状であっても良く、好ましくは、図8に示されるような円形の断面形状である。
 多層ポリマーコーティング架橋アルギン酸ゲルファイバの外径(非円形の場合は、長径又は最大径を外径とみなす)は、例えば、約0.1~約2000μm、約0.2μm~約2000μm、約1~約1000μm、約2~約500μm、約2~約200μm等の範囲である。
 多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の直径は、例えば、約0.1~約2000μm、約0.2μm~約2000μm、約1~約1000μm、約2~約500μm、約2~約200μm等の範囲である。コア層の直径は、ファイバの直径未満であって50%以上であることが好ましい。
 多層ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層(b)の厚さは、前述の「6.ポリマーコーティング架橋アルギン酸ゲルファイバ」で記載した方法で求めることができる。また、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層(e)の厚さは、「(多層ポリマーコーティング架橋アルギン酸ゲルファイバの外径-ポリマーコーティング架橋アルギン酸ゲルファイバの外径)/2(図8でe=(d-a)/2)」により求めることができる。アニオン性ポリマー層の厚さは、例えば、約0.1~約200μm、約1~約200μm、約5μm~約200μm等である。
 上記の多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の直径、外径、カチオン性ポリマー層の内径、アニオン性ポリマー層の内径の値は、例えば、各ポリマー層に蛍光発色するポリマーを用いてファイバを作製し、位相差光学顕微鏡による画像から計測することが可能である。当該多層ポリマーコーティング架橋アルギン酸ゲルファイバの数カ所における計測値の平均値として表される。上記の多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層及びポリマー層は、通常、実質的に均一な厚みを有しており、好ましくは、各層は、±10%の範囲内の厚さ均一性を有する。
 多層ポリマーコーティング架橋アルギン酸ゲルファイバの長さは、特に限定はされないが、例えば、約0.01~約100mであり、又は約0.1~約75mであり、又は約0.3~約50mである。
 本明細書中、いくつかの態様の多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層は、抗体、生理活性物質等を産生できる細胞を含ませた、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液を用いて形成することができる。その場合、式(I)又は式(II)で表わされる化学修飾アルギン酸誘導体の溶液の濃度範囲は、前述の6.ポリマーコーティング架橋アルギン酸ゲルファイバに記載されたものと同じである。
 本明細書中、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の形成に用いる、抗体、生理活性物質等を産生できる細胞を含ませた、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液に、アルギン酸溶液を添加する場合、当該式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の濃度とアルギン酸溶液の濃度、濃度の組合せ、各溶液の容量比は、前述の「6.ポリマーコーティング架橋アルギン酸ゲルファイバ」に記載されたものと同じである。
 多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層を作製する際に用いる、式(I)又は式(II)で表わされる化学修飾アルギン酸誘導体の溶液、アルギン酸溶液等を調製する際に用いる溶媒は、前述の「6.ポリマーコーティング架橋アルギン酸ゲルファイバ」に記載された溶媒と同じである。
9.アニオン性ポリマー
 ポリアニオンとは、1分子中に2個以上のアニオン性基を有する化合物をいい、アニオン性基とは、アニオン基又はアニオン基に誘導され得る基をいう。アニオン性基としては、例えば、カルボキシル基、硫酸基等の酸性官能基が挙げられる。
 本明細書中、アニオン性ポリマー層とは、カチオン性ポリマーとの静電的な相互作用によりカチオン性ポリマー層の外側を被覆する層である。アニオン性ポリマー層を形成するアニオン性ポリマーとしては、カチオン性ポリマーとの静電的な相互作用により膜を形成できるものであれば特に制限されないが、例えば、カルボキシル基又は硫酸基等の酸性官能基を有するポリマーが挙げられる。具体的には、例えば、アルギン酸、ポリガラクツロン酸、ペクチン、ペクチン酸、カルボキシメチルセルロース、カラギーナン、ヒアルロン酸及びコンドロイチン硫酸等の多糖類、ポリアクリル酸及びポリスチレンスルホン酸等の合成ポリマーなど、およびこれらの化学修飾体が挙げられ、これらの化学架橋体も含まれる。また、当該アニオン性ポリマーは、カチオン性ポリマーとの静電的な相互作用により膜を形成できる特性を有すればよく、全体として中性を示すポリマーであってもよい。
 本明細書中、アニオン性ポリマーは、前記ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層を、アニオン性ポリマー層として被覆でき、多層ポリマーコーティング架橋アルギン酸ゲルファイバを形成できる(図9を参照)物質であることが好ましい。また、アニオン性ポリマーは、前記多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層で産生された抗体、生理活性物質等が、カチオン性ポリマー層を透過した後、当該カチオン性ポリマー層を被覆しているアニオン性ポリマー層を透過して、当該ファイバの外に放出できる、物質であることが好ましい。
 本明細書中、アニオン性ポリマー層は、例えば、アニオン性多糖類、硫酸化多糖類、合成ポリマー、アニオン性ポリアミノ酸、これらの化学修飾体、これらの架橋体、これらの混合物、等からなる群から選択されるアニオン性ポリマーであり、具体的には、例えば、アルギン酸、ヒアルロン酸、ポリガラクツロン酸、カラギーナン、サクシノグルカン、アラビアゴム、キサンタンガム、ペクチン、ペクチン酸、カルボキシメチルセルロース、寒天等のアニオン性多糖類、これらの化学修飾体、これらの架橋体、これらの混合物、等からなる群から選択されるアニオン性ポリマーである。
 本明細書中、アニオン性ポリマー層は、例えば、アルギン酸、前述の式(I)で表わされる化学修飾アルギン酸誘導体、式(II)で表わされる化学修飾アルギン酸誘導体、式(I)で表わされる化学修飾アルギン酸誘導体および/又は式(II)で表わされる化学修飾アルギン酸誘導体から形成される架橋体、及びこれらの混合物からなる群から選択されるアニオン性ポリマーであり;例えば、コンドロイチン硫酸、デキストラン硫酸、ヘパラン硫酸、デルマタン硫酸、フコイダン、ケラタン硫酸、又はヘパリン等の硫酸化多糖類、これらの化学修飾体、これらの架橋体、これらの混合物、等からなる群から選択されるアニオン性ポリマーであり;例えば、アクリル酸、メタクリル酸、エチルアクリル酸、ポリスチレンスルホン酸等の合成ポリマー、これらの化学修飾体、これらの架橋体、これらの混合物、等からなる群から選択されるアニオン性ポリマーであり;例えば、ポリグルタミン酸、ポリアスパラギン酸等のアニオン性ポリアミノ酸、これらの化学修飾体、これらの架橋体、これらの混合物、等からなる群から選択されるアニオン性ポリマーである。
 本明細書中、アニオン性ポリマー層は、好ましくは、アルギン酸、前述の式(I)で表わされる化学修飾アルギン酸誘導体、式(II)で表わされる化学修飾アルギン酸誘導体、式(I)で表わされる化学修飾アルギン酸誘導体および/又は式(II)で表わされる化学修飾アルギン酸誘導体から形成される架橋体、及びこれらの混合物からなる群から選択されるアニオン性ポリマーである。
 アニオン性ポリマーを含む溶液を調製する際の溶媒は、アニオン性ポリマーを溶解できるものであれば、特に限定されないが、例えば、水(水道水、純水(例えば、蒸留水、イオン交換水、RO水、RO-EDI水、等)、超純水(MilliQ水))、無機塩類の水溶液(リン酸緩衝生理食塩水(PBS)、生理食塩水等)等が挙げられ、好ましくは、、水又は生理食塩水が用いられる。但し、アルギン酸、式(I)又は式(II)で表される化学修飾アルギン酸誘導体をアニオン性ポリマーに用いる場合は、ゲル化が生じてしまう多価(2価、3価)金属イオンを含む溶液は除く。
 本明細書中、アニオン性ポリマーの重量平均分子量(Mw)は、特に限定されないが、例えば、約500~約5,000,000の範囲、約300,000~約2,000,000の範囲、約150,000~約2,500,000の範囲、約100,000~約3,000,000の範囲である。アニオン性ポリマーの重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)によって測定することができる。
 本明細書中、アニオン性ポリマーに、アルギン酸を用いる場合、その重量平均分子量(Mw)は、例えば、約150,000Da~約2,500,000Daの範囲、約150,000Da~約800,000Daの範囲、約300,000Da~約700,000Daの範囲、約700,000Da~約1,400,000Da、約800,000Da~約1,500,000Da、約1,400,000~約2,000,000Da、約1,500,000~約2,500,000等の範囲である。
 本明細書中、アニオン性ポリマーに、式(I)または式(II)で表される化学修飾アルギン酸誘導体を用いる場合、その重量平均分子量(Mw)は、例えば、約100,000~約3,000,000の範囲、約300,000Da~約2,500,000の範囲、約500,000~約2,000,000等の範囲である。
 アニオン性ポリマーを含む溶液の濃度は、特に限定されないが、ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層の表面を均一にコーティングすることができる濃度であればよく、例えば、約0.01~約5.0重量%、約0.05~約1.0重量%、約0.1~約0.5重量%、約0.15~約0.4重量%の範囲の濃度である。好ましくは、0.15重量%である。
 アニオン性ポリマーを含む溶液には、2種類以上のアニオン性ポリマーを併用することが可能である。
 本明細書中、本明細書中、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層の形成に、式(I)で表わされる化学修飾アルギン酸誘導体が含まれる溶液を用いる場合、その溶液の濃度は、例えば、約0.01~約5.0重量%、約0.05~約1.0重量%、約0.1~0.5重量%、約0.15~約0.4重量%の範囲の濃度である。また、例えば、約0.05~約0.15重量%、約0.075~約0.2重量%、約0.15~約0.4重量%の範囲の濃度である。
 本明細書中、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層の形成に、式(II)で表わされる化学修飾アルギン酸誘導体が含まれる溶液を用いる場合、その溶液の濃度は、例えば、約0.01~約5.0重量%、約0.05~約1.0重量%、約0.1~約0.5重量%、約0.15~約0.4重量%の範囲の濃度である。また、例えば、約0.05~約0.15重量%、約0.075~約0.2重量%、約0.15~約0.4重量%の範囲の濃度である。
 本明細書中、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層の形成に、アルギン酸溶液を用いる場合、その溶液の濃度は、例えば、約0.01~約5.0重量%、約0.05~約1.0重量%、約0.1~約0.5重量%、約0.15~約0.4重量%の範囲の濃度である。また、例えば、約0.05~約0.15重量%、約0.075~約0.2重量%、約0.15~約0.4重量%の範囲の濃度である。
 本明細書中、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層の形成に、式(I)および式(II)で表わされる化学修飾アルギン酸誘導体が含まれる混合溶液を用いる場合、それらの混合溶液の濃度は、例えば、約0.01~約5.0重量%、約0.05~約1.0重量%、約0.1~約0.5重量%、約0.15~約0.4重量%の範囲の濃度である。好ましくは、0.15重量%である。
 本明細書中、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層の形成に、式(I)および式(II)で表わされる化学修飾アルギン酸誘導体とアルギン酸が含まれる混合溶液を用いる場合、当該混合溶液の濃度は、例えば、約0.01~約5.0重量%、約0.05~約1.0重量%、約0.1~約0.5重量%、約0.15~約0.4重量%の範囲の濃度である。好ましくは、0.15重量%である。
 本明細書中、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層の形成に、式(I)および式(II)で表わされる化学修飾アルギン酸誘導体が含まれる混合溶液を用いる場合、その混合溶液における、式(I)で表わされる化学修飾アルギン酸誘導体の溶液と式(II)で表わされる化学修飾アルギン酸誘導体の溶液の容量比(v1、v2)は、例えば、v1+v2=15の比率であり、例えば、(v1:v2)=(7.5:7.5)である。
 本明細書中、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層の形成に、式(I)および式(II)で表わされる化学修飾アルギン酸誘導体とアルギン酸が含まれる混合溶液を用いる場合、その混合溶液における、式(I)で表わされる化学修飾アルギン酸誘導体の溶液、式(II)で表わされる化学修飾アルギン酸誘導体の溶液およびアルギン酸溶液の容量比(v1、v2、v3)は、例えば、v1+v2+3v3=15の比率であり、例えば、(v1:v2:v3)=(5:5:5)、(2.5:2.5:10)、(1:1:13)等の組み合わせである。
 本明細書中、多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層の形成に、式(I)および式(II)で表わされる化学修飾アルギン酸誘導体が用いられる場合、コーティング後のアニオン性ポリマー層において、式(I)および式(II)で表わされる化学修飾アルギン酸誘導体が化学架橋を形成している場合もある。当該化学架橋は、下記式(III-LA):
Figure JPOXMLDOC01-appb-C000079
[式(III-LA)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L1A-、-L2A-、及び-X-は、各々、前記態様[1-12]中の対応する-L-、-L-及び-X-は、定義と同じである]で表わされる基である。
10.コア層に含まれる細胞
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる細胞としては、特に制限されないが、例えば、抗体(ヒト抗体、ヒト化抗体、キメラ抗体、マウス抗体等の各種のモノクローナル抗体又はそれらのバイスペシフィック抗体、低分子化抗体、糖鎖改変抗体等の各種の改変型抗体)産生細胞、生理活性物質(酵素、サイトカイン、ホルモン、血液凝固系因子、ワクチン等)産生細胞、医薬品原料、化学原料、食品原料等として有用な各種の有用物質を産生できる細胞が挙げられる。好ましくは、抗体産生細胞または生理活性物質産生細胞である。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる抗体産生細胞としては、抗体を産生するB細胞から得られたハイブリドーマ(抗体産生ハイブリドーマ)、または抗体発現ベクターにより形質転換された培養細胞(抗体産生遺伝子組換え細胞)が挙げられる。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる生理活性物質産生細胞としては、生理活性物質発現ベクターにより形質転換された培養細胞(生理活性物質産生遺伝子組換え細胞)が挙げられる。
これらの遺伝子組換えの宿主として用いられる培養細胞は、特に限定されることは無いが、細菌もしくは酵母等の微生物、植物細胞、昆虫細胞又は動物細胞が挙げられる。
 宿主として用いられる微生物としては、例えば、大腸菌、出芽酵母、分裂酵母又はピキア酵母等が挙げられ、宿主として用いられる昆虫細胞としては、例えば、Sf9細胞、Sf21細胞又はHigh five細胞等が挙げられる。
 宿主として用いられる動物細胞としては、例えば、CHO細胞、CHO細胞亜株(CHO-K1細胞、CHO-DG44細胞、CHO-DXB11細胞、又は糖鎖を改変させるように形質転換されたCHO細胞等)、COS細胞、Sp2/0細胞、NS0細胞、SP2細胞、PERC6細胞、YB2/0細胞、YE2/0細胞、1R983F細胞、Namalwa細胞、Wil-2細胞、Jurkat細胞、Vero細胞、Molt-4細胞、HEK293細胞、BHK細胞、HT-1080細胞、KGH6細胞、P3X63Ag8.653細胞、C127細胞、JC細胞、LA7細胞、ZR-45-30細胞、hTERT細胞、NM2C5細胞、又はUACC-812細胞等(これらの細胞は、American Type Culture Collectionから入手可能なATCC細胞系カタログに記載されているものもある)から、適宜選択することができる。なお、本明細書において、特に断りのない限り、「CHO細胞」と記した場合「CHO細胞亜株」も含めた細胞を意味し、他の細胞においても各々の細胞亜株を含めた細胞を意味する。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に封入できる抗体産生細胞としては、好ましくは、抗体発現ベクターにより形質転換された動物細胞であり、すなわち、抗体を産生する遺伝子組換え動物細胞である。又、コア層に封入できる生理活性物質産生細胞としては、好ましくは、生理活性物質発現ベクターにより形質転換された動物細胞であり、すなわち、生理活性物質を産生する遺伝子組換え動物細胞である。
それらの宿主として用いられる動物細胞としては、具体的には、CHO細胞、CHO細胞亜株、COS細胞、Sp2/0細胞、NS0細胞、SP2細胞、又はPERC6細胞、HEK293細胞、BHK細胞、HT-1080細胞、又はC127細胞であり;より好ましくは、CHO細胞、CHO細胞亜株、Sp2/0細胞、及びNS0細胞、HEK293細胞、及びBHK細胞からなる群から選択される細胞であり;更に好ましくは、CHO細胞またはCHO細胞亜株である。また、ある態様では、抗体産生細胞の宿主細胞としては、好ましくは、CHO細胞、CHO細胞亜株、Sp2/0細胞、又はNS0細胞であり;より好ましくは、CHO細胞又はCHO細胞亜株である。また、生理活性物質産生細胞の宿主細胞としては、好ましくは、CHO細胞、CHO細胞亜株、HEK293細胞、又はBHK細胞であり;より好ましくは、CHO細胞又はCHO細胞亜株である。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含むことのできる抗体産生細胞としては、特に限定されることは無いが、バイオ医薬品またはバイオ医薬品原料として用いられる抗体を産生する細胞が挙げられる。また、生理活性物質産生細胞としては、特に限定されることは無いが、バイオ医薬品またはバイオ医薬品原料として用いられる生理活性物質を産生する細胞が挙げられる。
 バイオ医薬品としては、例えば、各種がん、自己免疫疾患・炎症性疾患、眼疾患、血液疾患、脳神経疾患、遺伝性希少疾患、内分泌代謝系疾患、循環器疾患、呼吸器疾患、消化器疾患、皮膚疾患、筋・骨疾患、感染症等の各種疾患に対する医薬品が挙げられる。
 バイオ医薬品のうち、抗体医薬品の具体的な標的としては、特に限定されることは無いが、C5(補体)、CD3、CD19、CD20、CD22、CD25、CD30、CD33、CD38、CD52、CD79、IL-1β、IL-4R、IL-5、IL-6、IL-6R、IL-12、IL-17、IL-17R、IL-23、IFNAR、PCSK9、CGRP、CGRPR、GD2(ガングリオシド)、HER2、HER3、TROP2、BCMA、PD-1、PD-L1、CTLA-4、LAG-3、TIM-3、TIGIT、KIR、SLAMF7、RANKL、TNF-α、BLyS、EGFR、VEGF、VEGFR、FGF、ネクチン、インテグリン、EpCAM、CCR4、TfR、TF、FIXa、FX、GPVI、スクレロスチン、アミロイドβ、IgE、又は各種ウイルス等(これらのサブタイプ、サブユニット、断片も含む)が挙げられ、これら標的に対する抗体を産生する細胞をコア層に含むことができる。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含むことのできる抗体産生細胞としては、特に限定されることは無いが、具体的には、ムロモナブ-CD3、トラスツズマブ、リツキシマブ、パリビズマブ、インフリキシマブ、バシリキシマブ、トシリズマブ、ベバシズマブ、アダリムマブ、セツキシマブ、オマリズマブ、エクリズマブ、パニツムマブ、ウステキヌマブ、ゴリムマブ、カナキヌマブ、デノスマブ、オファツムマブ、ペルツズマブ、ナタリズマブ、ニボルマブ、アレムツズマブ、セクキヌマブ、ラムシルマブ、イピリムマブ、エボロクマブ、メポリズマブ、アリロクマブ、イキセキズマブ、ブロダルマブ、エロツズマブ、ペムブロリズマブ、サリルマブ、ベズロトクスマブ、ベリムマブ、ダラツムマブ、アベルマブ、デュピルマブ、アテゾリズマブ、エミシズマブ、グセルクマブ、デュルバルマブ、ベドリズマブ、ロモソズマブ、リサンキズマブ、ネシツムマブ、ラブリズマブ、ブロスマブ、イサツキシマブ、チルドラキズマブ、サトラリズマブ、ガルカネズマブ、ジヌツキシマブ、フレマネズマブ、エレヌマブ、カシリビマブ、イムデビマブ、アニフロルマブ、ソトロビマブ、オクレリズマブ、ナキシタマブ、アデュカヌマブ、タファシタマブ、マルジェツキシマブ、ガンテネルマブ、チラゴルマブ、クロバリマブ、ネモリズマブ、カツマクソマブ、プラモタマブ、ファリシマブ、ゲムツズマブ、イブリツモマブ、ブレンツキシマブ、イノツズマブ、ポラツズマブ、エンホルツマブ、サシツズマブ、ベランタマブ、ロンカスツキシマブ、チソツマブ、ダトポタマブ、パトリツマブ等の抗体を産生する細胞;モガムリズマブ、ベンラリズマブ、オビヌツズマブ、イネビリズマブ等の改変糖鎖を有する抗体を産生する細胞;ラニビズマブ、イダルシズマブ、ブリナツモマブ、ブロルシズマブ、アブシキシマブ、カプラシズマブ、セルトリズマブ等の抗体断片からなる低分子抗体を産生する細胞等が挙げられる。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含むことのできる抗体産生細胞としては、特に限定されることは無いが、具体的には、抗体産生動物細胞が挙げられ、好ましくは、抗体産生CHO細胞、抗体産生Sp2/0細胞又は抗体産生NS0細胞であり、より好ましくは、抗体産生CHO細胞である。
 より具体的には、前記抗体産生動物細胞としては、特に限定されることは無いが、例えば、ムロモナブ-CD3産生CHO細胞、トラスツズマブ産生CHO細胞、リツキシマブ産生CHO細胞、パリビズマブ産生NS0細胞、パリビズマブ産生CHO細胞、インフリキシマブ産生Sp2/0細胞、インフリキシマブ産生CHO細胞、バシリキシマブ産生Sp2/0細胞、バシリキシマブ産生CHO細胞、トシリズマブ産生CHO細胞、ベバシズマブ産生CHO細胞、アダリムマブ産生CHO細胞、セツキシマブ産生Sp2/0細胞、セツキシマブ産生CHO細胞、オマリズマブ産生CHO細胞、エクリズマブ産生NS0細胞、エクリズマブ産生CHO細胞、パニツムマブ産生CHO細胞、ウステキヌマブ産生Sp2/0細胞、ウステキヌマブ産生CHO細胞、ゴリムマブ産生Sp2/0細胞、ゴリムマブ産生CHO細胞、カナキヌマブ産生Sp2/0細胞、カナキヌマブ産生CHO細胞、デノスマブ産生CHO細胞、オファツムマブ産生NS0細胞、オファツムマブ産生CHO細胞、ペルツズマブ産生CHO細胞、ナタリズマブ産生NS0細胞、ナタリズマブ産生CHO細胞、ニボルマブ産生CHO細胞、アレムツズマブ産生CHO細胞、セクキヌマブ産生CHO細胞、ラムシルマブ産生NS0細胞、ラムシルマブ産生CHO細胞、イピリムマブ産生CHO細胞、エボロクマブ産生CHO細胞、メポリズマブ産生CHO細胞、アリロクマブ産生CHO細胞、イキセキズマブ産生CHO細胞、ブロダルマブ産生CHO細胞、エロツズマブ産生NS0細胞、エロツズマブ産生CHO細胞、ペムブロリズマブ産生CHO細胞、サリルマブ産生CHO細胞、ベズロトクスマブ産生CHO細胞、ベリムマブ産生NS0細胞、ベリムマブ産生CHO細胞、ダラツムマブ産生CHO細胞、アベルマブ産生CHO細胞、デュピルマブ産生CHO細胞、アテゾリズマブ産生CHO細胞、エミシズマブ産生CHO細胞、グセルクマブ産生CHO細胞、デュルバルマブ産生CHO細胞、ベドリズマブ産生CHO細胞、ロモソズマブ産生CHO細胞、リサンキズマブ産生CHO細胞、ネシツムマブ産生NS0細胞、ネシツムマブ産生CHO細胞、ラブリズマブ産生CHO細胞、ブロスマブ産生CHO細胞、イサツキシマブ産生CHO細胞、チルドラキズマブ産生CHO細胞、サトラリズマブ産生CHO細胞、ガルカネズマブ産生CHO細胞、ジヌツキシマブ産生Sp2/0細胞、ジヌツキシマブ産生CHO細胞、フレマネズマブ産生CHO細胞、エレヌマブ産生CHO細胞、カシリビマブ産生CHO細胞、イムデビマブ産生CHO細胞、アニフロルマブ産生NS0細胞、アニフロルマブ産生CHO細胞、ソトロビマブ産生CHO細胞、オクレリズマブ産生CHO細胞、ナキシタマブ産生CHO細胞、アデュカヌマブ産生CHO細胞、タファシタマブ産生CHO細胞、マルジェツキシマブ産生CHO細胞、ゲムツズマブ産生NS0細胞、ゲムツズマブ産生CHO細胞、イブリツモマブ産生CHO細胞、ブレンツキシマブ産生CHO細胞、イノツズマブ産生CHO細胞、ポラツズマブ産生CHO細胞、エンホルツマブ産生CHO細胞、サシツズマブ産生Sp2/0細胞、サシツズマブ産生CHO細胞、ベランタマブ産生CHO細胞、ロンカスツキシマブ産生CHO細胞、チソツマブ産生CHO細胞、モガムリズマブ産生CHO細胞、ベンラリズマブ産生CHO細胞、オビヌツズマブ産生CHO細胞、イネビリズマブ産生CHO細胞、ラニビズマブ産生CHO細胞、イダルシズマブ産生CHO細胞、ブリナツモマブ産生CHO細胞、ブロルシズマブ産生CHO細胞、アブシキシマブ産生CHO細胞、カプラシズマブ産生CHO細胞、セルトリズマブ産生CHO細胞、抗GPVI抗体産生CHO細胞等が挙げられ; 
 例えば、前記抗体産生CHO細胞としては、ムロモナブ-CD3産生CHO細胞、トラスツズマブ産生CHO細胞、リツキシマブ産生CHO細胞、パリビズマブ産生CHO細胞、インフリキシマブ産生CHO細胞、バシリキシマブ産生CHO細胞、トシリズマブ産生CHO細胞、ゲムツズマブ産生CHO細胞、ベバシズマブ産生CHO細胞、イブリツモマブ産生CHO細胞、アダリムマブ産生CHO細胞、セツキシマブ産生CHO細胞、ラニビズマブ産生CHO細胞、オマリズマブ産生CHO細胞、エクリズマブ産生CHO細胞、パニツムマブ産生CHO細胞、ウステキヌマブ産生CHO細胞、ゴリムマブ産生CHO細胞、カナキヌマブ産生CHO細胞、デノスマブ産生CHO細胞、モガムリズマブ産生CHO細胞、セルトリズマブ産生CHO細胞、オファツムマブ産生CHO細胞、ペルツズマブ産生CHO細胞、ブレンツキシマブ産生CHO細胞、ナタリズマブ産生CHO細胞、ニボルマブ産生CHO細胞、アレムツズマブ産生CHO細胞、セクキヌマブ産生CHO細胞、ラムシルマブ産生CHO細胞、イピリムマブ産生CHO細胞、エボロクマブ産生CHO細胞、メポリズマブ産生CHO細胞、アリロクマブ産生CHO細胞、イキセキズマブ産生CHO細胞、ブロダルマブ産生CHO細胞、イダルシズマブ産生CHO細胞、エロツズマブ産生CHO細胞、ペムブロリズマブ産生CHO細胞、サリルマブ産生CHO細胞、ベズロトクスマブ産生CHO細胞、ベリムマブ産生CHO細胞、ダラツムマブ産生CHO細胞、アベルマブ産生CHO細胞、デュピルマブ産生CHO細胞、アテゾリズマブ産生CHO細胞、ベンラリズマブ産生CHO細胞、イノツズマブ産生CHO細胞、エミシズマブ産生CHO細胞、グセルクマブ産生CHO細胞、デュルバルマブ産生CHO細胞、オビヌツズマブ産生CHO細胞、ベドリズマブ産生CHO細胞、ロモソズマブ産生CHO細胞、リサンキズマブ産生CHO細胞、ネシツムマブ産生CHO細胞、ラブリズマブ産生CHO細胞、ブロスマブ産生CHO細胞、イサツキシマブ産生CHO細胞、チルドラキズマブ産生CHO細胞、サトラリズマブ産生CHO細胞、ガルカネズマブ産生CHO細胞、ジヌツキシマブ産生CHO細胞、フレマネズマブ産生CHO細胞、エレヌマブ産生CHO細胞、カシリビマブ産生CHO細胞、イムデビマブ産生CHO細胞、アニフロルマブ産生CHO細胞、ソトロビマブ産生CHO細胞、オクレリズマブ産生CHO細胞、ナキシタマブ産生CHO細胞、アデュカヌマブ産生CHO細胞、タファシタマブ産生CHO細胞、マルジェツキシマブ産生CHO細胞、ポラツズマブ産生CHO細胞、エンホルツマブ産生CHO細胞、サシツズマブ産生CHO細胞、ベランタマブ産生CHO細胞、ロンカスツキシマブ産生CHO細胞、チソツマブ産生CHO細胞、イネビリズマブ産生CHO細胞、ブリナツモマブ産生CHO細胞、ブロルシズマブ産生CHO細胞、アブシキシマブ産生CHO細胞、カプラシズマブ産生CHO細胞、抗GPVI抗体産生CHO細胞等が挙げられ;
 例えば、トラスツズマブ産生CHO細胞、リツキシマブ産生CHO細胞、インフリキシマブ産生CHO細胞、トシリズマブ産生CHO細胞、アダリムマブ産生CHO細胞、ニボルマブ産生CHO細胞、及び抗GPVI抗体産生CHO細胞からなる群から選択されるCHO細胞であり;例えば、トシリズマブ産生CHO細胞である。
 このようにして産生した抗体を、産生後に修飾や改変することもでき、具体的には、PEG化、薬物の結合修飾、放射標識等が挙げられる。すなわち、PEG化抗体や抗体薬物複合体等の修飾抗体の生産において、原料となる抗体の産生に用いる細胞(原料抗体産生細胞)を、コア層に封入できる細胞として挙げることができる。当該原料抗体産生細胞としては、特に制限されないが、PEG化抗体の原料抗体産生細胞としては、例えば、セルトリズマブ ペゴルの原料抗体断片を産生する細胞、具体的には、セルトリズマブ産生CHO細胞等が挙げられ;抗体薬物複合体の原料抗体産生細胞としては、例えば、ゲムツズマブ オゾガマイシン、イブリツモマブ チウキセタン、トラスツズマブ エムタンシン、トラスツズマブ デルクステカン、ブレンツキシマブ ベドチン、イノツズマブ オゾガマイシン、セツキシマブ サロタロカンナトリウム、ポラツズマブ ベドチン、エンホルツマブ ベドチン、サシツズマブ ゴビテカン、ベランタマブ マホドチン、ロンカスツキシマブ テシリン、チソツマブ ベドチン、ダトポタマブ デルクステカン、パトリツマブ デルクステカン等の原料抗体を産生する細胞が挙げられ、具体的には、ゲムツズマブ産生NS0細胞、イブリツモマブ産生CHO細胞、トラスツズマブ産生CHO細胞、ブレンツキシマブ産生CHO細胞、イノツズマブ産生CHO細胞、セツキシマブ産生Sp2/0細胞、ポラツズマブ産生CHO細胞、エンホルツマブ産生CHO細胞、サシツズマブ産生Sp2/0細胞、ベランタマブ産生CHO細胞、ロンカスツキシマブ産生CHO細胞、チソツマブ産生CHO細胞等が挙げられる。
 また、抗体又は抗体断片と他の蛋白質又はペプチドとの融合蛋白質を産生する細胞を、コア層に含むこともでき、例えば、パビナフスプアルファ産生CHO細胞、ビントラフスプアルファ産生CHO細胞等が挙げられる。
 「抗体」に関しては、「14.抗体の分類」及び「15.抗体・生理活性物質の産生及び精製法」にて詳述する。
 本明細書中、生理活性物質とは、生物に対して生理作用や薬理作用を発現する物質及び化合物群を意味する。生物に対して生理作用や薬理作用を発現する物質及び化合物群としては、例えば、酵素、インスリン、アルカロイド、サイトカイン(インターフェロン、インターロイキン、ケモカイン、腫瘍壊死因子等)、植物ホルモン、神経伝達物質、フェロモン、ホルモン(動物ホルモン)、成長因子、成長調節因子、成長阻害因子、活性化因子、造血因子、血液凝固系因子、ワクチン(弱毒化ワクチン、不活化ワクチン、蛋白ワクチン等)等が挙げられる。
 また、これら物質の受容体、細胞表面抗原、細胞表面受容体及びそれらのリガンドも、生理作用や薬理作用を発現する物質であり、生理活性物質に含まれる。さらに、生体が本来有する生理活性物質に加え、生理活性物質を修飾や改変した物質、生理活性を活性化又は阻害する物質、複数の生理活性物質又はその一部領域や断片を組合わせた融合蛋白質も、生理作用や薬理作用を発現する物質である限りは、生理活性物質に含まれ、本明細書においては、これらも含めて生理活性物質と称する。本明細書中、生理活性物質としては、好ましくは蛋白性の生理活性物質、すなわち蛋白質又はペプチドからなる生理活性物質である。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含むことのできる生理活性物質産生細胞としては、特に限定されることは無いが、前述の通り、バイオ医薬品またはバイオ医薬品原料として用いられる生理活性物質を産生する細胞が挙げられる。
 バイオ医薬品として用いられる生理活性物質としては、特に限定されることは無いが、例えば、t-PA、グルコセレブロシダーゼ、ガラクトシダーゼ、ヒアルロニダーゼ、イズロニダーゼ、グルコシダーゼ、スルファターゼ、尿酸オキシダーゼ、DNA分解酵素、アデノシンデアミナーゼ、トリペプチジルペプチダーゼ、ヒアルロニダーゼ、フェニルアラニンアンモニアリアーゼ、アルカリホスファターゼ等の酵素;FVIIa、FVIII、FIX、FXIII、トロンボモジュリン、アンチトロンビン、アルブミン等の血液凝固系因子及び血液関連蛋白;インスリン、成長ホルモン、利尿ペプチド、性腺刺激ホルモン、GLP-1、GLP-2、副甲状腺ホルモン、レプチン等のホルモン;IFN-α、IFN-β、IFN-γ等のインターフェロン;エリスロポエチン、トロンボポエチン等の造血因子;G-CSF、IL-2、IL-10、IL-2R、IL-4R、IL-5R、IL-6R、IL-17R、TNFR、EGF、EGFR、FGF、VEGF、VEGFR、PDGF、PDGFR、TGF-β等のサイトカイン及びそれらの受容体;CTLA-4等の細胞表面抗原、細胞表面受容体及びそれらのリガンド;B型肝炎ウイルス由来抗原、パピローマウイルス由来抗原、水痘帯状疱疹ウイルス由来抗原、SARS-CoV-2由来抗原等のワクチン用蛋白・ペプチド等が挙げられ、これらのサブタイプ、サブユニット、活性断片も挙げられ、これら生理活性物質を産生する細胞をコア層に含むことができる。
 本明細書中、生理活性物質としては構造改変された物質も含むが、例えば、物質の活性を変化させるようなアミノ酸配列の改変を加えた物質が挙げられ、具体的には、インスリンアナログ、GLP-1アナログ、エリスロポエチンアナログ等が挙げられる。また、本来の物質の一部領域や断片のアミノ酸配列からなる物質も含まれ、それら一部領域や断片のアミノ酸配列を複数配列組合せた物質であっても良く;具体的には、インスリンアナログ、FVIIIアナログ、副甲状腺ホルモンアナログ等が挙げられる。さらに、二種類以上の物質やその一部領域や断片を組合わせた融合蛋白質も含まれ、例えば、酵素と抗体の融合蛋白質、サイトカイン受容体と抗体Fc部分の融合蛋白質、細胞表面抗原細胞外ドメインと抗体Fc部分の融合蛋白質、血液凝固系因子と抗体Fc部分の融合蛋白質、血液凝固系因子と血漿タンパクの融合蛋白質等が挙げられる。これら構造改変された生理活性物質を産生する細胞をコア層に含むことができる。
 このようにして産生した生理活性物質を、産生後に修飾や改変することもでき、具体的には、PEG化、糖鎖修飾、薬物の結合修飾、放射標識等が挙げられる。すなわち、PEG化蛋白質、脂肪酸付加ペプチド等の修飾蛋白質・ペプチドの生産において、原料となる蛋白質・ペプチドの生産に用いることができ、具体的には、PEG化FVIII、PEG化エリスロポエチン、脂肪酸付加インスリンアナログ等の原料蛋白質・ペプチドを産生する細胞が挙げられ、これら原料となる生理活性物質を産生する細胞(原料生理活性物質産生細胞)をコア層に含むことができる。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含むことのできる生理活性物質産生細胞としては、特に限定されることは無いが、具体的には、アルテプラーゼ、モンテプラーゼ、イミグルセラーゼ、ベラグルセラーゼ、アガルシダーゼ、ラロニダーゼ、アルグルコシダーゼ、アバルグルコシダーゼ、イデュルスルファーゼ、ガルスルファーゼ、エロスルファーゼ、ラスブリカーゼ、ドルナーゼ、セルリポナーゼ、グルカルピダーゼ、ヒアルロニダーゼ、アスホターゼ等の酵素を産生する細胞;エプタコグ、オクトコグ、ルリオクトコグ、ツロクトコグ、ロノクトコグ、ダモクトコグ、シモクトコグ、ノナコグ、アルブトレペノナコグ、カトリデカコグ、エフラロクトコグ、エフトレノナコグ、トロンボモデュリン、アンチトロンビン、ボニコグ、アルブミン等の血液凝固系因子及び血液関連蛋白を産生する細胞;インスリン、インスリン リスプロ、インスリン アスパルト、インスリン グラルギン、インスリン デテミル、インスリン グルリジン、インスリン デグルデク、ソマトロピン、ソマプシタン、メカセルミン、カルペリチド、ボソリチド、グルカゴン、ホリトロピン、コリオゴナドトロピン、デュラグルチド、リラグルチド、セマグルチド、テデュグルチド、テリパラチド、メトレレプチン等のホルモンを産生する細胞;インターフェロンアルファ-2a、インターフェロンアルファ-2b、インターフェロンベータ-1a、インターフェロンベータ-1b、インターフェロンガンマ-1a等のインターフェロンを産生する細胞;エポエチン、ダルベポエチン、ロミプロスチム等の造血因子を産生する細胞;フィルグラスチム、レノグラスチム、テセロイキン、トラフェルミン、ベルフェルミン、エタネルセプト、アフリベルセプト、デニロイキン ジフチトクス等のサイトカイン及びそれらの受容体を産生する細胞;アバタセプト等の細胞表面抗原、細胞表面受容体及びそれらのリガンドを産生する細胞が挙げられ;これらのサブタイプ、サブユニット、活性断片を産生する細胞も挙げられる。
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ及び多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含むことのできる生理活性物質産生細胞としては、特に限定されることは無いが、具体的には、生理活性物質産生動物細胞が挙げられ、好ましくは、生理活性物質産生CHO細胞、生理活性物質産生HEK293細胞又は生理活性物質産生BHK細胞であり、より好ましくは、生理活性物質産生CHO細胞である。
 より具体的には、前記生理活性物質産生動物細胞としては、特に限定されることは無いが、例えば、アルテプラーゼ産生CHO細胞、イミグルセラーゼ産生CHO細胞、アガルシダーゼ産生CHO細胞、ラロニダーゼ産生CHO細胞、アルグルコシダーゼ産生CHO細胞、アバルグルコシダーゼ産生CHO細胞、イデュルスルファーゼ産生CHO細胞、ガルスルファーゼ産生CHO細胞、エロスルファーゼ産生CHO細胞、ドルナーゼ産生CHO細胞、セルリポナーゼ産生CHO細胞、ヒアルロニダーゼ産生CHO細胞、アスホターゼ産生CHO細胞、ルリオクトコグ産生CHO細胞、ツロクトコグ産生CHO細胞、ロノクトコグ産生CHO細胞、ノナコグ産生CHO細胞、アルブトレペノナコグ産生CHO細胞、トロンボモデュリン産生CHO細胞、アンチトロンビン産生CHO細胞、ボニコグ産生CHO細胞、ホリトロピン産生CHO細胞、コリオゴナドトロピン産生CHO細胞、デュラグルチド産生CHO細胞、インターフェロンベータ-1a産生CHO細胞、エポエチン産生CHO細胞、ダルベポエチン産生CHO細胞、レノグラスチム産生CHO細胞、エタネルセプト産生CHO細胞、アフリベルセプト産生CHO細胞、アバタセプト産生CHO細胞等の生理活性物質産生CHO細胞;シモクトコグ産生HEK293細胞、エフラロクトコグ産生HEK293細胞、エフトレノナコグ産生HEK293細胞等の生理活性物質産生HEK293細胞;モンテプラーゼ産生BHK細胞、エプタコグ産生BHK細胞、オクトコグ産生BHK細胞、ダモクトコグ産生BHK細胞等の生理活性物質産生BHK細胞;ベラグルセラーゼ産生HT-1080細胞、アガルシダーゼ産生HT-1080細胞、イデュルスルファーゼ産生HT-1080細胞等の生理活性物質産生HT-1080細胞;ホリトロピン産生PERC6細胞等の生理活性物質産生PERC6細胞等が挙げられ;
 例えば、前記生理活性物質産生CHO細胞としては、アルテプラーゼ産生CHO細胞、アルグルコシダーゼ産生CHO細胞、ルリオクトコグ産生CHO細胞、デュラグルチド産生CHO細胞、インターフェロンベータ-1a産生CHO細胞、ダルベポエチン産生CHO細胞、エタネルセプト産生CHO細胞、アフリベルセプト産生CHO細胞及びアバタセプト産生CHO細胞等が挙げられる。
 なお、ここに挙げた生理活性物質は、前述のように産生後に修飾や改変を加えられた物質名を記している場合があるが、それらはその原料となる生理活性物質を産生する細胞をコア層に含むことができる。例えば、エラペグアデマーゼ、ペグバリアーゼ、ルリオクトコグ アルファ ペゴル、ツロクトコグ アルファ ペゴル、ダモクトコグ アルファ ペゴル、ノナコグ ベータ ペゴル、ペグビソマント、ペグインターフェロン アルファ-2a、ペグインターフェロン アルファ-2b、エポエチン ベータ ペゴル、ペグフィルグラスチム、ペグベルフェルミン等のPEG化された生理活性物質においては、それらの原料となる生理活性物質を産生する細胞をコア層に含むことができる。
 生理活性物質を産生できる細胞としては、前述の生理活性物質産生遺伝子組換え細胞に加え、天然の細胞や、人工的な改変操作を施された細胞も含まれ、複数個の細胞からなる細胞塊も含まれ、例えば、インスリン分泌細胞、膵島、膵島細胞、ドーパミン分泌細胞、脳下垂体細胞、成長ホルモン分泌細胞、副甲状腺細胞、神経成長因子分泌細胞、血液凝固因子分泌細胞、肝細胞、上皮小体細胞、エリスロポエチン分泌細胞、ノルエピネフリン分泌細胞等が挙げられる。本明細書中、生理活性物質を産生する細胞としては、ある態様においては、インスリン分泌細胞、膵島又は膵島細胞、又は膵β細胞由来のMIN6細胞である。
 「インスリン分泌細胞」とは、インスリンを分泌する機能を有する細胞を意味し、例えば、膵島を構成する細胞においては、インスリンを分泌するβ細胞を意味する。また、「インスリン分泌細胞」は、分化、成熟や改変などによってインスリン分泌機能を有するようになった細胞であってもよく、例えば、iPS細胞、ES細胞、又は体性幹細胞(例えば、間葉系幹細胞)等の幹細胞を分化させて得られたインスリン分泌機能を有する細胞、幼若細胞や前駆細胞を成熟させて得られたインスリン分泌機能を有する細胞、及び、遺伝子組み換えによりインスリン分泌機能を付与された細胞も含み得る。ここで、当該細胞を分化や成熟させることには、当該細胞を培養させることが含まれ、すなわち、分化又は成熟させて得られた細胞とは、培養されて得られた細胞を含み得る。
 「膵島」とは、別名ランゲルハンス氏島とも呼ばれる、平均約2000個の膵島細胞より構成される細胞塊である。膵島は、グルカゴンを分泌するα細胞、インスリンを分泌するβ細胞、ソマトスタチンを分泌するδ細胞、グレリンを分泌するε細胞、及び膵ポリペプチドを分泌するPP(pancreatic polypeptide;膵ポリペプチド)細胞の5種の細胞から構成される。
 本明細書において、「膵島細胞」とは、上記の膵島を構成する5種類の細胞うちの少なくとも1種類の細胞を含むものであればよいが、少なくともβ細胞を含むことが好ましい。いくつかの態様では、膵島細胞としては、α細胞、β細胞、δ細胞、ε細胞、及びPP細胞の全てを含む混合物でもよく、膵島に含まれた状態のものでもよい。
 また、「膵島細胞」は、分化、成熟や改変などにより膵島細胞になったものであってもよい。この場合、「膵島細胞」には、例えば、iPS細胞、ES細胞、及び体性幹細胞(例えば、間葉系幹細胞)等の幹細胞を分化させて得られた膵島細胞、及び幼若細胞や前駆細胞を成熟させて得られた膵島細胞も含み得る。
 「インスリン分泌細胞」又は「膵島(膵島細胞を含む)」としては、移植用途として用いる場合は、患者に移植した際に、患者の病的状態を回復することができる程度の生存性と機能とを有することが好ましい。インスリン分泌細胞、膵島又は膵島細胞の機能としては、例えば、インスリンを分泌することが挙げられ、移植後においてもグルコース応答性が維持されていることが好ましい。
 「インスリン分泌細胞」、「膵島」又は「膵島細胞」のドナーは、動物、好ましくは脊椎動物、より好ましくは哺乳類であり、具体的にはヒト、ブタ、サル、ラット又はマウスなどが挙げられ、更に好ましくはヒト又はブタである。「インスリン分泌細胞」、「膵島」又は「膵島細胞」のドナーは、いくつかの態様では、ドナー不足解消の観点からブタである。「インスリン分泌細胞」、「膵島」又は「膵島細胞」としては、ドナーである動物から得られた膵島又は膵島細胞、あるいはドナー由来細胞から得られたインスリン分泌細胞又は膵島細胞のいずれかでもよく、例えば、ヒト由来のES細胞またはiPS細胞から分化したインスリン分泌細胞又は膵島細胞でもよい。
 「インスリン分泌細胞」、「膵島」又は「膵島細胞」がブタ由来である場合には、成体のブタ膵島、又は、胎生期、新生児期、もしくは周産期のブタ膵島、又は当該膵島から得られたインスリン分泌細胞もしくは膵島細胞が挙げられる。当該膵島は適宜培養してから使用するようにしてもよく、胎生期、新生児期、もしくは周産期のブタ膵島を成熟させた膵島を使用してもよい。
 血液凝固因子分泌細胞としては、例えば、第VIII因子分泌細胞及び第IX因子分泌細胞を挙げることができる。
11.ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法
 ここでは、抗体、生理活性物質等を産生できる細胞を含み、式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより形成される架橋アルギン酸ゲル(コア層)がカチオン性ポリマー(カチオン性ポリマー層)で被覆された、ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法が提供される。例えば、図3に示される装置XXを用いることを含む当該ファイバの製造方法が提供される。
 以下に、前記ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法について説明する。
 前記ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法は、特に限定されないが、例えば、図3に示される装置XXを用いて行う。ここでの装置XXは、ポリマーコーティング架橋アルギン酸ゲルファイバを作製するのに好ましく用いられる装置である。
 装置XXは、例えば、図3に示されるように、導入口を1つ、排出口を1つ備える微細流路を作ることが可能な装置であり、導入口から溶液を導入し、適当な速さで流すことで、排出口から溶液がファイバ状(繊維状)となり排出される。
 装置XXは、例えば、図3に示されるような押出筒YY等を用いて、装置XXの導入口から導入した、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液を、押し出すことで装置XXの排出口から、当該混合溶液を射出することができる。
 装置XXと押出筒YYを備えるものとして、例えば、注射筒を用いることができる。注射筒の場合、装置XXが外筒となり、装置XXに導入された溶液を排出口から押し出すための押出筒YYが内筒になる。注射筒を用いる場合、ガラス製またはプラスチック製の注射筒を用いることができる。
 図3に示すように、装置XXの排出口2より排出されるファイバ状物質を受ける容器として、2価金属イオンを含む溶液を含むビーカー等の容器DDが用いられる。又、架橋アルギン酸ゲルファイバCLAの表面を、カチオン性ポリマーで被覆するための容器として、カチオン性ポリマーを含む溶液を含むビーカー等の容器EEが用いられる。
 図3は、ポリマーコーティング架橋アルギン酸ゲルファイバの製造過程の1つの態様を説明する模式図である。一例として、細胞(抗体、生理活性物質等を産生できる細胞)を含み、式(I)及び式(II)で表される化学修飾アルギン酸誘導体の混合溶液を用いる作製方法について説明する。
 ポリマーコーティング架橋アルギン酸ゲルファイバは、例えば下記工程(S)~(2)を含む方法により製造することができる。
工程(S):装置XXの導入口1から、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液を導入する工程、
工程(1):装置XXの排出口2から、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体が含まれる混合溶液を、2価金属イオンを含む溶液中に射出し、2価金属イオンに接触させ、抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバ(CLA)を得る工程、
工程(2):工程(1)で得られた抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバ(CLA)を、カチオン性ポリマーを含む溶液に接触させることで、カチオン性ポリマー層で被覆して形成されるポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を得る工程。
 工程(S)では、前述のコア層に含まれる細胞で説明される、抗体、生理活性物質等を産生できる細胞を、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む溶液に懸濁または溶解させる。この際、抗体、生理活性物質等を産生できる細胞以外に、アルギン酸溶液、培地、培養液、コラーゲン溶液、メチルセルロース、スクロース溶液等の成分を添加することも可能である。
 工程(1)では、工程(S)で調製した抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液(または懸濁液)を、2価金属イオンを含む溶液へゆっくりと放出することで、放出された溶液が順次、ゲル化していくことにより、ファイバー状(繊維状)の構造物を製造することができる。2価金属イオンを含む溶液と接触させることにより、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の間でイオン架橋が進むのと同時にHuisgen反応による化学架橋も進み、ゲルが作製できる。
 工程(2)では、工程(1)で得られた抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバを、カチオン性ポリマーを含む溶液に接触させることにより、抗体、生理活性物質等を産生できる細胞を含む架橋アルギン酸ゲルファイバの表面がカチオン性ポリマー層で被覆される。
 前記(S)~(2)の工程を行うことにより、本発明のポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を製造することができる。
 本明細書において、「接触」とは、ある溶液(例えば、化学修飾アルギン酸誘導体の溶液)またはゲル(例えば、架橋アルギン酸ゲル)を別の溶液(例えば、2価金属イオンを含む溶液、カチオン性ポリマーを含む溶液、アニオン性ポリマーを含む溶液)に浸漬または添加すること等を意味する。
 装置XXの排出口2から射出される抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の流速(射出速度)は、例えば、約100~約10000μL/分程度であってもよい。例えば、抗GPVI抗体産生CHO細胞又はトシリズマブ産生CHO細胞をコア層に含む、ポリマーコーティング架橋アルギン酸ゲルファイバを作製する場合の流速は、例えば、250μL/分、4mL/分、10mL/分等であり、MIN6細胞をコア層に含む、ポリマーコーティング架橋アルギン酸ゲルファイバを作製する場合の流速は、例えば、125μL/分である。流速(射出速度)はシリンジポンプ等を用いて調整することが可能であり、様々なサイズのファイバーを製造することが可能になる。又、装置XXの排出口2の大きさ(径)を変化させることにより、コア層の直径を調整できたファイバーを製造することも可能となる。
 装置XXの排出口2には、ルアーロック用ニードル(金属製等の材質)、シリコンチューブ、ガラスキャピラリ等を適宜組み合わせて接続して、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液を2価金属イオンを含む溶液へ放出することができる。
 装置XXの導入口1から導入される抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液は、例えば、前記態様[1]に記載の式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を用いて、溶媒(例えば、培地、細胞培養用培地、培養液、等張緩衝液、リン酸緩衝生理食塩水、及び生理食塩水等等)を添加して、所定の濃度(例えば、各化学修飾アルギン酸誘導体の溶液の濃度が約0.01~約1.5重量%、式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液の濃度が約0.02~約2.0重量%)の式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体の混合溶液を調製する。
 装置XXの導入口1から導入される抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液にアルギン酸溶液を添加する場合、当該式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の濃度とアルギン酸溶液の濃度の総濃度は、例えば、約0.5~約2.0重量%の範囲に調製される。
 装置XXの導入口1から導入される、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液にアルギン酸溶液を添加する場合、当該式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液の濃度(C1(重量%))とアルギン酸溶液の濃度(C2(重量%))の組合せは、特に限定されないが、例えば、(C1:C2)=(約0.2:約1.3)、(約0.5:約1.0)、(約1.0:約0.5)、(約1.5:0)、(約0.66:約1.34)、(約0.34:約0.66)、(約0.16:約0.34)等の組み合わせが挙げられる。これら濃度以外にも、C1およびC2の濃度を適宜組み合わせて調製することができる。
 装置XXの導入口1から導入される、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液にアルギン酸溶液を添加する場合、当該式(I)で表わされる化学修飾アルギン酸誘導体の溶液の濃度(C1A(重量%))、式(II)で表わされる化学修飾アルギン酸誘導体の溶液の濃度(C1N(重量%))及びアルギン酸溶液の濃度(C2(重量%))の組合せは、特に限定されないが、例えば、(C1A:C1N:C2)=(約0.1:約0.1:約1.3)、(約0.25:約0.25:約1.0)、(約0.5:約0.5:約0.5)、(約0.75:約0.75:0)、(約0.33:約0.33:約1.34)、(約0.17:約0.17:約0.66)、(約0.08:約0.08:約0.34)等の組み合わせが挙げられる。これら濃度以外にも、C1A、C1N、C2の濃度を適宜組み合わせて調製することができる。
 装置XXの導入口1から導入される、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液中の、式(I)で表わされる化学修飾アルギン酸誘導体の溶液および式(II)で表わされる化学修飾アルギン酸誘導体の溶液の各容量比(v1、v2)は、例えば、v1+v2=15の比率であり、例えば、(v1:v2)=(7.5:7.5)である。
 装置XXの導入口1から導入される、抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液にアルギン酸溶液を添加する場合、アルギン酸溶液を添加した混合溶液における、式(I)で表わされる化学修飾アルギン酸誘導体の容量(v1)、式(II)で表わされる化学修飾アルギン酸誘導体の溶液の容量(v2)およびアルギン酸溶液の容量(v3)の容量比は、例えば、v1+v2+v3=15の比率であり、例えば、(v1:v2:v3)=(5:5:5)、(2.5:2.5:10)、(1:1:13)等の組み合わせである。
 作製されるポリマーコーティング架橋アルギン酸ゲルファイバCFBの外径は、特に限定されないが、前述の通りであり、例えば、約0.1~約200μmの範囲である。ポリマーコーティング架橋アルギン酸ゲルファイバCFBの長さは特に限定されず、前述の通りであり、例えば、約0.3~約50m程度であってもよい。当該ファイバの断面形状としては、前述の通りであり、例えば、円形、楕円系、四角形や五角形等の多角形等が挙げられる。
 装置XXの排出口2から射出される抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液を接触させる、2価金属イオンを含む溶液は、前述の「5-1.架橋アルギン酸ゲル」に記載の通りであり、例えば、カルシウムイオン、マグネシウムイオン、バリウムイオン、ストロンチウムイオン、亜鉛イオン等が含まれる溶液があげられる。
 2価金属イオンを含む溶液の2価金属イオン濃度は、例えば、約1mM~約1Mの範囲、又は約10~約500mMの範囲であり;好ましくは、約10~約100mMである。
 2価金属イオンを含む溶液を調製する際に用いる溶媒は、前述の「5-1.架橋アルギン酸ゲル」に記載の通りであり、例えば、水、及び生理食塩水等が挙げられる。
 装置XXの排出口2から射出される抗体、生理活性物質等を産生できる細胞ならびに式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体を含む混合溶液を2価金属イオンを含む溶液に接触させる時間は、例えば、約1分~60分、1分~30分等である。
 前記ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法の工程(2)で得られる架橋アルギン酸ゲルファイバCLAを接触させる、カチオン性ポリマーを含む溶液は、前述の「7.カチオン性ポリマー」に記載されるカチオン性ポリマーを含む溶液であり、例えば、ポリアミノ酸、塩基性多糖、塩基性ポリマー等を含む溶液が挙げられる。
 前記架橋アルギン酸ゲルファイバCLAを接触させる、カチオン性ポリマーを含む溶液の濃度は、前述の「7.カチオン性ポリマー」に記載される通りであり、例えば、約0.02~約0.2重量%、約0.05~約0.1重量%等である。
 前記架橋アルギン酸ゲルファイバ(CLA)を接触させる、カチオン性ポリマーを含む溶液は、塩化カルシウム水溶液、塩化ナトリウム水溶液、溶液のpH調整のための緩衝液(酢酸、酢酸ナトリウム、水酸化ナトリウム、ヒドロキシエチルピペラジンエタンスルホン酸等の水溶液)等の成分を含むことができる。
 前記架橋アルギン酸ゲルファイバCLAをカチオン性ポリマーを含む溶液に接触させる時間は、例えば、約1分~60分、1分~30分等である。
 いくつかの態様では、ポリマーコーティング架橋アルギン酸ゲルファイバの製法時の温度は、例えば、約4~約37℃の範囲である。
 前記製造方法により、抗体、生理活性物質等を産生できる細胞がある一定数含まれたコア層を有するポリマーコーティング架橋アルギン酸ゲルファイバを容易に得ることができる。
 いくつかの態様では、ポリマーコーティング架橋アルギン酸ゲルファイバを培養液中で培養することにより、抗体産生細胞、生理活性物質産生細胞等が培養され、抗体、生理活性物質等を産生することができる。ポリマーコーティング架橋アルギン酸ゲルファイバは、培養液を適切に交換することにより、抗体産生細胞、生理活性物質産生細胞等を数週間~数か月の間連続培養することが可能となる。
 前記ポリマーコーティング架橋アルギン酸ゲルファイバの強度については、当業者に周知の方法に従って、振盪崩壊試験、引張強度試験等により測定することができる。
12.多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法
 ここでは、抗体、生理活性物質等を産生できる細胞を含み、式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより形成される架橋アルギン酸ゲル(コア層)がカチオン性ポリマー(カチオン性ポリマー層)およびアニオン性ポリマー(アニオン性ポリマー層)で被覆された、多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法が提供される。例えば、図3または図10に示される装置XXを用いて得られるポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を用いた、多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法が提供される。
 以下に、多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法について説明する。
 多層ポリマーコーティング架橋アルギン酸ゲルファイバは、前記「11.ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法」に記載の工程(S)~工程(2)に続けて、下記工程(3)を行うことで、製造することができる。
工程(3):工程(2)で得られたポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を、アニオン性ポリマーを含む溶液に接触させて、さらにアニオン性ポリマーでコーティングする工程。
 工程(3)では、工程(2)で得られた抗体、生理活性物質等を産生できる細胞を含むポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を、アニオン性ポリマーを含む溶液に接触させることにより、抗体、生理活性物質等を産生できる細胞を含むポリマーコーティング架橋アルギン酸ゲルファイバの表面がアニオン性ポリマー層で被覆される。
 前記(S)~(3)の工程を行うことにより、本発明の多層ポリマーコーティング架橋アルギン酸ゲルファイバ(ACFB)を製造することができる。
 アニオン性ポリマーで被覆するための容器としては、図10に示される、アニオン性ポリマーを含む溶液を含むビーカー等の容器FFが用いられる。
 作製される多層ポリマーコーティング架橋アルギン酸ゲルファイバ(ACFB)の外径は、特に限定されないが、前述の通りであり、例えば、約0.1~約200μmの範囲である。多層ポリマーコーティング架橋アルギン酸ゲルファイバ(ACFB)の長さは特に限定されず、前述の通りであり、例えば、約0.3~約50m程度であってもよい。当該ファイバの断面形状としては、前述の通りであり、例えば、円形、楕円系、四角形や五角形等の多角形等が挙げられる。
 前記工程(2)で得られるポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を接触させるアニオン性ポリマーは、前述の「9.アニオン性ポリマー」に記載されるアニオン性ポリマーであり、好ましくは、アニオン性多糖類、硫酸化多糖類、合成ポリマー、アニオン性ポリアミノ酸、これらの化学修飾体、これらの架橋体、これらの混合物、等からなる群から選択されるアニオン性ポリマー等である。より好ましくは、前記工程(3)で得られるポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)に、アルギン酸、前述の式(I)で表わされる化学修飾アルギン酸誘導体、式(II)で表わされる化学修飾アルギン酸誘導体、式(I)で表わされる化学修飾アルギン酸誘導体および/又は式(II)で表わされる化学修飾アルギン酸誘導体から形成される架橋体、及びこれらの混合物からなる群から選択されるアニオン性ポリマーを接触させる。これにより、カチオン性ポリマーでコーティングされたポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)の表面が、さらにアルギン酸、前述の式(I)で表わされる化学修飾アルギン酸誘導体、式(II)で表わされる化学修飾アルギン酸誘導体等でコーティングされる。
 ここで、アニオン性ポリマーとして式(I)で表わされる化学修飾アルギン酸誘導体、式(II)で表わされる化学修飾アルギン酸誘導体を使用する場合、コア層に用いている当該アルギン酸誘導体と同一のものを使用しても、異なるものを使用してもよい。
 前記ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)を接触させる、アニオン性ポリマーを含む溶液の濃度は、前述の「9.アニオン性ポリマー」に記載される通りであり、例えば、約0.01~約5.0重量%、約0.05~約1.0重量%、約0.1~約0.5重量%、約0.15~約0.4重量%等の範囲の濃度でである。
 前記ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB)をアニオン性ポリマーを含む溶液に接触させる時間は、例えば、約1分~60分、1分~30分等である。
 いくつかの態様では、多層ポリマーコーティング架橋アルギン酸ゲルファイバ(ACFB)の製法時の温度は、例えば、約4~約37℃の範囲である。
 前記製造方法により、抗体、生理活性物質等を産生できる細胞がある一定数含まれたコア層を有する多層ポリマーコーティング架橋アルギン酸ゲルファイバを容易に得ることができる。
 いくつかの態様では、多層ポリマーコーティング架橋アルギン酸ゲルファイバを培養液中で培養することにより、抗体産生細胞、生理活性物質産生細胞等が培養され、抗体、生理活性物質等を産生することができる。多層ポリマーコーティング架橋アルギン酸ゲルファイバは、培養液を適切に交換することにより、抗体産生細胞、生理活性物質産生細胞等を数週間~数か月の間連続培養することが可能となる。
 前記多層ポリマーコーティング架橋アルギン酸ゲルファイバの強度については、当業者に周知の方法に従って、振盪崩壊試験、引張強度試験等により測定することができる。
 本明細書中の記載において「約」と記載した場合、特に断りが無い場合には、当該数値の±20%迄、好ましくは当該数値の±10%迄の値も含み得るものである。
13.抗体産生細胞、生理活性物質産生細胞等の培養方法
 ここでは、前記製造方法にて作製される抗体、生理活性物質等を産生できる細胞をコア層に含むポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバを用いた、抗体、生理活性物質等の製造方法が提供される。例えば、前記ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバを培養容器に入れ、培地を添加して前記ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバを含浸させ、培養を行うことにより、抗体、生理活性物質等を製造することができる。以下、「抗体、生理活性物質等の製造方法」を「抗体産生細胞、生理活性物質産生細胞等の培養方法」という場合がある。
 好ましい態様の抗体産生細胞、生理活性物質産生細胞等の培養方法によれば、抗体、生理活性物質等を産生できる細胞をコア層に含むポリマーコーティング架橋アルギン酸ゲルファイバを前記製造方法にて作製した後の早い段階で、培養液に浸潤させ抗体産生細胞、生理活性物質産生細胞等の培養を開始することができる。これにより、図4に示すように、コア層への培養液(栄養源)及び酸素の供給をすぐに行うことができ、すなわち、コア層に含まれる、抗体産生細胞、生理活性物質産生細胞等を壊死させることなく、培養が可能となる。特に好ましい態様では、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層での抗体産生細胞、生理活性物質産生細胞等の壊死を十分に防ぎつつ、抗体、生理活性物質等を産生することができる。
 好ましい態様の抗体産生細胞、生理活性物質産生細胞等の培養方法によれば、抗体、生理活性物質等を産生できる細胞をコア層に含む多層ポリマーコーティング架橋アルギン酸ゲルファイバを前記製造方法にて作製した後の早い段階で、培養液に浸潤させ抗体産生細胞、生理活性物質産生細胞等の培養を開始することができる。これにより、図11に示すように、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層への培養液(栄養源)及び酸素の供給をすぐに行うことができ、すなわち、当該コア層に含まれる、抗体産生細胞、生理活性物質産生細胞等を壊死させることなく、培養が可能となる。特に好ましい態様では、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層での抗体産生細胞、生理活性物質産生細胞等の壊死を十分に防ぎつつ、抗体、生理活性物質等を産生することができる。
 本発明の抗体、生理活性物質等を産生できる細胞をコア層に含むポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバは、培養時にファイバ外に存在している培養液(栄養源)及び酸素等の成分に対して十分な透過性を有しているものである。
 以下に、抗体産生細胞の培養方法の一例について、具体的に説明するが、これに限定されない。ベントキャップ付三角フラスコ(Corning社、 Cat.431143)に、前述の製造方法にて作製された、コア層に抗体産生細胞を含む、ポリマーコーティング架橋アルギン酸ゲルファイバを入れ、後述する表31の組成である培地(30 mL)を添加し、ゲルファイバを含浸させた後、37℃、5%CO雰囲気下にインキュベータ内で振盪器(パナソニックヘルスケア(株)MIR-S100C)を用いた125 rpmの条件で振とうしながら培養を行う。培養期間中、2~3日に一回、培地1.8 mLを抜き取り、Feed液(Irvine社製、JX Feed 003)または表31の組成である培地1.8mLを添加し、培地の総量を30 mLに保つ。また、培養期間中、週に一度培地の半量交換をおこなう。
 また、以下に、生理活性物質産生細胞の培養方法の一例について、具体的に説明するが、これに限定されない。前述の製造方法にて作製された、コア層に生理活性物質産生細胞を含む、ポリマーコーティング架橋アルギン酸ゲルファイバを低接着表面ディッシュに入れ、後述する表35の組成である培地(5 mL)を添加し、37℃、5%CO雰囲気下、インキュベータ内で静置して培養をおこなう。
 以下に、抗体産生細胞の培養方法の一例について、具体的に説明するが、これに限定されない。ベントキャップ付三角フラスコ(Corning社、 Cat.431143)に、前述の製造方法にて作製された、コア層に抗体産生細胞を含む、多層ポリマーコーティング架橋アルギン酸ゲルファイバを入れ、後述する表31の組成である培地(30 mL)を添加し、ゲルファイバを含浸させた後、37℃、5%CO雰囲気下にインキュベータ内で振盪器(パナソニックヘルスケア(株)MIR-S100C)を用いた125 rpmの条件で振とうしながら培養を開始し、5日後に培養温度を30℃とし、同温度にて培養を継続する。培養期間中、2~3日に一回、培養液1.8 mLを抜き取り、表XXの組成である培地1.8mLまたはFeed液(Irvine社製、カタログ番号JX F003)1.8mLを添加し、培地の総量を30 mLに保つ。また、週に一度培養液の半量交換を実施する。
 ある態様のポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバを用いる抗体、生理活性物質等の製造技術は、コア層に含まれる抗体産生細胞、生理活性物質産生細胞等がある一定数以上には増殖しないことにより、細胞への物理的ストレスが少ないため、封入した抗体産生細胞、生理活性物質産生細胞等が長期間に渡り抗体、生理活性物質等を産生し続ける可能性を有している点で優れている。
 また、以下に、生理活性物質産生細胞の培養方法の一例について、具体的に説明するが、これに限定されない。前述の製造方法にて作製された、コア層に生理活性物質産生細胞を含む、多層ポリマーコーティング架橋アルギン酸ゲルファイバを、例えば、低接着表面ディッシュに入れ、後述する表35の組成である培地等を添加し、37℃、5%CO雰囲気下、インキュベータ内で静置して培養をおこなう。
 特に好ましい態様では、抗体の生産・精製効率を飛躍的に向上させる可能性があり(例えば、好ましい態様のポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバを用いることで、大規模な培養タンクを要する浮遊培養とは異なり、小規模の生産設備にて抗体を培養することも可能となる)、少量・多種品目の抗体医薬品の製造にも適した次世代型抗体医薬品の連続生産技術として期待できる。
 培養により産生された抗体(例えば、抗GPVI抗体、トシリズマブ産生CHO細胞)または生理活性物質(例えば、インスリン)は、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に貯留されても良く、好ましくは、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層およびカチオン性ポリマー層を透過しポリマーコーティング架橋アルギン酸ゲルファイバ外の培養液中に貯留される。
 又、培養により産生された抗体(例えば、トシリズマブ産生CHO細胞)または生理活性物質は、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に貯留されても良く、好ましくは、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層、カチオン性ポリマー層及びアニオン性ポリマー層を透過し多層ポリマーコーティング架橋アルギン酸ゲルファイバ外の培養液中に貯留される。
尚、抗体、生理活性物質等の回収・精製は、後述の記載を参照し、行うことが可能である。
 好ましい態様では、図4に示すように、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層内で産生された抗体、生理活性物質等が、コア層及びカチオン性ポリマー層を透過して当該ファイバ外へ順次放出されることとなり、抗体、生理活性物質等の連続培養が可能なサイクルが形成可能である。尚、このとき、代謝物及び老廃物も当該ファイバ外へ放出されてもよい。
 好ましい態様では、図11に示すように、多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層内で産生された抗体、生理活性物質等が、コア層、カチオン性ポリマー層及びアニオン性ポリマー層を透過して当該ファイバ外へ順次放出されることとなり、抗体、生理活性物質等の連続培養が可能なサイクルが形成可能である。尚、このとき、代謝物及び老廃物も当該ファイバ外へ放出されてもよい。
 実際に、後述の実施例では、コア層に含める細胞として、抗GPVI抗体産生CHO細胞、トシリズマブ産生CHO細胞またはMIN6細胞から選択される細胞を用い、コア層の架橋アルギン酸ゲルの形成に用いる式(I)の化学修飾アルギン酸誘導体として、下記式:
Figure JPOXMLDOC01-appb-C000080
[式中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わす]から選択される化学修飾アルギン酸誘導体を、式(II)の化学修飾アルギン酸誘導体として、下記式:
Figure JPOXMLDOC01-appb-C000081
[式中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わす]から選択される化学修飾アルギン酸誘導体を用い、カチオン性ポリマー層のカチオン性ポリマーとして、ポリ-L-オルニチン、ポリアリルアミン(PAA)、ポリエチレンイミン又はポリメチレン-CO-グアニジン(PMCG)を用いて、ポリマーコーティング架橋アルギン酸ゲルファイバを作製した。
又、前記で作製されたポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層の外側を、アニオン性ポリマーとして、アルギン酸、下記式(I)の化学修飾アルギン酸誘導体:
Figure JPOXMLDOC01-appb-C000082
[式中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わす]から選択される化学修飾アルギン酸誘導体、下記式(II)の化学修飾アルギン酸誘導体:
Figure JPOXMLDOC01-appb-C000083
[式中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わす]から選択される化学修飾アルギン酸誘導体を用い被覆することで、多層ポリマーコーティング架橋アルギン酸ゲルファイバを作製した。
 また、前記で得られたポリマーコーティング架橋アルギン酸ゲルファイバを培養した処、産生された抗体(抗GPVI抗体、トシリズマブ)又は生理活性物質(インスリン)が、コア層及びカチオン性ポリマー層を透過して培養液中に貯留された事が確認できた。
 更に、前記で得られた多層ポリマーコーティング架橋アルギン酸ゲルファイバを培養した処、産生された抗体(トシリズマブ)が、コア層、カチオン性ポリマー層及びアニオン性ポリマー層を透過して培養液中に貯留された事が確認できた。
 抗体、生理活性物質等を産生できる細胞をコア層に含むポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバを培養する、培養容器としては、例えば、組織培養用プレート、三角フラスコ、T-フラスコ、スピナーフラスコ、培養バッグ、動物細胞培養槽等からなる群から選択される容器であり;好ましくは三角フラスコ又は動物細胞培養槽である。培養は、静置培養、振とう・揺動培養などのいずれの方法を選択してもよい。
 抗体、生理活性物質等の生産性向上には、培養当たりの抗体産生細胞、生理活性物質産生細胞等の細胞数の増大化が有効であるが、一方で過剰な増殖が起こり、培養環境が悪化し、培養期間の短縮が起こりうる。いくつかの態様の抗体、生理活性物質等の製造方法にて、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる、抗体産生細胞、生理活性物質産生細胞等の過剰増殖に起因する細胞への物理的ストレスを少なくする為の方法として、例えば、コア層に含まれる抗体産生細胞、生理活性物質産生細胞等がある一定数以上に増殖しない方法としては、培養中の培養温度のコントロール、培養液中に細胞増殖抑制剤を添加する、等の方法が挙げられる。
 いくつかの態様の抗体、生理活性物質等の製造方法にて、培養温度は、例えば、約28~約39℃の範囲であり、例えば、約30℃~約37℃の範囲である。
 いくつかの態様の抗体、生理活性物質等の製造方法にて、培養開始から終了時までの培養温度は、適時、変化させることも可能である。例えば、培養開始時の温度を約37℃として、ある一定時間培養した段階で、約30℃に変化させることが可能である。
 いくつかの態様の抗体、生理活性物質等の製造方法にて、培養期間は、例えば、7日以上であり、又は10日以上であり、又は20日以上であり、又は30日以上であり、又は40日以上であり、又は50日以上であり、又は60日以上であり、又は70日以上である。
 いくつかの態様の抗体、生理活性物質等の製造方法にて、培養期間は、例えば、7日であり、又は14日であり、又は28日であり、又は35日であり、又は42日であり、又は49日であり、又は56日であり、又は63日であり、又は70日である。
 いくつかの態様の抗体の製造方法にて、培養液中に細胞増殖抑制剤を添加することもできる。細胞増殖抑制剤とは、培養期間中、過剰な細胞増殖を抑制することが可能な剤であり、例えば、ジメチルスルホキシド、酪酸ナトリウム、バルプロ酸、塩化リチウム、吉草酸、メトトレキサート(MTX)等の添加剤が挙げられる。細胞増殖抑制剤を培養液に添加するタイミングは、培養開始時点、又は培養期間中(必要な細胞数まで増殖できた時点)のいずれでも可能である。本明細書にて、抗GPVI抗体産生細胞を用いて培養を行う場合、メトトレキサート(MTX)を添加している。
 本明細書中、細胞培養用培地には、市販の培地基材又は調製済み培地、若しくは自製した培地を使用することができる。又、天然培地(例えば、ソイビーン-カゼインダイジェスト培地(SCD培地)等がある)又は合成培地(増殖に必要な各種栄養素を全て化学薬品にて補う培地である)を使用することもできる。又、当該培地は、特に限定されることは無いが、細胞の生存増殖に必要な成分(無機塩、炭水化物、ホルモン、必須アミノ酸、非必須アミノ酸、ビタミン等)が含まれる基本培地であれば良く、例えば、Dulbecco’s Modified Eagle Medium(DMEM)、Minimum Essential Medium(MEM)、RPMI-1640、Basal Medium Eagle(BME)、Dulbecco’s Modified Eagle’s Medium:Nutrient Mixture F-12(DMEM/F-12)、Glasgow Minimum Essential Medium(Glasgow MEM)、G016培地、DMEM(High Glucose)等が挙げられる。
 又、前記培地には、更に血清が含まれていても良い。前記血清としては、特に限定されることは無いが、例えば、FBS/FCS(Fetal Bovine/Calf Serum)、NCS(Newborn Calf serum)、CS(Calf Serum)、HS(Horse Serum)等が挙げられる。培地に含まれる血清の濃度は、例えば、2重量%以上10重量%以下である。
 本発明のポリマーコーティング架橋アルギン酸ゲルファイバは、そのコア層の架橋アルギン酸ゲルファイバの両端がカチオン性ポリマーで被覆されていることから、培養期間中にコア層に含まれる抗体産生細胞、生理活性物質産生細胞等の細胞が、多量に(例えば、1×10個以上)ファイバ外へ漏れだすことの防止、抑制又は低減に繋がる。
 本発明の多層ポリマーコーティング架橋アルギン酸ゲルファイバは、そのコア層の架橋アルギン酸ゲルファイバの両端がカチオン性ポリマーおよびアニオン性ポリマーで被覆されていることから、培養期間中にコア層に含まれる抗体産生細胞、生理活性物質産生細胞等の細胞が、多量に(例えば、1×10個以上)ファイバ外へ漏れだすことの防止、抑制又は低減に繋がる。
13-1.コア層における生細胞数の算出方法
 以下に、培養開始時、培養期間中または培養後における、抗体産生細胞を含有するポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層に含まれる抗体産生細胞の生細胞数の測定方法の一例について、具体的に説明するが、これに限定されるものではない。
 抗体産生細胞を含有する架橋アルギン酸ゲルファイバ、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバ(0.2mL)を15mLチューブ(遠沈管(印刷目盛付・バルク),型式:2325-015-MYP)に移し、チューブの目盛で約4.5mLまで後述する表31の組成であるG016培地(4.5 mL)を添加する。続いて、1 mg/mL Alginate lyase (Poly α-guluronate lyase Recombinant Zobellia galactanivorans) (Creative Enzymes, Cat#NATE-1563)を30μL添加し、30 ℃、125 rpmで1時間以上振盪撹拌した。振盪撹拌の間、架橋アルギン酸ゲルファイバが均一に溶解するまで、適宜、溶液のピペッティングあるいは前記Alginate lyaseを添加した。前記架橋アルギン酸ゲルファイバが均一に溶解したことを確認後、液量を確認し、前記G016培地を追加して5mLとする。前記溶液の一部を採取し、細胞数をカウントする。2回測定の平均値を用いて、架橋アルギン酸ゲルファイバ中の生細胞数とする。
14.抗体の分類
 抗体は、作製時の免疫動物種によって、マウス抗体、ラット抗体、ウサギ抗体、ヒト抗体等と称される。ヒトで使用する際の免疫原性を減じるために、異なる種由来の抗体の部分領域をヒト配列に変換させた改変抗体として、キメラ抗体とヒト化抗体があり、バイオ医薬品として用いられる。また、ヒト抗体遺伝子を組込まれたマウスなどを用いて、ヒト抗体遺伝子から産生された抗体もあり、ヒト型抗体、あるいは単にヒト抗体と称され、バイオ医薬品として用いられる。
 上記の各種抗体に加え、次世代抗体と言われる様々な改変抗体も開発されており、本明細書においては、改変抗体も「抗体」に含まれる。例えば、2以上の抗原に対して特異性を示す抗体である多価抗体があり、特に二重特異性を示すものをバイスペシフィック抗体と言い、高機能化抗体の一つである。抗体のFc部位を除去し低分子化した抗体である低分子化抗体もあり、Fab、F(ab’)、scFv(単鎖Fv)、VHH等が挙げられ、バイオ医薬品として用いられている。さらに、バイスペシフィック低分子化抗体も作製されており、例えばscFv-scFvがバイオ医薬品として用いられている。糖鎖を改変させるようにFc領域等に変異を入れた抗体も、改変抗体の一例である。糖鎖を改変させるように宿主細胞を予め形質転換させることで、糖鎖改変抗体を産生させることもでき、例えば、フコース除去抗体が挙げられる。なお、本明細書において、抗体又は抗体断片と他の蛋白質又はペプチドとの融合蛋白質も、改変抗体、すなわち抗体の一例として挙げられるが、前記の生理活性物質との融合蛋白質である場合は、生理活性物質にも含まれる。
 抗体は、定常領域の構造上の違いにより、下記表に示されるようなクラス(アイソタイプ)やサブクラスに分類される。
ヒトIgの分類
Figure JPOXMLDOC01-appb-T000084
15.抗体・生理活性物質の産生及び精製法
 いくつかの態様の抗体の製造方法にて、抗体産生細胞を培養することよってポリマーコーティング架橋アルギン酸ゲルファイバのコア層で産生されポリマー層を透過し得る抗体としては、特に限定されることは無いが、例えば、IgG、IgA、IgM、IgD、IgE等からなる群から選択されるクラス(アイソタイプ)を有する抗体が挙げられる。産生抗体をバイオ医薬品として用いる場合には、好ましくは、IgG抗体である。
 いくつかの態様の抗体の製造方法にて、抗体産生細胞を培養することによって、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層で産生されカチオン性ポリマー層、又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層で産生されカチオン性ポリマー層及びアニオン性ポリマー層を透過し得る抗体の分子量は、特に限定されることは無いが、例えば、約45,000~約1,000,000Daの範囲にある抗体である。また、カチオン性ポリマー層を透過し得る抗体の分子量は例えば、約3,000~約1,000,000Da、約20,000~約1,000,000Da、約20,000~約400,000Da、約45,000~約400,000Da、約20,000~約200,000Da、約45,000~約200,000Daの範囲にある抗体である。
 いくつかの態様の生理活性物質の製造方法にて、生理活性物質産生細胞を培養することによって、ポリマーコーティング架橋アルギン酸ゲルファイバのコア層で産生されカチオン性ポリマー層、又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層で産生されカチオン性ポリマー層及びアニオン性ポリマー層を透過し得る生理活性物質の分子量は、特に限定されることは無いが、例えば、約3,000~約1,000,000Da、約20,000~約1,000,000Da、約45,000~約1,000,000Da、約20,000~約400,000Da、約45,000~約400,000Da、約20,000~約200,000Da、約45,000~約200,000Daの範囲にある生理活性物質である。
 本明細書中、前記の各抗体産生細胞を用いて前記の抗体の製造方法にて培養を行う場合、用いた抗体産生細胞に対応する抗体が産生される。例えば、ムロモナブ-CD3産生CHO細胞を用いる場合、抗体としてムロモナブ-CD3が産生される。
 本明細書中、前記の各生理活性物質産生細胞を用いて前記の生理活性物質の製造方法にて培養を行う場合、用いた生理活性物質産生細胞に対応する生理活性物質が産生される。
 産生される抗体としては、例えば、ムロモナブ-CD3産生CHO細胞を用いてムロモナブ-CD3(IgG;150,000)、トラスツズマブ産生CHO細胞を用いてトラスツズマブ(IgG;148,000)、リツキシマブ産生CHO細胞を用いてリツキシマブ(IgG;144,510)、パリビズマブ産生NS0細胞を用いてパリビズマブ(IgG;147,700)、インフリキシマブ産生Sp2/0細胞又はインフリキシマブ産生CHO細胞を用いてインフリキシマブ(IgG;149,000)、バシリキシマブ産生Sp2/0細胞を用いてバシリキシマブ(IgG;147,000)、トシリズマブ産生CHO細胞を用いてトシリズマブ(IgG;148,000)、ゲムツズマブ産生CHO細胞を用いてゲムツズマブ(IgG;150,000)、ベバシズマブ産生CHO細胞を用いてベバシズマブ(IgG;149,000)、イブリツモマブ産生CHO細胞を用いてイブリツモマブ(IgG;148,000)、アダリムマブ産生CHO細胞を用いてアダリムマブ(IgG;148,000)、セツキシマブ産生Sp2/0細胞を用いてセツキシマブ(IgG;151,800)、ラニビズマブ産生CHO細胞を用いてラニビズマブ(IgG(Fab);48,000)、オマリズマブ産生CHO細胞を用いてオマリズマブ(IgG;149,000)、エクリズマブ産生NS0細胞を用いてエクリズマブ(IgG;145,235)、パニツムマブ産生CHO細胞を用いてパニツムマブ(IgG;147,000)、ウステキヌマブ産生Sp2/0細胞を用いてウステキヌマブ(IgG;148,079~149,690)、ゴリムマブ産生Sp2/0細胞を用いてゴリムマブ(IgG;149,802~151,064)、カナキヌマブ産生Sp2/0細胞を用いてカナキヌマブ(IgG;148,000)、デノスマブ産生CHO細胞を用いてデノスマブ(IgG;150,000)、モガムリズマブ産生CHO細胞を用いてモガムリズマブ(IgG;149,000)、セルトリズマブ産生CHO細胞を用いてセルトリズマブ(IgG(Fab’);50,000)、オファツムマブ産生NS0細胞を用いてオファツムマブ(IgG;149,000)、ペルツズマブ産生CHO細胞を用いてペルツズマブ(IgG;148,000)、ブレンツキシマブ産生CHO細胞を用いてブレンツキシマブ(IgG;148,000)、ナタリズマブ産生NS0細胞を用いてナタリズマブ(IgG;146,178)、ニボルマブ産生CHO細胞を用いてニボルマブ(IgG;145,000)、アレムツズマブ産生CHO細胞を用いてアレムツズマブ(IgG;150,000)、セクキヌマブ産生CHO細胞を用いてセクキヌマブ(IgG;151,000)、ラムシルマブ産生NS0細胞を用いてラムシルマブ(IgG;147,000)、イピリムマブ産生CHO細胞を用いてイピリムマブ(IgG;148,000)、エボロクマブ産生CHO細胞を用いてエボロクマブ(IgG;141,789)、メポリズマブ産生CHO細胞を用いてメポリズマブ(IgG;149,000)、アリロクマブ産生CHO細胞を用いてアリロクマブ(IgG;145892.049.)、イキセキズマブ産生CHO細胞を用いてイキセキズマブ(IgG;149,000)、ブロダルマブ産生CHO細胞を用いてブロダルマブ(IgG;147,000)、イダルシズマブ産生CHO細胞を用いてイダルシズマブ(IgG(Fab);47,782)、エロツズマブ産生NS0細胞を用いてエロツズマブ(IgG;148,000)、ペムブロリズマブ産生CHO細胞を用いてペムブロリズマブ(IgG;149,000)、サリルマブ産生CHO細胞を用いてサリルマブ(IgG;150,000)、ベズロトクスマブ産生CHO細胞を用いてベズロトクスマブ(IgG;148,000)、ベリムマブ産生NS0細胞を用いてベリムマブ(IgG;147,000)、ダラツムマブ産生CHO細胞を用いてダラツムマブ(IgG;148,000)、アベルマブ産生CHO細胞を用いてアベルマブ(IgG;147,000)、デュピルマブ産生CHO細胞を用いてデュピルマブ(IgG;152,000)、アテゾリズマブ産生CHO細胞を用いてアテゾリズマブ(IgG;144,611)、ベンラリズマブ産生CHO細胞を用いてベンラリズマブ(IgG;148,000)、イノツズマブ産生CHO細胞を用いてイノツズマブ(IgG;149,000)、エミシズマブ産生CHO細胞を用いてエミシズマブ(IgG;148,000)、グセルクマブ産生CHO細胞を用いてグセルクマブ(IgG;146,000)、デュルバルマブ産生CHO細胞を用いてデュルバルマブ(IgG;149,000)、オビヌツズマブ産生CHO細胞を用いてオビヌツズマブ(IgG;148,000~150,000)、ベドリズマブ産生CHO細胞を用いてベドリズマブ(IgG;150,000)又は抗GPVI抗体産生CHO細胞を用いて抗GPVI抗体(IgG;150,000)が挙げられる(抗体名後のカッコ内は、当該抗体のクラス(アイソタイプ)及び分子量を示す)。尚、本発明の抗体の製造方法で得ることができる抗体は、前記クラス(アイソタイプ)やサブクラスに、特に限定されるものではない。
 産生された抗体は、例えば、下記の3工程を経て精製が行われる。
〔工程1〕培地中に含まれる、抗体以外のタンパク質及び固形物をほぼ取り除く為に、遠心分離法又はフィルターによる濾過等を行う。
〔工程2〕例えば、アフィニティークロマトグラフィー(抗体の場合は、Protein A又はProtein Gを用いたアフィニティークロマトグラフィー)、又はイオン交換クロマトグラフィー等のクロマトグラフィーにて目的とする抗体を取り出す。
〔工程3〕工程2で混入してきた夾雑物を除去する為に、イオン交換クロマトグラフィー、ゲルろ過クロマトグラフィー又はヒドロキシアパタイトクロマトグラフィー等を行い、目的とする抗体を高純度精製する。
 産生された生理活性物質は、例えば、前記工程と同様な方法を経て精製が行われる。
Protein A又はProtein Gを用いたアフィニティークロマトグラフィー:
 IgGの精製法としては、例えば、Protein A又はProtein Gを用いた抗体の精製方法が知られている。Protein Aを用いた抗体の精製法として、下記方法が1例として挙げられる。(1)Protein Aが固定されたビーズが充填されたカラムを用いて、前記〔ステップ1〕の方法で得られてくる溶液に血清を添加した溶液をろ過することで、IgGがカラム中のビーズに結合して、他の血清成分がカラム外へ流出がされる。(2)その後、カラムに酸性溶液を通過させることにより、ビーズに結合していたIgGが切れて、カラム外へ溶出されてIgGが得られる。尚、IgのProtein AとProtein Gへの結合力が、動物種やサブクラスによって違うことから、目的によって、Protein A又はProtein Gを使い分けることができる。
イオン交換クロマトグラフィー:
 タンパク質が有する電気的な性質(電荷)を利用してタンパク質を分離する方法である。正電荷を示す塩基性タンパク質は、負電荷をもつ陽イオン交換体(担体)にイオン結合し、負電荷を示す酸性タンパク質は正電荷を持つ陰イオン交換体に結合することから、タンパク質が含まれる試料をイオン交換体が充填されたカラムを通すことで、タンパク質がイオン交換体に結合する。その後、カラムを通す溶媒の塩濃度を高濃度にすることで、タンパク質とイオン交換体とのイオン結合が弱くなり、結合力の弱いタンパク質から順番に、イオン交換体から外れて、カラム外へ流出してくる。陽イオン交換体又は陰イオン交換体の選択は、試料として用いるタンパク質の電荷から選択するものとする。
ゲルろ過クロマトグラフィー:
 タンパク質の分子量の違いを利用してタンパク質を分離する方法である。小孔が付いている担体が充填されたカラムに試料を流すことで、分子量の小さいタンパク質は、前記小孔に入り込みながら流出していき、分子量の大きいタンパク質は前記小孔に入らずに流出してくる為、カラムを通過する時間が分子量の小さいタンパク質は遅く、分子量の大きいタンパク質は早くなることから、時間差的にタンパク質を分離することが可能となる。
ヒドロキシアパタイトクロマトグラフィー:
 リン酸カルシウムの1種であるヒドロキシアパタイトを用いたクロマトグラフィーである。主にカルシウムイオンによる金属アフィニティーとリン酸基による陽イオン交換に基づく、複数の相互作用を利用してタンパク質を分離する方法である。アミノ酸のカルボキシル基及びアミノ基がそれぞれ担体と相互作用することで吸着し、高濃度リン酸または高塩濃度の溶媒を流すことで目的物と不純物の分離を行う。
16.ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバの物性
[ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバの安定性の確認法]
 本明細書中、ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバの安定性は、例えば、以下の試験法により確認することができる。より具体的には、後記実施例に記載の方法で確認することができる。
<振盪崩壊試験>:上記の製造方法で得られるポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバをリン酸緩衝生理食塩水中(PBS)に懸濁させ、これを一定時間、振盪させたのち、ファイバの崩壊し易さ(振盪崩壊度)を確認することにより、その物理的な強度を測定することができる。具体的な試験方法としては、例えば、後述の実施例に記載の方法が挙げられる。
<引張強度試験>:上記の製造方法で得られるポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバを用いて、引張強度測定装置を用いて、その破断値(mN)を確認することにより、その物理的な強度を測定することができる。具体的な試験方法としては、例えば、後述の実施例に記載の方法が挙げられる。
 本発明のポリマーコーティング架橋アルギン酸ゲルファイバの強度は、これを構成するコア層に含まれる架橋アルギン酸ゲル、およびコア層とカチオン性ポリマー層の間で形成されている架橋アルギン酸ゲルとカチオン性ポリマーの静電的作用が、本発明のファイバーの強度にとって最適な性質を有していることに起因する。
 本発明の多層ポリマーコーティング架橋アルギン酸ゲルファイバの強度は、これを構成するコア層に含まれる架橋アルギン酸ゲル、コア層とカチオン性ポリマー層の間で形成されている架橋アルギン酸ゲルとカチオン性ポリマーの静電的作用、及びカチオン性ポリマー層とアニオン性ポリマー層の間で形成されているカチオン性ポリマーとアニオン性カチオン性ポリマーの静電的作用が、本発明のファイバーの強度にとって最適な性質を有していることに起因する。
 本発明のポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバは、高い物理的安定性を有するとともに、コア層で産生された抗体、生理活性物質等がコア層から放出され、更にポリマー層を透過することができることから、適切な透過性も有しており、抗体、生理活性物質等を生産するのに適した構造体でもある。
17.化学修飾アルギン酸誘導体の反応性基(相補的な反応性基)の導入率測定
 反応性基又は相補的な反応性基導入率は、アルギン酸の繰り返し単位であるウロン酸単糖単位あたりに導入された反応性基又は相補的な反応性基の数を百分率で表した値を意味する。
 後記実施例においては、反応性基又は相補的な反応性基導入率(mol%)は、H-NMRの積分比により計算した。又、導入率の算出に必要なアルギン酸の量は、検量線を利用したカルバゾール硫酸法により測定し、反応性基又は相補的な反応性基の量は、検量線を利用した吸光度測定法により測定することもできる。
18.化学修飾アルギン酸誘導体の分子量の測定
 後記実施例で得られた化学修飾アルギン酸誘導体の固体を0.15 mol/LのNaClを含む10mmol/Lリン酸緩衝液(pH7.4)に溶解し0.1%又は0.2%溶液を調製し、孔径0.22μmのポリエーテルスルフォン製ろ過フィルター(Minisart High Flow Filter、Sartorius社)を通し不溶物を除いた後、ゲルろ過用サンプルとした。各サンプルのスペクトルを分光光度計DU-800(Beckman-Coulter社)により測定し、各化合物のゲルろ過における測定波長を決定した。特異的な吸収波長を持たない化合物に関しては、示差屈折計を用いた。
 ゲルろ過用サンプルの200μLをSuperose6 Increase10/300 GLカラム(GEヘルスケアサイエンス社)に供した。ゲルろ過は、クロマトグラフ装置としてAKTA Explorer 10Sを、展開溶媒として0.15 mol/L NaClを含む10mmol/Lリン酸緩衝液(pH7.4)を使用し、室温で流速0.8mL/minの条件で実施した。サンプルの溶出プロファイルは、各化合物で決定した波長の吸収をモニターし作製した。得られたクロマトグラムは、Unicorn5.31ソフトウエア(GEヘルスケアサイエンス社)にて解析し、ピーク範囲を決定した。
 反応性基又は相補的な反応性基が導入されたアルギン酸の分子量は、ブルーデキストラン(分子量200万Da、SIGMA社)、チログロブリン(分子量66.9万Da、GEヘルスケアサイエンス社)、フェリチン(分子量44万Da、GEヘルスケアサイエンス社)、アルドラーゼ(分子量15.8万Da、GEヘルスケアサイエンス社)、コンアルブミン(分子量7.5万Da、GEヘルスケアサイエンス社)、オブアルブミン(分子量4.4万Da、GEヘルスケアサイエンス社)、リボヌクレアーゼA(分子量1.37万Da、GEヘルスケアサイエンス社)及びアプロチニン(分子量6500Da、GEヘルスケアサイエンス社)を標準品として用い、反応性基又は相補的な反応性基が導入されたアルギン酸と同じ条件でゲルろ過を行い、各成分の溶出液量をUnicornソフトウエアにて決定した。この各成分の溶出液量を横軸に、分子量の対数値を縦軸にそれぞれプロットし、直線回帰し、検量線を作成した。検量線は、ブルーデキストランからフェリチンまで、フェリチンからアプロチニンまでの2種類を作成した。
 この検量線を用いて、先に得られたクロマトグラムの溶出時間iにおける分子量(Mi)を計算した。次いで、溶出時間iにおける吸光度を読み取りHiとした。これらのデータから重量平均分子量(Mw)を以下の式から求めた。
Figure JPOXMLDOC01-appb-M000085
 尚、本明細書において引用した全ての文献、及び公開公報、特許公報、その他の特許文献は、その目的にかかわらず参照として本明細書に組み込むものとする。
 また、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、本発明を実施できる。発明を実施するための最良の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図ならびに範囲内で、本明細書の記載に基づき、様々に修飾ができることは、当業者にとって明らかである。
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
[化学修飾アルギン酸誘導体の合成法]
 核磁気共鳴スペクトル(NMR)の測定には、JEOL JNM-ECX400 FT-NMR(日本電子)を用いた。液体クロマトグラフィー-質量分析スペクトル(LC-Mass)は以下の方法で測定した。[UPLC]Waters AQUITY UPLCシステムおよびBEH C18カラム(2.1mm×50mm、1.7μm)(Waters)を用い、アセトニトリル:0.05%トリフルオロ酢酸水溶液=5:95(0分)~95:5(1.0分)~95:5(1.6分)~5:95(2.0分)の移動相およびグラジエント条件を用いた。
 H-NMRデータ中、NMRシグナルのパターンで、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、mはマルチプレット、brはブロード、Jはカップリング定数、Hzはヘルツ、CDClは重クロロホルム、DMSO-dは重ジメチルスルホキシド、DOは重水を意味する。H-NMRデータ中、水酸基(OH)、アミノ基(NH)、カルボキシル基(COOH)のプロトン等、ブロードバンドであるため確認ができないシグナルについては、データに記載していない。
 LC-Massデータ中、Mは分子量、RTは保持時間、[M+H],[M+Na]は分子イオンピークを意味する。
 実施例中の「室温」又は「r.t.」は、通常約0℃から約35℃の温度を示すものとする。実施例中の「DMT-MM」は、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(CAS REGISTRY NO.:3945-69-5)を意味し、市販品または文献公知の方法で合成したものを使用することができる。
 実施例中の反応性基導入率(mol%)は、H-NMR(DO)の積分比から算出されたアルギン酸を構成する単糖(グルロン酸およびマンヌロン酸)単位のモル数に対する導入された反応性基のモル数の割合を示すものとする。
 実施例中、アルギン酸ナトリウムは、前記表8に記される物性値を示すアルギン酸ナトリウム(A-1~A-3またはB-2~B-3)を用いた。また、アルギン酸ナトリウムあるいは各種アルギン酸誘導体は、必要に応じてろ過滅菌を実施した。
 表24-1~表24-2には、(実施例1)~(実施例18)で得られた、反応性基が導入されたアルギン酸誘導体の物性値(具体的には、反応性基導入率(mol%)、分子量、及び重量平均分子量(Da))を示す。
 表25-1~表25-3には、実施例中の各中間体のH-NMR、LC-Massのデータを示す。
(実施例1a~i)ジベンゾシクロオクチン-アミノ基導入アルギン酸(1-A2、1-A1、1-A3、1-B2、1-B2b、1-B2c、1-A2b、1-A2cおよび1-A2d)の合成: 
Figure JPOXMLDOC01-appb-C000086
 下記の合成方法および反応条件にて、1-A2、1-A1、1-A3、1-B2、1-B2b、1-B2c、1-A2b、1-A2cおよび1-A2dの化合物を合成した。
[合成方法]
 1重量%または2重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製)水溶液に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)、1モル濃度-重曹水を加えた。この溶液に、市販のジベンゾシクロオクチン-アミン(3-アミノ-1-(11,12-ジデヒドロジベンズ[b,f]アゾシン-5(6H)-イル)-1-プロパノン)[CAS REGISTRY NO.:1255942-06-3](SM1)のエタノール(EtOH 1)溶液を滴下し、室温で攪拌した。塩化ナトリウムを加えた後、エタノールを加え、室温で攪拌した。得られた沈殿をろ取し、エタノール(EtOH 2)で洗浄後、減圧乾燥して、標記化合物を得た。実施例1g、1hおよび1iは、先の操作で得られた固体を水に溶かし、凍結乾燥することで標記化合物を得た。
[反応条件・結果]
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
(実施例2)5-アミノ-1-(11,12-ジデヒドロジベンズ[b,f]アゾシン-5(6H)-イル)-1-ペンタノン基(ADIBO-C5-アミン)導入アルギン酸(2-B2)の合成:
Figure JPOXMLDOC01-appb-C000089
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液(28.5 mL)に、DMT-MM(60 mg)、文献公知の方法で得られたADIBO-C5-アミン[CAS REGISTRY NO.:2401876-29-5 ](SM2)(22 mg)のエタノール(2.9 mL)溶液、1モル濃度-重曹水(72 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(285 mg)を加えた後、エタノール(57 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物(277 mg)を白色固体として得た。
(実施例3)2-アミノ-N-[3-(11,12-ジデヒドロジベンズ[b,f]アゾシン-5(6H)-イル)-3-オキソプロピル]アセタミド基導入アルギン酸(3-A2)の合成:
Figure JPOXMLDOC01-appb-C000090
<Step1> (9H-フルオレン-9-イル)メチル-N-[3-(11,12-ジデヒドロジベンズ[b,f]アゾシン-5(6H)-イル)-3-オキソプロピル]アセタミド-2-カルバメート(IM3-1)の合成:
 式SM1の化合物(50 mg)、N-[(9H-フルオレン-9-イルメトキシ)カルボニル]グリシン[CAS REGISTRY NO.:29022-11-5](54 mg)をアセトニトリル(1.5 mL)に溶解した。O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(76 mg)、N,N-ジイソプロピルエチルアミン(70 μL)を加え、室温で4.5時間撹拌した。反応液に、酢酸エチル(15 mL)、水(5 mL)を加え、分液後、有機層を水、飽和食塩水で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製して、標記化合物(63 mg)を薄いベージュアモルファスとして得た。
<Step2> 2-アミノ-N-[3-(11,12-ジデヒドロジベンズ[b,f]アゾシン-5(6H)-イル)-3-オキソプロピル]アセタミド(IM3-2)の合成:
 (実施例3)<Step1>で得られた式IM3-1の化合物(63 mg)に、ピぺリジン(56 μL)のN,N-ジメチルホルムアミド(315 μL)溶液を加え、室温で30分間攪拌した。反応液に、酢酸エチル(15 mL)、水(5 mL)を加え、分液後、有機層を水、飽和食塩水で順次洗浄した。有機層を、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた固体に、tert-ブチルメチルエーテル(5 mL)を加え、トリチュレートした後、ろ取し、標記化合物(10 mg)を薄いベージュ固体として得た。また、ろ液から回収し、追加で、標記化合物(11 mg)を淡黄色ガム状物として得た。
<Step3> 2-アミノ-N-[3-(11,12-ジデヒドロジベンズ[b,f]アゾシン-5(6H)-イル)-3-オキソプロピル]アセタミド基導入アルギン酸(3-A2)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(19 mL)に、DMT-MM(106 mg)、(実施例3)<Step3>で得られた式IM3-2の化合物(21 mg)のエタノール(1.9 mL)溶液、1モル濃度-重曹水(48 μL)を加えた。30℃で3時間攪拌した後、塩化ナトリウム(0.19 g)、エタノール(38 mL)を順次加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥した。得られた固体を水に溶解後凍結乾燥して、標記化合物(188 mg)を白色固体として得た。
(実施例4a~g)N-(4-(アミノメチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセタミド基導入アルギン酸(4-B2、4-A2、4-B2b、4-A2b、4-A2c、4-A2dおよび4-A3)の合成: 
Figure JPOXMLDOC01-appb-C000091
 下記の合成方法および反応条件にて、4-B2、4-A2、4-B2b、4-A2b、4-A2c、4-A2dおよび4-A3の化合物を合成した。
[合成方法]
 1重量%または2重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製)水溶液に、室温撹拌下、DMT-MMを加えた。続いて、文献公知の方法で得られたN-[[4-(アミノメチル)ベンジル]-2-(2-シクロオクチン-1-イロキシ)-アセタミド[CAS REGISTRY NO.:2401876-33-1](SM4)のエタノール(EtOH 1)溶液を室温で滴下し、攪拌した。室温に冷却後、塩化ナトリウムを加えた後、エタノール(EtOH 2)を加え、攪拌した。得られた沈殿をろ取し、エタノール(2mL)で3回洗浄後、減圧下乾燥し、標記化合物を得た。実施例4c、4d、4e、4fおよび4gは、先の操作で得られた固体を水に溶かし、凍結乾燥することで標記化合物を得た。
[反応条件・結果]
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
(実施例5a、b)N-(4-(2-アミノエトキシ)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセタミド基導入アルギン酸(5-A2および5-B2)の合成:
Figure JPOXMLDOC01-appb-C000094
<Step1> tert-ブチル (4-(2-(2,2,2-トリフルオロアセタミド)エトキシ)ベンジル)カルバメート(IM-5-1)の合成:
 市販のtert-ブチル (4-ヒドロキシベンジル)カルバメート(式RG5-1、CAS REGISTRY NO.:149505-94-2)(0.36g)、市販または文献公知の方法にて合成して得られたN-(2-ブロモエチル)-2,2,2-トリフルオロアセタミド(式SM5、CAS REGISTRY NO.:75915-38-7)(0.46 g)、ヨウ化カリウム(0.35 g)およびN-メチルピロリドン(3.6 mL)の混合物に対し、室温で炭酸カリウム(0.45 g)を加え、140℃で5時間攪拌した。反応終了後、室温まで冷却し、水(10 mL)で希釈した。メチルtert-ブチルエーテル(10 mL)で3回抽出し、有機層を1規定-水酸化ナトリウム水溶液(5 mL)で2回、水(5 mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥させた。有機層をろ過後、減圧下で濃縮することで、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘプタン/酢酸エチル)で精製し、標記化合物(0.202 g)を白色アモルファスとして得た。
<Step2> N-(2-(4-(アミノメチル)フェノキシ)エチル)-2,2,2-トリフルオロアセタミド 塩酸塩(IM5-2)の合成:
 (実施例5)<Step1>で得られた式IM5-1の化合物(0.2 g)および1,4-ジオキサン(1.4 mL)の混合物に対し、水冷攪拌下、4規定-塩化水素/1,4-ジオキサン(1.4 mL)を加えた後、室温で7時間撹拌した。反応液に、ジイソプロピルエーテル(20 mL)を加え、懸濁液を室温で1日攪拌した。析出物をろ過し、回収した固体を減圧乾燥して、標記化合物(0.15 g)を白色固体として得た。
<Step3> N-(2-(4-((2-(シクロオクト-2-イン-1-イロキシ)アセタミド)メチル)フェノキシ)エチル)-2,2,2-トリフルオロアセタミド(IM5-3)の合成:
 文献公知の方法(Org. Process Res. Dev.(2018)22:108-110)に従い合成した2-(2-シクロオクチン-1-イロキシ)-酢酸(式RG5-2)[CAS REGISTRY NO.:917756-42-4](50 mg)、(実施例5)<Step2>で合成した式IM5-2の化合物(81.96 mg)およびエタノール(1 mL)の混合物に対し、氷冷攪拌下、DMT-MM(137.22 mg)およびトリエチルアミン(38.25 μL)を加え、室温で1時間30分攪拌した。反応終了後、水(2 mL)を加え、懸濁液を攪拌し、メチル tert-ブチルエーテル(0.5 mL)を加えた。分離した水層をメチル tert-ブチルエーテル(5 mL)で2回抽出し、水(5 mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥させた。乾燥した有機層をろ過し、減圧下で濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(n-へプタン/酢酸エチル)で精製し、標記化合物(99 mg)を白色アモルファスとして得た。
<Step4> N-(4-(2-アミノエトキシ)ベンジル-2-(シクロオクト-2-イン-1-イロキシ)アセタミド(IM5-4)の合成:
 (実施例5)<Step3>で得られた式IM5-3の化合物(99 mg)およびメタノール(1485 μL)の混合物に対し、水冷攪拌下、炭酸カリウム(64.17 mg)及び水(495 μL)を加え、室温で15時間攪拌した。反応終了後、メタノールを減圧下で濃縮し、生じた水層を酢酸エチル(5 mL)で3回抽出した。有機層を水(5 mL)及び飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥させた。乾燥させた有機層をろ過後、減圧下で濃縮することで、標記化合物(68 mg)の粗生成物を黄色油状物として得た。
<Step5>N-(4-(2-アミノエトキシ)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセタミド基導入アルギン酸(5-A2および5-B2)の合成:
 下記の合成方法および反応条件にて、式5-A2および5-B2の化合物を合成した。
[合成方法]
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製)水溶液に、室温撹拌下、DMT-MMを加えた。続いて(実施例5)<Step4>で得られた式IM5-4の化合物の水(1 mL)およびエタノール(EtOH 1)溶液を室温で滴下し、同温で攪拌した後、塩化ナトリウム、エタノール(EtOH 2)を順次加え、室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥した。得られた固体を水に溶解後凍結乾燥して、標記化合物を得た。
[反応条件・結果]
Figure JPOXMLDOC01-appb-T000095
(実施例6a、6b、6c)N-(2-アミノエチル)-2-(シクロオクト-2-イン-1-イロキシ)アセタミド基導入アルギン酸(6-A2、6-B2および6-B2b)の合成:
Figure JPOXMLDOC01-appb-C000096
 下記の合成方法および反応条件にて、6-A2、6-B2および6-B2bの化合物を合成した。
[合成方法]
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製)水溶液に、室温撹拌下、DMT-MM、文献公知の方法で得られたN-(2-アミノエチル)-2-(2-シクロオクチン-1-イロキシ)-アセタミド[CAS REGISTRY NO.:1809789-76-1](SM6)のエタノール(EtOH 1)溶液、1モル濃度重曹水を順次加え、攪拌した。反応液に、塩化ナトリウムを加えた後、エタノール(EtOH 2)を加え、攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物を得た。先の操作で得られた固体を水に溶かし、凍結乾燥することで標記化合物を得た。
[反応条件・結果]
Figure JPOXMLDOC01-appb-T000097
(実施例7)N-(2-(2-アミノエトキシ)エチル)-2-(シクロオクト-2-イン-1-イロキシ)アセタミド基導入アルギン酸(7-A2)の合成:
Figure JPOXMLDOC01-appb-C000098
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製、A-2)水溶液(40 mL)に、室温撹拌下、DMT-MM(112 mg)、文献公知の方法で得られたN-[2-(2-アミノエトキシ)エチル]-2-(2-シクロオクチン-1-イロキシ)-アセタミド[CAS REGISTRY NO.:2401876-51-3](SM7)(30 mg)のエタノール(4.0 mL)溶液、1モル濃度重曹水(101 μL)を順次加え、30℃で3時間攪拌した。反応液に、塩化ナトリウム(0.4 g)を加えた後、エタノール(80 mL)を加え、30分間攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥した。得られた固体を水に溶かし、凍結乾燥して、標記化合物(410 mg)を白色固体として得た。
(実施例8a、8b)N-(2-アミノエチル)-2-(2-(シクロオクト-2-イン-1-イロキシ)アセタミド)アセタミド基導入アルギン酸(8-A2、8-B2)の合成:
Figure JPOXMLDOC01-appb-C000099
<Step1> tert-ブチル (2-オキソ-2-((2-(2,2,2-トリフルオロアセタミド)エチル)アミノ)エチル)カルバメート(IM8-1)の合成:
 文献公知の方法で得られたN-(2-アミノエチル)-2,2,2-トリフルオロアセタミド 塩酸塩(式SM8)[CAS REGISTRY NO.:496946-73-7](100 mg)およびN-(tert-ブトキシカルボニル)グリシン(式RG8-1)[CAS REGISTRY NO.:4530-20-5](91 mg)をアセトニトリル(3.0 mL)に溶解した。O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(217 mg)、N,N-ジイソプロピルエチルアミン(281 μL)を加え、室温で3.5時間撹拌した。反応液に、酢酸エチル(15 mL)、水(5 mL)を加え、分液後、有機層を水、飽和食塩水で順次洗浄した。有機層を、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:40%酢酸エチル/n-ヘプタン→酢酸エチル)で精製し、標記化合物(180 mg)を薄いベージュアモルファスとして得た。
<Step2> N-(2-(2-アミノアセタミド)エチル)-2,2,2-トリフルオロアセタミド 塩酸塩(IM8-2)の合成:
 (実施例8)<Step1>で得られた式IM8-1の化合物(180 mg)に、氷水冷下4規定-塩化水素/1,4-ジオキサン(1.2 mL)を加えた後、室温で0.8時間撹拌した。反応液に、ジイソプロピルエーテル(3.6 mL)を加え、30分間撹拌した。得られた固体をろ過して、標記化合物(114 mg)を白色固体として得た。
<Step3> N-(2-(2-(2-(シクロオクト-2-イン-1-イロキシ)アセタミド)アセタミド)エチル)-2,2,2-トリフルオロアセタミド(IM8-3)の合成:
 文献公知の方法で得られた2-(2-シクロオクチン-1-イロキシ)-酢酸(式RG5-2)[CAS REGISTRY NO.:917756-42-4](80 mg)、(実施例8)<Step2>で得られた式IM8-2の化合物(110 mg)に、エタノール(1.6 mL)、DMT-MM(219 mg)、トリエチルアミン(67 μL)を加え、室温で3時間撹拌した。反応液に、水(3.2 mL)を加え、室温で30分間撹拌した後、固体をろ過し、水で洗浄した。得られた固体に、酢酸エチル/エタノール(1/1、10 mL)を加え、不溶物をろ去した。ろ液を減圧濃縮して、標記化合物(101 mg)を白色固体として得た。
<Step4> N-(2-(アミノエチル)-2-(2-(シクロオクト-2-イン-1-イロキシ)アセタミド)アセタミド(IM8-4)の合成:
 (実施例8)<Step3>で得られた式IM8-3の化合物(60 mg)のメタノール(1.8 mL)溶液に、炭酸カリウム(59 mg)の水(0.3 mL)溶液を加え、室温で4時間撹拌した。反応液を減圧濃縮した後、水(2mL)を加え、塩化ナトリウムで飽和させた。酢酸エチル(15mL,10 mL×4)で抽出し、有機層を減圧濃縮した。残渣に酢酸エチル(10 mL)、エタノール(1mL)を加え、不溶物をろ去した。得られたろ液を減圧濃縮して、標記化合物(49 mg)を無色ガム状物として得た。
<Step5> N-(2-アミノエチル)-2-(2-(シクロオクト-2-イン-1-イロキシ)アセタミド)アセタミド基導入アルギン酸(8-A2および8-B2)の合成:
 下記の合成方法および反応条件にて、式8-A2および8-B2の化合物を合成した。
[合成方法]
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製)水溶液に、DMT-MM、式IM8-4の化合物のエタノール(EtOH 1)溶液、1モル濃度-重曹水を加え、攪拌した後、塩化ナトリウム、エタノール(EtOH 2)を順次加え、室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥した。得られた固体を水に溶解後凍結乾燥して、標記化合物を白色固体として得た。先の操作で得られた固体を水に溶かし、凍結乾燥することで標記化合物を得た。
[反応条件・結果]
Figure JPOXMLDOC01-appb-T000100
(実施例9) N-(2-アミノエチル)-3-(2-(シクロオクト-2-イン-1-イロキシ)アセタミド)プロパンアミド基導入アルギン酸(9-A2)の合成:
Figure JPOXMLDOC01-appb-C000101
<Step1>tert-ブチル (3-オキソ-3-((2-(2,2,2-トリフルオロアセタミド)エチル)アミノ)プロピル)カルバメート(IM9-1)の合成:
 文献公知の方法で得られたN-(2-アミノエチル)-2,2,2-トリフルオロアセタミド 塩酸塩(式SM8)(110 mg)及びN-(tert-ブトキシカルボニル)-β-アラニン(式RG9-1)[CAS REGISTRY NO.:3303-84-2](113.5 mg)をアセトニトリル(3.3 mL)に溶解し、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(261 mg)、N,N-ジイソプロピルエチルアミン(319 μL)を加え、室温で3時間撹拌した。反応液に、酢酸エチル(15 mL)、水(5 mL)を加え、分液後、有機層を水、飽和食塩水で順次洗浄した。有機層を、無水硫酸ナトリウムで乾燥後、減圧濃縮し、メチルtert-ブチルエーテル(20 mL)でトリチュレートした。固体をろ取し、酢酸エチル(20 mL)に溶解した。有機層を、1規定-クエン酸、水、飽和食塩水で順次洗浄した後、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をメチルtert-ブチルエーテル(10 mL)でトリチュレートした後、固体をろ取し、標記化合物(80 mg)を白色固体として得た。
<Step2> 3-アミノ-N-(2-(2,2,2-トリフルオロアセタミド)エチル)プロパンアミド 塩酸塩(IM9-2)の合成:
 (実施例9)<Step1>で得られた式IM9-1の化合物(80 mg)に、氷水冷下4規定-塩化水素/1,4-ジオキサン(1.1 mL)を加えた後、室温で2時間撹拌した。反応液に、ジイソプロピルエーテル(3.4 mL)を加え、1.5時間撹拌した。得られた固体をろ過して、標記化合物(61 mg)を白色固体として得た。
<Step3> 3-(2-(シクロオクト-2-イン-1-イロキシ)アセタミド)-N-(2-(2,2,2-トリフルオロアセタミド)エチル)プロパンアミド(IM9-3)の合成:
 文献公知の方法で得られた式RG5-2の化合物(44 mg)、(実施例9)<Step2>で得られた式IM9-2の化合物(61 mg)に、エタノール(1.2 mL)、DMT-MM(115 mg)、トリエチルアミン(39 μL)を加え、室温で2時間撹拌した。反応液に、水(3.7 mL)を加え、酢酸エチル(15 mL, 5 mL)で抽出した。有機層を、水、飽和食塩水で順次洗浄し、無水硫酸ナトリウム乾燥後、減圧濃縮した。得られた固体に、tert-ブチルメチルエーテル(10 mL)を加え、トリチュレートし、ろ過した。得られた固体をシリカゲルカラムクロマトグラフィー(80%酢酸エチル/n-ヘプタン→酢酸エチル→20%メタノール/酢酸エチル)で精製して、標記化合物(60 mg)を淡黄色固体として得た。
<Step4> N-(2-(アミノエチル)-3-(2-(シクロオクト-2-イン-1-イロキシ)アセタミド)プロパンアミド(IM9-4)の合成:
 (実施例9)<Step3>で得られた式IM9-3の化合物(60 mg)のメタノール(3.0 mL)溶液に、炭酸カリウム(42 mg)の水(0.3 mL)溶液を加え、室温で3時間撹拌後、さらに、炭酸カリウム(42 mg)の水(0.3 mL)溶液を加え、室温で16.5時間撹拌した。反応液を減圧濃縮した後、飽和食塩水(2mL)を加え、さらに塩化ナトリウムで飽和させた。酢酸エチル(15mL,10 mL×4)で抽出し、抽出層を無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣に酢酸エチル(5 mL)と数滴のメタノールを加え、不溶物をろ去した。得られたろ液を減圧濃縮して、標記化合物(31 mg)を無色油状物として得た。
<Step5> N-(2-アミノエチル)-3-(2-(シクロオクト-2-イン-1-イロキシ)アセタミド)プロパンアミド基導入アルギン酸(9-A2)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(41 mL)に、DMT-MM(114 mg)、(実施例9)<Step4>で得られた式IM9-4の化合物(30.5 mg)のエタノール(4.1 mL)溶液、1モル濃度-重曹水(103 μL)を加えた。30℃で3時間攪拌した後、塩化ナトリウム(0.41 g)、エタノール(82 mL)を順次加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥した。得られた固体を水に溶解後凍結乾燥して、標記化合物(406 mg)を白色固体として得た。
(実施例10) 3-アミノ-N-(2-(2-(2-(シクロオクト-2-イン-1-イロキシ)アセタミド)エトキシ)エチル)プロパンアミド基導入アルギン酸(10-A2)の合成:
Figure JPOXMLDOC01-appb-C000102
<Step1> tert-ブチル (2-(2-(3-(2,2,2-トリフルオロアセタミド)プロパンアミド)エトキシ)エチル)カルバメート(IM10-1)の合成:
 文献公知の方法で得られた式SM10の化合物[CAS REGISTRY NO.:50632-82-1](400 mg)、および市販品または文献公知の方法で得られる式RG10-1の化合物(tert-ブチル (2-(2-アミノエトキシ)エチル)カルバメート、CAS REGISTRY NO.:127828-22-2)(441 mg)のエタノール(4.0 mL)溶液に、DMT-MM(897 mg)を加え、3.5時間撹拌した。反応液に、水(5 mL)を加え、酢酸エチル(20 mL、10 mL)で抽出後、有機層を水、飽和食塩水で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー([溶出溶媒・比率%]酢酸エチル:n-ヘプタン=30:70→酢酸エチル:n-ヘプタン=100:0)で精製して、標記化合物(451 mg)を無色油状物として得た。
<Step2> N-(2-(2-アミノエトキシ)エチル)-3-(2,2,2-トリフルオロアセタミド)プロパンアミド 塩酸塩(IM10-2)の合成:
 (実施例10)<Step1>で得られた式IM10-1の化合物(451 mg)に、氷水冷下4規定-塩化水素/1,4-ジオキサン(3.16 mL)を加え、室温で3時間撹拌した。反応液に、ジイソプロピルエーテル(6.4 mL)を加え、減圧濃縮して、標記化合物(433 mg)を無色ガム状物として得た。
<Step3> N-(2-(2-(2-(シクロオクト-2-イン-1-イロキシ)アセタミド)エトキシ)エチル-3-(2,2,2-トリフルオロアセタミド)プロパンアミド(IM10-3)の合成:
 文献公知の方法で得られた式RG5-2の化合物(111 mg)、および(実施例10)<Step2>で得られた式IM10-2化合物(215 mg)に、エタノール(1.7 mL)、DMT-MM(253 mg)、トリエチルアミン(102 μL)を加え、室温で21時間撹拌した。反応液に、水(5 mL)を加え、酢酸エチル(15 mL)で抽出した。有機層を、水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー([溶出溶媒・比率%]酢酸エチル:n-ヘプタン=30:70→酢酸エチル:n-ヘプタン=100:0→メタノール:酢酸エチル=15:85)で精製して、標記化合物(35 mg)を無色油状物として得た。
<Step4> 3-アミノ-N-(2-(2-(2-(シクロオクト-2-イン-1-イロキシ)アセタミド)エトキシ)エチル)プロパンアミド(IM10-4)の合成:
 (実施例10)<Step3>で得られた式IM10-3の化合物(35 mg)のメタノール(700 μL)溶液に、炭酸カリウム(33 mg)の水(175 μL)溶液を加え、室温で16.5時間撹拌した。反応液を減圧濃縮した後、水(2 mL)を加え、塩化ナトリウムで飽和させた。酢酸エチル(10 mL×5)で抽出し、抽出層を無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣に酢酸エチル(10 mL)と数滴のメタノールを加え、不溶物をろ去した。得られたろ液を減圧濃縮して、標記化合物(24 mg)を無色ガム状物として得た。
<Step5> 3-アミノ-N-(2-(2-(2-(シクロオクト-2-イン-1-イロキシ)アセタミド)エトキシ)エチル)プロパンアミド基導入アルギン酸(10-A2)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(28 mL)に、DMT-MM(78 mg)、(実施例10)<Step4>で得られた式IM10-4の化合物(24 mg)のエタノール(2.8 mL)溶液、1モル濃度-重曹水(71 μL)を加えた。30℃で3.5時間攪拌した後、塩化ナトリウム(0.28 g)、エタノール(56 mL)を順次加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥した。得られた固体を水に溶解後凍結乾燥して、標記化合物(272 mg)を白色固体として得た。
(実施例11a~l)4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(11-A2、11-A1、11-A3、11-B2、11-B2b、11-B2c、11-A2b、11-A2c、11-B2d、11-A2d、11-A2eおよび11-A3)の合成:
Figure JPOXMLDOC01-appb-C000103
 下記の合成方法および反応条件にて、11-A2、11-A1、11-A3、11-B2、11-B2b、11-B2c、11-A2b、11-A2c、11-B2d、11-A2d、11-A2eおよび11-A3の化合物を合成した。
[合成方法]
 1重量%または2重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製)水溶液に、DMT-MM、文献公知の方法にて合成した式SM11の化合物(4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド 塩酸塩;CAS REGISTRY NO.:2401876-19-3)、1モル濃度-重曹水を加え攪拌した。塩化ナトリウムを加えた後、エタノール(EtOH 2)を加え、室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物を固体として得た。実施例11g、11h、11i、11j、11kおよび11lは、先の操作で得られた固体を水に溶かし、凍結乾燥することで標記化合物を得た。
[反応条件・結果]
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000105
Figure JPOXMLDOC01-appb-T000106
(実施例12) 4-(3-アミノプロポキシ)-N-(2-(2-(2-アジドエトキシ)エトキシ)エチル)ベンズアミド基導入アルギン酸(12-A2)の合成:
Figure JPOXMLDOC01-appb-C000107
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(19.6 mL)に、氷冷撹拌下、DMT-MM(50.19 mg)、文献公知の方法にて合成した式SM12の化合物(4-(3-アミノプロポキシ)-N-(2-(2-(2-アジドエトキシ)エトキシ)エチル)ベンズアミド 塩酸塩;CAS REGISTRY NO.:2401876-22-8)(70.35 mg)、1モル濃度-重曹水(181.4 μL)を加え、室温で5時間攪拌した。塩化ナトリウム(200 mg)を加えた後、エタノール(39.2 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物(199 mg)を白色固体として得た。
(実施例13a、b) N-(2-(2-アミノエトキシ)エチル)-4-(アジドメチル)ベンズアミド基導入アルギン酸(13-A2および13-A2b)の合成:
Figure JPOXMLDOC01-appb-C000108
 下記の合成方法および反応条件にて、13-A2および13-A2bの化合物を合成した。
[合成方法]
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製)水溶液に、DMT-MM、文献公知の方法にて合成した式SM13の化合物(N-(2-(2-アミノエトキシ)エチル)-4-(アジドメチル)ベンズアミド 塩酸塩;CAS REGISTRY NO.:2401876-38-6)、1モル濃度-重曹水を加え攪拌した。塩化ナトリウムを加えた後、エタノール(EtOH 2)を加え、室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物を固体として得た。先の操作で得られた固体を水に溶かし、凍結乾燥することで標記化合物を得た。
[反応条件・結果]
Figure JPOXMLDOC01-appb-T000109
(実施例14a~c) N-(2-アミノエチル)-4-(アジドメチル)ベンズアミド基導入アルギン酸(14-A2、14-B2および14-A2b)の合成: 
Figure JPOXMLDOC01-appb-C000110
 下記の合成方法および反応条件にて、14-A2、14-B2および14-A2bの化合物を合成した。
[合成方法]
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製)水溶液に、DMT-MM、文献公知の方法にて合成した式SM14の化合物(N-(2-アミノエチル)-4-(アジドメチル)ベンズアミド 塩酸塩;CAS REGISTRY NO.:2401876-25-1)、1モル濃度-重曹水を加え攪拌した。塩化ナトリウムを加えた後、エタノール(EtOH 2)を加え、室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物を固体として得た。実施例13-A2bは、先の操作で得られた固体を水に溶かし、凍結乾燥することで標記化合物を得た。
[反応条件・結果]
Figure JPOXMLDOC01-appb-T000111
(実施例15) N-(2-(2-(2-アミノエトキシ)エトキシ)エチル)-4-(アジドメチル)ベンズアミド基導入アルギン酸(15-A2)の合成: 
Figure JPOXMLDOC01-appb-C000112
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(40 mL)に、DMT-MM(112 mg)、文献公知の方法にて合成した式SM15の化合物(N-(2-(2-(2-アミノエトキシ)エトキシ)エチル)-4-(アジドメチル)ベンズアミド 塩酸塩;CAS REGISTRY NO.:2401876-41-1)(38 mg)のエタノール(4.0 mL)溶液、1モル濃度-重曹水(151 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(0.4 g)を加えた後、エタノール(80 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥した。先の操作で得られた固体を水に溶かし、凍結乾燥することで標記化合物(416 mg)を白色固体として得た。
(実施例16a,b) N-(2-(2-アミノエトキシ)エチル)-4-アジドベンズアミド基導入アルギン酸(化合物:16-A2、16-A2b)の合成:
Figure JPOXMLDOC01-appb-C000113
下記の合成方法および反応条件にて、16-A2および16-A2bの化合物を合成した。
[合成方法]
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製)水溶液に、DMT-MM、文献公知の方法にて合成した式SM16の化合物(N-(2-(2-アミノエトキシ)エチル)-4-アジドベンズアミド 塩酸塩;CAS REGISTRY NO.:2401876-47-7)、1モル濃度-重曹水を加え攪拌した。塩化ナトリウムを加えた後、エタノール(EtOH 2)を加え、室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物を固体として得た。先の操作で得られた固体を水に溶かし、凍結乾燥することで標記化合物を得た。
[反応条件・結果]
Figure JPOXMLDOC01-appb-T000114
(実施例17a~c) N-(2-アミノエチル)-4-アジドベンズアミド基導入アルギン酸(17-B2、17-B2bおよび17-A2)の合成:
Figure JPOXMLDOC01-appb-C000115
 下記の合成方法および反応条件にて、17-B2、17-B2bおよび17-A2の化合物を合成した。
[合成方法]
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製)水溶液に、DMT-MM、文献公知の方法にて合成した式SM17の化合物(N-(2-アミノエチル)-4-アジドベンズアミド 塩酸塩;CAS REGISTRY NO.:164013-00-7)、1モル濃度-重曹水を加え攪拌した。塩化ナトリウムを加えた後、エタノール(EtOH 2)を加え、室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物を固体として得た。実施例17cは、先の操作で得られた固体を水に溶かし、凍結乾燥することで標記化合物を得た。
[反応条件・結果]
Figure JPOXMLDOC01-appb-T000116
(実施例18) N-(2-(2-(2-アミノエトキシ)エトキシ)エチル)-4-アジドベンズアミド基導入アルギン酸(18-A2)の合成:
Figure JPOXMLDOC01-appb-C000117
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(40 mL)に、DMT-MM(112 mg)、文献公知の方法にて合成した式SM18の化合物(N-(2-(2-(2-アミノエトキシ)エトキシ)エチル)-4-アジドベンズアミド 塩酸塩;CAS REGISTRY NO.:2401876-48-8)(45 mg)のエタノール(4.0 mL)溶液、1モル濃度-重曹水(151 μL)を加え、30℃で3時間攪拌した。塩化ナトリウム(0.4 g)を加えた後、エタノール(80 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥した。先の操作で得られた固体を水に溶かし、凍結乾燥することで標記化合物(408 mg)を白色固体として得た。
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
(実施例F1-A)架橋アルギン酸ゲルファイバの作製(1)
 化合物4-A2dまたは化合物1-A2dから調製される3重量%アルキン水溶液(アルキン溶液)および化合物11-A2d、化合物13-A2bまたは化合物16-A2bから調製される3重量%のアジド水溶液(アジド溶液)を用いて、表26に示す組合せにて、前記アルキン溶液およびアジド溶液を等容量混合し、化学修飾アルギン酸混合溶液(F1A-M1)を調製した。混合溶液F1A-M1およびアルギン酸ナトリウム(B-2)から調製された3重量%アルギン酸水溶液(ALGS)を表26に示す比率にて混合し、アルギン酸混合溶液(F1A-M2)とした。続いて、混合溶液F1A-M2および20mg/mLのブルーデキストラン(cytiva製、Blue Dextran 2000、コード番号17036001)含有の1.8重量%食塩水を等容量混合し、アルギン酸混合溶液(F1A-M3)とした。混合溶液F1A-M3をハミルトンシリンジに充填し、シリンジに金属ニードル(武蔵エンジニアリング, SNA-19G-B)、シリコンチューブ(アズワン,φ1×φ2)及びガラスキャピラリ(ナリシゲ,G-1)を順次接続し、シリンジポンプにセットした。前記ガラスキャピラリの先端を100 mmol/Lの塩化カルシウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで当該塩化カルシウム水溶液中に1分間射出した。前記塩化カルシウム水溶液中に射出された繊維状形態の物質は、30分以上静置することにより、架橋アルギン酸ゲルファイバ(CLA-1A)として得られた(表26中 CLA-1A No.参照)。
Figure JPOXMLDOC01-appb-T000123
(実施例F1-B)架橋アルギン酸ゲルファイバの作製(2)
 化合物4-A2dから調製された3重量%化合物4-A2d水溶液および化合物11-A2dから調製された3重量%化合物11-A2d水溶液を等容量混合し、化学修飾アルギン酸の混合溶液(F1B-M1)を調製した。混合溶液F1B-M1およびアルギン酸ナトリウム(B-2)から調製された3重量%アルギン酸ナトリウム水溶液を1/2の容量比率にて混合し、3重量%アルギン酸混合溶液(F1B-M1B)とした。混合溶液F1B-M1Bを表27に示す濃度に調製し(表27中;F1B-M2の濃度)、別途調製したブルーデキストラン(cytiva製、Blue Dextran 2000、コード番号17036001)を含有する食塩水(F1B-BS:ブルーデキストランの濃度と塩化ナトリウムの濃度は表27の通り)とを、表27に示す容量比率にて混合し、アルギン酸混合溶液(F1B-M3)とした。混合溶液F1B-M3中のブルーデキストラン濃度(mg/mL)と塩化ナトリウム濃度(mg/mL)は、ブルーデキストランが10 mg/mL、塩化ナトリウムが9 mg/mLとなる様に調製した。混合溶液F1B-M3を、ハミルトンシリンジに充填した。続いて、シリンジに金属ニードル(武蔵エンジニアリング, SNA-19G-B)、シリコンチューブ(アズワン,φ1×φ2)及びガラスキャピラリ(ナリシゲ,G-1)を順次接続し、シリンジポンプにセットした。前記ガラスキャピラリの先端を、100 mmol/Lの塩化カルシウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで1分間射出した。前記塩化カルシウム水溶液中に射出された繊維状形態の物質は、30分以上静置することにより、架橋アルギン酸ゲルファイバ(CLA-1B)として得られた(表27中 CLA-1B No.参照)。
Figure JPOXMLDOC01-appb-T000124
(実施例F1-C)ポリマーコーティング架橋アルギン酸ゲルファイバの作製(1)
 前記(実施例F1-A)または(実施例F1-B)で得られた、塩化カルシウム水溶液中の架橋アルギン酸ゲルファイバをセルストレーナーを用いてろ過、分取した。分取した架橋アルギン酸ゲルファイバを、表28に示す各組成のカチオン性ポリマーが含まれる水溶液に添加し、37℃、125 rpmで20分間振とう攪拌し、架橋アルギン酸ゲルファイバをポリマーコーティングした。水溶液中のファイバを、セルストレーナーを用いてろ過、分取し、生理食塩液5mLを使用して2回洗浄して、ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-1)(表29中 CFB-1 No.参照)を得た。
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
(実施例F1-D)ポリマーコーティング架橋アルギン酸ゲルファイバの安定性
(1)ファイバのEDTA処理
 前記(実施例F1-C)で得られたポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-1)を20mM EDTA・2Na/生理食塩液(5mL)に添加し、37℃、125 rpmで20分間振とう攪拌した。前記キレート処理したポリマーコーティング架橋アルギン酸ゲルファイバは、再度セルストレーナーを用いてろ過、分取し、生理食塩液5mLを使用して2回洗浄した。得られたポリマーコーティング架橋アルギン酸ゲルファイバは安定性評価試験の実施まで5mL生理食塩液中に浸漬した。
(2)振盪崩壊試験
 前記EDTA処理したポリマーコーティング架橋アルギン酸ゲルファイバをセルストレーナーを用いて分離した後、10mLのPBS溶液を加えた25mL遠沈管に添加し、37℃で24時間振盪した。
 前記、EDTA処理後、振盪後のポリマーコーティング架橋アルギン酸ゲルファイバの安定性は、以下の指標に基づき評価した。
安定性評価(スコア):
3:ファイバの崩壊/溶解/変形/ブルーデキストランの溶出等が全く認められない
2:ファイバの一部に崩壊/溶解/変形/ブルーデキストランの溶出(累積で100μg/mL未満)等が認められる
1:ファイバに明らかな崩壊/溶解/変形/ブルーデキストランの溶出(累積で100μg/mL以上)等が認められる
Figure JPOXMLDOC01-appb-T000127
(実施例F2-A)抗体産生細胞含有架橋アルギン酸ゲルファイバの作製
 下記表31の組成を有するG016培地を調製した。続いて、メトトレキサート(以下、MTXとする)を1 mmol/LになるようにD-PBSに溶解させ、MTX溶液を調製した。前記MTX溶液を終濃度1 μmol/LになるようにG016培地で希釈し、抗体産生培地溶液を調製した。
Figure JPOXMLDOC01-appb-T000128
 下記表32および表33の処方で調製されたアルキン水溶液およびアジド水溶液を用いて、表34に示す組合せで等容量混合し、アルギン酸混合溶液(F2A-M1)を調製した。
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000130
 混合溶液F2A-M1およびアルギン酸ナトリウム(B-2)と0.9重量%塩化ナトリウム水溶液から調製された3重量%アルギン酸水溶液(0.9%塩化ナトリウム含有)(ALGS2)またはアルギン酸ナトリウム(A-2)と0.9重量%塩化ナトリウム水溶液から調製された3重量%アルギン酸水溶液(0.9%塩化ナトリウム含有)(ALGS2A)を表34に示す比率にて混合し、アルギン酸混合溶液(F2A-M2)とした。続いて、混合溶液F2A-M2および抗GPVI抗体産生細胞(2×10細胞/mL)を含む抗体産生培地溶液を等容量混合し、混合溶液(F2A-M3)とした。混合溶液F2A-M3をハミルトンシリンジに充填し、シリンジにルアーロック用ニードル(関東化学株式会社, 15/23 NL-F)を接続し、シリンジポンプにセットした。前記ニードルの先端を100 mmol/Lの塩化カルシウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで当該塩化カルシウム水溶液中に2分間射出した。前記塩化カルシウム水溶液中に射出された繊維状形態の物質は、30分以上静置することにより、抗GPVI抗体産生細胞含有の架橋アルギン酸ゲルファイバ(CLA-G)を得た(表34中 CLA-G No.参照)。
Figure JPOXMLDOC01-appb-T000131
(実施例F2-B)生理活性物質産生細胞含有架橋アルギン酸ゲルファイバの作製
下記表35の組成を有する完全培地を調製した。
Figure JPOXMLDOC01-appb-T000132
(実施例F2-A)の表32および33に記載された、F2A1のアルキン水溶液およびF2N2のアジド水溶液を等容量混合し、化学修飾アルギン酸混合溶液(F2B-M1)を調製した。混合溶液F2B-M1およびアルギン酸ナトリウム(B-2)と0.9重量%塩化ナトリウム水溶液から調製された3重量%アルギン酸水溶液(0.9%塩化ナトリウム含有)を1:2の比率にて混合し、アルギン酸混合溶液(F2B-M2)とした。続いて、混合溶液F2B-M2とMIN6細胞(1×10細胞/mL)を含む表35の完全培地を等容量を混合し、混合溶液F2B-M3とした。混合溶液F2B-M3をハミルトンシリンジに充填し、シリンジにルアーロック用ニードル(関東化学株式会社, 15/23 NL-F)を接続し、シリンジポンプにセットした。ニードルの先端を100 mmol/Lの塩化カルシウム水溶液が含まれるビーカーに浸漬し、流速125μL/minで当該塩化カルシウム水溶液中に2分間射出した。前記塩化カルシウム水溶液中に射出された繊維状形態の物質は、30分以上静置することにより、MIN6細胞含有の架橋アルギン酸ゲルファイバ(CLA-M)(FB2-B-1)として得られた。
(実施例F2-C)細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの作製
 前記(実施例F2-A)または(実施例F2-B)で得られた各種細胞含有架橋アルギン酸ゲルファイバを、表36に示す各組成のカチオン性ポリマーが含まれる溶液を用いて、前記(実施例F1-C)に記載される方法と同様にして(振とう攪拌時間は30分)、コーティングを行うことで、ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-S)(表37中 CFB-S No.参照)を得た。
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
(実施例F3)カチオン性ポリマーによる架橋アルギン酸ゲルファイバのコーティング確認
 (実施例F1-A)のNo.F1-A-6に示す条件で作製した架橋アルギン酸ゲルファイバ(FB1-A-6)を用いて、0.1% ポリ-L-リシン-FITCラベル/100mM 塩化カルシウムが含有される水溶液に浸漬した。(実施例F1-C)と同様の操作をした後、得られたファイバの表面を蛍光顕微鏡を使用して観察した。
 観察結果を図7に示す。ゲルファイバの表面にポリ-L-リシン-FITCがコーティングされていることが確認された(図7の背景(黒色)に反転した色の部分がポリ-L-リシン-FITCである)。この結果は、架橋アルギン酸ゲルファイバがカチオン性ポリマーによってコーティングされていることを示唆するものであった。
(実施例F4-A)架橋アルギン酸ゲルファイバの作製(3)
 アルギン酸ナトリウム(B-2)と注射用生理食塩水(大塚製薬工場製)(INs)から3重量%アルギン酸水溶液(0.9重量%塩化ナトリウム含有)(ALGS2)を調製した。続いて、下記表38および表39の処方でアルキン水溶液およびアジド水溶液を調製した。
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000136
前記アルキン水溶液(F4A1、F4A2)及びアジド水溶液(F4N1、F4N2及びF4N3)を下記表の組合せにて等容量混合し、化学修飾アルギン酸混合溶液(F4A-M1)とした。混合溶液F4A-M1及びALGS2を1:2の比率にて混合し、アルギン酸混合溶液(F4A-M2)とした。続いて、下表40の処方で、アルギン酸混合溶液(F4A-M2)、9.9重量%塩化ナトリウム水溶液及び注射用生理食塩水(大塚製薬工場製)(INs)で調製し、混合溶液(F4A-M3)とした。尚、F4A-M3に含まれる全アルギン酸濃度は約1.5重量%である。続いて、混合溶液F4A-M3をハミルトンシリンジに充填し、シリンジに金属ニードル(武蔵エンジニアリング, SNA-19G-B)、シリコンチューブ(アズワン,φ1×φ2)及びガラスキャピラリ(ナリシゲ,G-1)を順次接続し、シリンジポンプにセットした。前記ガラスキャピラリの先端を100 mmol/Lの塩化カルシウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで当該塩化カルシウム水溶液中に1分間射出した。前記塩化カルシウム水溶液中に射出された繊維状形態の物質は、30分以上静置することにより、架橋アルギン酸ゲルファイバ(CLA-X1)(表40中 CLA-X1 No.参照)を得た。
Figure JPOXMLDOC01-appb-T000137
(実施例F4-B)架橋アルギン酸ゲルファイバの作製(4)
 前記(実施例F4-A)記載のアルキン水溶液(F4A1)及びアジド水溶液(F4N1)を等容量混合し、化学修飾アルギン酸混合溶液(F4B-M1)とした。混合溶液F4B-M1及び前記ALGS2を下表41の処方で調製し、アルギン酸混合溶液(F4B-M2)とした。続いて、下表41に示すアルギン酸混合溶液F4B-M2及びINsの混合比率で混合溶液(F4B-M3)を調製した。続いて、混合溶液F4B-M3をハミルトンシリンジに充填し、シリンジに金属ニードル(武蔵エンジニアリング, SNA-19G-B)、シリコンチューブ(アズワン,φ1×φ2)及びガラスキャピラリ(ナリシゲ,G-1)を順次接続し、シリンジポンプにセットした。前記ガラスキャピラリの先端を100 mmol/Lの塩化カルシウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで当該塩化カルシウム水溶液中に1分間射出した。前記塩化カルシウム水溶液中に射出された繊維状形態の物質は、30分以上静置することにより、架橋アルギン酸ゲルファイバ(CLA-X2)(表41中 CLA-X2 No.参照)を得た。
Figure JPOXMLDOC01-appb-T000138
(実施例F4-C)ポリマーコーティング架橋アルギン酸ゲルファイバの作製(2)
 前記(実施例F4-A)あるいは(実施例F4-B)で得られた、塩化カルシウム水溶液中の架橋アルギン酸ゲルファイバ(CLA-X1およびCLA-X2)をセルストレーナーを用いてろ過、分取した。分取した架橋アルギン酸ゲルファイバを、0.1% ポリ-L-オルニチン臭化水素酸塩/100mM 塩化カルシウムの水溶液に添加し、37℃、125 rpmで30分間振とう攪拌し、架橋アルギン酸ゲルファイバをポリマーコーティングした。水溶液中のファイバを、セルストレーナーを用いてろ過、分取し、生理食塩液5mLを使用して2回洗浄して、ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-X)(表42中 CFB-X No.参照)を得た。
Figure JPOXMLDOC01-appb-T000139
(実施例F4-D)ポリマーコーティング架橋アルギン酸ゲルファイバの引張試験
 前記(実施例F4-C)で得られたポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-X)の引張試験は、小型卓上ゲル強度測定機EZ-SX 5NC1(島津、No.I308256D0592)、ロードセルSMT1-5N(S/N=913193)を用い、注射用生理食塩水(大塚製薬工場製)中で、ファイバを治具にセットし測定した。測定値は、ファイバが破断したところの応力をMPa、および歪みを%で、表43に示す。
Figure JPOXMLDOC01-appb-T000140
 表43中、No.F4-D-1~F4-D-10およびF4-D-12において、0.1MPa以上の引張強度、および100%以上の歪み(伸び率)を示す、ポリマーコーティング架橋アルギン酸ゲルファイバであることが確認された。
(実施例FI-1)抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの培養
 125 mLポリカーボネート製三角フラスコに、(実施例F2-C)で得られた抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバ(FB2-A-1-c1、FB2-A-2-c1、FB2-A-3-c1、FB2-A-4-c1、FB2-A-5-c1、FB2-A-6-c1、FB2-A-7-c1、FB2-A-8-c1、FB2-A-9-c1、およびFB2-A-10-c1)を入れ、(実施例F2-A)に記載の抗体産生培地溶液(30 mL)を添加し、37℃、5%CO雰囲気下、インキュベータ内で125 rpmで振とうしながら培養を14日または20日間実施した。2~3日に一回、培養液1.8 mLを抜き取り、前記抗体産生培地溶液1.8mLまたはFeed液(Irvine社製、カタログ番号JX F003)1.8mLを添加し、培地の総量を30 mLに保った。また、週に一度培養液の半量交換を実施した。培養期間において、培養液のIgG濃度をCedex Bioアナライザー(ロシュ・ダイアグノスティクス社)によりヒトIgG濃度として測定した。前記細胞封入ポリマーコーティング架橋アルギン酸ゲルファイバを用いた培養において、培養期間中の累積抗体量および培養液に検出される抗GPVI抗体生産CHO細胞の濃度は表44の通りであった。
Figure JPOXMLDOC01-appb-T000141
(実施例FI-2)生理活性物質産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの培養
<工程1> MIN6細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの培養
 (実施例F2-C)で得られたポリマーコーティング架橋アルギン酸ゲルファイバ(FB2-B-1-c1)を60mm超低接着表面ディッシュ(Corning社製、製品番号:3261)に入れ、(実施例F2-B)に記載の完全培地(5 mL)を添加し、37℃、5%CO雰囲気下、インキュベータ内で静置して3日あるいは14日間培養した。
<工程2>インスリン分泌能評価
 (実施例FI-2)<工程1>で3日間あるいは14日間培養した、MIN6細胞封入ポリマーコーティング架橋アルギン酸ゲルファイバ中のMIN6細胞のインスリン分泌能を評価した。MIN6細胞封入ポリマーコーティング架橋アルギン酸ゲルファイバを低グルコース溶液(2 mM glucose/KRBH/0.1% BSA)10mL中で2時間培養し、高グルコース溶液(20 mM glucose/KRBH/0.1% BSA)10mLへ溶液交換したのちにさらに2時間培養した。その後再び低グルコース溶液10mLへ溶液交換して2時間培養した。各工程の終了時の溶液中インスリン濃度を超高感度マウスインスリン測定キット(森永生科学研究所製)を使用して測定した。グルコース濃度に依存して、インスリンを放出することが確認できた。
Figure JPOXMLDOC01-appb-T000142
(実施例F5-A)抗体産生細胞含有架橋アルギン酸ゲルファイバの作製
(実施例F2-A)に記載の表32および表33の処方と同様にして、化合物4-A2dおよび化合物11-A2dの3重量%水溶液(0.9重量%塩化ナトリウム含有)を調製した後、各水溶液を等容量混合して、化学修飾アルギン酸混合溶液(F5A-M1)を調製した。前記混合溶液F5A-M1、アルギン酸ナトリウム(B-2)と注射用生理食塩水(大塚製薬工場製)(INs)から調製された3重量%アルギン酸水溶液(0.9%塩化ナトリウム含有)(ALGS2)をF5A-M1:ALGS2=5:10の比率にて混合して、アルギン酸混合溶液(F5A-M2)とした。続いて、混合溶液F5A-M2およびトシリズマブ産生CHO細胞(1×10細胞/mL)を含む(実施例F2-A)に記載の組成を有するG016培地を等容量混合し、細胞含有アルギン酸混合溶液(F5A-M3)とした。前記混合溶液F5A-M3をハミルトンシリンジに充填し、シリンジにルアーロック用ニードル(関東化学株式会社, 15/23 NL-F)を接続し、シリンジポンプにセットした。前記ニードルの先端を100 mmol/Lの塩化カルシウム水溶液あるいは0.9%塩化ナトリウム含有20 mmol/Lの塩化バリウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで当該塩化カルシウムあるいは塩化バリウム水溶液中に0.8分間射出した。前記水溶液中に射出された繊維状形態の物質は、30分以上静置することにより、トシリズマブ産生CHO細胞含有の架橋アルギン酸ゲルファイバ(CLA-G5)を得た(表46中 CLA-G5 No.参照)。
Figure JPOXMLDOC01-appb-T000143
(実施例F5-B)抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの作製
(実施例F5-A)で得られた抗体産生細胞含有架橋アルギン酸ゲルファイバ(CLA-G5)を表47に示す各組成のカチオン性ポリマー含有水溶液に添加し、37℃、125 rpmで30分間振とう撹拌し、細胞含有架橋アルギン酸ゲルファイバをポリマーコーティングした。尚、ポリマーコーティングに使用した水溶液はコーティングするファイバ量の10倍量使用した。水溶液中のファイバを、セルストレーナーを用いてろ過、分取し、生理食塩水5mLを使用して2回洗浄して、抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-S2)(表48中 CFB-S2 No.参照)を得た。
Figure JPOXMLDOC01-appb-T000144
Figure JPOXMLDOC01-appb-T000145
(実施例FI-3)抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの培養
125 mLポリカーボネート製三角フラスコに、(実施例F5-B)で得られた抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバ(FB5-A-1-c1又はFB5-A-2-c2)を1本入れ、(実施例F2-A)に記載のG016培地(30 mL)を添加し、37℃、5%CO雰囲気下、インキュベータ内で125 rpmで振とうしながら培養を開始し、5日後に培養温度を30℃とし、同温度にて培養を継続した。この間、2~3日に一回、培養液1.8 mLを抜き取り、前記G016培地1.8mLまたはFeed液(Irvine社製、カタログ番号JX F003)1.8mLを添加し、培地の総量を30 mLに保った。また、週に一度培養液の半量交換を実施した。培養期間において、培養液のIgG濃度をCedex Bioアナライザー(ロシュ・ダイアグノスティクス社)によりヒトIgG濃度として測定した。前記抗体産生細胞封入ポリマーコーティング架橋アルギン酸ゲルファイバを用いた培養において、各測定日における累積抗体濃度および培養液に検出されるトシリズマブ産生CHO細胞の濃度は表49の通りであった。培養結果より、各ファイバの培養において、抗体の産生量が経時的に増加していることが確認できた。
Figure JPOXMLDOC01-appb-T000146
(実施例F6)抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの作製
 トシリズマブ産生CHO細胞(3×10細胞/mLあるいは1×10細胞/mL)を含む(実施例F2-A)に記載の組成を有するG016培地および前記(実施例F5-A)で調製された混合溶液F5A-M2を等容量混合し、細胞含有アルギン酸混合溶液(F6A-M3)とした。尚、混合溶液F6A-M3中には、アルキン化合物およびアジド化合物の終濃度が0.5重量%に、トシリズマブ産生CHO細胞を表50に示す濃度で含有させた。前記混合溶液F6A-M3をハミルトンシリンジに充填し、シリンジにルアーロック用ニードル(関東化学株式会社, 15/23 NL-F)を接続し、シリンジポンプにセットした。前記ニードルの先端を0.9%塩化ナトリウム含有20 mmol/Lの塩化バリウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで当該水溶液中に表50に記載した時間射出した。前記溶液中に射出された繊維状形態の物質は、30分以上静置することにより、トシリズマブ産生CHO細胞含有の架橋アルギン酸ゲルファイバとして得た。続いて、0.1% ポリ-L-オルニチン臭化水素酸塩、0.9% 塩化ナトリウム及び20mmmol/L 塩化バリウムが含まれる水溶液を用いて、前記(実施例F5-B)に記載される方法と同様にしてコーティングを行うことで、抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-S3)(表50中 CFB-S3 No.参照)を得た。
Figure JPOXMLDOC01-appb-T000147
(実施例FI-4)抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの培養
125 mLポリカーボネート製三角フラスコに、(実施例F6)で得られた抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバ(FB6-1-c1、FB6-2-c1又はFB6-4-c1は1本、FB6-3-c1は2本)を入れ、(実施例F2-A)に記載の組成を有するG016培地を添加し、ゲルファイバ及びG016培地の総量を30mLとし、37℃、5%CO雰囲気下、インキュベータ内で125 pmで振とうしながら培養を開始し、5日後に培養温度を30℃とし、同温度にて培養を継続した。培養開始2日後に、培養液1.8 mLを抜き取り、Feed液(Irvine社製、カタログ番号JX F003)1.8mLを添加し、培地の総量を30 mLに保った。以降、2~3日に一回、培養液の半量交換を実施した。培養期間において、培養液のIgG濃度をCedex Bioアナライザー(ロシュ・ダイアグノスティクス社)によりヒトIgG濃度として測定した。前記抗体産生細胞封入ポリマーコーティング架橋アルギン酸ゲルファイバを用いた培養において、各測定日における累積抗体濃度および培養液に検出されるトシリズマブ産生CHO細胞の濃度は表51の通りであった。培養結果より、各ファイバの培養において、抗体の産生量が経時的に増加していることが確認できた。
Figure JPOXMLDOC01-appb-T000148
(実施例F7)抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの作製
抗GPVI抗体産生細胞(2×10細胞/mL)を含む(実施例F2-A)に記載の抗体産生培地溶液および前記(実施例F5-A)で調製された混合溶液F5A-M2を等容量混合し、細胞含有アルギン酸混合溶液(F7A-M3)とした。尚、混合溶液F7A-M3中には、アルキン化合物およびアジド化合物を終濃度0.5重量%で含有させた。前記混合溶液F7A-M3をハミルトンシリンジに充填し、シリンジにルアーロック用ニードル(関東化学株式会社, 15/23 NL-F)を接続し、シリンジポンプにセットした。前記ニードルの先端を0.9%塩化ナトリウム含有20 mmol/Lの塩化バリウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで当該水溶液中に表52に記載した時間射出した。前記水溶液中に射出された繊維状形態の物質は、30分以上静置することにより、抗GPVI抗体産生細胞含有の架橋アルギン酸ゲルファイバとして得た。続いて、0.1% ポリ-L-オルニチン臭化水素酸塩、0.9% 塩化ナトリウム及び20mmmol/L 塩化バリウムが含まれる水溶液を用いて、前記(実施例F5-B)に記載される方法と同様にしてコーティングを行うことで、抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-S4)(表52中 CFB-S4 No.参照)を得た。
Figure JPOXMLDOC01-appb-T000149
(実施例FI-5)抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの培養
125 mLポリカーボネート製三角フラスコに、(実施例F7)で得られた抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバ(FB7-1-c1又はFB7-2-c1は1本、FB7-3-c1は2本)を入れ、(実施例F2-A)に記載の抗体産生培地溶液を添加し、ゲルファイバ及び抗体産生培地溶液の総量を30mLとし、37℃、5%CO雰囲気下、インキュベータ内で125 rpmで振とうしながら培養した。培養開始2日後に、培養液1.8 mLを抜き取り、Feed液(Irvine社製、カタログ番号JX F003)1.8mLを添加し、培地の総量を30 mLに保った。以降、2~3日に一回、抗体産生培地溶液を使用して培養液の半量交換を実施した。培養期間において、培養液のIgG濃度をCedex Bioアナライザー(ロシュ・ダイアグノスティクス社)によりヒトIgG濃度として測定した。前記抗体産生細胞封入ポリマーコーティング架橋アルギン酸ゲルファイバを用いた培養において、各測定日における累積抗体濃度および培養液に検出される抗GPVI抗体産生細胞の濃度は表53の通りであった。培養結果より、各ファイバの培養において、抗体の産生量が経時的に増加していることが確認できた。
Figure JPOXMLDOC01-appb-T000150
(実施例F8)抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの作製
下表54の処方で各種アルギン酸ナトリウムと注射用生理食塩水(大塚製薬工場製)(INs)から3重量%アルギン酸水溶液(0.9重量%塩化ナトリウム含有)を調製した。続いて、下表55の処方で3重量%アルキン水溶液およびアジド水溶液(0.9重量%塩化ナトリウム含有)を調製した。
Figure JPOXMLDOC01-appb-T000151
Figure JPOXMLDOC01-appb-T000152
前記表54および55に記載の3重量%アルキン水溶液及びアジド水溶液(0.9重量%塩化ナトリウム含有)を下表56に示す処方にて等容量混合し、化学修飾アルギン酸混合溶液(F8A-M1)を調製した。混合溶液F8A-M1、前記3重量%アルギン酸ナトリウム水溶液(0.9重量%塩化ナトリウム含有)を下表56に記載された組み合わせで5:10になるように混合し、アルギン酸混合溶液(F8A-M2)を調製した。続いて、トシリズマブ産生CHO細胞(1×10細胞/mL)を含む(実施例F2-A)に記載の組成を有するG016培地および混合溶液F8A-M2を等容量混合し、細胞含有アルギン酸混合溶液(F8A-M3)とした。尚、混合溶液F8A-M3中には、アルキン化合物およびアジド化合物を終濃度0.5重量%で含有させた。
混合溶液F8A-M3をハミルトンシリンジに充填し、シリンジにルアーロック用ニードル(関東化学株式会社, 15/23 NL-F)を接続し、シリンジポンプにセットした。前記ニードルの先端を0.9%塩化ナトリウム含有20 mmol/Lの塩化バリウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで0.8分間射出した。前記水溶液中に射出された繊維状形態の物質は、30分以上静置することにより、トシリズマブ産生CHO細胞含有の架橋アルギン酸ゲルファイバとして得た。続いて、得られたトシリズマブ産生CHO細胞含有の架橋アルギン酸ゲルファイバおよび、0.1% ポリ-L-オルニチン臭化水素酸塩、0.9% 塩化ナトリウム及び20mmmol/L 塩化バリウムが含まれる水溶液を用いて、前記(実施例F5-B)に記載される方法と同様にしてコーティングを行うことで、ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-S5)(表56中 CFB-S5 No.参照)を得た。
Figure JPOXMLDOC01-appb-T000153
(実施例FI-6)抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの培養
125 mLポリカーボネート製三角フラスコに、(実施例F8)で得られた抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバ(FB8-1-c1、FB8-2-c1、FB8-3-c1、FB8-4-c1又はFB8-5-c1)を1本入れ、(実施例F2-A)に記載の組成を有するG016培地(30 mL)を添加し、37℃、5%CO雰囲気下、インキュベータ内で125 rpmで振とうしながら培養を開始し、5日後に培養温度を30℃とし、同温度にて培養を継続した。この間、2~3日に一回、培養液1.8 mLを抜き取り、前記G016培地1.8mLまたはFeed液(Irvine社製、カタログ番号JX F003)1.8mLを添加し、培地の総量を30 mLに保った。また、週に一度培養液の半量交換を実施した。培養期間において、培養液のIgG濃度をCedex Bioアナライザー(ロシュ・ダイアグノスティクス社)によりヒトIgG濃度として測定した。前記抗体産生細胞封入ポリマーコーティング架橋アルギン酸ゲルファイバを用いた培養において、各測定日における累積抗体濃度および培養液に検出されるトシリズマブ産生CHO細胞の濃度は表57の通りであった。培養結果より、各ファイバの培養において、抗体の産生量が経時的に増加していることが確認できた。
Figure JPOXMLDOC01-appb-T000154
(実施例F9)抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの作製
トシリズマブ産生CHO細胞(1×10細胞/mL)を含む(実施例F2-A)に記載の組成を有するG016培地および前記(実施例F5-A)で調製されたアルギン酸混合溶液F5A-M2を等容量混合し、細胞含有アルギン酸混合溶液(F9A-M3)とした。尚、混合溶液F9A-M3中には、アルキン化合物およびアジド化合物の終濃度を0.5重量%で含有させた。前記混合溶液F9A-M3をハミルトンシリンジに充填し、シリンジにルアーロック用ニードル(関東化学株式会社, 15/23 NL-F)を接続し、シリンジポンプにセットした。前記ニードルの先端を0.9%塩化ナトリウム含有20 mmol/Lの塩化バリウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで当該水溶液中に0.8分間射出した。前記溶液中に射出された繊維状形態の物質は、30分以上静置することにより、トシリズマブ産生CHO細胞含有の架橋アルギン酸ゲルファイバとして得た。得られた前記細胞含有架橋アルギン酸ゲルファイバを、表58に示す各組成のカチオン性ポリマー含有水溶液を用いて、前記(実施例F5-B)に記載される方法と同様にしてコーティングを行うことで、抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-S6)(表59中 CFB-S6 No.参照)を得た。
Figure JPOXMLDOC01-appb-T000155
Figure JPOXMLDOC01-appb-T000156
(実施例FI-7)抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバの培養
125 mLポリカーボネート製三角フラスコに、前記(実施例F9)で得られた抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバ(FB9-1-c1、FB9-2-c2又はFB9-3-c3)を1本入れ、(実施例F2-A)に記載のG016培地(30 mL)を添加し、37℃、5%CO雰囲気下、インキュベータ内で125 pmで振とうしながら培養を開始し、5日後に培養温度を30℃とし、同温度にて培養を継続した。この間、2~3日に一回、培養液1.8 mLを抜き取り、前記G016培地1.8mLまたはFeed液(Irvine社製、カタログ番号JX F003)1.8mLを添加、あるいは培養液の半量交換を実施した。培養期間において、培養液のIgG濃度をCedex Bioアナライザー(ロシュ・ダイアグノスティクス社)によりヒトIgG濃度として測定した。前記抗体産生細胞封入ポリマーコーティング架橋アルギン酸ゲルファイバを用いた培養において、各測定日における累積抗体濃度および培養液に検出されるトシリズマブ産生CHO細胞の濃度は表60の通りであった。培養結果より、FB9-1-c1及びFB9-1-c3のファイバの培養において、抗体の産生量が経時的に増加していることが確認できた。
Figure JPOXMLDOC01-appb-T000157
(実施例F10)多層ポリマーコーティング架橋アルギン酸ゲルファイバの作製
<工程a>架橋アルギン酸ゲルファイバの作製
 3.0重量%に調製したアルギン酸水溶液1及び20mg/mLのブルーデキストラン(cytiva製、Blue Dextran 2000、コード番号17036001)含有1.8重量%食塩水を等量混合し、ハミルトンシリンジに充填した。シリンジに金属ニードル(武蔵エンジニアリング製、SNA-19G-B)、シリコンチューブ(アズワン製、φ1×φ2)及びガラスキャピラリ(ナリシゲ製、G-1)を順次接続し、シリンジポンプにセットした。ガラスキャピラリの先端を100 mmol/Lの塩化カルシウム水溶液に浸漬し、流速250μL/minで1分間送液した。回収した架橋アルギン酸ゲルファイバは、同濃度の塩化カルシウム水溶液(10 mL)中で30分間静置した。なお、工程aで使用したアルギン酸水溶液1は、アルギン酸ナトリウム(A-2)の水溶液又は化合物4-A2c/化合物11-A2eの混合溶液である。
<工程b>PLOコーティング
(実施例F10)<工程a>で得られた架橋アルギン酸ゲルファイバを含む塩化カルシウム水溶液から、セルストレーナーを用いて架橋アルギン酸ゲルファイバを分離した。分離した架橋アルギン酸ゲルファイバを、0.1重量%に調製したポリ-L-オルニチン(PLO)水溶液(5 mL)[0.1% ポリ-L-オルニチン塩酸塩及び100mmmol/L 塩化カルシウムが含まれる水溶液]に添加し、37℃、125 rpmで20分間振とう攪拌した。その後、セルストレーナーを用いて前記ポリ-L-オルニチン水溶液からカチオンポリマーコーティング架橋アルギン酸ゲルファイバを分離し、生理食塩水5mLを使用して2回洗浄した。
<工程c>アルギン酸コーティング
(実施例F10)<工程b>で得られたPLOコーティングのカチオンポリマーコーティング架橋アルギン酸ゲルファイバを0.15重量%に調製したアルギン酸水溶液2(5 mL)に添加し、37℃、125 rpmで20分間振とう攪拌した。その後、セルストレーナーを用いて前記アルギン酸水溶液から多層ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-10)(下表61中 CFB-10 No.を参照)を分離し、生理食塩水5mLを使用して2回洗浄した。なお、工程cで使用したアルギン酸水溶液2は、アルギン酸ナトリウム(A-2)の水溶液又は化合物4-A2c/化合物11-A2eの混合溶液である。
Figure JPOXMLDOC01-appb-T000158
(実施例F10B)多層ポリマーコーティング架橋アルギン酸ゲルファイバの作製
化合物4-A2dの3重量%水溶液、化合物11-A2dの3重量%水溶液およびアルギン酸ナトリウム(A-2)水溶液を用いて、下表62に示す組み合わせでアルギン酸溶液(F10B-M1)を調製した。続いて、20mg/mL ブルーデキストラン(Blue Dextran 2000, GEヘルスケアサイエンス, 17036001)含有1.8%塩化ナトリウム水溶液及びF10B-M1を等容量混合し、アルギン酸混合溶液(F10B-M2)を調製した。尚、混合溶液F10B-M2中には、アルキン化合物およびアジド化合物の終濃度を1.5重量%あるいはアルギン酸ナトリウムの終濃度を1.5重量%になるように含有させた。混合溶液F10B-M2をハミルトンシリンジに充填し、シリンジに金属ニードル(武蔵エンジニアリング, SNA-19G-B)、シリコンチューブ(アズワン,φ1×φ2)及びガラスキャピラリ(ナリシゲ,G-1)を順次接続し、シリンジポンプにセットした。前記ガラスキャピラリの先端を0.9%塩化ナトリウム含有20 mmol/Lの塩化バリウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで当該溶液中に1分間射出した。前記溶液中に射出された繊維状形態の物質は、同濃度の溶液中で30分間静置させ、架橋アルギン酸ゲルファイバを得た。得られた架橋アルギン酸ゲルファイバを含む溶液をセルストレーナーを用いてろ過し、前記ゲルファイバを分離した。分離したゲルファイバを、0.1% ポリ-L-オルニチン塩化水素酸塩、0.9% 塩化ナトリウム及び20mmmol/L 塩化バリウムが含まれるカチオン性ポリマー含有水溶液(5 mL)に添加し、37℃、125 rpmで20分間振とう撹拌し、カチオンポリマーコーティング架橋アルギン酸ゲルファイバを得た。得られたゲルファイバは、再度セルストレーナーを用いてろ過し、生理食塩液5mLを使用して2回洗浄した。続いて、アルギン酸ナトリウム(A-2)を生理食塩水に溶解させ、終濃度0.15%アルギン酸溶液(F10B-M3)を調製した。前記洗浄したカチオンポリマーコーティング架橋アルギン酸ゲルファイバをF10B-M3(5mL)に添加し、37℃、125 rpmで20分間振とう撹拌し、多層ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-10B)(下表62中 CFB-10B No.を参照)を得た。得られたCFB-10Bは、セルストレーナーを用いてろ過し、生理食塩液5mLを使用して2回洗浄した。
Figure JPOXMLDOC01-appb-T000159
(実施例F11)多層ポリマーコーティング架橋アルギン酸ゲルファイバの安定性
<工程d>キレート処理
 (実施例F10)<工程c>で得られた多層ポリマーコーティング架橋アルギン酸ゲルファイバ(下表63中 CFB-10 No.を参照)を20mMのEDTA・2K/生理食塩水(5mL)に添加し、37℃、125 rpmで20分間振とう攪拌した。その後、セルストレーナーを用いてEDTA・2K/生理食塩水から多層ポリマーコーティング架橋アルギン酸ゲルファイバを分離し、生理食塩水5mLを使用して2回洗浄した。回収した多層ポリマーコーティング架橋アルギン酸ゲルファイバ(下表63中 CFB-11 No.を参照)は、安定性評価試験の実施まで5mL生理食塩水に浸漬した。
 <工程e>安定性評価
 (実施例F11)<工程d>で得られた多層ポリマーコーティング架橋アルギン酸ゲルファイバを5mLのPBS溶液を加えた15mL遠沈管に移し、37℃で1日振盪(ウォーターバスシェーカー(TAITEC製、personal II)、180rpm)した。その後、当該ファイバーを10mLのPBS溶液を加えた25mL遠沈管に移し、37℃でさらに1時間振盪した。観察結果を下記表63に示す。多層ポリマーコーティング架橋アルギン酸ゲルファイバの安定性は、以下の指標に基づき目視で評価した。
安定性評価(スコア):
3:ファイバーの崩壊/溶解/変形/ブルーデキストランの溶出等が全く認められない
2:ファイバーの一部に崩壊/溶解/変形/ブルーデキストランの溶出等が認められる
1:ファイバーに明らかな崩壊/溶解/変形/ブルーデキストランの溶出等が認められ、構造体の機能を保てていない
Figure JPOXMLDOC01-appb-T000160
(実施例F11B)多層ポリマーコーティング架橋アルギン酸ゲルファイバの安定性
(1)ファイバのEDTA処理
前記(実施例F10B)で作製した多層ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-10B)(下表64中 CFB-10B No.を参照)を使用し、(実施例F11)と同様の操作を実施することで、キレート処理した多層ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-11B)(下表64中 CFB-11B No.を参照)を得た。
(2)振盪崩壊試験
前記EDTA処理した多層ポリマーコーティング架橋アルギン酸ゲルファイバをセルストレーナーを用いて分離した後、10mLのPBS溶液を加えた25mL遠沈管に添加し、37℃で41時間振盪した。
前記、EDTA処理後、振盪後の多層ポリマーコーティング架橋アルギン酸ゲルファイバの安定性は、以下の指標に基づき目視で評価した。
安定性評価(スコア):
3:ファイバの崩壊/溶解/変形/ブルーデキストランの溶出等が全く認められない
2:ファイバの一部に崩壊/溶解/変形/ブルーデキストランの溶出等が認められる
1:ファイバに明らかな崩壊/溶解/変形/ブルーデキストランの溶出等が認められ、構造体の機能を保てていない
Figure JPOXMLDOC01-appb-T000161
(実施例F12)抗体産生細胞含有多層ポリマーコーティング架橋アルギン酸ゲルファイバの作製
前記実施例(実施例F5-A)で調製されたアルギン酸混合溶液F5A-M2と注射用生理食塩水(大塚製薬工場製)(INs)を1:19の比率で混合し、アニオン性ポリマー含有水溶液を調製した(前記アニオン性ポリマー含有水溶液は、F5A-M2が0.15重量%含有している)。続いて、前記実施例F9に記載の方法で得られた、抗体産生細胞含有カチオンポリマーコーティング架橋アルギン酸ゲルファイバ(FB9-1-c1、FB9-2-c2又はFB9-3-c3)をファイバの10倍量の前記アニオン性ポリマー含有水溶液に浸漬し、37℃、125 rpmで20分間振とう攪拌し、アニオン性ポリマーでコーティングした。水溶液中のファイバを、セルストレーナーを用いてろ過、分取し、INs7mLを使用して3回洗浄して、抗体産生細胞含有多層ポリマーコーティング架橋アルギン酸ゲルファイバ(ACFB-S1)(表65中 ACFB-S1 No.参照)を得た。
Figure JPOXMLDOC01-appb-T000162
(実施例FI-8)抗体産生細胞含有多層ポリマーコーティング架橋アルギン酸ゲルファイバの培養
125 mLポリカーボネート製三角フラスコに、(実施例F12)で得られた抗体産生細胞含有多層ポリマーコーティング架橋アルギン酸ゲルファイバ(FB12-ac1、FB12-ac2又はFB12-ac3)を1本入れ、(実施例FI-7)と同様の操作を実施した。培養期間において、培養液のIgG濃度をCedex Bioアナライザー(ロシュ・ダイアグノスティクス社)によりヒトIgG濃度として測定した。前記抗体産生細胞封入ポリマーコーティング架橋アルギン酸ゲルファイバを用いた培養において、各測定日における累積抗体濃度および培養液に検出されるトシリズマブ産生CHO細胞の濃度は表66の通りであった。
Figure JPOXMLDOC01-appb-T000163
(実施例F13-A)抗体産生細胞含有カチオンポリマーコーティング架橋アルギン酸ゲルファイバの作製
トシリズマブ産生CHO細胞を用いて、前記(実施例F5-A)および(実施例F5-B)と同様の操作を実施することで、抗体産生細胞含有カチオンポリマーコーティング架橋アルギン酸ゲルファイバ(CLA-G13)(下表67 CLA-G13 No.参照)を作製した。尚、CLA-G13にはトシリズマブ産生CHO細胞を終濃度5×10細胞/mLで含有させた。
Figure JPOXMLDOC01-appb-T000164
(実施例F13-B)抗体産生細胞含有多層ポリマーコーティング架橋アルギン酸ゲルファイバの作製
下表68および表69の処方で3重量%アルキン水溶液およびアジド水溶液(0.9重量%塩化ナトリウム含有)を調製した。続いて、アルギン酸ナトリウム(B-2)と注射用生理食塩水(大塚製薬工場製)(INs)を混合し3重量%アルギン酸水溶液(0.9%塩化ナトリウム含有)(ALGS2)を、アルギン酸ナトリウム(A-2)とINsを混合し3重量%アルギン酸水溶液(0.9%塩化ナトリウム含有)(ALGS2A)をそれぞれ調製した。
Figure JPOXMLDOC01-appb-T000165
Figure JPOXMLDOC01-appb-T000166
前記アルキン、アジド、ALGS2、ALGS2AあるいはINsを表70に示す組み合わせで混合し、アニオン性ポリマー含有水溶液を調製した。尚、アニオン性ポリマー含有水溶液に含まれる全アルギン酸濃度は約0.15重量%であり、それぞれ表70の比率となるように混合した。続いて、(実施例F13-A)で得られたカチオンポリマーコーティング架橋アルギン酸ゲルファイバ(CLA-G13)(下表70 CLA-G13 No.参照)およびアニオン性ポリマー含有水溶液を用いて、(実施例F12)と同様にアニオン性ポリマーでのコーティング操作を実施することで、抗体産生細胞含有多層ポリマーコーティング架橋アルギン酸ゲルファイバ(ACFB-S2)(下表70 ACFB-S2 No.参照)を得た。
Figure JPOXMLDOC01-appb-T000167
(実施例FI-9)抗体産生細胞含有多層ポリマーコーティング架橋アルギン酸ゲルファイバの培養
125 mLポリカーボネート製三角フラスコに、(実施例F13-B)で得られた抗体産生細胞含有多層ポリマーコーティング架橋アルギン酸ゲルファイバ(FB13-B-1-ac1、FB13-B-2-ac2、FB13-B-3-ac2、FB13-B-4-ac2、FB13-B-5-ac2、FB13-B-6-ac2、FB13-B-7-ac2およびFB13-B-8-ac2)を1本入れ、(実施例F2-A)に記載のG016培地(30 mL)を添加し、37℃、5%CO雰囲気下、インキュベータ内で125 rpmで振とうしながら培養を開始し、5日後に培養温度を30℃とし、同温度にて培養を継続した。この間、2~3日に一回、培養液1.8 mLを抜き取り、前記G016培地1.8mLまたはFeed液(Irvine社製、カタログ番号JX F003)1.8mLを添加し、培地の総量を30 mLに保った。また、週に一度培養液の半量交換を実施した。培養期間において、培養液のIgG濃度をCedex Bioアナライザー(ロシュ・ダイアグノスティクス社)によりヒトIgG濃度として測定した。前記抗体産生細胞含有ポリマーコーティング架橋アルギン酸ゲルファイバを用いた培養において、各測定日における累積抗体濃度および培養液に検出されるトシリズマブ産生CHO細胞の濃度は表71の通りであった。
Figure JPOXMLDOC01-appb-T000168
(実施例F14)アニオン性ポリマー・カチオン性ポリマーによる架橋アルギン酸ゲルファイバのコーティング確認
 (実施例F2-A)に記載の処方と同様にして、アルキン化合物4-A2dおよびアジド化合物11-A2dの3重量%水溶液(0.9重量%塩化ナトリウム含有)を調製した。続いて、3重量%アルキンおよびアジド水溶液(0.9重量%塩化ナトリウム含有)を等容量混合することで、化学修飾アルギン酸混合溶液(F14A-M1)を調製した。混合溶液F14A-M1およびアルギン酸ナトリウム(B-2)と注射用生理食塩水(大塚製薬工場製)(INs)から調製された3重量%アルギン酸水溶液(0.9%塩化ナトリウム含有)(ALGS2)をF14A-M1:ALGS2=5:10の比率で混合し、アルギン酸混合溶液(F14A-M2)を調製した。続いて、F14A-M2とINsを等容量混合し、混合溶液(F14A-M3)を調製した。前記水溶液F14A-M3をハミルトンシリンジに充填し、シリンジにルアーロック用ニードル(関東化学株式会社, 15/23 NL-F)を接続し、シリンジポンプにセットした。前記ニードルの先端を0.9%塩化ナトリウム含有20 mmol/Lの塩化バリウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで0.8分間射出した。前記溶液中に射出された繊維状形態の物質は、30分以上静置することにより、架橋アルギン酸ゲルファイバとして得た。続いてファイバを約20 cmに切断後、(実施例F9)と同様の操作(コーティングに使用した水溶液は2mL)を行うことでカチオンポリマーコーティング架橋アルギン酸ゲルファイバを得た。尚、コーティングに使用したカチオン性ポリマー含有水溶液の組成は下表72の通りであり、各ファイバに対して2mL使用した。続いて、アルギン酸ナトリウム(A-2)およびフルオレセイン-5-チオセミカルバジド(CAS REGISTORY No.:76863-28-0)から合成した蛍光標識アルギン酸(LA)を終濃度0.15重量%になるように生理食塩水に溶解させ、アニオン性ポリマー含有水溶液(LAPS)を調製した。続いて、カチオンポリマーコーティング架橋アルギン酸ゲルファイバを2 mLのLAPSに浸漬し、37℃、125 rpmで20分間振とう撹拌し、アニオン性ポリマーでコーティングした。水溶液中のファイバを、セルストレーナーを用いてろ過、分取し、生理食塩水8 mLを使用して1回洗浄して、アニオン・カチオンポリマー架橋アルギン酸ゲルファイバ(LCLA-G)(表73中LCLA-G No.参照)を得た。得られたファイバの表面を蛍光顕微鏡を使用して観察した。
観察結果を図22および23に示す。ゲルファイバの表面にLAがコーティングされていることが確認された(図22および23の背景に反転した色がLAである)。
Figure JPOXMLDOC01-appb-T000169
Figure JPOXMLDOC01-appb-T000170
(実施例F15-A)ポリマーコーティング架橋アルギン酸ゲルファイバの作製
 アルギン酸ナトリウム(B-2)と注射用生理食塩水(大塚製薬工場製)(INs)から3重量%アルギン酸水溶液(0.9重量%塩化ナトリウム含有)(ALGS2)を調製した。続いて、下記表74の処方でアルキン水溶液およびアジド水溶液を調製した。
Figure JPOXMLDOC01-appb-T000171
 F15A1、F15N1およびALGS2を下表75の組み合わせおよび比率にて混合し、3重量%アルギン酸溶液(F15A-M1)を調製した。続いて、F15A-M1およびINsを等容量混合することで、混合溶液(F15A-M2)を調製した。尚、F15A-M2に含まれる全アルギン酸濃度は1.5重量%である。混合溶液F15A-M2をハミルトンシリンジに充填し、シリンジに金属ニードル(武蔵エンジニアリング, SNA-19G-B)、シリコンチューブ(アズワン,φ1×φ2)及びガラスキャピラリ(ナリシゲ,G-1)を順次接続し、シリンジポンプにセットした。前記ガラスキャピラリの先端を100 mmol/Lの塩化カルシウム水溶液が含まれるビーカーに浸漬し、流速250μL/minで0.8分間射出した。前記水溶液中に射出された繊維状形態の物質は、30分以上静置することにより、架橋アルギン酸ゲルファイバとして得た。得られた架橋アルギン酸ゲルファイバをセルストレーナーを用いてろ過、分取し、0.1% ポリ-L-オルニチン臭化水素酸塩及び100 mmmol/L塩化カルシウムが含まれる水溶液に添加し、37℃、125 rpmで30分間振とう撹拌し、架橋アルギン酸ゲルファイバをカチオン性ポリマーでコーティングした。尚、ポリマーコーティングに使用した水溶液はコーティングするファイバ量の10倍量使用した。水溶液中のファイバを、セルストレーナーを用いてろ過、分取し、生理食塩液7mLを使用して3回洗浄して、ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-G15A)(表75中 CFB-G15A No.参照)を得た。
Figure JPOXMLDOC01-appb-T000172
(実施例F15-B)多層ポリマーコーティング架橋アルギン酸ゲルファイバの作製
下表76に示す組成で前記F15A-M1をINsを用いて、全アルギン酸濃度が0.15重量%になるように希釈し、アニオン性ポリマー含有水溶液を調製した。実施例F15-Aで得られたポリマーコーティング架橋アルギン酸ゲルファイバ(FB15-A-1-c1又はFB15-A-2-c1)を前記アニオン性ポリマー含有水溶液に添加し、(実施例F12)と同様のコーティング操作を実施することで、多層ポリマーコーティング架橋アルギン酸ゲルファイバ(ACFB-G15B)(表76中 ACFB-G15B No.参照)を得た。
Figure JPOXMLDOC01-appb-T000173
(実施例F15-C)多層ポリマーコーティング架橋アルギン酸ゲルファイバの引張試験
 前記(実施例F15-B)で得られた多層ポリマーコーティング架橋アルギン酸ゲルファイバ(CFB-G15B)の引張試験は、小型卓上ゲル強度測定機EZ-SX 5NC1(島津、No.I308256D0592)、ロードセルSMT1-5N(S/N=913193)を用い、注射用生理食塩水(大塚製薬工場製)中で、ファイバを治具にセットし測定した。測定値は、ファイバが破断したところの応力をMPa、および歪みを%で、表77に示す。
Figure JPOXMLDOC01-appb-T000174
 表77中、No.F15-C-1およびF15-C-2において、0.1MPa以上の引張強度、および100%以上の歪み(伸び率)を示す、多層ポリマーコーティング架橋アルギン酸ゲルファイバであることが確認された。
 ここでは、抗体、生理活性物質等を産生できる細胞及び架橋アルギン酸ゲルを含むコア層が、カチオン性ポリマー(カチオン性ポリマー層)で被覆されたポリマーコーティング架橋アルギン酸ゲルファイバが提供される。また、当該ファイバの製造方法、及び当該ファイバを用いた抗体、生理活性物質等の培養方法を提供することができる。更に、抗体、生理活性物質等を産生できる細胞及び架橋アルギン酸ゲルを含むコア層が、カチオン性ポリマー(カチオン性ポリマー層)およびアニオン性ポリマー(アニオン性ポリマー層)で被覆された多層ポリマーコーティング架橋アルギン酸ゲルファイバが提供される。また、当該ファイバの製造方法、及び当該ファイバを用いた抗体、生理活性物質等の培養方法を提供することができる。
a:ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのコア層の直径
b:ポリマーコーティング架橋アルギン酸ゲルファイバ又は多層ポリマーコーティング架橋アルギン酸ゲルファイバのカチオン性ポリマー層の厚さ
c:ポリマーコーティング架橋アルギン酸ゲルファイバの外径
d:多層ポリマーコーティング架橋アルギン酸ゲルファイバの外径
e:多層ポリマーコーティング架橋アルギン酸ゲルファイバのアニオン性ポリマー層の厚さ
4:カチオン性ポリマー層
5:コア層
6:細胞(抗体、生理活性物質等を産生できる細胞)
7:アニオン性ポリマー層
XX:装置
YY:押出筒
1:導入口
2:排出口
DD:容器(例えば、ビーカー)(2価金属イオン含有溶液)
EE:容器(例えば、ビーカー)(カチオン性ポリマー含有溶液)
FF:容器(例えば、ビーカー)(アニオン性ポリマー含有溶液)
CLA:架橋アルギン酸ゲルファイバ
CFB:ポリマーコーティング架橋アルギン酸ゲルファイバ
ACFB:多層ポリマーコーティング架橋アルギン酸ゲルファイバ

Claims (10)

  1.  式(I)及び式(II)で表される化学修飾アルギン酸誘導体を用いて架橋反応を行うことにより得られる架橋アルギン酸ゲルに包埋された抗体産生細胞又は生理活性物質産生細胞を含むコア層と、前記コア層を被覆するカチオン性ポリマー層と、前記カチオン性ポリマー層を被覆するアニオン性ポリマー層を含む、多層ポリマーコーティング架橋アルギン酸ゲルファイバ:
     
    式(I)で表わされる化学修飾アルギン酸誘導体は、下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;Akn-L-(Aknは環状アルキン基を表し;-L-は、環状アルキン基(Akn)と結合する2価のリンカーである)は、下記表:
    Figure JPOXMLDOC01-appb-T000002
    Figure JPOXMLDOC01-appb-T000003
    に記載された部分構造式(各式中、破線右側は含まない)からなる群より選択される基である]で表される化学修飾アルギン酸誘導体であり;
    式(II)で表わされる化学修飾アルギン酸誘導体は、下記式(II):
    Figure JPOXMLDOC01-appb-C000004
    [式(II)中、(ALG)はアルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記表:
    Figure JPOXMLDOC01-appb-T000005
    に記載された部分構造式(各式中、両端の破線外側は含まない)からなる群より選択されるリンカーを表わす]で表される化学修飾アルギン酸誘導体。
  2. コア層に含まれる抗体産生細胞が、抗体を産生する遺伝子組換え動物細胞であって、その宿主細胞が、CHO細胞、CHO細胞亜株、COS細胞、Sp2/0細胞、NS0細胞、SP2細胞、PERC6細胞、YB2/0細胞、YE2/0細胞、1R983F細胞、Namalwa細胞、Wil-2細胞、Jurkat細胞、Vero細胞、Molt-4細胞、HEK293細胞、BHK細胞、HT-1080細胞、KGH6細胞、P3X63Ag8.653細胞、C127細胞、JC細胞、LA7細胞、ZR-45-30細胞、hTERT細胞、NM2C5細胞、及びUACC-812細胞からなる群から選択される細胞である、請求項1に記載の多層ポリマーコーティング架橋アルギン酸ゲルファイバ。
  3.  コア層に含まれる生理活性物質産生細胞が、インスリン分泌細胞、膵島、膵島細胞、ドーパミン分泌細胞、脳下垂体細胞、成長ホルモン分泌細胞、副甲状腺細胞、神経成長因子分泌細胞、血液凝固因子分泌細胞、肝細胞、上皮小体細胞、エリスロポエチン分泌細胞、ノルエピネフリン分泌細胞及び生理活性物質発現ベクター(遺伝子組換え細胞)からなる群から選択される細胞である、請求項1に記載の多層ポリマーコーティング架橋アルギン酸ゲルファイバ。
  4.  コア層に追加で含まれる成分が、アルギン酸溶液、アルギン酸ゲル、培地、培養液、コラーゲン溶液、メチルセルロース及びスクロース溶液からなる群から選択される成分である、請求項1ないし3のいずれか1項に記載の多層ポリマーコーティング架橋アルギン酸ゲルファイバ。
  5.  カチオン性ポリマー層が、ポリアミノ酸、塩基性多糖類、及び塩基性ポリマーからなる群から選択されるカチオン性ポリマーである、請求項1ないし4のいずれか1項に記載の多層ポリマーコーティング架橋アルギン酸ゲルファイバ。
  6.  カチオン性ポリマー層が、ポリ-L-オルニチン(PLO)、ポリ-D-オルニチン(PDO)、ポリ-DL-オルニチン、ポリ-D-リジン(PDL)、ポリ-L-リジン(PLL)、ポリ-DL-リジン、ポリ-L-アルギニン(PLA)、ポリ-D-アルギニン(PDA)、ポリ-DL-アルギニン、ポリ-L-ホモアルギニン(PLHA)、ポリ-D-ホモアルギニン(PDHA)、ポリ-DL-ホモアルギニン、ポリ-L-ヒスチジン(PLH)、ポリ-D-ヒスチジン(PDH)、ポリ-DL-ヒスチジン、ポリメチレン-CO-グアニジン(PMCG)、ポリアリルアミン(PAA)、ポリビニルアミン(PVA)、ポリエチレンイミン、アリルアミン-ジアリルアミン共重合体、およびアリルアミン-マレイン酸共重合体からなる群から選択されるカチオン性ポリマーである、請求項1ないし5のいずれか1項に記載の多層ポリマーコーティング架橋アルギン酸ゲルファイバ。
  7.  アニオン性ポリマー層が、アニオン性多糖類、硫酸化多糖類、合成ポリマー、アニオン性ポリアミノ酸、これらの化学修飾体、これらの架橋体、及びこれらの混合物からなる群から選択されるアニオン性ポリマーである、請求項1ないし6のいずれか1項に記載の多層ポリマーコーティング架橋アルギン酸ゲルファイバ。
  8.  アニオン性ポリマー層が、アルギン酸、請求項1に記載の式(I)で表わされる化学修飾アルギン酸誘導体、請求項1に記載の式(II)で表わされる化学修飾アルギン酸誘導体、請求項1に記載の式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体から形成される架橋体、及びこれらの混合物からなる群から選択されるアニオン性ポリマーである、請求項1ないし7のいずれか1項に記載の多層ポリマーコーティング架橋アルギン酸ゲルファイバ。
  9.  請求項1ないし8のいずれか1項に記載の多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法であって、
    (1)抗体産生細胞又は生理活性物質産生細胞ならびに請求項1に記載の式(I)及び式(II)で表わされる化学修飾アルギン酸誘導体が含まれる混合溶液を、2価金属イオンを含む溶液中に射出し、抗体又は生理活性物質を産生できる細胞を含む架橋アルギン酸ゲルファイバを得る工程、
    (2)(1)で得られた抗体産生細胞又は生理活性物質産生細胞を含む架橋アルギン酸ゲルファイバを、カチオン性ポリマーを含む溶液に接触させることで、カチオン性ポリマー層で被覆されたポリマーコーティング架橋アルギン酸ゲルファイバを得る工程、
    (3)(2)で得られたポリマーコーティング架橋アルギン酸ゲルファイバを、アニオン性ポリマーを含む溶液に接触させることで、アニオン性ポリマー層で被覆された多層ポリマーコーティング架橋アルギン酸ゲルファイバを得る工程、を含むことを特徴とする、多層ポリマーコーティング架橋アルギン酸ゲルファイバの製造方法。
  10.  請求項1ないし8のいずれか1項に記載の多層ポリマーコーティング架橋アルギン酸ゲルファイバを用いる、抗体又は生理活性物質の製造方法。
PCT/JP2021/048567 2020-12-28 2021-12-27 新規な多層ポリマーコーティング架橋アルギン酸ゲルファイバ WO2022145420A1 (ja)

Priority Applications (17)

Application Number Priority Date Filing Date Title
US18/269,705 US20240132854A1 (en) 2020-12-28 2021-12-27 Novel multilayer polymer-coated crosslinked alginate gel fiber
CA3203302A CA3203302A1 (en) 2020-12-28 2021-12-27 Novel multilayer polymer-coated crosslinked alginate gel fiber
CN202180087547.8A CN116710110A (zh) 2020-12-28 2021-12-27 新型的多层聚合物涂层交联海藻酸凝胶纤维
EP21915279.0A EP4268857A1 (en) 2020-12-28 2021-12-27 Novel multilayer polymer-coated crosslinked alginate gel fiber
JP2022573085A JPWO2022145420A1 (ja) 2020-12-28 2021-12-27
KR1020237021149A KR20230127997A (ko) 2020-12-28 2021-12-27 신규의 다층 폴리머 코팅 가교 알긴산 겔 파이버
AU2021414759A AU2021414759A1 (en) 2020-12-28 2021-12-27 Novel multilayer polymer-coated crosslinked alginate gel fiber
JP2022568561A JPWO2022270549A1 (ja) 2021-06-23 2022-06-22
AU2022298245A AU2022298245A1 (en) 2021-06-23 2022-06-22 Novel polymer-coated crosslinked alginate gel fiber
CN202280044010.8A CN117529547A (zh) 2021-06-23 2022-06-22 新型的聚合物涂层交联海藻酸凝胶纤维
KR1020237044096A KR20240024839A (ko) 2021-06-23 2022-06-22 신규의 폴리머 코팅 가교 알긴산 겔 파이버
EP22828465.9A EP4361249A1 (en) 2021-06-23 2022-06-22 Novel polymer-coated crosslinked alginate gel fiber
PCT/JP2022/024935 WO2022270549A1 (ja) 2021-06-23 2022-06-22 新規なポリマーコーティング架橋アルギン酸ゲルファイバ
CA3223483A CA3223483A1 (en) 2021-06-23 2022-06-22 Novel polymer-coated crosslinked alginate gel fiber
JP2023194056A JP7450793B2 (ja) 2021-06-23 2023-11-15 新規なポリマーコーティング架橋アルギン酸ゲルファイバ
US18/392,583 US20240174959A1 (en) 2021-06-23 2023-12-21 Novel polymer-coated crosslinked alginate gel fiber
JP2024031804A JP2024063159A (ja) 2021-06-23 2024-03-04 新規なポリマーコーティング架橋アルギン酸ゲルファイバ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020219024 2020-12-28
JP2020-219024 2020-12-28
JP2021104094 2021-06-23
JP2021-104094 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022145420A1 true WO2022145420A1 (ja) 2022-07-07

Family

ID=82260786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048567 WO2022145420A1 (ja) 2020-12-28 2021-12-27 新規な多層ポリマーコーティング架橋アルギン酸ゲルファイバ

Country Status (7)

Country Link
US (1) US20240132854A1 (ja)
EP (1) EP4268857A1 (ja)
JP (1) JPWO2022145420A1 (ja)
KR (1) KR20230127997A (ja)
AU (1) AU2021414759A1 (ja)
CA (1) CA3203302A1 (ja)
WO (1) WO2022145420A1 (ja)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013136A1 (en) 1991-12-20 1993-07-08 Howmedica Inc. Ultra-pure polysaccharide materials for medical use
JPH08269102A (ja) 1995-03-30 1996-10-15 Shiseido Co Ltd エンドトキシンフリーのβ1,3−グルカン及びその製造法並びに医療用ゲル素材
US5589591A (en) 1986-07-03 1996-12-31 Advanced Magnetics, Inc. Endotoxin-free polysaccharides
JPH09324001A (ja) 1996-04-02 1997-12-16 Kyowa Hakko Kogyo Co Ltd ヒアルロン酸ナトリウムの精製法
JP2005036036A (ja) 2003-07-16 2005-02-10 Tanabe Seiyaku Co Ltd エンドトキシン除去方法
JP2007075425A (ja) 2005-09-15 2007-03-29 Mochida Pharmaceut Co Ltd アルギン酸を含む創傷被覆材
WO2011046105A1 (ja) 2009-10-14 2011-04-21 国立大学法人 東京大学 被覆されたマイクロゲルファイバ
JP2014506926A (ja) * 2011-03-04 2014-03-20 ウェイク・フォレスト・ユニヴァーシティ・ヘルス・サイエンシズ ホルモン補充療法のためのカプセル化された細胞
JP2014136128A (ja) 2013-01-18 2014-07-28 Univ Of Tokyo 移植用神経束及びその製造方法
JP2014236698A (ja) 2013-06-07 2014-12-18 国立大学法人 鹿児島大学 細胞凝集塊作製法
WO2015178427A1 (ja) 2014-05-20 2015-11-26 国立大学法人 東京大学 中空マイクロファイバ
JP2016508369A (ja) * 2013-02-08 2016-03-22 シャンハイ インスティチューツ フォー バイオロジカル サイエンシーズ、 チャイニーズ アカデミー オブ サイエンシーズ ヒト肝細胞様細胞およびその使用
JP2016077229A (ja) 2014-10-17 2016-05-16 国立大学法人 東京大学 ファイバ状基材、3次元細胞構造体及びその製造方法、並びに3次元細胞構造体の培養方法
WO2019078251A1 (ja) 2017-10-19 2019-04-25 国立大学法人東京大学 接着剤及びその使用
JP2019075993A (ja) 2017-10-20 2019-05-23 国立大学法人 東京大学 細胞の三次元培養方法、細胞構造体、細胞構造体の製造方法及び細胞の運搬方法
WO2019123886A1 (ja) 2017-12-23 2019-06-27 国立大学法人東京大学 アレイ及びその使用
JP2019520837A (ja) * 2016-07-18 2019-07-25 イーティーエイチ・チューリッヒ Β細胞ミメティック細胞
WO2019240219A1 (ja) 2018-06-14 2019-12-19 持田製薬株式会社 新規な架橋アルギン酸
WO2020032221A1 (ja) 2018-08-10 2020-02-13 持田製薬株式会社 アルギン酸中空マイクロファイバ
WO2021125279A1 (ja) 2019-12-18 2021-06-24 持田製薬株式会社 化学架橋アルギン酸ゲルファイバ
WO2021125255A1 (ja) 2019-12-18 2021-06-24 持田製薬株式会社 新規な架橋アルギン酸

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031931A (ja) 1989-05-30 1991-01-08 Toshiba Seiki Kk 加熱シール装置

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589591A (en) 1986-07-03 1996-12-31 Advanced Magnetics, Inc. Endotoxin-free polysaccharides
WO1993013136A1 (en) 1991-12-20 1993-07-08 Howmedica Inc. Ultra-pure polysaccharide materials for medical use
JPH08269102A (ja) 1995-03-30 1996-10-15 Shiseido Co Ltd エンドトキシンフリーのβ1,3−グルカン及びその製造法並びに医療用ゲル素材
JPH09324001A (ja) 1996-04-02 1997-12-16 Kyowa Hakko Kogyo Co Ltd ヒアルロン酸ナトリウムの精製法
JP2005036036A (ja) 2003-07-16 2005-02-10 Tanabe Seiyaku Co Ltd エンドトキシン除去方法
JP2007075425A (ja) 2005-09-15 2007-03-29 Mochida Pharmaceut Co Ltd アルギン酸を含む創傷被覆材
WO2011046105A1 (ja) 2009-10-14 2011-04-21 国立大学法人 東京大学 被覆されたマイクロゲルファイバ
JP2014506926A (ja) * 2011-03-04 2014-03-20 ウェイク・フォレスト・ユニヴァーシティ・ヘルス・サイエンシズ ホルモン補充療法のためのカプセル化された細胞
JP2014136128A (ja) 2013-01-18 2014-07-28 Univ Of Tokyo 移植用神経束及びその製造方法
JP2016508369A (ja) * 2013-02-08 2016-03-22 シャンハイ インスティチューツ フォー バイオロジカル サイエンシーズ、 チャイニーズ アカデミー オブ サイエンシーズ ヒト肝細胞様細胞およびその使用
JP2014236698A (ja) 2013-06-07 2014-12-18 国立大学法人 鹿児島大学 細胞凝集塊作製法
WO2015178427A1 (ja) 2014-05-20 2015-11-26 国立大学法人 東京大学 中空マイクロファイバ
JP2016077229A (ja) 2014-10-17 2016-05-16 国立大学法人 東京大学 ファイバ状基材、3次元細胞構造体及びその製造方法、並びに3次元細胞構造体の培養方法
JP2019520837A (ja) * 2016-07-18 2019-07-25 イーティーエイチ・チューリッヒ Β細胞ミメティック細胞
WO2019078251A1 (ja) 2017-10-19 2019-04-25 国立大学法人東京大学 接着剤及びその使用
JP2019075993A (ja) 2017-10-20 2019-05-23 国立大学法人 東京大学 細胞の三次元培養方法、細胞構造体、細胞構造体の製造方法及び細胞の運搬方法
WO2019123886A1 (ja) 2017-12-23 2019-06-27 国立大学法人東京大学 アレイ及びその使用
WO2019240219A1 (ja) 2018-06-14 2019-12-19 持田製薬株式会社 新規な架橋アルギン酸
WO2020032221A1 (ja) 2018-08-10 2020-02-13 持田製薬株式会社 アルギン酸中空マイクロファイバ
WO2021125279A1 (ja) 2019-12-18 2021-06-24 持田製薬株式会社 化学架橋アルギン酸ゲルファイバ
WO2021125255A1 (ja) 2019-12-18 2021-06-24 持田製薬株式会社 新規な架橋アルギン酸

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"ASTM F2064-00", 2006, ASTM INTERNATIONAL
"Comprehensive Organic Transformations", 2018, article "A Guide to Functional Group Preparations"
"Strategic Applications of Named Reactions in Organic Synthesis", 2005, ACADEMIC PRESS
APPL MICROBIOL BIOTECHNOL, vol. 40, 1994
CAS , no. 2401876-48-8
CAS, no. 127828-22-2
CHIKAKO YOMOTA, BULL. NATL. HEALTH SCI., vol. 117, 1999, pages 135 - 139
CHIKAKO YOMOTA, BULL. NATL. INST. HEALTH SCI., vol. 121, 2003
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, no. 6, 2014, pages 1280 - 1286
GREENE: "The Fifth Series of Experimental Chemistry", 2007, MARUZEN CO., LTD.
HASAN ULUDAG , PAUL DE VOS , PATRICK A TRESCO: "Technology of mammalian cell encapsulation", ADVANCED DRUG DELIVERY REVIEWS, ELSEVIER, AMSTERDAM , NL, vol. 42, no. 1-2, 20 August 2000 (2000-08-20), Amsterdam , NL , pages 29 - 64, XP002302229, ISSN: 0169-409X, DOI: 10.1016/S0169-409X(00)00053-3 *
MASUMI YAMADA, SUGAYA SARI, NAGANUMA YOJI, SEKI MINORU: "Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking", SOFT MATTER, vol. 8, no. 11, 3 February 2012 (2012-02-03), GB , pages 3122 - 3130, XP055553869, ISSN: 1744-683X, DOI: 10.1039/c2sm07263g *
ORG. PROCESS RES. DEV., vol. 22, 2018, pages 108 - 110
ORGANOMETALLICS, vol. 29, no. 23, 2010, pages 6619 - 6622
PA-LAB CHIP, vol. 8, 2008, pages 1255 - 1257
STAHLWERMUTH: "Handbook of Pharmaceutical Salts: Properties, Selection, and Use", 2002, WILEY-VCH

Also Published As

Publication number Publication date
AU2021414759A1 (en) 2023-07-13
US20240132854A1 (en) 2024-04-25
EP4268857A1 (en) 2023-11-01
CA3203302A1 (en) 2022-07-07
JPWO2022145420A1 (ja) 2022-07-07
KR20230127997A (ko) 2023-09-01

Similar Documents

Publication Publication Date Title
JP7450793B2 (ja) 新規なポリマーコーティング架橋アルギン酸ゲルファイバ
Ooi et al. Thiol–ene alginate hydrogels as versatile bioinks for bioprinting
Sacco et al. Concepts for developing physical gels of chitosan and of chitosan derivatives
Orive et al. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates
Gombotz et al. Protein release from alginate matrices
Yang et al. In situ-forming injectable hydrogels for regenerative medicine
Chung et al. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering
Seib Reverse-engineered silk hydrogels for cell and drug delivery
Hynes et al. A library of tunable poly (ethylene glycol)/poly (l‐lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation
Shafiq et al. Stem cell recruitment, angiogenesis, and tissue regeneration in substance P‐conjugated poly (l‐lactide‐co‐ɛ‐caprolactone) nonwoven meshes
EP3395327B1 (en) Non-covalently assembled conductive hydrogel
Xie et al. Hydrogels for exosome delivery in biomedical applications
EP3835409A1 (en) Alginate hollow microfiber
Martello et al. Poly (amido-amine)-based hydrogels with tailored mechanical properties and degradation rates for tissue engineering
Bakaic et al. Injectable and degradable poly (oligoethylene glycol methacrylate) hydrogels with tunable charge densities as adhesive peptide-free cell scaffolds
Meco et al. Impact of elastin-like protein temperature transition on PEG-ELP hybrid hydrogel properties
Lee et al. Effect of spacer arm length between adhesion ligand and alginate hydrogel on stem cell differentiation
Lim et al. Biosynthetic hydrogels for cell encapsulation
Gardner et al. Improving covalent cell encapsulation with temporarily reactive polyelectrolytes
WO2022145420A1 (ja) 新規な多層ポリマーコーティング架橋アルギン酸ゲルファイバ
WO2021125279A1 (ja) 化学架橋アルギン酸ゲルファイバ
WO2022145419A1 (ja) 化学架橋アルギン酸を用いた多層構造体
Urosev et al. Injectable Poly (oligoethylene glycol methacrylate)-based hydrogels fabricated from highly branched precursor polymers: Controlling gel properties by precursor polymer morphology
Xiang et al. Peptide‐directed self‐assembly of functionalized polymeric nanoparticles. Part II: Effects of nanoparticle composition on assembly behavior and multiple drug loading ability
US20230322996A1 (en) Polymer-interaction molecule conjugates and methods of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3203302

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022573085

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18269705

Country of ref document: US

Ref document number: 202180087547.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021414759

Country of ref document: AU

Date of ref document: 20211227

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021915279

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021915279

Country of ref document: EP

Effective date: 20230728