WO2015178427A1 - 中空マイクロファイバ - Google Patents

中空マイクロファイバ Download PDF

Info

Publication number
WO2015178427A1
WO2015178427A1 PCT/JP2015/064524 JP2015064524W WO2015178427A1 WO 2015178427 A1 WO2015178427 A1 WO 2015178427A1 JP 2015064524 W JP2015064524 W JP 2015064524W WO 2015178427 A1 WO2015178427 A1 WO 2015178427A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
microfiber
hydrogel
preparation solution
layer
Prior art date
Application number
PCT/JP2015/064524
Other languages
English (en)
French (fr)
Inventor
昌治 竹内
弘晃 尾上
重徳 三浦
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2016521133A priority Critical patent/JP6710000B2/ja
Priority to EP15796411.5A priority patent/EP3147346A4/en
Priority to US15/312,561 priority patent/US10221382B2/en
Publication of WO2015178427A1 publication Critical patent/WO2015178427A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/10Hollow fibers or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/081Hollow fibre membranes characterised by the fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/085Details relating to the spinneret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1212Coextruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • B01D69/144Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers" containing embedded or bound biomolecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/10Hollow fibers or tubes
    • C12M25/12Hollow fibers or tubes the culture medium flowing outside the fiber or tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/08Thickening liquid suspensions by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/42Details of membrane preparation apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides

Definitions

  • the present invention relates to a hollow microfiber including a cell layer, a manufacturing method of the microfiber, and a kit for performing the manufacturing method.
  • the core unit (core part) in which cells are mixed with collagen and fibrin, which are extracellular matrix components, and the outer shell part (shell part) such as alginate gel, can be a basic unit for forming a three-dimensional cellular tissue.
  • the microfiber having a core / shell structure coated with Patent Document 1.
  • the microfiber has sufficient mechanical strength for handling, and can build a three-dimensional cellular tissue while maintaining the function of the cell.
  • the microfiber can be manufactured using various types of cells including nerve cells, muscle cells, fibroblasts, and epithelial cells.
  • Non-patent document 1 it is known that when vascular endothelial cells are introduced into the core portion of the above-described microfiber together with the extracellular matrix component and cultured, the vascular endothelial cells spontaneously form a lumen in the microfiber.
  • an object of the present invention is to provide a microfiber that can be fed with a sufficient length and in which a continuous lumen structure is formed by a cell layer.
  • the present inventors have obtained a tubular cell adhesive layer containing a cell adhesive hydrogel and an outer shell layer containing a high-strength hydrogel covering the outer periphery of the cell adhesive layer. It is found that a continuous cell layer covering the inner periphery of the cell adhesive layer can be formed by passing a cell suspension through the hollow portion of the microfiber and then culturing the cell, and the present invention provides It came.
  • this invention has the following aspects.
  • the cell adhesive hydrogel is selected from the group consisting of chitosan gel, collagen gel, gelatin, peptide gel, laminin gel and fibrin gel, and mixtures thereof.
  • the cell suspension is prepared by suspending cells in a liquid selected from the group consisting of polyethylene glycol, glycerol, alginate and dextran, and mixtures thereof.
  • [12] (1) at least one cell adhesive layer comprising a cell adhesive hydrogel, (2) Outer shell layer containing a high-strength hydrogel covering the outer periphery of the cell adhesive layer located at the most distal portion from the central axis among the at least one cell adhesive layer, (3) Among the at least one cell adhesive layer, a cell layer covering the inner periphery of the cell adhesive layer located at the most proximal portion from the central axis, and (4) a cell suspension that fills the hollow portion,
  • a method of manufacturing a microfiber comprising the following steps: (I) forming a laminar flow of cell suspension; (Ii) forming at least one laminar flow of the cell-adhesive hydrogel preparation solution covering the outer periphery of the laminar flow of the cell suspension; (Iii) A high-strength hydrogel that covers the outer periphery of the
  • Cell suspension introduction tube At least one cell-adhesive hydrogel preparation tube that is coaxial with the cell suspension tube; A high-strength hydrogel preparation solution introduction tube that is coaxial with the cell suspension introduction tube and the at least one cell adhesion hydrogel preparation solution introduction tube;
  • a microfluidic device comprising a gelling region of a solution for preparing a high-strength hydrogel and a gelling region of a solution for preparing a cell adhesive hydrogel, (1) at least one cell adhesive layer comprising a cell adhesive hydrogel, (2) Outer shell layer containing a high-strength hydrogel covering the outer periphery of the cell adhesive layer located at the most distal portion from the central axis among the at least one cell adhesive layer, (3) Among the at least one cell adhesive layer, a cell layer covering the inner periphery of the cell adhesive layer located at the most proximal portion from the central axis, and (4) a cell suspension that fills the hollow portion,
  • the high-strength hydrogel preparation solution is injected from the high-strength hydrogel preparation solution introduction tube, and the farthest from the central axis in the laminar flow of the at least one cell-adhesive hydrogel preparation solution Forming a laminar flow of the high strength hydrogel preparation solution covering the outer periphery of the laminar flow of the cell adhesion hydrogel preparation solution located at the position;
  • the assembly of laminar flows formed in (i) to (iii) is passed through the gelation region of the high-strength hydrogel preparation solution to gel the high-strength hydrogel preparation solution, Forming an outer shell layer containing hydrogel;
  • the assembly of laminar flows formed in (i) to (iii) is passed through the gelation region of the cell-adhesive hydrogel preparation solution to gel the cell-adhesive hydrogel preparation solution, Forming a cell adhesion
  • the cell suspension is prepared by suspending cells in a liquid selected from the group consisting of polyethylene glycol, glycerol, alginate and dextran, and mixtures thereof.
  • Manufacturing method of microfiber [15] The microfiber according to any one of [12] to [14], wherein the cell density in the cell suspension is 1.0 ⁇ 10 6 cells / mL to 1.0 ⁇ 10 8 cells / mL. Manufacturing method. [16] The method for producing a microfiber according to any one of [12] to [15], wherein the cell-adhesive hydrogel preparation solution and the high-strength hydrogel preparation solution are gelated under different conditions.
  • the cell adhesive hydrogel is selected from the group consisting of chitosan gel, collagen gel, gelatin, peptide gel, laminin gel or fibrin gel, or a mixture thereof.
  • Microfiber manufacturing method [18] The method for producing a microfiber according to any one of [12] to [17], wherein the high-strength hydrogel is an alginate gel or an agarose gel. [19] The method for producing a microfiber according to any one of [12] to [18], wherein the cell adhesive hydrogel is a collagen gel, and the high-strength hydrogel is an alginate gel. [20] [12] A microfiber manufactured by the method according to any one of [19].
  • [22] (1) at least one cell adhesive layer comprising a cell adhesive hydrogel, (2) Out of the at least one cell adhesive layer, an outer shell layer containing a high-strength hydrogel covering the outer periphery of the cell adhesive layer located at the most distal portion from the central axis; and (3) the at least one A method for producing a hollow microfiber, comprising a cell layer covering an inner periphery of a cell adhesive layer located at a position closest to a central axis among cell adhesive layers, wherein any one of [12] to [19] Removing the cell suspension from the microfiber produced by the method according to claim 1.
  • a hollow microfiber obtainable by removing the outer shell layer from the hollow microfiber according to [23].
  • a kit for carrying out the method for producing a microfiber according to any one of (I) a cell adhesive hydrogel preparation solution that is gelled to form a cell adhesive hydrogel; (Ii) a solution for preparing a high-strength hydrogel that is gelled to form a high-strength hydrogel; The kit comprising (iii) a cell suspension; and (iv) instructions for producing the microfiber.
  • a microfiber that can be fed with a sufficient length and in which a continuous lumen structure is formed by a cell layer.
  • the microfiber can function as a substitute for a lumen structure such as a blood vessel and a lymph vessel in a living body, and can be used in the field of regenerative medicine.
  • the manufactured microfiber of the present invention can be incorporated into a three-dimensional tissue.
  • a vascular network can be easily produced by incorporating the microfiber of the present invention produced using vascular endothelial cells into a three-dimensional tissue.
  • Example 1 It is the figure which showed the mode of the microfiber manufactured according to Example 1 (a). It is the figure which showed a mode that the outer shell layer of the microfiber was removed with the alginate lyase according to Example 1 (b). The left part shows before removal of the outer shell layer, and the right part shows after removal of the outer shell layer. It is a figure which shows the microfiber manufactured by coculturing a vascular endothelial cell and a vascular smooth muscle cell according to Example 2. FIG. It is a figure which shows that the hollow part of the microfiber manufactured according to Example 1 can liquid-feed.
  • One aspect of the present invention is (1) at least one cell adhesive layer containing a cell adhesive hydrogel, and (2) a cell located at the most distal portion from the central axis in the at least one cell adhesive layer.
  • An outer shell layer containing a high-strength hydrogel covering the outer periphery of the adhesive layer, and (3) of the at least one cell adhesive layer, covering the inner periphery of the cell adhesive layer located at the most proximal portion from the central axis A hollow microfiber containing a cell layer.
  • microfiber means, for example, a fibrous structure having an outer diameter of about 10 ⁇ m to 1 mm, but the outer diameter is not particularly limited to the above range.
  • the cross-sectional shape in the direction perpendicular to the central axis may be various shapes such as a circle, an ellipsoid, or a polygon such as a quadrangle or a pentagon.
  • the cross-sectional shape is preferably circular.
  • “hollow microfiber” is a form of microfiber and has a hollow portion passing through the central axis.
  • the cross-sectional shape of the hollow microfiber of the present invention is preferably circular.
  • the diameter of the hollow portion is not particularly limited, but is preferably 5 ⁇ m to 500 ⁇ m, more preferably 5 ⁇ m to 400 ⁇ m, still more preferably 5 ⁇ m to 300 ⁇ m, and particularly preferably 5 ⁇ m to 200 ⁇ m.
  • the inner diameter of the outer shell layer of the hollow microfiber of the present invention is not particularly limited, but is preferably 10 ⁇ m to 500 ⁇ m, more preferably 10 ⁇ m to 400 ⁇ m.
  • the outer diameter of the outer shell layer of the hollow microfiber of the present invention is not particularly limited, but is preferably 20 ⁇ m to 500 ⁇ m.
  • the hollow microfiber of the present invention has a hollow portion with a diameter of 5 ⁇ m to 200 ⁇ m, an outer shell layer with an inner diameter of 10 ⁇ m to 400 ⁇ m, and an outer shell layer with an outer diameter of 20 ⁇ m to 500 ⁇ m.
  • the diameter of the hollow portion of the hollow microfiber and the inner diameter and outer diameter of the outer shell layer are, for example, measured values from an image obtained by a phase-contrast optical microscope, and are expressed as average values of measured values at several locations of the microfiber. Is done.
  • the length of the hollow microfiber of the present invention is not particularly limited, but is preferably 1 mm to 100 cm, more preferably 5 mm to 20 cm.
  • the cell adhesive layer constituting the hollow microfiber of the present invention contains a cell adhesive hydrogel as a base material.
  • the cell-adhesive hydrogel is not particularly limited as long as cells can adhere to and cultured on the gel to form a cell layer and have sufficient permeability to cell culture medium components.
  • the cell-adhesive hydrogel can be decomposed or remodeled by cells in the living body and replaced with living tissue in the long term.
  • the cell-adhesive hydrogel is preferably a hydrogel that has been gelated by an external stimulus.
  • the external stimulus is a stimulus under physiological conditions and / or a stimulus that does not exhibit cytotoxicity, for example, addition of metal ions (for example, calcium ions), enzyme addition, pH fluctuation, heating, UV irradiation, irradiation However, it is not limited to these.
  • the cell adhesive hydrogel is preferably an extracellular matrix component.
  • the cell adhesive hydrogel of the present invention is preferably selected from the group consisting of chitosan gel, collagen gel, gelatin, peptide gel, laminin gel and fibrin gel, and mixtures thereof.
  • chitosan gel, collagen gel, gelatin, peptide gel and laminin gel are gelled by changing the temperature, pH and / or salt concentration, for example.
  • Fibrin gel is gelated by the action of monomeric fibrinogen with the enzyme thrombin.
  • an aqueous organic solvent having a property of mixing with water for example, ethanol, acetone, ethylene glycol, propylene glycol, glycerin, dimethylformamide, or dimethyl sulfoxide may be added.
  • an appropriate component or solvent can be blended. From such a viewpoint, for example, dimethyl sulfoxide can be added as a solvent for the preparation of polyvinyl alcohol hydrogel.
  • one or more biological components such as cells, proteins, lipids, saccharides, nucleic acids, or antibodies can be added to the cell adhesive layer.
  • the type of cell is not particularly limited.
  • pluripotent ES cells or iPS cells various pluripotent stem cells (hematopoietic stem cells, neural stem cells, mesenchymal stem cells, etc.), differentiation unity Stem cells (hepatic stem cells, reproductive stem cells, etc.), etc., as well as various differentiated cells, such as muscle cells such as skeletal muscle cells and cardiomyocytes, neurons such as cerebral cortex cells, fibroblasts, epithelial cells, hepatocytes, Examples thereof include pancreatic ⁇ cells and skin cells.
  • the cell adhesive layer may include a cell culture obtained by culturing cells in the cell adhesive layer.
  • the cells and biological components are not limited to those exemplified above.
  • the origin of the said cell and biological component is not specifically limited, For example, it is derived from animal cells, such as a human, a mouse
  • Various growth factors suitable for cell culture, cell maintenance and proliferation, or cell functional expression such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), Insulin-like growth factor (IGF), fibroblast growth factor (FGF), nerve growth factor (NGF), etc. may be added to the cell adhesive layer.
  • a growth factor When a growth factor is used, an appropriate concentration can be selected according to the type of growth factor.
  • a non-biological component may be added to the cell adhesive layer.
  • fibers such as carbon nanofibers, inorganic substances such as catalyst substances, beads coated with antibodies, or artificial objects such as microchips can be added.
  • the hollow microfiber of the present invention has at least one cell adhesive layer.
  • Each cell adhesion layer exists in the state laminated
  • the constituent components of each cell adhesive layer may be the same or different.
  • the number of cell adhesion layers is not particularly limited, but is preferably 1 to 5 layers, and more preferably 1 to 3 layers. In one embodiment of the invention, the number of cell adhesion layers is one.
  • the thickness of the cell adhesive layer is not particularly limited, but is preferably 10 ⁇ m to 250 ⁇ m.
  • the cell adhesive layer usually has a substantially uniform thickness.
  • the cell adhesive layer has a thickness uniformity in the range of ⁇ 5%.
  • the thickness uniformity is calculated as a% variation value with respect to the average value of the measured values of the thickness of the cell adhesive layer at several positions of the microfiber, measured by a phase contrast optical microscope, for example.
  • the outer shell layer constituting the hollow microfiber of the present invention contains a high-strength hydrogel as a base material.
  • the high-strength hydrogel is not particularly limited as long as it is a hydrogel having a higher mechanical strength than the cell adhesive layer to be coated and can have sufficient permeability to cell culture medium components.
  • the mechanical strength of the gel the tensile strength and load strength can be measured by a method using a tensile tester in water according to a method well known to those skilled in the art. Biological components and non-biological components can be added to the high-strength hydrogel as necessary.
  • the high-strength hydrogel is preferably a hydrogel that has been gelled by an external stimulus.
  • the external stimulus include, but are not limited to, addition of metal ions (for example, calcium ions), enzyme treatment, pH fluctuation, heating, UV irradiation, and radiation irradiation.
  • the external stimulus for forming the high-strength hydrogel may be the same as or different from the external stimulus for forming the cell adhesive hydrogel. Preferably, each external stimulus is different.
  • the high-strength hydrogel is preferably a hydrogel that can be removed from the microfiber by chemical reaction or enzymatic reaction after the formation of the microfiber of the present invention.
  • the high-strength hydrogel is more preferably an alginate gel or an agarose gel.
  • the alginate gel can be removed by gelation by adding calcium ions, and by removing calcium ions by an enzyme treatment using alginate lyase or the like, or by causing a chelating agent such as EDTA to act at an appropriate concentration.
  • agarose gel is gelled by temperature and can be removed by enzyme treatment.
  • the thickness of the outer shell layer is not particularly limited, but is preferably 5 ⁇ m to 250 ⁇ m.
  • the outer shell layer usually has a substantially uniform thickness.
  • the outer shell layer has a thickness uniformity in the range of ⁇ 5%.
  • the thickness uniformity is calculated as a% variation value with respect to an average value of measured values of the thickness of the outer shell layer at several positions of the microfiber, which is measured by, for example, a phase contrast optical microscope.
  • the cell adhesive layer may have the same or different component composition at any location on the layer.
  • the constituent components of one cell adhesive layer and the other cell adhesive layer are the same, but the constituent concentration May be formed such that the cell adhesion layers are different.
  • the outer shell layer may have the same or different constituent composition at any location on the layer.
  • an outer shell layer may be formed.
  • the cell adhesive hydrogel is preferably a collagen gel and the high strength hydrogel is an alginate gel.
  • the cell type in the cell layer constituting the hollow microfiber of the present invention is not particularly limited as long as it is a cell that can be adhered and cultured on the cell adhesive layer.
  • it is a cell having the property of constituting an in vivo lumen structure, for example, a vascular endothelial cell, a lymphatic cell or a tubular cell.
  • the cell layer constituting the hollow microfiber of the present invention is preferably a monolayer cell layer.
  • the cell adhesive layer constituting the hollow microfiber of the present invention may contain cells different from the cells constituting the cell layer.
  • the cells constituting the cell layer are vascular endothelial cells
  • vascular smooth muscle cells may be included in the cell adhesion layer adjacent to the cell layer.
  • a layer composed of vascular smooth muscle cells can be formed so as to cover the outside of the cell layer composed of vascular endothelial cells.
  • One embodiment of the present invention is a microfiber in which a hollow portion of the hollow microfiber of the present invention is filled with a suspension of cells constituting a cell layer.
  • the suspension is not particularly limited as long as it does not have cytotoxicity, but preferably the cells are suspended in a liquid selected from the group consisting of polyethylene glycol, glycerol, alginate and dextran, and mixtures thereof. Prepared.
  • One embodiment of the present invention is a hollow microfiber that can be obtained by removing the outer shell layer from the hollow microfiber of the present invention.
  • another embodiment of the present invention can be obtained by removing the outer shell layer from a microfiber in which the hollow portion of the hollow microfiber of the present invention is filled with a suspension of cells constituting the cell layer.
  • an enzyme treatment using an alginate lyase or the like, or a chelating agent such as EDTA is appropriately used.
  • the microfiber from which only the outer shell layer containing the alginic acid gel has been removed can be prepared by removing calcium ions by acting at a concentration of.
  • the microfiber of the present invention can be stored, for example, by sucking it into a silicon tube and stretching the gel in the longitudinal direction of the tube. If the microfiber after gelation is stored in water or a buffer solution, it is generally difficult to keep the gel in a straight line, but after placing the microfiber in water or a buffer solution, the inner diameter of the aqueous medium is reduced. By immersing the tip of the silicon tube of about 100 ⁇ m to several mm and sucking the silicon tube, the microfiber is sucked into the silicon tube from the tip and is stretched in the longitudinal direction of the tube into the silicon tube. Sucked.
  • the gel can be stored, and when used, it is possible to prepare a gel having a desired length by cutting a silicon tube containing a microfiber into an appropriate length.
  • appropriate agents such as preservatives, pH adjusters, and buffering agents can be added to the tube as necessary.
  • One aspect of the present invention is (1) at least one cell adhesive layer containing a cell adhesive hydrogel, and (2) a cell located at the most distal portion from the central axis in the at least one cell adhesive layer.
  • a method for producing a microfiber comprising a layer and (4) a cell suspension filling a hollow part, comprising the following steps: (I) forming a laminar flow of cell suspension; (Ii) forming at least one laminar flow of the cell-adhesive hydrogel preparation solution covering the outer periphery of the laminar flow of the cell suspension; (Iii) A high-strength hydrogel that covers the outer periphery of the laminar flow of the cell-adhesive hydrogel preparation solution located
  • the microfiber manufacturing method includes, for example, a cell suspension introduction tube, at least one solution introduction tube for preparing a cell adhesive hydrogel that is coaxial with the cell suspension introduction tube, and the cell suspension introduction tube. And a high-intensity hydrogel preparation solution introduction tube, a gelation region of the high-strength hydrogel preparation solution, and a cell adhesion hydrogel preparation that are coaxial with the at least one cell adhesion hydrogel preparation solution introduction tube This can be done using a microfluidic device with a gelled region of the solution.
  • FIG. 5 is a schematic view showing an example of a method for producing the microfiber of the present invention in which the number of cell adhesive layers is one using a triple coaxial laminar flow device.
  • the cell suspension 1 is ejected from the cell suspension introduction tube 2 to form a laminar flow
  • the cell adhesion hydrogel preparation solution 3 is ejected from the cell adhesion hydrogel preparation solution introduction tube 4 to produce cells.
  • a laminar flow of the cell-adhesive hydrogel preparation solution covering the outer periphery of the laminar flow of the suspension is formed, and the high-strength hydrogel preparation solution 5 is injected from the high-intensity hydrogel preparation solution introduction tube 6.
  • a laminar flow of the high-strength hydrogel preparation solution covering the outer periphery of the laminar flow of the cell-adhesive hydrogel preparation solution is formed.
  • the formed laminar flow aggregate is passed through the cell adhesion hydrogel preparation solution and the gelation region 8 of the high strength hydrogel preparation solution to obtain the cell adhesion hydrogel preparation solution and the high strength hydrogel.
  • Each preparation solution is gelled. For example, it may be gelled by introducing the formed laminar flow aggregate into the gelling agent solution 7 and / or applying other external stimuli. Then, the cells are cultured in the obtained microfiber to form a cell layer covering the inner periphery of the cell adhesive layer.
  • FIG. 6 shows a cross-sectional view of a microfiber obtained using the apparatus of FIG.
  • the material of the cell suspension introduction tube, the cell introduction hydrogel preparation solution introduction tube, and the high-strength hydrogel preparation solution introduction tube is not particularly limited.
  • the inner diameter is not particularly limited, but is, for example, 0.1 mm to 10 mm.
  • the microfiber of the present invention having two or more cell adhesion layers is, for example, between the cell adhesion hydrogel preparation solution introduction tube 4 and the high strength hydrogel preparation solution introduction tube 6 shown in FIG.
  • an additional cell-adhesive hydrogel preparation solution introduction tube is provided, from which the cell-adhesion hydrogel preparation solution is injected, and injection from the cell-adhesion hydrogel preparation solution introduction tube disposed immediately before It can manufacture by forming the laminar flow of the cell adhesive hydrogel preparation solution which covers the outer periphery of the laminar flow of the cell adhesive hydrogel preparation solution formed in (1).
  • the liquid in which the cells are suspended is non-cytotoxic and is viscous enough to allow the laminar flow of the cell-adhesive hydrogel preparation solution to be formed so as to cover the outer periphery of the laminar flow of the cell suspension. If it has, it will not specifically limit.
  • a liquid having a viscosity of about 10 to 500 cP is preferred. More preferably, it is a liquid selected from the group consisting of polyethylene glycol, glycerol, alginate and dextran, and mixtures thereof.
  • the cell density in the cell suspension is not particularly limited as long as the cells can be uniformly cultured on the cell adhesive layer in the produced microfiber.
  • it is 1.0 ⁇ 10 6 cells / mL to 5.0 ⁇ 10 8 cells / mL, more preferably 1.0 ⁇ 10 6 cells / mL to 1.0 ⁇ 10 8 cells / mL. .
  • laminar flow means that the flow line of the fluid is parallel to the ejection direction of the fluid. Also, “laminar flows” of adjacent fluids do not mix with each other, and streamlines are kept in a regular form.
  • Reynolds number is an index that forms laminar flow.
  • the Reynolds number is given by the following formula:
  • v is a flow velocity (m / sec)
  • L is a representative length (m)
  • is a kinematic viscosity coefficient (m 2 / sec)
  • the Reynolds number of each flow of the cell suspension, the cell adhesive hydrogel preparation solution, and the high-strength hydrogel preparation solution is a value that is sufficient to form a laminar flow.
  • the value is 2000 or less, any liquid can form a laminar flow.
  • the gelation of the high-strength hydrogel preparation solution and the cell adhesion hydrogel preparation solution is performed by applying an external stimulus.
  • the external stimulus is applied to each of the gelation region of the high-strength hydrogel preparation solution and the gelation region of the cell-adhesive hydrogel preparation solution.
  • the gelation region of the high-strength hydrogel preparation solution and the gelation region of the cell-adhesive hydrogel preparation solution may be the same region or different regions.
  • Examples of the external stimulus include, but are not limited to, addition of metal ions (for example, calcium ions), addition of enzymes, pH fluctuation, heating, UV irradiation, and radiation irradiation.
  • the gelation conditions may be the same or different for the cell-adhesive hydrogel and the high-strength hydrogel.
  • the gelation is performed under different conditions.
  • the cell adhesive hydrogel preparation solution is a collagen solution
  • it is gelled into a collagen gel by heating at about 37 ° C. for several minutes to 1 hour.
  • the high-strength hydrogel preparation solution is a sodium alginate solution
  • the laminar flow of the sodium alginate solution is passed through an aqueous solution (for example, calcium chloride aqueous solution) containing metal ions such as calcium ions, which is a gelling agent solution. Gel into alginate gel.
  • the gelation of the solution for preparing a high-strength hydrogel is performed more rapidly than the gelation of the solution for preparing a cell adhesive hydrogel.
  • the cell adhesive hydrogel preparation solution can be prevented from diffusing outside the outer shell layer.
  • the cell adhesive layer to be formed may have the same or different component composition at any location on the layer.
  • the constituent components of one cell adhesive layer and the other cell adhesive layer are the same, but the constituent concentration May be formed such that the cell adhesion layers are different.
  • an anisotropic tubular structure in which portions having different characteristics coexist in one cell adhesive layer can be formed.
  • Such a tubular structure has a concentration of, for example, a cell adhesive hydrogel preparation solution for forming one cell adhesive layer and a cell adhesive hydrogel preparation solution for forming the other cell adhesive layer. Can be made by forming a laminar flow of these solutions.
  • the outer shell layer that is formed may have the same or different constituent composition at any location on the layer.
  • the constituent components of one outer shell layer and the other outer shell layer are the same, but the constituent component concentrations are different.
  • an outer shell layer may be formed.
  • the concentration of the high-strength hydrogel preparation solution for forming one outer shell layer is different from the concentration of the high-strength hydrogel preparation solution for forming the other outer shell layer. Can be made by forming a laminar flow of these solutions.
  • the cells introduced as a cell suspension are cultured in the hollow portion of the microfiber and positioned at the nearest position from the central axis.
  • a cell layer covering the inner periphery of the cell adhesive layer is formed.
  • the culture is performed, for example, by immersing the formed microfibers in a cell culture medium as they are.
  • the nutrient component contained in the cell culture medium can pass through the outer shell layer and the cell adhesive layer by diffusion.
  • Cell culture conditions are not particularly limited. For example, the culture is performed at 37 ° C. for 24 to 72 hours.
  • a microfiber capable of feeding a liquid having a sufficient length (for example, 0.5 cm to 100 cm) and having a continuous lumen structure formed by a cell layer is produced. can do. Both the cell adhesive layer and the outer shell layer forming the microfiber have a substantially uniform thickness.
  • One aspect of the present invention is a kit for performing the above-described microfiber manufacturing method, (I) a cell adhesive hydrogel preparation solution that is gelled to form a cell adhesive hydrogel; (ii) a high strength hydrogel preparation solution that is gelled to form a high strength hydrogel; The kit comprising (iii) a cell suspension; and (iv) instructions for producing the microfiber.
  • One aspect of the present invention is (1) at least one cell adhesive layer containing a cell adhesive hydrogel, and (2) a cell located at the most distal portion from the central axis in the at least one cell adhesive layer.
  • An outer shell layer containing a high-strength hydrogel covering the outer periphery of the adhesive layer, and (3) of the at least one cell adhesive layer, covering the inner periphery of the cell adhesive layer located at the most proximal portion from the central axis A method for producing a hollow microfiber comprising a cell layer.
  • Such a hollow microfiber is manufactured by the method described above, (1) at least one cell adhesive layer containing a cell adhesive hydrogel, and (2) a central axis of the at least one cell adhesive layer.
  • the method for removing the cell suspension is not particularly limited.
  • the cell suspension can be removed by feeding a liquid other than the cell suspension into the hollow portion.
  • a conventionally known artificial blood vessel is, for example, a tube made of a synthetic polymer, and stenosis due to a thrombus or deterioration of a material becomes a problem after transplantation.
  • the hollow microfiber of the present invention manufactured using vascular endothelial cells is composed of blood vessel components, it is expected that the risk of thrombus formation is extremely low compared to an artificial blood vessel manufactured using an artificial material. Is done.
  • it since it is composed of a living body-derived component, it is considered that once it is connected to a living tissue, it is sequentially replaced by cells divided after transplantation or recipient cells, and the need for re-transplantation is reduced.
  • a new blood vessel network can be independently formed according to the in vivo environment around the transplant site.
  • the microfiber of the present invention can be used for transplantation in regenerative medicine, but is not limited to this application.
  • a pharmacokinetic model, an in vitro model system for cancer metastasis, an in vitro model system for thrombus formation, etc. are constructed using the microfiber of the present invention and a three-dimensional tissue produced using the microfiber. Therefore, it can be applied to drug screening.
  • Comparative Example 1 Manufacture of a microfiber comprising a core part containing collagen gel and vascular endothelial cells, and a shell part containing alginate gel covering the core part.
  • a double coaxial laminar flow device is used.
  • Manufactured When the microfiber was cultured, a cell layer composed of vascular endothelial cells was spontaneously formed, but the cell layer was randomly formed and a continuous lumen structure could not be formed.
  • Example 1 Production of a microfiber including a cell adhesive layer containing a collagen gel, an outer shell layer containing an alginate gel covering the outer periphery of the cell adhesive layer, and a vascular endothelial cell layer covering the inner periphery of the cell adhesive layer It manufactured using the apparatus shown in FIG.
  • a cell suspension 1 a polyethylene glycol solution of vascular endothelial cells (2.0 ⁇ 10 7 cells / mL) is prepared, and injected from the cell suspension introduction tube 2 at a flow rate of 10 ⁇ l / min. A laminar flow was formed.
  • a collagen aqueous solution (4 mg / ml) was prepared as the cell adhesion hydrogel preparation solution 3 and injected from the cell adhesion hydrogel preparation solution introduction tube 4 at a flow rate of 200 ⁇ l / min.
  • a laminar flow of an aqueous collagen solution covering the outer periphery of the laminar flow was formed.
  • a sodium alginate aqueous solution (1.5 mg / ml) was prepared as the high-strength hydrogel preparation solution 5 and injected from the high-strength hydrogel preparation solution introduction tube 6 at a flow rate of 125 ⁇ l / min.
  • a laminar flow of aqueous sodium alginate covering the flow perimeter was formed.
  • the resulting laminar flow aggregate was gelled in the gelation region 8 of the high strength hydrogel preparation solution and the cell adhesion hydrogel preparation solution. Specifically, it is introduced into a calcium chloride aqueous solution (100 mM, flow rate 2500 ⁇ l / min), which is a gelling agent solution 7, heated at 37 ° C. for 15 minutes, and microfiber (outer shell inner diameter: 270 ⁇ m, outer shell The outer diameter of the layer was 350 ⁇ m and the thickness of the collagen layer was 100 ⁇ m, both of which were calculated as the average value of the measured values from the images obtained by the phase contrast optical microscope.
  • a calcium chloride aqueous solution 100 mM, flow rate 2500 ⁇ l / min
  • microfiber outer shell inner diameter: 270 ⁇ m, outer shell
  • the outer diameter of the layer was 350 ⁇ m and the thickness of the collagen layer was 100 ⁇ m, both of which were calculated as the average value of the measured values from the images obtained by the phase contrast optical microscope.
  • Example 2 A microfiber comprising a cell adhesive layer containing vascular smooth muscle cells and collagen gel, an outer shell layer containing an alginate gel covering the outer periphery of the cell adhesive layer, and a vascular endothelial cell layer covering the inner periphery of the cell adhesive layer
  • Manufacture of Cell Adhesive Hydrogel Solution 3 A collagen aqueous solution (4 mg / ml) containing vascular smooth muscle cells (1.25 ⁇ 10 6 cells / mL) was prepared, and the cell adhesive hydrogel preparation solution was prepared.
  • a microfiber was manufactured in the same manner as in Example 1, except that the laminar flow of the collagen aqueous solution covering the outer periphery of the laminar flow of the cell suspension was formed by injecting from the introduction tube 4 at a flow rate of 200 ⁇ l / min. (The inner diameter of the outer shell layer: 270 ⁇ m, the outer diameter of the outer shell layer: 350 ⁇ m, the thickness of the collagen layer: 100 ⁇ m. It was calculated Te). By culturing cells in the obtained microfiber, a microfiber in which a vascular smooth muscle cell layer was laminated on the outside of a single vascular endothelial cell layer was obtained (FIG. 3).
  • Example 3 The microfiber obtained in Example 1 was sandwiched between constricted glass tubes, and liquid was fed into the hollow portion of the microfiber.
  • a liquid was fed using a syringe pump at a flow rate of 1 ⁇ L / min, the liquid could be fed into the hollow portion in the formed vascular endothelial layer.
  • the hollow microfiber of the present invention can be suitably used as an alternative to in vivo lumen structures such as blood vessels and lymphatic vessels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Materials For Medical Uses (AREA)

Abstract

 本発明は、(1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、(2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、及び(3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層を含む、中空マイクロファイバ、当該マイクロファイバの製造方法、および当該製造方法を行うためのキットに関する。

Description

中空マイクロファイバ
 本発明は、細胞層を含む中空マイクロファイバ、当該マイクロファイバの製造方法、および当該製造方法を行うためのキットに関する。
 臓器や組織の置換を目指した再生医療研究では、人工的な三次元細胞組織を構築する技術の開発が求められている。三次元細胞組織を形成するための基本ユニットとなり得るものとして、細胞外基質成分であるコラーゲンやフィブリンに細胞を混合したファイバ中心部(コア部)を、アルギン酸ゲルなどの外殻部(シェル部)で被覆した、コア・シェル構造を有するマイクロファイバが知られている(特許文献1)。当該マイクロファイバは、取扱いのための十分な機械的強度を有し、細胞の機能を維持した状態で三次元的な細胞組織を構築することが可能である。また、当該マイクロファイバは、神経細胞、筋肉細胞、繊維芽細胞及び上皮細胞を含む、様々な種類の細胞を用いて作製可能である。
 血管やリンパ管などの、管腔構造を有する生体内組織の人工的構築技術の開発も、再生医療研究において求められている。従来、細胞からなる血管様構造物を製造する方法として、コラーゲンゲルの塊の中に、型取りにより細長い孔を作製し、その内壁に血管内皮などの細胞を培養することで形成する方法が知られている。
 ここで、上述のマイクロファイバのコア部に細胞外基質成分と共に血管内皮細胞を導入して培養すると、マイクロファイバ中で当該血管内皮細胞が管腔を自発的に形成することが知られている(非特許文献1)。
国際公開第2011/046105号
Nature Materials, vol.12, pp. 584-590, 2013
 しかし、コア・シェル構造を有するマイクロファイバのコア部に細胞外基質成分と共に血管内皮細胞を導入して培養した場合、細胞層がランダムに形成され、一定の長さを有する連続的な管腔構造を形成することが困難であった。
 従って本発明は、十分な長さを有し、且つ細胞層によって連続的な管腔構造が形成された、送液可能なマイクロファイバを提供することを課題とする。
 本発明者らは上記課題に鑑み、鋭意検討した結果、細胞接着性ハイドロゲルを含むチューブ状の細胞接着性層、及び当該細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層からなるマイクロファイバの中空部に細胞懸濁液を通液し、その後細胞培養することで、当該細胞接着性層の内周を覆う、連続的な細胞層を形成し得ることを見出し、本発明に至った。
 すなわち本発明は、以下の態様を有する。
[1]
 (1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、
 (2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、及び
 (3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層
を含む、中空マイクロファイバ。
[2]
 前記細胞接着性ハイドロゲルが、キトサンゲル、コラーゲンゲル、ゼラチン、ペプチドゲル、ラミニンゲル及びフィブリンゲル、並びにそれらの混合物からなる群から選択される、[1]に記載の中空マイクロファイバ。
[3]
 前記高強度ハイドロゲルが、アルギン酸ゲル又はアガロースゲルである、[1]又は[2]に記載の中空マイクロファイバ。
[4]
 外殻層の外径が20μm~500μmである、[1]~[3]のいずれか1つに記載の中空マイクロファイバ。
[5]
 前記細胞層を構成する細胞が、血管内皮細胞、リンパ管細胞及び尿細管細胞からなる群から選択される、[1]~[4]のいずれか1つに記載の中空マイクロファイバ。
[6]
 前記少なくとも1つの細胞接着性層のうち、少なくとも1つは、前記細胞層の細胞とは異なる細胞を含む、[1]~[5]のいずれか1つに記載の中空マイクロファイバ。
[7]
 前記少なくとも1つの細胞接着性層の数が1層である、[1]~[6]のいずれか1つに記載の中空マイクロファイバ。
[8]
 [1]~[7]のいずれか1つに記載の中空マイクロファイバから外殻層を除去することにより得ることができる、中空マイクロファイバ。
[9]
 [1]~[7]のいずれか1つに記載の中空マイクロファイバの中空部が、前記細胞層を構成する細胞の懸濁液で満たされた、マイクロファイバ。
[10]
 前記細胞の懸濁液が、ポリエチレングリコール、グリセロール、アルギン酸エステル及びデキストラン、並びにそれらの混合物からなる群から選択される液体に細胞を懸濁させて調製される、[9]に記載のマイクロファイバ。
[11]
 [9]又は[10]に記載のマイクロファイバから外殻層を除去することにより得ることができる、マイクロファイバ。
[12]
(1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、
(2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、
(3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層、及び
(4)中空部を満たす細胞懸濁液
を含む、マイクロファイバを製造する方法であって、以下のステップ:
 (i)細胞懸濁液の層流を形成し;
 (ii)前記細胞懸濁液の層流の外周を覆う少なくとも1つの細胞接着性ハイドロゲル調製用溶液の層流を形成し;
 (iii)前記少なくとも1つの細胞接着性ハイドロゲル調製用溶液の層流のうち、中心軸から最遠位部に位置する細胞接着性ハイドロゲル調製用溶液の層流の外周を覆う高強度ハイドロゲル調製用溶液の層流を形成し;
 (iv)高強度ハイドロゲル調製用溶液をゲル化し、高強度ハイドロゲルを含む外殻層を形成する;
 (v)細胞接着性ハイドロゲル調製用溶液をゲル化し、細胞接着性ハイドロゲルを含む細胞接着性層を形成する;そして
 (vi)前記細胞懸濁液中で細胞を培養して、前記細胞層を形成すること
を含む、前記マイクロファイバの製造方法。
[13]
 細胞懸濁液導入管、
 前記細胞懸濁液導入管と同軸にある、少なくとも1つの細胞接着性ハイドロゲル調製用溶液導入管、
 前記細胞懸濁液導入管及び前記少なくとも1つの細胞接着性ハイドロゲル調製用溶液導入管と同軸にある、高強度ハイドロゲル調製用溶液導入管、
 高強度ハイドロゲル調製用溶液のゲル化領域、及び
 細胞接着性ハイドロゲル調製用溶液のゲル化領域
を備えるマイクロ流体装置を用いて、
(1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、
(2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、
(3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層、及び
(4)中空部を満たす細胞懸濁液
を含む、マイクロファイバを製造する方法であって、以下のステップ:
 (i)細胞懸濁液導入管から細胞懸濁液を射出して、細胞懸濁液の層流を形成し;
 (ii)少なくとも1つの細胞接着性ハイドロゲル調製用溶液導入管から、細胞接着性ハイドロゲル調製用溶液を射出して、前記細胞懸濁液の層流の外周を覆う少なくとも1つの細胞接着性ハイドロゲル調製用溶液の層流を形成し;
 (iii)前記高強度ハイドロゲル調製用溶液導入管から、高強度ハイドロゲル調製用溶液を射出して、前記少なくとも1つの細胞接着性ハイドロゲル調製用溶液の層流のうち、中心軸から最遠位部に位置する細胞接着性ハイドロゲル調製用溶液の層流の外周を覆う高強度ハイドロゲル調製用溶液の層流を形成し;
 (iv)(i)~(iii)で形成された層流の集合体を、高強度ハイドロゲル調製用溶液のゲル化領域に通過させて、高強度ハイドロゲル調製用溶液をゲル化し、高強度ハイドロゲルを含む外殻層を形成する;
 (v)(i)~(iii)で形成された層流の集合体を、細胞接着性ハイドロゲル調製用溶液のゲル化領域に通過させて、細胞接着性ハイドロゲル調製用溶液をゲル化し、細胞接着性ハイドロゲルを含む細胞接着性層を形成し、ここで本ステップは、ステップ(iv)の前若しくは後に行われるか、又はステップ(iv)と同時に行われ;そして
 (vi)前記細胞懸濁液中で細胞を培養して、前記細胞層を形成すること
を含む、前記マイクロファイバの製造方法。
[14]
 前記細胞懸濁液が、ポリエチレングリコール、グリセロール、アルギン酸エステル及びデキストラン、並びにそれらの混合物からなる群から選択される液体に細胞を懸濁させて調製される、[12]又は[13]に記載のマイクロファイバの製造方法。
[15]
 前記細胞懸濁液中の細胞密度が、1.0 x 106 cells/mL~1.0 x 108 cells/mLである、[12]~[14]のいずれか1つに記載のマイクロファイバの製造方法。
[16]
 前記細胞接着性ハイドロゲル調製用溶液及び前記高強度ハイドロゲル調製用溶液が異なる条件でゲル化される、[12]~[15]のいずれか1つに記載のマイクロファイバの製造方法。
[17]
 前記細胞接着性ハイドロゲルが、キトサンゲル、コラーゲンゲル、ゼラチン、ペプチドゲル、ラミニンゲル又はフィブリンゲル、あるいはそれらの混合物からなる群から選択される、[12]~[16]のいずれか1つに記載のマイクロファイバの製造方法。
[18]
 前記高強度ハイドロゲルが、アルギン酸ゲル又はアガロースゲルである、[12]~[17]のいずれか1つに記載のマイクロファイバの製造方法。
[19]
 前記細胞接着性ハイドロゲルがコラーゲンゲルであり、前記高強度ハイドロゲルがアルギン酸ゲルである、[12]~[18]のいずれか1つに記載のマイクロファイバの製造方法。
[20]
 [12]~[19]のいずれか1つに記載の方法で製造された、マイクロファイバ。
[21]
 [20]に記載のマイクロファイバから外殻層を除去することにより得ることができる、マイクロファイバ。
[22]
 (1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、
 (2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、及び
 (3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層
を含む、中空マイクロファイバを製造する方法であって、[12]~[19]のいずれか一つに記載の方法で製造されたマイクロファイバから細胞懸濁液を除去するステップを含む、前記方法。
[23]
 [22]に記載の方法で製造された、中空マイクロファイバ。
[24]
 [23]に記載の中空マイクロファイバから外殻層を除去することにより得ることができる、中空マイクロファイバ。
[25]
 [12]~[19]のいずれか1つに記載のマイクロファイバの製造方法を行うためのキットであって、
(i)ゲル化されて細胞接着性ハイドロゲルが形成される、細胞接着性ハイドロゲル調製用溶液;
(ii)ゲル化されて高強度ハイドロゲルが形成される、高強度ハイドロゲル調製用溶液;
(iii)細胞懸濁液;及び
(iv)前記マイクロファイバを製造するための説明書
を含む、前記キット。
 本発明によれば、十分な長さを有し、且つ細胞層によって連続的な管腔構造が形成された、送液可能なマイクロファイバを提供することができる。当該マイクロファイバは、例えば生体内の血管やリンパ管などの管腔構造体の代替として機能することができ、再生医療などの分野で使用され得る。また、製造された本発明のマイクロファイバを、三次元組織内に組み込むことが可能である。例えば、血管内皮細胞を用いて製造された本発明のマイクロファイバを三次元組織内に組み込んで、血管ネットワークを簡易に作製し得る。
実施例1(a)にしたがって製造された、マイクロファイバの様子を示した図である。 実施例1(b)にしたがって、マイクロファイバの外殻層をアルギン酸リアーゼにより除去した様子を示した図である。左部が外殻層の除去前を示し、右部が外殻層の除去後を示す。 実施例2にしたがって、血管内皮細胞と血管平滑筋細胞とを共培養して製造されたマイクロファイバを示す図である。 実施例1にしたがって製造されたマイクロファイバの中空部が送液可能であることを示す図である。 三重の同軸の層流装置を用いて、細胞接着性層の数が1層である本発明のマイクロファイバを製造する方法を模式図として示した図である。 図5の層流装置を用いて製造されたマイクロファイバの断面図である。
 本発明の一態様は、(1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、(2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、及び(3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層を含む、中空マイクロファイバである。
 本明細書中、「マイクロファイバ」とは、例えば外径が10μm~1mm程度の繊維状の構造体を意味しているが、外径は上記の範囲に特に限定されるわけではない。中心軸に対して垂直方向の断面形状としては、円形、楕円系、又は四角形や五角形などの多角形など多様な形状であってもよい。断面形状としては円形が好ましい。
 本明細書中、「中空マイクロファイバ」とは、マイクロファイバの一形態であって、中心軸を通る中空部分を有する。本発明の中空マイクロファイバの断面形状は、好ましくは円形である。その場合の中空部の直径は、特に限定されないが、好ましくは5μm~500μmであり、より好ましくは5μm~400μmであり、更に好ましくは5μm~300μmであり、特に好ましくは5μm~200μmである。
 本発明の中空マイクロファイバの外殻層の内径は、特に限定されないが、好ましくは10μm~500μmであり、より好ましくは10μm~400μmである。
 本発明の中空マイクロファイバの外殻層の外径は、特に限定されないが、好ましくは20μm~500μmである。
 一実施形態において、本発明の中空マイクロファイバの中空部の直径は5μm~200μmであり、外殻層の内径は10μm~400μmであり、そして外殻層の外径は20μm~500μmである。
 上記の中空マイクロファイバの中空部の直径、並びに外殻層の内径及び外径は、例えば位相差光学顕微鏡による画像からの計測値であって、当該マイクロファイバの数カ所における計測値の平均値として表される。
 本発明の中空マイクロファイバの長さは、特に限定されないが、好ましくは1mm~100cmであり、より好ましくは5mm~20cmである。
 本発明の中空マイクロファイバを構成する細胞接着性層は、基材として細胞接着性ハイドロゲルを含む。細胞接着性ハイドロゲルは、当該ゲル上に細胞が接着して培養されて細胞層を形成し得、そして細胞培養培地成分に対して十分な透過性を有し得る限り、特に限定されない。本発明のマイクロファイバが移植に使用された場合、当該細胞接着性ハイドロゲルは生体内細胞により分解又はリモデリングされ、長期的には生体組織に置換され得る。
 細胞接着性ハイドロゲルは、好ましくは、外的刺激によりゲル化したハイドロゲルである。外的刺激としては、生理的条件下における刺激、及び/又は細胞毒性を示さない刺激であり、例えば、金属イオン(例えばカルシウムイオン)の添加、酵素添加、pH変動、加熱、UV照射、放射線照射などが挙げられるが、これらに限定されない。
 細胞接着性ハイドロゲルは、好ましくは、細胞外基質成分である。或いは、本発明の細胞接着性ハイドロゲルは、好ましくは、キトサンゲル、コラーゲンゲル、ゼラチン、ペプチドゲル、ラミニンゲル及びフィブリンゲル、並びにそれらの混合物からなる群から選択される。これらのうち、キトサンゲル、コラーゲンゲル、ゼラチン、ペプチドゲル及びラミニンゲルは、例えば温度、pH及び/又は塩濃度を変更することによりゲル化される。フィブリンゲルは、モノマーであるフィブリノーゲンが酵素であるトロンビンと作用することによりゲル化される。
 細胞接着性層の調製にあたっては、水と混じりあう性質を有する水性有機溶媒、例えばエタノール、アセトン、エチレングリコール、プロピレングリコール、グリセリン、ジメチルホルムアミド、又はジメチルスルホキシドなどを添加してもよい。ハイドロゲルの強度を高めるために適宜の成分や溶媒を配合することもできる。このような観点から、例えば、ポリビニルアルコールハイドロゲルの調製のために溶媒としてジメチルスルホキシドを添加することも可能である。
 細胞接着性層には、例えば、細胞、タンパク質、脂質、糖類、核酸類、又は抗体などの生体成分の1種又は2種以上を添加することができる。細胞の種類は特に限定されないが、例えば、分化万能性を有するES細胞やiPS細胞、分化多能性を有する各種の幹細胞(造血幹細胞、神経幹細胞、間葉系幹細胞など)、分化単一性を有する幹細胞(肝幹細胞、生殖幹細胞など)などのほか、分化した各種の細胞、例えば骨格筋細胞や心筋細胞などの筋細胞、大脳皮質細胞などの神経細胞、線維芽細胞、上皮細胞、肝細胞、膵β細胞、皮膚細胞などを挙げることができる。細胞接着性層は、細胞を細胞接着性層内で培養して得られる細胞培養物を含んでいてもよい。もっとも細胞や生体成分は上記に例示したものに限定されることはない。また、上記細胞や生体成分の由来も特に限定されないが、例えばヒト、マウス、ラット、イヌ又はサルなどの動物細胞由来である。上記の細胞の培養、細胞の維持や増殖、又は細胞の機能発現などに適した各種の成長因子、例えば上皮成長因子(EGF)、血小板由来成長因子(PDGF)、トランスフォーミング成長因子(TGF)、インスリン様成長因子(IGF)、線維芽細胞成長因子(FGF)、神経成長因子(NGF)などを細胞接着性層に添加してもよい。成長因子を用いる場合には、成長因子の種類に応じて適宜の濃度を選択することができる。また、細胞接着性層には非生体成分を添加してもよい。例えば、カーボンナノファイバなどの繊維類、触媒物質など無機物質類、抗体などで被覆されたビーズ類、又はマイクロチップなどの人工物を添加することも可能である。
 本発明の中空マイクロファイバは、少なくとも1つの細胞接着性層を有する。各細胞接着性層は、連続的に積層された状態で存在する。各細胞接着性層の構成成分は、同一であっても異なってもよい。細胞接着性層の数は特に限定されないが、好ましくは1~5層であり、より好ましくは1~3層である。本発明の一実施形態において、細胞接着性層の数は1層である。
 細胞接着性層の厚みは、特に限定されないが、好ましくは、10μm~250μmである。また、当該細胞接着性層は通常、実質的に均一な厚みを有する。好ましくは、当該細胞接着性層は、±5%の範囲内の厚さ均一性を有する。当該厚さ均一性は、例えば位相差光学顕微鏡により測定された、当該マイクロファイバの数カ所における細胞接着性層の厚さの計測値の平均値に対する、%変動値として計算される。
 本発明の中空マイクロファイバを構成する外殻層は、基材として高強度ハイドロゲルを含む。高強度ハイドロゲルは、被覆されるべき細胞接着性層より高い機械的強度を有するハイドロゲルであって、細胞培養培地成分に対して十分な透過性を有し得るものであれば、特に限定されない。ゲルの機械的強度については、当業者に周知の方法に従って、引っ張り試験機を水中で用いる方法などにより引っ張り強度や荷重強度などを測定することができる。高強度ハイドロゲル中に、生体成分や非生体成分を必要に応じて添加することもできる。
 高強度ハイドロゲルは、好ましくは外的刺激によりゲル化したハイドロゲルである。外的刺激としては、例えば、金属イオン(例えばカルシウムイオン)の添加、酵素処理、pH変動、加熱、UV照射、放射線照射などが挙げられるがこれらに限定されない。また、高強度ハイドロゲルを形成するための外的刺激は、細胞接着性ハイドロゲルを形成するための外的刺激と同一であっても異なってもよい。好ましくは、外的刺激は各々異なる。
 高強度ハイドロゲルは、好ましくは、本発明のマイクロファイバの形成後に当該マイクロファイバから化学反応および酵素反応などにより除去可能なハイドロゲルである。
 高強度ハイドロゲルは、より好ましくは、アルギン酸ゲル又はアガロースゲルである。アルギン酸ゲルは、カルシウムイオンの添加によりゲル化し、アルギン酸リアーゼなどを用いた酵素処理により、又はEDTAなどのキレート剤を適宜の濃度で作用させてカルシウムイオンを除去することにより除去可能である。また、アガロースゲルは温度によりゲル化し、酵素処理により除去可能である。
 外殻層の厚みは、特に限定されないが、好ましくは、5μm~250μmである。また、当該外殻層は通常、実質的に均一な厚みを有する。好ましくは、当該外殻層は、±5%の範囲内の厚さ均一性を有する。当該厚さ均一性は、例えば位相差光学顕微鏡により測定された、当該マイクロファイバの数カ所における外殻層の厚さの計測値の平均値に対する、%変動値として計算される。
 細胞接着性層は、その構成成分組成が当該層上の任意の場所において同一であっても、又は異なってもよい。例えば、細胞接着性層の管をその中心軸を含むように軸方向で切断した場合、一方の細胞接着性層と他方の細胞接着性層との構成成分は同一であるが、その構成成分濃度が異なるように、細胞接着性層が形成されてもよい。このように、細胞接着性層をパターニングすることで、1つの細胞接着性層中に異なる特性を有する部分が共存した、異方性を有する管状構造を形成し得る。同様に、外殻層は、その構成成分組成が当該層上の任意の場所において同一であっても、又は異なってもよい。例えば、外殻層の管をその中心軸を含むように軸方向で切断した場合、一方の外殻層と他方の外殻層との構成成分は同一であるが、その構成成分濃度が異なるように、外殻層が形成されてもよい。
 本発明の中空マイクロファイバにおいて使用される細胞接着性ハイドロゲル及び高強度ハイドロゲルの組み合わせは、好ましくは、細胞接着性ハイドロゲルがコラーゲンゲルであり、高強度ハイドロゲルがアルギン酸ゲルである。
 本発明の中空マイクロファイバを構成する細胞層における細胞の種類は、細胞接着性層上に接着して培養され得る細胞であれば、特に限定されない。好ましくは生体内管腔構造体を構成する性質を有する細胞、例えば、血管内皮細胞、リンパ管細胞又は尿細管細胞である。
 本発明の中空マイクロファイバを構成する細胞層は、好ましくは単層細胞層である。
 本発明の中空マイクロファイバを構成する細胞接着性層は、細胞層を構成する細胞とは異なる細胞を含んでもよい。例えば、細胞層を構成する細胞が血管内皮細胞であるとき、当該細胞層に隣接する細胞接着性層に血管平滑筋細胞を含めてもよい。この場合、血管内皮細胞からなる細胞層の外側を覆うように、血管平滑筋細胞からなる層が形成され得る。
 本発明の一態様は、本発明の中空マイクロファイバの中空部が、細胞層を構成する細胞の懸濁液で満たされた、マイクロファイバである。当該懸濁液は細胞毒性を有さないものであれば特に限定されないが、好ましくは、ポリエチレングリコール、グリセロール、アルギン酸エステル及びデキストラン、並びにそれらの混合物からなる群から選択される液体に細胞を懸濁させて調製される。
 本発明の一態様は、本発明の中空マイクロファイバから外殻層を除去することにより得ることができる、中空マイクロファイバである。また、本発明の他の実施形態は、本発明の中空マイクロファイバの中空部が細胞層を構成する細胞の懸濁液で満たされたマイクロファイバから、外殻層を除去することにより得ることができるマイクロファイバである。例えば、高強度ハイドロゲルとしてアルギン酸ゲルを採用し、細胞接着性ゲルとしてコラーゲンゲルを採用した本発明のマイクロファイバの製造後、アルギン酸リアーゼなどを用いた酵素処理により、又はEDTAなどのキレート剤を適宜の濃度で作用させてカルシウムイオンを除去することにより、アルギン酸ゲルを含む外殻層のみを除去したマイクロファイバを調製することができる。
 本発明のマイクロファイバは、例えばシリコンチューブ内に吸引し、チューブの縦軸方向にゲルを伸張して保存することができる。ゲル化後のマイクロファイバを水中又は緩衝液中などに保存するとゲルを直線状に保つことが一般には困難になるが、マイクロファイバを水中又は緩衝液中などに入れた後、この水性媒体に内径100μm~数mm程度のシリコンチューブの先端を浸漬してシリコンチューブを吸引することにより、マイクロファイバが先端からシリコンチューブ内に吸引され、チューブの縦軸方向に伸張された直線状態でシリコンチューブ内に吸引される。この状態でゲルを保存することができ、さらに使用にあたってはマイクロファイバを内包したシリコンチューブを適宜の長さに切断して所望の長さのゲルを調製することが可能になる。保存にあたっては、必要に応じてチューブ内に防腐剤、pH調節剤、緩衝剤など適宜の薬剤を添加することができる。
 本発明の一態様は、(1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、(2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、(3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層、及び(4)中空部を満たす細胞懸濁液を含む、マイクロファイバを製造する方法であって、以下のステップ:
 (i)細胞懸濁液の層流を形成し;
 (ii)前記細胞懸濁液の層流の外周を覆う少なくとも1つの細胞接着性ハイドロゲル調製用溶液の層流を形成し;
 (iii)前記少なくとも1つの細胞接着性ハイドロゲル調製用溶液の層流のうち、中心軸から最遠位部に位置する細胞接着性ハイドロゲル調製用溶液の層流の外周を覆う高強度ハイドロゲル調製用溶液の層流を形成し;
 (iv)高強度ハイドロゲル調製用溶液をゲル化し、高強度ハイドロゲルを含む外殻層を形成する;
 (v)細胞接着性ハイドロゲル調製用溶液をゲル化し、細胞接着性ハイドロゲルを含む細胞接着性層を形成する;そして
 (vi)前記細胞懸濁液中で細胞を培養して、前記細胞層を形成すること
を含む、前記マイクロファイバの製造方法である。
 上記マイクロファイバの製造方法は、例えば、細胞懸濁液導入管、前記細胞懸濁液導入管と同軸にある、少なくとも1つの細胞接着性ハイドロゲル調製用溶液導入管、前記細胞懸濁液導入管及び前記少なくとも1つの細胞接着性ハイドロゲル調製用溶液導入管と同軸にある、高強度ハイドロゲル調製用溶液導入管、高強度ハイドロゲル調製用溶液のゲル化領域、及び細胞接着性ハイドロゲル調製用溶液のゲル化領域を備えるマイクロ流体装置(coaxial microfluidic device)を用いて行うことができる。
 図5は、三重の同軸の層流装置を用いて、細胞接着性層の数が1層である本発明のマイクロファイバを製造する方法の一例を模式図として示した図である。細胞懸濁液導入管2から細胞懸濁液1を射出して層流を形成し、細胞接着性ハイドロゲル調製用溶液導入管4から細胞接着性ハイドロゲル調製用溶液3を射出して、細胞懸濁液の層流の外周を覆う細胞接着性ハイドロゲル調製用溶液の層流を形成し、そして高強度ハイドロゲル調製用溶液導入管6から高強度ハイドロゲル調製用溶液5を射出して、細胞接着性ハイドロゲル調製用溶液の層流の外周を覆う高強度ハイドロゲル調製用溶液の層流を形成する。形成された層流の集合体を、細胞接着性ハイドロゲル調製用溶液、および高強度ハイドロゲル調製用溶液のゲル化領域8を通過させて、細胞接着性ハイドロゲル調製用溶液および高強度ハイドロゲル調製用溶液をそれぞれゲル化する。例えば、形成された層流の集合体をゲル化剤溶液7に導入することで、そして/又は、その他の外的刺激を付加することで、ゲル化され得る。そして、得られたマイクロファイバ中で細胞を培養し、細胞接着性層の内周を覆う細胞層を形成する。図6において、図5の装置を用いて得られるマイクロファイバの断面図を示す。
 細胞懸濁液導入管、細胞接着性ハイドロゲル調製用溶液導入管及び高強度ハイドロゲル調製用溶液導入管の材質は、特に限定されないが、例えばガラス、シリコーンゴム、高分子樹脂、金属、セラミックなどである。その内径は、特に限定されないが、例えば0.1mm~10mmである。
 細胞接着性層の数が2層以上である本発明のマイクロファイバは、例えば、図5に示す細胞接着性ハイドロゲル調製用溶液導入管4と高強度ハイドロゲル調製用溶液導入管6との間に、追加の細胞接着性ハイドロゲル調製用溶液導入管を設けて、そこから細胞接着性ハイドロゲル調製用溶液を射出し、直前に配置された細胞接着性ハイドロゲル調製用溶液導入管からの射出で形成された細胞接着性ハイドロゲル調製用溶液の層流の外周を覆う細胞接着性ハイドロゲル調製用溶液の層流を形成することで製造することができる。
 細胞を懸濁させる液体は、細胞毒性を有さないものであって、細胞接着性ハイドロゲル調製用溶液の層流が細胞懸濁液の層流の外周を覆うように形成され得る程度の粘性を有するものであれば特に限定されない。粘度が10~500cP程度である液体が好ましい。より好ましくは、ポリエチレングリコール、グリセロール、アルギン酸エステル及びデキストラン、並びにそれらの混合物からなる群から選択される液体である。
 細胞懸濁液中の細胞密度は、製造されたマイクロファイバ中の細胞接着性層上で細胞が均一に培養され得る細胞密度であれば、特に限定されない。好ましくは、1.0 x 106 cells/mL~5.0 x 108 cells/mLであり、より好ましくは、1.0 x 106 cells/mL~1.0 x 108 cells/mLである。
 本発明のマイクロファイバの製造過程において、各溶液が層流を形成するように、各溶液の粘度及び流速を調節する必要がある。本明細書において「層流」とは、その流体の流線が、当該流体の射出方向と平行なものをいう。また、隣接する流体の「層流」同士は、互いに混ざり合うことはなく、流線は規則正しい形で保たれる。
 層流を形成する指標として、レイノルズ数がある。レイノルズ数は、下記式:
Figure JPOXMLDOC01-appb-M000001
[式中、vは流速(m/sec)であり、Lは代表長さ(m)であり、νは動粘性係数(m2/sec)である]
で表される。
 本発明の方法において、細胞懸濁液、細胞接着性ハイドロゲル調製用溶液、及び高強度ハイドロゲル調製用溶液の各流れのレイノルズ数は、層流を形成し得るために十分な値であれば特に限定されない。例えば、当該値が2000以下である場合、いずれの液体も層流を形成し得る。
 高強度ハイドロゲル調製用溶液、及び細胞接着性ハイドロゲル調製用溶液のゲル化は、外的刺激の付加により行われる。好ましくは、外的刺激は、高強度ハイドロゲル調製用溶液のゲル化領域、及び細胞接着性ハイドロゲル調製用溶液のゲル化領域においてそれぞれ付加される。高強度ハイドロゲル調製用溶液のゲル化領域、及び細胞接着性ハイドロゲル調製用溶液のゲル化領域は、同一領域であっても異なる領域でもよい。外的刺激としては、例えば、金属イオン(例えばカルシウムイオン)の添加、酵素の添加、pH変動、加熱、UV照射、放射線照射などが挙げられるがこれらに限定されない。ゲル化条件は、細胞接着性ハイドロゲルと高強度ハイドロゲルとで、同一であっても異なっても良い。好ましくは、当該ゲル化は異なる条件で行われる。例えば、細胞接着性ハイドロゲル調製用溶液がコラーゲン溶液である場合、37℃程度で数分から1時間の加熱を行うことによりコラーゲンゲルへとゲル化させる。また、高強度ハイドロゲル調製用溶液がアルギン酸ナトリウム溶液である場合、ゲル化剤溶液であるカルシウムイオンなどの金属イオンを含む水溶液(例えば塩化カルシウム水溶液)へアルギン酸ナトリウム溶液の層流を通過させることでアルギン酸ゲルへとゲル化させる。好ましくは、高強度ハイドロゲル調製用溶液のゲル化は、細胞接着性ハイドロゲル調製用溶液のゲル化よりも速やかに行われる。それにより、細胞接着性ハイドロゲル調製用溶液が外殻層よりも外側に拡散することを防止し得る。
 形成される細胞接着性層は、その構成成分組成が当該層上の任意の場所において同一であっても、又は異なってもよい。例えば、細胞接着性層の管をその中心軸を含むように軸方向で切断した場合、一方の細胞接着性層と他方の細胞接着性層との構成成分は同一であるが、その構成成分濃度が異なるように、細胞接着性層が形成されてもよい。このように、細胞接着性層をパターニングすることで、1つの細胞接着性層中に異なる特性を有する部分が共存した、異方性を有する管状構造を形成し得る。このような管状構造は、例えば一方の細胞接着性層を形成するための細胞接着性ハイドロゲル調製用溶液と他方の細胞接着性層を形成するための細胞接着性ハイドロゲル調製用溶液との濃度が異なるように、これらの溶液の層流を形成することで作製され得る。同様に、形成される外殻層は、その構成成分組成が当該層上の任意の場所において同一であっても、又は異なってもよい。例えば、外殻層の管をその中心軸を含むように軸方向で切断した場合、一方の外殻層と他方の外殻層との構成成分は同一であるが、その構成成分濃度が異なるように、外殻層が形成されてもよい。このような管状構造は、例えば一方の外殻層を形成するための高強度ハイドロゲル調製用溶液と他方の外殻層を形成するための高強度ハイドロゲル調製用溶液との濃度が異なるように、これらの溶液の層流を形成することで作製され得る。
 高強度ハイドロゲル調製用溶液、及び細胞接着性ハイドロゲル調製用溶液のゲル化の後、マイクロファイバの中空部に細胞懸濁液として導入した細胞を培養して、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層を形成する。培養は、例えば形成されたマイクロファイバをそのまま細胞培養培地に浸漬して行われる。この場合、細胞培養培地に含まれる栄養成分は、外殻層及び細胞接着性層を拡散により通過可能である。細胞培養条件は特に限定されないが、例えば37℃にて24~72時間かけて行われる。
 本発明のマイクロファイバの製造方法に従えば、十分な長さ(例えば0.5cm~100cm)を有し、細胞層によって連続的な管腔構造が形成された、送液可能なマイクロファイバを製造することができる。当該マイクロファイバを形成する細胞接着性層及び外殻層はいずれも、実質的に均一な厚みを有する。
 本発明の一態様は、上記マイクロファイバの製造方法を行うためのキットであって、
(i)ゲル化されて細胞接着性ハイドロゲルが形成される、細胞接着性ハイドロゲル調製用溶液;(ii)ゲル化されて高強度ハイドロゲルが形成される、高強度ハイドロゲル調製用溶液;(iii)細胞懸濁液;及び(iv)前記マイクロファイバを製造するための説明書を含む、前記キットである。
 本発明の一態様は、(1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、(2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、及び(3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層を含む、中空マイクロファイバを製造する方法である。このような中空マイクロファイバは、上記の方法で製造された、(1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、(2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、(3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層、及び(4)中空部を満たす細胞懸濁液を含む、マイクロファイバから、細胞懸濁液を除去することで製造され得る。細胞懸濁液の除去方法は特に限定されないが、例えば中空部に細胞懸濁液以外の液体を送液することにより除去され得る。
 従来から知られる人工血管は、例えば合成ポリマーによるチューブであり、移植後において血栓による狭窄や材料の劣化が問題となる。一方、血管内皮細胞を使用して製造された本願発明の中空マイクロファイバは、血管構成成分で構成されているため、人工材料により製造された人工血管と比較して血栓形成リスクが極めて低いと期待される。また、生体由来成分で構成されているため、一旦生体組織と連結されれば、移植後に分裂した細胞またはレシピエントの細胞により逐次置き換わり、再移植の必要性が低減されると考えられる。さらに、移植部位周辺の生体内環境に応じて新たな血管ネットワークを自立的に形成し得る。
 また、本発明のマイクロファイバは、再生医療における移植用途に使用され得るが、当該用途に限定されない。例えば、本発明のマイクロファイバ、及び当該マイクロファイバを用いて作製された三次元組織を利用して、薬物動態モデル、がん転移のin vitroモデル系、血栓形成のin vitroモデル系などを構築することによって、薬物スクリーニングへも応用し得る。
 以下に示す実施例及び比較例を参照して本発明をさらに詳しく説明するが、本発明の範囲は、これらの実施例によって限定されるものでないことは言うまでもない。
 比較例1
 コラーゲンゲル及び血管内皮細胞を含むコア部、並びに当該コア部を覆うアルギン酸ゲルを含むシェル部からなるマイクロファイバの製造
 非特許文献1に記載された方法で、二重の同軸の層流装置を用いて製造した。当該マイクロファイバを培養すると、血管内皮細胞からなる細胞層が自発的に形成されたが、細胞層がランダムに形成され、連続的な管腔構造を形成することはできなかった。
 実施例1
(a)コラーゲンゲルを含む細胞接着性層、当該細胞接着性層の外周を覆うアルギン酸ゲルを含む外殻層、及び当該細胞接着性層の内周を覆う血管内皮細胞層を含むマイクロファイバの製造
 図5に示す装置を用いて製造した。細胞懸濁液1として、血管内皮細胞のポリエチレングリコール溶液(2.0 x 107cells/mL)を調製し、細胞懸濁液導入管2から流速10 μl/minで射出して、当該溶液の層流を形成した。細胞接着性ハイドロゲル調製用溶液3として、コラーゲン水溶液(4 mg/ml)を調製し、細胞接着性ハイドロゲル調製用溶液導入管4から流速200 μl/minで射出して、細胞懸濁液の層流の外周を覆うコラーゲン水溶液の層流を形成した。高強度ハイドロゲル調製用溶液5として、アルギン酸ナトリウム水溶液(1.5 mg/ml)を調製し、高強度ハイドロゲル調製用溶液導入管6から流速125 μl/minで射出して、コラーゲン水溶液の層流の外周を覆うアルギン酸ナトリウム水溶液の層流を形成した。得られる層流の集合体を、高強度ハイドロゲル調製用溶液、及び細胞接着性ハイドロゲル調製用溶液のゲル化領域8においてゲル化した。具体的には、ゲル化剤溶液7である塩化カルシウム水溶液(100mM、流速2500 μl/min)に導入し、37℃で15分間加熱し、マイクロファイバ(外殻層の内径:270 μm、外殻層の外径:350 μm、コラーゲン層の厚み:100 μm。いずれも、位相差光学顕微鏡による画像からの計測値の平均値として計算された)を製造した。得られたマイクロファイバ中で細胞培養することにより、コラーゲン層の内周を均一に覆う単層の血管内皮細胞層が形成された。
(b)外殻層の溶解
 (a)で得られたマイクロファイバにアルギン酸リアーゼを作用させることで、外殻層のアルギン酸ゲルを溶解した(図2)。
 実施例2
 血管平滑筋細胞及びコラーゲンゲルを含む細胞接着性層、当該細胞接着性層の外周を覆うアルギン酸ゲルを含む外殻層、及び当該細胞接着性層の内周を覆う血管内皮細胞層を含むマイクロファイバの製造
 細胞接着性ハイドロゲル調製用溶液3として、血管平滑筋細胞(1.25 x 106 cells/mL)を含むコラーゲン水溶液(4 mg/ml)を調製し、細胞接着性ハイドロゲル調製用溶液導入管4から流速200 μl/minで射出して、細胞懸濁液の層流の外周を覆うコラーゲン水溶液の層流を形成すること以外は、実施例1と同様にして、マイクロファイバを製造した(外殻層の内径:270 μm、外殻層の外径:350 μm、コラーゲン層の厚み:100 μm。いずれも、位相差光学顕微鏡による画像からの計測値の平均値として計算された)。得られたマイクロファイバ中で細胞培養することにより、単層の血管内皮細胞層の外側に血管平滑筋細胞層が積層されたマイクロファイバが得られた(図3)。
 実施例3
 実施例1で得られたマイクロファイバを狭窄したガラス管に挟むことにより,マイクロファイバの中空部に送液を行った。シリンジポンプを利用して流速1 μL/minで送液を行ったところ、形成した血管内皮層内の中空部に送液が可能であった。直径5 μmのポリスチレンビーズの分散液を送液したところ、光学顕微鏡でビーズが送液に伴い中空部を移動することを確認した(図4の上部(t=0秒)と下部(t=18秒)を参照。図中、矢印はポリスチレンビーズを示す)。
 本発明の中空マイクロファイバは、血管やリンパ管などの生体内管腔構造体の代替として好適に利用することができる。
 1  細胞懸濁液
 2  細胞懸濁液導入管
 3  細胞接着性ハイドロゲル調製用溶液
 4  細胞接着性ハイドロゲル調製用溶液導入管
 5  高強度ハイドロゲル調製用溶液
 6  高強度ハイドロゲル調製用溶液導入管
 7  ゲル化剤溶液
 8  高強度ハイドロゲル調製用溶液、及び細胞接着性ハイドロゲル調製用溶液のゲル化領域
 9  中空部
 10  細胞層
 11  細胞接着性層
 12  外殻層

Claims (25)

  1.  (1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、
     (2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、及び
     (3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層
    を含む、中空マイクロファイバ。
  2.  前記細胞接着性ハイドロゲルが、キトサンゲル、コラーゲンゲル、ゼラチン、ペプチドゲル、ラミニンゲル及びフィブリンゲル、並びにそれらの混合物からなる群から選択される、請求項1に記載の中空マイクロファイバ。
  3.  前記高強度ハイドロゲルが、アルギン酸ゲル又はアガロースゲルである、請求項1又は2に記載の中空マイクロファイバ。
  4.  外殻層の外径が20μm~500μmである、請求項1~3のいずれか1項に記載の中空マイクロファイバ。
  5.  前記細胞層を構成する細胞が、血管内皮細胞、リンパ管細胞及び尿細管細胞からなる群から選択される、請求項1~4のいずれか1項に記載の中空マイクロファイバ。
  6.  前記少なくとも1つの細胞接着性層のうち、少なくとも1つは、前記細胞層の細胞とは異なる細胞を含む、請求項1~5のいずれか1項に記載の中空マイクロファイバ。
  7.  前記少なくとも1つの細胞接着性層の数が1層である、請求項1~6のいずれか1項に記載の中空マイクロファイバ。
  8.  請求項1~7のいずれか1項に記載の中空マイクロファイバの中空部が、前記細胞層を構成する細胞の懸濁液で満たされた、マイクロファイバ。
  9.  前記細胞の懸濁液が、ポリエチレングリコール、グリセロール、アルギン酸エステル及びデキストラン、並びにそれらの混合物からなる群から選択される液体に細胞を懸濁させて調製される、請求項8に記載のマイクロファイバ。
  10.  請求項1~7のいずれか1項に記載の中空マイクロファイバから外殻層を除去することにより得ることができる、中空マイクロファイバ。
  11.  請求項8又は9に記載のマイクロファイバから外殻層を除去することにより得ることができる、マイクロファイバ。
  12.  (1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、
     (2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、
     (3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層、及び
     (4)中空部を満たす細胞懸濁液
    を含む、マイクロファイバを製造する方法であって、以下のステップ:
     (i)細胞懸濁液の層流を形成し;
     (ii)前記細胞懸濁液の層流の外周を覆う少なくとも1つの細胞接着性ハイドロゲル調製用溶液の層流を形成し;
     (iii)前記少なくとも1つの細胞接着性ハイドロゲル調製用溶液の層流のうち、中心軸から最遠位部に位置する細胞接着性ハイドロゲル調製用溶液の層流の外周を覆う高強度ハイドロゲル調製用溶液の層流を形成し;
     (iv)高強度ハイドロゲル調製用溶液をゲル化し、高強度ハイドロゲルを含む外殻層を形成する;
     (v)細胞接着性ハイドロゲル調製用溶液をゲル化し、細胞接着性ハイドロゲルを含む細胞接着性層を形成する;そして
     (vi)前記細胞懸濁液中で細胞を培養して、前記細胞層を形成すること
    を含む、前記マイクロファイバの製造方法。
  13.  細胞懸濁液導入管、
     前記細胞懸濁液導入管と同軸にある、少なくとも1つの細胞接着性ハイドロゲル調製用溶液導入管、
     前記細胞懸濁液導入管及び前記少なくとも1つの細胞接着性ハイドロゲル調製用溶液導入管と同軸にある、高強度ハイドロゲル調製用溶液導入管、
     高強度ハイドロゲル調製用溶液のゲル化領域、及び
     細胞接着性ハイドロゲル調製用溶液のゲル化領域
    を備えるマイクロ流体装置を用いて、
    (1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、
    (2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、
    (3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層、及び
    (4)中空部を満たす細胞懸濁液
    を含む、マイクロファイバを製造する方法であって、以下のステップ:
     (i)細胞懸濁液導入管から細胞懸濁液を射出して、細胞懸濁液の層流を形成し;
     (ii)少なくとも1つの細胞接着性ハイドロゲル調製用溶液導入管から、細胞接着性ハイドロゲル調製用溶液を射出して、前記細胞懸濁液の層流の外周を覆う少なくとも1つの細胞接着性ハイドロゲル調製用溶液の層流を形成し;
     (iii)前記高強度ハイドロゲル調製用溶液導入管から、高強度ハイドロゲル調製用溶液を射出して、前記少なくとも1つの細胞接着性ハイドロゲル調製用溶液の層流のうち、中心軸から最遠位部に位置する細胞接着性ハイドロゲル調製用溶液の層流の外周を覆う高強度ハイドロゲル調製用溶液の層流を形成し;
     (iv)(i)~(iii)で形成された層流の集合体を、高強度ハイドロゲル調製用溶液のゲル化領域に通過させて、高強度ハイドロゲル調製用溶液をゲル化し、高強度ハイドロゲルを含む外殻層を形成する;
     (v)(i)~(iii)で形成された層流の集合体を、細胞接着性ハイドロゲル調製用溶液のゲル化領域に通過させて、細胞接着性ハイドロゲル調製用溶液をゲル化し、細胞接着性ハイドロゲルを含む細胞接着性層を形成し、ここで本ステップは、ステップ(iv)の前若しくは後に行われるか、又はステップ(iv)と同時に行われ;そして
     (vi)前記細胞懸濁液中で細胞を培養して、前記細胞層を形成すること
    を含む、前記マイクロファイバの製造方法。
  14.  前記細胞懸濁液が、ポリエチレングリコール、グリセロール、アルギン酸エステル及びデキストラン、並びにそれらの混合物からなる群から選択される液体に細胞を懸濁させて調製される、請求項12又は13に記載のマイクロファイバの製造方法。
  15.  前記細胞懸濁液中の細胞密度が、1.0 x 106 cells/mL~1.0 x 108 cells/mLである、請求項12~14のいずれか1項に記載のマイクロファイバの製造方法。
  16.  前記細胞接着性ハイドロゲル調製用溶液及び前記高強度ハイドロゲル調製用溶液が異なる条件でゲル化される、請求項12~15のいずれか1項に記載のマイクロファイバの製造方法。
  17.  前記細胞接着性ハイドロゲルが、キトサンゲル、コラーゲンゲル、ゼラチン、ペプチドゲル、ラミニンゲル又はフィブリンゲル、並びにそれらの混合物からなる群から選択される、請求項12~16のいずれか1項に記載のマイクロファイバの製造方法。
  18.  前記高強度ハイドロゲルが、アルギン酸ゲル又はアガロースゲルである、請求項12~17のいずれか1項に記載のマイクロファイバの製造方法。
  19.  前記細胞接着性ハイドロゲルがコラーゲンゲルであり、前記高強度ハイドロゲルがアルギン酸ゲルである、請求項12~16のいずれか1項に記載のマイクロファイバの製造方法。
  20.  請求項12~19のいずれか1項に記載の方法で製造された、マイクロファイバ。
  21.  請求項20に記載のマイクロファイバから外殻層を除去することにより得ることができる、マイクロファイバ。
  22.  (1)細胞接着性ハイドロゲルを含む少なくとも1つの細胞接着性層、
     (2)前記少なくとも1つの細胞接着性層のうち、中心軸から最遠位部に位置する細胞接着性層の外周を覆う高強度ハイドロゲルを含む外殻層、及び
     (3)前記少なくとも1つの細胞接着性層のうち、中心軸から最近位部に位置する細胞接着性層の内周を覆う細胞層
    を含む、中空マイクロファイバを製造する方法であって、請求項12~19のいずれか一項に記載の方法で製造されたマイクロファイバから細胞懸濁液を除去するステップを含む、前記方法。
  23.  請求項22に記載の方法で製造された、中空マイクロファイバ。
  24.  請求項22に記載の中空マイクロファイバから外殻層を除去することにより得ることができる、中空マイクロファイバ。
  25.  請求項12~19のいずれか1項に記載のマイクロファイバの製造方法を行うためのキットであって、
    (i)ゲル化されて細胞接着性ハイドロゲルが形成される、細胞接着性ハイドロゲル調製用溶液;
    (ii)ゲル化されて高強度ハイドロゲルが形成される、高強度ハイドロゲル調製用溶液;
    (iii)細胞懸濁液;及び
    (iv)前記マイクロファイバを製造するための説明書
    を含む、前記キット。
PCT/JP2015/064524 2014-05-20 2015-05-20 中空マイクロファイバ WO2015178427A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016521133A JP6710000B2 (ja) 2014-05-20 2015-05-20 マイクロファイバ
EP15796411.5A EP3147346A4 (en) 2014-05-20 2015-05-20 Hollow microfiber
US15/312,561 US10221382B2 (en) 2014-05-20 2015-05-20 Hollow microfiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-104763 2014-05-20
JP2014104763 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015178427A1 true WO2015178427A1 (ja) 2015-11-26

Family

ID=54554093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064524 WO2015178427A1 (ja) 2014-05-20 2015-05-20 中空マイクロファイバ

Country Status (4)

Country Link
US (1) US10221382B2 (ja)
EP (1) EP3147346A4 (ja)
JP (1) JP6710000B2 (ja)
WO (1) WO2015178427A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077229A (ja) * 2014-10-17 2016-05-16 国立大学法人 東京大学 ファイバ状基材、3次元細胞構造体及びその製造方法、並びに3次元細胞構造体の培養方法
JP2017077473A (ja) * 2015-10-21 2017-04-27 国立大学法人 東京大学 マイクロチューブ、マイクロチューブの製造方法、及びマイクロチューブの製造装置
WO2018162857A1 (fr) * 2017-03-09 2018-09-13 Universite de Bordeaux Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse
JP2019507602A (ja) * 2016-03-09 2019-03-22 ミメタス・べー・フェーMimetas B.V. 二重管状構造体
WO2019078251A1 (ja) * 2017-10-19 2019-04-25 国立大学法人東京大学 接着剤及びその使用
WO2019123886A1 (ja) * 2017-12-23 2019-06-27 国立大学法人東京大学 アレイ及びその使用
JP2019198255A (ja) * 2018-05-15 2019-11-21 国立大学法人千葉大学 コラーゲンチューブの作製方法
JP2019535326A (ja) * 2016-11-23 2019-12-12 ユニヴェルシテ・ドゥ・ボルドー 細胞ミクロコンパートメントおよびその調製方法
WO2020032221A1 (ja) 2018-08-10 2020-02-13 持田製薬株式会社 アルギン酸中空マイクロファイバ
WO2021025005A1 (ja) * 2019-08-05 2021-02-11 国立大学法人佐賀大学 中空コラーゲンゲル
WO2021165905A1 (en) 2020-02-19 2021-08-26 Association For The Advancement Of Tissue Engineering And Cell Based Technologies & Therapies (A4Tec) - Associação Multicompartement hydrogel fibre their preparation and uses thereof
WO2022050282A1 (ja) * 2020-09-01 2022-03-10 株式会社セルファイバ 足場、足場の製造方法、細胞培養物、細胞培養方法
WO2022145420A1 (ja) 2020-12-28 2022-07-07 持田製薬株式会社 新規な多層ポリマーコーティング架橋アルギン酸ゲルファイバ
WO2022270549A1 (ja) 2021-06-23 2022-12-29 持田製薬株式会社 新規なポリマーコーティング架橋アルギン酸ゲルファイバ
WO2023286852A1 (ja) 2021-07-15 2023-01-19 株式会社セルファイバ 構造体及びその用途
WO2023210691A1 (ja) * 2022-04-27 2023-11-02 国立大学法人東京大学 活性成分含有溶液処理装置および体外活性成分含有溶液循環システム
WO2024116831A1 (ja) * 2022-11-29 2024-06-06 株式会社セルファイバ 細胞もしくは細胞産生物含有組成物、細胞もしくは細胞集合体及び/又は細胞産生物の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670091B (zh) * 2019-02-01 2019-09-01 國立清華大學 仿生微管及其製備方法
CN109929760A (zh) * 2019-04-08 2019-06-25 华子昂 同轴多层中空凝胶纤维管的制备装置及其使用方法和应用
CN113318273B (zh) * 2021-06-25 2022-11-25 温州医科大学慈溪生物医药研究院 Ecm梯度微纤维管及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046104A1 (ja) * 2009-10-14 2011-04-21 国立大学法人 東京大学 配向された細胞をゲル内に含む培養物
WO2011046105A1 (ja) * 2009-10-14 2011-04-21 国立大学法人 東京大学 被覆されたマイクロゲルファイバ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496360B2 (ja) * 2003-04-24 2010-07-07 国立大学法人九州大学 医療用高分子ナノ・マイクロファイバー

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046104A1 (ja) * 2009-10-14 2011-04-21 国立大学法人 東京大学 配向された細胞をゲル内に含む培養物
WO2011046105A1 (ja) * 2009-10-14 2011-04-21 国立大学法人 東京大学 被覆されたマイクロゲルファイバ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIRAYAMA, K. ET AL.: "3D MICROFLUIDICS FORMED WITH HYDROGEL SACRIFICAL STRUCTURES", 2012 IEEE 25TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS, 2012, pages 200 - 203, XP032137188 *
HIROAKI ONOE ET AL.: "Bottom Up Soshiki Kogaku", JOURNAL OF THE SOCIETY FOR BIOSCIENCE AND BIOENGINEERING, vol. 92, no. 4, 25 April 2014 (2014-04-25), Japan, pages 161 - 165, XP008184446 *
LEE, K.H. ET AL.: "Synthesis of Cell -Laden Alginate Hollow Fibers Using Microfluidic Chips and Microvascularized Tissue-Engineering Applications", SMALL, vol. 5, no. 11, 2009, pages 1264 - 1268, XP055155556, DOI: doi:10.1002/smll.200801667 *
ONOE, H. ET AL.: "Metre-long cell -laden microfibres exhibit tissue morphologies and functions", NATURE MATERIALS, vol. 12, 2013, pages 584 - 590, XP055058191 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077229A (ja) * 2014-10-17 2016-05-16 国立大学法人 東京大学 ファイバ状基材、3次元細胞構造体及びその製造方法、並びに3次元細胞構造体の培養方法
JP2017077473A (ja) * 2015-10-21 2017-04-27 国立大学法人 東京大学 マイクロチューブ、マイクロチューブの製造方法、及びマイクロチューブの製造装置
JP2019507602A (ja) * 2016-03-09 2019-03-22 ミメタス・べー・フェーMimetas B.V. 二重管状構造体
JP7117245B2 (ja) 2016-03-09 2022-08-12 ミメタス・べー・フェー 二重管状構造体
KR20230169414A (ko) * 2016-11-23 2023-12-15 유니베르시떼 드 보르도 세포 미소구획 및 제조 방법
JP2022166041A (ja) * 2016-11-23 2022-11-01 ユニヴェルシテ・ドゥ・ボルドー 細胞ミクロコンパートメントおよびその調製方法
JP7154525B2 (ja) 2016-11-23 2022-10-18 ユニヴェルシテ・ドゥ・ボルドー 細胞ミクロコンパートメントおよびその調製方法
JP2019535326A (ja) * 2016-11-23 2019-12-12 ユニヴェルシテ・ドゥ・ボルドー 細胞ミクロコンパートメントおよびその調製方法
KR102671098B1 (ko) 2016-11-23 2024-05-30 유니베르시떼 드 보르도 세포 미소구획 및 제조 방법
WO2018162857A1 (fr) * 2017-03-09 2018-09-13 Universite de Bordeaux Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse
FR3063736A1 (fr) * 2017-03-09 2018-09-14 Universite de Bordeaux Microfibre cellulaire creuse et procede de fabrication d'une telle microfibre cellulaire creuse
JP7090868B2 (ja) 2017-10-19 2022-06-27 国立大学法人 東京大学 接着剤及びその使用
JP2019073665A (ja) * 2017-10-19 2019-05-16 国立大学法人 東京大学 接着剤及びその使用
WO2019078251A1 (ja) * 2017-10-19 2019-04-25 国立大学法人東京大学 接着剤及びその使用
JPWO2019123886A1 (ja) * 2017-12-23 2021-01-14 国立大学法人 東京大学 アレイ及びその使用
JP7261481B2 (ja) 2017-12-23 2023-04-20 国立大学法人 東京大学 アレイ及びその使用
WO2019123886A1 (ja) * 2017-12-23 2019-06-27 国立大学法人東京大学 アレイ及びその使用
JP2019198255A (ja) * 2018-05-15 2019-11-21 国立大学法人千葉大学 コラーゲンチューブの作製方法
JP7134464B2 (ja) 2018-05-15 2022-09-12 国立大学法人千葉大学 コラーゲンチューブの作製方法
WO2020032221A1 (ja) 2018-08-10 2020-02-13 持田製薬株式会社 アルギン酸中空マイクロファイバ
WO2021025005A1 (ja) * 2019-08-05 2021-02-11 国立大学法人佐賀大学 中空コラーゲンゲル
WO2021165905A1 (en) 2020-02-19 2021-08-26 Association For The Advancement Of Tissue Engineering And Cell Based Technologies & Therapies (A4Tec) - Associação Multicompartement hydrogel fibre their preparation and uses thereof
WO2022050282A1 (ja) * 2020-09-01 2022-03-10 株式会社セルファイバ 足場、足場の製造方法、細胞培養物、細胞培養方法
KR20230127997A (ko) 2020-12-28 2023-09-01 모찌다 세이야쿠 가부시끼가이샤 신규의 다층 폴리머 코팅 가교 알긴산 겔 파이버
WO2022145420A1 (ja) 2020-12-28 2022-07-07 持田製薬株式会社 新規な多層ポリマーコーティング架橋アルギン酸ゲルファイバ
WO2022270549A1 (ja) 2021-06-23 2022-12-29 持田製薬株式会社 新規なポリマーコーティング架橋アルギン酸ゲルファイバ
KR20240024839A (ko) 2021-06-23 2024-02-26 모찌다 세이야쿠 가부시끼가이샤 신규의 폴리머 코팅 가교 알긴산 겔 파이버
WO2023286852A1 (ja) 2021-07-15 2023-01-19 株式会社セルファイバ 構造体及びその用途
WO2023210691A1 (ja) * 2022-04-27 2023-11-02 国立大学法人東京大学 活性成分含有溶液処理装置および体外活性成分含有溶液循環システム
WO2024116831A1 (ja) * 2022-11-29 2024-06-06 株式会社セルファイバ 細胞もしくは細胞産生物含有組成物、細胞もしくは細胞集合体及び/又は細胞産生物の製造方法

Also Published As

Publication number Publication date
US20170130184A1 (en) 2017-05-11
EP3147346A1 (en) 2017-03-29
JP6710000B2 (ja) 2020-06-17
EP3147346A4 (en) 2018-01-10
JPWO2015178427A1 (ja) 2017-04-20
US10221382B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
WO2015178427A1 (ja) 中空マイクロファイバ
Tomasina et al. Bioprinting vasculature: materials, cells and emergent techniques
Jang et al. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics
Onoe et al. Cell-laden microfibers for bottom-up tissue engineering
Wang et al. In situ 3D bioprinting living photosynthetic scaffolds for autotrophic wound healing
Ren et al. Developments and opportunities for 3D bioprinted organoids
Chandra et al. Tissue engineering: Current status and future perspectives
Gao et al. 3D bioprinting of vessel-like structures with multilevel fluidic channels
Hospodiuk et al. The bioink: A comprehensive review on bioprintable materials
JP6712220B2 (ja) 包埋された脈管構造を有する組織構成物をプリントする方法
Compaan et al. Cross-linkable microgel composite matrix bath for embedded bioprinting of perfusable tissue constructs and sculpting of solid objects
Ji et al. Complex 3D bioprinting methods
US20180346873A1 (en) Artificial micro-gland
Liu et al. Microcryogels as injectable 3-D cellular microniches for site-directed and augmented cell delivery
US8815276B2 (en) Three-dimensional nanostructured hybrid scaffold and manufacture thereof
Li et al. Toward a neurospheroid niche model: Optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs
Sun et al. 3D cell culture—can it Be as popular as 2D cell culture?
Rahimnejad et al. Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering
US11745412B2 (en) Cross-linkable microgel composite matrix bath for embedded bioprinting of perfusable tissue constructs
CN108149342A (zh) 基于微流控技术的复合空腔微纤维的制备方法
Budharaju et al. Embedded 3D bioprinting–An emerging strategy to fabricate biomimetic & large vascularized tissue constructs
Liu et al. Synthesis of cell composite alginate microfibers by microfluidics with the application potential of small diameter vascular grafts
Li et al. Rapid fabrication of ready-to-use gelatin scaffolds with prevascular networks using alginate hollow fibers as sacrificial templates
Rosellini et al. Microfluidic Fabrication of Natural Polymer-Based Scaffolds for Tissue Engineering Applications: A Review
Willson et al. Bioprinting au natural: the biologics of bioinks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016521133

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015796411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15312561

Country of ref document: US

Ref document number: 2015796411

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE